Compare commits

..

123 Commits

Author SHA1 Message Date
takatost
216fc5d312 feat: bump version 0.3.14 (#861) 2023-08-15 22:46:15 +08:00
takatost
7a8590980e fix: dataset direct output (#860) 2023-08-15 22:27:31 +08:00
takatost
e8c14bb732 feat: rename title in site both rename name in app (#857) 2023-08-15 20:42:32 +08:00
Joel
bf45f08e78 chore: handle provider name capitalization (#855) 2023-08-15 17:22:40 +08:00
Matri
2c77a74c40 fix: frontend permission check (#784) 2023-08-15 13:35:47 +08:00
zxhlyh
440cf63317 fix: setting modal margin (#849) 2023-08-15 12:05:27 +08:00
Matri
50b11e925b fix: change config string variable limit (#837)
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
2023-08-15 11:26:58 +08:00
Joel
7cc81b4269 fix: var config content can not be saved (#841) 2023-08-15 09:51:43 +08:00
crazywoola
93b0813b73 Update README.md (#839) 2023-08-15 09:43:21 +08:00
crazywoola
649b44aefa Update README_CN.md (#840) 2023-08-15 09:43:11 +08:00
crazywoola
1e95d74ae2 update doc (#838) 2023-08-15 09:25:37 +08:00
crazywoola
700d5f2673 update llms (#835) 2023-08-14 22:41:40 +08:00
takatost
3b8234e486 feat: bump version to 0.3.13 (#830) 2023-08-14 16:36:49 +08:00
zxhlyh
0feb0bf7c0 fix: free quota tip (#831) 2023-08-14 16:36:04 +08:00
Krasus.Chen
c5d148bf94 fix #794 input bug (#801) 2023-08-14 15:29:18 +08:00
zxhlyh
e5e86fc033 Feat/apply free quota (#828)
Co-authored-by: Joel <iamjoel007@gmail.com>
2023-08-14 12:46:28 +08:00
takatost
cc52cdc2a9 Feat/add free provider apply (#829) 2023-08-14 12:44:35 +08:00
zxhlyh
42a417167f feat: add system default model help tip (#827) 2023-08-13 22:50:31 +08:00
crazywoola
4b0d9272ef Fix 802 (#826) 2023-08-13 20:30:17 +08:00
crazywoola
48a303b8e9 Feature/fix disable site (#825) 2023-08-13 17:32:23 +08:00
takatost
8e15ba6cd6 Fix/no trial provider (#823) 2023-08-13 14:56:32 +08:00
takatost
7898937eae feat: optimize message return (#822) 2023-08-13 13:51:12 +08:00
takatost
1bd0a76a20 feat: optimize error raise (#820) 2023-08-13 00:59:36 +08:00
takatost
2f179d61dc fix: completion error when dataset was deleted (#819) 2023-08-13 00:25:05 +08:00
Joel
7457550673 feat: frontend remove gpt4 check (#815) 2023-08-12 15:05:51 +08:00
conghaoyuan
c13a90ee69 only admin and owner can delete app (#810) 2023-08-12 14:18:21 +08:00
crazywoola
5a7b51f809 fix: label (#809) 2023-08-12 10:41:05 +08:00
takatost
f18ce203b5 feat: optimize error logging (#808) 2023-08-12 02:22:43 +08:00
takatost
b81b8637ec feat: temp remove paid option of anthropic (#807) 2023-08-12 01:54:38 +08:00
takatost
0c6f92d9be Feat/only tag arm64 build (#806) 2023-08-12 01:44:18 +08:00
takatost
55b24c373f Revert "Fix/disable site when change code" (#805) 2023-08-12 01:38:53 +08:00
takatost
d10ef17f17 feat: frontend multi models support (#804)
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
Co-authored-by: Joel <iamjoel007@gmail.com>
2023-08-12 00:57:13 +08:00
takatost
5fa2161b05 feat: server multi models support (#799) 2023-08-12 00:57:00 +08:00
Krasus.Chen
d8b712b325 fix bug desc/copyright/privacy_policy none (#796) 2023-08-11 18:21:11 +08:00
Matri
220f7c81e9 build: fix .dockerignore file (#800) 2023-08-11 18:19:44 +08:00
Matri
fc7e4ac75b fix: automatically create tenant for user (#793) 2023-08-11 18:18:11 +08:00
crazywoola
39933aeb62 feat: add readme (#791) 2023-08-09 20:15:24 +08:00
crazywoola
beb8065660 fix: remove ruby from repo due to main gitignore (#790) 2023-08-09 19:47:50 +08:00
crazywoola
36080fe352 fix: add missing code (#788) 2023-08-09 19:36:39 +08:00
Benjamin
a510f32124 Add Ruby's SDK implement code. (#786) 2023-08-09 19:21:52 +08:00
lixiaoyin
cc277227ad fix i is not incremented due to violating the uniqueness constraint w… (#771)
Co-authored-by: 李啸吟 <746963140@qq.com>
2023-08-08 21:19:06 +08:00
crazywoola
3d194787b4 Fix/disable site when change code (#775) 2023-08-08 10:00:00 +08:00
Matri
a8d5ef9894 fix: members page z-index bug (#768) 2023-08-08 09:17:31 +08:00
Matri
6242e91a6b Fix: Install page redirects to signin if Dify finished setup. (#762) 2023-08-07 13:19:47 +08:00
crazywoola
cc7b5d128b fix: doc issue in #757 (#767) 2023-08-07 11:30:39 +08:00
Matri
f914eb95eb fix: doc links (#763) 2023-08-07 10:50:45 +08:00
Matri
8ae1eb0ebb lint: frontend linting issues (#744) 2023-08-07 10:20:40 +08:00
Joel
2ba89d0deb fix: chatbot not show all in small screen (#765) 2023-08-07 09:40:16 +08:00
takatost
3b08bf1c6c feat: add app icon modify route (#760) 2023-08-06 16:21:35 +08:00
takatost
95689ec451 fix: modify app name & icon raise 401 (#759) 2023-08-06 16:11:04 +08:00
舜岳
51554361fc refactor: Added project name to Docker Compose command (#753) 2023-08-05 21:54:42 +08:00
takatost
491d29cc87 feat: optimize multi platform image build (#754) 2023-08-05 17:23:57 +08:00
bowen
6a7a71af1f perf: operational feedback (#749) 2023-08-05 10:11:48 +08:00
Matri
a25e038a8b fix: text copy issue (#723) 2023-08-04 10:49:13 +08:00
takatost
5d783a4922 fix: wrong version tag of base docker image (#739) 2023-08-03 22:22:27 +08:00
Panmuse
f0eab73f3d Update README.md (#735) 2023-08-03 16:33:49 +08:00
bowen
a693569621 fix: unable to open switch (#726) 2023-08-03 16:33:30 +08:00
Joel
30c67dcd8c fix: package changed made build pipe fail again (#732) 2023-08-03 13:20:52 +08:00
Panmuse
2295cce489 Update README_CN.md (#730) 2023-08-03 13:18:03 +08:00
Joel
bfbaf2daa5 fix: package changed made build pipe fail (#731) 2023-08-03 12:25:33 +08:00
Matri
dfe10e9dfe fix: generate_more_like_this function issue (#722) 2023-08-03 11:37:09 +08:00
KVOJJJin
60ac915c9c Fix: hide qa in cloud version (#729) 2023-08-03 11:28:42 +08:00
舜岳
b1b9e3ff53 refactor: move dev packages to devDependencies (#719) 2023-08-03 10:49:25 +08:00
crazywoola
c4c47ae8c6 feat: add doc (#728) 2023-08-03 10:40:36 +08:00
Joel
