Compare commits

...

205 Commits

Author SHA1 Message Date
-LAN-
5f7f851b17 fix: Refines None checks in result transformation
Simplifies the code by replacing type checks for None with
direct comparisons, improving readability and consistency in
handling None values during output validation.

Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-04-28 15:40:14 +08:00
-LAN-
559ab46ee1 fix: Removes redundant token calculations and updates dependencies
Eliminates unnecessary pre-calculation of token limits and recalculation of max tokens
across multiple app runners, simplifying the logic for prompt handling.

Updates tiktoken library from version 0.8.0 to 0.9.0 for improved tokenization performance.

Increases default token limit in TokenBufferMemory to accommodate larger prompt messages.

These changes streamline the token management process and leverage the latest
improvements in the tiktoken library.

Fixes potential token overflow issues and prepares the system for handling larger
inputs more efficiently.

Relates to internal optimization tasks.

Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-04-28 15:39:12 +08:00
-LAN-
df98223c8c chore: Updates to version 0.15.7 with new model support
Adds support for GPT-4.1 and Amazon Bedrock DeepSeek-R1 models.
Fixes issues with app creation from template categories and
DSL version checks.

Updates version numbers in configuration files and Docker
setup to 0.15.7 for consistency.

Addresses issues #18807, #18868, #18872, #18878, and #18912.

Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-04-28 14:19:07 +08:00
Zixuan Cheng
144f9507f8 feat : add GPT4.1 in the model providers (#18912) 2025-04-27 19:31:20 +08:00
kelvintsim
2e097a1ac0 add bedrock deepseek-r1 (#18908) 2025-04-27 19:30:42 +08:00
NFish
9f7d8a981f Patch: hotfix/create from template category (#18807) (#18868) 2025-04-27 14:47:18 +08:00
zxhlyh
40b31bafd5 fix: check dsl version when create app from explore template (#18872) (#18878) 2025-04-27 14:21:45 +08:00
-LAN-
d38a2c95fb docs(CHANGELOG): Update CHANGELOG.md
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-04-25 18:31:08 +08:00
-LAN-
7d18e2a0ef feat(app_dsl_service): Refines version compatibility logic
Updates logic to handle various version comparisons, ensuring
more precise status returns based on version differences.
Improves handling of older and newer versions to prevent
mismatches and ensure appropriate compatibility status.

Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-04-25 18:27:31 +08:00
kelvintsim
024f242251 add bedrock claude-sonnet-3.7 (#18788) 2025-04-25 17:35:12 +08:00
-LAN-
bfdce78ca5 chore(*): Bump up to 0.15.6
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-04-23 14:06:46 +08:00
-LAN-
00c2258352 CHANGELOG): Adds initial changelog for version 0.15.6
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-04-23 13:55:33 +08:00
Joel
a1b3d41712 fix: clickjacking (#18552) 2025-04-22 17:08:52 +08:00
kautsar_masuara
b26e20fe34 fix: fix vertex gemini 2.0 flash 001 schema (#18405)
Co-authored-by: achmad-kautsar <achmad.kautsar@insignia.co.id>
2025-04-19 22:04:13 +08:00
NFish
161ff432f1 fix: update reset password token when email code verify success (#18362) 2025-04-18 17:15:15 +08:00
Xiyuan Chen
99a9def623 fix: reset_password security issue (#18366) 2025-04-18 05:04:44 -04:00
Alexi.F
fe1846c437 fix: change gemini-2.0-flash to validate google api #17082 (#17115) 2025-03-30 13:04:12 +08:00
-LAN-
8e75eb5c63 fix: update version to 0.15.5 in packaging and docker-compose files
Sgned-off-by: -LAN- <lapz8200@outlook.com>
2025-03-24 16:47:06 +08:00
-LAN-
970508fcb6 fix: update GitHub Actions workflow to trigger on tags
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-03-24 16:45:29 +08:00
NFish
9283a5414f fix: update yarn.lock 2025-03-24 16:41:07 +08:00
-LAN-
2a2a0e9be9 fix: update DifySandbox image version to 0.2.11 in docker-compose files
Sgned-off-by: -LAN- <laipz8200@outlook.com>
2025-03-24 15:37:55 +08:00
Joel
061a765b7d fix: sanitizer svg to avoid xss (#16608) 2025-03-24 14:48:40 +08:00
-LAN-
acd7fead87 feat: remove Vanna provider and associated assets from the project
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-03-24 14:34:03 +08:00
NFish
bbb080d5b2 fix: update chatbot help doc link on the create app form 2025-03-24 11:28:35 +08:00
NFish
c01d8a70f3 fix: upgrade nextjs to v14.2.25. a security patch for CVE-2025-29927. 2025-03-24 10:32:18 +08:00
-LAN-
1ca15989e0 chore: update version to 0.15.4 in configuration and docker files
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-03-21 16:39:06 +08:00
-LAN-
8b5a3a9424 Merge branch 'release/0.15.4' of github.com:langgenius/dify into release/0.15.4 2025-03-21 16:31:06 +08:00
-LAN-
42ddcf1edd chore: remove 0.15.3 branch config in the build action
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-03-21 16:30:33 +08:00
Joel
21561df10f fix: xss in render svg (#16437) 2025-03-21 15:24:58 +08:00
crazywoola
0e33a3aa5f chore: add ci 2025-02-19 14:34:36 +08:00
Hash Brown
d3895bcd6b revert 2025-02-19 14:32:28 +08:00
Hash Brown
eeb390650b fix: build failed 2025-02-19 14:32:28 +08:00
-LAN-
ca19bd31d4 chore(*): Bump version to 0.15.3 (#13308)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-02-07 15:20:05 +08:00
-LAN-
413dfd5628 feat: add completion mode and context size options for LLM configuration (#13325)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-02-07 15:08:53 +08:00
-LAN-
f9515901cc fix: Azure AI Foundry model cannot be used in the workflow (#13323)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-02-07 14:52:57 +08:00
呆萌闷油瓶
3f42fabff8 chore:improve thinking display for llm from xinference and ollama pro… (#13318) 2025-02-07 14:29:29 +08:00
-LAN-
1caa578771 chore(*): Update style of thinking (#13319)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-02-07 14:06:35 +08:00
Lazy_Frog
b7c11c1818 Fix the problem of Workflow terminates after parallel tasks execution, merge node not triggered (#12498)
Co-authored-by: Novice Lee <novicelee@NoviPro.local>
2025-02-07 13:56:08 +08:00
非法操作
3eb3db0663 chore: refactor the OpenAICompatible and improve thinking display (#13299) 2025-02-07 13:28:46 +08:00
-LAN-
be46f32056 fix(credits): require model name equals (#13314)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-02-07 13:28:17 +08:00
sino
6e5c915f96 feat(model): add deepseek-r1 for openrouter (#13312) 2025-02-07 12:39:13 +08:00
-LAN-
04d13a8116 feat(credits): Allow to configure model-credit mapping (#13274)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-02-07 11:01:31 +08:00
Kemal
e638ede3f2 Update README_TR.md (#13294) 2025-02-07 09:11:39 +08:00
Riddhimaan-Senapati
2348abe4bf feat: added a couple of models not defined in vertex ai, that were already … (#13296) 2025-02-07 09:11:25 +08:00
呆萌闷油瓶
f7e7a399d9 feat:add think tag display for xinference deepseek r1 (#13291) 2025-02-06 22:04:58 +08:00
le0zh
ba91f34636 fix: incorrect transferMethod assignment for remote file (#13286) 2025-02-06 19:32:21 +08:00
zhu-an
16865d43a8 feat: add deepseek models for volcengine provider (#13283)
Co-authored-by: zhaoqingyu.1075 <zhaoqingyu.1075@bytedance.com>
2025-02-06 18:20:03 +08:00
呆萌闷油瓶
0d13aee15c feat:add deepseek r1 think display for ollama provider (#13272) 2025-02-06 15:32:10 +08:00
Wu Tianwei
49b4144ffd fix: add dataset edit permissions (#13223) 2025-02-06 14:26:16 +08:00
dependabot[bot]
186e2d972e chore(deps): bump katex from 0.16.10 to 0.16.21 in /web (#13270)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-02-06 13:27:07 +08:00
engchina
40dd63ecef Upgrade oracle models (#13174)
Co-authored-by: engchina <atjapan2015@gmail.com>
2025-02-06 13:24:27 +08:00
-LAN-
6d66d6da15 feat(model_providers): Support deepseek-r1 for Nvidia Catalog (#13269)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-02-06 13:03:19 +08:00
weiwenyan-dev
03ec3513f3 Fix bug large data no render (#12683)
Co-authored-by: ex_wenyan.wei <ex_wenyan.wei@tcl.com>
2025-02-06 13:00:04 +08:00
-LAN-
87763fc234 feat(model_providers): Support deepseek for Azure AI Foundry (#13267)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-02-06 12:45:48 +08:00
JasonVV
f6c44cae2e feat(model): add gemini-2.0 model (#13266) 2025-02-06 12:28:59 +08:00
xhe
da2ee04fce fix: correct linewrap think display in generic openai api (#13260)
Signed-off-by: xhe <xw897002528@gmail.com>
2025-02-06 10:53:08 +08:00
JasonVV
7673c36af3 feat(model): add gemini-2.0-flash-thinking-exp-01-21 (#13230) 2025-02-06 10:01:00 +08:00
Riddhimaan-Senapati
9457b2af2f feat: added models :gemini 2.0 flash 001 and gemini 2.0 pro exp 02-05 (#13247) 2025-02-06 09:58:39 +08:00
k-zaku
7203991032 feat: add parameter "reasoning_effort" and Openai o3-mini (#13243) 2025-02-06 09:29:48 +08:00
xhe
5a685f7156 feat: add think display for volcengine and generic openapi (#13234)
Signed-off-by: xhe <xw897002528@gmail.com>
2025-02-06 09:24:40 +08:00
Riddhimaan-Senapati
a6a25030ad fix: updated _position.yaml to include the latest model already integ… (#13245) 2025-02-06 09:21:51 +08:00
Riddhimaan-Senapati
00458a31d5 feat: added deepseek r1 and v3 to siliconflow (#13238) 2025-02-05 21:59:18 +08:00
-LAN-
c6ddf6d6cc feat(model_providers): Add Groq DeepSeek-R1-Distill-Llama-70b (#13229)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-02-05 19:15:29 +08:00
Joshbly
34b21b3065 feat: Add o3-mini and o3-mini-2025-01-31 model variants (#13129)
Co-authored-by: crazywoola <427733928@qq.com>
2025-02-05 17:04:45 +08:00
Bowen Liang
8fbb355cd2 chore: squash system dependencies installation steps (#13206) 2025-02-05 16:42:53 +08:00
HQidea
e8b3b7e578 Fix new variables in the conversation opener would override prompt_variables (#13191) 2025-02-05 16:16:00 +08:00
-LAN-
59ca44f493 chore(model_runtime): Move deepseek ahead in the providers list. (#13197)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-02-05 16:08:28 +08:00
Bowen Liang
9e1457c2c3 fix: mypy checks violation in AzureBlobStorage (#13215) 2025-02-05 15:56:23 +08:00
te-chan
fac83e14bc Use DefaultAzureCredential for managed identity in azure blob extention (#11559) 2025-02-05 13:43:43 +08:00
Nam Vu
a97cec57e4 fix: SSRF proxy file descriptor leak in concurrent requests (#13108) 2025-02-05 13:10:27 +08:00
Riddhimaan-Senapati
38c10b47d3 Feat: add linkedin to readme (#13203) 2025-02-05 12:27:58 +08:00
MaFee921
1a2523fd15 feat: bedrock_endpoint_url (#12838) 2025-02-05 12:24:24 +08:00
Warren Chen
03243cb422 Modify params for bedrock retrieve generate (#13182) 2025-02-05 12:17:42 +08:00
Bowen Liang
2ad7ee0344 chore: add tests for build docker image when dockerfile changed (#10732) 2025-02-05 11:40:22 +08:00
Riddhimaan-Senapati
55ce3618ce fix: Dollar Sign Handling in Markdown (#13178)
Co-authored-by: crazywoola <427733928@qq.com>
2025-02-05 11:00:56 +08:00
TechnoHouse
e9e34c1ab2 Install apt dependencies using bookworm source, consistent with base image. Remove unnecessary, error-prone pins (#13176) 2025-02-05 10:07:22 +08:00
-LAN-
d4c916b496 chore(pyproject): Add type stubs into pyproject.toml (#13145)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-02-04 12:01:28 +08:00
Obada Khalili
8fbc9c9342 Solve circular dependency issue between workflow/constants.ts file and default.ts file (#13165) 2025-02-04 09:26:01 +08:00
aplio
1b6fd9dfe8 fix: set indexing technique from dataset during update-by-text (#13155) 2025-02-03 11:06:03 +08:00
非法操作
304467e3f5 fix: not install libmagic raise error (#13146) 2025-02-03 11:05:20 +08:00
Kei YAMAZAKI
7452032d81 add azure openai api version 2024-12-01-preview (#13135) 2025-02-03 11:04:20 +08:00
aplio
87e2048f1b nitpick: fix small typos in template.en.mdx (#13156) 2025-02-03 11:03:11 +08:00
Nam Vu
d876084392 chore: upgrade libldap2 (#13158) 2025-02-03 11:02:14 +08:00
非法操作
840729afa5 feat: the think tag display of siliconflow's deepseek r1 (#13153) 2025-02-02 21:55:13 +08:00
Obada Khalili
941ad03f3c pass model and cost so that langfuse can show cost (#13117) 2025-02-02 15:27:27 +08:00
aplio
d73d191f99 feature. add feat to modify metadata via dataset api (#13116) 2025-02-02 15:27:12 +08:00
Masashi Tomooka
c2664e0283 chore: fix wrong VectorType match case (#13123) 2025-02-02 15:26:59 +08:00
-LAN-
ee61cede4e test(huggingface_hub): Skip the failed test temporarily. (#13142)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-02-02 14:47:26 +08:00
-LAN-
b47669b80b fix: deduct LLM quota after processing invoke result (#13075)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-02-02 12:05:11 +08:00
Hash Brown
c0d0c63592 feat: switch to chat messages before regenerated (#11301)
Co-authored-by: zuodongxu <192560071+zuodongxu@users.noreply.github.com>
2025-01-31 13:05:10 +08:00
Yingchun Lai
b09c39c8dc refactor: avoid to use extra space when finding model by name (#13043) 2025-01-30 15:08:29 +08:00
heyszt
b4b09ddc3c add tongyi qwen2.5-14b/7b-instruct-1m model (#13089) 2025-01-29 11:58:01 +08:00
Ademílson Tonato
d0a21086bd refactor: Update Firecrawl API parameters and default settings (#13082) 2025-01-29 11:21:05 +08:00
Yingchun Lai
d44882c1b5 refactor: reduce duplciate code by inheritance (#13073) 2025-01-28 10:52:01 +08:00
Yingchun Lai
23c68efa2d fix: fix the formatter is not applied on log file (#12704) 2025-01-28 10:49:58 +08:00
Jason
560c5de1b7 Fixed Novita AI color and added DeepSeek R1 model (#13074) 2025-01-28 10:38:54 +08:00
Abdullah AlOsaimi
5d91dbd000 Set default LOG_LEVEL to INFO for celery workers and beat (#13066)
Co-authored-by: Abdullah AlOsaimi <189027247+osaimi@users.noreply.github.com>
2025-01-27 17:09:41 +08:00
heyszt
6c31ee36cd fix qwen-vl blocking mode (#13052) 2025-01-27 11:35:23 +08:00
jiandanfeng
edc29780ed fix: "Model schema not found" error only in agents (#12655) (#12760) 2025-01-27 11:33:13 +08:00
yjc980121
aad7e4dd1c fix:Improve MIME type detection for remote URL uploads using python-magic (#12693) 2025-01-27 11:33:03 +08:00
Xin Zhang
a6a727e8a4 feat: add inner API to create workspace without requiring email (#13021) 2025-01-26 15:36:56 +08:00
NFish
d1fc65fabc fix: adjust iteration node dark style (#13051) 2025-01-26 11:19:41 +08:00
Jason
d4be5ef9de Update Novita AI predefined models (#13045) 2025-01-26 09:25:29 +08:00
Shun Miyazawa
1374be5a31 fix: Unexpected tag creation when pressing enter during tag conversion (#13041) 2025-01-25 19:30:26 +08:00
Warren Chen
b2bbc28580 support bedrock kb: retrieve and generate (#13027) 2025-01-25 17:28:06 +08:00
非法操作
59b3e672aa feat: add agent thinking content display of deepseek R1 (#12949) 2025-01-24 20:13:42 +08:00
IWAI, Masaharu
a2f8bce8f5 chore: add Japanese translation: model_providers/bedrock (#13016) 2025-01-24 18:43:33 +08:00
Yueh-Po Peng (Yabi)
a2b9adb3a2 Change typo in translation (#13004) 2025-01-24 13:48:21 +08:00
IWAI, Masaharu
28067640b5 fix: wrong zh_Hans translation: Ohio (#13006) 2025-01-24 13:41:20 +08:00
lowell
da67916843 feat: add glm-4-air-0111 (#12997)
Co-authored-by: lowell <lowell.hu@zkteco.in>
2025-01-24 10:04:46 +08:00
zxhlyh
e54ce479ad Feat/prompt editor dark theme (#12976) 2025-01-23 16:20:00 +08:00
Ademílson Tonato
6024d8a42d refactor: Update Firecrawl to use v1 API (#12574)
Co-authored-by: Ademílson Tonato <ademilson.tonato@refurbed.com>
2025-01-23 11:14:48 +08:00
Joel
f565f08aa0 fix: get property of string type variable caused page crash (#12969) 2025-01-23 11:02:29 +08:00
Jhvcc
fd4afe09f8 fix: tools translate search (#12950)
Co-authored-by: lowell <lowell.hu@zkteco.in>
2025-01-22 19:27:02 +08:00
jiandanfeng
dd0904f95c feat: add giteeAI risk control identification. (#12946) 2025-01-22 19:26:25 +08:00
huangzhuo1949
4c3076f2a4 feat: add pg vector index (#12338)
Co-authored-by: huangzhuo <huangzhuo1@xiaomi.com>
2025-01-22 17:07:18 +08:00
-LAN-
1e73f63ff8 chore: update version to 0.15.2 in packaging and docker configurations (#12940)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-01-22 16:40:44 +08:00
sino
d167d5b1be feat(ark): support doubao 1.5 series of models (#12935) 2025-01-22 15:25:57 +08:00
le0zh
71fa14f791 fix: resolve clipboard.writeText failure under HTTP protocol (#12936) 2025-01-22 15:18:23 +08:00
zxhlyh
8dd1873e76 feat: workflow note dark theme (#12932) 2025-01-22 14:22:33 +08:00
-LAN-
f91f5c7401 fix(batch_create_segment_to_index_task): count max_position in memory. (#12929) 2025-01-22 13:39:02 +08:00
Bowen Liang
c62b7cc679 chore(build): bump poetry from 1.x to 2.x (#12369) 2025-01-22 13:38:24 +08:00
Jyong
3ee213ddca add milvus full text search setting (#12930) 2025-01-22 13:36:39 +08:00
jiandanfeng
8429877b02 fix: Agent is configured for ReAct inference mode, an error is reported when viewing the agent log (#12920)
Co-authored-by: crazywoola <427733928@qq.com>
2025-01-22 13:20:32 +08:00
EricPan
05a0faff6a fix: app token's last_used_at can't be updated when last_used_at is null (#12770) 2025-01-22 11:01:45 +08:00
Joel
e09f6e4987 feat: support config chunk length by env (#12925) 2025-01-22 10:43:40 +08:00
jiandanfeng
e23f4b0265 feat: add gemini-2.0-flash-thinking-exp-01-21 (#12924) 2025-01-22 10:14:37 +08:00
Shun Miyazawa
f582d4a13e feat: Add ability to change profile avatar (#12642) 2025-01-22 10:11:31 +08:00
jiangbo721
2f41bd495d fix:Fix a bug that returns null when the passed path is a file. (#12775)
Co-authored-by: 刘江波 <jiangbo721@163.com>
2025-01-22 10:10:03 +08:00
Jyong
162a8c4393 fix update segment keyword with same content (#12908) 2025-01-21 19:19:32 +08:00
luckylhb90
3d1ce4c53f bug: fixed bedrock rerank bug (#12774)
Co-authored-by: hobo.l <hobo.l@binance.com>
2025-01-21 19:09:36 +08:00
Joel
6db3ae9b8e chore: remove webapp ga (#12909) 2025-01-21 18:38:33 +08:00
zhu-an
6d0cb9dc33 fix: variable panel scrollable (#12769)
Co-authored-by: zhaoqingyu.1075 <zhaoqingyu.1075@bytedance.com>
2025-01-21 17:50:42 +08:00
k-zaku
46e95e8309 fix: OpenAI o1 Bad Request Error (#12839) 2025-01-21 15:29:13 +08:00
JasonVV
a7b9375877 Update deepseek model configuration (#12899) 2025-01-21 15:28:11 +08:00
le0zh
0c6a8a130e fix: external dataset hit test display issue(#12564) (#12612)
Co-authored-by: zhuxinliang <zhuxinliang@didiglobal.com>
2025-01-21 14:31:45 +08:00
JasonVV
9903f1e703 add deepseek-reasoner (#12898) 2025-01-21 12:40:58 +08:00
Bowen Liang
6fad719e42 chore(fix): Invalid quotes for using Array[String] in HTTP request node as JSON body (#12761) 2025-01-21 10:38:44 +08:00
jiandanfeng
9aaee8ee47 fix: Issues related to the deletion of conversation_id (#12488) (#12665) 2025-01-21 10:25:35 +08:00
Bowen Liang
166221d784 chore(lint): fix quotes for f-string formatting by bumping ruff to 0.9.x (#12702) 2025-01-21 10:12:29 +08:00
Ding Jiatong
925d69a2ee feat:Support Minimax-Text-01 (#12763) 2025-01-21 10:08:53 +08:00
rayshaw001
5ff08e241a fix: serply credential check query might return empty records (#12784) 2025-01-21 09:38:56 +08:00
kurokobo
3defd24087 feat: allow updating chunk settings for the existing documents (#12833) 2025-01-21 09:25:40 +08:00
jiandanfeng
9d86147d20 fix: SparkLite API Auth error (#12781) (#12790) 2025-01-20 22:21:21 +08:00
jiandanfeng
80801ac4ab fix: "parmas" spelling mistake. (#12875) 2025-01-20 22:18:30 +08:00
Xu Song
210926cd91 Fix suggested_question_prompt (#12738) 2025-01-20 22:16:30 +08:00
海狸大師
677a69deed fix(i18n): correct typo in zh-Hant translation (#12852) 2025-01-20 22:15:41 +08:00
zhu-an
8dfdee21ce chore: fix chinese translation for 'recall' (#12772)
Co-authored-by: zhaoqingyu.1075 <zhaoqingyu.1075@bytedance.com>
2025-01-20 22:15:26 +08:00
jiandanfeng
6ea77ab4cd fix: DeepSeek API Error with response format active (text and json_object) (#12747) 2025-01-20 22:04:18 +08:00
Hiroshi Fujita
e3c996688d feat: enhance credential extraction logic based on configurate method (#12853) 2025-01-20 21:59:22 +08:00
Wu Tianwei
bc3a570dda fix: Fix rerank model switching issue (#12721)
ok
2025-01-14 15:42:45 +08:00
github-actions[bot]
0800021a2d chore: translate i18n files (#12708)
Co-authored-by: JzoNgKVO <27049666+JzoNgKVO@users.noreply.github.com>
2025-01-14 13:35:23 +08:00
KVOJJJin
435eddd867 Feat: copyright modification (#12707) 2025-01-14 10:00:57 +08:00
-LAN-
6e0fb055d1 chore: bump version to 0.15.1 (#12690)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-01-13 19:21:06 +08:00
eux
1e9ac7ffeb feat: add table of contents to Knowledge API doc (#12688) 2025-01-13 18:31:43 +08:00
Warren Chen
b4873ecb43 [fix] support feature restore (#12563) 2025-01-13 18:29:06 +08:00
mbo
1859d57784 api tool support multiple env url (#12249)
Co-authored-by: mabo <mabo@aeyes.ai>
2025-01-13 17:49:30 +08:00
Boris Feld
69d58fbb50 Add new integration with Opik Tracking tool (#11501) 2025-01-13 17:41:44 +08:00
-LAN-
cb34991663 fix: add type hints for App model and improve error handling in audio services (#12677)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-01-13 15:55:16 +08:00
-LAN-
c700364e1c fix: Update variable handling in VariableAssignerNode and clean up app_dsl_service (#12672)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-01-13 15:54:26 +08:00
Jyong
9a6b1dc3a1 Revert "Feat/new saas billing" (#12673) 2025-01-13 15:17:43 +08:00
Kevin9703
54b5b80a07 fix(workflow): fix answer node stream processing in conditional branches (#12510) 2025-01-13 14:54:21 +08:00
yihong
831459b895 fix: ruff with statements (#12578)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
2025-01-13 09:55:55 +08:00
yihong
4e101604c3 fix: ruff check for True if ... else (#12576)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-01-13 09:38:48 +08:00
Chuehnone
a6455269f0 chore: Adjust translations to align with Taiwanese Mandarin conventions (#12633) 2025-01-13 09:12:43 +08:00
CN-P5
cd257b91c5 Fix pandas indexing method for knowledge base imports (#12637) (#12638)
Co-authored-by: CN-P5 <heibai2006@qq.com>
2025-01-13 09:06:59 +08:00
Jyong
d8f57bf899 Feat/new saas billing (#12591) 2025-01-12 14:50:46 +08:00
gakkiyomi
989fb11fd7 improve the readability of the function generate_api_key (#12552) 2025-01-09 21:30:17 +08:00
github-actions[bot]
140965b738 chore: translate i18n files (#12543)
Co-authored-by: WTW0313 <30284043+WTW0313@users.noreply.github.com>
2025-01-09 20:30:06 +08:00
Jyong
14ee51aead Feat/add knowledge include all filter (#12537) 2025-01-09 20:21:25 +08:00
Wu Tianwei
2e97ba5700 fix: Add datasets list access control and fix datasets config display issue (#12533)
Co-authored-by: nite-knite <nkCoding@gmail.com>
2025-01-09 17:44:11 +08:00
NFish
f549d53b68 fix: sum costs return error value on overview page (#12534) 2025-01-09 16:04:14 +08:00
crazywoola
a085ad4719 feat: show workflow running status (#12531) 2025-01-09 15:36:13 +08:00
lotsik
f230a9232e fix: Parsing OpenAPI spec for external tools (#12518) (#12530) 2025-01-09 15:30:43 +08:00
huangzhuo1949
e84bf35e2a fix: same chunk insert deadlock (#12502)
Co-authored-by: huangzhuo <huangzhuo1@xiaomi.com>
2025-01-09 15:16:41 +08:00
eux
20f090537f feat: add GET upload file API endpoint to dataset service api (#11899) 2025-01-09 14:52:09 +08:00
Gen Sato
dbe7a7c4fd Fix: Add a INFO-level log when fallback to gpt2tokenizer (#12508) 2025-01-09 14:37:46 +08:00
NFish
b7a4e3903e fix: add last_refresh_time to track the validity of is_other_tab_refreshing (#12517) 2025-01-09 10:40:45 +08:00
Hiroshi Fujita
b4c1c2f731 fix: Reverse sync docker-compose-template.yaml (#12509) 2025-01-09 10:21:22 +08:00
kurokobo
1b940e7daa feat: add ci job to test template for docker compose (#12514) 2025-01-09 00:04:58 +08:00
非法操作
f4ee50a7ad chore: improve app doc (#12490) 2025-01-08 18:37:12 +08:00
Jyong
bee32d960a fix #12453 #12482 (#12495) 2025-01-08 18:26:05 +08:00
YoungLH
040a3b782c FEAT: support milvus to full text search (#11430)
Signed-off-by: YoungLH <974840768@qq.com>
2025-01-08 17:39:53 +08:00
非法操作
d649037c3e feat: support single run doc extractor node (#11318) 2025-01-08 15:20:15 +08:00
-LAN-
0a49d3dd52 fix: tiktoken cannot be loaded without internet (#12478)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-01-08 14:49:44 +08:00
Yingchun Lai
53bb37b749 fix: fix the incorrect plaintext file key when saving (#10429) 2025-01-08 12:52:45 +08:00
Hiroshi Fujita
d2586278d6 Feat elasticsearch japanese (#12194) 2025-01-08 12:35:41 +08:00
Wu Tianwei
6635c393e9 fix: adjust opacity for model selector based on readonly state (#12472) 2025-01-08 12:11:45 +08:00
crazywoola
6222179a57 Revert "fix:deepseek tool call not working correctly" (#12463) 2025-01-08 10:50:34 +08:00
Jyong
05bda6f38d add tidb on qdrant redis lock (#12462) 2025-01-08 08:55:44 +08:00
Hiroshi Fujita
4295cefeb1 fix: allow fallback to remote_url when url is not provided (#12455) 2025-01-07 22:33:25 +08:00
非法操作
67228c9b26 fix: url with variable not work (#12452) 2025-01-07 21:55:51 +08:00
Jyong
fd2bfff023 remove knowledge admin role (#12450) 2025-01-07 21:30:23 +08:00
Infinitnet
4e6c86341d Add 'document' feature to Sonnet 3.5 through OpenRouter (#12444) 2025-01-07 19:51:38 +08:00
ybalbert001
2a14c67edc Fix #12448 - update bedrock retrieve tool, support hybrid search type and re… (#12446)
Co-authored-by: Yuanbo Li <ybalbert@amazon.com>
2025-01-07 19:51:23 +08:00
-LAN-
c236f05f4b chore: bump version to 0.15.0 (#12297)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-01-07 18:05:14 +08:00
-LAN-
0eeacdc80c refactor: enhance API token validation with session locking and last used timestamp update (#12426)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-01-07 18:04:41 +08:00
hisir
41f39bf3fc Fix newline characters in tables during document parsing (#12112)
Co-authored-by: hisir <admin@qq.com>
2025-01-07 17:26:24 +08:00
呆萌闷油瓶
9677144015 fix:deepseek tool call not working correctly (#12437) 2025-01-07 17:25:38 +08:00
SiliconFlow, Inc
15797c556f add fish-speech-1.5 from siliconflow (#12425) 2025-01-07 15:27:34 +08:00
-LAN-
acacf35a2a chore(docker/.env.example): Add TOP_K_MAX_VALUE to the .env.example… (#12422)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-01-07 14:51:16 +08:00
-LAN-
d3f5b1cbb6 refactor: use tiktoken for token calculation (#12416)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-01-07 13:32:30 +08:00
why
196ed8101b fix: [PromptEditorHeightResizeWrap] Bug #12410 (#12406) 2025-01-07 12:21:54 +08:00
SiliconFlow, Inc
dc650c5368 Fixes #12414: Add cheaper model and long context model for Qwen2.5-72B-Instruct from siliconflow (#12415) 2025-01-07 11:28:24 +08:00
Alex Chen
2bb521b135 Support TTS and Speech2Text for Model Provider GPUStack (#12381) 2025-01-07 09:42:11 +08:00
558 changed files with 11239 additions and 3632 deletions

