Compare commits

..

211 Commits

Author SHA1 Message Date
takatost
216fc5d312 feat: bump version 0.3.14 (#861) 2023-08-15 22:46:15 +08:00
takatost
7a8590980e fix: dataset direct output (#860) 2023-08-15 22:27:31 +08:00
takatost
e8c14bb732 feat: rename title in site both rename name in app (#857) 2023-08-15 20:42:32 +08:00
Joel
bf45f08e78 chore: handle provider name capitalization (#855) 2023-08-15 17:22:40 +08:00
Matri
2c77a74c40 fix: frontend permission check (#784) 2023-08-15 13:35:47 +08:00
zxhlyh
440cf63317 fix: setting modal margin (#849) 2023-08-15 12:05:27 +08:00
Matri
50b11e925b fix: change config string variable limit (#837)
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
2023-08-15 11:26:58 +08:00
Joel
7cc81b4269 fix: var config content can not be saved (#841) 2023-08-15 09:51:43 +08:00
crazywoola
93b0813b73 Update README.md (#839) 2023-08-15 09:43:21 +08:00
crazywoola
649b44aefa Update README_CN.md (#840) 2023-08-15 09:43:11 +08:00
crazywoola
1e95d74ae2 update doc (#838) 2023-08-15 09:25:37 +08:00
crazywoola
700d5f2673 update llms (#835) 2023-08-14 22:41:40 +08:00
takatost
3b8234e486 feat: bump version to 0.3.13 (#830) 2023-08-14 16:36:49 +08:00
zxhlyh
0feb0bf7c0 fix: free quota tip (#831) 2023-08-14 16:36:04 +08:00
Krasus.Chen
c5d148bf94 fix #794 input bug (#801) 2023-08-14 15:29:18 +08:00
zxhlyh
e5e86fc033 Feat/apply free quota (#828)
Co-authored-by: Joel <iamjoel007@gmail.com>
2023-08-14 12:46:28 +08:00
takatost
cc52cdc2a9 Feat/add free provider apply (#829) 2023-08-14 12:44:35 +08:00
zxhlyh
42a417167f feat: add system default model help tip (#827) 2023-08-13 22:50:31 +08:00
crazywoola
4b0d9272ef Fix 802 (#826) 2023-08-13 20:30:17 +08:00
crazywoola
48a303b8e9 Feature/fix disable site (#825) 2023-08-13 17:32:23 +08:00
takatost
8e15ba6cd6 Fix/no trial provider (#823) 2023-08-13 14:56:32 +08:00
takatost
7898937eae feat: optimize message return (#822) 2023-08-13 13:51:12 +08:00
takatost
1bd0a76a20 feat: optimize error raise (#820) 2023-08-13 00:59:36 +08:00
takatost
2f179d61dc fix: completion error when dataset was deleted (#819) 2023-08-13 00:25:05 +08:00
Joel
7457550673 feat: frontend remove gpt4 check (#815) 2023-08-12 15:05:51 +08:00
conghaoyuan
c13a90ee69 only admin and owner can delete app (#810) 2023-08-12 14:18:21 +08:00
crazywoola
5a7b51f809 fix: label (#809) 2023-08-12 10:41:05 +08:00
takatost
f18ce203b5 feat: optimize error logging (#808) 2023-08-12 02:22:43 +08:00
takatost
b81b8637ec feat: temp remove paid option of anthropic (#807) 2023-08-12 01:54:38 +08:00
takatost
0c6f92d9be Feat/only tag arm64 build (#806) 2023-08-12 01:44:18 +08:00
takatost
55b24c373f Revert "Fix/disable site when change code" (#805) 2023-08-12 01:38:53 +08:00
takatost
d10ef17f17 feat: frontend multi models support (#804)
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
Co-authored-by: Joel <iamjoel007@gmail.com>
2023-08-12 00:57:13 +08:00
takatost
5fa2161b05 feat: server multi models support (#799) 2023-08-12 00:57:00 +08:00
Krasus.Chen
d8b712b325 fix bug desc/copyright/privacy_policy none (#796) 2023-08-11 18:21:11 +08:00
Matri
220f7c81e9 build: fix .dockerignore file (#800) 2023-08-11 18:19:44 +08:00
Matri
fc7e4ac75b fix: automatically create tenant for user (#793) 2023-08-11 18:18:11 +08:00
crazywoola
39933aeb62 feat: add readme (#791) 2023-08-09 20:15:24 +08:00
crazywoola
beb8065660 fix: remove ruby from repo due to main gitignore (#790) 2023-08-09 19:47:50 +08:00
crazywoola
36080fe352 fix: add missing code (#788) 2023-08-09 19:36:39 +08:00
Benjamin
a510f32124 Add Ruby's SDK implement code. (#786) 2023-08-09 19:21:52 +08:00
lixiaoyin
cc277227ad fix i is not incremented due to violating the uniqueness constraint w… (#771)
Co-authored-by: 李啸吟 <746963140@qq.com>
2023-08-08 21:19:06 +08:00
crazywoola
3d194787b4 Fix/disable site when change code (#775) 2023-08-08 10:00:00 +08:00
Matri
a8d5ef9894 fix: members page z-index bug (#768) 2023-08-08 09:17:31 +08:00
Matri
6242e91a6b Fix: Install page redirects to signin if Dify finished setup. (#762) 2023-08-07 13:19:47 +08:00
crazywoola
cc7b5d128b fix: doc issue in #757 (#767) 2023-08-07 11:30:39 +08:00
Matri
f914eb95eb fix: doc links (#763) 2023-08-07 10:50:45 +08:00
Matri
8ae1eb0ebb lint: frontend linting issues (#744) 2023-08-07 10:20:40 +08:00
Joel
2ba89d0deb fix: chatbot not show all in small screen (#765) 2023-08-07 09:40:16 +08:00
takatost
3b08bf1c6c feat: add app icon modify route (#760) 2023-08-06 16:21:35 +08:00
takatost
95689ec451 fix: modify app name & icon raise 401 (#759) 2023-08-06 16:11:04 +08:00
舜岳
51554361fc refactor: Added project name to Docker Compose command (#753) 2023-08-05 21:54:42 +08:00
takatost
491d29cc87 feat: optimize multi platform image build (#754) 2023-08-05 17:23:57 +08:00
bowen
6a7a71af1f perf: operational feedback (#749) 2023-08-05 10:11:48 +08:00
Matri
a25e038a8b fix: text copy issue (#723) 2023-08-04 10:49:13 +08:00
takatost
5d783a4922 fix: wrong version tag of base docker image (#739) 2023-08-03 22:22:27 +08:00
Panmuse
f0eab73f3d Update README.md (#735) 2023-08-03 16:33:49 +08:00
bowen
a693569621 fix: unable to open switch (#726) 2023-08-03 16:33:30 +08:00
Joel
30c67dcd8c fix: package changed made build pipe fail again (#732) 2023-08-03 13:20:52 +08:00
Panmuse
2295cce489 Update README_CN.md (#730) 2023-08-03 13:18:03 +08:00
Joel
bfbaf2daa5 fix: package changed made build pipe fail (#731) 2023-08-03 12:25:33 +08:00
Matri
dfe10e9dfe fix: generate_more_like_this function issue (#722) 2023-08-03 11:37:09 +08:00
KVOJJJin
60ac915c9c Fix: hide qa in cloud version (#729) 2023-08-03 11:28:42 +08:00
舜岳
b1b9e3ff53 refactor: move dev packages to devDependencies (#719) 2023-08-03 10:49:25 +08:00
crazywoola
c4c47ae8c6 feat: add doc (#728) 2023-08-03 10:40:36 +08:00
Joel
17c3a63e50 fix: explore app list grid style conflict and remove useless style (#725) 2023-08-03 09:51:00 +08:00
takatost
654985177f fix: segment resort in dataset retrieve by index_node_id_to_position (#721) 2023-08-02 21:31:54 +08:00
bowen
0d791839e6 perf:repeated select workspace (#710) 2023-08-02 17:33:45 +08:00
Rhon Joe
0fc76f7e17 fix(web): fix style override issue (#713) 2023-08-02 17:32:11 +08:00
bowen
41d33ee837 fix: abnormal styles (#711) 2023-08-02 17:31:30 +08:00
bowen
9485cc9308 fix: can not choose emoji (#716) 2023-08-02 15:22:27 +08:00
takatost
e18211ffea feat: fix azure completion choices return empty (#708) 2023-08-01 15:36:53 +08:00
Joel
a856ef387b feat: dashboard add tps chart (#706)
Co-authored-by: John Wang <takatost@gmail.com>
2023-08-01 15:17:20 +08:00
Jyong
fa73aa8dbf add embedding max retries (#699) 2023-07-31 23:28:37 +08:00
Rhon Joe
c48ec1334e fix web style (#684) 2023-07-31 16:24:51 +08:00
qiuqiua
1647970fb6 Add trobleshooting notes for devcontainer (#687) 2023-07-31 16:24:37 +08:00
takatost
12ecf89a87 feat: fix completion log error (#692) 2023-07-31 15:38:13 +08:00
zxhlyh
a0bd15245a Fix/app logs today filter (#689) 2023-07-31 13:30:04 +08:00
takatost
0c18cab111 feat: add queue to celery task (#688) 2023-07-31 13:13:08 +08:00
takatost
396197e881 fix: not annotation error in log (#686) 2023-07-31 11:50:35 +08:00
Joel
6a564e2d5c fix: server side render trigger GitHub api rate limit (#685) 2023-07-31 11:07:44 +08:00
takatost
f369202c12 feat: remove llama index citation (#679) 2023-07-30 01:46:27 +08:00
John Wang
a4678845dd feat: bump version to 0.3.12 (#674) 2023-07-29 17:49:35 +08:00
Jyong
174ebb51db add qa thread control (#677) 2023-07-29 17:49:18 +08:00
John Wang
626c78a690 fix: agent parse result error (#676) 2023-07-29 17:00:38 +08:00
Jyong
9eaae770a6 Feat/add thread control (#675) 2023-07-29 17:00:21 +08:00
Jyong
ca60610306 logging qa error (#672) 2023-07-29 01:51:18 +08:00
Jyong
082f8b17ab Feat/milvus support (#671)
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
Co-authored-by: JzoNg <jzongcode@gmail.com>
2023-07-28 22:19:39 +08:00
KVOJJJin
cf93d8d6e2 Feat: Q&A format segmentation support (#668)
Co-authored-by: jyong <718720800@qq.com>
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
2023-07-28 20:47:15 +08:00
John Wang
aae2fb8a30 fix: dataset retrieve npe when dataset desc is null (#669) 2023-07-28 17:40:36 +08:00
Joel
23e52f14e3 feat: chat add page title (#667) 2023-07-28 14:44:45 +08:00
zxhlyh
c5b68fb273 fix: app config speech-to-text feature (#665) 2023-07-28 14:02:32 +08:00
zxhlyh
6f17c9b2fe fix: next version (#666) 2023-07-28 14:02:17 +08:00
Luyu Zhang
c98311b325 Update LICENSE (#663) 2023-07-28 09:45:10 +08:00
Joel
d44d4bd6fd feat: support query date tool (#662) 2023-07-27 22:27:05 +08:00
John Wang
2adaceab82 feat: bump version to 0.3.11 (#654) 2023-07-27 22:25:32 +08:00
John Wang
d979955c8a feat: optimize current time (#661) 2023-07-27 22:15:07 +08:00
Joel
eae670ea4a feat: enchance chat user experience (#660) 2023-07-27 18:04:41 +08:00
John Wang
b5825142d1 feat: add current time tool in universal chat agent (#659) 2023-07-27 17:39:36 +08:00
Joel
741e9303d4 fix: use sharp logo replace old logo (#658) 2023-07-27 16:34:30 +08:00
John Wang
538e3fc256 fix: return message error in blocking mode (#657) 2023-07-27 16:14:45 +08:00
John Wang
ba3dc8cae0 feat: fix dataset retrieve agent llm not support error (#656) 2023-07-27 15:45:52 +08:00
zxhlyh
ae7c0380dc Feat/application api add speech to text (#655) 2023-07-27 14:53:19 +08:00
Joel
23e3413655 feat: chat in explore support agent (#647)
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
2023-07-27 13:27:34 +08:00
John Wang
4fdb37771a feat: universal chat in explore (#649)
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
2023-07-27 13:08:57 +08:00
TheFu527
94b54b7ca9 feat: replace the end user column in the web page Log & Ann. with the… (#653)
Co-authored-by: Hao Fu <hao.fu@helloklarity.com>
2023-07-27 12:48:43 +08:00
crazywoola
f9412f5fdb fix: site enable check (#645) 2023-07-26 11:11:09 +08:00
zxhlyh
1d6829f400 Feat/application config user input field collapse (#643) 2023-07-26 10:27:52 +08:00
zxhlyh
f8bae897e5 fix: switch workspace (#642) 2023-07-26 10:25:35 +08:00
Selenium39
dd1172b57e Perf: Support for password display and hiding (#636)
Co-authored-by: Selenium39 <selenium39@qq.com>
2023-07-24 14:48:00 +08:00
Rhon Joe
67d326a558 fix(web): fix svg unrecognized props (#631) 2023-07-24 10:31:56 +08:00
zxhlyh
fe747040bc downgrade next version (#626) 2023-07-21 12:27:23 +08:00
Rhon Joe
7d6c925cbc fix(web): using Tooltip unique selector key (#622) 2023-07-21 11:15:00 +08:00
Joel
f488d06b20 fix: Top P description error (#624) 2023-07-21 09:15:52 +08:00
Rhon Joe
c00a19ced3 fix(web): fix Embedded copy status when toggle options (#621) 2023-07-21 09:06:51 +08:00
John Wang
e9810a6df2 fix: azure openai embedding model name error (#612) 2023-07-20 13:52:54 +08:00
John Wang
cae15013e0 fix: azure openai deployment list was deprecated suddenly (#611) 2023-07-20 13:46:39 +08:00
Jyong
52c84da051 add clean unused dataset command (#609) 2023-07-20 11:08:28 +08:00
Jyong
026f0bfce9 Feat/clean vector dataset (#605) 2023-07-19 21:30:25 +08:00
Joel
d19181fb29 chore: minify embed js (#604) 2023-07-19 19:48:44 +08:00
Yuhao
2f9de2229f feat: embed into other site support set custom host (#580)
Co-authored-by: Joel <iamjoel007@gmail.com>
2023-07-19 19:43:07 +08:00
Rhon Joe
34f55739e0 fix(web): fix #596 copy-to-clipboard issue (#602) 2023-07-19 19:29:37 +08:00
Joel
668b059c07 fix: quick switch and click create conversation button may caused fetch conversation list error (#603) 2023-07-19 17:17:29 +08:00
zxhlyh
753e5f1500 Fix/application configuration preview style (#597) 2023-07-19 12:41:35 +08:00
zxhlyh
a6af8e5d8f Fix/new conversation in mobile phone (#593) 2023-07-18 16:57:28 +08:00
zxhlyh
3e1d5ac51b Feat/header ssr (#594) 2023-07-18 16:57:14 +08:00
John Wang
b0091452ca feat: add bash before entrypoint.sh in Dockerfile (#592) 2023-07-18 16:22:34 +08:00
John Wang
eff115267f fix: anthropic completion error in blocking mode (#591) 2023-07-18 15:12:52 +08:00
John Wang
07cde4f8fe feat: bump 0.3.10 (#589) 2023-07-18 15:04:49 +08:00
Jyong
9f28a48a92 index add to db when dataset updated (#588) 2023-07-18 15:02:33 +08:00
John Wang
0d3cd3b16a fix: azure provider select error when use custom azure provider (#587) 2023-07-18 14:34:09 +08:00
John Wang
3dc82fb044 feat: remove davinci required model from azure provider (#586) 2023-07-18 14:14:56 +08:00
crazywoola
cb6e73347e Feat/add ruby sdk (#583) 2023-07-18 10:18:58 +08:00
zxhlyh
ecd6cbaee6 Fix/use embedded chatbot with no track mode (#582) 2023-07-18 09:45:17 +08:00
KVOJJJin
d54e942264 Feat: hide password setting and invitation link in cloud version (#581) 2023-07-18 08:54:14 +08:00
Panmuse
28ba721455 Update README_CN.md (#575) 2023-07-17 11:08:26 +08:00
Panmuse
784dd7848e Update README.md (#576) 2023-07-17 11:08:03 +08:00
John Wang
e2a5f8ba1a feat: bump version to 0.3.9 (#574) 2023-07-17 09:47:23 +08:00
Joel
8e11200306 feat: frontend support claude (#573)
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
2023-07-17 00:14:32 +08:00
John Wang
7599f79a17 feat: claude api support (#572) 2023-07-17 00:14:19 +08:00
Joel
510389909c fix: change chatbot avart to dify icon (#571) 2023-07-16 16:30:55 +08:00
Jyong
2c6e00174b add document limit check (#570) 2023-07-16 13:21:56 +08:00
John Wang
24f3456990 fix: account check in runtime (#569) 2023-07-15 23:58:15 +08:00
Joel
20514ff288 fix: table too wide fix text generation ui (#566) 2023-07-14 18:15:56 +08:00
zxhlyh
381d255290 fix setting-modal provider encrypted tip style (#565) 2023-07-14 17:10:02 +08:00
John Wang
7f320f9146 feat: bump version to 0.3.8 (#559) 2023-07-14 11:53:15 +08:00
KVOJJJin
cd51d3323b feat: member invitation and activation (#535)
Co-authored-by: John Wang <takatost@gmail.com>
2023-07-14 11:19:26 +08:00
crazywoola
004b3caa43 Feature/add delete to service (#555) 2023-07-14 10:37:33 +08:00
Joel
dbe10799e3 fix: user cancel conversation show error (#558) 2023-07-13 10:32:45 +08:00
Joel
054ba88434 fix: regeneration not clear like status and sub more items (#557) 2023-07-13 10:31:07 +08:00
Joel
da82a11b26 feat: batch run support export as csv file (#556) 2023-07-13 09:30:16 +08:00
zxhlyh
fec607db81 Feat/embedding (#553)
Co-authored-by: Gillian97 <jinling.sunshine@gmail.com>
Co-authored-by: Joel <iamjoel007@gmail.com>
2023-07-12 17:27:50 +08:00
zxhlyh
397a92f2ee convert audio wav to mp3 (#552) 2023-07-12 17:18:56 +08:00
Joel
b91e226063 fix: api doc update conversation list api to real response (#548) 2023-07-12 13:53:06 +08:00
Joel
da5782df92 fix: mobile not auto show generation res (#544) 2023-07-11 17:16:28 +08:00
zxhlyh
9af0da4450 fix jwt in web (#545) 2023-07-11 17:07:52 +08:00
crazywoola
d49ac1e4ac Feature/use jwt in web (#533)
Co-authored-by: crazywoola <li.zheng@dentsplysirona.com>
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
2023-07-11 15:21:20 +08:00
John Wang
57de19a5ca feat: bump version to 0.3.7 (#540) 2023-07-10 15:23:38 +08:00
zxhlyh
7c00a0b6a3 fix voice input in safari (#537) 2023-07-10 10:16:38 +08:00
Jyong
a93506df18 Fix/dataset clean task (#534) 2023-07-08 17:29:56 +08:00
zxhlyh
a03a92e9db Feat/chat support voice input (#532) 2023-07-07 17:50:42 +08:00
John Wang
feebb5dd1f feat: dataset list add order by created at (#531) 2023-07-07 11:51:48 +08:00
John Wang
6eee7cb42c feat: fix azure embedding Too many inputs problem (#530) 2023-07-07 11:17:36 +08:00
Joel
11baff6740 feat: text generation application support run batch (#529) 2023-07-07 10:35:05 +08:00
zxhlyh
cde1797cc0 feat: max token add tip (#525) 2023-07-06 15:57:04 +08:00
KVOJJJin
d143284d99 Fix: stop embedding status display (#523) 2023-07-06 10:51:30 +08:00
zxhlyh
2b94545190 fix check version api (#520) 2023-07-05 11:11:38 +08:00
John Wang
ed6648a41e feat: dataset list add order by created at (#487) 2023-07-05 11:00:21 +08:00
Joel
5e2c3eeac3 fix: chat app added new var old conversation not work (#511) 2023-07-04 14:33:41 +08:00
Joel
b23d8a912b fix: add missing like i18n (#512) 2023-07-04 14:21:51 +08:00
Joel
4f13f8fd0a fix: change langenius text to dify (#498) 2023-07-02 14:01:11 +08:00
Joel
561c9cabd5 fix: input text repeat (#492) 2023-06-29 17:27:48 +08:00
zxhlyh
39ea967b30 refact common layout (#490) 2023-06-29 15:30:12 +08:00
John Wang
da04ff040b fix: remove document from dataset error when vector index npe (#489) 2023-06-29 13:09:22 +08:00
John Wang
b9b0866a46 fix: generate summary error when tokens=4097 (#488) 2023-06-29 12:54:50 +08:00
Joel
c6ab7eebd9 fix: delete operation style error (#485) 2023-06-29 09:24:31 +08:00
Joel
db4e6d81c5 fix: choose dataset not selected after one page (#481) 2023-06-29 09:22:42 +08:00
John Wang
df68a7c82b feat: Optimize the quality of the title generate (#484) 2023-06-28 19:59:20 +08:00
Joel
838825d747 feat: optimize conversation operation (#479) 2023-06-28 17:53:23 +08:00
crazywoola
a87f6f2837 fix: modal disappear (#478) 2023-06-28 16:44:17 +08:00
John Wang
9d98669e7d fix: dataset destination error (#477) 2023-06-28 15:51:07 +08:00
John Wang
408fbb0c70 fix: title, summary, suggested questions generate (#476) 2023-06-28 15:43:33 +08:00
crazywoola
998f819b04 use sub to operate all (#475) 2023-06-28 14:58:40 +08:00
John Wang
6194b82752 feat: bump to 0.3.6 (#474) 2023-06-28 14:23:20 +08:00
Jyong
334f46d0b6 Fix/json format (#466) 2023-06-28 13:58:50 +08:00
Jyong
2eea114ac0 fix special code (#473) 2023-06-28 13:58:36 +08:00
crazywoola
97e9ebd29a Feature/add is deleted to conversations (#470) 2023-06-28 13:31:51 +08:00
Joel
ec261aea54 feat: conversation app support pin and delete conversation (#467) 2023-06-28 11:16:54 +08:00
Joel
accc5faae3 fix: delete dataset not trigger show start new conversation message (#471) 2023-06-28 10:39:40 +08:00
Joel
0462f09ecc fix: app nav call detail match explore app detail page (#469) 2023-06-27 18:40:24 +08:00
zxhlyh
1226d73159 Feat/refact header (#468) 2023-06-27 18:02:01 +08:00
Jyong
c67ecff3fe Fix/json format (#465) 2023-06-27 17:15:03 +08:00
John Wang
d5b42c09ee fix: template parse error when history include {{any}} (#463) 2023-06-27 16:35:50 +08:00
John Wang
835bf9fd8d fix: template parse error when pre prompt include {{}} (#462) 2023-06-27 15:51:55 +08:00
John Wang
c720f831af feat: optimize template parse (#460) 2023-06-27 15:30:38 +08:00
John Wang
df5763be37 feat: optimize openai error raise (#459) 2023-06-27 12:34:47 +08:00
zxhlyh
80eebc2414 feat: upgrade nextjs version (#457) 2023-06-27 12:12:41 +08:00
zxhlyh
17d196126c Feat/add icons (#450) 2023-06-26 15:36:52 +08:00
Joel
addf150a9e fix: hove x scroll shake (#449) 2023-06-26 13:35:12 +08:00
John Wang
cad1532f7c feat: optimize index_struct copy (#442) 2023-06-25 17:52:22 +08:00
John Wang
951afcaaed feat: optimize weaviate error msg (#441) 2023-06-25 17:05:56 +08:00
John Wang
3241e4015b feat: upgrade langchain (#430)
Co-authored-by: jyong <718720800@qq.com>
2023-06-25 16:49:14 +08:00
Bin
1dee5de9b4 bugfix: conversation parameters (#438) 2023-06-25 16:14:42 +08:00
John Wang
742bad93b5 feat: bump version to 0.3.5 (#433) 2023-06-21 16:18:41 +08:00
Joel
bb3cc6bba6 fix: file size limit to 15M (#431) 2023-06-21 16:08:57 +08:00
lisaifei@cvte.com
23ef2262bd fix: filter empty value in xlsx to improve vector similarity hit (#422) 2023-06-21 11:25:52 +08:00
Joel
d637a147ee feat: support batch upload files (#419) 2023-06-21 09:44:01 +08:00
crazywoola
8a4d19d9ba fix: actions 2023-06-21 09:10:07 +08:00
Joel
bea382f0dc fix: dataset can only choose first page data (#425)
Support infinite scroll loader data.
2023-06-20 18:08:28 +08:00
John Wang
8b39e48957 fix REDIS_USERNAME format (#414) 2023-06-19 22:14:47 +08:00
crazywoola
5b4538f021 feat: add more labels 2023-06-19 22:09:02 +08:00
Jyong
36dc05c4da fix chinese encoding (#411) 2023-06-19 18:41:17 +08:00
1008 changed files with 44119 additions and 10456 deletions

11
.devcontainer/Dockerfile Normal file
View File

@@ -0,0 +1,11 @@
FROM mcr.microsoft.com/devcontainers/anaconda:0-3
# Copy environment.yml (if found) to a temp location so we update the environment. Also
# copy "noop.txt" so the COPY instruction does not fail if no environment.yml exists.
COPY environment.yml* .devcontainer/noop.txt /tmp/conda-tmp/
RUN if [ -f "/tmp/conda-tmp/environment.yml" ]; then umask 0002 && /opt/conda/bin/conda env update -n base -f /tmp/conda-tmp/environment.yml; fi \
&& rm -rf /tmp/conda-tmp
# [Optional] Uncomment this section to install additional OS packages.
# RUN apt-get update && export DEBIAN_FRONTEND=noninteractive \
# && apt-get -y install --no-install-recommends <your-package-list-here>

37
.devcontainer/README.md Normal file
View File

@@ -0,0 +1,37 @@
# Devlopment with devcontainer
This project includes a devcontainer configuration that allows you to open the project in a container with a fully configured development environment.
Both frontend and backend environments are initialized when the container is started.
## GitHub Codespaces
[![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://codespaces.new/langgenius/dify)
you can simply click the button above to open this project in GitHub Codespaces.
For more info, check out the [GitHub documentation](https://docs.github.com/en/free-pro-team@latest/github/developing-online-with-codespaces/creating-a-codespace#creating-a-codespace).
## VS Code Dev Containers
[![Open in Dev Containers](https://img.shields.io/static/v1?label=Dev%20Containers&message=Open&color=blue&logo=visualstudiocode)](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langgenius/dify)
if you have VS Code installed, you can click the button above to open this project in VS Code Dev Containers.
You can learn more in the [Dev Containers documentation](https://code.visualstudio.com/docs/devcontainers/containers).
## Pros of Devcontainer
Unified Development Environment: By using devcontainers, you can ensure that all developers are developing in the same environment, reducing the occurrence of "it works on my machine" type of issues.
Quick Start: New developers can set up their development environment in a few simple steps, without spending a lot of time on environment configuration.
Isolation: Devcontainers isolate your project from your host operating system, reducing the chance of OS updates or other application installations impacting the development environment.
## Cons of Devcontainer
Learning Curve: For developers unfamiliar with Docker and VS Code, using devcontainers may be somewhat complex.
Performance Impact: While usually minimal, programs running inside a devcontainer may be slightly slower than those running directly on the host.
## Troubleshooting
if you see such error message when you open this project in codespaces:
![Alt text](troubleshooting.png)
a simple workaround is change `/signin` endpoint into another one, then login with github account and close the tab, then change it back to `/signin` endpoint. Then all things will be fine.
The reason is `signin` endpoint is not allowed in codespaces, details can be found [here](https://github.com/orgs/community/discussions/5204)

View File

@@ -0,0 +1,53 @@
// For format details, see https://aka.ms/devcontainer.json. For config options, see the
// README at: https://github.com/devcontainers/templates/tree/main/src/anaconda
{
"name": "Anaconda (Python 3)",
"build": {
"context": "..",
"dockerfile": "Dockerfile"
},
"features": {
"ghcr.io/dhoeric/features/act:1": {},
"ghcr.io/devcontainers/features/node:1": {
"nodeGypDependencies": true,
"version": "lts"
},
"ghcr.io/devcontainers-contrib/features/npm-package:1": {
"package": "typescript",
"version": "latest"
},
"ghcr.io/devcontainers/features/docker-in-docker:2": {
"moby": true,
"azureDnsAutoDetection": true,
"installDockerBuildx": true,
"version": "latest",
"dockerDashComposeVersion": "v2"
}
},
"customizations": {
"vscode": {
"extensions": [
"ms-python.pylint",
"GitHub.copilot",
"ms-python.python"
]
}
},
"postStartCommand": "cd api && pip install -r requirements.txt",
"postCreateCommand": "cd web && npm install"
// Features to add to the dev container. More info: https://containers.dev/features.
// "features": {},
// Use 'forwardPorts' to make a list of ports inside the container available locally.
// "forwardPorts": [],
// Use 'postCreateCommand' to run commands after the container is created.
// "postCreateCommand": "python --version",
// Configure tool-specific properties.
// "customizations": {},
// Uncomment to connect as root instead. More info: https://aka.ms/dev-containers-non-root.
// "remoteUser": "root"
}

3
.devcontainer/noop.txt Normal file
View File

@@ -0,0 +1,3 @@
This file copied into the container along with environment.yml* from the parent
folder. This file is included to prevents the Dockerfile COPY instruction from
failing if no environment.yml is found.