17c3a63e50 fix: explore app list grid style conflict and remove useless style (#725) 2023-08-03 09:51:00 +08:00
takatost
654985177f fix: segment resort in dataset retrieve by index_node_id_to_position (#721) 2023-08-02 21:31:54 +08:00
bowen
0d791839e6 perf:repeated select workspace (#710) 2023-08-02 17:33:45 +08:00
Rhon Joe
0fc76f7e17 fix(web): fix style override issue (#713) 2023-08-02 17:32:11 +08:00
bowen
41d33ee837 fix: abnormal styles (#711) 2023-08-02 17:31:30 +08:00
bowen
9485cc9308 fix: can not choose emoji (#716) 2023-08-02 15:22:27 +08:00
takatost
e18211ffea feat: fix azure completion choices return empty (#708) 2023-08-01 15:36:53 +08:00
Joel
a856ef387b feat: dashboard add tps chart (#706)
Co-authored-by: John Wang <takatost@gmail.com>
2023-08-01 15:17:20 +08:00
Jyong
fa73aa8dbf add embedding max retries (#699) 2023-07-31 23:28:37 +08:00
Rhon Joe
c48ec1334e fix web style (#684) 2023-07-31 16:24:51 +08:00
qiuqiua
1647970fb6 Add trobleshooting notes for devcontainer (#687) 2023-07-31 16:24:37 +08:00
takatost
12ecf89a87 feat: fix completion log error (#692) 2023-07-31 15:38:13 +08:00
zxhlyh
a0bd15245a Fix/app logs today filter (#689) 2023-07-31 13:30:04 +08:00
takatost
0c18cab111 feat: add queue to celery task (#688) 2023-07-31 13:13:08 +08:00
takatost
396197e881 fix: not annotation error in log (#686) 2023-07-31 11:50:35 +08:00
Joel
6a564e2d5c fix: server side render trigger GitHub api rate limit (#685) 2023-07-31 11:07:44 +08:00
takatost
f369202c12 feat: remove llama index citation (#679) 2023-07-30 01:46:27 +08:00
John Wang
a4678845dd feat: bump version to 0.3.12 (#674) 2023-07-29 17:49:35 +08:00
Jyong
174ebb51db add qa thread control (#677) 2023-07-29 17:49:18 +08:00
John Wang
626c78a690 fix: agent parse result error (#676) 2023-07-29 17:00:38 +08:00
Jyong
9eaae770a6 Feat/add thread control (#675) 2023-07-29 17:00:21 +08:00
Jyong
ca60610306 logging qa error (#672) 2023-07-29 01:51:18 +08:00
Jyong
082f8b17ab Feat/milvus support (#671)
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
Co-authored-by: JzoNg <jzongcode@gmail.com>
2023-07-28 22:19:39 +08:00
KVOJJJin
cf93d8d6e2 Feat: Q&A format segmentation support (#668)
Co-authored-by: jyong <718720800@qq.com>
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
2023-07-28 20:47:15 +08:00
John Wang
aae2fb8a30 fix: dataset retrieve npe when dataset desc is null (#669) 2023-07-28 17:40:36 +08:00
Joel
23e52f14e3 feat: chat add page title (#667) 2023-07-28 14:44:45 +08:00
zxhlyh
c5b68fb273 fix: app config speech-to-text feature (#665) 2023-07-28 14:02:32 +08:00
zxhlyh
6f17c9b2fe fix: next version (#666) 2023-07-28 14:02:17 +08:00
Luyu Zhang
c98311b325 Update LICENSE (#663) 2023-07-28 09:45:10 +08:00
Joel
d44d4bd6fd feat: support query date tool (#662) 2023-07-27 22:27:05 +08:00
John Wang
2adaceab82 feat: bump version to 0.3.11 (#654) 2023-07-27 22:25:32 +08:00
John Wang
d979955c8a feat: optimize current time (#661) 2023-07-27 22:15:07 +08:00
Joel
eae670ea4a feat: enchance chat user experience (#660) 2023-07-27 18:04:41 +08:00
John Wang
b5825142d1 feat: add current time tool in universal chat agent (#659) 2023-07-27 17:39:36 +08:00
Joel
741e9303d4 fix: use sharp logo replace old logo (#658) 2023-07-27 16:34:30 +08:00
John Wang
538e3fc256 fix: return message error in blocking mode (#657) 2023-07-27 16:14:45 +08:00
John Wang
ba3dc8cae0 feat: fix dataset retrieve agent llm not support error (#656) 2023-07-27 15:45:52 +08:00
zxhlyh
ae7c0380dc Feat/application api add speech to text (#655) 2023-07-27 14:53:19 +08:00
Joel
23e3413655 feat: chat in explore support agent (#647)
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
2023-07-27 13:27:34 +08:00
John Wang
4fdb37771a feat: universal chat in explore (#649)
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
2023-07-27 13:08:57 +08:00
TheFu527
94b54b7ca9 feat: replace the end user column in the web page Log & Ann. with the… (#653)
Co-authored-by: Hao Fu <hao.fu@helloklarity.com>
2023-07-27 12:48:43 +08:00
crazywoola
f9412f5fdb fix: site enable check (#645) 2023-07-26 11:11:09 +08:00
zxhlyh
1d6829f400 Feat/application config user input field collapse (#643) 2023-07-26 10:27:52 +08:00
zxhlyh
f8bae897e5 fix: switch workspace (#642) 2023-07-26 10:25:35 +08:00
Selenium39
dd1172b57e Perf: Support for password display and hiding (#636)
Co-authored-by: Selenium39 <selenium39@qq.com>
2023-07-24 14:48:00 +08:00
Rhon Joe
67d326a558 fix(web): fix svg unrecognized props (#631) 2023-07-24 10:31:56 +08:00
zxhlyh
fe747040bc downgrade next version (#626) 2023-07-21 12:27:23 +08:00
Rhon Joe
7d6c925cbc fix(web): using Tooltip unique selector key (#622) 2023-07-21 11:15:00 +08:00
Joel
f488d06b20 fix: Top P description error (#624) 2023-07-21 09:15:52 +08:00
Rhon Joe
c00a19ced3 fix(web): fix Embedded copy status when toggle options (#621) 2023-07-21 09:06:51 +08:00
John Wang
e9810a6df2 fix: azure openai embedding model name error (#612) 2023-07-20 13:52:54 +08:00
John Wang
cae15013e0 fix: azure openai deployment list was deprecated suddenly (#611) 2023-07-20 13:46:39 +08:00
Jyong
52c84da051 add clean unused dataset command (#609) 2023-07-20 11:08:28 +08:00
Jyong
026f0bfce9 Feat/clean vector dataset (#605) 2023-07-19 21:30:25 +08:00
Joel
d19181fb29 chore: minify embed js (#604) 2023-07-19 19:48:44 +08:00
Yuhao
2f9de2229f feat: embed into other site support set custom host (#580)
Co-authored-by: Joel <iamjoel007@gmail.com>
2023-07-19 19:43:07 +08:00
Rhon Joe
34f55739e0 fix(web): fix #596 copy-to-clipboard issue (#602) 2023-07-19 19:29:37 +08:00
Joel
668b059c07 fix: quick switch and click create conversation button may caused fetch conversation list error (#603) 2023-07-19 17:17:29 +08:00
zxhlyh
753e5f1500 Fix/application configuration preview style (#597) 2023-07-19 12:41:35 +08:00
749 changed files with 31650 additions and 7052 deletions

