mirror of
https://github.com/langgenius/dify.git
synced 2026-01-24 08:14:21 +00:00
Compare commits
10 Commits
provider-g
...
0.15.0
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
c236f05f4b | ||
|
|
0eeacdc80c | ||
|
|
41f39bf3fc | ||
|
|
9677144015 | ||
|
|
15797c556f | ||
|
|
acacf35a2a | ||
|
|
d3f5b1cbb6 | ||
|
|
196ed8101b | ||
|
|
dc650c5368 | ||
|
|
2bb521b135 |
@@ -9,7 +9,7 @@ class PackagingInfo(BaseSettings):
|
||||
|
||||
CURRENT_VERSION: str = Field(
|
||||
description="Dify version",
|
||||
default="0.14.2",
|
||||
default="0.15.0",
|
||||
)
|
||||
|
||||
COMMIT_SHA: str = Field(
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
from collections.abc import Callable
|
||||
from datetime import UTC, datetime
|
||||
from datetime import UTC, datetime, timedelta
|
||||
from enum import Enum
|
||||
from functools import wraps
|
||||
from typing import Optional
|
||||
@@ -8,6 +8,8 @@ from flask import current_app, request
|
||||
from flask_login import user_logged_in # type: ignore
|
||||
from flask_restful import Resource # type: ignore
|
||||
from pydantic import BaseModel
|
||||
from sqlalchemy import select, update
|
||||
from sqlalchemy.orm import Session
|
||||
from werkzeug.exceptions import Forbidden, Unauthorized
|
||||
|
||||
from extensions.ext_database import db
|
||||
@@ -174,7 +176,7 @@ def validate_dataset_token(view=None):
|
||||
return decorator
|
||||
|
||||
|
||||
def validate_and_get_api_token(scope=None):
|
||||
def validate_and_get_api_token(scope: str | None = None):
|
||||
"""
|
||||
Validate and get API token.
|
||||
"""
|
||||
@@ -188,20 +190,25 @@ def validate_and_get_api_token(scope=None):
|
||||
if auth_scheme != "bearer":
|
||||
raise Unauthorized("Authorization scheme must be 'Bearer'")
|
||||
|
||||
api_token = (
|
||||
db.session.query(ApiToken)
|
||||
.filter(
|
||||
ApiToken.token == auth_token,
|
||||
ApiToken.type == scope,
|
||||
current_time = datetime.now(UTC).replace(tzinfo=None)
|
||||
cutoff_time = current_time - timedelta(minutes=1)
|
||||
with Session(db.engine, expire_on_commit=False) as session:
|
||||
update_stmt = (
|
||||
update(ApiToken)
|
||||
.where(ApiToken.token == auth_token, ApiToken.last_used_at < cutoff_time, ApiToken.type == scope)
|
||||
.values(last_used_at=current_time)
|
||||
.returning(ApiToken)
|
||||
)
|
||||
.first()
|
||||
)
|
||||
result = session.execute(update_stmt)
|
||||
api_token = result.scalar_one_or_none()
|
||||
|
||||
if not api_token:
|
||||
raise Unauthorized("Access token is invalid")
|
||||
|
||||
api_token.last_used_at = datetime.now(UTC).replace(tzinfo=None)
|
||||
db.session.commit()
|
||||
if not api_token:
|
||||
stmt = select(ApiToken).where(ApiToken.token == auth_token, ApiToken.type == scope)
|
||||
api_token = session.scalar(stmt)
|
||||
if not api_token:
|
||||
raise Unauthorized("Access token is invalid")
|
||||
else:
|
||||
session.commit()
|
||||
|
||||
return api_token
|
||||
|
||||
|
||||
@@ -1,13 +1,10 @@
|
||||
from concurrent.futures import ProcessPoolExecutor
|
||||
from os.path import abspath, dirname, join
|
||||
from threading import Lock
|
||||
from typing import Any, cast
|
||||
from typing import Any
|
||||
|
||||
from transformers import GPT2Tokenizer as TransformerGPT2Tokenizer # type: ignore
|
||||
import tiktoken
|
||||
|
||||
_tokenizer: Any = None
|
||||
_lock = Lock()
|
||||
_executor = ProcessPoolExecutor(max_workers=1)
|
||||
|
||||
|
||||
class GPT2Tokenizer:
|
||||
@@ -17,22 +14,28 @@ class GPT2Tokenizer:
|
||||
use gpt2 tokenizer to get num tokens
|
||||
"""
|
||||
_tokenizer = GPT2Tokenizer.get_encoder()
|
||||
tokens = _tokenizer.encode(text, verbose=False)
|
||||
tokens = _tokenizer.encode(text)
|
||||
return len(tokens)
|
||||
|
||||
@staticmethod
|
||||
def get_num_tokens(text: str) -> int:
|
||||
future = _executor.submit(GPT2Tokenizer._get_num_tokens_by_gpt2, text)
|
||||
result = future.result()
|
||||
return cast(int, result)