View File

@@ -8,7 +8,7 @@ inputs:
poetry-version:
description: Poetry version to set up
required: true
default: '1.8.4'
default: '2.0.1'
poetry-lockfile:
description: Path to the Poetry lockfile to restore cache from
required: true

View File

@@ -42,25 +42,23 @@ jobs:
run: poetry install -C api --with dev
- name: Check dependencies in pyproject.toml
run: poetry run -C api bash dev/pytest/pytest_artifacts.sh
run: poetry run -P api bash dev/pytest/pytest_artifacts.sh
- name: Run Unit tests
run: poetry run -C api bash dev/pytest/pytest_unit_tests.sh
run: poetry run -P api bash dev/pytest/pytest_unit_tests.sh
- name: Run ModelRuntime
run: poetry run -C api bash dev/pytest/pytest_model_runtime.sh
run: poetry run -P api bash dev/pytest/pytest_model_runtime.sh
- name: Run dify config tests
run: poetry run -C api python dev/pytest/pytest_config_tests.py
run: poetry run -P api python dev/pytest/pytest_config_tests.py
- name: Run Tool
run: poetry run -C api bash dev/pytest/pytest_tools.sh
run: poetry run -P api bash dev/pytest/pytest_tools.sh
- name: Run mypy
run: |
pushd api
poetry run python -m mypy --install-types --non-interactive .
popd
poetry run -C api python -m mypy --install-types --non-interactive .
- name: Set up dotenvs
run: |
@@ -80,4 +78,4 @@ jobs:
ssrf_proxy
- name: Run Workflow
run: poetry run -C api bash dev/pytest/pytest_workflow.sh
run: poetry run -P api bash dev/pytest/pytest_workflow.sh

View File

@@ -5,8 +5,8 @@ on:
branches:
- "main"
- "deploy/dev"
release:
types: [published]
tags:
- "*"
concurrency:
group: build-push-${{ github.head_ref || github.run_id }}

47
.github/workflows/docker-build.yml vendored Normal file
View File

@@ -0,0 +1,47 @@
name: Build docker image
on:
pull_request:
branches:
- "main"
paths:
- api/Dockerfile
- web/Dockerfile
concurrency:
group: docker-build-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
build-docker:
runs-on: ubuntu-latest
strategy:
matrix:
include:
- service_name: "api-amd64"
platform: linux/amd64
context: "api"
- service_name: "api-arm64"
platform: linux/arm64
context: "api"
- service_name: "web-amd64"
platform: linux/amd64
context: "web"
- service_name: "web-arm64"
platform: linux/arm64
context: "web"
steps:
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Build Docker Image
uses: docker/build-push-action@v6
with:
push: false
context: "{{defaultContext}}:${{ matrix.context }}"
platforms: ${{ matrix.platform }}
cache-from: type=gha
cache-to: type=gha,mode=max

View File

@@ -38,12 +38,12 @@ jobs:
if: steps.changed-files.outputs.any_changed == 'true'
run: |
poetry run -C api ruff --version
poetry run -C api ruff check ./api
poetry run -C api ruff format --check ./api
poetry run -C api ruff check ./
poetry run -C api ruff format --check ./
- name: Dotenv check
if: steps.changed-files.outputs.any_changed == 'true'
run: poetry run -C api dotenv-linter ./api/.env.example ./web/.env.example
run: poetry run -P api dotenv-linter ./api/.env.example ./web/.env.example
- name: Lint hints
if: failure()
@@ -82,6 +82,33 @@ jobs:
if: steps.changed-files.outputs.any_changed == 'true'
run: yarn run lint
docker-compose-template:
name: Docker Compose Template
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Check changed files
id: changed-files
uses: tj-actions/changed-files@v45
with:
files: |
docker/generate_docker_compose
docker/.env.example
docker/docker-compose-template.yaml
docker/docker-compose.yaml
- name: Generate Docker Compose
if: steps.changed-files.outputs.any_changed == 'true'
run: |
cd docker
./generate_docker_compose
- name: Check for changes
if: steps.changed-files.outputs.any_changed == 'true'
run: git diff --exit-code
superlinter:
name: SuperLinter

View File

@@ -70,4 +70,4 @@ jobs:
tidb
- name: Test Vector Stores
run: poetry run -C api bash dev/pytest/pytest_vdb.sh
run: poetry run -P api bash dev/pytest/pytest_vdb.sh

3
.markdownlint.json Normal file
View File

@@ -0,0 +1,3 @@
{
"MD024": false
}

32
CHANGELOG.md Normal file
View File

@@ -0,0 +1,32 @@
# Changelog
All notable changes to Dify will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [0.15.7] - 2025-04-27
### Added
- Added support for GPT-4.1 in model providers (#18912)
- Added support for Amazon Bedrock DeepSeek-R1 model (#18908)
- Added support for Amazon Bedrock Claude Sonnet 3.7 model (#18788)
- Refined version compatibility logic in app DSL service
### Fixed
- Fixed issue with creating apps from template categories (#18807, #18868)
- Fixed DSL version check when creating apps from explore templates (#18872, #18878)
## [0.15.6] - 2025-04-22
### Security
- Fixed clickjacking vulnerability (#18552)
- Fixed reset password security issue (#18366)
- Updated reset password token when email code verification succeeds (#18362)
### Fixed
- Fixed Vertex AI Gemini 2.0 Flash 001 schema (#18405)

View File

@@ -25,6 +25,9 @@
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on X(Twitter)"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="follow on LinkedIn"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">

View File

@@ -21,6 +21,9 @@
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on X(Twitter)"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="follow on LinkedIn"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">

View File

@@ -21,6 +21,9 @@
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on X(Twitter)"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="follow on LinkedIn"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">

View File

@@ -21,6 +21,9 @@
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="seguir en X(Twitter)"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="seguir en LinkedIn"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Descargas de Docker" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">

View File

@@ -21,6 +21,9 @@
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="suivre sur X(Twitter)"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="suivre sur LinkedIn"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Tirages Docker" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">

View File

@@ -21,6 +21,9 @@
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="X(Twitter)でフォロー"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="LinkedInでフォロー"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">

View File

@@ -21,6 +21,9 @@
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on X(Twitter)"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="follow on LinkedIn"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">

View File

@@ -21,6 +21,9 @@
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on X(Twitter)"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="follow on LinkedIn"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">

View File

@@ -25,6 +25,9 @@
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on X(Twitter)"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="follow on LinkedIn"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">

View File

@@ -22,6 +22,9 @@
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on X(Twitter)"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="follow on LinkedIn"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">