11
.devcontainer/Dockerfile Normal file
View File

@@ -0,0 +1,11 @@
FROM mcr.microsoft.com/devcontainers/anaconda:0-3
# Copy environment.yml (if found) to a temp location so we update the environment. Also
# copy "noop.txt" so the COPY instruction does not fail if no environment.yml exists.
COPY environment.yml* .devcontainer/noop.txt /tmp/conda-tmp/
RUN if [ -f "/tmp/conda-tmp/environment.yml" ]; then umask 0002 && /opt/conda/bin/conda env update -n base -f /tmp/conda-tmp/environment.yml; fi \
&& rm -rf /tmp/conda-tmp
# [Optional] Uncomment this section to install additional OS packages.
# RUN apt-get update && export DEBIAN_FRONTEND=noninteractive \
# && apt-get -y install --no-install-recommends <your-package-list-here>

37
.devcontainer/README.md Normal file
View File

@@ -0,0 +1,37 @@
# Devlopment with devcontainer
This project includes a devcontainer configuration that allows you to open the project in a container with a fully configured development environment.
Both frontend and backend environments are initialized when the container is started.
## GitHub Codespaces
[![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://codespaces.new/langgenius/dify)
you can simply click the button above to open this project in GitHub Codespaces.
For more info, check out the [GitHub documentation](https://docs.github.com/en/free-pro-team@latest/github/developing-online-with-codespaces/creating-a-codespace#creating-a-codespace).
## VS Code Dev Containers
[![Open in Dev Containers](https://img.shields.io/static/v1?label=Dev%20Containers&message=Open&color=blue&logo=visualstudiocode)](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langgenius/dify)
if you have VS Code installed, you can click the button above to open this project in VS Code Dev Containers.
You can learn more in the [Dev Containers documentation](https://code.visualstudio.com/docs/devcontainers/containers).
## Pros of Devcontainer
Unified Development Environment: By using devcontainers, you can ensure that all developers are developing in the same environment, reducing the occurrence of "it works on my machine" type of issues.
Quick Start: New developers can set up their development environment in a few simple steps, without spending a lot of time on environment configuration.
Isolation: Devcontainers isolate your project from your host operating system, reducing the chance of OS updates or other application installations impacting the development environment.
## Cons of Devcontainer
Learning Curve: For developers unfamiliar with Docker and VS Code, using devcontainers may be somewhat complex.
Performance Impact: While usually minimal, programs running inside a devcontainer may be slightly slower than those running directly on the host.
## Troubleshooting
if you see such error message when you open this project in codespaces:
![Alt text](troubleshooting.png)
a simple workaround is change `/signin` endpoint into another one, then login with github account and close the tab, then change it back to `/signin` endpoint. Then all things will be fine.
The reason is `signin` endpoint is not allowed in codespaces, details can be found [here](https://github.com/orgs/community/discussions/5204)