|
||||
# Because this process needs more cpu resource, we turn this back before we find a better way to handle it.
|
||||
#
|
||||
# future = _executor.submit(GPT2Tokenizer._get_num_tokens_by_gpt2, text)
|
||||
# result = future.result()
|
||||
# return cast(int, result)
|
||||
return GPT2Tokenizer._get_num_tokens_by_gpt2(text)
|
||||
|
||||
@staticmethod
|
||||
def get_encoder() -> Any:
|
||||
global _tokenizer, _lock
|
||||
with _lock:
|
||||
if _tokenizer is None:
|
||||
base_path = abspath(__file__)
|
||||
gpt2_tokenizer_path = join(dirname(base_path), "gpt2")
|
||||
_tokenizer = TransformerGPT2Tokenizer.from_pretrained(gpt2_tokenizer_path)
|
||||
# Try to use tiktoken to get the tokenizer because it is faster
|
||||
#
|
||||
_tokenizer = tiktoken.get_encoding("gpt2")
|
||||
# base_path = abspath(__file__)
|
||||
# gpt2_tokenizer_path = join(dirname(base_path), "gpt2")
|
||||
# _tokenizer = TransformerGPT2Tokenizer.from_pretrained(gpt2_tokenizer_path)
|
||||
|
||||
return _tokenizer
|
||||
|
||||
@@ -9,6 +9,8 @@ supported_model_types:
|
||||
- llm
|
||||
- text-embedding
|
||||
- rerank
|
||||
- speech2text
|
||||
- tts
|
||||
configurate_methods:
|
||||
- customizable-model
|
||||
model_credential_schema:
|
||||
@@ -118,3 +120,19 @@ model_credential_schema:
|
||||
label:
|
||||
en_US: Not Support
|
||||
zh_Hans: 不支持
|
||||
- variable: voices
|
||||
show_on:
|
||||
- variable: __model_type
|
||||
value: tts
|
||||
label:
|
||||
en_US: Available Voices (comma-separated)
|
||||
zh_Hans: 可用声音(用英文逗号分隔)
|
||||
type: text-input
|
||||
required: false
|
||||
default: "Chinese Female"
|
||||
placeholder:
|
||||
en_US: "Chinese Female, Chinese Male, Japanese Male, Cantonese Female, English Female, English Male, Korean Female"
|
||||
zh_Hans: "Chinese Female, Chinese Male, Japanese Male, Cantonese Female, English Female, English Male, Korean Female"
|
||||
help:
|
||||
en_US: "List voice names separated by commas. First voice will be used as default."
|
||||
zh_Hans: "用英文逗号分隔的声音列表。第一个声音将作为默认值。"
|
||||
|
||||
@@ -1,7 +1,5 @@
|
||||
from collections.abc import Generator
|
||||
|
||||
from yarl import URL
|
||||
|
||||
from core.model_runtime.entities.llm_entities import LLMResult
|
||||
from core.model_runtime.entities.message_entities import (
|
||||
PromptMessage,
|
||||
@@ -24,9 +22,10 @@ class GPUStackLanguageModel(OAIAPICompatLargeLanguageModel):
|
||||
stream: bool = True,
|
||||
user: str | None = None,
|
||||
) -> LLMResult | Generator:
|
||||
compatible_credentials = self._get_compatible_credentials(credentials)
|
||||
return super()._invoke(
|
||||
model,
|
||||
credentials,
|
||||
compatible_credentials,
|
||||
prompt_messages,
|
||||
model_parameters,
|
||||
tools,
|
||||
@@ -36,10 +35,15 @@ class GPUStackLanguageModel(OAIAPICompatLargeLanguageModel):
|
||||
)
|
||||
|
||||
def validate_credentials(self, model: str, credentials: dict) -> None:
|
||||
self._add_custom_parameters(credentials)
|
||||
super().validate_credentials(model, credentials)
|
||||
compatible_credentials = self._get_compatible_credentials(credentials)
|
||||
super().validate_credentials(model, compatible_credentials)
|
||||
|
||||
def _get_compatible_credentials(self, credentials: dict) -> dict:
|
||||
credentials = credentials.copy()
|
||||
base_url = credentials["endpoint_url"].rstrip("/").removesuffix("/v1-openai")
|
||||
credentials["endpoint_url"] = f"{base_url}/v1-openai"
|
||||
return credentials
|
||||
|
||||
@staticmethod
|
||||
def _add_custom_parameters(credentials: dict) -> None:
|
||||
credentials["endpoint_url"] = str(URL(credentials["endpoint_url"]) / "v1-openai")
|
||||
credentials["mode"] = "chat"
|
||||
|
||||
@@ -0,0 +1,43 @@
|
||||
from typing import IO, Optional
|
||||
|
||||
from core.model_runtime.model_providers.openai_api_compatible.speech2text.speech2text import OAICompatSpeech2TextModel
|
||||
|
||||
|
||||
class GPUStackSpeech2TextModel(OAICompatSpeech2TextModel):
|
||||
"""
|
||||
Model class for GPUStack Speech to text model.