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

View File

@@ -42,12 +42,14 @@ jobs:
uses: docker/build-push-action@v4
with:
context: "{{defaultContext}}:api"
platforms: linux/amd64,linux/arm64
platforms: ${{ startsWith(github.ref, 'refs/tags/') && 'linux/amd64,linux/arm64' || 'linux/amd64' }}
build-args: |
COMMIT_SHA=${{ fromJSON(steps.meta.outputs.json).labels['org.opencontainers.image.revision'] }}
push: true
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
cache-from: type=gha
cache-to: type=gha,mode=max
- name: Deploy to server
if: github.ref == 'refs/heads/deploy/dev'

View File

@@ -42,12 +42,14 @@ jobs:
uses: docker/build-push-action@v4
with:
context: "{{defaultContext}}:web"
platforms: linux/amd64,linux/arm64
platforms: ${{ startsWith(github.ref, 'refs/tags/') && 'linux/amd64,linux/arm64' || 'linux/amd64' }}
build-args: |
COMMIT_SHA=${{ fromJSON(steps.meta.outputs.json).labels['org.opencontainers.image.revision'] }}
push: true
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
cache-from: type=gha
cache-to: type=gha,mode=max
- name: Deploy to server
if: github.ref == 'refs/heads/deploy/dev'

View File

@@ -19,7 +19,8 @@ def check_file_for_chinese_comments(file_path):
def main():
has_chinese = False
excluded_files = ["model_template.py", 'stopwords.py', 'commands.py', 'indexing_runner.py']
excluded_files = ["model_template.py", 'stopwords.py', 'commands.py',
'indexing_runner.py', 'web_reader_tool.py', 'spark_provider.py']
for root, _, files in os.walk("."):
for file in files:

View File

@@ -27,3 +27,4 @@ jobs:
stale-pr-message: "Close due to it's no longer active, if you have any questions, you can reopen it."
stale-issue-label: 'no-issue-activity'
stale-pr-label: 'no-pr-activity'
any-of-labels: 'duplicate,question,invalid,wontfix,no-issue-activity,no-pr-activity,enhancement'

3
.gitignore vendored
View File

@@ -109,6 +109,7 @@ venv/
ENV/
env.bak/
venv.bak/
.conda/
# Spyder project settings
.spyderproject
@@ -147,3 +148,5 @@ docker/volumes/weaviate/*
sdks/python-client/build
sdks/python-client/dist
sdks/python-client/dify_client.egg-info
.vscode/

36
LICENSE
View File

@@ -1,26 +1,26 @@
# Dify Open Source License
The Dify project uses a combination of the Apache License 2.0, MIT License, and an additional agreement to protect against direct competition with Dify Cloud services.
The Dify project is licensed under the Apache License 2.0, with the following additional conditions:
As a contributor, you should agree that your contributed code:
a. Might be subject to a more permissive open source license in the future.
1. Dify is permitted to be used for commercialization, such as using Dify as a "backend-as-a-service" for your other applications, or delivering it to enterprises as an application development platform. However, when the following conditions are met, you must contact the producer to obtain a commercial license:
a. Multi-tenant SaaS service: Unless explicitly authorized by Dify in writing, you may not use the Dify.AI source code to operate a multi-tenant SaaS service that is similar to the Dify.AI service edition.
b. LOGO and copyright information: In the process of using Dify, you may not remove or modify the LOGO or copyright information in the Dify console.
Please contact business@dify.ai by email to inquire about licensing matters.
2. As a contributor, you should agree that your contributed code:
a. The producer can adjust the open-source agreement to be more strict or relaxed.
b. Can be used for commercial purposes, such as Dify's cloud business.
The following components are open source under the MIT license, allowing you to build and develop applications based on them:
- WebApp elements, e.g., web/app/components/share
- Derived WebApp Template projects
The remaining parts of the project are open source under the Apache License 2.0.
With the Apache License 2.0, MIT License, and this supplementary agreement, anyone can freely use, modify, and distribute Dify, provided that:
- If you use Dify solely as a backend service for other applications, no authorization is needed for commercial or closed source purposes.
- If you wish to use Dify for commercial and closed source SaaS services similar to Dify Cloud, please contact us for authorization.
Apart from this, all other rights and restrictions follow the Apache License 2.0. If you need more detailed information, you can refer to the full version of Apache License 2.0.
The interactive design of this product is protected by appearance patent.
© 2023 LangGenius, Inc.
----------
Licensed under the Apache License, Version 2.0 (the "License");
@@ -34,13 +34,3 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
----------
The MIT License
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

View File

@@ -6,7 +6,7 @@
<a href="./README_ES.md">Español</a>
</p>
[Website](https://dify.ai) • [Docs](https://docs.dify.ai) • [Twitter](https://twitter.com/dify_ai) • [Discord](https://discord.gg/FngNHpbcY7)
#### [Website](https://dify.ai) • [Docs](https://docs.dify.ai) • [Deployment Docs](https://docs.dify.ai/getting-started/install-self-hosted) • [FAQ](https://docs.dify.ai/getting-started/faq) • [Twitter](https://twitter.com/dify_ai) • [Discord](https://discord.gg/FngNHpbcY7)
**Dify** is an easy-to-use LLMOps platform designed to empower more people to create sustainable, AI-native applications. With visual orchestration for various application types, Dify offers out-of-the-box, ready-to-use applications that can also serve as Backend-as-a-Service APIs. Unify your development process with one API for plugins and datasets integration, and streamline your operations using a single interface for prompt engineering, visual analytics, and continuous improvement.
@@ -15,11 +15,43 @@ Applications created with Dify include:
Out-of-the-box web sites supporting form mode and chat conversation mode
A single API encompassing plugin capabilities, context enhancement, and more, saving you backend coding effort
Visual data analysis, log review, and annotation for applications
Dify is compatible with Langchain, meaning we'll gradually support multiple LLMs, currently supported:
- GPT 3 (text-davinci-003)
- GPT 3.5 Turbo(ChatGPT)
- GPT-4
## Highlighted Features
**1. LLMs support:** Choose capabilities based on different models when building your Dify AI apps. Dify is compatible with Langchain, meaning it will support various LLMs. Currently supported:
- [x] **OpenAI**: GPT4, GPT3.5-turbo, GPT3.5-turbo-16k, text-davinci-003
- [x] **Azure OpenAI Service**
- [x] **Anthropic**: Claude2, Claude-instant
- [x] **Replicate**
- [x] **Hugging Face Hub**
- [x] **MiniMax**
- [x] **Spark**
- [x] **Wenxin**
- [x] **Tongyi**
- [x] **ChatGLM**
We provide the following free resources for registered Dify cloud users (sign up at [dify.ai](https://dify.ai)):
* 1000 free Claude model queries to build Claude-powered apps
* 200 free OpenAI queries to build OpenAI-based apps
* 3 million Xunfei Spark Tokens are provided for creating AI applications based on Spark.
* 1 million MiniMax Tokens are provided for creating AI applications based on the MiniMax.
**2. Visual orchestration:** Build an AI app in minutes by writing and debugging prompts visually.
**3. Text embedding:** Fully automated text preprocessing embeds your data as context without complex concepts. Supports PDF, TXT, and syncing data from Notion, webpages, APIs.
**4. API-based:** Backend-as-a-service. Access web apps directly or integrate via APIs without complex backend setup.
**5. Plugins:** Dify "Smart Chat" now supports first-party plugins like web browsing, Google search, Wikipedia to enable online lookup, analyzing web content, and explaining the AI's reasoning process conversationally.
**6. Team workspaces:** Team members can join workspaces to collaboratively edit, manage, and use team AI apps.
**7. Data labeling and improvement:** Visually inspect AI app logs and improve data via labeling. Observe the AI's reasoning process to continuously enhance performance. (Coming soon)
## Use cases
* [Create an AI ChatBot with Business Data in Minutes.](https://docs.dify.ai/use-cases/create-an-ai-chatbot-with-business-data-in-minutes)
* [How to Build an Notion AI Assistant Based on Your Own Notes?](https://docs.dify.ai/use-cases/build-an-notion-ai-assistant)
* [Create a Midjoureny Prompt Bot Without Code in Just a Few Minutes.](https://docs.dify.ai/use-cases/create-a-midjoureny-prompt-bot-with-dify)
## Use Cloud Services
@@ -31,7 +63,7 @@ Visit [Dify.ai](https://dify.ai)
Before installing Dify, make sure your machine meets the following minimum system requirements:
- CPU >= 1 Core
- CPU >= 2 Core
- RAM >= 4GB
### Quick Start
@@ -133,7 +165,6 @@ To protect your privacy, please avoid posting security issues on GitHub. Instead
This software uses the following open-source software:
- Chase, H. (2022). LangChain [Computer software]. https://github.com/hwchase17/langchain
- Liu, J. (2022). LlamaIndex [Computer software]. doi: 10.5281/zenodo.1234.
For more information, please refer to the official website or license text of the respective software.

View File

@@ -7,9 +7,9 @@
</p>
[官方网站](https://dify.ai) • [文档](https://docs.dify.ai/v/zh-hans) • [Twitter](https://twitter.com/dify_ai) • [Discord](https://discord.gg/FngNHpbcY7)
#### [官方网站](https://dify.ai) • [使用文档](https://docs.dify.ai/v/zh-hans) · [部署文档](https://docs.dify.ai/v/zh-hans/getting-started/install-self-hosted) · [FAQ](https://docs.dify.ai/v/zh-hans/getting-started/faq) • [Twitter](https://twitter.com/dify_ai) • [Discord](https://discord.gg/FngNHpbcY7)
**Dify** 是一个易用的 LLMOps 平台,旨在让更多人可以创建可持续运营的原生 AI 应用。Dify 提供多种类型应用的可视化编排,应用可开箱即用,也能以“后端即服务”的 API 提供服务。
**Dify** 是一个易用的 LLMOps 平台,基于不同的大型语言模型能力,让更多人可以简易地创建可持续运营的原生 AI 应用。Dify 提供多种类型应用的可视化编排,应用可开箱即用,也能以“后端即服务”的 API 提供服务。
通过 Dify 创建的应用包含了:
@@ -17,15 +17,43 @@
- 一套 API 即可包含插件、上下文增强等能力,替你省下了后端代码的编写工作
- 可视化的对应用进行数据分析,查阅日志或进行标注
Dify 兼容 Langchain这意味着我们将逐步支持多种 LLMs ,目前已支持:
- GPT 3 (text-davinci-003)
- GPT 3.5 Turbo(ChatGPT)
- GPT-4
## 核心能力
1. **模型支持:** 你可以在 Dify 上选择基于不同模型的能力来开发你的 AI 应用。Dify 兼容 Langchain这意味着我们将逐步支持多种 LLMs ,目前支持的模型供应商:
- [x] **OpenAI**GPT4、GPT3.5-turbo、GPT3.5-turbo-16k、text-davinci-003
- [x] **Azure OpenAI Service**
- [x] **Anthropic**Claude2、Claude-instant
- [x] **Replicate**
- [x] **Hugging Face Hub**
- [x] **MiniMax**
- [x] **讯飞星火大模型**
- [x] **文心一言**
- [x] **通义千问**
- [x] **ChatGLM**
我们为所有注册云端版的用户免费提供以下资源(登录 [dify.ai](https://cloud.dify.ai) 即可使用):
* 1000 次 Claude 模型的消息调用额度,用于创建基于 Claude 模型的 AI 应用
* 200 次 OpenAI 模型的消息调用额度,用于创建基于 OpenAI 模型的 AI 应用
* 300 万 讯飞星火大模型 Token 的调用额度,用于创建基于讯飞星火大模型的 AI 应用
* 100 万 MiniMax Token 的调用额度,用于创建基于 MiniMax 模型的 AI 应用
2. **可视化编排 Prompt** 通过界面化编写 prompt 并调试,只需几分钟即可发布一个 AI 应用。
3. **文本 Embedding 处理(数据集)**:全自动完成文本预处理,使用你的数据作为上下文,无需理解晦涩的概念和技术处理。支持 PDF、txt 等文件格式,支持从 Notion、网页、API 同步数据。
4. **基于 API 开发:** 后端即服务。您可以直接访问网页应用,也可以接入 API 集成到您的应用中,无需关注复杂的后端架构和部署过程。
5. **插件能力:** Dify 「智聊」平台已支持网页浏览、Google 搜索、Wikipedia 查询等第一方插件,可在对话中实现联网搜索、分析网页内容、展示 AI 的推理过程。
6. **团队 Workspace** 团队成员可加入 Workspace 编辑、管理和使用团队内的 AI 应用。
6. **数据标注与改进:** 可视化查阅 AI 应用日志并对数据进行改进标注,观测 AI 的推理过程不断提高其性能。Coming soon
-----------------------------
## Use cases
* [几分钟创建一个带有业务数据的官网 AI 智能客服](https://docs.dify.ai/v/zh-hans/use-cases/create-an-ai-chatbot-with-business-data-in-minutes)
* [构建一个 Notion AI 助手](https://docs.dify.ai/v/zh-hans/use-cases/build-an-notion-ai-assistant)
* [创建 Midjoureny 提示词机器人](https://docs.dify.ai/v/zh-hans/use-cases/create-a-midjoureny-prompt-word-robot-with-zero-code)
## 使用云服务
访问 [Dify.ai](https://cloud.dify.ai)
访问 [Dify.ai](https://cloud.dify.ai) 使用云端版。
## 安装社区版
@@ -33,7 +61,7 @@ Dify 兼容 Langchain这意味着我们将逐步支持多种 LLMs ,目前
在安装 Dify 之前,请确保您的机器满足以下最低系统要求:
- CPU >= 1 Core
- CPU >= 2 Core
- RAM >= 4GB
### 快速启动
@@ -60,12 +88,10 @@ docker compose up -d
我们正在开发中的功能:
- **数据集**,支持更多的数据集,例如同步 Notion 或网页的内容
我们将支持更多的数据集,包括文本、网页,甚至 Notion 内容。用户可以根据自己的数据源构建 AI 应用程序
- **插件**,推出符合 ChatGPT 标准的插件,或使用 Dify 产生的插件
我们将发布符合 ChatGPT 标准的插件,或者 Dify 自己的插件,以在应用程序中启用更多功能
- **开源模型**,例如采用 Llama 作为模型提供者,或进行进一步的微调
我们将与优秀的开源模型如 Llama 合作,通过在我们的平台中提供它们作为模型选项,或使用它们进行进一步的微调。
- **数据集**,支持更多的数据集,通过网页、API 同步内容。用户可以根据自己的数据源构建 AI 应用程序。
- **插件**,我们将发布符合 ChatGPT 标准的插件,支持更多 Dify 自己的插件,支持用户自定义插件能力,以在应用程序中启用更多功能,例如以支持以目标为导向的分解推理任务
- **开源模型支持**,支持 Hugging face Hub 上的开源模型。例如采用 Llama 作为模型提供者,或进行进一步的微调
我们将与优秀的开源模型合作,通过在我们的平台中提供它们作为模型选项,或使用它们进行进一步的微调
## Q&A
@@ -79,11 +105,11 @@ A: 一个有价值的应用由 Prompt Engineering、上下文增强和 Fine-tune
**Q: 如果要创建一个自己的应用,我需要准备什么?**
A: 我们假定你已经有了 OpenAI API Key如果没有请去注册一个。如果你已经有了一些内容可以作为训练上下文就太好了。
A: 我们假定你已经有了 OpenAI 或 Claude 等模型的 API Key如果没有请去注册一个。如果你已经有了一些内容可以作为训练上下文就太好了。
**Q: 提供哪些界面语言?**
A: 现已支持英文中文,你可以为我们贡献语言包。
A: 支持英文中文,你可以为我们贡献语言包并提供维护支持
## Star History
@@ -129,7 +155,6 @@ A: 现已支持英文与中文,你可以为我们贡献语言包。
本软件使用了以下开源软件:
- Chase, H. (2022). LangChain [Computer software]. https://github.com/hwchase17/langchain
- Liu, J. (2022). LlamaIndex [Computer software]. doi: 10.5281/zenodo.1234.
更多信息,请参考相应软件的官方网站或许可证文本。

View File

@@ -32,7 +32,7 @@ Visita [Dify.ai](https://dify.ai)
Antes de instalar Dify, asegúrate de que tu máquina cumple con los siguientes requisitos mínimos del sistema:
- CPU >= 1 Core
- CPU >= 2 Core
- RAM >= 4GB
### Inicio rápido
@@ -115,7 +115,6 @@ Para proteger tu privacidad, evita publicar problemas de seguridad en GitHub. En
Este software utiliza el siguiente software de código abierto:
- Chase, H. (2022). LangChain [Software de computadora]. https://github.com/hwchase17/langchain
- Liu, J. (2022). LlamaIndex [Software de computadora]. doi: 10.5281/zenodo.1234.
Para obtener más información, consulta el sitio web oficial o el texto de la licencia del software correspondiente.

View File

@@ -114,7 +114,6 @@ A: 現在、英語と中国語に対応しており、言語パックを寄贈
本ソフトウェアは、以下のオープンソースソフトウェアを使用しています:
- Chase, H. (2022). LangChain [Computer software]. https://github.com/hwchase17/langchain
- Liu, J. (2022). LlamaIndex [Computer software]. doi: 10.5281/zenodo.1234.
詳しくは、各ソフトウェアの公式サイトまたはライセンス文をご参照ください。

View File

@@ -1,2 +1,11 @@
.env
storage/privkeys/*
*.env.*
storage/privkeys/*
# Logs
logs
*.log*
# jetbrains
.idea

View File

@@ -8,13 +8,15 @@ EDITION=SELF_HOSTED
SECRET_KEY=
# Console API base URL
CONSOLE_URL=http://127.0.0.1:5001
CONSOLE_API_URL=http://127.0.0.1:5001
CONSOLE_WEB_URL=http://127.0.0.1:3000
# Service API base URL
API_URL=http://127.0.0.1:5001
SERVICE_API_URL=http://127.0.0.1:5001
# Web APP base URL
APP_URL=http://127.0.0.1:3000
APP_API_URL=http://127.0.0.1:5001
APP_WEB_URL=http://127.0.0.1:3000
# celery configuration
CELERY_BROKER_URL=redis://:difyai123456@localhost:6379/1
@@ -22,7 +24,7 @@ CELERY_BROKER_URL=redis://:difyai123456@localhost:6379/1
# redis configuration
REDIS_HOST=localhost
REDIS_PORT=6379
REDIS_USERNAME: ''
REDIS_USERNAME=
REDIS_PASSWORD=difyai123456
REDIS_DB=0
@@ -79,6 +81,11 @@ WEAVIATE_BATCH_SIZE=100
QDRANT_URL=path:storage/qdrant
QDRANT_API_KEY=your-qdrant-api-key
# Mail configuration, support: resend
MAIL_TYPE=
MAIL_DEFAULT_SEND_FROM=no-reply <no-reply@dify.ai>
RESEND_API_KEY=
# Sentry configuration
SENTRY_DSN=
@@ -90,4 +97,30 @@ SQLALCHEMY_ECHO=false
NOTION_INTEGRATION_TYPE=public
NOTION_CLIENT_SECRET=you-client-secret
NOTION_CLIENT_ID=you-client-id
NOTION_INTERNAL_SECRET=you-internal-secret
NOTION_INTERNAL_SECRET=you-internal-secret
# Hosted Model Credentials
HOSTED_OPENAI_ENABLED=false
HOSTED_OPENAI_API_KEY=
HOSTED_OPENAI_API_BASE=
HOSTED_OPENAI_API_ORGANIZATION=
HOSTED_OPENAI_QUOTA_LIMIT=200
HOSTED_OPENAI_PAID_ENABLED=false
HOSTED_OPENAI_PAID_STRIPE_PRICE_ID=
HOSTED_OPENAI_PAID_INCREASE_QUOTA=1
HOSTED_AZURE_OPENAI_ENABLED=false
HOSTED_AZURE_OPENAI_API_KEY=
HOSTED_AZURE_OPENAI_API_BASE=
HOSTED_AZURE_OPENAI_QUOTA_LIMIT=200
HOSTED_ANTHROPIC_ENABLED=false
HOSTED_ANTHROPIC_API_BASE=
HOSTED_ANTHROPIC_API_KEY=
HOSTED_ANTHROPIC_QUOTA_LIMIT=1000000
HOSTED_ANTHROPIC_PAID_ENABLED=false
HOSTED_ANTHROPIC_PAID_STRIPE_PRICE_ID=
HOSTED_ANTHROPIC_PAID_INCREASE_QUOTA=1
STRIPE_API_KEY=
STRIPE_WEBHOOK_SECRET=

View File

@@ -1,18 +1,23 @@
FROM langgenius/base:1.0.0-bullseye-slim as langgenius-api
FROM python:3.10-slim
LABEL maintainer="takatost@gmail.com"
ENV FLASK_APP app.py
ENV EDITION SELF_HOSTED
ENV DEPLOY_ENV PRODUCTION
ENV CONSOLE_URL http://127.0.0.1:5001
ENV API_URL http://127.0.0.1:5001
ENV APP_URL http://127.0.0.1:5001
ENV CONSOLE_API_URL http://127.0.0.1:5001
ENV CONSOLE_WEB_URL http://127.0.0.1:3000
ENV SERVICE_API_URL http://127.0.0.1:5001
ENV APP_API_URL http://127.0.0.1:5001
ENV APP_WEB_URL http://127.0.0.1:3000
EXPOSE 5001
WORKDIR /app/api
RUN apt-get update && \
apt-get install -y bash curl wget vim gcc g++ python3-dev libc-dev libffi-dev
COPY requirements.txt /app/api/requirements.txt
RUN pip install -r requirements.txt
@@ -25,4 +30,4 @@ RUN chmod +x /entrypoint.sh
ARG COMMIT_SHA
ENV COMMIT_SHA ${COMMIT_SHA}
ENTRYPOINT ["/entrypoint.sh"]
ENTRYPOINT ["/bin/bash", "/entrypoint.sh"]

View File

@@ -8,7 +8,7 @@
```bash
cd ../docker
docker-compose -f docker-compose.middleware.yaml up -d
docker-compose -f docker-compose.middleware.yaml -p dify up -d
cd ../api
```
2. Copy `.env.example` to `.env`
@@ -33,9 +33,30 @@
```bash
flask db upgrade
```
⚠️ If you encounter problems with jieba, for example
```
> flask db upgrade
Error: While importing 'app', an ImportError was raised:
```
Please run the following command instead.
```
pip install -r requirements.txt --upgrade --force-reinstall
```
6. Start backend:
```bash
flask run --host 0.0.0.0 --port=5001 --debug
```
7. Setup your application by visiting http://localhost:5001/console/api/setup or other apis...
8. If you need to debug local async processing, you can run `celery -A app.celery worker`, celery can do dataset importing and other async tasks.
8. If you need to debug local async processing, you can run `celery -A app.celery worker -Q dataset,generation,mail`, celery can do dataset importing and other async tasks.
8. Start frontend:
```
docker run -it -d --platform linux/amd64 -p 3000:3000 -e EDITION=SELF_HOSTED -e CONSOLE_URL=http://127.0.0.1:5000 --name web-self-hosted langgenius/dify-web:latest
```
This will start a dify frontend, now you are all set, happy coding!

View File

@@ -2,6 +2,8 @@
import os
from datetime import datetime
from werkzeug.exceptions import Forbidden
if not os.environ.get("DEBUG") or os.environ.get("DEBUG").lower() != 'true':
from gevent import monkey
monkey.patch_all()
@@ -14,21 +16,23 @@ from flask import Flask, request, Response, session
import flask_login
from flask_cors import CORS
from extensions import ext_session, ext_celery, ext_sentry, ext_redis, ext_login, ext_vector_store, ext_migrate, \
ext_database, ext_storage
from core.model_providers.providers import hosted
from extensions import ext_session, ext_celery, ext_sentry, ext_redis, ext_login, ext_migrate, \
ext_database, ext_storage, ext_mail, ext_stripe
from extensions.ext_database import db
from extensions.ext_login import login_manager
# DO NOT REMOVE BELOW
from models import model, account, dataset, web, task, source
from models import model, account, dataset, web, task, source, tool
from events import event_handlers
# DO NOT REMOVE ABOVE
import core
from config import Config, CloudEditionConfig
from commands import register_commands
from models.account import TenantAccountJoin
from models.account import TenantAccountJoin, AccountStatus
from models.model import Account, EndUser, App
from services.account_service import TenantService
import warnings
warnings.simplefilter("ignore", ResourceWarning)
@@ -68,7 +72,7 @@ def create_app(test_config=None) -> Flask:
register_blueprints(app)
register_commands(app)
core.init_app(app)
hosted.init_app(app)
return app
@@ -79,12 +83,22 @@ def initialize_extensions(app):
ext_database.init_app(app)
ext_migrate.init(app, db)
ext_redis.init_app(app)
ext_vector_store.init_app(app)
ext_storage.init_app(app)
ext_celery.init_app(app)
ext_session.init_app(app)
ext_login.init_app(app)
ext_mail.init_app(app)
ext_sentry.init_app(app)
ext_stripe.init_app(app)
def _create_tenant_for_account(account):
tenant = TenantService.create_tenant(f"{account.name}'s Workspace")
TenantService.create_tenant_member(tenant, account, role='owner')
account.current_tenant = tenant
return tenant
# Flask-Login configuration
@@ -101,6 +115,9 @@ def load_user(user_id):
account = db.session.query(Account).filter(Account.id == account_id).first()
if account:
if account.status == AccountStatus.BANNED.value or account.status == AccountStatus.CLOSED.value:
raise Forbidden('Account is banned or closed.')
workspace_id = session.get('workspace_id')
if workspace_id:
tenant_account_join = db.session.query(TenantAccountJoin).filter(
@@ -114,7 +131,9 @@ def load_user(user_id):
if tenant_account_join:
account.current_tenant_id = tenant_account_join.tenant_id
session['workspace_id'] = account.current_tenant_id
else:
_create_tenant_for_account(account)
session['workspace_id'] = account.current_tenant_id
else:
account.current_tenant_id = workspace_id
else:
@@ -122,7 +141,9 @@ def load_user(user_id):
TenantAccountJoin.account_id == account.id).first()
if tenant_account_join:
account.current_tenant_id = tenant_account_join.tenant_id
session['workspace_id'] = account.current_tenant_id
else:
_create_tenant_for_account(account)
session['workspace_id'] = account.current_tenant_id
account.last_active_at = datetime.utcnow()
db.session.commit()
@@ -150,13 +171,17 @@ def register_blueprints(app):
from controllers.web import bp as web_bp
from controllers.console import bp as console_app_bp
CORS(service_api_bp,
allow_headers=['Content-Type', 'Authorization', 'X-App-Code'],
methods=['GET', 'PUT', 'POST', 'DELETE', 'OPTIONS', 'PATCH']
)
app.register_blueprint(service_api_bp)
CORS(web_bp,
resources={
r"/*": {"origins": app.config['WEB_API_CORS_ALLOW_ORIGINS']}},
supports_credentials=True,
allow_headers=['Content-Type', 'Authorization'],
allow_headers=['Content-Type', 'Authorization', 'X-App-Code'],
methods=['GET', 'PUT', 'POST', 'DELETE', 'OPTIONS', 'PATCH'],
expose_headers=['X-Version', 'X-Env']
)
@@ -223,5 +248,18 @@ def threads():
}
@app.route('/db-pool-stat')
def pool_stat():
engine = db.engine
return {
'pool_size': engine.pool.size(),
'checked_in_connections': engine.pool.checkedin(),
'checked_out_connections': engine.pool.checkedout(),
'overflow_connections': engine.pool.overflow(),
'connection_timeout': engine.pool.timeout(),
'recycle_time': db.engine.pool._recycle
}
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5001)