View File

@@ -0,0 +1,53 @@
// For format details, see https://aka.ms/devcontainer.json. For config options, see the
// README at: https://github.com/devcontainers/templates/tree/main/src/anaconda
{
"name": "Anaconda (Python 3)",
"build": {
"context": "..",
"dockerfile": "Dockerfile"
},
"features": {
"ghcr.io/dhoeric/features/act:1": {},
"ghcr.io/devcontainers/features/node:1": {
"nodeGypDependencies": true,
"version": "lts"
},
"ghcr.io/devcontainers-contrib/features/npm-package:1": {
"package": "typescript",
"version": "latest"
},
"ghcr.io/devcontainers/features/docker-in-docker:2": {
"moby": true,
"azureDnsAutoDetection": true,
"installDockerBuildx": true,
"version": "latest",
"dockerDashComposeVersion": "v2"
}
},
"customizations": {
"vscode": {
"extensions": [
"ms-python.pylint",
"GitHub.copilot",
"ms-python.python"
]
}
},
"postStartCommand": "cd api && pip install -r requirements.txt",
"postCreateCommand": "cd web && npm install"
// Features to add to the dev container. More info: https://containers.dev/features.
// "features": {},
// Use 'forwardPorts' to make a list of ports inside the container available locally.
// "forwardPorts": [],
// Use 'postCreateCommand' to run commands after the container is created.
// "postCreateCommand": "python --version",
// Configure tool-specific properties.
// "customizations": {},
// Uncomment to connect as root instead. More info: https://aka.ms/dev-containers-non-root.
// "remoteUser": "root"
}

3
.devcontainer/noop.txt Normal file
View File

@@ -0,0 +1,3 @@
This file copied into the container along with environment.yml* from the parent
folder. This file is included to prevents the Dockerfile COPY instruction from
failing if no environment.yml is found.

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

View File

@@ -42,12 +42,14 @@ jobs:
uses: docker/build-push-action@v4
with:
context: "{{defaultContext}}:api"
platforms: linux/amd64,linux/arm64
platforms: ${{ startsWith(github.ref, 'refs/tags/') && 'linux/amd64,linux/arm64' || 'linux/amd64' }}
build-args: |
COMMIT_SHA=${{ fromJSON(steps.meta.outputs.json).labels['org.opencontainers.image.revision'] }}
push: true
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
cache-from: type=gha
cache-to: type=gha,mode=max
- name: Deploy to server
if: github.ref == 'refs/heads/deploy/dev'

View File

@@ -42,12 +42,14 @@ jobs:
uses: docker/build-push-action@v4
with:
context: "{{defaultContext}}:web"
platforms: linux/amd64,linux/arm64
platforms: ${{ startsWith(github.ref, 'refs/tags/') && 'linux/amd64,linux/arm64' || 'linux/amd64' }}
build-args: |
COMMIT_SHA=${{ fromJSON(steps.meta.outputs.json).labels['org.opencontainers.image.revision'] }}
push: true
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
cache-from: type=gha
cache-to: type=gha,mode=max
- name: Deploy to server
if: github.ref == 'refs/heads/deploy/dev'

View File

@@ -19,7 +19,8 @@ def check_file_for_chinese_comments(file_path):
def main():
has_chinese = False
excluded_files = ["model_template.py", 'stopwords.py', 'commands.py', 'indexing_runner.py']
excluded_files = ["model_template.py", 'stopwords.py', 'commands.py',
'indexing_runner.py', 'web_reader_tool.py', 'spark_provider.py']
for root, _, files in os.walk("."):
for file in files:

36
LICENSE
View File

@@ -1,26 +1,26 @@
# Dify Open Source License
The Dify project uses a combination of the Apache License 2.0, MIT License, and an additional agreement to protect against direct competition with Dify Cloud services.
The Dify project is licensed under the Apache License 2.0, with the following additional conditions:
As a contributor, you should agree that your contributed code:
a. Might be subject to a more permissive open source license in the future.
1. Dify is permitted to be used for commercialization, such as using Dify as a "backend-as-a-service" for your other applications, or delivering it to enterprises as an application development platform. However, when the following conditions are met, you must contact the producer to obtain a commercial license:
a. Multi-tenant SaaS service: Unless explicitly authorized by Dify in writing, you may not use the Dify.AI source code to operate a multi-tenant SaaS service that is similar to the Dify.AI service edition.
b. LOGO and copyright information: In the process of using Dify, you may not remove or modify the LOGO or copyright information in the Dify console.
Please contact business@dify.ai by email to inquire about licensing matters.
2. As a contributor, you should agree that your contributed code:
a. The producer can adjust the open-source agreement to be more strict or relaxed.
b. Can be used for commercial purposes, such as Dify's cloud business.
The following components are open source under the MIT license, allowing you to build and develop applications based on them:
- WebApp elements, e.g., web/app/components/share
- Derived WebApp Template projects
The remaining parts of the project are open source under the Apache License 2.0.
With the Apache License 2.0, MIT License, and this supplementary agreement, anyone can freely use, modify, and distribute Dify, provided that:
- If you use Dify solely as a backend service for other applications, no authorization is needed for commercial or closed source purposes.
- If you wish to use Dify for commercial and closed source SaaS services similar to Dify Cloud, please contact us for authorization.
Apart from this, all other rights and restrictions follow the Apache License 2.0. If you need more detailed information, you can refer to the full version of Apache License 2.0.
The interactive design of this product is protected by appearance patent.
© 2023 LangGenius, Inc.
----------
Licensed under the Apache License, Version 2.0 (the "License");
@@ -34,13 +34,3 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
----------
The MIT License
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