|
||||
"""
|
||||
|
||||
def _invoke(self, model: str, credentials: dict, file: IO[bytes], user: Optional[str] = None) -> str:
|
||||
"""
|
||||
Invoke speech2text model
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param file: audio file
|
||||
:param user: unique user id
|
||||
:return: text for given audio file
|
||||
"""
|
||||
compatible_credentials = self._get_compatible_credentials(credentials)
|
||||
return super()._invoke(model, compatible_credentials, file)
|
||||
|
||||
def validate_credentials(self, model: str, credentials: dict) -> None:
|
||||
"""
|
||||
Validate model credentials
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
"""
|
||||
compatible_credentials = self._get_compatible_credentials(credentials)
|
||||
super().validate_credentials(model, compatible_credentials)
|
||||
|
||||
def _get_compatible_credentials(self, credentials: dict) -> dict:
|
||||
"""
|
||||
Get compatible credentials
|
||||
|
||||
:param credentials: model credentials
|
||||
:return: compatible credentials
|
||||
"""
|
||||
compatible_credentials = credentials.copy()
|
||||
base_url = credentials["endpoint_url"].rstrip("/").removesuffix("/v1-openai")
|
||||
compatible_credentials["endpoint_url"] = f"{base_url}/v1-openai"
|
||||
return compatible_credentials
|
||||
@@ -1,7 +1,5 @@
|
||||
from typing import Optional
|
||||
|
||||
from yarl import URL
|
||||
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.text_embedding_entities import (
|
||||
TextEmbeddingResult,
|
||||
@@ -24,12 +22,15 @@ class GPUStackTextEmbeddingModel(OAICompatEmbeddingModel):
|
||||
user: Optional[str] = None,
|
||||
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
|
||||
) -> TextEmbeddingResult:
|
||||
return super()._invoke(model, credentials, texts, user, input_type)
|
||||
compatible_credentials = self._get_compatible_credentials(credentials)
|
||||
return super()._invoke(model, compatible_credentials, texts, user, input_type)
|
||||
|
||||
def validate_credentials(self, model: str, credentials: dict) -> None:
|
||||
self._add_custom_parameters(credentials)
|
||||
super().validate_credentials(model, credentials)
|
||||
compatible_credentials = self._get_compatible_credentials(credentials)
|
||||
super().validate_credentials(model, compatible_credentials)
|
||||
|
||||
@staticmethod
|
||||
def _add_custom_parameters(credentials: dict) -> None:
|
||||
credentials["endpoint_url"] = str(URL(credentials["endpoint_url"]) / "v1-openai")
|
||||
def _get_compatible_credentials(self, credentials: dict) -> dict:
|
||||
credentials = credentials.copy()
|
||||
base_url = credentials["endpoint_url"].rstrip("/").removesuffix("/v1-openai")
|
||||
credentials["endpoint_url"] = f"{base_url}/v1-openai"
|
||||
return credentials
|
||||
|
||||
57
api/core/model_runtime/model_providers/gpustack/tts/tts.py
Normal file
57
api/core/model_runtime/model_providers/gpustack/tts/tts.py
Normal file
@@ -0,0 +1,57 @@
|
||||
from typing import Any, Optional
|
||||
|
||||
from core.model_runtime.model_providers.openai_api_compatible.tts.tts import OAICompatText2SpeechModel
|
||||
|
||||
|
||||
class GPUStackText2SpeechModel(OAICompatText2SpeechModel):
|
||||
"""
|
||||
Model class for GPUStack Text to Speech model.