View File

@@ -1,20 +1,26 @@
import datetime
import math
import random
import string
import time
import click
from flask import current_app
from werkzeug.exceptions import NotFound
from core.index.index import IndexBuilder
from core.model_providers.providers.hosted import hosted_model_providers
from libs.password import password_pattern, valid_password, hash_password
from libs.helper import email as email_validate
from extensions.ext_database import db
from libs.rsa import generate_key_pair
from models.account import InvitationCode, Tenant
from models.dataset import Dataset, DatasetQuery, Document
from models.model import Account
import secrets
import base64
from models.provider import Provider
from models.provider import Provider, ProviderType, ProviderQuotaType
@click.command('reset-password', help='Reset the account password.')
@@ -159,8 +165,138 @@ def generate_upper_string():
return result
@click.command('recreate-all-dataset-indexes', help='Recreate all dataset indexes.')
def recreate_all_dataset_indexes():
click.echo(click.style('Start recreate all dataset indexes.', fg='green'))
recreate_count = 0
page = 1
while True:
try:
datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \
.order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
except NotFound:
break
page += 1
for dataset in datasets:
try:
click.echo('Recreating dataset index: {}'.format(dataset.id))
index = IndexBuilder.get_index(dataset, 'high_quality')
if index and index._is_origin():
index.recreate_dataset(dataset)
recreate_count += 1
else:
click.echo('passed.')
except Exception as e:
click.echo(
click.style('Recreate dataset index error: {} {}'.format(e.__class__.__name__, str(e)), fg='red'))
continue
click.echo(click.style('Congratulations! Recreate {} dataset indexes.'.format(recreate_count), fg='green'))
@click.command('clean-unused-dataset-indexes', help='Clean unused dataset indexes.')
def clean_unused_dataset_indexes():
click.echo(click.style('Start clean unused dataset indexes.', fg='green'))
clean_days = int(current_app.config.get('CLEAN_DAY_SETTING'))
start_at = time.perf_counter()
thirty_days_ago = datetime.datetime.now() - datetime.timedelta(days=clean_days)
page = 1
while True:
try:
datasets = db.session.query(Dataset).filter(Dataset.created_at < thirty_days_ago) \
.order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
except NotFound:
break
page += 1
for dataset in datasets:
dataset_query = db.session.query(DatasetQuery).filter(
DatasetQuery.created_at > thirty_days_ago,
DatasetQuery.dataset_id == dataset.id
).all()
if not dataset_query or len(dataset_query) == 0:
documents = db.session.query(Document).filter(
Document.dataset_id == dataset.id,
Document.indexing_status == 'completed',
Document.enabled == True,
Document.archived == False,
Document.updated_at > thirty_days_ago
).all()
if not documents or len(documents) == 0:
try:
# remove index
vector_index = IndexBuilder.get_index(dataset, 'high_quality')
kw_index = IndexBuilder.get_index(dataset, 'economy')
# delete from vector index
if vector_index:
vector_index.delete()
kw_index.delete()
# update document
update_params = {
Document.enabled: False
}
Document.query.filter_by(dataset_id=dataset.id).update(update_params)
db.session.commit()
click.echo(click.style('Cleaned unused dataset {} from db success!'.format(dataset.id),
fg='green'))
except Exception as e:
click.echo(
click.style('clean dataset index error: {} {}'.format(e.__class__.__name__, str(e)),
fg='red'))
end_at = time.perf_counter()
click.echo(click.style('Cleaned unused dataset from db success latency: {}'.format(end_at - start_at), fg='green'))
@click.command('sync-anthropic-hosted-providers', help='Sync anthropic hosted providers.')
def sync_anthropic_hosted_providers():
if not hosted_model_providers.anthropic:
click.echo(click.style('Anthropic hosted provider is not configured.', fg='red'))
return
click.echo(click.style('Start sync anthropic hosted providers.', fg='green'))
count = 0
page = 1
while True:
try:
providers = db.session.query(Provider).filter(
Provider.provider_name == 'anthropic',
Provider.provider_type == ProviderType.SYSTEM.value,
Provider.quota_type == ProviderQuotaType.TRIAL.value,
).order_by(Provider.created_at.desc()).paginate(page=page, per_page=100)
except NotFound:
break
page += 1
for provider in providers:
try:
click.echo('Syncing tenant anthropic hosted provider: {}'.format(provider.tenant_id))
original_quota_limit = provider.quota_limit
new_quota_limit = hosted_model_providers.anthropic.quota_limit
division = math.ceil(new_quota_limit / 1000)
provider.quota_limit = new_quota_limit if original_quota_limit == 1000 \
else original_quota_limit * division
provider.quota_used = division * provider.quota_used
db.session.commit()
count += 1
except Exception as e:
click.echo(click.style(
'Sync tenant anthropic hosted provider error: {} {}'.format(e.__class__.__name__, str(e)),
fg='red'))
continue
click.echo(click.style('Congratulations! Synced {} anthropic hosted providers.'.format(count), fg='green'))
def register_commands(app):
app.cli.add_command(reset_password)
app.cli.add_command(reset_email)
app.cli.add_command(generate_invitation_codes)
app.cli.add_command(reset_encrypt_key_pair)
app.cli.add_command(recreate_all_dataset_indexes)
app.cli.add_command(sync_anthropic_hosted_providers)
app.cli.add_command(clean_unused_dataset_indexes)

View File

@@ -28,9 +28,11 @@ DEFAULTS = {
'SESSION_REDIS_USE_SSL': 'False',
'OAUTH_REDIRECT_PATH': '/console/api/oauth/authorize',
'OAUTH_REDIRECT_INDEX_PATH': '/',
'CONSOLE_URL': 'https://cloud.dify.ai',
'API_URL': 'https://api.dify.ai',
'APP_URL': 'https://udify.app',
'CONSOLE_WEB_URL': 'https://cloud.dify.ai',
'CONSOLE_API_URL': 'https://cloud.dify.ai',
'SERVICE_API_URL': 'https://api.dify.ai',
'APP_WEB_URL': 'https://udify.app',
'APP_API_URL': 'https://udify.app',
'STORAGE_TYPE': 'local',
'STORAGE_LOCAL_PATH': 'storage',
'CHECK_UPDATE_URL': 'https://updates.dify.ai',
@@ -39,6 +41,7 @@ DEFAULTS = {
'SESSION_USE_SIGNER': 'True',
'DEPLOY_ENV': 'PRODUCTION',
'SQLALCHEMY_POOL_SIZE': 30,
'SQLALCHEMY_POOL_RECYCLE': 3600,
'SQLALCHEMY_ECHO': 'False',
'SENTRY_TRACES_SAMPLE_RATE': 1.0,
'SENTRY_PROFILES_SAMPLE_RATE': 1.0,
@@ -48,7 +51,18 @@ DEFAULTS = {
'PDF_PREVIEW': 'True',
'LOG_LEVEL': 'INFO',
'DISABLE_PROVIDER_CONFIG_VALIDATION': 'False',
'DEFAULT_LLM_PROVIDER': 'openai'
'HOSTED_OPENAI_QUOTA_LIMIT': 200,
'HOSTED_OPENAI_ENABLED': 'False',
'HOSTED_OPENAI_PAID_ENABLED': 'False',
'HOSTED_OPENAI_PAID_INCREASE_QUOTA': 1,
'HOSTED_AZURE_OPENAI_ENABLED': 'False',
'HOSTED_AZURE_OPENAI_QUOTA_LIMIT': 200,
'HOSTED_ANTHROPIC_QUOTA_LIMIT': 1000000,
'HOSTED_ANTHROPIC_ENABLED': 'False',
'HOSTED_ANTHROPIC_PAID_ENABLED': 'False',
'HOSTED_ANTHROPIC_PAID_INCREASE_QUOTA': 1,
'TENANT_DOCUMENT_COUNT': 100,
'CLEAN_DAY_SETTING': 30
}
@@ -76,10 +90,15 @@ class Config:
def __init__(self):
# app settings
self.CONSOLE_API_URL = get_env('CONSOLE_URL') if get_env('CONSOLE_URL') else get_env('CONSOLE_API_URL')
self.CONSOLE_WEB_URL = get_env('CONSOLE_URL') if get_env('CONSOLE_URL') else get_env('CONSOLE_WEB_URL')
self.SERVICE_API_URL = get_env('API_URL') if get_env('API_URL') else get_env('SERVICE_API_URL')
self.APP_WEB_URL = get_env('APP_URL') if get_env('APP_URL') else get_env('APP_WEB_URL')
self.APP_API_URL = get_env('APP_URL') if get_env('APP_URL') else get_env('APP_API_URL')
self.CONSOLE_URL = get_env('CONSOLE_URL')
self.API_URL = get_env('API_URL')
self.APP_URL = get_env('APP_URL')
self.CURRENT_VERSION = "0.3.4"
self.CURRENT_VERSION = "0.3.14"
self.COMMIT_SHA = get_env('COMMIT_SHA')
self.EDITION = "SELF_HOSTED"
self.DEPLOY_ENV = get_env('DEPLOY_ENV')
@@ -147,10 +166,15 @@ class Config:
# cors settings
self.CONSOLE_CORS_ALLOW_ORIGINS = get_cors_allow_origins(
'CONSOLE_CORS_ALLOW_ORIGINS', self.CONSOLE_URL)
'CONSOLE_CORS_ALLOW_ORIGINS', self.CONSOLE_WEB_URL)
self.WEB_API_CORS_ALLOW_ORIGINS = get_cors_allow_origins(
'WEB_API_CORS_ALLOW_ORIGINS', '*')
# mail settings
self.MAIL_TYPE = get_env('MAIL_TYPE')
self.MAIL_DEFAULT_SEND_FROM = get_env('MAIL_DEFAULT_SEND_FROM')
self.RESEND_API_KEY = get_env('RESEND_API_KEY')
# sentry settings
self.SENTRY_DSN = get_env('SENTRY_DSN')
self.SENTRY_TRACES_SAMPLE_RATE = float(get_env('SENTRY_TRACES_SAMPLE_RATE'))
@@ -166,7 +190,10 @@ class Config:
}
self.SQLALCHEMY_DATABASE_URI = f"postgresql://{db_credentials['DB_USERNAME']}:{db_credentials['DB_PASSWORD']}@{db_credentials['DB_HOST']}:{db_credentials['DB_PORT']}/{db_credentials['DB_DATABASE']}"
self.SQLALCHEMY_ENGINE_OPTIONS = {'pool_size': int(get_env('SQLALCHEMY_POOL_SIZE'))}
self.SQLALCHEMY_ENGINE_OPTIONS = {
'pool_size': int(get_env('SQLALCHEMY_POOL_SIZE')),
'pool_recycle': int(get_env('SQLALCHEMY_POOL_RECYCLE'))
}
self.SQLALCHEMY_ECHO = get_bool_env('SQLALCHEMY_ECHO')
@@ -178,20 +205,44 @@ class Config:
self.BROKER_USE_SSL = self.CELERY_BROKER_URL.startswith('rediss://')
# hosted provider credentials
self.OPENAI_API_KEY = get_env('OPENAI_API_KEY')
self.HOSTED_OPENAI_ENABLED = get_bool_env('HOSTED_OPENAI_ENABLED')
self.HOSTED_OPENAI_API_KEY = get_env('HOSTED_OPENAI_API_KEY')
self.HOSTED_OPENAI_API_BASE = get_env('HOSTED_OPENAI_API_BASE')
self.HOSTED_OPENAI_API_ORGANIZATION = get_env('HOSTED_OPENAI_API_ORGANIZATION')
self.HOSTED_OPENAI_QUOTA_LIMIT = get_env('HOSTED_OPENAI_QUOTA_LIMIT')
self.HOSTED_OPENAI_PAID_ENABLED = get_bool_env('HOSTED_OPENAI_PAID_ENABLED')
self.HOSTED_OPENAI_PAID_STRIPE_PRICE_ID = get_env('HOSTED_OPENAI_PAID_STRIPE_PRICE_ID')
self.HOSTED_OPENAI_PAID_INCREASE_QUOTA = int(get_env('HOSTED_OPENAI_PAID_INCREASE_QUOTA'))
self.HOSTED_AZURE_OPENAI_ENABLED = get_bool_env('HOSTED_AZURE_OPENAI_ENABLED')
self.HOSTED_AZURE_OPENAI_API_KEY = get_env('HOSTED_AZURE_OPENAI_API_KEY')
self.HOSTED_AZURE_OPENAI_API_BASE = get_env('HOSTED_AZURE_OPENAI_API_BASE')
self.HOSTED_AZURE_OPENAI_QUOTA_LIMIT = get_env('HOSTED_AZURE_OPENAI_QUOTA_LIMIT')
self.HOSTED_ANTHROPIC_ENABLED = get_bool_env('HOSTED_ANTHROPIC_ENABLED')
self.HOSTED_ANTHROPIC_API_BASE = get_env('HOSTED_ANTHROPIC_API_BASE')
self.HOSTED_ANTHROPIC_API_KEY = get_env('HOSTED_ANTHROPIC_API_KEY')
self.HOSTED_ANTHROPIC_QUOTA_LIMIT = get_env('HOSTED_ANTHROPIC_QUOTA_LIMIT')
self.HOSTED_ANTHROPIC_PAID_ENABLED = get_bool_env('HOSTED_ANTHROPIC_PAID_ENABLED')
self.HOSTED_ANTHROPIC_PAID_STRIPE_PRICE_ID = get_env('HOSTED_ANTHROPIC_PAID_STRIPE_PRICE_ID')
self.HOSTED_ANTHROPIC_PAID_INCREASE_QUOTA = get_env('HOSTED_ANTHROPIC_PAID_INCREASE_QUOTA')
self.STRIPE_API_KEY = get_env('STRIPE_API_KEY')
self.STRIPE_WEBHOOK_SECRET = get_env('STRIPE_WEBHOOK_SECRET')
# By default it is False
# You could disable it for compatibility with certain OpenAPI providers
self.DISABLE_PROVIDER_CONFIG_VALIDATION = get_bool_env('DISABLE_PROVIDER_CONFIG_VALIDATION')
# For temp use only
# set default LLM provider, default is 'openai', support `azure_openai`
self.DEFAULT_LLM_PROVIDER = get_env('DEFAULT_LLM_PROVIDER')
# notion import setting
self.NOTION_CLIENT_ID = get_env('NOTION_CLIENT_ID')
self.NOTION_CLIENT_SECRET = get_env('NOTION_CLIENT_SECRET')
self.NOTION_INTEGRATION_TYPE = get_env('NOTION_INTEGRATION_TYPE')
self.NOTION_INTERNAL_SECRET = get_env('NOTION_INTERNAL_SECRET')
self.NOTION_INTEGRATION_TOKEN = get_env('NOTION_INTEGRATION_TOKEN')
self.TENANT_DOCUMENT_COUNT = get_env('TENANT_DOCUMENT_COUNT')
self.CLEAN_DAY_SETTING = get_env('CLEAN_DAY_SETTING')
class CloudEditionConfig(Config):

View File

@@ -9,16 +9,22 @@ api = ExternalApi(bp)
from . import setup, version, apikey, admin
# Import app controllers
from .app import app, site, completion, model_config, statistic, conversation, message, generator
from .app import app, site, completion, model_config, statistic, conversation, message, generator, audio
# Import auth controllers
from .auth import login, oauth, data_source_oauth
from .auth import login, oauth, data_source_oauth, activate
# Import datasets controllers
from .datasets import datasets, datasets_document, datasets_segments, file, hit_testing, data_source
# Import workspace controllers
from .workspace import workspace, members, providers, account
from .workspace import workspace, members, providers, model_providers, account, tool_providers, models
# Import explore controllers
from .explore import installed_app, recommended_app, completion, conversation, message, parameter, saved_message
from .explore import installed_app, recommended_app, completion, conversation, message, parameter, saved_message, audio
# Import universal chat controllers
from .universal_chat import chat, conversation, message, parameter, audio
# Import webhook controllers
from .webhook import stripe

View File

@@ -55,7 +55,7 @@ class InsertExploreAppListApi(Resource):
app = App.query.filter(App.id == args['app_id']).first()
if not app:
raise NotFound('App not found')
raise NotFound(f'App \'{args["app_id"]}\' is not found')
site = app.site
if not site:
@@ -63,10 +63,12 @@ class InsertExploreAppListApi(Resource):
copy_right = args['copyright'] if args['copyright'] else ''
privacy_policy = args['privacy_policy'] if args['privacy_policy'] else ''
else:
desc = site.description if (site.description if not args['desc'] else args['desc']) else ''
copy_right = site.copyright if (site.copyright if not args['copyright'] else args['copyright']) else ''
privacy_policy = site.privacy_policy \
if (site.privacy_policy if not args['privacy_policy'] else args['privacy_policy']) else ''
desc = site.description if site.description else \
args['desc'] if args['desc'] else ''
copy_right = site.copyright if site.copyright else \
args['copyright'] if args['copyright'] else ''
privacy_policy = site.privacy_policy if site.privacy_policy else \
args['privacy_policy'] if args['privacy_policy'] else ''
recommended_app = RecommendedApp.query.filter(RecommendedApp.app_id == args['app_id']).first()

View File

@@ -2,16 +2,17 @@
import json
from datetime import datetime
import flask
from flask_login import login_required, current_user
from flask_restful import Resource, reqparse, fields, marshal_with, abort, inputs
from werkzeug.exceptions import Unauthorized, Forbidden
from werkzeug.exceptions import Forbidden
from constants.model_template import model_templates, demo_model_templates
from controllers.console import api
from controllers.console.app.error import AppNotFoundError
from controllers.console.app.error import AppNotFoundError, ProviderNotInitializeError
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.model_providers.model_factory import ModelFactory
from core.model_providers.models.entity.model_params import ModelType
from events.app_event import app_was_created, app_was_deleted
from libs.helper import TimestampField
from extensions.ext_database import db
@@ -22,7 +23,9 @@ model_config_fields = {
'opening_statement': fields.String,
'suggested_questions': fields.Raw(attribute='suggested_questions_list'),
'suggested_questions_after_answer': fields.Raw(attribute='suggested_questions_after_answer_dict'),
'speech_to_text': fields.Raw(attribute='speech_to_text_dict'),
'more_like_this': fields.Raw(attribute='more_like_this_dict'),
'sensitive_word_avoidance': fields.Raw(attribute='sensitive_word_avoidance_dict'),
'model': fields.Raw(attribute='model_dict'),
'user_input_form': fields.Raw(attribute='user_input_form_list'),
'pre_prompt': fields.String,
@@ -95,7 +98,8 @@ class AppListApi(Resource):
args = parser.parse_args()
app_models = db.paginate(
db.select(App).where(App.tenant_id == current_user.current_tenant_id).order_by(App.created_at.desc()),
db.select(App).where(App.tenant_id == current_user.current_tenant_id,
App.is_universal == False).order_by(App.created_at.desc()),
page=args['page'],
per_page=args['limit'],
error_out=False)
@@ -123,9 +127,9 @@ class AppListApi(Resource):
if args['model_config'] is not None:
# validate config
model_configuration = AppModelConfigService.validate_configuration(
tenant_id=current_user.current_tenant_id,
account=current_user,
config=args['model_config'],
mode=args['mode']
config=args['model_config']
)
app = App(
@@ -144,7 +148,9 @@ class AppListApi(Resource):
opening_statement=model_configuration['opening_statement'],
suggested_questions=json.dumps(model_configuration['suggested_questions']),
suggested_questions_after_answer=json.dumps(model_configuration['suggested_questions_after_answer']),
speech_to_text=json.dumps(model_configuration['speech_to_text']),
more_like_this=json.dumps(model_configuration['more_like_this']),
sensitive_word_avoidance=json.dumps(model_configuration['sensitive_word_avoidance']),
model=json.dumps(model_configuration['model']),
user_input_form=json.dumps(model_configuration['user_input_form']),
pre_prompt=model_configuration['pre_prompt'],
@@ -159,6 +165,21 @@ class AppListApi(Resource):
app = App(**model_config_template['app'])
app_model_config = AppModelConfig(**model_config_template['model_config'])
default_model = ModelFactory.get_default_model(
tenant_id=current_user.current_tenant_id,
model_type=ModelType.TEXT_GENERATION
)
if default_model:
model_dict = app_model_config.model_dict
model_dict['provider'] = default_model.provider_name
model_dict['name'] = default_model.model_name
app_model_config.model = json.dumps(model_dict)
else:
raise ProviderNotInitializeError(
f"No Text Generation Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
app.name = args['name']
app.mode = args['mode']
app.icon = args['icon']
@@ -273,6 +294,10 @@ class AppApi(Resource):
def delete(self, app_id):
"""Delete app"""
app_id = str(app_id)
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
app = _get_app(app_id, current_user.current_tenant_id)
db.session.delete(app)
@@ -292,19 +317,13 @@ class AppNameApi(Resource):
@account_initialization_required
@marshal_with(app_detail_fields)
def post(self, app_id):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
app_id = str(app_id)
app = _get_app(app_id, current_user.current_tenant_id)
parser = reqparse.RequestParser()
parser.add_argument('name', type=str, required=True, location='json')
args = parser.parse_args()
app = db.get_or_404(App, str(app_id))
if app.tenant_id != flask.session.get('tenant_id'):
raise Unauthorized()
app.name = args.get('name')
app.updated_at = datetime.utcnow()
db.session.commit()
@@ -317,20 +336,14 @@ class AppIconApi(Resource):
@account_initialization_required
@marshal_with(app_detail_fields)
def post(self, app_id):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
app_id = str(app_id)
app = _get_app(app_id, current_user.current_tenant_id)
parser = reqparse.RequestParser()
parser.add_argument('icon', type=str, location='json')
parser.add_argument('icon_background', type=str, location='json')
args = parser.parse_args()
app = db.get_or_404(App, str(app_id))
if app.tenant_id != flask.session.get('tenant_id'):
raise Unauthorized()
app.icon = args.get('icon')
app.icon_background = args.get('icon_background')
app.updated_at = datetime.utcnow()
@@ -384,29 +397,6 @@ class AppApiStatus(Resource):
return app
class AppRateLimit(Resource):
@setup_required
@login_required
@account_initialization_required
@marshal_with(app_detail_fields)
def post(self, app_id):
parser = reqparse.RequestParser()
parser.add_argument('api_rpm', type=inputs.natural, required=False, location='json')
parser.add_argument('api_rph', type=inputs.natural, required=False, location='json')
args = parser.parse_args()
app_id = str(app_id)
app = _get_app(app_id, current_user.current_tenant_id)
if args.get('api_rpm'):
app.api_rpm = args.get('api_rpm')
if args.get('api_rph'):
app.api_rph = args.get('api_rph')
app.updated_at = datetime.utcnow()
db.session.commit()
return app
class AppCopy(Resource):
@staticmethod
def create_app_copy(app):
@@ -434,7 +424,9 @@ class AppCopy(Resource):
opening_statement=app_config.opening_statement,
suggested_questions=app_config.suggested_questions,
suggested_questions_after_answer=app_config.suggested_questions_after_answer,
speech_to_text=app_config.speech_to_text,
more_like_this=app_config.more_like_this,
sensitive_word_avoidance=app_config.sensitive_word_avoidance,
model=app_config.model,
user_input_form=app_config.user_input_form,
pre_prompt=app_config.pre_prompt,
@@ -467,21 +459,11 @@ class AppCopy(Resource):
return copy_app, 201
class AppExport(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, app_id):
# todo
pass
api.add_resource(AppListApi, '/apps')
api.add_resource(AppTemplateApi, '/app-templates')
api.add_resource(AppApi, '/apps/<uuid:app_id>')
api.add_resource(AppCopy, '/apps/<uuid:app_id>/copy')
api.add_resource(AppNameApi, '/apps/<uuid:app_id>/name')
api.add_resource(AppIconApi, '/apps/<uuid:app_id>/icon')
api.add_resource(AppSiteStatus, '/apps/<uuid:app_id>/site-enable')
api.add_resource(AppApiStatus, '/apps/<uuid:app_id>/api-enable')
api.add_resource(AppRateLimit, '/apps/<uuid:app_id>/rate-limit')

View File

@@ -0,0 +1,69 @@
# -*- coding:utf-8 -*-
import logging
from flask import request
from flask_login import login_required
from werkzeug.exceptions import InternalServerError, NotFound
import services
from controllers.console import api
from controllers.console.app import _get_app
from controllers.console.app.error import AppUnavailableError, \
ProviderNotInitializeError, CompletionRequestError, ProviderQuotaExceededError, \
ProviderModelCurrentlyNotSupportError, NoAudioUploadedError, AudioTooLargeError, \
UnsupportedAudioTypeError, ProviderNotSupportSpeechToTextError
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.model_providers.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from flask_restful import Resource
from services.audio_service import AudioService
from services.errors.audio import NoAudioUploadedServiceError, AudioTooLargeServiceError, \
UnsupportedAudioTypeServiceError, ProviderNotSupportSpeechToTextServiceError
class ChatMessageAudioApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, app_id):
app_id = str(app_id)
app_model = _get_app(app_id, 'chat')
file = request.files['file']
try:
response = AudioService.transcript(
tenant_id=app_model.tenant_id,
file=file,
)
return response
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
raise AppUnavailableError()
except NoAudioUploadedServiceError:
raise NoAudioUploadedError()
except AudioTooLargeServiceError as e:
raise AudioTooLargeError(str(e))
except UnsupportedAudioTypeServiceError:
raise UnsupportedAudioTypeError()
except ProviderNotSupportSpeechToTextServiceError:
raise ProviderNotSupportSpeechToTextError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
raise CompletionRequestError(str(e))
except ValueError as e:
raise e
except Exception as e:
logging.exception("internal server error.")
raise InternalServerError()
api.add_resource(ChatMessageAudioApi, '/apps/<uuid:app_id>/audio-to-text')

View File

@@ -17,7 +17,7 @@ from controllers.console.app.error import ConversationCompletedError, AppUnavail
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.conversation_message_task import PubHandler
from core.llm.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
from core.model_providers.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from libs.helper import uuid_value
from flask_restful import Resource, reqparse
@@ -41,8 +41,11 @@ class CompletionMessageApi(Resource):
parser.add_argument('inputs', type=dict, required=True, location='json')
parser.add_argument('query', type=str, location='json')
parser.add_argument('model_config', type=dict, required=True, location='json')
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
args = parser.parse_args()
streaming = args['response_mode'] != 'blocking'
account = flask_login.current_user
try:
@@ -51,7 +54,7 @@ class CompletionMessageApi(Resource):
user=account,
args=args,
from_source='console',
streaming=True,
streaming=streaming,
is_model_config_override=True
)
@@ -63,8 +66,8 @@ class CompletionMessageApi(Resource):
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
raise AppUnavailableError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
@@ -111,8 +114,11 @@ class ChatMessageApi(Resource):
parser.add_argument('query', type=str, required=True, location='json')
parser.add_argument('model_config', type=dict, required=True, location='json')
parser.add_argument('conversation_id', type=uuid_value, location='json')
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
args = parser.parse_args()
streaming = args['response_mode'] != 'blocking'
account = flask_login.current_user
try:
@@ -121,7 +127,7 @@ class ChatMessageApi(Resource):
user=account,
args=args,
from_source='console',
streaming=True,
streaming=streaming,
is_model_config_override=True
)
@@ -133,8 +139,8 @@ class ChatMessageApi(Resource):
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
raise AppUnavailableError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
@@ -164,8 +170,8 @@ def compact_response(response: Union[dict | Generator]) -> Response:
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
yield "data: " + json.dumps(api.handle_error(AppUnavailableError()).get_json()) + "\n\n"
except ProviderTokenNotInitError:
yield "data: " + json.dumps(api.handle_error(ProviderNotInitializeError()).get_json()) + "\n\n"
except ProviderTokenNotInitError as ex:
yield "data: " + json.dumps(api.handle_error(ProviderNotInitializeError(ex.description)).get_json()) + "\n\n"
except QuotaExceededError:
yield "data: " + json.dumps(api.handle_error(ProviderQuotaExceededError()).get_json()) + "\n\n"
except ModelCurrentlyNotSupportError:

View File

@@ -95,6 +95,7 @@ class CompletionConversationApi(Resource):
'status': fields.String,
'from_source': fields.String,
'from_end_user_id': fields.String,
'from_end_user_session_id': fields.String(),
'from_account_id': fields.String,
'read_at': TimestampField,
'created_at': TimestampField,
@@ -160,7 +161,7 @@ class CompletionConversationApi(Resource):
if args['end']:
end_datetime = datetime.strptime(args['end'], '%Y-%m-%d %H:%M')
end_datetime = end_datetime.replace(second=0)
end_datetime = end_datetime.replace(second=59)
end_datetime_timezone = timezone.localize(end_datetime)
end_datetime_utc = end_datetime_timezone.astimezone(utc_timezone)
@@ -209,6 +210,26 @@ class CompletionConversationDetailApi(Resource):
conversation_id = str(conversation_id)
return _get_conversation(app_id, conversation_id, 'completion')
@setup_required
@login_required
@account_initialization_required
def delete(self, app_id, conversation_id):
app_id = str(app_id)
conversation_id = str(conversation_id)
app = _get_app(app_id, 'chat')
conversation = db.session.query(Conversation) \
.filter(Conversation.id == conversation_id, Conversation.app_id == app.id).first()
if not conversation:
raise NotFound("Conversation Not Exists.")
conversation.is_deleted = True
db.session.commit()
return {'result': 'success'}, 204
class ChatConversationApi(Resource):
@@ -226,6 +247,7 @@ class ChatConversationApi(Resource):
'status': fields.String,
'from_source': fields.String,
'from_end_user_id': fields.String,
'from_end_user_session_id': fields.String,
'from_account_id': fields.String,
'summary': fields.String(attribute='summary_or_query'),
'read_at': TimestampField,
@@ -296,7 +318,7 @@ class ChatConversationApi(Resource):
if args['end']:
end_datetime = datetime.strptime(args['end'], '%Y-%m-%d %H:%M')
end_datetime = end_datetime.replace(second=0)
end_datetime = end_datetime.replace(second=59)
end_datetime_timezone = timezone.localize(end_datetime)
end_datetime_utc = end_datetime_timezone.astimezone(utc_timezone)
@@ -356,6 +378,27 @@ class ChatConversationDetailApi(Resource):
conversation_id = str(conversation_id)
return _get_conversation(app_id, conversation_id, 'chat')
@setup_required
@login_required
@account_initialization_required
def delete(self, app_id, conversation_id):
app_id = str(app_id)
conversation_id = str(conversation_id)
# get app info
app = _get_app(app_id, 'chat')
conversation = db.session.query(Conversation) \
.filter(Conversation.id == conversation_id, Conversation.app_id == app.id).first()
if not conversation:
raise NotFound("Conversation Not Exists.")
conversation.is_deleted = True
db.session.commit()
return {'result': 'success'}, 204