View File

@@ -6,7 +6,7 @@
<a href="./README_ES.md">Español</a>
</p>
[Website](https://dify.ai) • [Docs](https://docs.dify.ai) • [Twitter](https://twitter.com/dify_ai) • [Discord](https://discord.gg/FngNHpbcY7)
#### [Website](https://dify.ai) • [Docs](https://docs.dify.ai) • [Deployment Docs](https://docs.dify.ai/getting-started/install-self-hosted) • [FAQ](https://docs.dify.ai/getting-started/faq) • [Twitter](https://twitter.com/dify_ai) • [Discord](https://discord.gg/FngNHpbcY7)
**Dify** is an easy-to-use LLMOps platform designed to empower more people to create sustainable, AI-native applications. With visual orchestration for various application types, Dify offers out-of-the-box, ready-to-use applications that can also serve as Backend-as-a-Service APIs. Unify your development process with one API for plugins and datasets integration, and streamline your operations using a single interface for prompt engineering, visual analytics, and continuous improvement.
@@ -15,17 +15,43 @@ Applications created with Dify include:
Out-of-the-box web sites supporting form mode and chat conversation mode
A single API encompassing plugin capabilities, context enhancement, and more, saving you backend coding effort
Visual data analysis, log review, and annotation for applications
Dify is compatible with Langchain, meaning we'll gradually support multiple LLMs, currently supported:
* **OpenAI** GPT4、GPT3.5-turbo、GPT3.5-turbo-16k、text-davinci-003
## Highlighted Features
**1. LLMs support:** Choose capabilities based on different models when building your Dify AI apps. Dify is compatible with Langchain, meaning it will support various LLMs. Currently supported:
* **Azure OpenAI**
- [x] **OpenAI**: GPT4, GPT3.5-turbo, GPT3.5-turbo-16k, text-davinci-003
- [x] **Azure OpenAI Service**
- [x] **Anthropic**: Claude2, Claude-instant
- [x] **Replicate**
- [x] **Hugging Face Hub**
- [x] **MiniMax**
- [x] **Spark**
- [x] **Wenxin**
- [x] **Tongyi**
- [x] **ChatGLM**
* **Antropic**Claude2、Claude-instant
> We've got 1000 free trial credits available for all cloud service users to try out the Claude model.Visit [Dify.ai](https://dify.ai) and
try it now.
We provide the following free resources for registered Dify cloud users (sign up at [dify.ai](https://dify.ai)):
* 1000 free Claude model queries to build Claude-powered apps
* 200 free OpenAI queries to build OpenAI-based apps
* 3 million Xunfei Spark Tokens are provided for creating AI applications based on Spark.
* 1 million MiniMax Tokens are provided for creating AI applications based on the MiniMax.
**2. Visual orchestration:** Build an AI app in minutes by writing and debugging prompts visually.
* **hugging face Hub**Coming soon.
**3. Text embedding:** Fully automated text preprocessing embeds your data as context without complex concepts. Supports PDF, TXT, and syncing data from Notion, webpages, APIs.
**4. API-based:** Backend-as-a-service. Access web apps directly or integrate via APIs without complex backend setup.
**5. Plugins:** Dify "Smart Chat" now supports first-party plugins like web browsing, Google search, Wikipedia to enable online lookup, analyzing web content, and explaining the AI's reasoning process conversationally.
**6. Team workspaces:** Team members can join workspaces to collaboratively edit, manage, and use team AI apps.
**7. Data labeling and improvement:** Visually inspect AI app logs and improve data via labeling. Observe the AI's reasoning process to continuously enhance performance. (Coming soon)
## Use cases
* [Create an AI ChatBot with Business Data in Minutes.](https://docs.dify.ai/use-cases/create-an-ai-chatbot-with-business-data-in-minutes)
* [How to Build an Notion AI Assistant Based on Your Own Notes?](https://docs.dify.ai/use-cases/build-an-notion-ai-assistant)
* [Create a Midjoureny Prompt Bot Without Code in Just a Few Minutes.](https://docs.dify.ai/use-cases/create-a-midjoureny-prompt-bot-with-dify)
## Use Cloud Services
@@ -37,7 +63,7 @@ Visit [Dify.ai](https://dify.ai)
Before installing Dify, make sure your machine meets the following minimum system requirements:
- CPU >= 1 Core
- CPU >= 2 Core
- RAM >= 4GB
### Quick Start
@@ -139,7 +165,6 @@ To protect your privacy, please avoid posting security issues on GitHub. Instead
This software uses the following open-source software:
- Chase, H. (2022). LangChain [Computer software]. https://github.com/hwchase17/langchain
- Liu, J. (2022). LlamaIndex [Computer software]. doi: 10.5281/zenodo.1234.
For more information, please refer to the official website or license text of the respective software.