|
||||
"""
|
||||
|
||||
def _invoke(
|
||||
self, model: str, tenant_id: str, credentials: dict, content_text: str, voice: str, user: Optional[str] = None
|
||||
) -> Any:
|
||||
"""
|
||||
Invoke text2speech model
|
||||
|
||||
:param model: model name
|
||||
:param tenant_id: user tenant id
|
||||
:param credentials: model credentials
|
||||
:param content_text: text content to be translated
|
||||
:param voice: model timbre
|
||||
:param user: unique user id
|
||||
:return: text translated to audio file
|
||||
"""
|
||||
compatible_credentials = self._get_compatible_credentials(credentials)
|
||||
return super()._invoke(
|
||||
model=model,
|
||||
tenant_id=tenant_id,
|
||||
credentials=compatible_credentials,
|
||||
content_text=content_text,
|
||||
voice=voice,
|
||||
user=user,
|
||||
)
|
||||
|
||||
def validate_credentials(self, model: str, credentials: dict, user: Optional[str] = None) -> None:
|
||||
"""
|
||||
Validate model credentials
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param user: unique user id
|
||||
"""
|
||||
compatible_credentials = self._get_compatible_credentials(credentials)
|
||||
super().validate_credentials(model, compatible_credentials)
|
||||
|
||||
def _get_compatible_credentials(self, credentials: dict) -> dict:
|
||||
"""
|
||||
Get compatible credentials
|
||||
|
||||
:param credentials: model credentials
|
||||
:return: compatible credentials
|
||||
"""
|
||||
compatible_credentials = credentials.copy()
|
||||
base_url = credentials["endpoint_url"].rstrip("/").removesuffix("/v1-openai")
|
||||
compatible_credentials["endpoint_url"] = f"{base_url}/v1-openai"
|
||||
|
||||
return compatible_credentials
|
||||
@@ -377,7 +377,10 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
|
||||
for tool in tools:
|
||||
formatted_tools.append(helper.dump_model(PromptMessageFunction(function=tool)))
|
||||
|
||||
data["tools"] = formatted_tools
|
||||
if prompt_messages[-1].role.value == "tool":
|
||||
data["tools"] = None
|
||||
else:
|
||||
data["tools"] = formatted_tools
|
||||
|
||||
if stop:
|
||||
data["stop"] = stop
|
||||
|
||||
@@ -7,6 +7,8 @@
|
||||
- Qwen/Qwen2.5-Coder-7B-Instruct
|
||||
- Qwen/Qwen2-VL-72B-Instruct
|
||||
- Qwen/Qwen2-1.5B-Instruct
|
||||
- Qwen/Qwen2.5-72B-Instruct-128K
|
||||
- Vendor-A/Qwen/Qwen2.5-72B-Instruct
|
||||
- Pro/Qwen/Qwen2-VL-7B-Instruct
|
||||
- OpenGVLab/InternVL2-26B
|
||||
- Pro/OpenGVLab/InternVL2-8B
|
||||
|
||||
@@ -0,0 +1,51 @@
|
||||
model: Qwen/Qwen2.5-72B-Instruct-128K
|
||||
label:
|
||||
en_US: Qwen/Qwen2.5-72B-Instruct-128K
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 131072
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
type: int
|
||||
default: 512
|
||||
min: 1
|
||||
max: 4096
|
||||
help:
|
||||
zh_Hans: 指定生成结果长度的上限。如果生成结果截断,可以调大该参数。
|
||||
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
- name: response_format
|
||||
label:
|
||||
zh_Hans: 回复格式
|
||||
en_US: Response Format
|
||||
type: string
|
||||
help:
|
||||
zh_Hans: 指定模型必须输出的格式
|
||||
en_US: specifying the format that the model must output
|
||||
required: false
|
||||
options:
|
||||
- text
|
||||
- json_object
|
||||
pricing:
|
||||
input: '4.13'
|
||||
output: '4.13'
|
||||
unit: '0.000001'
|
||||
currency: RMB
|
||||
@@ -0,0 +1,51 @@
|
||||
model: Vendor-A/Qwen/Qwen2.5-72B-Instruct
|
||||
label:
|
||||
en_US: Vendor-A/Qwen/Qwen2.5-72B-Instruct
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 32768
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
type: int
|
||||
default: 512
|
||||
min: 1
|
||||
max: 4096
|
||||
help:
|
||||
zh_Hans: 指定生成结果长度的上限。如果生成结果截断,可以调大该参数。
|
||||
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
- name: response_format
|
||||
label:
|
||||
zh_Hans: 回复格式
|
||||
en_US: Response Format
|
||||
type: string
|
||||
help:
|
||||
zh_Hans: 指定模型必须输出的格式