View File

@@ -21,6 +21,9 @@
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="X(Twitter)'da takip et"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="LinkedIn'da takip et"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Çekmeleri" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
@@ -62,8 +65,6 @@ Görsel bir arayüz üzerinde güçlü AI iş akışları oluşturun ve test edi
![providers-v5](https://github.com/langgenius/dify/assets/13230914/5a17bdbe-097a-4100-8363-40255b70f6e3)
Özür dilerim, haklısınız. Daha anlamlı ve akıcı bir çeviri yapmaya çalışayım. İşte güncellenmiş çeviri:
**3. Prompt IDE**:
Komut istemlerini oluşturmak, model performansını karşılaştırmak ve sohbet tabanlı uygulamalara metin-konuşma gibi ek özellikler eklemek için kullanıcı dostu bir arayüz.
@@ -150,8 +151,6 @@ Görsel bir arayüz üzerinde güçlü AI iş akışları oluşturun ve test edi
## Dify'ı Kullanma
- **Cloud </br>**
İşte verdiğiniz metnin Türkçe çevirisi, kod bloğu içinde:
-
Herkesin sıfır kurulumla denemesi için bir [Dify Cloud](https://dify.ai) hizmeti sunuyoruz. Bu hizmet, kendi kendine dağıtılan versiyonun tüm yeteneklerini sağlar ve sandbox planında 200 ücretsiz GPT-4 çağrısı içerir.
- **Dify Topluluk Sürümünü Kendi Sunucunuzda Barındırma</br>**
@@ -177,8 +176,6 @@ GitHub'da Dify'a yıldız verin ve yeni sürümlerden anında haberdar olun.
>- RAM >= 4GB
</br>
İşte verdiğiniz metnin Türkçe çevirisi, kod bloğu içinde:
Dify sunucusunu başlatmanın en kolay yolu, [docker-compose.yml](docker/docker-compose.yaml) dosyamızı çalıştırmaktır. Kurulum komutunu çalıştırmadan önce, makinenizde [Docker](https://docs.docker.com/get-docker/) ve [Docker Compose](https://docs.docker.com/compose/install/)'un kurulu olduğundan emin olun:
```bash

View File

@@ -21,6 +21,9 @@
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="theo dõi trên X(Twitter)"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="theo dõi trên LinkedIn"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">

View File

@@ -430,4 +430,7 @@ CREATE_TIDB_SERVICE_JOB_ENABLED=false
# Maximum number of submitted thread count in a ThreadPool for parallel node execution
MAX_SUBMIT_COUNT=100
# Lockout duration in seconds
LOGIN_LOCKOUT_DURATION=86400
LOGIN_LOCKOUT_DURATION=86400
# Prevent Clickjacking
ALLOW_EMBED=false

View File

@@ -53,10 +53,12 @@ ignore = [
"FURB152", # math-constant
"UP007", # non-pep604-annotation
"UP032", # f-string
"UP045", # non-pep604-annotation-optional
"B005", # strip-with-multi-characters
"B006", # mutable-argument-default
"B007", # unused-loop-control-variable
"B026", # star-arg-unpacking-after-keyword-arg
"B903", # class-as-data-structure
"B904", # raise-without-from-inside-except
"B905", # zip-without-explicit-strict
"N806", # non-lowercase-variable-in-function

View File

@@ -4,7 +4,7 @@ FROM python:3.12-slim-bookworm AS base
WORKDIR /app/api
# Install Poetry
ENV POETRY_VERSION=1.8.4
ENV POETRY_VERSION=2.0.1
# if you located in China, you can use aliyun mirror to speed up
# RUN pip install --no-cache-dir poetry==${POETRY_VERSION} -i https://mirrors.aliyun.com/pypi/simple/
@@ -48,16 +48,18 @@ ENV TZ=UTC
WORKDIR /app/api
RUN apt-get update \
&& apt-get install -y --no-install-recommends curl nodejs libgmp-dev libmpfr-dev libmpc-dev \
# if you located in China, you can use aliyun mirror to speed up
# && echo "deb http://mirrors.aliyun.com/debian testing main" > /etc/apt/sources.list \
&& echo "deb http://deb.debian.org/debian testing main" > /etc/apt/sources.list \
&& apt-get update \
# For Security
&& apt-get install -y --no-install-recommends expat=2.6.4-1 libldap-2.5-0=2.5.19+dfsg-1 perl=5.40.0-8 libsqlite3-0=3.46.1-1 zlib1g=1:1.3.dfsg+really1.3.1-1+b1 \
# install a chinese font to support the use of tools like matplotlib
&& apt-get install -y fonts-noto-cjk \
RUN \
apt-get update \
# Install dependencies
&& apt-get install -y --no-install-recommends \
# basic environment
curl nodejs libgmp-dev libmpfr-dev libmpc-dev \
# For Security
expat libldap-2.5-0 perl libsqlite3-0 zlib1g \
# install a chinese font to support the use of tools like matplotlib
fonts-noto-cjk \
# install libmagic to support the use of python-magic guess MIMETYPE
libmagic1 \
&& apt-get autoremove -y \
&& rm -rf /var/lib/apt/lists/*
@@ -76,7 +78,6 @@ COPY . /app/api/
COPY docker/entrypoint.sh /entrypoint.sh
RUN chmod +x /entrypoint.sh
ARG COMMIT_SHA
ENV COMMIT_SHA=${COMMIT_SHA}

View File

@@ -79,5 +79,5 @@
2. Run the tests locally with mocked system environment variables in `tool.pytest_env` section in `pyproject.toml`
```bash
poetry run -C api bash dev/pytest/pytest_all_tests.sh
poetry run -P api bash dev/pytest/pytest_all_tests.sh
```

View File

@@ -146,7 +146,7 @@ class EndpointConfig(BaseSettings):
)
CONSOLE_WEB_URL: str = Field(
description="Base URL for the console web interface," "used for frontend references and CORS configuration",
description="Base URL for the console web interface,used for frontend references and CORS configuration",
default="",
)

View File

@@ -1,9 +1,40 @@
from typing import Optional
from pydantic import Field, NonNegativeInt
from pydantic import Field, NonNegativeInt, computed_field
from pydantic_settings import BaseSettings
class HostedCreditConfig(BaseSettings):
HOSTED_MODEL_CREDIT_CONFIG: str = Field(
description="Model credit configuration in format 'model:credits,model:credits', e.g., 'gpt-4:20,gpt-4o:10'",
default="",
)
def get_model_credits(self, model_name: str) -> int:
"""
Get credit value for a specific model name.
Returns 1 if model is not found in configuration (default credit).
:param model_name: The name of the model to search for
:return: The credit value for the model
"""
if not self.HOSTED_MODEL_CREDIT_CONFIG:
return 1
try:
credit_map = dict(
item.strip().split(":", 1) for item in self.HOSTED_MODEL_CREDIT_CONFIG.split(",") if ":" in item
)
# Search for matching model pattern
for pattern, credit in credit_map.items():
if pattern.strip() == model_name:
return int(credit)
return 1 # Default quota if no match found
except (ValueError, AttributeError):
return 1 # Return default quota if parsing fails
class HostedOpenAiConfig(BaseSettings):
"""
Configuration for hosted OpenAI service
@@ -181,7 +212,7 @@ class HostedFetchAppTemplateConfig(BaseSettings):
"""
HOSTED_FETCH_APP_TEMPLATES_MODE: str = Field(
description="Mode for fetching app templates: remote, db, or builtin" " default to remote,",
description="Mode for fetching app templates: remote, db, or builtin default to remote,",
default="remote",
)
@@ -202,5 +233,7 @@ class HostedServiceConfig(
HostedZhipuAIConfig,
# moderation
HostedModerationConfig,
# credit config
HostedCreditConfig,
):
pass

View File

@@ -33,3 +33,9 @@ class MilvusConfig(BaseSettings):
description="Name of the Milvus database to connect to (default is 'default')",
default="default",
)
MILVUS_ENABLE_HYBRID_SEARCH: bool = Field(
description="Enable hybrid search features (requires Milvus >= 2.5.0). Set to false for compatibility with "
"older versions",
default=True,
)

View File

@@ -9,7 +9,7 @@ class PackagingInfo(BaseSettings):
CURRENT_VERSION: str = Field(
description="Dify version",
default="0.14.2",
default="0.15.7",
)
COMMIT_SHA: str = Field(

View File

@@ -1,12 +1,32 @@
import mimetypes
import os
import platform
import re
import urllib.parse
import warnings
from collections.abc import Mapping
from typing import Any
from uuid import uuid4
import httpx
try:
import magic
except ImportError:
if platform.system() == "Windows":
warnings.warn(
"To use python-magic guess MIMETYPE, you need to run `pip install python-magic-bin`", stacklevel=2
)
elif platform.system() == "Darwin":
warnings.warn("To use python-magic guess MIMETYPE, you need to run `brew install libmagic`", stacklevel=2)
elif platform.system() == "Linux":
warnings.warn(
"To use python-magic guess MIMETYPE, you need to run `sudo apt-get install libmagic1`", stacklevel=2
)
else:
warnings.warn("To use python-magic guess MIMETYPE, you need to install `libmagic`", stacklevel=2)
magic = None # type: ignore
from pydantic import BaseModel
from configs import dify_config
@@ -47,6 +67,13 @@ def guess_file_info_from_response(response: httpx.Response):
# If guessing fails, use Content-Type from response headers
mimetype = response.headers.get("Content-Type", "application/octet-stream")
# Use python-magic to guess MIME type if still unknown or generic
if mimetype == "application/octet-stream" and magic is not None:
try:
mimetype = magic.from_buffer(response.content[:1024], mime=True)
except magic.MagicException:
pass
extension = os.path.splitext(filename)[1]
# Ensure filename has an extension

View File

@@ -56,7 +56,7 @@ class InsertExploreAppListApi(Resource):
app = App.query.filter(App.id == args["app_id"]).first()
if not app:
raise NotFound(f'App \'{args["app_id"]}\' is not found')
raise NotFound(f"App '{args['app_id']}' is not found")
site = app.site
if not site:

View File

@@ -22,7 +22,7 @@ from controllers.console.wraps import account_initialization_required, setup_req
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from libs.login import login_required
from models.model import AppMode
from models import App, AppMode
from services.audio_service import AudioService
from services.errors.audio import (
AudioTooLargeServiceError,
@@ -79,7 +79,7 @@ class ChatMessageTextApi(Resource):
@login_required
@account_initialization_required
@get_app_model
def post(self, app_model):
def post(self, app_model: App):
from werkzeug.exceptions import InternalServerError
try:
@@ -98,9 +98,13 @@ class ChatMessageTextApi(Resource):
and app_model.workflow.features_dict
):
text_to_speech = app_model.workflow.features_dict.get("text_to_speech")
if text_to_speech is None:
raise ValueError("TTS is not enabled")
voice = args.get("voice") or text_to_speech.get("voice")
else:
try:
if app_model.app_model_config is None:
raise ValueError("AppModelConfig not found")
voice = args.get("voice") or app_model.app_model_config.text_to_speech_dict.get("voice")
except Exception:
voice = None

View File

@@ -8,7 +8,7 @@ from constants.languages import languages
from controllers.console import api
from controllers.console.auth.error import EmailCodeError, InvalidEmailError, InvalidTokenError, PasswordMismatchError
from controllers.console.error import AccountInFreezeError, AccountNotFound, EmailSendIpLimitError
from controllers.console.wraps import setup_required
from controllers.console.wraps import email_password_login_enabled, setup_required
from events.tenant_event import tenant_was_created
from extensions.ext_database import db
from libs.helper import email, extract_remote_ip
@@ -22,6 +22,7 @@ from services.feature_service import FeatureService
class ForgotPasswordSendEmailApi(Resource):
@setup_required
@email_password_login_enabled
def post(self):
parser = reqparse.RequestParser()
parser.add_argument("email", type=email, required=True, location="json")
@@ -53,6 +54,7 @@ class ForgotPasswordSendEmailApi(Resource):
class ForgotPasswordCheckApi(Resource):
@setup_required
@email_password_login_enabled
def post(self):
parser = reqparse.RequestParser()
parser.add_argument("email", type=str, required=True, location="json")
@@ -72,11 +74,20 @@ class ForgotPasswordCheckApi(Resource):
if args["code"] != token_data.get("code"):
raise EmailCodeError()
return {"is_valid": True, "email": token_data.get("email")}
# Verified, revoke the first token
AccountService.revoke_reset_password_token(args["token"])
# Refresh token data by generating a new token
_, new_token = AccountService.generate_reset_password_token(
user_email, code=args["code"], additional_data={"phase": "reset"}
)
return {"is_valid": True, "email": token_data.get("email"), "token": new_token}
class ForgotPasswordResetApi(Resource):
@setup_required
@email_password_login_enabled
def post(self):
parser = reqparse.RequestParser()
parser.add_argument("token", type=str, required=True, nullable=False, location="json")
@@ -95,6 +106,9 @@ class ForgotPasswordResetApi(Resource):
if reset_data is None:
raise InvalidTokenError()
# Must use token in reset phase
if reset_data.get("phase", "") != "reset":
raise InvalidTokenError()
AccountService.revoke_reset_password_token(token)

View File

@@ -22,7 +22,7 @@ from controllers.console.error import (
EmailSendIpLimitError,
NotAllowedCreateWorkspace,
)
from controllers.console.wraps import setup_required
from controllers.console.wraps import email_password_login_enabled, setup_required
from events.tenant_event import tenant_was_created
from libs.helper import email, extract_remote_ip
from libs.password import valid_password
@@ -38,6 +38,7 @@ class LoginApi(Resource):
"""Resource for user login."""
@setup_required
@email_password_login_enabled
def post(self):
"""Authenticate user and login."""
parser = reqparse.RequestParser()
@@ -110,6 +111,7 @@ class LogoutApi(Resource):
class ResetPasswordSendEmailApi(Resource):
@setup_required
@email_password_login_enabled
def post(self):
parser = reqparse.RequestParser()
parser.add_argument("email", type=email, required=True, location="json")

View File

@@ -52,12 +52,12 @@ class DatasetListApi(Resource):
# provider = request.args.get("provider", default="vendor")
search = request.args.get("keyword", default=None, type=str)
tag_ids = request.args.getlist("tag_ids")
include_all = request.args.get("include_all", default="false").lower() == "true"
if ids:
datasets, total = DatasetService.get_datasets_by_ids(ids, current_user.current_tenant_id)
else:
datasets, total = DatasetService.get_datasets(
page, limit, current_user.current_tenant_id, current_user, search, tag_ids
page, limit, current_user.current_tenant_id, current_user, search, tag_ids, include_all
)
# check embedding setting
@@ -457,7 +457,7 @@ class DatasetIndexingEstimateApi(Resource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider " "in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
@@ -619,9 +619,7 @@ class DatasetRetrievalSettingApi(Resource):
vector_type = dify_config.VECTOR_STORE
match vector_type:
case (
VectorType.MILVUS
| VectorType.RELYT
| VectorType.PGVECTOR
VectorType.RELYT
| VectorType.TIDB_VECTOR
| VectorType.CHROMA
| VectorType.TENCENT
@@ -640,10 +638,12 @@ class DatasetRetrievalSettingApi(Resource):
| VectorType.MYSCALE
| VectorType.ORACLE
| VectorType.ELASTICSEARCH
| VectorType.ELASTICSEARCH_JA
| VectorType.PGVECTOR
| VectorType.TIDB_ON_QDRANT
| VectorType.LINDORM
| VectorType.COUCHBASE
| VectorType.MILVUS
):
return {
"retrieval_method": [
@@ -683,6 +683,7 @@ class DatasetRetrievalSettingMockApi(Resource):
| VectorType.MYSCALE
| VectorType.ORACLE
| VectorType.ELASTICSEARCH
| VectorType.ELASTICSEARCH_JA
| VectorType.COUCHBASE
| VectorType.PGVECTOR
| VectorType.LINDORM

View File

@@ -257,7 +257,8 @@ class DatasetDocumentListApi(Resource):
parser.add_argument("original_document_id", type=str, required=False, location="json")
parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
parser.add_argument("embedding_model", type=str, required=False, nullable=True, location="json")
parser.add_argument("embedding_model_provider", type=str, required=False, nullable=True, location="json")
parser.add_argument(
"doc_language", type=str, default="English", required=False, nullable=False, location="json"
)
@@ -349,8 +350,7 @@ class DatasetInitApi(Resource):
)
except InvokeAuthorizationError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
@@ -525,8 +525,7 @@ class DocumentBatchIndexingEstimateApi(DocumentResource):
return response.model_dump(), 200
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)

View File

@@ -168,8 +168,7 @@ class DatasetDocumentSegmentApi(Resource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
@@ -217,8 +216,7 @@ class DatasetDocumentSegmentAddApi(Resource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
@@ -267,8 +265,7 @@ class DatasetDocumentSegmentUpdateApi(Resource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
@@ -368,9 +365,9 @@ class DatasetDocumentSegmentBatchImportApi(Resource):
result = []
for index, row in df.iterrows():
if document.doc_form == "qa_model":
data = {"content": row[0], "answer": row[1]}
data = {"content": row.iloc[0], "answer": row.iloc[1]}
else:
data = {"content": row[0]}
data = {"content": row.iloc[0]}
result.append(data)
if len(result) == 0:
raise ValueError("The CSV file is empty.")
@@ -437,8 +434,7 @@ class ChildChunkAddApi(Resource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)

View File

@@ -32,7 +32,7 @@ class ConversationListApi(InstalledAppResource):
pinned = None
if "pinned" in args and args["pinned"] is not None:
pinned = True if args["pinned"] == "true" else False
pinned = args["pinned"] == "true"
try:
with Session(db.engine) as session:

View File

@@ -50,7 +50,7 @@ class MessageListApi(InstalledAppResource):
try:
return MessageService.pagination_by_first_id(
app_model, current_user, args["conversation_id"], args["first_id"], args["limit"], "desc"
app_model, current_user, args["conversation_id"], args["first_id"], args["limit"]
)
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")

View File

@@ -154,3 +154,16 @@ def enterprise_license_required(view):
return view(*args, **kwargs)
return decorated
def email_password_login_enabled(view):
@wraps(view)
def decorated(*args, **kwargs):
features = FeatureService.get_system_features()
if features.enable_email_password_login:
return view(*args, **kwargs)
# otherwise, return 403
abort(403)
return decorated

View File

@@ -1,3 +1,5 @@
import json
from flask_restful import Resource, reqparse # type: ignore
from controllers.console.wraps import setup_required
@@ -29,4 +31,34 @@ class EnterpriseWorkspace(Resource):
return {"message": "enterprise workspace created."}
class EnterpriseWorkspaceNoOwnerEmail(Resource):
@setup_required
@inner_api_only
def post(self):
parser = reqparse.RequestParser()
parser.add_argument("name", type=str, required=True, location="json")
args = parser.parse_args()
tenant = TenantService.create_tenant(args["name"], is_from_dashboard=True)
tenant_was_created.send(tenant)
resp = {
"id": tenant.id,
"name": tenant.name,
"encrypt_public_key": tenant.encrypt_public_key,
"plan": tenant.plan,
"status": tenant.status,
"custom_config": json.loads(tenant.custom_config) if tenant.custom_config else {},
"created_at": tenant.created_at.isoformat() if tenant.created_at else None,
"updated_at": tenant.updated_at.isoformat() if tenant.updated_at else None,
}
return {
"message": "enterprise workspace created.",
"tenant": resp,
}
api.add_resource(EnterpriseWorkspace, "/enterprise/workspace")
api.add_resource(EnterpriseWorkspaceNoOwnerEmail, "/enterprise/workspace/ownerless")

View File

@@ -7,4 +7,4 @@ api = ExternalApi(bp)
from . import index
from .app import app, audio, completion, conversation, file, message, workflow
from .dataset import dataset, document, hit_testing, segment
from .dataset import dataset, document, hit_testing, segment, upload_file

View File

@@ -31,8 +31,11 @@ class DatasetListApi(DatasetApiResource):
# provider = request.args.get("provider", default="vendor")
search = request.args.get("keyword", default=None, type=str)
tag_ids = request.args.getlist("tag_ids")
include_all = request.args.get("include_all", default="false").lower() == "true"
datasets, total = DatasetService.get_datasets(page, limit, tenant_id, current_user, search, tag_ids)
datasets, total = DatasetService.get_datasets(
page, limit, tenant_id, current_user, search, tag_ids, include_all
)
# check embedding setting
provider_manager = ProviderManager()
configurations = provider_manager.get_configurations(tenant_id=current_user.current_tenant_id)

View File

@@ -18,6 +18,7 @@ from controllers.service_api.app.error import (
from controllers.service_api.dataset.error import (
ArchivedDocumentImmutableError,
DocumentIndexingError,
InvalidMetadataError,
)
from controllers.service_api.wraps import DatasetApiResource, cloud_edition_billing_resource_check
from core.errors.error import ProviderTokenNotInitError
@@ -50,6 +51,9 @@ class DocumentAddByTextApi(DatasetApiResource):
"indexing_technique", type=str, choices=Dataset.INDEXING_TECHNIQUE_LIST, nullable=False, location="json"
)
parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
parser.add_argument("doc_type", type=str, required=False, nullable=True, location="json")
parser.add_argument("doc_metadata", type=dict, required=False, nullable=True, location="json")
args = parser.parse_args()
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
@@ -61,6 +65,28 @@ class DocumentAddByTextApi(DatasetApiResource):
if not dataset.indexing_technique and not args["indexing_technique"]:
raise ValueError("indexing_technique is required.")
# Validate metadata if provided
if args.get("doc_type") or args.get("doc_metadata"):
if not args.get("doc_type") or not args.get("doc_metadata"):
raise InvalidMetadataError("Both doc_type and doc_metadata must be provided when adding metadata")
if args["doc_type"] not in DocumentService.DOCUMENT_METADATA_SCHEMA:
raise InvalidMetadataError(
"Invalid doc_type. Must be one of: " + ", ".join(DocumentService.DOCUMENT_METADATA_SCHEMA.keys())
)
if not isinstance(args["doc_metadata"], dict):
raise InvalidMetadataError("doc_metadata must be a dictionary")
# Validate metadata schema based on doc_type
if args["doc_type"] != "others":
metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[args["doc_type"]]
for key, value in args["doc_metadata"].items():
if key in metadata_schema and not isinstance(value, metadata_schema[key]):
raise InvalidMetadataError(f"Invalid type for metadata field {key}")
# set to MetaDataConfig
args["metadata"] = {"doc_type": args["doc_type"], "doc_metadata": args["doc_metadata"]}
text = args.get("text")
name = args.get("name")
if text is None or name is None:
@@ -107,6 +133,8 @@ class DocumentUpdateByTextApi(DatasetApiResource):
"doc_language", type=str, default="English", required=False, nullable=False, location="json"
)
parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
parser.add_argument("doc_type", type=str, required=False, nullable=True, location="json")
parser.add_argument("doc_metadata", type=dict, required=False, nullable=True, location="json")
args = parser.parse_args()
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
@@ -115,6 +143,32 @@ class DocumentUpdateByTextApi(DatasetApiResource):
if not dataset:
raise ValueError("Dataset is not exist.")
# indexing_technique is already set in dataset since this is an update
args["indexing_technique"] = dataset.indexing_technique
# Validate metadata if provided
if args.get("doc_type") or args.get("doc_metadata"):
if not args.get("doc_type") or not args.get("doc_metadata"):
raise InvalidMetadataError("Both doc_type and doc_metadata must be provided when adding metadata")
if args["doc_type"] not in DocumentService.DOCUMENT_METADATA_SCHEMA:
raise InvalidMetadataError(
"Invalid doc_type. Must be one of: " + ", ".join(DocumentService.DOCUMENT_METADATA_SCHEMA.keys())
)
if not isinstance(args["doc_metadata"], dict):
raise InvalidMetadataError("doc_metadata must be a dictionary")
# Validate metadata schema based on doc_type
if args["doc_type"] != "others":
metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[args["doc_type"]]
for key, value in args["doc_metadata"].items():
if key in metadata_schema and not isinstance(value, metadata_schema[key]):
raise InvalidMetadataError(f"Invalid type for metadata field {key}")
# set to MetaDataConfig
args["metadata"] = {"doc_type": args["doc_type"], "doc_metadata": args["doc_metadata"]}
if args["text"]:
text = args.get("text")
name = args.get("name")
@@ -161,6 +215,30 @@ class DocumentAddByFileApi(DatasetApiResource):
args["doc_form"] = "text_model"
if "doc_language" not in args:
args["doc_language"] = "English"
# Validate metadata if provided
if args.get("doc_type") or args.get("doc_metadata"):
if not args.get("doc_type") or not args.get("doc_metadata"):
raise InvalidMetadataError("Both doc_type and doc_metadata must be provided when adding metadata")
if args["doc_type"] not in DocumentService.DOCUMENT_METADATA_SCHEMA:
raise InvalidMetadataError(
"Invalid doc_type. Must be one of: " + ", ".join(DocumentService.DOCUMENT_METADATA_SCHEMA.keys())
)
if not isinstance(args["doc_metadata"], dict):
raise InvalidMetadataError("doc_metadata must be a dictionary")
# Validate metadata schema based on doc_type
if args["doc_type"] != "others":
metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[args["doc_type"]]
for key, value in args["doc_metadata"].items():
if key in metadata_schema and not isinstance(value, metadata_schema[key]):
raise InvalidMetadataError(f"Invalid type for metadata field {key}")
# set to MetaDataConfig
args["metadata"] = {"doc_type": args["doc_type"], "doc_metadata": args["doc_metadata"]}
# get dataset info
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
@@ -228,6 +306,29 @@ class DocumentUpdateByFileApi(DatasetApiResource):
if "doc_language" not in args:
args["doc_language"] = "English"
# Validate metadata if provided
if args.get("doc_type") or args.get("doc_metadata"):
if not args.get("doc_type") or not args.get("doc_metadata"):
raise InvalidMetadataError("Both doc_type and doc_metadata must be provided when adding metadata")
if args["doc_type"] not in DocumentService.DOCUMENT_METADATA_SCHEMA:
raise InvalidMetadataError(
"Invalid doc_type. Must be one of: " + ", ".join(DocumentService.DOCUMENT_METADATA_SCHEMA.keys())
)
if not isinstance(args["doc_metadata"], dict):
raise InvalidMetadataError("doc_metadata must be a dictionary")
# Validate metadata schema based on doc_type
if args["doc_type"] != "others":
metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[args["doc_type"]]
for key, value in args["doc_metadata"].items():
if key in metadata_schema and not isinstance(value, metadata_schema[key]):
raise InvalidMetadataError(f"Invalid type for metadata field {key}")
# set to MetaDataConfig
args["metadata"] = {"doc_type": args["doc_type"], "doc_metadata": args["doc_metadata"]}
# get dataset info
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)

View File

@@ -53,8 +53,7 @@ class SegmentApi(DatasetApiResource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
@@ -95,8 +94,7 @@ class SegmentApi(DatasetApiResource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
@@ -175,8 +173,7 @@ class DatasetSegmentApi(DatasetApiResource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)

View File

@@ -0,0 +1,54 @@
from werkzeug.exceptions import NotFound
from controllers.service_api import api
from controllers.service_api.wraps import (
DatasetApiResource,
)
from core.file import helpers as file_helpers
from extensions.ext_database import db
from models.dataset import Dataset
from models.model import UploadFile
from services.dataset_service import DocumentService
class UploadFileApi(DatasetApiResource):
def get(self, tenant_id, dataset_id, document_id):
"""Get upload file."""
# check dataset
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
if not dataset:
raise NotFound("Dataset not found.")
# check document
document_id = str(document_id)
document = DocumentService.get_document(dataset.id, document_id)
if not document:
raise NotFound("Document not found.")
# check upload file
if document.data_source_type != "upload_file":
raise ValueError(f"Document data source type ({document.data_source_type}) is not upload_file.")
data_source_info = document.data_source_info_dict
if data_source_info and "upload_file_id" in data_source_info:
file_id = data_source_info["upload_file_id"]
upload_file = db.session.query(UploadFile).filter(UploadFile.id == file_id).first()
if not upload_file:
raise NotFound("UploadFile not found.")
else:
raise ValueError("Upload file id not found in document data source info.")
url = file_helpers.get_signed_file_url(upload_file_id=upload_file.id)
return {
"id": upload_file.id,
"name": upload_file.name,
"size": upload_file.size,
"extension": upload_file.extension,
"url": url,
"download_url": f"{url}&as_attachment=true",
"mime_type": upload_file.mime_type,
"created_by": upload_file.created_by,
"created_at": upload_file.created_at.timestamp(),
}, 200
api.add_resource(UploadFileApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/upload-file")

View File

@@ -1,5 +1,5 @@
from collections.abc import Callable
from datetime import UTC, datetime
from datetime import UTC, datetime, timedelta
from enum import Enum
from functools import wraps
from typing import Optional
@@ -8,6 +8,8 @@ from flask import current_app, request
from flask_login import user_logged_in # type: ignore
from flask_restful import Resource # type: ignore
from pydantic import BaseModel
from sqlalchemy import select, update
from sqlalchemy.orm import Session
from werkzeug.exceptions import Forbidden, Unauthorized
from extensions.ext_database import db
@@ -174,7 +176,7 @@ def validate_dataset_token(view=None):
return decorator
def validate_and_get_api_token(scope=None):
def validate_and_get_api_token(scope: str | None = None):
"""
Validate and get API token.
"""
@@ -188,20 +190,29 @@ def validate_and_get_api_token(scope=None):
if auth_scheme != "bearer":
raise Unauthorized("Authorization scheme must be 'Bearer'")
api_token = (
db.session.query(ApiToken)
.filter(
ApiToken.token == auth_token,
ApiToken.type == scope,
current_time = datetime.now(UTC).replace(tzinfo=None)
cutoff_time = current_time - timedelta(minutes=1)
with Session(db.engine, expire_on_commit=False) as session:
update_stmt = (
update(ApiToken)
.where(
ApiToken.token == auth_token,
(ApiToken.last_used_at.is_(None) | (ApiToken.last_used_at < cutoff_time)),
ApiToken.type == scope,
)
.values(last_used_at=current_time)
.returning(ApiToken)
)
.first()
)
result = session.execute(update_stmt)