View File

@@ -7,9 +7,9 @@
</p>
[官方网站](https://dify.ai) • [文档](https://docs.dify.ai/v/zh-hans) • [Twitter](https://twitter.com/dify_ai) • [Discord](https://discord.gg/FngNHpbcY7)
#### [官方网站](https://dify.ai) • [使用文档](https://docs.dify.ai/v/zh-hans) · [部署文档](https://docs.dify.ai/v/zh-hans/getting-started/install-self-hosted) · [FAQ](https://docs.dify.ai/v/zh-hans/getting-started/faq) • [Twitter](https://twitter.com/dify_ai) • [Discord](https://discord.gg/FngNHpbcY7)
**Dify** 是一个易用的 LLMOps 平台,旨在让更多人可以创建可持续运营的原生 AI 应用。Dify 提供多种类型应用的可视化编排,应用可开箱即用,也能以“后端即服务”的 API 提供服务。
**Dify** 是一个易用的 LLMOps 平台,基于不同的大型语言模型能力,让更多人可以简易地创建可持续运营的原生 AI 应用。Dify 提供多种类型应用的可视化编排,应用可开箱即用,也能以“后端即服务”的 API 提供服务。
通过 Dify 创建的应用包含了:
@@ -17,20 +17,43 @@
- 一套 API 即可包含插件、上下文增强等能力,替你省下了后端代码的编写工作
- 可视化的对应用进行数据分析,查阅日志或进行标注
Dify 兼容 Langchain这意味着我们将逐步支持多种 LLMs ,目前支持的模型供应商:
* **OpenAI**GPT4、GPT3.5-turbo、GPT3.5-turbo-16k、text-davinci-003
* **Azure OpenAI Service**
* **Anthropic**Claude2、Claude-instant
## 核心能力
1. **模型支持:** 你可以在 Dify 上选择基于不同模型的能力来开发你的 AI 应用。Dify 兼容 Langchain这意味着我们将逐步支持多种 LLMs ,目前支持的模型供应商:
> 我们为所有注册云端版的用户免费提供了 1000 次 Claude 模型的消息调用额度,登录 [dify.ai](https://cloud.dify.ai) 即可使用。
- [x] **OpenAI**GPT4、GPT3.5-turbo、GPT3.5-turbo-16k、text-davinci-003
- [x] **Azure OpenAI Service**
- [x] **Anthropic**Claude2、Claude-instant
- [x] **Replicate**
- [x] **Hugging Face Hub**
- [x] **MiniMax**
- [x] **讯飞星火大模型**
- [x] **文心一言**
- [x] **通义千问**
- [x] **ChatGLM**
我们为所有注册云端版的用户免费提供以下资源(登录 [dify.ai](https://cloud.dify.ai) 即可使用):
* 1000 次 Claude 模型的消息调用额度,用于创建基于 Claude 模型的 AI 应用
* 200 次 OpenAI 模型的消息调用额度,用于创建基于 OpenAI 模型的 AI 应用
* 300 万 讯飞星火大模型 Token 的调用额度,用于创建基于讯飞星火大模型的 AI 应用
* 100 万 MiniMax Token 的调用额度,用于创建基于 MiniMax 模型的 AI 应用
2. **可视化编排 Prompt** 通过界面化编写 prompt 并调试,只需几分钟即可发布一个 AI 应用。
3. **文本 Embedding 处理(数据集)**:全自动完成文本预处理,使用你的数据作为上下文,无需理解晦涩的概念和技术处理。支持 PDF、txt 等文件格式,支持从 Notion、网页、API 同步数据。
4. **基于 API 开发:** 后端即服务。您可以直接访问网页应用,也可以接入 API 集成到您的应用中,无需关注复杂的后端架构和部署过程。
5. **插件能力:** Dify 「智聊」平台已支持网页浏览、Google 搜索、Wikipedia 查询等第一方插件,可在对话中实现联网搜索、分析网页内容、展示 AI 的推理过程。
6. **团队 Workspace** 团队成员可加入 Workspace 编辑、管理和使用团队内的 AI 应用。
6. **数据标注与改进:** 可视化查阅 AI 应用日志并对数据进行改进标注,观测 AI 的推理过程不断提高其性能。Coming soon
-----------------------------
## Use cases
* [几分钟创建一个带有业务数据的官网 AI 智能客服](https://docs.dify.ai/v/zh-hans/use-cases/create-an-ai-chatbot-with-business-data-in-minutes)
* [构建一个 Notion AI 助手](https://docs.dify.ai/v/zh-hans/use-cases/build-an-notion-ai-assistant)
* [创建 Midjoureny 提示词机器人](https://docs.dify.ai/v/zh-hans/use-cases/create-a-midjoureny-prompt-word-robot-with-zero-code)
* **Hugging Face Hub**(即将推出)
## 使用云服务
访问 [Dify.ai](https://cloud.dify.ai)
访问 [Dify.ai](https://cloud.dify.ai) 使用云端版。
## 安装社区版
@@ -38,7 +61,7 @@ Dify 兼容 Langchain这意味着我们将逐步支持多种 LLMs ,目前
在安装 Dify 之前,请确保您的机器满足以下最低系统要求:
- CPU >= 1 Core
- CPU >= 2 Core
- RAM >= 4GB
### 快速启动
@@ -65,12 +88,10 @@ docker compose up -d
我们正在开发中的功能:
- **数据集**,支持更多的数据集,例如同步 Notion 或网页的内容
我们将支持更多的数据集,包括文本、网页,甚至 Notion 内容。用户可以根据自己的数据源构建 AI 应用程序
- **插件**,推出符合 ChatGPT 标准的插件,或使用 Dify 产生的插件
我们将发布符合 ChatGPT 标准的插件,或者 Dify 自己的插件,以在应用程序中启用更多功能
- **开源模型**,例如采用 Llama 作为模型提供者,或进行进一步的微调
我们将与优秀的开源模型如 Llama 合作,通过在我们的平台中提供它们作为模型选项,或使用它们进行进一步的微调。
- **数据集**,支持更多的数据集,通过网页、API 同步内容。用户可以根据自己的数据源构建 AI 应用程序。
- **插件**,我们将发布符合 ChatGPT 标准的插件,支持更多 Dify 自己的插件,支持用户自定义插件能力,以在应用程序中启用更多功能,例如以支持以目标为导向的分解推理任务
- **开源模型支持**,支持 Hugging face Hub 上的开源模型。例如采用 Llama 作为模型提供者,或进行进一步的微调
我们将与优秀的开源模型合作,通过在我们的平台中提供它们作为模型选项,或使用它们进行进一步的微调
## Q&A
@@ -84,11 +105,11 @@ A: 一个有价值的应用由 Prompt Engineering、上下文增强和 Fine-tune
**Q: 如果要创建一个自己的应用,我需要准备什么?**
A: 我们假定你已经有了 OpenAI API Key如果没有请去注册一个。如果你已经有了一些内容可以作为训练上下文就太好了。
A: 我们假定你已经有了 OpenAI 或 Claude 等模型的 API Key如果没有请去注册一个。如果你已经有了一些内容可以作为训练上下文就太好了。
**Q: 提供哪些界面语言?**
A: 现已支持英文中文,你可以为我们贡献语言包。
A: 支持英文中文,你可以为我们贡献语言包并提供维护支持
## Star History
@@ -134,7 +155,6 @@ A: 现已支持英文与中文,你可以为我们贡献语言包。
本软件使用了以下开源软件:
- Chase, H. (2022). LangChain [Computer software]. https://github.com/hwchase17/langchain
- Liu, J. (2022). LlamaIndex [Computer software]. doi: 10.5281/zenodo.1234.
更多信息,请参考相应软件的官方网站或许可证文本。