|
||||
en_US: specifying the format that the model must output
|
||||
required: false
|
||||
options:
|
||||
- text
|
||||
- json_object
|
||||
pricing:
|
||||
input: '1.00'
|
||||
output: '1.00'
|
||||
unit: '0.000001'
|
||||
currency: RMB
|
||||
@@ -15,7 +15,7 @@ parameter_rules:
|
||||
type: int
|
||||
default: 512
|
||||
min: 1
|
||||
max: 8192
|
||||
max: 4096
|
||||
help:
|
||||
zh_Hans: 指定生成结果长度的上限。如果生成结果截断,可以调大该参数。
|
||||
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
|
||||
|
||||
@@ -0,0 +1,37 @@
|
||||
model: fishaudio/fish-speech-1.5
|
||||
model_type: tts
|
||||
model_properties:
|
||||
default_voice: 'fishaudio/fish-speech-1.5:alex'
|
||||
voices:
|
||||
- mode: "fishaudio/fish-speech-1.5:alex"
|
||||
name: "Alex(男声)"
|
||||
language: [ "zh-Hans", "en-US" ]
|
||||
- mode: "fishaudio/fish-speech-1.5:benjamin"
|
||||
name: "Benjamin(男声)"
|
||||
language: [ "zh-Hans", "en-US" ]
|
||||
- mode: "fishaudio/fish-speech-1.5:charles"
|
||||
name: "Charles(男声)"
|
||||
language: [ "zh-Hans", "en-US" ]
|
||||
- mode: "fishaudio/fish-speech-1.5:david"
|
||||
name: "David(男声)"
|
||||
language: [ "zh-Hans", "en-US" ]
|
||||
- mode: "fishaudio/fish-speech-1.5:anna"
|
||||
name: "Anna(女声)"
|
||||
language: [ "zh-Hans", "en-US" ]
|
||||
- mode: "fishaudio/fish-speech-1.5:bella"
|
||||
name: "Bella(女声)"
|
||||
language: [ "zh-Hans", "en-US" ]
|
||||
- mode: "fishaudio/fish-speech-1.5:claire"
|
||||
name: "Claire(女声)"
|
||||
language: [ "zh-Hans", "en-US" ]
|
||||
- mode: "fishaudio/fish-speech-1.5:diana"
|
||||
name: "Diana(女声)"
|
||||
language: [ "zh-Hans", "en-US" ]
|
||||
audio_type: 'mp3'
|
||||
max_workers: 5
|
||||
# stream: false
|
||||
pricing:
|
||||
input: '0.015'
|
||||
output: '0'
|
||||
unit: '0.001'
|
||||
currency: RMB
|
||||
@@ -2,6 +2,7 @@ import csv
|
||||
import io
|
||||
import json
|
||||
import logging
|
||||
import operator
|
||||
import os
|
||||
import tempfile
|
||||
from typing import cast
|
||||
@@ -10,6 +11,8 @@ import docx
|
||||
import pandas as pd
|
||||
import pypdfium2 # type: ignore
|
||||
import yaml # type: ignore
|
||||
from docx.table import Table
|
||||
from docx.text.paragraph import Paragraph
|
||||
|
||||
from configs import dify_config
|
||||
from core.file import File, FileTransferMethod, file_manager
|
||||
@@ -189,35 +192,56 @@ def _extract_text_from_doc(file_content: bytes) -> str:
|
||||
doc_file = io.BytesIO(file_content)
|
||||
doc = docx.Document(doc_file)
|
||||
text = []
|
||||
# Process paragraphs
|
||||
for paragraph in doc.paragraphs:
|
||||
if paragraph.text.strip():
|
||||
text.append(paragraph.text)
|
||||
|
||||
# Process tables
|
||||
for table in doc.tables:
|
||||
# Table header
|
||||
try:
|
||||
# table maybe cause errors so ignore it.
|
||||
if len(table.rows) > 0 and table.rows[0].cells is not None:
|
||||
# Keep track of paragraph and table positions
|
||||
content_items: list[tuple[int, str, Table | Paragraph]] = []
|
||||
|
||||
# Process paragraphs and tables
|
||||
for i, paragraph in enumerate(doc.paragraphs):
|
||||
if paragraph.text.strip():
|
||||
content_items.append((i, "paragraph", paragraph))
|
||||
|
||||
for i, table in enumerate(doc.tables):
|
||||
content_items.append((i, "table", table))
|
||||
|
||||
# Sort content items based on their original position
|
||||
content_items.sort(key=operator.itemgetter(0))
|
||||
|
||||
# Process sorted content
|
||||
for _, item_type, item in content_items:
|
||||
if item_type == "paragraph":
|
||||
if isinstance(item, Table):
|
||||
continue
|
||||
text.append(item.text)
|
||||
elif item_type == "table":
|
||||
# Process tables
|
||||
if not isinstance(item, Table):
|
||||
continue
|
||||
try:
|
||||
# Check if any cell in the table has text
|
||||
has_content = False
|
||||
for row in table.rows:
|
||||
for row in item.rows:
|
||||