View File

@@ -16,7 +16,7 @@ class ProviderNotInitializeError(BaseHTTPException):
class ProviderQuotaExceededError(BaseHTTPException):
error_code = 'provider_quota_exceeded'
description = "Your quota for Dify Hosted OpenAI has been exhausted. " \
description = "Your quota for Dify Hosted Model Provider has been exhausted. " \
"Please go to Settings -> Model Provider to complete your own provider credentials."
code = 400
@@ -49,3 +49,27 @@ class AppMoreLikeThisDisabledError(BaseHTTPException):
error_code = 'app_more_like_this_disabled'
description = "The 'More like this' feature is disabled. Please refresh your page."
code = 403
class NoAudioUploadedError(BaseHTTPException):
error_code = 'no_audio_uploaded'
description = "Please upload your audio."
code = 400
class AudioTooLargeError(BaseHTTPException):
error_code = 'audio_too_large'
description = "Audio size exceeded. {message}"
code = 413
class UnsupportedAudioTypeError(BaseHTTPException):
error_code = 'unsupported_audio_type'
description = "Audio type not allowed."
code = 415
class ProviderNotSupportSpeechToTextError(BaseHTTPException):
error_code = 'provider_not_support_speech_to_text'
description = "Provider not support speech to text."
code = 400

View File

@@ -7,7 +7,7 @@ from controllers.console.app.error import ProviderNotInitializeError, ProviderQu
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.generator.llm_generator import LLMGenerator
from core.llm.error import ProviderTokenNotInitError, QuotaExceededError, LLMBadRequestError, LLMAPIConnectionError, \
from core.model_providers.error import ProviderTokenNotInitError, QuotaExceededError, LLMBadRequestError, LLMAPIConnectionError, \
LLMAPIUnavailableError, LLMRateLimitError, LLMAuthorizationError, ModelCurrentlyNotSupportError
@@ -27,8 +27,8 @@ class IntroductionGenerateApi(Resource):
account.current_tenant_id,
args['prompt_template']
)
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
@@ -58,8 +58,8 @@ class RuleGenerateApi(Resource):
args['audiences'],
args['hoping_to_solve']
)
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:

View File

@@ -14,7 +14,7 @@ from controllers.console.app.error import CompletionRequestError, ProviderNotIni
AppMoreLikeThisDisabledError, ProviderQuotaExceededError, ProviderModelCurrentlyNotSupportError
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.llm.error import LLMRateLimitError, LLMBadRequestError, LLMAuthorizationError, LLMAPIConnectionError, \
from core.model_providers.error import LLMRateLimitError, LLMBadRequestError, LLMAuthorizationError, LLMAPIConnectionError, \
ProviderTokenNotInitError, LLMAPIUnavailableError, QuotaExceededError, ModelCurrentlyNotSupportError
from libs.helper import uuid_value, TimestampField
from libs.infinite_scroll_pagination import InfiniteScrollPagination
@@ -269,8 +269,8 @@ class MessageMoreLikeThisApi(Resource):
raise NotFound("Message Not Exists.")
except MoreLikeThisDisabledError:
raise AppMoreLikeThisDisabledError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
@@ -297,8 +297,8 @@ def compact_response(response: Union[dict | Generator]) -> Response:
yield "data: " + json.dumps(api.handle_error(NotFound("Message Not Exists.")).get_json()) + "\n\n"
except MoreLikeThisDisabledError:
yield "data: " + json.dumps(api.handle_error(AppMoreLikeThisDisabledError()).get_json()) + "\n\n"
except ProviderTokenNotInitError:
yield "data: " + json.dumps(api.handle_error(ProviderNotInitializeError()).get_json()) + "\n\n"
except ProviderTokenNotInitError as ex:
yield "data: " + json.dumps(api.handle_error(ProviderNotInitializeError(ex.description)).get_json()) + "\n\n"
except QuotaExceededError:
yield "data: " + json.dumps(api.handle_error(ProviderQuotaExceededError()).get_json()) + "\n\n"
except ModelCurrentlyNotSupportError:
@@ -339,8 +339,8 @@ class MessageSuggestedQuestionApi(Resource):
raise NotFound("Message not found")
except ConversationNotExistsError:
raise NotFound("Conversation not found")
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:

View File

@@ -28,9 +28,9 @@ class ModelConfigResource(Resource):
# validate config
model_configuration = AppModelConfigService.validate_configuration(
tenant_id=current_user.current_tenant_id,
account=current_user,
config=request.json,
mode=app_model.mode
config=request.json
)
new_app_model_config = AppModelConfig(
@@ -41,7 +41,9 @@ class ModelConfigResource(Resource):
opening_statement=model_configuration['opening_statement'],
suggested_questions=json.dumps(model_configuration['suggested_questions']),
suggested_questions_after_answer=json.dumps(model_configuration['suggested_questions_after_answer']),
speech_to_text=json.dumps(model_configuration['speech_to_text']),
more_like_this=json.dumps(model_configuration['more_like_this']),
sensitive_word_avoidance=json.dumps(model_configuration['sensitive_word_avoidance']),
model=json.dumps(model_configuration['model']),
user_input_form=json.dumps(model_configuration['user_input_form']),
pre_prompt=model_configuration['pre_prompt'],

View File

@@ -80,6 +80,13 @@ class AppSite(Resource):
if value is not None:
setattr(site, attr_name, value)
if attr_name == 'title':
app_model.name = value
elif attr_name == 'icon':
app_model.icon = value
elif attr_name == 'icon_background':
app_model.icon_background = value
db.session.commit()
return site

View File

@@ -398,9 +398,74 @@ class AverageResponseTimeStatistic(Resource):
})
class TokensPerSecondStatistic(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, app_id):
account = current_user
app_id = str(app_id)
app_model = _get_app(app_id)
parser = reqparse.RequestParser()
parser.add_argument('start', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
parser.add_argument('end', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
args = parser.parse_args()
sql_query = '''SELECT date(DATE_TRUNC('day', created_at AT TIME ZONE 'UTC' AT TIME ZONE :tz )) AS date,
CASE
WHEN SUM(provider_response_latency) = 0 THEN 0
ELSE (SUM(answer_tokens) / SUM(provider_response_latency))
END as tokens_per_second
FROM messages
WHERE app_id = :app_id'''
arg_dict = {'tz': account.timezone, 'app_id': app_model.id}
timezone = pytz.timezone(account.timezone)
utc_timezone = pytz.utc
if args['start']:
start_datetime = datetime.strptime(args['start'], '%Y-%m-%d %H:%M')
start_datetime = start_datetime.replace(second=0)
start_datetime_timezone = timezone.localize(start_datetime)
start_datetime_utc = start_datetime_timezone.astimezone(utc_timezone)
sql_query += ' and created_at >= :start'
arg_dict['start'] = start_datetime_utc
if args['end']:
end_datetime = datetime.strptime(args['end'], '%Y-%m-%d %H:%M')
end_datetime = end_datetime.replace(second=0)
end_datetime_timezone = timezone.localize(end_datetime)
end_datetime_utc = end_datetime_timezone.astimezone(utc_timezone)
sql_query += ' and created_at < :end'
arg_dict['end'] = end_datetime_utc
sql_query += ' GROUP BY date order by date'
with db.engine.begin() as conn:
rs = conn.execute(db.text(sql_query), arg_dict)
response_data = []
for i in rs:
response_data.append({
'date': str(i.date),
'tps': round(i.tokens_per_second, 4)
})
return jsonify({
'data': response_data
})
api.add_resource(DailyConversationStatistic, '/apps/<uuid:app_id>/statistics/daily-conversations')
api.add_resource(DailyTerminalsStatistic, '/apps/<uuid:app_id>/statistics/daily-end-users')
api.add_resource(DailyTokenCostStatistic, '/apps/<uuid:app_id>/statistics/token-costs')
api.add_resource(AverageSessionInteractionStatistic, '/apps/<uuid:app_id>/statistics/average-session-interactions')
api.add_resource(UserSatisfactionRateStatistic, '/apps/<uuid:app_id>/statistics/user-satisfaction-rate')
api.add_resource(AverageResponseTimeStatistic, '/apps/<uuid:app_id>/statistics/average-response-time')
api.add_resource(TokensPerSecondStatistic, '/apps/<uuid:app_id>/statistics/tokens-per-second')

View File

@@ -0,0 +1,75 @@
import base64
import secrets
from datetime import datetime
from flask_restful import Resource, reqparse
from controllers.console import api
from controllers.console.error import AlreadyActivateError
from extensions.ext_database import db
from libs.helper import email, str_len, supported_language, timezone
from libs.password import valid_password, hash_password
from models.account import AccountStatus, Tenant
from services.account_service import RegisterService
class ActivateCheckApi(Resource):
def get(self):
parser = reqparse.RequestParser()
parser.add_argument('workspace_id', type=str, required=True, nullable=False, location='args')
parser.add_argument('email', type=email, required=True, nullable=False, location='args')
parser.add_argument('token', type=str, required=True, nullable=False, location='args')
args = parser.parse_args()
account = RegisterService.get_account_if_token_valid(args['workspace_id'], args['email'], args['token'])
tenant = db.session.query(Tenant).filter(
Tenant.id == args['workspace_id'],
Tenant.status == 'normal'
).first()
return {'is_valid': account is not None, 'workspace_name': tenant.name}
class ActivateApi(Resource):
def post(self):
parser = reqparse.RequestParser()
parser.add_argument('workspace_id', type=str, required=True, nullable=False, location='json')
parser.add_argument('email', type=email, required=True, nullable=False, location='json')
parser.add_argument('token', type=str, required=True, nullable=False, location='json')
parser.add_argument('name', type=str_len(30), required=True, nullable=False, location='json')
parser.add_argument('password', type=valid_password, required=True, nullable=False, location='json')
parser.add_argument('interface_language', type=supported_language, required=True, nullable=False,
location='json')
parser.add_argument('timezone', type=timezone, required=True, nullable=False, location='json')
args = parser.parse_args()
account = RegisterService.get_account_if_token_valid(args['workspace_id'], args['email'], args['token'])
if account is None:
raise AlreadyActivateError()
RegisterService.revoke_token(args['workspace_id'], args['email'], args['token'])
account.name = args['name']
# generate password salt
salt = secrets.token_bytes(16)
base64_salt = base64.b64encode(salt).decode()
# encrypt password with salt
password_hashed = hash_password(args['password'], salt)
base64_password_hashed = base64.b64encode(password_hashed).decode()
account.password = base64_password_hashed
account.password_salt = base64_salt
account.interface_language = args['interface_language']
account.timezone = args['timezone']
account.interface_theme = 'light'
account.status = AccountStatus.ACTIVE.value
account.initialized_at = datetime.utcnow()
db.session.commit()
return {'result': 'success'}
api.add_resource(ActivateCheckApi, '/activate/check')
api.add_resource(ActivateApi, '/activate')

View File

@@ -20,7 +20,7 @@ def get_oauth_providers():
client_secret=current_app.config.get(
'NOTION_CLIENT_SECRET'),
redirect_uri=current_app.config.get(
'CONSOLE_URL') + '/console/api/oauth/data-source/callback/notion')
'CONSOLE_API_URL') + '/console/api/oauth/data-source/callback/notion')
OAUTH_PROVIDERS = {
'notion': notion_oauth
@@ -42,7 +42,7 @@ class OAuthDataSource(Resource):
if current_app.config.get('NOTION_INTEGRATION_TYPE') == 'internal':
internal_secret = current_app.config.get('NOTION_INTERNAL_SECRET')
oauth_provider.save_internal_access_token(internal_secret)
return redirect(f'{current_app.config.get("CONSOLE_URL")}?oauth_data_source=success')
return redirect(f'{current_app.config.get("CONSOLE_WEB_URL")}?oauth_data_source=success')
else:
auth_url = oauth_provider.get_authorization_url()
return redirect(auth_url)
@@ -66,12 +66,12 @@ class OAuthDataSourceCallback(Resource):
f"An error occurred during the OAuthCallback process with {provider}: {e.response.text}")
return {'error': 'OAuth data source process failed'}, 400
return redirect(f'{current_app.config.get("CONSOLE_URL")}?oauth_data_source=success')
return redirect(f'{current_app.config.get("CONSOLE_WEB_URL")}?oauth_data_source=success')
elif 'error' in request.args:
error = request.args.get('error')
return redirect(f'{current_app.config.get("CONSOLE_URL")}?oauth_data_source={error}')
return redirect(f'{current_app.config.get("CONSOLE_WEB_URL")}?oauth_data_source={error}')
else:
return redirect(f'{current_app.config.get("CONSOLE_URL")}?oauth_data_source=access_denied')
return redirect(f'{current_app.config.get("CONSOLE_WEB_URL")}?oauth_data_source=access_denied')
class OAuthDataSourceSync(Resource):

View File

@@ -35,7 +35,7 @@ class LoginApi(Resource):
try:
TenantService.switch_tenant(account)
except Exception:
raise AccountNotLinkTenantError("Account not link tenant")
pass
flask_login.login_user(account, remember=args['remember_me'])
AccountService.update_last_login(account, request)

View File

@@ -20,13 +20,13 @@ def get_oauth_providers():
client_secret=current_app.config.get(
'GITHUB_CLIENT_SECRET'),
redirect_uri=current_app.config.get(
'CONSOLE_URL') + '/console/api/oauth/authorize/github')
'CONSOLE_API_URL') + '/console/api/oauth/authorize/github')
google_oauth = GoogleOAuth(client_id=current_app.config.get('GOOGLE_CLIENT_ID'),
client_secret=current_app.config.get(
'GOOGLE_CLIENT_SECRET'),
redirect_uri=current_app.config.get(
'CONSOLE_URL') + '/console/api/oauth/authorize/google')
'CONSOLE_API_URL') + '/console/api/oauth/authorize/google')
OAUTH_PROVIDERS = {
'github': github_oauth,
@@ -80,7 +80,7 @@ class OAuthCallback(Resource):
flask_login.login_user(account, remember=True)
AccountService.update_last_login(account, request)
return redirect(f'{current_app.config.get("CONSOLE_URL")}?oauth_login=success')
return redirect(f'{current_app.config.get("CONSOLE_WEB_URL")}?oauth_login=success')
def _get_account_by_openid_or_email(provider: str, user_info: OAuthUserInfo) -> Optional[Account]:

View File

@@ -10,11 +10,10 @@ from werkzeug.exceptions import NotFound
from controllers.console import api
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.data_source.notion import NotionPageReader
from core.data_loader.loader.notion import NotionLoader
from core.indexing_runner import IndexingRunner
from extensions.ext_database import db
from libs.helper import TimestampField
from libs.oauth_data_source import NotionOAuth
from models.dataset import Document
from models.source import DataSourceBinding
from services.dataset_service import DatasetService, DocumentService
@@ -232,15 +231,17 @@ class DataSourceNotionApi(Resource):
).first()
if not data_source_binding:
raise NotFound('Data source binding not found.')
reader = NotionPageReader(integration_token=data_source_binding.access_token)
if page_type == 'page':
page_content = reader.read_page(page_id)
elif page_type == 'database':
page_content = reader.query_database_data(page_id)
else:
page_content = ""
loader = NotionLoader(
notion_access_token=data_source_binding.access_token,
notion_workspace_id=workspace_id,
notion_obj_id=page_id,
notion_page_type=page_type
)
text_docs = loader.load()
return {
'content': page_content
'content': "\n".join([doc.page_content for doc in text_docs])
}, 200
@setup_required
@@ -254,7 +255,7 @@ class DataSourceNotionApi(Resource):
# validate args
DocumentService.estimate_args_validate(args)
indexing_runner = IndexingRunner()
response = indexing_runner.notion_indexing_estimate(args['notion_info_list'], args['process_rule'])
response = indexing_runner.notion_indexing_estimate(current_user.current_tenant_id, args['notion_info_list'], args['process_rule'])
return response, 200

View File

@@ -3,13 +3,15 @@ from flask import request
from flask_login import login_required, current_user
from flask_restful import Resource, reqparse, fields, marshal, marshal_with
from werkzeug.exceptions import NotFound, Forbidden
import services
from controllers.console import api
from controllers.console.app.error import ProviderNotInitializeError
from controllers.console.datasets.error import DatasetNameDuplicateError
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.indexing_runner import IndexingRunner
from core.model_providers.error import LLMBadRequestError
from core.model_providers.model_factory import ModelFactory
from libs.helper import TimestampField
from extensions.ext_database import db
from models.dataset import DocumentSegment, Document
@@ -98,6 +100,15 @@ class DatasetListApi(Resource):
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
try:
dataset = DatasetService.create_empty_dataset(
tenant_id=current_user.current_tenant_id,
@@ -221,6 +232,7 @@ class DatasetIndexingEstimateApi(Resource):
parser = reqparse.RequestParser()
parser.add_argument('info_list', type=dict, required=True, nullable=True, location='json')
parser.add_argument('process_rule', type=dict, required=True, nullable=True, location='json')
parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
args = parser.parse_args()
# validate args
DocumentService.estimate_args_validate(args)
@@ -235,12 +247,26 @@ class DatasetIndexingEstimateApi(Resource):
raise NotFound("File not found.")
indexing_runner = IndexingRunner()
response = indexing_runner.file_indexing_estimate(file_details, args['process_rule'])
try:
response = indexing_runner.file_indexing_estimate(current_user.current_tenant_id, file_details,
args['process_rule'], args['doc_form'])
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
elif args['info_list']['data_source_type'] == 'notion_import':
indexing_runner = IndexingRunner()
response = indexing_runner.notion_indexing_estimate(args['info_list']['notion_info_list'],
args['process_rule'])
try:
response = indexing_runner.notion_indexing_estimate(current_user.current_tenant_id,
args['info_list']['notion_info_list'],
args['process_rule'], args['doc_form'])
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
else:
raise ValueError('Data source type not support')
return response, 200

View File

@@ -18,7 +18,9 @@ from controllers.console.datasets.error import DocumentAlreadyFinishedError, Inv
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.indexing_runner import IndexingRunner
from core.llm.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from core.model_providers.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError, \
LLMBadRequestError
from core.model_providers.model_factory import ModelFactory
from extensions.ext_redis import redis_client
from libs.helper import TimestampField
from extensions.ext_database import db
@@ -60,6 +62,7 @@ document_fields = {
'display_status': fields.String,
'word_count': fields.Integer,
'hit_count': fields.Integer,
'doc_form': fields.String,
}
document_with_segments_fields = {
@@ -86,6 +89,7 @@ document_with_segments_fields = {
'total_segments': fields.Integer
}
class DocumentResource(Resource):
def get_document(self, dataset_id: str, document_id: str) -> Document:
dataset = DatasetService.get_dataset(dataset_id)
@@ -269,6 +273,7 @@ class DatasetDocumentListApi(Resource):
parser.add_argument('process_rule', type=dict, required=False, location='json')
parser.add_argument('duplicate', type=bool, nullable=False, location='json')
parser.add_argument('original_document_id', type=str, required=False, location='json')
parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
args = parser.parse_args()
if not dataset.indexing_technique and not args['indexing_technique']:
@@ -277,10 +282,19 @@ class DatasetDocumentListApi(Resource):
# validate args
DocumentService.document_create_args_validate(args)
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
try:
documents, batch = DocumentService.save_document_with_dataset_id(dataset, args, current_user)
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
@@ -313,8 +327,18 @@ class DatasetInitApi(Resource):
nullable=False, location='json')
parser.add_argument('data_source', type=dict, required=True, nullable=True, location='json')
parser.add_argument('process_rule', type=dict, required=True, nullable=True, location='json')
parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
args = parser.parse_args()
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
# validate args
DocumentService.document_create_args_validate(args)
@@ -324,8 +348,8 @@ class DatasetInitApi(Resource):
document_data=args,
account=current_user
)
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
@@ -380,7 +404,13 @@ class DocumentIndexingEstimateApi(DocumentResource):
indexing_runner = IndexingRunner()
response = indexing_runner.file_indexing_estimate([file], data_process_rule_dict)
try:
response = indexing_runner.file_indexing_estimate(current_user.current_tenant_id, [file],
data_process_rule_dict)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
return response
@@ -441,12 +471,24 @@ class DocumentBatchIndexingEstimateApi(DocumentResource):
raise NotFound("File not found.")
indexing_runner = IndexingRunner()
response = indexing_runner.file_indexing_estimate(file_details, data_process_rule_dict)
try:
response = indexing_runner.file_indexing_estimate(current_user.current_tenant_id, file_details,
data_process_rule_dict)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
elif dataset.data_source_type:
indexing_runner = IndexingRunner()
response = indexing_runner.notion_indexing_estimate(info_list,
data_process_rule_dict)
try:
response = indexing_runner.notion_indexing_estimate(current_user.current_tenant_id,
info_list,
data_process_rule_dict)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
else:
raise ValueError('Data source type not support')
return response
@@ -488,6 +530,8 @@ class DocumentBatchIndexingStatusApi(DocumentResource):
DocumentSegment.status != 're_segment').count()
document.completed_segments = completed_segments
document.total_segments = total_segments
if document.is_paused:
document.indexing_status = 'paused'
documents_status.append(marshal(document, self.document_status_fields))
data = {
'data': documents_status
@@ -583,7 +627,8 @@ class DocumentDetailApi(DocumentResource):
'segment_count': document.segment_count,
'average_segment_length': document.average_segment_length,
'hit_count': document.hit_count,
'display_status': document.display_status
'display_status': document.display_status,
'doc_form': document.doc_form
}
else:
process_rules = DatasetService.get_process_rules(dataset_id)
@@ -614,7 +659,8 @@ class DocumentDetailApi(DocumentResource):
'segment_count': document.segment_count,
'average_segment_length': document.average_segment_length,
'hit_count': document.hit_count,
'display_status': document.display_status
'display_status': document.display_status,
'doc_form': document.doc_form
}
return response, 200

View File

@@ -15,8 +15,8 @@ from extensions.ext_redis import redis_client
from models.dataset import DocumentSegment
from libs.helper import TimestampField
from services.dataset_service import DatasetService, DocumentService
from tasks.add_segment_to_index_task import add_segment_to_index_task
from services.dataset_service import DatasetService, DocumentService, SegmentService
from tasks.enable_segment_to_index_task import enable_segment_to_index_task
from tasks.remove_segment_from_index_task import remove_segment_from_index_task
segment_fields = {
@@ -24,6 +24,7 @@ segment_fields = {
'position': fields.Integer,
'document_id': fields.String,
'content': fields.String,
'answer': fields.String,
'word_count': fields.Integer,
'tokens': fields.Integer,
'keywords': fields.List(fields.String),
@@ -125,6 +126,7 @@ class DatasetDocumentSegmentListApi(Resource):
return {
'data': marshal(segments, segment_fields),
'doc_form': document.doc_form,
'has_more': has_more,
'limit': limit,
'total': total
@@ -180,7 +182,7 @@ class DatasetDocumentSegmentApi(Resource):
# Set cache to prevent indexing the same segment multiple times
redis_client.setex(indexing_cache_key, 600, 1)
add_segment_to_index_task.delay(segment.id)
enable_segment_to_index_task.delay(segment.id)
return {'result': 'success'}, 200
elif action == "disable":
@@ -202,7 +204,91 @@ class DatasetDocumentSegmentApi(Resource):
raise InvalidActionError()
class DatasetDocumentSegmentAddApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, dataset_id, document_id):
# check dataset
dataset_id = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise NotFound('Dataset not found.')
# check document
document_id = str(document_id)
document = DocumentService.get_document(dataset_id, document_id)
if not document:
raise NotFound('Document not found.')
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
# validate args
parser = reqparse.RequestParser()
parser.add_argument('content', type=str, required=True, nullable=False, location='json')
parser.add_argument('answer', type=str, required=False, nullable=True, location='json')
parser.add_argument('keywords', type=list, required=False, nullable=True, location='json')
args = parser.parse_args()
SegmentService.segment_create_args_validate(args, document)
segment = SegmentService.create_segment(args, document)
return {
'data': marshal(segment, segment_fields),
'doc_form': document.doc_form
}, 200
class DatasetDocumentSegmentUpdateApi(Resource):
@setup_required
@login_required
@account_initialization_required
def patch(self, dataset_id, document_id, segment_id):
# check dataset
dataset_id = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise NotFound('Dataset not found.')
# check document
document_id = str(document_id)
document = DocumentService.get_document(dataset_id, document_id)
if not document:
raise NotFound('Document not found.')
# check segment
segment_id = str(segment_id)
segment = DocumentSegment.query.filter(
DocumentSegment.id == str(segment_id),
DocumentSegment.tenant_id == current_user.current_tenant_id
).first()
if not segment:
raise NotFound('Segment not found.')
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
# validate args
parser = reqparse.RequestParser()
parser.add_argument('content', type=str, required=True, nullable=False, location='json')
parser.add_argument('answer', type=str, required=False, nullable=True, location='json')
parser.add_argument('keywords', type=list, required=False, nullable=True, location='json')
args = parser.parse_args()
SegmentService.segment_create_args_validate(args, document)
segment = SegmentService.update_segment(args, segment, document)
return {
'data': marshal(segment, segment_fields),
'doc_form': document.doc_form
}, 200
api.add_resource(DatasetDocumentSegmentListApi,
'/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments')
api.add_resource(DatasetDocumentSegmentApi,
'/datasets/<uuid:dataset_id>/segments/<uuid:segment_id>/<string:action>')
api.add_resource(DatasetDocumentSegmentAddApi,
'/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segment')
api.add_resource(DatasetDocumentSegmentUpdateApi,
'/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/<uuid:segment_id>')

View File

@@ -17,9 +17,7 @@ from controllers.console.datasets.error import NoFileUploadedError, TooManyFiles
UnsupportedFileTypeError
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.index.readers.html_parser import HTMLParser
from core.index.readers.pdf_parser import PDFParser
from core.index.readers.xlsx_parser import XLSXParser
from core.data_loader.file_extractor import FileExtractor
from extensions.ext_storage import storage
from libs.helper import TimestampField
from extensions.ext_database import db
@@ -123,31 +121,7 @@ class FilePreviewApi(Resource):
if extension not in ALLOWED_EXTENSIONS:
raise UnsupportedFileTypeError()
with tempfile.TemporaryDirectory() as temp_dir:
suffix = Path(upload_file.key).suffix
filepath = f"{temp_dir}/{next(tempfile._get_candidate_names())}{suffix}"
storage.download(upload_file.key, filepath)
if extension == 'pdf':
parser = PDFParser({'upload_file': upload_file})
text = parser.parse_file(Path(filepath))
elif extension in ['html', 'htm']:
# Use BeautifulSoup to extract text
parser = HTMLParser()
text = parser.parse_file(Path(filepath))
elif extension == 'xlsx':
parser = XLSXParser()
text = parser.parse_file(filepath)
else:
# ['txt', 'markdown', 'md']
with open(filepath, "rb") as fp:
data = fp.read()
encoding = chardet.detect(data)['encoding']
if encoding:
text = data.decode(encoding=encoding).strip() if data else ''
else:
text = data.decode(encoding='utf-8').strip() if data else ''
text = FileExtractor.load(upload_file, return_text=True)
text = text[0:PREVIEW_WORDS_LIMIT] if text else ''
return {'content': text}

View File

@@ -11,7 +11,7 @@ from controllers.console.app.error import ProviderNotInitializeError, ProviderQu
from controllers.console.datasets.error import HighQualityDatasetOnlyError, DatasetNotInitializedError
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.llm.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from core.model_providers.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from libs.helper import TimestampField
from services.dataset_service import DatasetService
from services.hit_testing_service import HitTestingService
@@ -28,6 +28,7 @@ segment_fields = {
'position': fields.Integer,
'document_id': fields.String,
'content': fields.String,
'answer': fields.String,
'word_count': fields.Integer,
'tokens': fields.Integer,
'keywords': fields.List(fields.String),
@@ -95,12 +96,14 @@ class HitTestingApi(Resource):
return {"query": response['query'], 'records': marshal(response['records'], hit_testing_record_fields)}
except services.errors.index.IndexNotInitializedError:
raise DatasetNotInitializedError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except ValueError as e:
raise ValueError(str(e))
except Exception as e:
logging.exception("Hit testing failed.")
raise InternalServerError(str(e))

View File

@@ -18,3 +18,9 @@ class AccountNotLinkTenantError(BaseHTTPException):
error_code = 'account_not_link_tenant'
description = "Account not link tenant."
code = 403
class AlreadyActivateError(BaseHTTPException):
error_code = 'already_activate'
description = "Auth Token is invalid or account already activated, please check again."
code = 403

View File

@@ -0,0 +1,66 @@
# -*- coding:utf-8 -*-
import logging
from flask import request
from werkzeug.exceptions import InternalServerError
import services
from controllers.console import api
from controllers.console.app.error import AppUnavailableError, ProviderNotInitializeError, \
ProviderQuotaExceededError, ProviderModelCurrentlyNotSupportError, CompletionRequestError, \
NoAudioUploadedError, AudioTooLargeError, \
UnsupportedAudioTypeError, ProviderNotSupportSpeechToTextError
from controllers.console.explore.wraps import InstalledAppResource
from core.model_providers.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from services.audio_service import AudioService
from services.errors.audio import NoAudioUploadedServiceError, AudioTooLargeServiceError, \
UnsupportedAudioTypeServiceError, ProviderNotSupportSpeechToTextServiceError
from models.model import AppModelConfig
class ChatAudioApi(InstalledAppResource):
def post(self, installed_app):
app_model = installed_app.app
app_model_config: AppModelConfig = app_model.app_model_config
if not app_model_config.speech_to_text_dict['enabled']:
raise AppUnavailableError()
file = request.files['file']
try:
response = AudioService.transcript(
tenant_id=app_model.tenant_id,
file=file,
)
return response
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
raise AppUnavailableError()
except NoAudioUploadedServiceError:
raise NoAudioUploadedError()
except AudioTooLargeServiceError as e:
raise AudioTooLargeError(str(e))
except UnsupportedAudioTypeServiceError:
raise UnsupportedAudioTypeError()
except ProviderNotSupportSpeechToTextServiceError:
raise ProviderNotSupportSpeechToTextError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
raise CompletionRequestError(str(e))
except ValueError as e:
raise e
except Exception as e:
logging.exception("internal server error.")
raise InternalServerError()
api.add_resource(ChatAudioApi, '/installed-apps/<uuid:installed_app_id>/audio-to-text', endpoint='installed_app_audio')