View File

@@ -32,7 +32,7 @@ Visita [Dify.ai](https://dify.ai)
Antes de instalar Dify, asegúrate de que tu máquina cumple con los siguientes requisitos mínimos del sistema:
- CPU >= 1 Core
- CPU >= 2 Core
- RAM >= 4GB
### Inicio rápido
@@ -115,7 +115,6 @@ Para proteger tu privacidad, evita publicar problemas de seguridad en GitHub. En
Este software utiliza el siguiente software de código abierto:
- Chase, H. (2022). LangChain [Software de computadora]. https://github.com/hwchase17/langchain
- Liu, J. (2022). LlamaIndex [Software de computadora]. doi: 10.5281/zenodo.1234.
Para obtener más información, consulta el sitio web oficial o el texto de la licencia del software correspondiente.

View File

@@ -114,7 +114,6 @@ A: 現在、英語と中国語に対応しており、言語パックを寄贈
本ソフトウェアは、以下のオープンソースソフトウェアを使用しています:
- Chase, H. (2022). LangChain [Computer software]. https://github.com/hwchase17/langchain
- Liu, J. (2022). LlamaIndex [Computer software]. doi: 10.5281/zenodo.1234.
詳しくは、各ソフトウェアの公式サイトまたはライセンス文をご参照ください。

View File

@@ -1,2 +1,11 @@
.env
storage/privkeys/*
*.env.*
storage/privkeys/*
# Logs
logs
*.log*
# jetbrains
.idea

View File

@@ -9,17 +9,13 @@ SECRET_KEY=
# Console API base URL
CONSOLE_API_URL=http://127.0.0.1:5001
# Console frontend web base URL
CONSOLE_WEB_URL=http://127.0.0.1:3000
# Service API base URL
SERVICE_API_URL=http://127.0.0.1:5001
# Web APP API base URL
# Web APP base URL
APP_API_URL=http://127.0.0.1:5001
# Web APP frontend web base URL
APP_WEB_URL=http://127.0.0.1:3000
# celery configuration
@@ -102,3 +98,29 @@ NOTION_INTEGRATION_TYPE=public
NOTION_CLIENT_SECRET=you-client-secret
NOTION_CLIENT_ID=you-client-id
NOTION_INTERNAL_SECRET=you-internal-secret
# Hosted Model Credentials
HOSTED_OPENAI_ENABLED=false
HOSTED_OPENAI_API_KEY=
HOSTED_OPENAI_API_BASE=
HOSTED_OPENAI_API_ORGANIZATION=
HOSTED_OPENAI_QUOTA_LIMIT=200
HOSTED_OPENAI_PAID_ENABLED=false
HOSTED_OPENAI_PAID_STRIPE_PRICE_ID=
HOSTED_OPENAI_PAID_INCREASE_QUOTA=1
HOSTED_AZURE_OPENAI_ENABLED=false
HOSTED_AZURE_OPENAI_API_KEY=
HOSTED_AZURE_OPENAI_API_BASE=
HOSTED_AZURE_OPENAI_QUOTA_LIMIT=200
HOSTED_ANTHROPIC_ENABLED=false
HOSTED_ANTHROPIC_API_BASE=
HOSTED_ANTHROPIC_API_KEY=
HOSTED_ANTHROPIC_QUOTA_LIMIT=1000000
HOSTED_ANTHROPIC_PAID_ENABLED=false
HOSTED_ANTHROPIC_PAID_STRIPE_PRICE_ID=
HOSTED_ANTHROPIC_PAID_INCREASE_QUOTA=1
STRIPE_API_KEY=
STRIPE_WEBHOOK_SECRET=

View File

@@ -1,4 +1,4 @@
FROM langgenius/base:1.0.0-bullseye-slim as langgenius-api
FROM python:3.10-slim
LABEL maintainer="takatost@gmail.com"
@@ -15,6 +15,9 @@ EXPOSE 5001
WORKDIR /app/api
RUN apt-get update && \
apt-get install -y bash curl wget vim gcc g++ python3-dev libc-dev libffi-dev
COPY requirements.txt /app/api/requirements.txt
RUN pip install -r requirements.txt

View File

@@ -8,7 +8,7 @@
```bash
cd ../docker
docker-compose -f docker-compose.middleware.yaml up -d
docker-compose -f docker-compose.middleware.yaml -p dify up -d
cd ../api
```
2. Copy `.env.example` to `.env`
@@ -33,9 +33,30 @@
```bash
flask db upgrade
```
⚠️ If you encounter problems with jieba, for example
```
> flask db upgrade
Error: While importing 'app', an ImportError was raised:
```
Please run the following command instead.
```
pip install -r requirements.txt --upgrade --force-reinstall
```
6. Start backend:
```bash
flask run --host 0.0.0.0 --port=5001 --debug
```
7. Setup your application by visiting http://localhost:5001/console/api/setup or other apis...
8. If you need to debug local async processing, you can run `celery -A app.celery worker`, celery can do dataset importing and other async tasks.
8. If you need to debug local async processing, you can run `celery -A app.celery worker -Q dataset,generation,mail`, celery can do dataset importing and other async tasks.
8. Start frontend:
```
docker run -it -d --platform linux/amd64 -p 3000:3000 -e EDITION=SELF_HOSTED -e CONSOLE_URL=http://127.0.0.1:5000 --name web-self-hosted langgenius/dify-web:latest
```
This will start a dify frontend, now you are all set, happy coding!