api_token = result.scalar_one_or_none()
if not api_token:
raise Unauthorized("Access token is invalid")
api_token.last_used_at = datetime.now(UTC).replace(tzinfo=None)
db.session.commit()
if not api_token:
stmt = select(ApiToken).where(ApiToken.token == auth_token, ApiToken.type == scope)
api_token = session.scalar(stmt)
if not api_token:
raise Unauthorized("Access token is invalid")
else:
session.commit()
return api_token
@@ -229,7 +240,7 @@ def create_or_update_end_user_for_user_id(app_model: App, user_id: Optional[str]
tenant_id=app_model.tenant_id,
app_id=app_model.id,
type="service_api",
is_anonymous=True if user_id == "DEFAULT-USER" else False,
is_anonymous=user_id == "DEFAULT-USER",
session_id=user_id,
)
db.session.add(end_user)

View File

@@ -39,7 +39,7 @@ class ConversationListApi(WebApiResource):
pinned = None
if "pinned" in args and args["pinned"] is not None:
pinned = True if args["pinned"] == "true" else False
pinned = args["pinned"] == "true"
try:
with Session(db.engine) as session:

View File

@@ -91,7 +91,7 @@ class MessageListApi(WebApiResource):
try:
return MessageService.pagination_by_first_id(
app_model, end_user, args["conversation_id"], args["first_id"], args["limit"], "desc"
app_model, end_user, args["conversation_id"], args["first_id"], args["limit"]
)
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")

View File

@@ -104,7 +104,6 @@ class CotAgentRunner(BaseAgentRunner, ABC):
# recalc llm max tokens
prompt_messages = self._organize_prompt_messages()
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
# invoke model
chunks = model_instance.invoke_llm(
prompt_messages=prompt_messages,
@@ -172,7 +171,7 @@ class CotAgentRunner(BaseAgentRunner, ABC):
self.save_agent_thought(
agent_thought=agent_thought,
tool_name=scratchpad.action.action_name if scratchpad.action else "",
tool_name=(scratchpad.action.action_name if scratchpad.action and not scratchpad.is_final() else ""),
tool_input={scratchpad.action.action_name: scratchpad.action.action_input} if scratchpad.action else {},
tool_invoke_meta={},
thought=scratchpad.thought or "",

View File

@@ -84,7 +84,6 @@ class FunctionCallAgentRunner(BaseAgentRunner):
# recalc llm max tokens
prompt_messages = self._organize_prompt_messages()
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
# invoke model
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm(
prompt_messages=prompt_messages,

View File

@@ -55,20 +55,6 @@ class AgentChatAppRunner(AppRunner):
query = application_generate_entity.query
files = application_generate_entity.files
# Pre-calculate the number of tokens of the prompt messages,
# and return the rest number of tokens by model context token size limit and max token size limit.
# If the rest number of tokens is not enough, raise exception.
# Include: prompt template, inputs, query(optional), files(optional)
# Not Include: memory, external data, dataset context
self.get_pre_calculate_rest_tokens(
app_record=app_record,
model_config=application_generate_entity.model_conf,
prompt_template_entity=app_config.prompt_template,
inputs=inputs,
files=files,
query=query,
)
memory = None
if application_generate_entity.conversation_id:
# get memory of conversation (read-only)
@@ -202,7 +188,7 @@ class AgentChatAppRunner(AppRunner):
# change function call strategy based on LLM model
llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
model_schema = llm_model.get_model_schema(model_instance.model, model_instance.credentials)
if not model_schema or not model_schema.features:
if not model_schema:
raise ValueError("Model schema not found")
if {ModelFeature.MULTI_TOOL_CALL, ModelFeature.TOOL_CALL}.intersection(model_schema.features or []):

View File

@@ -167,8 +167,7 @@ class AppQueueManager:
else:
if isinstance(data, DeclarativeMeta) or hasattr(data, "_sa_instance_state"):
raise TypeError(
"Critical Error: Passing SQLAlchemy Model instances "
"that cause thread safety issues is not allowed."
"Critical Error: Passing SQLAlchemy Model instances that cause thread safety issues is not allowed."
)

View File

@@ -15,10 +15,8 @@ from core.app.features.annotation_reply.annotation_reply import AnnotationReplyF
from core.app.features.hosting_moderation.hosting_moderation import HostingModerationFeature
from core.external_data_tool.external_data_fetch import ExternalDataFetch
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
from core.model_runtime.entities.message_entities import AssistantPromptMessage, PromptMessage
from core.model_runtime.entities.model_entities import ModelPropertyKey
from core.model_runtime.errors.invoke import InvokeBadRequestError
from core.moderation.input_moderation import InputModeration
from core.prompt.advanced_prompt_transform import AdvancedPromptTransform
@@ -31,106 +29,6 @@ if TYPE_CHECKING:
class AppRunner:
def get_pre_calculate_rest_tokens(
self,
app_record: App,
model_config: ModelConfigWithCredentialsEntity,
prompt_template_entity: PromptTemplateEntity,
inputs: Mapping[str, str],
files: Sequence["File"],
query: Optional[str] = None,
) -> int:
"""
Get pre calculate rest tokens
:param app_record: app record
:param model_config: model config entity
:param prompt_template_entity: prompt template entity
:param inputs: inputs
:param files: files
:param query: query
:return:
"""
# Invoke model
model_instance = ModelInstance(
provider_model_bundle=model_config.provider_model_bundle, model=model_config.model
)
model_context_tokens = model_config.model_schema.model_properties.get(ModelPropertyKey.CONTEXT_SIZE)
max_tokens = 0
for parameter_rule in model_config.model_schema.parameter_rules:
if parameter_rule.name == "max_tokens" or (
parameter_rule.use_template and parameter_rule.use_template == "max_tokens"
):
max_tokens = (
model_config.parameters.get(parameter_rule.name)
or model_config.parameters.get(parameter_rule.use_template or "")
) or 0
if model_context_tokens is None:
return -1
if max_tokens is None:
max_tokens = 0
# get prompt messages without memory and context
prompt_messages, stop = self.organize_prompt_messages(
app_record=app_record,
model_config=model_config,
prompt_template_entity=prompt_template_entity,
inputs=inputs,
files=files,
query=query,
)
prompt_tokens = model_instance.get_llm_num_tokens(prompt_messages)
rest_tokens: int = model_context_tokens - max_tokens - prompt_tokens
if rest_tokens < 0:
raise InvokeBadRequestError(
"Query or prefix prompt is too long, you can reduce the prefix prompt, "
"or shrink the max token, or switch to a llm with a larger token limit size."
)
return rest_tokens
def recalc_llm_max_tokens(
self, model_config: ModelConfigWithCredentialsEntity, prompt_messages: list[PromptMessage]
):
# recalc max_tokens if sum(prompt_token + max_tokens) over model token limit
model_instance = ModelInstance(
provider_model_bundle=model_config.provider_model_bundle, model=model_config.model
)
model_context_tokens = model_config.model_schema.model_properties.get(ModelPropertyKey.CONTEXT_SIZE)
max_tokens = 0
for parameter_rule in model_config.model_schema.parameter_rules:
if parameter_rule.name == "max_tokens" or (
parameter_rule.use_template and parameter_rule.use_template == "max_tokens"
):
max_tokens = (
model_config.parameters.get(parameter_rule.name)
or model_config.parameters.get(parameter_rule.use_template or "")
) or 0
if model_context_tokens is None:
return -1
if max_tokens is None:
max_tokens = 0
prompt_tokens = model_instance.get_llm_num_tokens(prompt_messages)
if prompt_tokens + max_tokens > model_context_tokens:
max_tokens = max(model_context_tokens - prompt_tokens, 16)
for parameter_rule in model_config.model_schema.parameter_rules:
if parameter_rule.name == "max_tokens" or (
parameter_rule.use_template and parameter_rule.use_template == "max_tokens"
):
model_config.parameters[parameter_rule.name] = max_tokens
def organize_prompt_messages(
self,
app_record: App,

View File

@@ -50,20 +50,6 @@ class ChatAppRunner(AppRunner):
query = application_generate_entity.query
files = application_generate_entity.files
# Pre-calculate the number of tokens of the prompt messages,
# and return the rest number of tokens by model context token size limit and max token size limit.
# If the rest number of tokens is not enough, raise exception.
# Include: prompt template, inputs, query(optional), files(optional)
# Not Include: memory, external data, dataset context
self.get_pre_calculate_rest_tokens(
app_record=app_record,
model_config=application_generate_entity.model_conf,
prompt_template_entity=app_config.prompt_template,
inputs=inputs,
files=files,
query=query,
)
memory = None
if application_generate_entity.conversation_id:
# get memory of conversation (read-only)
@@ -194,9 +180,6 @@ class ChatAppRunner(AppRunner):
if hosting_moderation_result:
return
# Re-calculate the max tokens if sum(prompt_token + max_tokens) over model token limit
self.recalc_llm_max_tokens(model_config=application_generate_entity.model_conf, prompt_messages=prompt_messages)
# Invoke model
model_instance = ModelInstance(
provider_model_bundle=application_generate_entity.model_conf.provider_model_bundle,

View File

@@ -43,20 +43,6 @@ class CompletionAppRunner(AppRunner):
query = application_generate_entity.query
files = application_generate_entity.files
# Pre-calculate the number of tokens of the prompt messages,
# and return the rest number of tokens by model context token size limit and max token size limit.
# If the rest number of tokens is not enough, raise exception.
# Include: prompt template, inputs, query(optional), files(optional)
# Not Include: memory, external data, dataset context
self.get_pre_calculate_rest_tokens(
app_record=app_record,
model_config=application_generate_entity.model_conf,
prompt_template_entity=app_config.prompt_template,
inputs=inputs,
files=files,
query=query,
)
# organize all inputs and template to prompt messages
# Include: prompt template, inputs, query(optional), files(optional)
prompt_messages, stop = self.organize_prompt_messages(
@@ -152,9 +138,6 @@ class CompletionAppRunner(AppRunner):
if hosting_moderation_result:
return
# Re-calculate the max tokens if sum(prompt_token + max_tokens) over model token limit
self.recalc_llm_max_tokens(model_config=application_generate_entity.model_conf, prompt_messages=prompt_messages)
# Invoke model
model_instance = ModelInstance(
provider_model_bundle=application_generate_entity.model_conf.provider_model_bundle,

View File

@@ -89,6 +89,7 @@ class MessageBasedAppGenerator(BaseAppGenerator):
Conversation.id == conversation_id,
Conversation.app_id == app_model.id,
Conversation.status == "normal",
Conversation.is_deleted.is_(False),
]
if isinstance(user, Account):

View File

@@ -145,7 +145,7 @@ class MessageCycleManage:
# get extension
if "." in message_file.url:
extension = f'.{message_file.url.split(".")[-1]}'
extension = f".{message_file.url.split('.')[-1]}"
if len(extension) > 10:
extension = ".bin"
else:

View File

@@ -62,8 +62,9 @@ class ApiExternalDataTool(ExternalDataTool):
if not api_based_extension:
raise ValueError(
"[External data tool] API query failed, variable: {}, "
"error: api_based_extension_id is invalid".format(self.variable)
"[External data tool] API query failed, variable: {}, error: api_based_extension_id is invalid".format(
self.variable
)
)
# decrypt api_key

View File

@@ -90,7 +90,7 @@ class File(BaseModel):
def markdown(self) -> str:
url = self.generate_url()
if self.type == FileType.IMAGE:
text = f'![{self.filename or ""}]({url})'
text = f"![{self.filename or ''}]({url})"
else:
text = f"[{self.filename or url}]({url})"

View File

@@ -11,15 +11,6 @@ from configs import dify_config
SSRF_DEFAULT_MAX_RETRIES = dify_config.SSRF_DEFAULT_MAX_RETRIES
proxy_mounts = (
{
"http://": httpx.HTTPTransport(proxy=dify_config.SSRF_PROXY_HTTP_URL),
"https://": httpx.HTTPTransport(proxy=dify_config.SSRF_PROXY_HTTPS_URL),
}
if dify_config.SSRF_PROXY_HTTP_URL and dify_config.SSRF_PROXY_HTTPS_URL
else None
)
BACKOFF_FACTOR = 0.5
STATUS_FORCELIST = [429, 500, 502, 503, 504]
@@ -51,7 +42,11 @@ def make_request(method, url, max_retries=SSRF_DEFAULT_MAX_RETRIES, **kwargs):
if dify_config.SSRF_PROXY_ALL_URL:
with httpx.Client(proxy=dify_config.SSRF_PROXY_ALL_URL) as client:
response = client.request(method=method, url=url, **kwargs)
elif proxy_mounts:
elif dify_config.SSRF_PROXY_HTTP_URL and dify_config.SSRF_PROXY_HTTPS_URL:
proxy_mounts = {
"http://": httpx.HTTPTransport(proxy=dify_config.SSRF_PROXY_HTTP_URL),
"https://": httpx.HTTPTransport(proxy=dify_config.SSRF_PROXY_HTTPS_URL),
}
with httpx.Client(mounts=proxy_mounts) as client:
response = client.request(method=method, url=url, **kwargs)
else:

View File

@@ -530,7 +530,6 @@ class IndexingRunner:
# chunk nodes by chunk size
indexing_start_at = time.perf_counter()
tokens = 0
chunk_size = 10
if dataset_document.doc_form != IndexType.PARENT_CHILD_INDEX:
# create keyword index
create_keyword_thread = threading.Thread(
@@ -539,11 +538,22 @@ class IndexingRunner:
)
create_keyword_thread.start()
max_workers = 10
if dataset.indexing_technique == "high_quality":
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
futures = []
for i in range(0, len(documents), chunk_size):
chunk_documents = documents[i : i + chunk_size]
# Distribute documents into multiple groups based on the hash values of page_content
# This is done to prevent multiple threads from processing the same document,
# Thereby avoiding potential database insertion deadlocks
document_groups: list[list[Document]] = [[] for _ in range(max_workers)]
for document in documents:
hash = helper.generate_text_hash(document.page_content)
group_index = int(hash, 16) % max_workers
document_groups[group_index].append(document)
for chunk_documents in document_groups:
if len(chunk_documents) == 0:
continue
futures.append(
executor.submit(
self._process_chunk,

View File

@@ -131,7 +131,7 @@ JAVASCRIPT_CODE_GENERATOR_PROMPT_TEMPLATE = (
SUGGESTED_QUESTIONS_AFTER_ANSWER_INSTRUCTION_PROMPT = (
"Please help me predict the three most likely questions that human would ask, "
"and keeping each question under 20 characters.\n"
"MAKE SURE your output is the SAME language as the Assistant's latest response"
"MAKE SURE your output is the SAME language as the Assistant's latest response. "
"The output must be an array in JSON format following the specified schema:\n"
'["question1","question2","question3"]\n'
)

View File

@@ -26,7 +26,7 @@ class TokenBufferMemory:
self.model_instance = model_instance
def get_history_prompt_messages(
self, max_token_limit: int = 2000, message_limit: Optional[int] = None
self, max_token_limit: int = 100000, message_limit: Optional[int] = None
) -> Sequence[PromptMessage]:
"""
Get history prompt messages.

View File

@@ -1,4 +1,4 @@
from .llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