if any(cell.text.strip() for cell in row.cells):
|
||||
has_content = True
|
||||
break
|
||||
|
||||
if has_content:
|
||||
markdown_table = "| " + " | ".join(cell.text for cell in table.rows[0].cells) + " |\n"
|
||||
markdown_table += "| " + " | ".join(["---"] * len(table.rows[0].cells)) + " |\n"
|
||||
for row in table.rows[1:]:
|
||||
markdown_table += "| " + " | ".join(cell.text for cell in row.cells) + " |\n"
|
||||
cell_texts = [cell.text.replace("\n", "<br>") for cell in item.rows[0].cells]
|
||||
markdown_table = f"| {' | '.join(cell_texts)} |\n"
|
||||
markdown_table += f"| {' | '.join(['---'] * len(item.rows[0].cells))} |\n"
|
||||
|
||||
for row in item.rows[1:]:
|
||||
# Replace newlines with <br> in each cell
|
||||
row_cells = [cell.text.replace("\n", "<br>") for cell in row.cells]
|
||||
markdown_table += "| " + " | ".join(row_cells) + " |\n"
|
||||
|
||||
text.append(markdown_table)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to extract table from DOC/DOCX: {e}")
|
||||
continue
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to extract table from DOC/DOCX: {e}")
|
||||
continue
|
||||
|
||||
return "\n".join(text)
|
||||
|
||||
except Exception as e:
|
||||
raise TextExtractionError(f"Failed to extract text from DOC/DOCX: {str(e)}") from e
|
||||
|
||||
|
||||
@@ -33,6 +33,7 @@ else
|
||||
--bind "${DIFY_BIND_ADDRESS:-0.0.0.0}:${DIFY_PORT:-5001}" \
|
||||
--workers ${SERVER_WORKER_AMOUNT:-1} \
|
||||
--worker-class ${SERVER_WORKER_CLASS:-gevent} \
|
||||
--worker-connections ${SERVER_WORKER_CONNECTIONS:-10} \
|
||||
--timeout ${GUNICORN_TIMEOUT:-200} \
|
||||
app:app
|
||||
fi
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
import os
|
||||
from typing import Optional
|
||||
from typing import Literal, Optional
|
||||
|
||||
import httpx
|
||||
from tenacity import retry, retry_if_exception_type, stop_before_delay, wait_fixed
|
||||
@@ -17,7 +17,6 @@ class BillingService:
|
||||
params = {"tenant_id": tenant_id}
|
||||
|
||||
billing_info = cls._send_request("GET", "/subscription/info", params=params)
|
||||
|
||||
return billing_info
|
||||
|
||||
@classmethod
|
||||
@@ -47,12 +46,13 @@ class BillingService:
|
||||
retry=retry_if_exception_type(httpx.RequestError),
|
||||
reraise=True,
|
||||
)
|
||||
def _send_request(cls, method, endpoint, json=None, params=None):
|
||||
def _send_request(cls, method: Literal["GET", "POST", "DELETE"], endpoint: str, json=None, params=None):
|
||||
headers = {"Content-Type": "application/json", "Billing-Api-Secret-Key": cls.secret_key}
|
||||
|
||||
url = f"{cls.base_url}{endpoint}"
|
||||
response = httpx.request(method, url, json=json, params=params, headers=headers)
|
||||
|
||||
if method == "GET" and response.status_code != httpx.codes.OK:
|
||||
raise ValueError("Unable to retrieve billing information. Please try again later or contact support.")
|
||||
return response.json()
|
||||
|
||||
@staticmethod
|
||||
|
||||
@@ -0,0 +1,55 @@
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.gpustack.speech2text.speech2text import GPUStackSpeech2TextModel
|
||||
|
||||
|
||||
def test_validate_credentials():
|
||||
model = GPUStackSpeech2TextModel()
|
||||
|
||||
with pytest.raises(CredentialsValidateFailedError):
|
||||
model.validate_credentials(
|
||||
model="faster-whisper-medium",
|
||||
credentials={
|
||||
"endpoint_url": "invalid_url",
|
||||
"api_key": "invalid_api_key",
|
||||
},
|
||||
)
|
||||
|
||||
model.validate_credentials(
|
||||
model="faster-whisper-medium",
|
||||
credentials={
|
||||
"endpoint_url": os.environ.get("GPUSTACK_SERVER_URL"),
|
||||
"api_key": os.environ.get("GPUSTACK_API_KEY"),
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def test_invoke_model():
|
||||
model = GPUStackSpeech2TextModel()
|
||||
|
||||
# Get the directory of the current file
|
||||