View File

@@ -15,7 +15,7 @@ from controllers.console.app.error import ConversationCompletedError, AppUnavail
from controllers.console.explore.error import NotCompletionAppError, NotChatAppError
from controllers.console.explore.wraps import InstalledAppResource
from core.conversation_message_task import PubHandler
from core.llm.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
from core.model_providers.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from libs.helper import uuid_value
from services.completion_service import CompletionService
@@ -54,8 +54,8 @@ class CompletionApi(InstalledAppResource):
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
raise AppUnavailableError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
@@ -113,8 +113,8 @@ class ChatApi(InstalledAppResource):
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
raise AppUnavailableError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
@@ -155,8 +155,8 @@ def compact_response(response: Union[dict | Generator]) -> Response:
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
yield "data: " + json.dumps(api.handle_error(AppUnavailableError()).get_json()) + "\n\n"
except ProviderTokenNotInitError:
yield "data: " + json.dumps(api.handle_error(ProviderNotInitializeError()).get_json()) + "\n\n"
except ProviderTokenNotInitError as ex:
yield "data: " + json.dumps(api.handle_error(ProviderNotInitializeError(ex.description)).get_json()) + "\n\n"
except QuotaExceededError:
yield "data: " + json.dumps(api.handle_error(ProviderQuotaExceededError()).get_json()) + "\n\n"
except ModelCurrentlyNotSupportError:

View File

@@ -65,7 +65,10 @@ class ConversationApi(InstalledAppResource):
raise NotChatAppError()
conversation_id = str(c_id)
ConversationService.delete(app_model, conversation_id, current_user)
try:
ConversationService.delete(app_model, conversation_id, current_user)
except ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
WebConversationService.unpin(app_model, conversation_id, current_user)
return {"result": "success"}, 204

View File

@@ -15,7 +15,7 @@ from controllers.console.app.error import AppMoreLikeThisDisabledError, Provider
ProviderQuotaExceededError, ProviderModelCurrentlyNotSupportError, CompletionRequestError
from controllers.console.explore.error import NotCompletionAppError, AppSuggestedQuestionsAfterAnswerDisabledError
from controllers.console.explore.wraps import InstalledAppResource
from core.llm.error import LLMRateLimitError, LLMBadRequestError, LLMAuthorizationError, LLMAPIConnectionError, \
from core.model_providers.error import LLMRateLimitError, LLMBadRequestError, LLMAuthorizationError, LLMAPIConnectionError, \
ProviderTokenNotInitError, LLMAPIUnavailableError, QuotaExceededError, ModelCurrentlyNotSupportError
from libs.helper import uuid_value, TimestampField
from services.completion_service import CompletionService
@@ -107,8 +107,8 @@ class MessageMoreLikeThisApi(InstalledAppResource):
raise NotFound("Message Not Exists.")
except MoreLikeThisDisabledError:
raise AppMoreLikeThisDisabledError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
@@ -135,8 +135,8 @@ def compact_response(response: Union[dict | Generator]) -> Response:
yield "data: " + json.dumps(api.handle_error(NotFound("Message Not Exists.")).get_json()) + "\n\n"
except MoreLikeThisDisabledError:
yield "data: " + json.dumps(api.handle_error(AppMoreLikeThisDisabledError()).get_json()) + "\n\n"
except ProviderTokenNotInitError:
yield "data: " + json.dumps(api.handle_error(ProviderNotInitializeError()).get_json()) + "\n\n"
except ProviderTokenNotInitError as ex:
yield "data: " + json.dumps(api.handle_error(ProviderNotInitializeError(ex.description)).get_json()) + "\n\n"
except QuotaExceededError:
yield "data: " + json.dumps(api.handle_error(ProviderQuotaExceededError()).get_json()) + "\n\n"
except ModelCurrentlyNotSupportError:
@@ -174,8 +174,8 @@ class MessageSuggestedQuestionApi(InstalledAppResource):
raise NotFound("Conversation not found")
except SuggestedQuestionsAfterAnswerDisabledError:
raise AppSuggestedQuestionsAfterAnswerDisabledError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:

View File

@@ -4,6 +4,8 @@ from flask_restful import marshal_with, fields
from controllers.console import api
from controllers.console.explore.wraps import InstalledAppResource
from models.model import InstalledApp
class AppParameterApi(InstalledAppResource):
"""Resource for app variables."""
@@ -21,12 +23,13 @@ class AppParameterApi(InstalledAppResource):
'opening_statement': fields.String,
'suggested_questions': fields.Raw,
'suggested_questions_after_answer': fields.Raw,
'speech_to_text': fields.Raw,
'more_like_this': fields.Raw,
'user_input_form': fields.Raw,
}
@marshal_with(parameters_fields)
def get(self, installed_app):
def get(self, installed_app: InstalledApp):
"""Retrieve app parameters."""
app_model = installed_app.app
app_model_config = app_model.app_model_config
@@ -35,6 +38,7 @@ class AppParameterApi(InstalledAppResource):
'opening_statement': app_model_config.opening_statement,
'suggested_questions': app_model_config.suggested_questions_list,
'suggested_questions_after_answer': app_model_config.suggested_questions_after_answer_dict,
'speech_to_text': app_model_config.speech_to_text_dict,
'more_like_this': app_model_config.more_like_this_dict,
'user_input_form': app_model_config.user_input_form_list
}

View File

@@ -19,15 +19,16 @@ from .wraps import only_edition_self_hosted
class SetupApi(Resource):
@only_edition_self_hosted
def get(self):
setup_status = get_setup_status()
if setup_status:
return {
'step': 'finished',
'setup_at': setup_status.setup_at.isoformat()
}
return {'step': 'not_start'}
if current_app.config['EDITION'] == 'SELF_HOSTED':
setup_status = get_setup_status()
if setup_status:
return {
'step': 'finished',
'setup_at': setup_status.setup_at.isoformat()
}
return {'step': 'not_start'}
return {'step': 'finished'}
@only_edition_self_hosted
def post(self):

View File

@@ -0,0 +1,66 @@
# -*- coding:utf-8 -*-
import logging
from flask import request
from werkzeug.exceptions import InternalServerError
import services
from controllers.console import api
from controllers.console.app.error import AppUnavailableError, ProviderNotInitializeError, \
ProviderQuotaExceededError, ProviderModelCurrentlyNotSupportError, CompletionRequestError, \
NoAudioUploadedError, AudioTooLargeError, \
UnsupportedAudioTypeError, ProviderNotSupportSpeechToTextError
from controllers.console.universal_chat.wraps import UniversalChatResource
from core.model_providers.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from services.audio_service import AudioService
from services.errors.audio import NoAudioUploadedServiceError, AudioTooLargeServiceError, \
UnsupportedAudioTypeServiceError, ProviderNotSupportSpeechToTextServiceError
from models.model import AppModelConfig
class UniversalChatAudioApi(UniversalChatResource):
def post(self, universal_app):
app_model = universal_app
app_model_config: AppModelConfig = app_model.app_model_config
if not app_model_config.speech_to_text_dict['enabled']:
raise AppUnavailableError()
file = request.files['file']
try:
response = AudioService.transcript(
tenant_id=app_model.tenant_id,
file=file,
)
return response
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
raise AppUnavailableError()
except NoAudioUploadedServiceError:
raise NoAudioUploadedError()
except AudioTooLargeServiceError as e:
raise AudioTooLargeError(str(e))
except UnsupportedAudioTypeServiceError:
raise UnsupportedAudioTypeError()
except ProviderNotSupportSpeechToTextServiceError:
raise ProviderNotSupportSpeechToTextError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
raise CompletionRequestError(str(e))
except ValueError as e:
raise e
except Exception as e:
logging.exception("internal server error.")
raise InternalServerError()
api.add_resource(UniversalChatAudioApi, '/universal-chat/audio-to-text')

View File

@@ -0,0 +1,138 @@
import json
import logging
from typing import Generator, Union
from flask import Response, stream_with_context
from flask_login import current_user
from flask_restful import reqparse
from werkzeug.exceptions import InternalServerError, NotFound
import services
from controllers.console import api
from controllers.console.app.error import ConversationCompletedError, AppUnavailableError, ProviderNotInitializeError, \
ProviderQuotaExceededError, ProviderModelCurrentlyNotSupportError, CompletionRequestError
from controllers.console.universal_chat.wraps import UniversalChatResource
from core.conversation_message_task import PubHandler
from core.model_providers.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError, \
LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError, LLMRateLimitError, LLMAuthorizationError
from libs.helper import uuid_value
from services.completion_service import CompletionService
class UniversalChatApi(UniversalChatResource):
def post(self, universal_app):
app_model = universal_app
parser = reqparse.RequestParser()
parser.add_argument('query', type=str, required=True, location='json')
parser.add_argument('conversation_id', type=uuid_value, location='json')
parser.add_argument('provider', type=str, required=True, location='json')
parser.add_argument('model', type=str, required=True, location='json')
parser.add_argument('tools', type=list, required=True, location='json')
args = parser.parse_args()
app_model_config = app_model.app_model_config
# update app model config
args['model_config'] = app_model_config.to_dict()
args['model_config']['model']['name'] = args['model']
args['model_config']['model']['provider'] = args['provider']
args['model_config']['agent_mode']['tools'] = args['tools']
if not args['model_config']['agent_mode']['tools']:
args['model_config']['agent_mode']['tools'] = [
{
"current_datetime": {
"enabled": True
}
}
]
else:
args['model_config']['agent_mode']['tools'].append({
"current_datetime": {
"enabled": True
}
})
args['inputs'] = {}
del args['model']
del args['tools']
try:
response = CompletionService.completion(
app_model=app_model,
user=current_user,
args=args,
from_source='console',
streaming=True,
is_model_config_override=True,
)
return compact_response(response)
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
except services.errors.conversation.ConversationCompletedError:
raise ConversationCompletedError()
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
raise AppUnavailableError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
raise CompletionRequestError(str(e))
except ValueError as e:
raise e
except Exception as e:
logging.exception("internal server error.")
raise InternalServerError()
class UniversalChatStopApi(UniversalChatResource):
def post(self, universal_app, task_id):
PubHandler.stop(current_user, task_id)
return {'result': 'success'}, 200
def compact_response(response: Union[dict | Generator]) -> Response:
if isinstance(response, dict):
return Response(response=json.dumps(response), status=200, mimetype='application/json')
else:
def generate() -> Generator:
try:
for chunk in response:
yield chunk
except services.errors.conversation.ConversationNotExistsError:
yield "data: " + json.dumps(api.handle_error(NotFound("Conversation Not Exists.")).get_json()) + "\n\n"
except services.errors.conversation.ConversationCompletedError:
yield "data: " + json.dumps(api.handle_error(ConversationCompletedError()).get_json()) + "\n\n"
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
yield "data: " + json.dumps(api.handle_error(AppUnavailableError()).get_json()) + "\n\n"
except ProviderTokenNotInitError:
yield "data: " + json.dumps(api.handle_error(ProviderNotInitializeError()).get_json()) + "\n\n"
except QuotaExceededError:
yield "data: " + json.dumps(api.handle_error(ProviderQuotaExceededError()).get_json()) + "\n\n"
except ModelCurrentlyNotSupportError:
yield "data: " + json.dumps(api.handle_error(ProviderModelCurrentlyNotSupportError()).get_json()) + "\n\n"
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
yield "data: " + json.dumps(api.handle_error(CompletionRequestError(str(e))).get_json()) + "\n\n"
except ValueError as e:
yield "data: " + json.dumps(api.handle_error(e).get_json()) + "\n\n"
except Exception:
logging.exception("internal server error.")
yield "data: " + json.dumps(api.handle_error(InternalServerError()).get_json()) + "\n\n"
return Response(stream_with_context(generate()), status=200,
mimetype='text/event-stream')
api.add_resource(UniversalChatApi, '/universal-chat/messages')
api.add_resource(UniversalChatStopApi, '/universal-chat/messages/<string:task_id>/stop')

View File

@@ -0,0 +1,118 @@
# -*- coding:utf-8 -*-
from flask_login import current_user
from flask_restful import fields, reqparse, marshal_with
from flask_restful.inputs import int_range
from werkzeug.exceptions import NotFound
from controllers.console import api
from controllers.console.universal_chat.wraps import UniversalChatResource
from libs.helper import TimestampField, uuid_value
from services.conversation_service import ConversationService
from services.errors.conversation import LastConversationNotExistsError, ConversationNotExistsError
from services.web_conversation_service import WebConversationService
conversation_fields = {
'id': fields.String,
'name': fields.String,
'inputs': fields.Raw,
'status': fields.String,
'introduction': fields.String,
'created_at': TimestampField,
'model_config': fields.Raw,
}
conversation_infinite_scroll_pagination_fields = {
'limit': fields.Integer,
'has_more': fields.Boolean,
'data': fields.List(fields.Nested(conversation_fields))
}
class UniversalChatConversationListApi(UniversalChatResource):
@marshal_with(conversation_infinite_scroll_pagination_fields)
def get(self, universal_app):
app_model = universal_app
parser = reqparse.RequestParser()
parser.add_argument('last_id', type=uuid_value, location='args')
parser.add_argument('limit', type=int_range(1, 100), required=False, default=20, location='args')
parser.add_argument('pinned', type=str, choices=['true', 'false', None], location='args')
args = parser.parse_args()
pinned = None
if 'pinned' in args and args['pinned'] is not None:
pinned = True if args['pinned'] == 'true' else False
try:
return WebConversationService.pagination_by_last_id(
app_model=app_model,
user=current_user,
last_id=args['last_id'],
limit=args['limit'],
pinned=pinned
)
except LastConversationNotExistsError:
raise NotFound("Last Conversation Not Exists.")
class UniversalChatConversationApi(UniversalChatResource):
def delete(self, universal_app, c_id):
app_model = universal_app
conversation_id = str(c_id)
try:
ConversationService.delete(app_model, conversation_id, current_user)
except ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
WebConversationService.unpin(app_model, conversation_id, current_user)
return {"result": "success"}, 204
class UniversalChatConversationRenameApi(UniversalChatResource):
@marshal_with(conversation_fields)
def post(self, universal_app, c_id):
app_model = universal_app
conversation_id = str(c_id)
parser = reqparse.RequestParser()
parser.add_argument('name', type=str, required=True, location='json')
args = parser.parse_args()
try:
return ConversationService.rename(app_model, conversation_id, current_user, args['name'])
except ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
class UniversalChatConversationPinApi(UniversalChatResource):
def patch(self, universal_app, c_id):
app_model = universal_app
conversation_id = str(c_id)
try:
WebConversationService.pin(app_model, conversation_id, current_user)
except ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
return {"result": "success"}
class UniversalChatConversationUnPinApi(UniversalChatResource):
def patch(self, universal_app, c_id):
app_model = universal_app
conversation_id = str(c_id)
WebConversationService.unpin(app_model, conversation_id, current_user)
return {"result": "success"}
api.add_resource(UniversalChatConversationRenameApi, '/universal-chat/conversations/<uuid:c_id>/name')
api.add_resource(UniversalChatConversationListApi, '/universal-chat/conversations')
api.add_resource(UniversalChatConversationApi, '/universal-chat/conversations/<uuid:c_id>')
api.add_resource(UniversalChatConversationPinApi, '/universal-chat/conversations/<uuid:c_id>/pin')
api.add_resource(UniversalChatConversationUnPinApi, '/universal-chat/conversations/<uuid:c_id>/unpin')

View File

@@ -0,0 +1,127 @@
# -*- coding:utf-8 -*-
import logging
from flask_login import current_user
from flask_restful import reqparse, fields, marshal_with
from flask_restful.inputs import int_range
from werkzeug.exceptions import NotFound, InternalServerError
import services
from controllers.console import api
from controllers.console.app.error import ProviderNotInitializeError, \
ProviderQuotaExceededError, ProviderModelCurrentlyNotSupportError, CompletionRequestError
from controllers.console.explore.error import AppSuggestedQuestionsAfterAnswerDisabledError
from controllers.console.universal_chat.wraps import UniversalChatResource
from core.model_providers.error import LLMRateLimitError, LLMBadRequestError, LLMAuthorizationError, LLMAPIConnectionError, \
ProviderTokenNotInitError, LLMAPIUnavailableError, QuotaExceededError, ModelCurrentlyNotSupportError
from libs.helper import uuid_value, TimestampField
from services.errors.conversation import ConversationNotExistsError
from services.errors.message import MessageNotExistsError, SuggestedQuestionsAfterAnswerDisabledError
from services.message_service import MessageService
class UniversalChatMessageListApi(UniversalChatResource):
feedback_fields = {
'rating': fields.String
}
agent_thought_fields = {
'id': fields.String,
'chain_id': fields.String,
'message_id': fields.String,
'position': fields.Integer,
'thought': fields.String,
'tool': fields.String,
'tool_input': fields.String,
'created_at': TimestampField
}
message_fields = {
'id': fields.String,
'conversation_id': fields.String,
'inputs': fields.Raw,
'query': fields.String,
'answer': fields.String,
'feedback': fields.Nested(feedback_fields, attribute='user_feedback', allow_null=True),
'created_at': TimestampField,
'agent_thoughts': fields.List(fields.Nested(agent_thought_fields))
}
message_infinite_scroll_pagination_fields = {
'limit': fields.Integer,
'has_more': fields.Boolean,
'data': fields.List(fields.Nested(message_fields))
}
@marshal_with(message_infinite_scroll_pagination_fields)
def get(self, universal_app):
app_model = universal_app
parser = reqparse.RequestParser()
parser.add_argument('conversation_id', required=True, type=uuid_value, location='args')
parser.add_argument('first_id', type=uuid_value, location='args')
parser.add_argument('limit', type=int_range(1, 100), required=False, default=20, location='args')
args = parser.parse_args()
try:
return MessageService.pagination_by_first_id(app_model, current_user,
args['conversation_id'], args['first_id'], args['limit'])
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
except services.errors.message.FirstMessageNotExistsError:
raise NotFound("First Message Not Exists.")
class UniversalChatMessageFeedbackApi(UniversalChatResource):
def post(self, universal_app, message_id):
app_model = universal_app
message_id = str(message_id)
parser = reqparse.RequestParser()
parser.add_argument('rating', type=str, choices=['like', 'dislike', None], location='json')
args = parser.parse_args()
try:
MessageService.create_feedback(app_model, message_id, current_user, args['rating'])
except services.errors.message.MessageNotExistsError:
raise NotFound("Message Not Exists.")
return {'result': 'success'}
class UniversalChatMessageSuggestedQuestionApi(UniversalChatResource):
def get(self, universal_app, message_id):
app_model = universal_app
message_id = str(message_id)
try:
questions = MessageService.get_suggested_questions_after_answer(
app_model=app_model,
user=current_user,
message_id=message_id
)
except MessageNotExistsError:
raise NotFound("Message not found")
except ConversationNotExistsError:
raise NotFound("Conversation not found")
except SuggestedQuestionsAfterAnswerDisabledError:
raise AppSuggestedQuestionsAfterAnswerDisabledError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
raise CompletionRequestError(str(e))
except Exception:
logging.exception("internal server error.")
raise InternalServerError()
return {'data': questions}
api.add_resource(UniversalChatMessageListApi, '/universal-chat/messages')
api.add_resource(UniversalChatMessageFeedbackApi, '/universal-chat/messages/<uuid:message_id>/feedbacks')
api.add_resource(UniversalChatMessageSuggestedQuestionApi, '/universal-chat/messages/<uuid:message_id>/suggested-questions')

View File

@@ -0,0 +1,33 @@
# -*- coding:utf-8 -*-
from flask_restful import marshal_with, fields
from controllers.console import api
from controllers.console.universal_chat.wraps import UniversalChatResource
from models.model import App
class UniversalChatParameterApi(UniversalChatResource):
"""Resource for app variables."""
parameters_fields = {
'opening_statement': fields.String,
'suggested_questions': fields.Raw,
'suggested_questions_after_answer': fields.Raw,
'speech_to_text': fields.Raw,
}
@marshal_with(parameters_fields)
def get(self, universal_app: App):
"""Retrieve app parameters."""
app_model = universal_app
app_model_config = app_model.app_model_config
return {
'opening_statement': app_model_config.opening_statement,
'suggested_questions': app_model_config.suggested_questions_list,
'suggested_questions_after_answer': app_model_config.suggested_questions_after_answer_dict,
'speech_to_text': app_model_config.speech_to_text_dict,
}
api.add_resource(UniversalChatParameterApi, '/universal-chat/parameters')

View File

@@ -0,0 +1,84 @@
import json
from functools import wraps
from flask_login import login_required, current_user
from flask_restful import Resource
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from extensions.ext_database import db
from models.model import App, AppModelConfig
def universal_chat_app_required(view=None):
def decorator(view):
@wraps(view)
def decorated(*args, **kwargs):
# get universal chat app
universal_app = db.session.query(App).filter(
App.tenant_id == current_user.current_tenant_id,
App.is_universal == True
).first()
if universal_app is None:
# create universal app if not exists
universal_app = App(
tenant_id=current_user.current_tenant_id,
name='Universal Chat',
mode='chat',
is_universal=True,
icon='',
icon_background='',
api_rpm=0,
api_rph=0,
enable_site=False,
enable_api=False,
status='normal'
)
db.session.add(universal_app)
db.session.flush()
app_model_config = AppModelConfig(
provider="",
model_id="",
configs={},
opening_statement='',
suggested_questions=json.dumps([]),
suggested_questions_after_answer=json.dumps({'enabled': True}),
speech_to_text=json.dumps({'enabled': True}),
more_like_this=None,
sensitive_word_avoidance=None,
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo-16k",
"completion_params": {
"max_tokens": 800,
"temperature": 0.8,
"top_p": 1,
"presence_penalty": 0,
"frequency_penalty": 0
}
}),
user_input_form=json.dumps([]),
pre_prompt='',
agent_mode=json.dumps({"enabled": True, "strategy": "function_call", "tools": []}),
)
app_model_config.app_id = universal_app.id
db.session.add(app_model_config)
db.session.flush()
universal_app.app_model_config_id = app_model_config.id
db.session.commit()
return view(universal_app, *args, **kwargs)
return decorated
if view:
return decorator(view)
return decorator
class UniversalChatResource(Resource):
# must be reversed if there are multiple decorators
method_decorators = [universal_chat_app_required, account_initialization_required, login_required, setup_required]

View File

@@ -32,8 +32,13 @@ class VersionApi(Resource):
'current_version': args.get('current_version')
})
except Exception as error:
logging.exception("Check update error.")
raise InternalServerError()
logging.warning("Check update version error: {}.".format(str(error)))
return {
'version': args.get('current_version'),
'release_date': '',
'release_notes': '',
'can_auto_update': False
}
content = json.loads(response.content)
return {

View File

@@ -0,0 +1,53 @@
import logging
import stripe
from flask import request, current_app
from flask_restful import Resource
from controllers.console import api
from controllers.console.setup import setup_required
from controllers.console.wraps import only_edition_cloud
from services.provider_checkout_service import ProviderCheckoutService
class StripeWebhookApi(Resource):
@setup_required
@only_edition_cloud
def post(self):
payload = request.data
sig_header = request.headers.get('STRIPE_SIGNATURE')
webhook_secret = current_app.config.get('STRIPE_WEBHOOK_SECRET')
try:
event = stripe.Webhook.construct_event(
payload, sig_header, webhook_secret
)
except ValueError as e:
# Invalid payload
return 'Invalid payload', 400
except stripe.error.SignatureVerificationError as e:
# Invalid signature
return 'Invalid signature', 400
# Handle the checkout.session.completed event
if event['type'] == 'checkout.session.completed':
logging.debug(event['data']['object']['id'])
logging.debug(event['data']['object']['amount_subtotal'])
logging.debug(event['data']['object']['currency'])
logging.debug(event['data']['object']['payment_intent'])
logging.debug(event['data']['object']['payment_status'])
logging.debug(event['data']['object']['metadata'])
# Fulfill the purchase...
provider_checkout_service = ProviderCheckoutService()
try:
provider_checkout_service.fulfill_provider_order(event)
except Exception as e:
logging.debug(str(e))
return 'success', 200
return 'success', 200
api.add_resource(StripeWebhookApi, '/webhook/stripe')

View File

@@ -6,22 +6,23 @@ from flask import current_app, request
from flask_login import login_required, current_user
from flask_restful import Resource, reqparse, fields, marshal_with
from services.errors.account import CurrentPasswordIncorrectError as ServiceCurrentPasswordIncorrectError
from controllers.console import api
from controllers.console.setup import setup_required
from controllers.console.workspace.error import AccountAlreadyInitedError, InvalidInvitationCodeError, \
RepeatPasswordNotMatchError
RepeatPasswordNotMatchError, CurrentPasswordIncorrectError
from controllers.console.wraps import account_initialization_required
from libs.helper import TimestampField, supported_language, timezone
from extensions.ext_database import db
from models.account import InvitationCode, AccountIntegrate
from services.account_service import AccountService
account_fields = {
'id': fields.String,
'name': fields.String,
'avatar': fields.String,
'email': fields.String,
'is_password_set': fields.Boolean,
'interface_language': fields.String,
'interface_theme': fields.String,
'timezone': fields.String,
@@ -194,8 +195,11 @@ class AccountPasswordApi(Resource):
if args['new_password'] != args['repeat_new_password']:
raise RepeatPasswordNotMatchError()
AccountService.update_account_password(
current_user, args['password'], args['new_password'])
try:
AccountService.update_account_password(
current_user, args['password'], args['new_password'])
except ServiceCurrentPasswordIncorrectError:
raise CurrentPasswordIncorrectError()
return {"result": "success"}

View File

@@ -7,6 +7,12 @@ class RepeatPasswordNotMatchError(BaseHTTPException):
code = 400
class CurrentPasswordIncorrectError(BaseHTTPException):
error_code = 'current_password_incorrect'
description = "Current password is incorrect."
code = 400
class ProviderRequestFailedError(BaseHTTPException):
error_code = 'provider_request_failed'
description = None

View File

@@ -1,5 +1,5 @@
# -*- coding:utf-8 -*-
from flask import current_app
from flask_login import login_required, current_user
from flask_restful import Resource, reqparse, marshal_with, abort, fields, marshal
@@ -60,7 +60,8 @@ class MemberInviteEmailApi(Resource):
inviter = current_user
try:
RegisterService.invite_new_member(inviter.current_tenant, invitee_email, role=invitee_role, inviter=inviter)
token = RegisterService.invite_new_member(inviter.current_tenant, invitee_email, role=invitee_role,
inviter=inviter)
account = db.session.query(Account, TenantAccountJoin.role).join(
TenantAccountJoin, Account.id == TenantAccountJoin.account_id
).filter(Account.email == args['email']).first()
@@ -78,7 +79,16 @@ class MemberInviteEmailApi(Resource):
# todo:413
return {'result': 'success', 'account': account}, 201
return {
'result': 'success',
'account': account,
'invite_url': '{}/activate?workspace_id={}&email={}&token={}'.format(
current_app.config.get("CONSOLE_WEB_URL"),
str(current_user.current_tenant_id),
invitee_email,
token
)
}, 201
class MemberCancelInviteApi(Resource):
@@ -88,7 +98,7 @@ class MemberCancelInviteApi(Resource):
@login_required
@account_initialization_required
def delete(self, member_id):
member = Account.query.get(str(member_id))
member = db.session.query(Account).filter(Account.id == str(member_id)).first()
if not member:
abort(404)