from .llm_entities import LLMMode, LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
from .message_entities import (
AssistantPromptMessage,
AudioPromptMessageContent,
@@ -23,6 +23,7 @@ __all__ = [
"AudioPromptMessageContent",
"DocumentPromptMessageContent",
"ImagePromptMessageContent",
"LLMMode",
"LLMResult",
"LLMResultChunk",
"LLMResultChunkDelta",

View File

@@ -1,5 +1,5 @@
from decimal import Decimal
from enum import Enum
from enum import StrEnum
from typing import Optional
from pydantic import BaseModel
@@ -8,7 +8,7 @@ from core.model_runtime.entities.message_entities import AssistantPromptMessage,
from core.model_runtime.entities.model_entities import ModelUsage, PriceInfo
class LLMMode(Enum):
class LLMMode(StrEnum):
"""
Enum class for large language model mode.
"""

View File

@@ -221,13 +221,12 @@ class AIModel(ABC):
:param credentials: model credentials
:return: model schema
"""
# get predefined models (predefined_models)
models = self.predefined_models()
model_map = {model.model: model for model in models}
if model in model_map:
return model_map[model]
# Try to get model schema from predefined models
for predefined_model in self.predefined_models():
if model == predefined_model.model:
return predefined_model
# Try to get model schema from credentials
if credentials:
model_schema = self.get_customizable_model_schema_from_credentials(model, credentials)
if model_schema:

View File

@@ -30,6 +30,11 @@ from core.model_runtime.model_providers.__base.ai_model import AIModel
logger = logging.getLogger(__name__)
HTML_THINKING_TAG = (
'<details style="color:gray;background-color: #f8f8f8;padding: 8px;border-radius: 4px;" open> '
"<summary> Thinking... </summary>"
)
class LargeLanguageModel(AIModel):
"""
@@ -400,6 +405,40 @@ if you are not sure about the structure.
),
)
def _wrap_thinking_by_reasoning_content(self, delta: dict, is_reasoning: bool) -> tuple[str, bool]:
"""
If the reasoning response is from delta.get("reasoning_content"), we wrap
it with HTML details tag.
:param delta: delta dictionary from LLM streaming response
:param is_reasoning: is reasoning
:return: tuple of (processed_content, is_reasoning)
"""
content = delta.get("content") or ""
reasoning_content = delta.get("reasoning_content")
if reasoning_content:
if not is_reasoning:
content = HTML_THINKING_TAG + reasoning_content
is_reasoning = True
else:
content = reasoning_content
elif is_reasoning:
content = "</details>" + content
is_reasoning = False
return content, is_reasoning
def _wrap_thinking_by_tag(self, content: str) -> str:
"""
if the reasoning response is a <think>...</think> block from delta.get("content"),
we replace <think> to <detail>.
:param content: delta.get("content")
:return: processed_content
"""
return content.replace("<think>", HTML_THINKING_TAG).replace("</think>", "</details>")
def _invoke_result_generator(
self,
model: str,

View File

@@ -1,13 +1,11 @@
from concurrent.futures import ProcessPoolExecutor
from os.path import abspath, dirname, join
import logging
from threading import Lock
from typing import Any, cast
from typing import Any
from transformers import GPT2Tokenizer as TransformerGPT2Tokenizer # type: ignore
logger = logging.getLogger(__name__)
_tokenizer: Any = None
_lock = Lock()
_executor = ProcessPoolExecutor(max_workers=1)
class GPT2Tokenizer:
@@ -17,22 +15,37 @@ class GPT2Tokenizer:
use gpt2 tokenizer to get num tokens
"""
_tokenizer = GPT2Tokenizer.get_encoder()
tokens = _tokenizer.encode(text, verbose=False)
tokens = _tokenizer.encode(text)
return len(tokens)
@staticmethod
def get_num_tokens(text: str) -> int:
future = _executor.submit(GPT2Tokenizer._get_num_tokens_by_gpt2, text)
result = future.result()
return cast(int, result)
# Because this process needs more cpu resource, we turn this back before we find a better way to handle it.
#
# future = _executor.submit(GPT2Tokenizer._get_num_tokens_by_gpt2, text)
# result = future.result()
# return cast(int, result)
return GPT2Tokenizer._get_num_tokens_by_gpt2(text)
@staticmethod
def get_encoder() -> Any:
global _tokenizer, _lock
with _lock:
if _tokenizer is None:
base_path = abspath(__file__)
gpt2_tokenizer_path = join(dirname(base_path), "gpt2")
_tokenizer = TransformerGPT2Tokenizer.from_pretrained(gpt2_tokenizer_path)
# Try to use tiktoken to get the tokenizer because it is faster
#
try:
import tiktoken
_tokenizer = tiktoken.get_encoding("gpt2")
except Exception:
from os.path import abspath, dirname, join
from transformers import GPT2Tokenizer as TransformerGPT2Tokenizer # type: ignore
base_path = abspath(__file__)
gpt2_tokenizer_path = join(dirname(base_path), "gpt2")
_tokenizer = TransformerGPT2Tokenizer.from_pretrained(gpt2_tokenizer_path)
logger.info("Fallback to Transformers' GPT-2 tokenizer from tiktoken")
return _tokenizer

View File

@@ -1,4 +1,5 @@
- openai
- deepseek
- anthropic
- azure_openai
- google
@@ -32,7 +33,6 @@
- localai
- volcengine_maas
- openai_api_compatible
- deepseek
- hunyuan
- siliconflow
- perfxcloud

View File

@@ -51,6 +51,40 @@ model_credential_schema:
show_on:
- variable: __model_type
value: llm
- variable: mode
show_on:
- variable: __model_type
value: llm
label:
en_US: Completion mode
type: select
required: false
default: chat
placeholder:
zh_Hans: 选择对话类型
en_US: Select completion mode
options:
- value: completion
label:
en_US: Completion
zh_Hans: 补全
- value: chat
label:
en_US: Chat
zh_Hans: 对话
- variable: context_size
label:
zh_Hans: 模型上下文长度
en_US: Model context size
required: true
show_on:
- variable: __model_type
value: llm
type: text-input
default: "4096"
placeholder:
zh_Hans: 在此输入您的模型上下文长度
en_US: Enter your Model context size
- variable: jwt_token
required: true
label:

View File

@@ -1,9 +1,9 @@
import logging
from collections.abc import Generator
from collections.abc import Generator, Sequence
from typing import Any, Optional, Union
from azure.ai.inference import ChatCompletionsClient
from azure.ai.inference.models import StreamingChatCompletionsUpdate
from azure.ai.inference.models import StreamingChatCompletionsUpdate, SystemMessage, UserMessage
from azure.core.credentials import AzureKeyCredential
from azure.core.exceptions import (
ClientAuthenticationError,
@@ -20,7 +20,7 @@ from azure.core.exceptions import (
)
from core.model_runtime.callbacks.base_callback import Callback
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
from core.model_runtime.entities.llm_entities import LLMMode, LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
PromptMessage,
@@ -30,6 +30,7 @@ from core.model_runtime.entities.model_entities import (
AIModelEntity,
FetchFrom,
I18nObject,
ModelPropertyKey,
ModelType,
ParameterRule,
ParameterType,
@@ -60,10 +61,10 @@ class AzureAIStudioLargeLanguageModel(LargeLanguageModel):
self,
model: str,
credentials: dict,
prompt_messages: list[PromptMessage],
prompt_messages: Sequence[PromptMessage],
model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
tools: Optional[Sequence[PromptMessageTool]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
) -> Union[LLMResult, Generator]:
@@ -82,8 +83,8 @@ class AzureAIStudioLargeLanguageModel(LargeLanguageModel):
"""
if not self.client:
endpoint = credentials.get("endpoint")
api_key = credentials.get("api_key")
endpoint = str(credentials.get("endpoint"))
api_key = str(credentials.get("api_key"))
self.client = ChatCompletionsClient(endpoint=endpoint, credential=AzureKeyCredential(api_key))
messages = [{"role": msg.role.value, "content": msg.content} for msg in prompt_messages]
@@ -94,6 +95,7 @@ class AzureAIStudioLargeLanguageModel(LargeLanguageModel):
"temperature": model_parameters.get("temperature", 0),
"top_p": model_parameters.get("top_p", 1),
"stream": stream,
"model": model,
}
if stop:
@@ -255,10 +257,16 @@ class AzureAIStudioLargeLanguageModel(LargeLanguageModel):
:return:
"""
try:
endpoint = credentials.get("endpoint")
api_key = credentials.get("api_key")
endpoint = str(credentials.get("endpoint"))
api_key = str(credentials.get("api_key"))
client = ChatCompletionsClient(endpoint=endpoint, credential=AzureKeyCredential(api_key))
client.get_model_info()
client.complete(
messages=[
SystemMessage(content="I say 'ping', you say 'pong'"),
UserMessage(content="ping"),
],
model=model,
)
except Exception as ex:
raise CredentialsValidateFailedError(str(ex))
@@ -327,7 +335,10 @@ class AzureAIStudioLargeLanguageModel(LargeLanguageModel):
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_type=ModelType.LLM,
features=[],
model_properties={},
model_properties={
ModelPropertyKey.CONTEXT_SIZE: int(credentials.get("context_size", "4096")),
ModelPropertyKey.MODE: credentials.get("mode", LLMMode.CHAT),
},
parameter_rules=rules,
)

View File

@@ -53,6 +53,9 @@ model_credential_schema:
type: select
required: true
options:
- label:
en_US: 2024-12-01-preview
value: 2024-12-01-preview
- label:
en_US: 2024-10-01-preview
value: 2024-10-01-preview
@@ -135,6 +138,18 @@ model_credential_schema:
show_on:
- variable: __model_type
value: llm
- label:
en_US: o3-mini
value: o3-mini
show_on:
- variable: __model_type
value: llm
- label:
en_US: o3-mini-2025-01-31
value: o3-mini-2025-01-31
show_on:
- variable: __model_type
value: llm
- label:
en_US: o1-preview
value: o1-preview

View File

@@ -108,7 +108,7 @@ class AzureOpenAILargeLanguageModel(_CommonAzureOpenAI, LargeLanguageModel):
ai_model_entity = self._get_ai_model_entity(base_model_name=base_model_name, model=model)
if not ai_model_entity:
raise CredentialsValidateFailedError(f'Base Model Name {credentials["base_model_name"]} is invalid')
raise CredentialsValidateFailedError(f"Base Model Name {credentials['base_model_name']} is invalid")
try:
client = AzureOpenAI(**self._to_credential_kwargs(credentials))

View File

@@ -130,7 +130,7 @@ class AzureOpenAITextEmbeddingModel(_CommonAzureOpenAI, TextEmbeddingModel):
raise CredentialsValidateFailedError("Base Model Name is required")
if not self._get_ai_model_entity(credentials["base_model_name"], model):
raise CredentialsValidateFailedError(f'Base Model Name {credentials["base_model_name"]} is invalid')
raise CredentialsValidateFailedError(f"Base Model Name {credentials['base_model_name']} is invalid")
try:
credentials_kwargs = self._to_credential_kwargs(credentials)

View File

@@ -44,6 +44,7 @@ provider_credential_schema:
label:
en_US: AWS Region
zh_Hans: AWS 地区
ja_JP: AWS リージョン
type: select
default: us-east-1
options:
@@ -51,62 +52,86 @@ provider_credential_schema:
label:
en_US: US East (N. Virginia)
zh_Hans: 美国东部 (弗吉尼亚北部)
ja_JP: 米国 (バージニア北部)
- value: us-east-2
label:
en_US: US East (Ohio)
zh_Hans: 美国东部 (弗吉尼亚北部)
zh_Hans: 美国东部 (俄亥俄)
ja_JP: 米国 (オハイオ)
- value: us-west-2
label:
en_US: US West (Oregon)
zh_Hans: 美国西部 (俄勒冈州)
ja_JP: 米国 (オレゴン)
- value: ap-south-1
label:
en_US: Asia Pacific (Mumbai)
zh_Hans: 亚太地区(孟买)
ja_JP: アジアパシフィック (ムンバイ)
- value: ap-southeast-1
label:
en_US: Asia Pacific (Singapore)
zh_Hans: 亚太地区 (新加坡)
ja_JP: アジアパシフィック (シンガポール)
- value: ap-southeast-2
label:
en_US: Asia Pacific (Sydney)
zh_Hans: 亚太地区 (悉尼)
ja_JP: アジアパシフィック (シドニー)
- value: ap-northeast-1
label:
en_US: Asia Pacific (Tokyo)
zh_Hans: 亚太地区 (东京)
ja_JP: アジアパシフィック (東京)
- value: ap-northeast-2
label:
en_US: Asia Pacific (Seoul)
zh_Hans: 亚太地区(首尔)
ja_JP: アジアパシフィック (ソウル)
- value: ca-central-1
label:
en_US: Canada (Central)
zh_Hans: 加拿大(中部)
ja_JP: カナダ (中部)
- value: eu-central-1
label:
en_US: Europe (Frankfurt)
zh_Hans: 欧洲 (法兰克福)
ja_JP: 欧州 (フランクフルト)
- value: eu-west-1
label:
en_US: Europe (Ireland)
zh_Hans: 欧洲(爱尔兰)
ja_JP: 欧州 (アイルランド)
- value: eu-west-2
label:
en_US: Europe (London)
zh_Hans: 欧洲西部 (伦敦)
ja_JP: 欧州 (ロンドン)
- value: eu-west-3
label:
en_US: Europe (Paris)
zh_Hans: 欧洲(巴黎)
ja_JP: 欧州 (パリ)
- value: sa-east-1
label:
en_US: South America (São Paulo)
zh_Hans: 南美洲(圣保罗)
ja_JP: 南米 (サンパウロ)
- value: us-gov-west-1
label:
en_US: AWS GovCloud (US-West)
zh_Hans: AWS GovCloud (US-West)
ja_JP: AWS GovCloud (米国西部)
- variable: bedrock_endpoint_url
label:
zh_Hans: Bedrock Endpoint URL
en_US: Bedrock Endpoint URL
type: text-input
required: false
placeholder:
zh_Hans: 在此输入您的 Bedrock Endpoint URL, 如https://123456.cloudfront.net
en_US: Enter your Bedrock Endpoint URL, e.g. https://123456.cloudfront.net
- variable: model_for_validation
required: false
label:

View File

@@ -13,6 +13,7 @@ def get_bedrock_client(service_name: str, credentials: Mapping[str, str]):
client_config = Config(region_name=region_name)
aws_access_key_id = credentials.get("aws_access_key_id")
aws_secret_access_key = credentials.get("aws_secret_access_key")
bedrock_endpoint_url = credentials.get("bedrock_endpoint_url")
if aws_access_key_id and aws_secret_access_key:
# use aksk to call bedrock
@@ -21,6 +22,7 @@ def get_bedrock_client(service_name: str, credentials: Mapping[str, str]):
config=client_config,
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
**({"endpoint_url": bedrock_endpoint_url} if bedrock_endpoint_url else {}),
)
else:
# use iam without aksk to call

View File

@@ -0,0 +1,115 @@
model: us.anthropic.claude-3-7-sonnet-20250219-v1:0
label:
en_US: Claude 3.7 Sonnet(US.Cross Region Inference)
icon: icon_s_en.svg
model_type: llm
features:
- agent-thought
- vision
- tool-call
- stream-tool-call
model_properties:
mode: chat
context_size: 200000
# docs: https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html
parameter_rules:
- name: enable_cache
label:
zh_Hans: 启用提示缓存
en_US: Enable Prompt Cache
type: boolean
required: false
default: true
help:
zh_Hans: 启用提示缓存可以提高性能并降低成本。Claude 3.7 Sonnet支持在system、messages和tools字段中使用缓存检查点。
en_US: Enable prompt caching to improve performance and reduce costs. Claude 3.7 Sonnet supports cache checkpoints in system, messages, and tools fields.
- name: reasoning_type
label:
zh_Hans: 推理配置
en_US: Reasoning Type
type: boolean
required: false
default: false
placeholder:
zh_Hans: 设置推理配置
en_US: Set reasoning configuration
help:
zh_Hans: 控制模型的推理能力。启用时temperature将固定为1且top_p将被禁用。
en_US: Controls the model's reasoning capability. When enabled, temperature will be fixed to 1 and top_p will be disabled.
- name: reasoning_budget
show_on:
- variable: reasoning_type
value: true
label:
zh_Hans: 推理预算
en_US: Reasoning Budget
type: int
default: 1024
min: 0
max: 128000
help:
zh_Hans: 推理的预算限制最小1024必须小于max_tokens。仅在推理类型为enabled时可用。
en_US: Budget limit for reasoning (minimum 1024), must be less than max_tokens. Only available when reasoning type is enabled.
- name: max_tokens
use_template: max_tokens
required: true
label:
zh_Hans: 最大token数
en_US: Max Tokens
type: int
default: 8192
min: 1
max: 128000
help:
zh_Hans: 停止前生成的最大令牌数。请注意Anthropic Claude 模型可能会在达到 max_tokens 的值之前停止生成令牌。不同的 Anthropic Claude 模型对此参数具有不同的最大值。
en_US: The maximum number of tokens to generate before stopping. Note that Anthropic Claude models might stop generating tokens before reaching the value of max_tokens. Different Anthropic Claude models have different maximum values for this parameter.
- name: temperature