current_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
|
||||
# Get assets directory
|
||||
assets_dir = os.path.join(os.path.dirname(current_dir), "assets")
|
||||
|
||||
# Construct the path to the audio file
|
||||
audio_file_path = os.path.join(assets_dir, "audio.mp3")
|
||||
|
||||
file = Path(audio_file_path).read_bytes()
|
||||
|
||||
result = model.invoke(
|
||||
model="faster-whisper-medium",
|
||||
credentials={
|
||||
"endpoint_url": os.environ.get("GPUSTACK_SERVER_URL"),
|
||||
"api_key": os.environ.get("GPUSTACK_API_KEY"),
|
||||
},
|
||||
file=file,
|
||||
)
|
||||
|
||||
assert isinstance(result, str)
|
||||
assert result == "1, 2, 3, 4, 5, 6, 7, 8, 9, 10"
|
||||
@@ -0,0 +1,24 @@
|
||||
import os
|
||||
|
||||
from core.model_runtime.model_providers.gpustack.tts.tts import GPUStackText2SpeechModel
|
||||
|
||||
|
||||
def test_invoke_model():
|
||||
model = GPUStackText2SpeechModel()
|
||||
|
||||
result = model.invoke(
|
||||
model="cosyvoice-300m-sft",
|
||||
tenant_id="test",
|
||||
credentials={
|
||||
"endpoint_url": os.environ.get("GPUSTACK_SERVER_URL"),
|
||||
"api_key": os.environ.get("GPUSTACK_API_KEY"),
|
||||
},
|
||||
content_text="Hello world",
|
||||
voice="Chinese Female",
|
||||
)
|
||||
|
||||
content = b""
|
||||
for chunk in result:
|
||||
content += chunk
|
||||
|
||||
assert content != b""
|
||||
@@ -2,7 +2,7 @@ version: '3'
|
||||
services:
|
||||
# API service
|
||||
api:
|
||||
image: langgenius/dify-api:0.14.2
|
||||
image: langgenius/dify-api:0.15.0
|
||||
restart: always
|
||||
environment:
|
||||
# Startup mode, 'api' starts the API server.
|
||||
@@ -227,7 +227,7 @@ services:
|
||||
# worker service
|
||||
# The Celery worker for processing the queue.
|
||||
worker:
|
||||
image: langgenius/dify-api:0.14.2
|
||||
image: langgenius/dify-api:0.15.0
|
||||
restart: always
|
||||
environment:
|
||||
CONSOLE_WEB_URL: ''
|
||||
@@ -397,7 +397,7 @@ services:
|
||||
|
||||
# Frontend web application.
|
||||
web:
|
||||
image: langgenius/dify-web:0.14.2
|
||||
image: langgenius/dify-web:0.15.0
|
||||
restart: always
|
||||
environment:
|
||||
# The base URL of console application api server, refers to the Console base URL of WEB service if console domain is
|
||||
|
||||
@@ -126,10 +126,13 @@ DIFY_PORT=5001
|
||||
# The number of API server workers, i.e., the number of workers.
|
||||
# Formula: number of cpu cores x 2 + 1 for sync, 1 for Gevent
|
||||
# Reference: https://docs.gunicorn.org/en/stable/design.html#how-many-workers
|
||||
SERVER_WORKER_AMOUNT=
|
||||
SERVER_WORKER_AMOUNT=1
|
||||
|
||||
# Defaults to gevent. If using windows, it can be switched to sync or solo.
|
||||
SERVER_WORKER_CLASS=
|
||||
SERVER_WORKER_CLASS=gevent
|
||||
|
||||
# Default number of worker connections, the default is 10.
|
||||
SERVER_WORKER_CONNECTIONS=10
|
||||
|
||||
# Similar to SERVER_WORKER_CLASS.
|
||||
# If using windows, it can be switched to sync or solo.
|
||||
@@ -926,3 +929,5 @@ CREATE_TIDB_SERVICE_JOB_ENABLED=false
|
||||
# Maximum number of submitted thread count in a ThreadPool for parallel node execution
|
||||
MAX_SUBMIT_COUNT=100
|
||||
|
||||
# The maximum number of top-k value for RAG.
|
||||
TOP_K_MAX_VALUE=10
|
||||
|
||||
@@ -2,7 +2,7 @@ x-shared-env: &shared-api-worker-env
|
||||
services:
|
||||
# API service
|
||||
api:
|
||||
image: langgenius/dify-api:0.14.2
|
||||
image: langgenius/dify-api:0.15.0
|
||||
restart: always
|
||||
environment:
|
||||
# Use the shared environment variables.
|
||||
@@ -25,7 +25,7 @@ services:
|
||||
# worker service
|
||||
# The Celery worker for processing the queue.
|
||||
worker:
|
||||
image: langgenius/dify-api:0.14.2
|
||||
image: langgenius/dify-api:0.15.0
|
||||
restart: always
|
||||
environment:
|
||||
# Use the shared environment variables.
|
||||
@@ -47,7 +47,7 @@ services:
|
||||
|
||||
# Frontend web application.
|
||||
web:
|
||||
image: langgenius/dify-web:0.14.2
|
||||
image: langgenius/dify-web:0.15.0
|
||||
restart: always
|
||||
environment:
|
||||
CONSOLE_API_URL: ${CONSOLE_API_URL:-}
|
||||
|
||||
@@ -32,8 +32,9 @@ x-shared-env: &shared-api-worker-env
|
||||
APP_MAX_EXECUTION_TIME: ${APP_MAX_EXECUTION_TIME:-1200}
|
||||
DIFY_BIND_ADDRESS: ${DIFY_BIND_ADDRESS:-0.0.0.0}
|
||||
DIFY_PORT: ${DIFY_PORT:-5001}
|
||||
SERVER_WORKER_AMOUNT: ${SERVER_WORKER_AMOUNT:-}
|
||||
SERVER_WORKER_CLASS: ${SERVER_WORKER_CLASS:-}
|
||||
SERVER_WORKER_AMOUNT: ${SERVER_WORKER_AMOUNT:-1}
|
||||
SERVER_WORKER_CLASS: ${SERVER_WORKER_CLASS:-gevent}
|
||||
SERVER_WORKER_CONNECTIONS: ${SERVER_WORKER_CONNECTIONS:-10}
|
||||
CELERY_WORKER_CLASS: ${CELERY_WORKER_CLASS:-}
|
||||
GUNICORN_TIMEOUT: ${GUNICORN_TIMEOUT:-360}
|
||||
CELERY_WORKER_AMOUNT: ${CELERY_WORKER_AMOUNT:-}
|
||||
@@ -386,11 +387,12 @@ x-shared-env: &shared-api-worker-env
|
||||
CSP_WHITELIST: ${CSP_WHITELIST:-}
|
||||
CREATE_TIDB_SERVICE_JOB_ENABLED: ${CREATE_TIDB_SERVICE_JOB_ENABLED:-false}
|
||||
MAX_SUBMIT_COUNT: ${MAX_SUBMIT_COUNT:-100}
|
||||
TOP_K_MAX_VALUE: ${TOP_K_MAX_VALUE:-10}
|
||||
|
||||
services:
|
||||
# API service
|
||||
api:
|
||||
image: langgenius/dify-api:0.14.2
|
||||
image: langgenius/dify-api:0.15.0
|
||||
restart: always
|
||||
environment:
|
||||
# Use the shared environment variables.
|
||||
@@ -413,7 +415,7 @@ services:
|
||||
# worker service
|
||||
# The Celery worker for processing the queue.
|
||||
worker:
|
||||
image: langgenius/dify-api:0.14.2
|
||||
image: langgenius/dify-api:0.15.0
|
||||
restart: always
|
||||
environment:
|
||||
# Use the shared environment variables.
|
||||
@@ -435,7 +437,7 @@ services:
|
||||
|
||||
# Frontend web application.
|
||||
web:
|
||||
image: langgenius/dify-web:0.14.2
|
||||
image: langgenius/dify-web:0.15.0
|
||||
restart: always
|
||||
environment:
|
||||
CONSOLE_API_URL: ${CONSOLE_API_URL:-}
|
||||
|
||||
@@ -26,13 +26,15 @@ const PromptEditorHeightResizeWrap: FC<Props> = ({
|
||||
const [clientY, setClientY] = useState(0)
|
||||
const [isResizing, setIsResizing] = useState(false)
|
||||
const [prevUserSelectStyle, setPrevUserSelectStyle] = useState(getComputedStyle(document.body).userSelect)
|
||||
const [oldHeight, setOldHeight] = useState(height)
|
||||
|
||||
const handleStartResize = useCallback((e: React.MouseEvent<HTMLElement>) => {
|
||||
setClientY(e.clientY)
|
||||
setIsResizing(true)
|
||||
setOldHeight(height)
|
||||
setPrevUserSelectStyle(getComputedStyle(document.body).userSelect)
|
||||
document.body.style.userSelect = 'none'
|
||||
}, [])
|
||||
}, [height])
|
||||
|
||||
const handleStopResize = useCallback(() => {
|
||||
setIsResizing(false)
|
||||
@@ -44,8 +46,7 @@ const PromptEditorHeightResizeWrap: FC<Props> = ({
|
||||
return
|
||||
|
||||
const offset = e.clientY - clientY
|
||||
let newHeight = height + offset
|
||||
setClientY(e.clientY)
|
||||
let newHeight = oldHeight + offset
|
||||
if (newHeight < minHeight)
|
||||
newHeight = minHeight
|
||||
onHeightChange(newHeight)
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "dify-web",
|
||||
"version": "0.14.2",
|
||||
"version": "0.15.0",
|
||||
"private": true,
|
||||
"engines": {
|
||||
"node": ">=18.17.0"
|
||||
|
||||
Reference in New Issue
Block a user