View File

@@ -0,0 +1,301 @@
from flask_login import login_required, current_user
from flask_restful import Resource, reqparse
from werkzeug.exceptions import Forbidden
from controllers.console import api
from controllers.console.app.error import ProviderNotInitializeError
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.model_providers.error import LLMBadRequestError
from core.model_providers.providers.base import CredentialsValidateFailedError
from services.provider_checkout_service import ProviderCheckoutService
from services.provider_service import ProviderService
class ModelProviderListApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
tenant_id = current_user.current_tenant_id
provider_service = ProviderService()
provider_list = provider_service.get_provider_list(tenant_id)
return provider_list
class ModelProviderValidateApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, provider_name: str):
parser = reqparse.RequestParser()
parser.add_argument('config', type=dict, required=True, nullable=False, location='json')
args = parser.parse_args()
provider_service = ProviderService()
result = True
error = None
try:
provider_service.custom_provider_config_validate(
provider_name=provider_name,
config=args['config']
)
except CredentialsValidateFailedError as ex:
result = False
error = str(ex)
response = {'result': 'success' if result else 'error'}
if not result:
response['error'] = error
return response
class ModelProviderUpdateApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, provider_name: str):
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
parser = reqparse.RequestParser()
parser.add_argument('config', type=dict, required=True, nullable=False, location='json')
args = parser.parse_args()
provider_service = ProviderService()
try:
provider_service.save_custom_provider_config(
tenant_id=current_user.current_tenant_id,
provider_name=provider_name,
config=args['config']
)
except CredentialsValidateFailedError as ex:
raise ValueError(str(ex))
return {'result': 'success'}, 201
@setup_required
@login_required
@account_initialization_required
def delete(self, provider_name: str):
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
provider_service = ProviderService()
provider_service.delete_custom_provider(
tenant_id=current_user.current_tenant_id,
provider_name=provider_name
)
return {'result': 'success'}, 204
class ModelProviderModelValidateApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, provider_name: str):
parser = reqparse.RequestParser()
parser.add_argument('model_name', type=str, required=True, nullable=False, location='json')
parser.add_argument('model_type', type=str, required=True, nullable=False,
choices=['text-generation', 'embeddings', 'speech2text'], location='json')
parser.add_argument('config', type=dict, required=True, nullable=False, location='json')
args = parser.parse_args()
provider_service = ProviderService()
result = True
error = None
try:
provider_service.custom_provider_model_config_validate(
provider_name=provider_name,
model_name=args['model_name'],
model_type=args['model_type'],
config=args['config']
)
except CredentialsValidateFailedError as ex:
result = False
error = str(ex)
response = {'result': 'success' if result else 'error'}
if not result:
response['error'] = error
return response
class ModelProviderModelUpdateApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, provider_name: str):
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
parser = reqparse.RequestParser()
parser.add_argument('model_name', type=str, required=True, nullable=False, location='json')
parser.add_argument('model_type', type=str, required=True, nullable=False,
choices=['text-generation', 'embeddings', 'speech2text'], location='json')
parser.add_argument('config', type=dict, required=True, nullable=False, location='json')
args = parser.parse_args()
provider_service = ProviderService()
try:
provider_service.add_or_save_custom_provider_model_config(
tenant_id=current_user.current_tenant_id,
provider_name=provider_name,
model_name=args['model_name'],
model_type=args['model_type'],
config=args['config']
)
except CredentialsValidateFailedError as ex:
raise ValueError(str(ex))
return {'result': 'success'}, 200
@setup_required
@login_required
@account_initialization_required
def delete(self, provider_name: str):
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
parser = reqparse.RequestParser()
parser.add_argument('model_name', type=str, required=True, nullable=False, location='args')
parser.add_argument('model_type', type=str, required=True, nullable=False,
choices=['text-generation', 'embeddings', 'speech2text'], location='args')
args = parser.parse_args()
provider_service = ProviderService()
provider_service.delete_custom_provider_model(
tenant_id=current_user.current_tenant_id,
provider_name=provider_name,
model_name=args['model_name'],
model_type=args['model_type']
)
return {'result': 'success'}, 204
class PreferredProviderTypeUpdateApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, provider_name: str):
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
parser = reqparse.RequestParser()
parser.add_argument('preferred_provider_type', type=str, required=True, nullable=False,
choices=['system', 'custom'], location='json')
args = parser.parse_args()
provider_service = ProviderService()
provider_service.switch_preferred_provider(
tenant_id=current_user.current_tenant_id,
provider_name=provider_name,
preferred_provider_type=args['preferred_provider_type']
)
return {'result': 'success'}
class ModelProviderModelParameterRuleApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, provider_name: str):
parser = reqparse.RequestParser()
parser.add_argument('model_name', type=str, required=True, nullable=False, location='args')
args = parser.parse_args()
provider_service = ProviderService()
try:
parameter_rules = provider_service.get_model_parameter_rules(
tenant_id=current_user.current_tenant_id,
model_provider_name=provider_name,
model_name=args['model_name'],
model_type='text-generation'
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"Current Text Generation Model is invalid. Please switch to the available model.")
rules = {
k: {
'enabled': v.enabled,
'min': v.min,
'max': v.max,
'default': v.default
}
for k, v in vars(parameter_rules).items()
}
return rules
class ModelProviderPaymentCheckoutUrlApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, provider_name: str):
provider_service = ProviderCheckoutService()
provider_checkout = provider_service.create_checkout(
tenant_id=current_user.current_tenant_id,
provider_name=provider_name,
account=current_user
)
return {
'url': provider_checkout.get_checkout_url()
}
class ModelProviderFreeQuotaSubmitApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, provider_name: str):
provider_service = ProviderService()
result = provider_service.free_quota_submit(
tenant_id=current_user.current_tenant_id,
provider_name=provider_name
)
return result
api.add_resource(ModelProviderListApi, '/workspaces/current/model-providers')
api.add_resource(ModelProviderValidateApi, '/workspaces/current/model-providers/<string:provider_name>/validate')
api.add_resource(ModelProviderUpdateApi, '/workspaces/current/model-providers/<string:provider_name>')
api.add_resource(ModelProviderModelValidateApi,
'/workspaces/current/model-providers/<string:provider_name>/models/validate')
api.add_resource(ModelProviderModelUpdateApi,
'/workspaces/current/model-providers/<string:provider_name>/models')
api.add_resource(PreferredProviderTypeUpdateApi,
'/workspaces/current/model-providers/<string:provider_name>/preferred-provider-type')
api.add_resource(ModelProviderModelParameterRuleApi,
'/workspaces/current/model-providers/<string:provider_name>/models/parameter-rules')
api.add_resource(ModelProviderPaymentCheckoutUrlApi,
'/workspaces/current/model-providers/<string:provider_name>/checkout-url')
api.add_resource(ModelProviderFreeQuotaSubmitApi,
'/workspaces/current/model-providers/<string:provider_name>/free-quota-submit')

View File

@@ -0,0 +1,108 @@
from flask_login import login_required, current_user
from flask_restful import Resource, reqparse
from controllers.console import api
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.model_providers.model_provider_factory import ModelProviderFactory
from core.model_providers.models.entity.model_params import ModelType
from models.provider import ProviderType
from services.provider_service import ProviderService
class DefaultModelApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
parser = reqparse.RequestParser()
parser.add_argument('model_type', type=str, required=True, nullable=False,
choices=['text-generation', 'embeddings', 'speech2text'], location='args')
args = parser.parse_args()
tenant_id = current_user.current_tenant_id
provider_service = ProviderService()
default_model = provider_service.get_default_model_of_model_type(
tenant_id=tenant_id,
model_type=args['model_type']
)
if not default_model:
return None
model_provider = ModelProviderFactory.get_preferred_model_provider(
tenant_id,
default_model.provider_name
)
if not model_provider:
return {
'model_name': default_model.model_name,
'model_type': default_model.model_type,
'model_provider': {
'provider_name': default_model.provider_name
}
}
provider = model_provider.provider
rst = {
'model_name': default_model.model_name,
'model_type': default_model.model_type,
'model_provider': {
'provider_name': provider.provider_name,
'provider_type': provider.provider_type
}
}
model_provider_rules = ModelProviderFactory.get_provider_rule(default_model.provider_name)
if provider.provider_type == ProviderType.SYSTEM.value:
rst['model_provider']['quota_type'] = provider.quota_type
rst['model_provider']['quota_unit'] = model_provider_rules['system_config']['quota_unit']
rst['model_provider']['quota_limit'] = provider.quota_limit
rst['model_provider']['quota_used'] = provider.quota_used
return rst
@setup_required
@login_required
@account_initialization_required
def post(self):
parser = reqparse.RequestParser()
parser.add_argument('model_name', type=str, required=True, nullable=False, location='json')
parser.add_argument('model_type', type=str, required=True, nullable=False,
choices=['text-generation', 'embeddings', 'speech2text'], location='json')
parser.add_argument('provider_name', type=str, required=True, nullable=False, location='json')
args = parser.parse_args()
provider_service = ProviderService()
provider_service.update_default_model_of_model_type(
tenant_id=current_user.current_tenant_id,
model_type=args['model_type'],
provider_name=args['provider_name'],
model_name=args['model_name']
)
return {'result': 'success'}
class ValidModelApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, model_type):
ModelType.value_of(model_type)
provider_service = ProviderService()
valid_models = provider_service.get_valid_model_list(
tenant_id=current_user.current_tenant_id,
model_type=model_type
)
return valid_models
api.add_resource(DefaultModelApi, '/workspaces/current/default-model')
api.add_resource(ValidModelApi, '/workspaces/current/models/model-type/<string:model_type>')

View File

@@ -1,19 +1,13 @@
# -*- coding:utf-8 -*-
import base64
import json
import logging
from flask_login import login_required, current_user
from flask_restful import Resource, reqparse, abort
from flask_restful import Resource, reqparse
from werkzeug.exceptions import Forbidden
from controllers.console import api
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.llm.provider.errors import ValidateFailedError
from extensions.ext_database import db
from libs import rsa
from models.provider import Provider, ProviderType, ProviderName
from core.model_providers.providers.base import CredentialsValidateFailedError
from models.provider import ProviderType
from services.provider_service import ProviderService
@@ -34,25 +28,26 @@ class ProviderListApi(Resource):
plaintext, the rest is replaced by * and the last two bits are displayed in plaintext
"""
ProviderService.init_supported_provider(current_user.current_tenant, "cloud")
providers = Provider.query.filter_by(tenant_id=tenant_id).all()
provider_service = ProviderService()
provider_info_list = provider_service.get_provider_list(tenant_id)
provider_list = [
{
'provider_name': p.provider_name,
'provider_type': p.provider_type,
'is_valid': p.is_valid,
'last_used': p.last_used,
'is_enabled': p.is_enabled,
'provider_name': p['provider_name'],
'provider_type': p['provider_type'],
'is_valid': p['is_valid'],
'last_used': p['last_used'],
'is_enabled': p['is_valid'],
**({
'quota_type': p.quota_type,
'quota_limit': p.quota_limit,
'quota_used': p.quota_used
} if p.provider_type == ProviderType.SYSTEM.value else {}),
'token': ProviderService.get_obfuscated_api_key(current_user.current_tenant,
ProviderName(p.provider_name))
'quota_type': p['quota_type'],
'quota_limit': p['quota_limit'],
'quota_used': p['quota_used']
} if p['provider_type'] == ProviderType.SYSTEM.value else {}),
'token': (p['config'] if p['provider_name'] != 'openai' else p['config']['openai_api_key'])
if p['config'] else None
}
for p in providers
for name, provider_info in provider_info_list.items()
for p in provider_info['providers']
]
return provider_list
@@ -64,78 +59,28 @@ class ProviderTokenApi(Resource):
@login_required
@account_initialization_required
def post(self, provider):
if provider not in [p.value for p in ProviderName]:
abort(404)
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
logging.log(logging.ERROR,
f'User {current_user.id} is not authorized to update provider token, current_role is {current_user.current_tenant.current_role}')
raise Forbidden()
parser = reqparse.RequestParser()
parser.add_argument('token', type=ProviderService.get_token_type(
tenant=current_user.current_tenant,
provider_name=ProviderName(provider)
), required=True, nullable=False, location='json')
parser.add_argument('token', required=True, nullable=False, location='json')
args = parser.parse_args()
if args['token']:
try:
ProviderService.validate_provider_configs(
tenant=current_user.current_tenant,
provider_name=ProviderName(provider),
configs=args['token']
)
token_is_valid = True
except ValidateFailedError as ex:
raise ValueError(str(ex))
if provider == 'openai':
args['token'] = {
'openai_api_key': args['token']
}
base64_encrypted_token = ProviderService.get_encrypted_token(
tenant=current_user.current_tenant,
provider_name=ProviderName(provider),
configs=args['token']
provider_service = ProviderService()
try:
provider_service.save_custom_provider_config(
tenant_id=current_user.current_tenant_id,
provider_name=provider,
config=args['token']
)
else:
base64_encrypted_token = None
token_is_valid = False
tenant = current_user.current_tenant
provider_model = db.session.query(Provider).filter(
Provider.tenant_id == tenant.id,
Provider.provider_name == provider,
Provider.provider_type == ProviderType.CUSTOM.value
).first()
# Only allow updating token for CUSTOM provider type
if provider_model:
provider_model.encrypted_config = base64_encrypted_token
provider_model.is_valid = token_is_valid
else:
provider_model = Provider(tenant_id=tenant.id, provider_name=provider,
provider_type=ProviderType.CUSTOM.value,
encrypted_config=base64_encrypted_token,
is_valid=token_is_valid)
db.session.add(provider_model)
if provider_model.is_valid:
other_providers = db.session.query(Provider).filter(
Provider.tenant_id == tenant.id,
Provider.provider_name != provider,
Provider.provider_type == ProviderType.CUSTOM.value
).all()
for other_provider in other_providers:
other_provider.is_valid = False
db.session.commit()
if provider in [ProviderName.ANTHROPIC.value, ProviderName.AZURE_OPENAI.value, ProviderName.COHERE.value,
ProviderName.HUGGINGFACEHUB.value]:
return {'result': 'success', 'warning': 'MOCK: This provider is not supported yet.'}, 201
except CredentialsValidateFailedError as ex:
raise ValueError(str(ex))
return {'result': 'success'}, 201
@@ -146,33 +91,28 @@ class ProviderTokenValidateApi(Resource):
@login_required
@account_initialization_required
def post(self, provider):
if provider not in [p.value for p in ProviderName]:
abort(404)
parser = reqparse.RequestParser()
parser.add_argument('token', type=ProviderService.get_token_type(
tenant=current_user.current_tenant,
provider_name=ProviderName(provider)
), required=True, nullable=False, location='json')
parser.add_argument('token', required=True, nullable=False, location='json')
args = parser.parse_args()
# todo: remove this when the provider is supported
if provider in [ProviderName.ANTHROPIC.value, ProviderName.COHERE.value,
ProviderName.HUGGINGFACEHUB.value]:
return {'result': 'success', 'warning': 'MOCK: This provider is not supported yet.'}
provider_service = ProviderService()
if provider == 'openai':
args['token'] = {
'openai_api_key': args['token']
}
result = True
error = None
try:
ProviderService.validate_provider_configs(
tenant=current_user.current_tenant,
provider_name=ProviderName(provider),
configs=args['token']
provider_service.custom_provider_config_validate(
provider_name=provider,
config=args['token']
)
except ValidateFailedError as e:
except CredentialsValidateFailedError as ex:
result = False
error = str(e)
error = str(ex)
response = {'result': 'success' if result else 'error'}
@@ -182,79 +122,9 @@ class ProviderTokenValidateApi(Resource):
return response
class ProviderSystemApi(Resource):
@setup_required
@login_required
@account_initialization_required
def put(self, provider):
if provider not in [p.value for p in ProviderName]:
abort(404)
parser = reqparse.RequestParser()
parser.add_argument('is_enabled', type=bool, required=True, location='json')
args = parser.parse_args()
tenant = current_user.current_tenant_id
provider_model = Provider.query.filter_by(tenant_id=tenant.id, provider_name=provider).first()
if provider_model and provider_model.provider_type == ProviderType.SYSTEM.value:
provider_model.is_valid = args['is_enabled']
db.session.commit()
elif not provider_model:
ProviderService.create_system_provider(tenant, provider, args['is_enabled'])
else:
abort(403)
return {'result': 'success'}
@setup_required
@login_required
@account_initialization_required
def get(self, provider):
if provider not in [p.value for p in ProviderName]:
abort(404)
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
provider_model = db.session.query(Provider).filter(Provider.tenant_id == current_user.current_tenant_id,
Provider.provider_name == provider,
Provider.provider_type == ProviderType.SYSTEM.value).first()
system_model = None
if provider_model:
system_model = {
'result': 'success',
'provider': {
'provider_name': provider_model.provider_name,
'provider_type': provider_model.provider_type,
'is_valid': provider_model.is_valid,
'last_used': provider_model.last_used,
'is_enabled': provider_model.is_enabled,
'quota_type': provider_model.quota_type,
'quota_limit': provider_model.quota_limit,
'quota_used': provider_model.quota_used
}
}
else:
abort(404)
return system_model
api.add_resource(ProviderTokenApi, '/providers/<provider>/token',
endpoint='current_providers_token') # Deprecated
api.add_resource(ProviderTokenValidateApi, '/providers/<provider>/token-validate',
endpoint='current_providers_token_validate') # Deprecated
api.add_resource(ProviderTokenApi, '/workspaces/current/providers/<provider>/token',
endpoint='workspaces_current_providers_token') # PUT for updating provider token
api.add_resource(ProviderTokenValidateApi, '/workspaces/current/providers/<provider>/token-validate',
endpoint='workspaces_current_providers_token_validate') # POST for validating provider token
api.add_resource(ProviderListApi, '/workspaces/current/providers') # GET for getting providers list
api.add_resource(ProviderSystemApi, '/workspaces/current/providers/<provider>/system',
endpoint='workspaces_current_providers_system') # GET for getting provider quota, PUT for updating provider status

View File

@@ -0,0 +1,136 @@
import json
from flask_login import login_required, current_user
from flask_restful import Resource, abort, reqparse
from werkzeug.exceptions import Forbidden
from controllers.console import api
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.tool.provider.errors import ToolValidateFailedError
from core.tool.provider.tool_provider_service import ToolProviderService
from extensions.ext_database import db
from models.tool import ToolProvider, ToolProviderName
class ToolProviderListApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
tenant_id = current_user.current_tenant_id
tool_credential_dict = {}
for tool_name in ToolProviderName:
tool_credential_dict[tool_name.value] = {
'tool_name': tool_name.value,
'is_enabled': False,
'credentials': None
}
tool_providers = db.session.query(ToolProvider).filter(ToolProvider.tenant_id == tenant_id).all()
for p in tool_providers:
if p.is_enabled:
tool_credential_dict[p.tool_name] = {
'tool_name': p.tool_name,
'is_enabled': p.is_enabled,
'credentials': ToolProviderService(tenant_id, p.tool_name).get_credentials(obfuscated=True)
}
return list(tool_credential_dict.values())
class ToolProviderCredentialsApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, provider):
if provider not in [p.value for p in ToolProviderName]:
abort(404)
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden(f'User {current_user.id} is not authorized to update provider token, '
f'current_role is {current_user.current_tenant.current_role}')
parser = reqparse.RequestParser()
parser.add_argument('credentials', type=dict, required=True, nullable=False, location='json')
args = parser.parse_args()
tenant_id = current_user.current_tenant_id
tool_provider_service = ToolProviderService(tenant_id, provider)
try:
tool_provider_service.credentials_validate(args['credentials'])
except ToolValidateFailedError as ex:
raise ValueError(str(ex))
encrypted_credentials = json.dumps(tool_provider_service.encrypt_credentials(args['credentials']))
tenant = current_user.current_tenant
tool_provider_model = db.session.query(ToolProvider).filter(
ToolProvider.tenant_id == tenant.id,
ToolProvider.tool_name == provider,
).first()
# Only allow updating token for CUSTOM provider type
if tool_provider_model:
tool_provider_model.encrypted_credentials = encrypted_credentials
tool_provider_model.is_enabled = True
else:
tool_provider_model = ToolProvider(
tenant_id=tenant.id,
tool_name=provider,
encrypted_credentials=encrypted_credentials,
is_enabled=True
)
db.session.add(tool_provider_model)
db.session.commit()
return {'result': 'success'}, 201
class ToolProviderCredentialsValidateApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, provider):
if provider not in [p.value for p in ToolProviderName]:
abort(404)
parser = reqparse.RequestParser()
parser.add_argument('credentials', type=dict, required=True, nullable=False, location='json')
args = parser.parse_args()
result = True
error = None
tenant_id = current_user.current_tenant_id
tool_provider_service = ToolProviderService(tenant_id, provider)
try:
tool_provider_service.credentials_validate(args['credentials'])
except ToolValidateFailedError as ex:
result = False
error = str(ex)
response = {'result': 'success' if result else 'error'}
if not result:
response['error'] = error
return response
api.add_resource(ToolProviderListApi, '/workspaces/current/tool-providers')
api.add_resource(ToolProviderCredentialsApi, '/workspaces/current/tool-providers/<provider>/credentials')
api.add_resource(ToolProviderCredentialsValidateApi,
'/workspaces/current/tool-providers/<provider>/credentials-validate')

View File

@@ -30,7 +30,7 @@ tenant_fields = {
'created_at': TimestampField,
'role': fields.String,
'providers': fields.List(fields.Nested(provider_fields)),
'in_trail': fields.Boolean,
'in_trial': fields.Boolean,
'trial_end_reason': fields.String,
}

View File

@@ -7,6 +7,6 @@ bp = Blueprint('service_api', __name__, url_prefix='/v1')
api = ExternalApi(bp)
from .app import completion, app, conversation, message
from .app import completion, app, conversation, message, audio
from .dataset import document

View File

@@ -4,6 +4,8 @@ from flask_restful import fields, marshal_with
from controllers.service_api import api
from controllers.service_api.wraps import AppApiResource
from models.model import App
class AppParameterApi(AppApiResource):
"""Resource for app variables."""
@@ -22,12 +24,13 @@ class AppParameterApi(AppApiResource):
'opening_statement': fields.String,
'suggested_questions': fields.Raw,
'suggested_questions_after_answer': fields.Raw,
'speech_to_text': fields.Raw,
'more_like_this': fields.Raw,
'user_input_form': fields.Raw,
}
@marshal_with(parameters_fields)
def get(self, app_model, end_user):
def get(self, app_model: App, end_user):
"""Retrieve app parameters."""
app_model_config = app_model.app_model_config
@@ -35,6 +38,7 @@ class AppParameterApi(AppApiResource):
'opening_statement': app_model_config.opening_statement,
'suggested_questions': app_model_config.suggested_questions_list,
'suggested_questions_after_answer': app_model_config.suggested_questions_after_answer_dict,
'speech_to_text': app_model_config.speech_to_text_dict,
'more_like_this': app_model_config.more_like_this_dict,
'user_input_form': app_model_config.user_input_form_list
}

View File

@@ -0,0 +1,61 @@
import logging
from flask import request
from werkzeug.exceptions import InternalServerError
import services
from controllers.service_api import api
from controllers.service_api.app.error import AppUnavailableError, ProviderNotInitializeError, CompletionRequestError, ProviderQuotaExceededError, \
ProviderModelCurrentlyNotSupportError, NoAudioUploadedError, AudioTooLargeError, UnsupportedAudioTypeError, \
ProviderNotSupportSpeechToTextError
from controllers.service_api.wraps import AppApiResource
from core.model_providers.error import LLMBadRequestError, LLMAuthorizationError, LLMAPIUnavailableError, LLMAPIConnectionError, \
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from models.model import App, AppModelConfig
from services.audio_service import AudioService
from services.errors.audio import NoAudioUploadedServiceError, AudioTooLargeServiceError, \
UnsupportedAudioTypeServiceError, ProviderNotSupportSpeechToTextServiceError
class AudioApi(AppApiResource):
def post(self, app_model: App, end_user):
app_model_config: AppModelConfig = app_model.app_model_config
if not app_model_config.speech_to_text_dict['enabled']:
raise AppUnavailableError()
file = request.files['file']
try:
response = AudioService.transcript(
tenant_id=app_model.tenant_id,
file=file,
)
return response
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
raise AppUnavailableError()
except NoAudioUploadedServiceError:
raise NoAudioUploadedError()
except AudioTooLargeServiceError as e:
raise AudioTooLargeError(str(e))
except UnsupportedAudioTypeServiceError:
raise UnsupportedAudioTypeError()
except ProviderNotSupportSpeechToTextServiceError:
raise ProviderNotSupportSpeechToTextError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
raise CompletionRequestError(str(e))
except ValueError as e:
raise e
except Exception as e:
logging.exception("internal server error.")
raise InternalServerError()
api.add_resource(AudioApi, '/audio-to-text')

View File

@@ -14,7 +14,7 @@ from controllers.service_api.app.error import AppUnavailableError, ProviderNotIn
ProviderModelCurrentlyNotSupportError
from controllers.service_api.wraps import AppApiResource
from core.conversation_message_task import PubHandler
from core.llm.error import LLMBadRequestError, LLMAuthorizationError, LLMAPIUnavailableError, LLMAPIConnectionError, \
from core.model_providers.error import LLMBadRequestError, LLMAuthorizationError, LLMAPIUnavailableError, LLMAPIConnectionError, \
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from libs.helper import uuid_value
from services.completion_service import CompletionService
@@ -54,8 +54,8 @@ class CompletionApi(AppApiResource):
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
raise AppUnavailableError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
@@ -115,8 +115,8 @@ class ChatApi(AppApiResource):
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
raise AppUnavailableError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
@@ -156,8 +156,8 @@ def compact_response(response: Union[dict | Generator]) -> Response:
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
yield "data: " + json.dumps(api.handle_error(AppUnavailableError()).get_json()) + "\n\n"
except ProviderTokenNotInitError:
yield "data: " + json.dumps(api.handle_error(ProviderNotInitializeError()).get_json()) + "\n\n"
except ProviderTokenNotInitError as ex:
yield "data: " + json.dumps(api.handle_error(ProviderNotInitializeError(ex.description)).get_json()) + "\n\n"
except QuotaExceededError:
yield "data: " + json.dumps(api.handle_error(ProviderQuotaExceededError()).get_json()) + "\n\n"
except ModelCurrentlyNotSupportError:

View File

@@ -1,4 +1,5 @@
# -*- coding:utf-8 -*-
from flask import request
from flask_restful import fields, marshal_with, reqparse
from flask_restful.inputs import int_range
from werkzeug.exceptions import NotFound
@@ -48,6 +49,24 @@ class ConversationApi(AppApiResource):
except services.errors.conversation.LastConversationNotExistsError:
raise NotFound("Last Conversation Not Exists.")
class ConversationDetailApi(AppApiResource):
@marshal_with(conversation_fields)
def delete(self, app_model, end_user, c_id):
if app_model.mode != 'chat':
raise NotChatAppError()
conversation_id = str(c_id)
user = request.get_json().get('user')
if end_user is None and user is not None:
end_user = create_or_update_end_user_for_user_id(app_model, user)
try:
ConversationService.delete(app_model, conversation_id, end_user)
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
return {"result": "success"}, 204
class ConversationRenameApi(AppApiResource):
@@ -74,3 +93,5 @@ class ConversationRenameApi(AppApiResource):
api.add_resource(ConversationRenameApi, '/conversations/<uuid:c_id>/name', endpoint='conversation_name')
api.add_resource(ConversationApi, '/conversations')
api.add_resource(ConversationApi, '/conversations/<uuid:c_id>', endpoint='conversation')
api.add_resource(ConversationDetailApi, '/conversations/<uuid:c_id>', endpoint='conversation_detail')

View File

@@ -51,3 +51,27 @@ class CompletionRequestError(BaseHTTPException):
description = "Completion request failed."
code = 400
class NoAudioUploadedError(BaseHTTPException):
error_code = 'no_audio_uploaded'
description = "Please upload your audio."
code = 400
class AudioTooLargeError(BaseHTTPException):
error_code = 'audio_too_large'
description = "Audio size exceeded. {message}"
code = 413
class UnsupportedAudioTypeError(BaseHTTPException):
error_code = 'unsupported_audio_type'
description = "Audio type not allowed."
code = 415
class ProviderNotSupportSpeechToTextError(BaseHTTPException):
error_code = 'provider_not_support_speech_to_text'
description = "Provider not support speech to text."
code = 400

View File

@@ -11,7 +11,7 @@ from controllers.service_api.app.error import ProviderNotInitializeError
from controllers.service_api.dataset.error import ArchivedDocumentImmutableError, DocumentIndexingError, \
DatasetNotInitedError
from controllers.service_api.wraps import DatasetApiResource
from core.llm.error import ProviderTokenNotInitError
from core.model_providers.error import ProviderTokenNotInitError
from extensions.ext_database import db
from extensions.ext_storage import storage
from models.model import UploadFile
@@ -85,8 +85,8 @@ class DocumentListApi(DatasetApiResource):
dataset_process_rule=dataset.latest_process_rule,
created_from='api'
)
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
document = documents[0]
if doc_type and doc_metadata:
metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[doc_type]

View File

@@ -7,4 +7,4 @@ bp = Blueprint('web', __name__, url_prefix='/api')
api = ExternalApi(bp)
from . import completion, app, conversation, message, site, saved_message
from . import completion, app, conversation, message, site, saved_message, audio, passport

View File

@@ -4,6 +4,8 @@ from flask_restful import marshal_with, fields
from controllers.web import api
from controllers.web.wraps import WebApiResource
from models.model import App
class AppParameterApi(WebApiResource):
"""Resource for app variables."""
@@ -21,12 +23,13 @@ class AppParameterApi(WebApiResource):
'opening_statement': fields.String,
'suggested_questions': fields.Raw,
'suggested_questions_after_answer': fields.Raw,
'speech_to_text': fields.Raw,
'more_like_this': fields.Raw,
'user_input_form': fields.Raw,
}
@marshal_with(parameters_fields)
def get(self, app_model, end_user):
def get(self, app_model: App, end_user):
"""Retrieve app parameters."""
app_model_config = app_model.app_model_config
@@ -34,6 +37,7 @@ class AppParameterApi(WebApiResource):
'opening_statement': app_model_config.opening_statement,
'suggested_questions': app_model_config.suggested_questions_list,
'suggested_questions_after_answer': app_model_config.suggested_questions_after_answer_dict,
'speech_to_text': app_model_config.speech_to_text_dict,
'more_like_this': app_model_config.more_like_this_dict,
'user_input_form': app_model_config.user_input_form_list
}

View File

@@ -0,0 +1,63 @@
# -*- coding:utf-8 -*-
import logging
from flask import request
from werkzeug.exceptions import InternalServerError
import services
from controllers.web import api
from controllers.web.error import AppUnavailableError, ProviderNotInitializeError, CompletionRequestError, \
ProviderQuotaExceededError, ProviderModelCurrentlyNotSupportError, NoAudioUploadedError, AudioTooLargeError, \
UnsupportedAudioTypeError, ProviderNotSupportSpeechToTextError
from controllers.web.wraps import WebApiResource
from core.model_providers.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from services.audio_service import AudioService
from services.errors.audio import NoAudioUploadedServiceError, AudioTooLargeServiceError, \
UnsupportedAudioTypeServiceError, ProviderNotSupportSpeechToTextServiceError
from models.model import App, AppModelConfig
class AudioApi(WebApiResource):
def post(self, app_model: App, end_user):
app_model_config: AppModelConfig = app_model.app_model_config
if not app_model_config.speech_to_text_dict['enabled']:
raise AppUnavailableError()
file = request.files['file']
try:
response = AudioService.transcript(
tenant_id=app_model.tenant_id,
file=file,
)
return response
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
raise AppUnavailableError()
except NoAudioUploadedServiceError:
raise NoAudioUploadedError()
except AudioTooLargeServiceError as e:
raise AudioTooLargeError(str(e))
except UnsupportedAudioTypeServiceError:
raise UnsupportedAudioTypeError()
except ProviderNotSupportSpeechToTextServiceError:
raise ProviderNotSupportSpeechToTextError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
raise CompletionRequestError(str(e))
except ValueError as e:
raise e
except Exception as e:
logging.exception("internal server error.")
raise InternalServerError()
api.add_resource(AudioApi, '/audio-to-text')