use_template: temperature
required: false
label:
zh_Hans: 模型温度
en_US: Model Temperature
type: float
default: 1
min: 0.0
max: 1.0
help:
zh_Hans: 生成内容的随机性。当推理功能启用时该值将被固定为1。
en_US: The amount of randomness injected into the response. When reasoning is enabled, this value will be fixed to 1.
- name: top_p
show_on:
- variable: reasoning_type
value: disabled
use_template: top_p
label:
zh_Hans: Top P
en_US: Top P
required: false
type: float
default: 0.999
min: 0.000
max: 1.000
help:
zh_Hans: 在核采样中的概率阈值。当推理功能启用时,该参数将被禁用。
en_US: The probability threshold in nucleus sampling. When reasoning is enabled, this parameter will be disabled.
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
required: false
type: int
default: 0
min: 0
# tip docs from aws has error, max value is 500
max: 500
help:
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
- name: response_format
use_template: response_format
pricing:
input: '0.003'
output: '0.015'
unit: '0.001'
currency: USD

View File

@@ -58,6 +58,7 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
# TODO There is invoke issue: context limit on Cohere Model, will add them after fixed.
CONVERSE_API_ENABLED_MODEL_INFO = [
{"prefix": "anthropic.claude-v2", "support_system_prompts": True, "support_tool_use": False},
{"prefix": "us.deepseek", "support_system_prompts": True, "support_tool_use": False},
{"prefix": "anthropic.claude-v1", "support_system_prompts": True, "support_tool_use": False},
{"prefix": "us.anthropic.claude-3", "support_system_prompts": True, "support_tool_use": True},
{"prefix": "eu.anthropic.claude-3", "support_system_prompts": True, "support_tool_use": True},

View File

@@ -0,0 +1,63 @@
model: us.deepseek.r1-v1:0
label:
en_US: DeepSeek-R1(US.Cross Region Inference)
icon: icon_s_en.svg
model_type: llm
features:
- agent-thought
- vision
- tool-call
- stream-tool-call
model_properties:
mode: chat
context_size: 32768
parameter_rules:
- name: max_tokens
use_template: max_tokens
required: true
label:
zh_Hans: 最大token数
en_US: Max Tokens
type: int
default: 8192
min: 1
max: 128000
help:
zh_Hans: 停止前生成的最大令牌数。
en_US: The maximum number of tokens to generate before stopping.
- name: temperature
use_template: temperature
required: false
label:
zh_Hans: 模型温度
en_US: Model Temperature
type: float
default: 1
min: 0.0
max: 1.0
help:
zh_Hans: 生成内容的随机性。当推理功能启用时该值将被固定为1。
en_US: The amount of randomness injected into the response. When reasoning is enabled, this value will be fixed to 1.
- name: top_p
show_on:
- variable: reasoning_type
value: disabled
use_template: top_p
label:
zh_Hans: Top P
en_US: Top P
required: false
type: float
default: 0.999
min: 0.000
max: 1.000
help:
zh_Hans: 在核采样中的概率阈值。当推理功能启用时,该参数将被禁用。
en_US: The probability threshold in nucleus sampling. When reasoning is enabled, this parameter will be disabled.
- name: response_format
use_template: response_format
pricing:
input: '0.001'
output: '0.005'
unit: '0.001'
currency: USD

View File

@@ -70,7 +70,7 @@ class BedrockRerankModel(RerankModel):
rerankingConfiguration = {
"type": "BEDROCK_RERANKING_MODEL",
"bedrockRerankingConfiguration": {
"numberOfResults": top_n,
"numberOfResults": min(top_n, len(text_sources)),
"modelConfiguration": {
"modelArn": model_package_arn,
},

View File

@@ -677,16 +677,17 @@ class CohereLargeLanguageModel(LargeLanguageModel):
:return: model schema
"""
# get model schema
models = self.predefined_models()
model_map = {model.model: model for model in models}
mode = credentials.get("mode")
base_model_schema = None
for predefined_model in self.predefined_models():
if (
mode == "chat" and predefined_model.model == "command-light-chat"
) or predefined_model.model == "command-light":
base_model_schema = predefined_model
break
if mode == "chat":
base_model_schema = model_map["command-light-chat"]
else:
base_model_schema = model_map["command-light"]
if not base_model_schema:
raise ValueError("Model not found")
base_model_schema = cast(AIModelEntity, base_model_schema)

View File

@@ -1,2 +1,3 @@
- deepseek-chat
- deepseek-coder
- deepseek-reasoner

View File

@@ -10,7 +10,7 @@ features:
- stream-tool-call
model_properties:
mode: chat
context_size: 128000
context_size: 64000
parameter_rules:
- name: temperature
use_template: temperature

View File

@@ -10,7 +10,7 @@ features:
- stream-tool-call
model_properties:
mode: chat
context_size: 128000
context_size: 64000
parameter_rules:
- name: temperature
use_template: temperature

View File

@@ -0,0 +1,21 @@
model: deepseek-reasoner
label:
zh_Hans: deepseek-reasoner
en_US: deepseek-reasoner
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 64000
parameter_rules:
- name: max_tokens
use_template: max_tokens
min: 1
max: 8192
default: 4096
pricing:
input: "4"
output: "16"
unit: "0.000001"
currency: RMB

View File

@@ -24,9 +24,6 @@ class DeepseekLargeLanguageModel(OAIAPICompatLargeLanguageModel):
user: Optional[str] = None,
) -> Union[LLMResult, Generator]:
self._add_custom_parameters(credentials)
# {"response_format": "xx"} need convert to {"response_format": {"type": "xx"}}
if "response_format" in model_parameters:
model_parameters["response_format"] = {"type": model_parameters.get("response_format")}
return super()._invoke(model, credentials, prompt_messages, model_parameters, tools, stop, stream)
def validate_credentials(self, model: str, credentials: dict) -> None:

View File

@@ -19,8 +19,8 @@ class GoogleProvider(ModelProvider):
try:
model_instance = self.get_model_instance(ModelType.LLM)
# Use `gemini-pro` model for validate,
model_instance.validate_credentials(model="gemini-pro", credentials=credentials)
# Use `gemini-2.0-flash` model for validate,
model_instance.validate_credentials(model="gemini-2.0-flash", credentials=credentials)
except CredentialsValidateFailedError as ex:
raise ex
except Exception as ex:

View File

@@ -1,5 +1,8 @@
- gemini-2.0-flash-001
- gemini-2.0-flash-exp
- gemini-2.0-pro-exp-02-05
- gemini-2.0-flash-thinking-exp-1219
- gemini-2.0-flash-thinking-exp-01-21
- gemini-1.5-pro
- gemini-1.5-pro-latest
- gemini-1.5-pro-001
@@ -16,5 +19,3 @@
- gemini-exp-1206
- gemini-exp-1121
- gemini-exp-1114
- gemini-pro
- gemini-pro-vision

View File

@@ -0,0 +1,41 @@
model: gemini-2.0-flash-001
label:
en_US: Gemini 2.0 Flash 001
model_type: llm
features:
- agent-thought
- vision
- tool-call
- stream-tool-call
- document
- video
- audio
model_properties:
mode: chat
context_size: 1048576
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: max_output_tokens
use_template: max_tokens
default: 8192
min: 1
max: 8192
- name: json_schema
use_template: json_schema
pricing:
input: '0.00'
output: '0.00'
unit: '0.000001'
currency: USD

View File

@@ -0,0 +1,39 @@
model: gemini-2.0-flash-thinking-exp-01-21
label:
en_US: Gemini 2.0 Flash Thinking Exp 01-21
model_type: llm
features:
- agent-thought
- vision
- document
- video
- audio
model_properties:
mode: chat
context_size: 32767
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: max_output_tokens
use_template: max_tokens
default: 8192
min: 1
max: 8192
- name: json_schema
use_template: json_schema
pricing:
input: '0.00'
output: '0.00'
unit: '0.000001'
currency: USD

View File

@@ -0,0 +1,41 @@
model: gemini-2.0-pro-exp-02-05
label:
en_US: Gemini 2.0 pro exp 02-05
model_type: llm
features:
- agent-thought
- vision
- tool-call
- stream-tool-call
- document
- video
- audio
model_properties:
mode: chat
context_size: 1048576
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: max_output_tokens
use_template: max_tokens
default: 8192
min: 1
max: 8192
- name: json_schema
use_template: json_schema
pricing:
input: '0.00'
output: '0.00'
unit: '0.000001'
currency: USD

View File

@@ -9,6 +9,8 @@ supported_model_types:
- llm
- text-embedding
- rerank
- speech2text
- tts
configurate_methods:
- customizable-model
model_credential_schema:
@@ -118,3 +120,19 @@ model_credential_schema:
label:
en_US: Not Support
zh_Hans: 不支持
- variable: voices
show_on:
- variable: __model_type
value: tts
label:
en_US: Available Voices (comma-separated)
zh_Hans: 可用声音(用英文逗号分隔)
type: text-input
required: false
default: "Chinese Female"
placeholder:
en_US: "Chinese Female, Chinese Male, Japanese Male, Cantonese Female, English Female, English Male, Korean Female"
zh_Hans: "Chinese Female, Chinese Male, Japanese Male, Cantonese Female, English Female, English Male, Korean Female"
help:
en_US: "List voice names separated by commas. First voice will be used as default."
zh_Hans: "用英文逗号分隔的声音列表。第一个声音将作为默认值。"

View File

@@ -1,7 +1,5 @@
from collections.abc import Generator
from yarl import URL
from core.model_runtime.entities.llm_entities import LLMResult
from core.model_runtime.entities.message_entities import (
PromptMessage,
@@ -24,9 +22,10 @@ class GPUStackLanguageModel(OAIAPICompatLargeLanguageModel):
stream: bool = True,
user: str | None = None,
) -> LLMResult | Generator:
compatible_credentials = self._get_compatible_credentials(credentials)
return super()._invoke(
model,
credentials,
compatible_credentials,
prompt_messages,
model_parameters,
tools,
@@ -36,10 +35,15 @@ class GPUStackLanguageModel(OAIAPICompatLargeLanguageModel):
)
def validate_credentials(self, model: str, credentials: dict) -> None:
self._add_custom_parameters(credentials)
super().validate_credentials(model, credentials)
compatible_credentials = self._get_compatible_credentials(credentials)
super().validate_credentials(model, compatible_credentials)
def _get_compatible_credentials(self, credentials: dict) -> dict:
credentials = credentials.copy()
base_url = credentials["endpoint_url"].rstrip("/").removesuffix("/v1-openai")
credentials["endpoint_url"] = f"{base_url}/v1-openai"
return credentials
@staticmethod
def _add_custom_parameters(credentials: dict) -> None:
credentials["endpoint_url"] = str(URL(credentials["endpoint_url"]) / "v1-openai")
credentials["mode"] = "chat"

View File

@@ -0,0 +1,43 @@
from typing import IO, Optional
from core.model_runtime.model_providers.openai_api_compatible.speech2text.speech2text import OAICompatSpeech2TextModel
class GPUStackSpeech2TextModel(OAICompatSpeech2TextModel):
"""
Model class for GPUStack Speech to text model.
"""
def _invoke(self, model: str, credentials: dict, file: IO[bytes], user: Optional[str] = None) -> str:
"""
Invoke speech2text model
:param model: model name
:param credentials: model credentials
:param file: audio file
:param user: unique user id
:return: text for given audio file
"""
compatible_credentials = self._get_compatible_credentials(credentials)
return super()._invoke(model, compatible_credentials, file)
def validate_credentials(self, model: str, credentials: dict) -> None:
"""
Validate model credentials
:param model: model name
:param credentials: model credentials
"""
compatible_credentials = self._get_compatible_credentials(credentials)
super().validate_credentials(model, compatible_credentials)
def _get_compatible_credentials(self, credentials: dict) -> dict:
"""
Get compatible credentials
:param credentials: model credentials
:return: compatible credentials
"""
compatible_credentials = credentials.copy()
base_url = credentials["endpoint_url"].rstrip("/").removesuffix("/v1-openai")
compatible_credentials["endpoint_url"] = f"{base_url}/v1-openai"
return compatible_credentials

View File

@@ -1,7 +1,5 @@
from typing import Optional
from yarl import URL
from core.entities.embedding_type import EmbeddingInputType
from core.model_runtime.entities.text_embedding_entities import (
TextEmbeddingResult,
@@ -24,12 +22,15 @@ class GPUStackTextEmbeddingModel(OAICompatEmbeddingModel):
user: Optional[str] = None,
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
) -> TextEmbeddingResult:
return super()._invoke(model, credentials, texts, user, input_type)
compatible_credentials = self._get_compatible_credentials(credentials)
return super()._invoke(model, compatible_credentials, texts, user, input_type)
def validate_credentials(self, model: str, credentials: dict) -> None:
self._add_custom_parameters(credentials)
super().validate_credentials(model, credentials)
compatible_credentials = self._get_compatible_credentials(credentials)
super().validate_credentials(model, compatible_credentials)
@staticmethod
def _add_custom_parameters(credentials: dict) -> None:
credentials["endpoint_url"] = str(URL(credentials["endpoint_url"]) / "v1-openai")
def _get_compatible_credentials(self, credentials: dict) -> dict:
credentials = credentials.copy()
base_url = credentials["endpoint_url"].rstrip("/").removesuffix("/v1-openai")
credentials["endpoint_url"] = f"{base_url}/v1-openai"
return credentials

View File

@@ -0,0 +1,57 @@
from typing import Any, Optional
from core.model_runtime.model_providers.openai_api_compatible.tts.tts import OAICompatText2SpeechModel
class GPUStackText2SpeechModel(OAICompatText2SpeechModel):
"""
Model class for GPUStack Text to Speech model.
"""
def _invoke(
self, model: str, tenant_id: str, credentials: dict, content_text: str, voice: str, user: Optional[str] = None
) -> Any:
"""
Invoke text2speech model
:param model: model name
:param tenant_id: user tenant id
:param credentials: model credentials
:param content_text: text content to be translated
:param voice: model timbre
:param user: unique user id
:return: text translated to audio file
"""
compatible_credentials = self._get_compatible_credentials(credentials)
return super()._invoke(
model=model,
tenant_id=tenant_id,
credentials=compatible_credentials,
content_text=content_text,
voice=voice,
user=user,
)
def validate_credentials(self, model: str, credentials: dict, user: Optional[str] = None) -> None:
"""
Validate model credentials
:param model: model name
:param credentials: model credentials
:param user: unique user id
"""
compatible_credentials = self._get_compatible_credentials(credentials)
super().validate_credentials(model, compatible_credentials)
def _get_compatible_credentials(self, credentials: dict) -> dict:
"""
Get compatible credentials
:param credentials: model credentials
:return: compatible credentials
"""
compatible_credentials = credentials.copy()
base_url = credentials["endpoint_url"].rstrip("/").removesuffix("/v1-openai")
compatible_credentials["endpoint_url"] = f"{base_url}/v1-openai"
return compatible_credentials

View File

@@ -1,3 +1,4 @@
- deepseek-r1-distill-llama-70b
- llama-3.1-405b-reasoning
- llama-3.3-70b-versatile
- llama-3.1-70b-versatile

View File

@@ -0,0 +1,36 @@
model: deepseek-r1-distill-llama-70b
label:
en_US: DeepSeek R1 Distill Llama 70b
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 128000
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: max_tokens
use_template: max_tokens
default: 512
min: 1
max: 8192
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '3.00'
output: '3.00'
unit: '0.000001'
currency: USD

Some files were not shown because too many files have changed in this diff Show More