View File

@@ -14,7 +14,7 @@ from controllers.web.error import AppUnavailableError, ConversationCompletedErro
ProviderQuotaExceededError, ProviderModelCurrentlyNotSupportError
from controllers.web.wraps import WebApiResource
from core.conversation_message_task import PubHandler
from core.llm.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
from core.model_providers.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from libs.helper import uuid_value
from services.completion_service import CompletionService
@@ -52,8 +52,8 @@ class CompletionApi(WebApiResource):
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
raise AppUnavailableError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
@@ -109,8 +109,8 @@ class ChatApi(WebApiResource):
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
raise AppUnavailableError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
@@ -150,8 +150,8 @@ def compact_response(response: Union[dict | Generator]) -> Response:
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
yield "data: " + json.dumps(api.handle_error(AppUnavailableError()).get_json()) + "\n\n"
except ProviderTokenNotInitError:
yield "data: " + json.dumps(api.handle_error(ProviderNotInitializeError()).get_json()) + "\n\n"
except ProviderTokenNotInitError as ex:
yield "data: " + json.dumps(api.handle_error(ProviderNotInitializeError(ex.description)).get_json()) + "\n\n"
except QuotaExceededError:
yield "data: " + json.dumps(api.handle_error(ProviderQuotaExceededError()).get_json()) + "\n\n"
except ModelCurrentlyNotSupportError:

View File

@@ -62,7 +62,10 @@ class ConversationApi(WebApiResource):
raise NotChatAppError()
conversation_id = str(c_id)
ConversationService.delete(app_model, conversation_id, end_user)
try:
ConversationService.delete(app_model, conversation_id, end_user)
except ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
WebConversationService.unpin(app_model, conversation_id, end_user)
return {"result": "success"}, 204

View File

@@ -62,3 +62,27 @@ class AppSuggestedQuestionsAfterAnswerDisabledError(BaseHTTPException):
error_code = 'app_suggested_questions_after_answer_disabled'
description = "The 'Suggested Questions After Answer' feature is disabled. Please refresh your page."
code = 403
class NoAudioUploadedError(BaseHTTPException):
error_code = 'no_audio_uploaded'
description = "Please upload your audio."
code = 400
class AudioTooLargeError(BaseHTTPException):
error_code = 'audio_too_large'
description = "Audio size exceeded. {message}"
code = 413
class UnsupportedAudioTypeError(BaseHTTPException):
error_code = 'unsupported_audio_type'
description = "Audio type not allowed."
code = 415
class ProviderNotSupportSpeechToTextError(BaseHTTPException):
error_code = 'provider_not_support_speech_to_text'
description = "Provider not support speech to text."
code = 400

View File

@@ -14,7 +14,7 @@ from controllers.web.error import NotChatAppError, CompletionRequestError, Provi
AppMoreLikeThisDisabledError, NotCompletionAppError, AppSuggestedQuestionsAfterAnswerDisabledError, \
ProviderQuotaExceededError, ProviderModelCurrentlyNotSupportError
from controllers.web.wraps import WebApiResource
from core.llm.error import LLMRateLimitError, LLMBadRequestError, LLMAuthorizationError, LLMAPIConnectionError, \
from core.model_providers.error import LLMRateLimitError, LLMBadRequestError, LLMAuthorizationError, LLMAPIConnectionError, \
ProviderTokenNotInitError, LLMAPIUnavailableError, QuotaExceededError, ModelCurrentlyNotSupportError
from libs.helper import uuid_value, TimestampField
from services.completion_service import CompletionService
@@ -101,8 +101,8 @@ class MessageMoreLikeThisApi(WebApiResource):
raise NotFound("Message Not Exists.")
except MoreLikeThisDisabledError:
raise AppMoreLikeThisDisabledError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
@@ -129,8 +129,8 @@ def compact_response(response: Union[dict | Generator]) -> Response:
yield "data: " + json.dumps(api.handle_error(NotFound("Message Not Exists.")).get_json()) + "\n\n"
except MoreLikeThisDisabledError:
yield "data: " + json.dumps(api.handle_error(AppMoreLikeThisDisabledError()).get_json()) + "\n\n"
except ProviderTokenNotInitError:
yield "data: " + json.dumps(api.handle_error(ProviderNotInitializeError()).get_json()) + "\n\n"
except ProviderTokenNotInitError as ex:
yield "data: " + json.dumps(api.handle_error(ProviderNotInitializeError(ex.description)).get_json()) + "\n\n"
except QuotaExceededError:
yield "data: " + json.dumps(api.handle_error(ProviderQuotaExceededError()).get_json()) + "\n\n"
except ModelCurrentlyNotSupportError:
@@ -167,8 +167,8 @@ class MessageSuggestedQuestionApi(WebApiResource):
raise NotFound("Conversation not found")
except SuggestedQuestionsAfterAnswerDisabledError:
raise AppSuggestedQuestionsAfterAnswerDisabledError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:

View File

@@ -0,0 +1,65 @@
# -*- coding:utf-8 -*-
import uuid
from controllers.web import api
from flask_restful import Resource
from flask import request
from werkzeug.exceptions import Unauthorized, NotFound
from models.model import Site, EndUser, App
from extensions.ext_database import db
from libs.passport import PassportService
class PassportResource(Resource):
"""Base resource for passport."""
def get(self):
app_code = request.headers.get('X-App-Code')
if app_code is None:
raise Unauthorized('X-App-Code header is missing.')
# get site from db and check if it is normal
site = db.session.query(Site).filter(
Site.code == app_code,
Site.status == 'normal'
).first()
if not site:
raise NotFound()
# get app from db and check if it is normal and enable_site
app_model = db.session.query(App).filter(App.id == site.app_id).first()
if not app_model or app_model.status != 'normal' or not app_model.enable_site:
raise NotFound()
end_user = EndUser(
tenant_id=app_model.tenant_id,
app_id=app_model.id,
type='browser',
is_anonymous=True,
session_id=generate_session_id(),
)
db.session.add(end_user)
db.session.commit()
payload = {
"iss": site.app_id,
'sub': 'Web API Passport',
'app_id': site.app_id,
'app_code': app_code,
'end_user_id': end_user.id,
}
tk = PassportService().issue(payload)
return {
'access_token': tk,
}
api.add_resource(PassportResource, '/passport')
def generate_session_id():
"""
Generate a unique session ID.
"""
while True:
session_id = str(uuid.uuid4())
existing_count = db.session.query(EndUser) \
.filter(EndUser.session_id == session_id).count()
if existing_count == 0:
return session_id

View File

@@ -1,110 +1,54 @@
# -*- coding:utf-8 -*-
import uuid
from functools import wraps
from flask import request, session
from flask import request
from flask_restful import Resource
from werkzeug.exceptions import NotFound, Unauthorized
from extensions.ext_database import db
from models.model import App, Site, EndUser
from models.model import App, EndUser, Site
from libs.passport import PassportService
def validate_token(view=None):
def validate_jwt_token(view=None):
def decorator(view):
@wraps(view)
def decorated(*args, **kwargs):
site = validate_and_get_site()
app_model = db.session.query(App).filter(App.id == site.app_id).first()
if not app_model:
raise NotFound()
if app_model.status != 'normal':
raise NotFound()
if not app_model.enable_site:
raise NotFound()
end_user = create_or_update_end_user_for_session(app_model)
app_model, end_user = decode_jwt_token()
return view(app_model, end_user, *args, **kwargs)
return decorated
if view:
return decorator(view)
return decorator
def validate_and_get_site():
"""
Validate and get API token.
"""
def decode_jwt_token():
auth_header = request.headers.get('Authorization')
if auth_header is None:
raise Unauthorized('Authorization header is missing.')
if ' ' not in auth_header:
raise Unauthorized('Invalid Authorization header format. Expected \'Bearer <api-key>\' format.')
auth_scheme, auth_token = auth_header.split(None, 1)
auth_scheme, tk = auth_header.split(None, 1)
auth_scheme = auth_scheme.lower()
if auth_scheme != 'bearer':
raise Unauthorized('Invalid Authorization header format. Expected \'Bearer <api-key>\' format.')
site = db.session.query(Site).filter(
Site.code == auth_token,
Site.status == 'normal'
).first()
if not site:
decoded = PassportService().verify(tk)
app_code = decoded.get('app_code')
app_model = db.session.query(App).filter(App.id == decoded['app_id']).first()
site = db.session.query(Site).filter(Site.code == app_code).first()
if not app_model:
raise NotFound()
if not app_code and not site:
raise Unauthorized('Site URL is no longer valid.')
if app_model.enable_site is False:
raise Unauthorized('Site is disabled.')
end_user = db.session.query(EndUser).filter(EndUser.id == decoded['end_user_id']).first()
if not end_user:
raise NotFound()
return site
def create_or_update_end_user_for_session(app_model):
"""
Create or update session terminal based on session ID.
"""
if 'session_id' not in session:
session['session_id'] = generate_session_id()
session_id = session.get('session_id')
end_user = db.session.query(EndUser) \
.filter(
EndUser.session_id == session_id,
EndUser.type == 'browser'
).first()
if end_user is None:
end_user = EndUser(
tenant_id=app_model.tenant_id,
app_id=app_model.id,
type='browser',
is_anonymous=True,
session_id=session_id
)
db.session.add(end_user)
db.session.commit()
return end_user
def generate_session_id():
"""
Generate a unique session ID.
"""
count = 1
session_id = ''
while count != 0:
session_id = str(uuid.uuid4())
count = db.session.query(EndUser) \
.filter(EndUser.session_id == session_id).count()
return session_id
return app_model, end_user
class WebApiResource(Resource):
method_decorators = [validate_token]
method_decorators = [validate_jwt_token]

View File

@@ -1,52 +0,0 @@
import os
from typing import Optional
import langchain
from flask import Flask
from jieba.analyse import default_tfidf
from langchain import set_handler
from langchain.prompts.base import DEFAULT_FORMATTER_MAPPING
from llama_index import IndexStructType, QueryMode
from llama_index.indices.registry import INDEX_STRUT_TYPE_TO_QUERY_MAP
from pydantic import BaseModel
from core.callback_handler.std_out_callback_handler import DifyStdOutCallbackHandler
from core.index.keyword_table.jieba_keyword_table import GPTJIEBAKeywordTableIndex
from core.index.keyword_table.stopwords import STOPWORDS
from core.prompt.prompt_template import OneLineFormatter
from core.vector_store.vector_store import VectorStore
from core.vector_store.vector_store_index_query import EnhanceGPTVectorStoreIndexQuery
class HostedOpenAICredential(BaseModel):
api_key: str
class HostedLLMCredentials(BaseModel):
openai: Optional[HostedOpenAICredential] = None
hosted_llm_credentials = HostedLLMCredentials()
def init_app(app: Flask):
formatter = OneLineFormatter()
DEFAULT_FORMATTER_MAPPING['f-string'] = formatter.format
INDEX_STRUT_TYPE_TO_QUERY_MAP[IndexStructType.KEYWORD_TABLE] = GPTJIEBAKeywordTableIndex.get_query_map()
INDEX_STRUT_TYPE_TO_QUERY_MAP[IndexStructType.WEAVIATE] = {
QueryMode.DEFAULT: EnhanceGPTVectorStoreIndexQuery,
QueryMode.EMBEDDING: EnhanceGPTVectorStoreIndexQuery,
}
INDEX_STRUT_TYPE_TO_QUERY_MAP[IndexStructType.QDRANT] = {
QueryMode.DEFAULT: EnhanceGPTVectorStoreIndexQuery,
QueryMode.EMBEDDING: EnhanceGPTVectorStoreIndexQuery,
}
default_tfidf.stop_words = STOPWORDS
if os.environ.get("DEBUG") and os.environ.get("DEBUG").lower() == 'true':
langchain.verbose = True
set_handler(DifyStdOutCallbackHandler())
if app.config.get("OPENAI_API_KEY"):
hosted_llm_credentials.openai = HostedOpenAICredential(api_key=app.config.get("OPENAI_API_KEY"))

View File

@@ -0,0 +1,31 @@
from typing import List
from langchain.schema import BaseMessage
from core.model_providers.models.entity.message import to_prompt_messages
from core.model_providers.models.llm.base import BaseLLM
class CalcTokenMixin:
def get_num_tokens_from_messages(self, model_instance: BaseLLM, messages: List[BaseMessage], **kwargs) -> int:
return model_instance.get_num_tokens(to_prompt_messages(messages))
def get_message_rest_tokens(self, model_instance: BaseLLM, messages: List[BaseMessage], **kwargs) -> int:
"""
Got the rest tokens available for the model after excluding messages tokens and completion max tokens
:param llm:
:param messages:
:return:
"""
llm_max_tokens = model_instance.model_rules.max_tokens.max
completion_max_tokens = model_instance.model_kwargs.max_tokens
used_tokens = self.get_num_tokens_from_messages(model_instance, messages, **kwargs)
rest_tokens = llm_max_tokens - completion_max_tokens - used_tokens
return rest_tokens
class ExceededLLMTokensLimitError(Exception):
pass

View File

@@ -0,0 +1,91 @@
from typing import Tuple, List, Any, Union, Sequence, Optional, cast
from langchain.agents import OpenAIFunctionsAgent, BaseSingleActionAgent
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.prompts.chat import BaseMessagePromptTemplate
from langchain.schema import AgentAction, AgentFinish, SystemMessage
from langchain.schema.language_model import BaseLanguageModel
from langchain.tools import BaseTool
from core.model_providers.models.llm.base import BaseLLM
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
"""
An Multi Dataset Retrieve Agent driven by Router.
"""
model_instance: BaseLLM
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def should_use_agent(self, query: str):
"""
return should use agent
:param query:
:return:
"""
return True
def plan(
self,
intermediate_steps: List[Tuple[AgentAction, str]],
callbacks: Callbacks = None,
**kwargs: Any,
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date, along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
if len(self.tools) == 0:
return AgentFinish(return_values={"output": ''}, log='')
elif len(self.tools) == 1:
tool = next(iter(self.tools))
tool = cast(DatasetRetrieverTool, tool)
rst = tool.run(tool_input={'dataset_id': tool.dataset_id, 'query': kwargs['input']})
return AgentFinish(return_values={"output": rst}, log=rst)
if intermediate_steps:
_, observation = intermediate_steps[-1]
return AgentFinish(return_values={"output": observation}, log=observation)
return super().plan(intermediate_steps, callbacks, **kwargs)
async def aplan(
self,
intermediate_steps: List[Tuple[AgentAction, str]],
callbacks: Callbacks = None,
**kwargs: Any,
) -> Union[AgentAction, AgentFinish]:
raise NotImplementedError()
@classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None,
system_message: Optional[SystemMessage] = SystemMessage(
content="You are a helpful AI assistant."
),
**kwargs: Any,
) -> BaseSingleActionAgent:
return super().from_llm_and_tools(
llm=llm,
tools=tools,
callback_manager=callback_manager,
extra_prompt_messages=extra_prompt_messages,
system_message=system_message,
**kwargs,
)

View File

@@ -0,0 +1,113 @@
from typing import List, Tuple, Any, Union, Sequence, Optional
from langchain.agents import OpenAIFunctionsAgent, BaseSingleActionAgent
from langchain.agents.openai_functions_agent.base import _parse_ai_message, \
_format_intermediate_steps
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.prompts.chat import BaseMessagePromptTemplate
from langchain.schema import AgentAction, AgentFinish, SystemMessage
from langchain.schema.language_model import BaseLanguageModel
from langchain.tools import BaseTool
from core.agent.agent.calc_token_mixin import ExceededLLMTokensLimitError
from core.agent.agent.openai_function_call_summarize_mixin import OpenAIFunctionCallSummarizeMixin
class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, OpenAIFunctionCallSummarizeMixin):
@classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None,
system_message: Optional[SystemMessage] = SystemMessage(
content="You are a helpful AI assistant."
),
**kwargs: Any,
) -> BaseSingleActionAgent:
return super().from_llm_and_tools(
llm=llm,
tools=tools,
callback_manager=callback_manager,
extra_prompt_messages=extra_prompt_messages,
system_message=cls.get_system_message(),
**kwargs,
)
def should_use_agent(self, query: str):
"""
return should use agent
:param query:
:return:
"""
original_max_tokens = self.llm.max_tokens
self.llm.max_tokens = 15
prompt = self.prompt.format_prompt(input=query, agent_scratchpad=[])
messages = prompt.to_messages()
predicted_message = self.llm.predict_messages(
messages, functions=self.functions, callbacks=None
)
function_call = predicted_message.additional_kwargs.get("function_call", {})
self.llm.max_tokens = original_max_tokens
return True if function_call else False
def plan(
self,
intermediate_steps: List[Tuple[AgentAction, str]],
callbacks: Callbacks = None,
**kwargs: Any,
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date, along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
agent_scratchpad = _format_intermediate_steps(intermediate_steps)
selected_inputs = {
k: kwargs[k] for k in self.prompt.input_variables if k != "agent_scratchpad"
}
full_inputs = dict(**selected_inputs, agent_scratchpad=agent_scratchpad)
prompt = self.prompt.format_prompt(**full_inputs)
messages = prompt.to_messages()
# summarize messages if rest_tokens < 0
try:
messages = self.summarize_messages_if_needed(messages, functions=self.functions)
except ExceededLLMTokensLimitError as e:
return AgentFinish(return_values={"output": str(e)}, log=str(e))
predicted_message = self.llm.predict_messages(
messages, functions=self.functions, callbacks=callbacks
)
agent_decision = _parse_ai_message(predicted_message)
return agent_decision
@classmethod
def get_system_message(cls):
return SystemMessage(content="You are a helpful AI assistant.\n"
"The current date or current time you know is wrong.\n"
"Respond directly if appropriate.")
def return_stopped_response(
self,
early_stopping_method: str,
intermediate_steps: List[Tuple[AgentAction, str]],
**kwargs: Any,
) -> AgentFinish:
try:
return super().return_stopped_response(early_stopping_method, intermediate_steps, **kwargs)
except ValueError:
return AgentFinish({"output": "I'm sorry, I don't know how to respond to that."}, "")

View File

@@ -0,0 +1,140 @@
from typing import cast, List
from langchain.chat_models import ChatOpenAI
from langchain.chat_models.openai import _convert_message_to_dict
from langchain.memory.summary import SummarizerMixin
from langchain.schema import SystemMessage, HumanMessage, BaseMessage, AIMessage
from langchain.schema.language_model import BaseLanguageModel
from pydantic import BaseModel
from core.agent.agent.calc_token_mixin import ExceededLLMTokensLimitError, CalcTokenMixin
from core.model_providers.models.llm.base import BaseLLM
class OpenAIFunctionCallSummarizeMixin(BaseModel, CalcTokenMixin):
moving_summary_buffer: str = ""
moving_summary_index: int = 0
summary_llm: BaseLanguageModel
model_instance: BaseLLM
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def summarize_messages_if_needed(self, messages: List[BaseMessage], **kwargs) -> List[BaseMessage]:
# calculate rest tokens and summarize previous function observation messages if rest_tokens < 0
rest_tokens = self.get_message_rest_tokens(self.model_instance, messages, **kwargs)
rest_tokens = rest_tokens - 20 # to deal with the inaccuracy of rest_tokens
if rest_tokens >= 0:
return messages
system_message = None
human_message = None
should_summary_messages = []
for message in messages:
if isinstance(message, SystemMessage):
system_message = message
elif isinstance(message, HumanMessage):
human_message = message
else:
should_summary_messages.append(message)
if len(should_summary_messages) > 2:
ai_message = should_summary_messages[-2]
function_message = should_summary_messages[-1]
should_summary_messages = should_summary_messages[self.moving_summary_index:-2]
self.moving_summary_index = len(should_summary_messages)
else:
error_msg = "Exceeded LLM tokens limit, stopped."
raise ExceededLLMTokensLimitError(error_msg)
new_messages = [system_message, human_message]
if self.moving_summary_index == 0:
should_summary_messages.insert(0, human_message)
summary_handler = SummarizerMixin(llm=self.summary_llm)
self.moving_summary_buffer = summary_handler.predict_new_summary(
messages=should_summary_messages,
existing_summary=self.moving_summary_buffer
)
new_messages.append(AIMessage(content=self.moving_summary_buffer))
new_messages.append(ai_message)
new_messages.append(function_message)
return new_messages
def get_num_tokens_from_messages(self, llm: BaseLanguageModel, messages: List[BaseMessage], **kwargs) -> int:
"""Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package.
Official documentation: https://github.com/openai/openai-cookbook/blob/
main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb"""
llm = cast(ChatOpenAI, llm)
model, encoding = llm._get_encoding_model()
if model.startswith("gpt-3.5-turbo"):
# every message follows <im_start>{role/name}\n{content}<im_end>\n
tokens_per_message = 4
# if there's a name, the role is omitted
tokens_per_name = -1
elif model.startswith("gpt-4"):
tokens_per_message = 3
tokens_per_name = 1
else:
raise NotImplementedError(
f"get_num_tokens_from_messages() is not presently implemented "
f"for model {model}."
"See https://github.com/openai/openai-python/blob/main/chatml.md for "
"information on how messages are converted to tokens."
)
num_tokens = 0
for m in messages:
message = _convert_message_to_dict(m)
num_tokens += tokens_per_message
for key, value in message.items():
if key == "function_call":
for f_key, f_value in value.items():
num_tokens += len(encoding.encode(f_key))
num_tokens += len(encoding.encode(f_value))
else:
num_tokens += len(encoding.encode(value))
if key == "name":
num_tokens += tokens_per_name
# every reply is primed with <im_start>assistant
num_tokens += 3
if kwargs.get('functions'):
for function in kwargs.get('functions'):
num_tokens += len(encoding.encode('name'))
num_tokens += len(encoding.encode(function.get("name")))
num_tokens += len(encoding.encode('description'))
num_tokens += len(encoding.encode(function.get("description")))
parameters = function.get("parameters")
num_tokens += len(encoding.encode('parameters'))
if 'title' in parameters:
num_tokens += len(encoding.encode('title'))
num_tokens += len(encoding.encode(parameters.get("title")))
num_tokens += len(encoding.encode('type'))
num_tokens += len(encoding.encode(parameters.get("type")))
if 'properties' in parameters:
num_tokens += len(encoding.encode('properties'))
for key, value in parameters.get('properties').items():
num_tokens += len(encoding.encode(key))
for field_key, field_value in value.items():
num_tokens += len(encoding.encode(field_key))
if field_key == 'enum':
for enum_field in field_value:
num_tokens += 3
num_tokens += len(encoding.encode(enum_field))
else:
num_tokens += len(encoding.encode(field_key))
num_tokens += len(encoding.encode(str(field_value)))
if 'required' in parameters:
num_tokens += len(encoding.encode('required'))
for required_field in parameters['required']:
num_tokens += 3
num_tokens += len(encoding.encode(required_field))
return num_tokens

View File

@@ -0,0 +1,103 @@
from typing import List, Tuple, Any, Union, Sequence, Optional
from langchain.agents import BaseMultiActionAgent
from langchain.agents.openai_functions_multi_agent.base import OpenAIMultiFunctionsAgent, _format_intermediate_steps, \
_parse_ai_message
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.prompts.chat import BaseMessagePromptTemplate
from langchain.schema import AgentAction, AgentFinish, SystemMessage
from langchain.schema.language_model import BaseLanguageModel
from langchain.tools import BaseTool
from core.agent.agent.calc_token_mixin import ExceededLLMTokensLimitError
from core.agent.agent.openai_function_call_summarize_mixin import OpenAIFunctionCallSummarizeMixin
class AutoSummarizingOpenMultiAIFunctionCallAgent(OpenAIMultiFunctionsAgent, OpenAIFunctionCallSummarizeMixin):
@classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None,
system_message: Optional[SystemMessage] = SystemMessage(
content="You are a helpful AI assistant."
),
**kwargs: Any,
) -> BaseMultiActionAgent:
return super().from_llm_and_tools(
llm=llm,
tools=tools,
callback_manager=callback_manager,
extra_prompt_messages=extra_prompt_messages,
system_message=cls.get_system_message(),
**kwargs,
)
def should_use_agent(self, query: str):
"""
return should use agent
:param query:
:return:
"""
original_max_tokens = self.llm.max_tokens
self.llm.max_tokens = 15
prompt = self.prompt.format_prompt(input=query, agent_scratchpad=[])
messages = prompt.to_messages()
predicted_message = self.llm.predict_messages(
messages, functions=self.functions, callbacks=None
)
function_call = predicted_message.additional_kwargs.get("function_call", {})
self.llm.max_tokens = original_max_tokens
return True if function_call else False
def plan(
self,
intermediate_steps: List[Tuple[AgentAction, str]],
callbacks: Callbacks = None,
**kwargs: Any,
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date, along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
agent_scratchpad = _format_intermediate_steps(intermediate_steps)
selected_inputs = {
k: kwargs[k] for k in self.prompt.input_variables if k != "agent_scratchpad"
}
full_inputs = dict(**selected_inputs, agent_scratchpad=agent_scratchpad)
prompt = self.prompt.format_prompt(**full_inputs)
messages = prompt.to_messages()
# summarize messages if rest_tokens < 0
try:
messages = self.summarize_messages_if_needed(messages, functions=self.functions)
except ExceededLLMTokensLimitError as e:
return AgentFinish(return_values={"output": str(e)}, log=str(e))
predicted_message = self.llm.predict_messages(
messages, functions=self.functions, callbacks=callbacks
)
agent_decision = _parse_ai_message(predicted_message)
return agent_decision
@classmethod
def get_system_message(cls):
# get current time
return SystemMessage(content="You are a helpful AI assistant.\n"
"The current date or current time you know is wrong.\n"
"Respond directly if appropriate.")

View File

@@ -0,0 +1,29 @@
import json
import re
from typing import Union
from langchain.agents.structured_chat.output_parser import StructuredChatOutputParser as LCStructuredChatOutputParser, \
logger
from langchain.schema import AgentAction, AgentFinish, OutputParserException
class StructuredChatOutputParser(LCStructuredChatOutputParser):
def parse(self, text: str) -> Union[AgentAction, AgentFinish]:
try:
action_match = re.search(r"```(.*?)\n?(.*?)```", text, re.DOTALL)
if action_match is not None:
response = json.loads(action_match.group(2).strip(), strict=False)
if isinstance(response, list):
# gpt turbo frequently ignores the directive to emit a single action
logger.warning("Got multiple action responses: %s", response)
response = response[0]
if response["action"] == "Final Answer":
return AgentFinish({"output": response["action_input"]}, text)
else:
return AgentAction(
response["action"], response.get("action_input", {}), text
)
else:
return AgentFinish({"output": text}, text)
except Exception as e:
raise OutputParserException(f"Could not parse LLM output: {text}") from e

View File

@@ -0,0 +1,162 @@
import re
from typing import List, Tuple, Any, Union, Sequence, Optional, cast
from langchain import BasePromptTemplate
from langchain.agents import StructuredChatAgent, AgentOutputParser, Agent
from langchain.agents.structured_chat.base import HUMAN_MESSAGE_TEMPLATE
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate
from langchain.schema import AgentAction, AgentFinish, OutputParserException
from langchain.tools import BaseTool
from langchain.agents.structured_chat.prompt import PREFIX, SUFFIX
from core.model_providers.models.llm.base import BaseLLM
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
FORMAT_INSTRUCTIONS = """Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
The nouns in the format of "Thought", "Action", "Action Input", "Final Answer" must be expressed in English.
Valid "action" values: "Final Answer" or {tool_names}
Provide only ONE action per $JSON_BLOB, as shown:
```
{{{{
"action": $TOOL_NAME,
"action_input": $INPUT
}}}}
```
Follow this format:
Question: input question to answer
Thought: consider previous and subsequent steps
Action:
```
$JSON_BLOB
```
Observation: action result
... (repeat Thought/Action/Observation N times)
Thought: I know what to respond
Action:
```
{{{{
"action": "Final Answer",
"action_input": "Final response to human"
}}}}
```"""
class StructuredMultiDatasetRouterAgent(StructuredChatAgent):
model_instance: BaseLLM
dataset_tools: Sequence[BaseTool]
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def should_use_agent(self, query: str):
"""
return should use agent
Using the ReACT mode to determine whether an agent is needed is costly,
so it's better to just use an Agent for reasoning, which is cheaper.
:param query:
:return:
"""
return True
def plan(
self,
intermediate_steps: List[Tuple[AgentAction, str]],
callbacks: Callbacks = None,
**kwargs: Any,
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date,
along with observations
callbacks: Callbacks to run.
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
if len(self.dataset_tools) == 0:
return AgentFinish(return_values={"output": ''}, log='')
elif len(self.dataset_tools) == 1:
tool = next(iter(self.dataset_tools))
tool = cast(DatasetRetrieverTool, tool)
rst = tool.run(tool_input={'dataset_id': tool.dataset_id, 'query': kwargs['input']})
return AgentFinish(return_values={"output": rst}, log=rst)
full_inputs = self.get_full_inputs(intermediate_steps, **kwargs)
full_output = self.llm_chain.predict(callbacks=callbacks, **full_inputs)
try:
return self.output_parser.parse(full_output)
except OutputParserException:
return AgentFinish({"output": "I'm sorry, the answer of model is invalid, "
"I don't know how to respond to that."}, "")
@classmethod
def create_prompt(
cls,
tools: Sequence[BaseTool],
prefix: str = PREFIX,
suffix: str = SUFFIX,
human_message_template: str = HUMAN_MESSAGE_TEMPLATE,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
memory_prompts: Optional[List[BasePromptTemplate]] = None,
) -> BasePromptTemplate:
tool_strings = []
for tool in tools:
args_schema = re.sub("}", "}}}}", re.sub("{", "{{{{", str(tool.args)))
tool_strings.append(f"{tool.name}: {tool.description}, args: {args_schema}")
formatted_tools = "\n".join(tool_strings)
unique_tool_names = set(tool.name for tool in tools)
tool_names = ", ".join('"' + name + '"' for name in unique_tool_names)
format_instructions = format_instructions.format(tool_names=tool_names)
template = "\n\n".join([prefix, formatted_tools, format_instructions, suffix])
if input_variables is None:
input_variables = ["input", "agent_scratchpad"]
_memory_prompts = memory_prompts or []
messages = [
SystemMessagePromptTemplate.from_template(template),
*_memory_prompts,
HumanMessagePromptTemplate.from_template(human_message_template),
]
return ChatPromptTemplate(input_variables=input_variables, messages=messages)
@classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
output_parser: Optional[AgentOutputParser] = None,
prefix: str = PREFIX,
suffix: str = SUFFIX,
human_message_template: str = HUMAN_MESSAGE_TEMPLATE,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
memory_prompts: Optional[List[BasePromptTemplate]] = None,
**kwargs: Any,
) -> Agent:
return super().from_llm_and_tools(
llm=llm,
tools=tools,
callback_manager=callback_manager,
output_parser=output_parser,
prefix=prefix,
suffix=suffix,
human_message_template=human_message_template,
format_instructions=format_instructions,
input_variables=input_variables,
memory_prompts=memory_prompts,
dataset_tools=tools,
**kwargs,
)

View File

@@ -0,0 +1,193 @@
import re
from typing import List, Tuple, Any, Union, Sequence, Optional
from langchain import BasePromptTemplate
from langchain.agents import StructuredChatAgent, AgentOutputParser, Agent
from langchain.agents.structured_chat.base import HUMAN_MESSAGE_TEMPLATE
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.memory.summary import SummarizerMixin
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate
from langchain.schema import AgentAction, AgentFinish, AIMessage, HumanMessage, OutputParserException
from langchain.tools import BaseTool
from langchain.agents.structured_chat.prompt import PREFIX, SUFFIX
from core.agent.agent.calc_token_mixin import CalcTokenMixin, ExceededLLMTokensLimitError
from core.model_providers.models.llm.base import BaseLLM
FORMAT_INSTRUCTIONS = """Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
The nouns in the format of "Thought", "Action", "Action Input", "Final Answer" must be expressed in English.
Valid "action" values: "Final Answer" or {tool_names}
Provide only ONE action per $JSON_BLOB, as shown:
```
{{{{
"action": $TOOL_NAME,
"action_input": $INPUT
}}}}
```
Follow this format:
Question: input question to answer
Thought: consider previous and subsequent steps
Action:
```
$JSON_BLOB
```
Observation: action result
... (repeat Thought/Action/Observation N times)
Thought: I know what to respond
Action:
```
{{{{
"action": "Final Answer",
"action_input": "Final response to human"
}}}}
```"""
class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
moving_summary_buffer: str = ""
moving_summary_index: int = 0
summary_llm: BaseLanguageModel
model_instance: BaseLLM
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def should_use_agent(self, query: str):
"""
return should use agent
Using the ReACT mode to determine whether an agent is needed is costly,
so it's better to just use an Agent for reasoning, which is cheaper.
:param query:
:return:
"""
return True
def plan(
self,
intermediate_steps: List[Tuple[AgentAction, str]],
callbacks: Callbacks = None,
**kwargs: Any,
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date,
along with observations
callbacks: Callbacks to run.
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
full_inputs = self.get_full_inputs(intermediate_steps, **kwargs)
prompts, _ = self.llm_chain.prep_prompts(input_list=[self.llm_chain.prep_inputs(full_inputs)])
messages = []
if prompts:
messages = prompts[0].to_messages()
rest_tokens = self.get_message_rest_tokens(self.model_instance, messages)
if rest_tokens < 0:
full_inputs = self.summarize_messages(intermediate_steps, **kwargs)
full_output = self.llm_chain.predict(callbacks=callbacks, **full_inputs)
try:
return self.output_parser.parse(full_output)
except OutputParserException:
return AgentFinish({"output": "I'm sorry, the answer of model is invalid, "
"I don't know how to respond to that."}, "")
def summarize_messages(self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs):
if len(intermediate_steps) >= 2:
should_summary_intermediate_steps = intermediate_steps[self.moving_summary_index:-1]
should_summary_messages = [AIMessage(content=observation)
for _, observation in should_summary_intermediate_steps]
if self.moving_summary_index == 0:
should_summary_messages.insert(0, HumanMessage(content=kwargs.get("input")))
self.moving_summary_index = len(intermediate_steps)
else:
error_msg = "Exceeded LLM tokens limit, stopped."
raise ExceededLLMTokensLimitError(error_msg)
summary_handler = SummarizerMixin(llm=self.summary_llm)
if self.moving_summary_buffer and 'chat_history' in kwargs:
kwargs["chat_history"].pop()
self.moving_summary_buffer = summary_handler.predict_new_summary(
messages=should_summary_messages,
existing_summary=self.moving_summary_buffer
)
if 'chat_history' in kwargs:
kwargs["chat_history"].append(AIMessage(content=self.moving_summary_buffer))
return self.get_full_inputs([intermediate_steps[-1]], **kwargs)
@classmethod
def create_prompt(
cls,
tools: Sequence[BaseTool],
prefix: str = PREFIX,
suffix: str = SUFFIX,
human_message_template: str = HUMAN_MESSAGE_TEMPLATE,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
memory_prompts: Optional[List[BasePromptTemplate]] = None,
) -> BasePromptTemplate:
tool_strings = []
for tool in tools:
args_schema = re.sub("}", "}}}}", re.sub("{", "{{{{", str(tool.args)))
tool_strings.append(f"{tool.name}: {tool.description}, args: {args_schema}")
formatted_tools = "\n".join(tool_strings)
tool_names = ", ".join([('"' + tool.name + '"') for tool in tools])
format_instructions = format_instructions.format(tool_names=tool_names)
template = "\n\n".join([prefix, formatted_tools, format_instructions, suffix])
if input_variables is None:
input_variables = ["input", "agent_scratchpad"]
_memory_prompts = memory_prompts or []
messages = [
SystemMessagePromptTemplate.from_template(template),
*_memory_prompts,
HumanMessagePromptTemplate.from_template(human_message_template),
]
return ChatPromptTemplate(input_variables=input_variables, messages=messages)
@classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
output_parser: Optional[AgentOutputParser] = None,
prefix: str = PREFIX,
suffix: str = SUFFIX,
human_message_template: str = HUMAN_MESSAGE_TEMPLATE,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
memory_prompts: Optional[List[BasePromptTemplate]] = None,
**kwargs: Any,
) -> Agent:
return super().from_llm_and_tools(
llm=llm,
tools=tools,
callback_manager=callback_manager,
output_parser=output_parser,
prefix=prefix,
suffix=suffix,
human_message_template=human_message_template,
format_instructions=format_instructions,
input_variables=input_variables,
memory_prompts=memory_prompts,
**kwargs,
)

View File

@@ -1,89 +0,0 @@
from typing import Optional
from langchain import LLMChain
from langchain.agents import ZeroShotAgent, AgentExecutor, ConversationalAgent
from langchain.callbacks import CallbackManager
from langchain.memory.chat_memory import BaseChatMemory
from core.callback_handler.agent_loop_gather_callback_handler import AgentLoopGatherCallbackHandler
from core.callback_handler.dataset_tool_callback_handler import DatasetToolCallbackHandler
from core.callback_handler.std_out_callback_handler import DifyStdOutCallbackHandler
from core.llm.llm_builder import LLMBuilder
class AgentBuilder:
@classmethod
def to_agent_chain(cls, tenant_id: str, tools, memory: Optional[BaseChatMemory],
dataset_tool_callback_handler: DatasetToolCallbackHandler,
agent_loop_gather_callback_handler: AgentLoopGatherCallbackHandler):
llm_callback_manager = CallbackManager([agent_loop_gather_callback_handler, DifyStdOutCallbackHandler()])
llm = LLMBuilder.to_llm(
tenant_id=tenant_id,
model_name=agent_loop_gather_callback_handler.model_name,
temperature=0,
max_tokens=1024,
callback_manager=llm_callback_manager
)
tool_callback_manager = CallbackManager([
agent_loop_gather_callback_handler,
dataset_tool_callback_handler,
DifyStdOutCallbackHandler()
])
for tool in tools:
tool.callback_manager = tool_callback_manager
prompt = cls.build_agent_prompt_template(
tools=tools,
memory=memory,
)
agent_llm_chain = LLMChain(
llm=llm,
prompt=prompt,
)
agent = cls.build_agent(agent_llm_chain=agent_llm_chain, memory=memory)
agent_callback_manager = CallbackManager(
[agent_loop_gather_callback_handler, DifyStdOutCallbackHandler()]
)
agent_chain = AgentExecutor.from_agent_and_tools(
tools=tools,
agent=agent,
memory=memory,
callback_manager=agent_callback_manager,
max_iterations=6,
early_stopping_method="generate",
# `generate` will continue to complete the last inference after reaching the iteration limit or request time limit
)
return agent_chain
@classmethod
def build_agent_prompt_template(cls, tools, memory: Optional[BaseChatMemory]):
if memory:
prompt = ConversationalAgent.create_prompt(
tools=tools,
)
else:
prompt = ZeroShotAgent.create_prompt(
tools=tools,
)
return prompt
@classmethod
def build_agent(cls, agent_llm_chain: LLMChain, memory: Optional[BaseChatMemory]):
if memory:
agent = ConversationalAgent(
llm_chain=agent_llm_chain
)
else:
agent = ZeroShotAgent(
llm_chain=agent_llm_chain
)
return agent

View File

@@ -0,0 +1,136 @@
import enum
import logging
from typing import Union, Optional
from langchain.agents import BaseSingleActionAgent, BaseMultiActionAgent
from langchain.callbacks.manager import Callbacks
from langchain.memory.chat_memory import BaseChatMemory
from langchain.tools import BaseTool
from pydantic import BaseModel, Extra
from core.agent.agent.multi_dataset_router_agent import MultiDatasetRouterAgent
from core.agent.agent.openai_function_call import AutoSummarizingOpenAIFunctionCallAgent
from core.agent.agent.openai_multi_function_call import AutoSummarizingOpenMultiAIFunctionCallAgent
from core.agent.agent.output_parser.structured_chat import StructuredChatOutputParser
from core.agent.agent.structed_multi_dataset_router_agent import StructuredMultiDatasetRouterAgent
from core.agent.agent.structured_chat import AutoSummarizingStructuredChatAgent
from langchain.agents import AgentExecutor as LCAgentExecutor
from core.model_providers.models.llm.base import BaseLLM
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
class PlanningStrategy(str, enum.Enum):
ROUTER = 'router'
REACT_ROUTER = 'react_router'
REACT = 'react'
FUNCTION_CALL = 'function_call'
MULTI_FUNCTION_CALL = 'multi_function_call'
class AgentConfiguration(BaseModel):
strategy: PlanningStrategy
model_instance: BaseLLM
tools: list[BaseTool]
summary_model_instance: BaseLLM
memory: Optional[BaseChatMemory] = None
callbacks: Callbacks = None
max_iterations: int = 6
max_execution_time: Optional[float] = None
early_stopping_method: str = "generate"
# `generate` will continue to complete the last inference after reaching the iteration limit or request time limit
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
class AgentExecuteResult(BaseModel):
strategy: PlanningStrategy
output: Optional[str]
configuration: AgentConfiguration
class AgentExecutor:
def __init__(self, configuration: AgentConfiguration):
self.configuration = configuration
self.agent = self._init_agent()
def _init_agent(self) -> Union[BaseSingleActionAgent | BaseMultiActionAgent]:
if self.configuration.strategy == PlanningStrategy.REACT:
agent = AutoSummarizingStructuredChatAgent.from_llm_and_tools(
model_instance=self.configuration.model_instance,
llm=self.configuration.model_instance.client,
tools=self.configuration.tools,
output_parser=StructuredChatOutputParser(),
summary_llm=self.configuration.summary_model_instance.client,
verbose=True
)
elif self.configuration.strategy == PlanningStrategy.FUNCTION_CALL:
agent = AutoSummarizingOpenAIFunctionCallAgent.from_llm_and_tools(
model_instance=self.configuration.model_instance,
llm=self.configuration.model_instance.client,
tools=self.configuration.tools,
extra_prompt_messages=self.configuration.memory.buffer if self.configuration.memory else None, # used for read chat histories memory
summary_llm=self.configuration.summary_model_instance.client,
verbose=True
)
elif self.configuration.strategy == PlanningStrategy.MULTI_FUNCTION_CALL:
agent = AutoSummarizingOpenMultiAIFunctionCallAgent.from_llm_and_tools(
model_instance=self.configuration.model_instance,
llm=self.configuration.model_instance.client,
tools=self.configuration.tools,
extra_prompt_messages=self.configuration.memory.buffer if self.configuration.memory else None, # used for read chat histories memory
summary_llm=self.configuration.summary_model_instance.client,
verbose=True
)
elif self.configuration.strategy == PlanningStrategy.ROUTER:
self.configuration.tools = [t for t in self.configuration.tools if isinstance(t, DatasetRetrieverTool)]
agent = MultiDatasetRouterAgent.from_llm_and_tools(
model_instance=self.configuration.model_instance,
llm=self.configuration.model_instance.client,
tools=self.configuration.tools,
extra_prompt_messages=self.configuration.memory.buffer if self.configuration.memory else None,
verbose=True
)
elif self.configuration.strategy == PlanningStrategy.REACT_ROUTER:
self.configuration.tools = [t for t in self.configuration.tools if isinstance(t, DatasetRetrieverTool)]
agent = StructuredMultiDatasetRouterAgent.from_llm_and_tools(
model_instance=self.configuration.model_instance,
llm=self.configuration.model_instance.client,
tools=self.configuration.tools,
output_parser=StructuredChatOutputParser(),
verbose=True
)
else:
raise NotImplementedError(f"Unknown Agent Strategy: {self.configuration.strategy}")
return agent
def should_use_agent(self, query: str) -> bool:
return self.agent.should_use_agent(query)
def run(self, query: str) -> AgentExecuteResult:
agent_executor = LCAgentExecutor.from_agent_and_tools(
agent=self.agent,
tools=self.configuration.tools,
memory=self.configuration.memory,
max_iterations=self.configuration.max_iterations,
max_execution_time=self.configuration.max_execution_time,
early_stopping_method=self.configuration.early_stopping_method,
callbacks=self.configuration.callbacks
)
try:
output = agent_executor.run(query)
except Exception:
logging.exception("agent_executor run failed")
output = None
return AgentExecuteResult(
output=output,
strategy=self.configuration.strategy,
configuration=self.configuration
)

View File

@@ -1,24 +1,29 @@
import json
import logging
import time
from typing import Any, Dict, List, Union, Optional
from langchain.agents import openai_functions_agent, openai_functions_multi_agent
from langchain.callbacks.base import BaseCallbackHandler
from langchain.schema import AgentAction, AgentFinish, LLMResult
from langchain.schema import AgentAction, AgentFinish, LLMResult, ChatGeneration
from core.callback_handler.entity.agent_loop import AgentLoop
from core.conversation_message_task import ConversationMessageTask
from core.model_providers.models.llm.base import BaseLLM
class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
"""Callback Handler that prints to std out."""
raise_error: bool = True
def __init__(self, model_name, conversation_message_task: ConversationMessageTask) -> None:
def __init__(self, model_instant: BaseLLM, conversation_message_task: ConversationMessageTask) -> None:
"""Initialize callback handler."""
self.model_name = model_name
self.model_instant = model_instant
self.conversation_message_task = conversation_message_task
self._agent_loops = []
self._current_loop = None
self._message_agent_thought = None
self.current_chain = None
@property
@@ -28,6 +33,7 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
def clear_agent_loops(self) -> None:
self._agent_loops = []
self._current_loop = None
self._message_agent_thought = None
@property
def always_verbose(self) -> bool:
@@ -60,35 +66,29 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
# kwargs={}
if self._current_loop and self._current_loop.status == 'llm_started':
self._current_loop.status = 'llm_end'
self._current_loop.prompt_tokens = response.llm_output['token_usage']['prompt_tokens']
self._current_loop.completion = response.generations[0][0].text
self._current_loop.completion_tokens = response.llm_output['token_usage']['completion_tokens']
if response.llm_output:
self._current_loop.prompt_tokens = response.llm_output['token_usage']['prompt_tokens']
completion_generation = response.generations[0][0]
if isinstance(completion_generation, ChatGeneration):
completion_message = completion_generation.message
if 'function_call' in completion_message.additional_kwargs:
self._current_loop.completion \
= json.dumps({'function_call': completion_message.additional_kwargs['function_call']})
else:
self._current_loop.completion = response.generations[0][0].text
else:
self._current_loop.completion = completion_generation.text
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
"""Do nothing."""
pass
if response.llm_output:
self._current_loop.completion_tokens = response.llm_output['token_usage']['completion_tokens']
def on_llm_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
logging.error(error)
logging.exception(error)
self._agent_loops = []
self._current_loop = None
def on_chain_start(
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
) -> None:
"""Print out that we are entering a chain."""
pass
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
"""Print out that we finished a chain."""
pass
def on_chain_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
logging.error(error)
self._message_agent_thought = None
def on_tool_start(
self,
@@ -107,15 +107,29 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
) -> Any:
"""Run on agent action."""
tool = action.tool
tool_input = action.tool_input
action_name_position = action.log.index("\nAction:") + 1 if action.log else -1
thought = action.log[:action_name_position].strip() if action.log else ''
tool_input = json.dumps({"query": action.tool_input}
if isinstance(action.tool_input, str) else action.tool_input)
completion = None
if isinstance(action, openai_functions_agent.base._FunctionsAgentAction) \
or isinstance(action, openai_functions_multi_agent.base._FunctionsAgentAction):
thought = action.log.strip()
completion = json.dumps({'function_call': action.message_log[0].additional_kwargs['function_call']})
else:
action_name_position = action.log.index("Action:") if action.log else -1
thought = action.log[:action_name_position].strip() if action.log else ''
if self._current_loop and self._current_loop.status == 'llm_end':
self._current_loop.status = 'agent_action'
self._current_loop.thought = thought
self._current_loop.tool_name = tool
self._current_loop.tool_input = tool_input
if completion is not None:
self._current_loop.completion = completion
self._message_agent_thought = self.conversation_message_task.on_agent_start(
self.current_chain,
self._current_loop
)
def on_tool_end(
self,
@@ -138,28 +152,22 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
self._current_loop.completed_at = time.perf_counter()
self._current_loop.latency = self._current_loop.completed_at - self._current_loop.started_at
self.conversation_message_task.on_agent_end(self.current_chain, self.model_name, self._current_loop)
self.conversation_message_task.on_agent_end(
self._message_agent_thought, self.model_instant, self._current_loop
)
self._agent_loops.append(self._current_loop)
self._current_loop = None
self._message_agent_thought = None
def on_tool_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Do nothing."""
logging.error(error)
logging.exception(error)
self._agent_loops = []
self._current_loop = None
def on_text(
self,
text: str,
color: Optional[str] = None,
end: str = "",
**kwargs: Optional[str],
) -> None:
"""Run on additional input from chains and agents."""
pass
self._message_agent_thought = None
def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> Any:
"""Run on agent end."""
@@ -169,10 +177,18 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
self._current_loop.completed = True
self._current_loop.completed_at = time.perf_counter()
self._current_loop.latency = self._current_loop.completed_at - self._current_loop.started_at
self._current_loop.thought = '[DONE]'
self._message_agent_thought = self.conversation_message_task.on_agent_start(
self.current_chain,
self._current_loop
)
self.conversation_message_task.on_agent_end(self.current_chain, self.model_name, self._current_loop)
self.conversation_message_task.on_agent_end(
self._message_agent_thought, self.model_instant, self._current_loop
)
self._agent_loops.append(self._current_loop)
self._current_loop = None
self._message_agent_thought = None
elif not self._current_loop and self._agent_loops:
self._agent_loops[-1].status = 'agent_finish'

View File

@@ -1,9 +1,9 @@
import json
import logging
from typing import Any, Dict, List, Union, Optional
from langchain.callbacks.base import BaseCallbackHandler
from langchain.schema import AgentAction, AgentFinish, LLMResult
from core.callback_handler.entity.dataset_query import DatasetQueryObj
from core.conversation_message_task import ConversationMessageTask
@@ -11,6 +11,7 @@ from core.conversation_message_task import ConversationMessageTask
class DatasetToolCallbackHandler(BaseCallbackHandler):
"""Callback Handler that prints to std out."""
raise_error: bool = True
def __init__(self, conversation_message_task: ConversationMessageTask) -> None:
"""Initialize callback handler."""
@@ -43,9 +44,11 @@ class DatasetToolCallbackHandler(BaseCallbackHandler):
input_str: str,
**kwargs: Any,
) -> None:
tool_name = serialized.get('name')
dataset_id = tool_name[len("dataset-"):]
self.conversation_message_task.on_dataset_query_end(DatasetQueryObj(dataset_id=dataset_id, query=input_str))
# tool_name = serialized.get('name')
input_dict = json.loads(input_str.replace("'", "\""))
dataset_id = input_dict.get('dataset_id')
query = input_dict.get('query')
self.conversation_message_task.on_dataset_query_end(DatasetQueryObj(dataset_id=dataset_id, query=query))
def on_tool_end(
self,
@@ -65,53 +68,4 @@ class DatasetToolCallbackHandler(BaseCallbackHandler):
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Do nothing."""
logging.error(error)
def on_chain_start(
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
) -> None:
pass
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
pass
def on_chain_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
pass
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> None:
pass
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
pass
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
"""Do nothing."""
pass
def on_llm_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
logging.error(error)
def on_agent_action(
self, action: AgentAction, color: Optional[str] = None, **kwargs: Any
) -> Any:
pass
def on_text(
self,
text: str,
color: Optional[str] = None,
end: str = "",
**kwargs: Optional[str],
) -> None:
"""Run on additional input from chains and agents."""
pass
def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> Any:
"""Run on agent end."""
pass
logging.exception(error)

View File

@@ -10,9 +10,9 @@ class AgentLoop(BaseModel):
tool_output: str = None
prompt: str = None
prompt_tokens: int = None
prompt_tokens: int = 0
completion: str = None
completion_tokens: int = None
completion_tokens: int = 0
latency: float = None

View File

@@ -1,39 +1,26 @@
from llama_index import Response
from typing import List
from langchain.schema import Document
from extensions.ext_database import db
from models.dataset import DocumentSegment
class IndexToolCallbackHandler:
def __init__(self) -> None:
self._response = None
@property
def response(self) -> Response:
return self._response
def on_tool_end(self, response: Response) -> None:
"""Handle tool end."""
self._response = response
class DatasetIndexToolCallbackHandler(IndexToolCallbackHandler):
class DatasetIndexToolCallbackHandler:
"""Callback handler for dataset tool."""
def __init__(self, dataset_id: str) -> None:
super().__init__()
self.dataset_id = dataset_id
def on_tool_end(self, response: Response) -> None:
def on_tool_end(self, documents: List[Document]) -> None:
"""Handle tool end."""
for node in response.source_nodes:
index_node_id = node.node.doc_id
for document in documents:
doc_id = document.metadata['doc_id']
# add hit count to document segment
db.session.query(DocumentSegment).filter(
DocumentSegment.dataset_id == self.dataset_id,
DocumentSegment.index_node_id == index_node_id
DocumentSegment.index_node_id == doc_id
).update(
{DocumentSegment.hit_count: DocumentSegment.hit_count + 1},
synchronize_session=False

View File

@@ -1,21 +1,22 @@
import logging
import time
from typing import Any, Dict, List, Union, Optional
from typing import Any, Dict, List, Union
from langchain.callbacks.base import BaseCallbackHandler
from langchain.schema import AgentAction, AgentFinish, LLMResult, HumanMessage, AIMessage, SystemMessage
from langchain.schema import LLMResult, BaseMessage
from core.callback_handler.entity.llm_message import LLMMessage
from core.conversation_message_task import ConversationMessageTask, ConversationTaskStoppedException
from core.llm.streamable_chat_open_ai import StreamableChatOpenAI
from core.llm.streamable_open_ai import StreamableOpenAI
from core.model_providers.models.entity.message import to_prompt_messages, PromptMessage
from core.model_providers.models.llm.base import BaseLLM
class LLMCallbackHandler(BaseCallbackHandler):
raise_error: bool = True
def __init__(self, llm: Union[StreamableOpenAI, StreamableChatOpenAI],
def __init__(self, model_instance: BaseLLM,
conversation_message_task: ConversationMessageTask):
self.llm = llm
self.model_instance = model_instance
self.llm_message = LLMMessage()
self.start_at = None
self.conversation_message_task = conversation_message_task
@@ -25,41 +26,41 @@ class LLMCallbackHandler(BaseCallbackHandler):
"""Whether to call verbose callbacks even if verbose is False."""
return True
def on_chat_model_start(
self,
serialized: Dict[str, Any],
messages: List[List[BaseMessage]],
**kwargs: Any
) -> Any:
self.start_at = time.perf_counter()
real_prompts = []
for message in messages[0]:
if message.type == 'human':
role = 'user'
elif message.type == 'ai':
role = 'assistant'
else:
role = 'system'
real_prompts.append({
"role": role,
"text": message.content
})
self.llm_message.prompt = real_prompts
self.llm_message.prompt_tokens = self.model_instance.get_num_tokens(to_prompt_messages(messages[0]))
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> None:
self.start_at = time.perf_counter()
if 'Chat' in serialized['name']:
real_prompts = []
messages = []
for prompt in prompts:
role, content = prompt.split(': ', maxsplit=1)
if role == 'human':
role = 'user'
message = HumanMessage(content=content)
elif role == 'ai':
role = 'assistant'
message = AIMessage(content=content)
else:
message = SystemMessage(content=content)
self.llm_message.prompt = [{
"role": 'user',
"text": prompts[0]
}]
real_prompt = {
"role": role,
"text": content
}
real_prompts.append(real_prompt)
messages.append(message)
self.llm_message.prompt = real_prompts
self.llm_message.prompt_tokens = self.llm.get_messages_tokens(messages)
else:
self.llm_message.prompt = [{
"role": 'user',
"text": prompts[0]
}]
self.llm_message.prompt_tokens = self.llm.get_num_tokens(prompts[0])
self.llm_message.prompt_tokens = self.model_instance.get_num_tokens([PromptMessage(content=prompts[0])])
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
end_at = time.perf_counter()
@@ -68,9 +69,8 @@ class LLMCallbackHandler(BaseCallbackHandler):
if not self.conversation_message_task.streaming:
self.conversation_message_task.append_message_text(response.generations[0][0].text)
self.llm_message.completion = response.generations[0][0].text
self.llm_message.completion_tokens = response.llm_output['token_usage']['completion_tokens']
else:
self.llm_message.completion_tokens = self.llm.get_num_tokens(self.llm_message.completion)
self.llm_message.completion_tokens = self.model_instance.get_num_tokens([PromptMessage(content=self.llm_message.completion)])
self.conversation_message_task.save_message(self.llm_message)
@@ -91,62 +91,9 @@ class LLMCallbackHandler(BaseCallbackHandler):
if self.conversation_message_task.streaming:
end_at = time.perf_counter()
self.llm_message.latency = end_at - self.start_at
self.llm_message.completion_tokens = self.llm.get_num_tokens(self.llm_message.completion)
self.llm_message.completion_tokens = self.model_instance.get_num_tokens(
[PromptMessage(content=self.llm_message.completion)]
)
self.conversation_message_task.save_message(llm_message=self.llm_message, by_stopped=True)
else:
logging.error(error)
def on_chain_start(
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
) -> None:
pass
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
pass
def on_chain_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
pass
def on_tool_start(
self,
serialized: Dict[str, Any],
input_str: str,
**kwargs: Any,
) -> None:
pass
def on_agent_action(
self, action: AgentAction, color: Optional[str] = None, **kwargs: Any
) -> Any:
pass
def on_tool_end(
self,
output: str,
color: Optional[str] = None,
observation_prefix: Optional[str] = None,
llm_prefix: Optional[str] = None,
**kwargs: Any,
) -> None:
pass
def on_tool_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
pass
def on_text(
self,
text: str,
color: Optional[str] = None,
end: str = "",
**kwargs: Optional[str],
) -> None:
pass
def on_agent_finish(
self, finish: AgentFinish, color: Optional[str] = None, **kwargs: Any
) -> None:
pass
logging.debug("on_llm_error: %s", error)

Some files were not shown because too many files have changed in this diff Show More