View File

@@ -16,13 +16,14 @@ from flask import Flask, request, Response, session
import flask_login
from flask_cors import CORS
from core.model_providers.providers import hosted
from extensions import ext_session, ext_celery, ext_sentry, ext_redis, ext_login, ext_migrate, \
ext_database, ext_storage, ext_mail
ext_database, ext_storage, ext_mail, ext_stripe
from extensions.ext_database import db
from extensions.ext_login import login_manager
# DO NOT REMOVE BELOW
from models import model, account, dataset, web, task, source
from models import model, account, dataset, web, task, source, tool
from events import event_handlers
# DO NOT REMOVE ABOVE
@@ -31,6 +32,7 @@ from config import Config, CloudEditionConfig
from commands import register_commands
from models.account import TenantAccountJoin, AccountStatus
from models.model import Account, EndUser, App
from services.account_service import TenantService
import warnings
warnings.simplefilter("ignore", ResourceWarning)
@@ -70,7 +72,7 @@ def create_app(test_config=None) -> Flask:
register_blueprints(app)
register_commands(app)
core.init_app(app)
hosted.init_app(app)
return app
@@ -87,6 +89,16 @@ def initialize_extensions(app):
ext_login.init_app(app)
ext_mail.init_app(app)
ext_sentry.init_app(app)
ext_stripe.init_app(app)
def _create_tenant_for_account(account):
tenant = TenantService.create_tenant(f"{account.name}'s Workspace")
TenantService.create_tenant_member(tenant, account, role='owner')
account.current_tenant = tenant
return tenant
# Flask-Login configuration
@@ -119,7 +131,9 @@ def load_user(user_id):
if tenant_account_join:
account.current_tenant_id = tenant_account_join.tenant_id
session['workspace_id'] = account.current_tenant_id
else:
_create_tenant_for_account(account)
session['workspace_id'] = account.current_tenant_id
else:
account.current_tenant_id = workspace_id
else:
@@ -127,7 +141,9 @@ def load_user(user_id):
TenantAccountJoin.account_id == account.id).first()
if tenant_account_join:
account.current_tenant_id = tenant_account_join.tenant_id
session['workspace_id'] = account.current_tenant_id
else:
_create_tenant_for_account(account)
session['workspace_id'] = account.current_tenant_id
account.last_active_at = datetime.utcnow()
db.session.commit()
@@ -232,5 +248,18 @@ def threads():
}
@app.route('/db-pool-stat')
def pool_stat():
engine = db.engine
return {
'pool_size': engine.pool.size(),
'checked_in_connections': engine.pool.checkedin(),
'checked_out_connections': engine.pool.checkedout(),
'overflow_connections': engine.pool.overflow(),
'connection_timeout': engine.pool.timeout(),
'recycle_time': db.engine.pool._recycle
}
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5001)

View File

@@ -1,25 +1,26 @@
import datetime
import logging
import math
import random
import string
import time
import click
from flask import current_app
from werkzeug.exceptions import NotFound
from core.index.index import IndexBuilder
from core.model_providers.providers.hosted import hosted_model_providers
from libs.password import password_pattern, valid_password, hash_password
from libs.helper import email as email_validate
from extensions.ext_database import db
from libs.rsa import generate_key_pair
from models.account import InvitationCode, Tenant
from models.dataset import Dataset
from models.dataset import Dataset, DatasetQuery, Document
from models.model import Account
import secrets
import base64
from models.provider import Provider, ProviderName
from services.provider_service import ProviderService
from models.provider import Provider, ProviderType, ProviderQuotaType
@click.command('reset-password', help='Reset the account password.')
@@ -172,7 +173,7 @@ def recreate_all_dataset_indexes():
page = 1
while True:
try:
datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality')\
datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \
.order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
except NotFound:
break
@@ -188,37 +189,104 @@ def recreate_all_dataset_indexes():
else:
click.echo('passed.')
except Exception as e:
click.echo(click.style('Recreate dataset index error: {} {}'.format(e.__class__.__name__, str(e)), fg='red'))
click.echo(
click.style('Recreate dataset index error: {} {}'.format(e.__class__.__name__, str(e)), fg='red'))
continue
click.echo(click.style('Congratulations! Recreate {} dataset indexes.'.format(recreate_count), fg='green'))
@click.command('clean-unused-dataset-indexes', help='Clean unused dataset indexes.')
def clean_unused_dataset_indexes():
click.echo(click.style('Start clean unused dataset indexes.', fg='green'))
clean_days = int(current_app.config.get('CLEAN_DAY_SETTING'))
start_at = time.perf_counter()
thirty_days_ago = datetime.datetime.now() - datetime.timedelta(days=clean_days)
page = 1
while True:
try:
datasets = db.session.query(Dataset).filter(Dataset.created_at < thirty_days_ago) \
.order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
except NotFound:
break
page += 1
for dataset in datasets:
dataset_query = db.session.query(DatasetQuery).filter(
DatasetQuery.created_at > thirty_days_ago,
DatasetQuery.dataset_id == dataset.id
).all()
if not dataset_query or len(dataset_query) == 0:
documents = db.session.query(Document).filter(
Document.dataset_id == dataset.id,
Document.indexing_status == 'completed',
Document.enabled == True,
Document.archived == False,
Document.updated_at > thirty_days_ago
).all()
if not documents or len(documents) == 0:
try:
# remove index
vector_index = IndexBuilder.get_index(dataset, 'high_quality')
kw_index = IndexBuilder.get_index(dataset, 'economy')
# delete from vector index
if vector_index:
vector_index.delete()
kw_index.delete()
# update document
update_params = {
Document.enabled: False
}
Document.query.filter_by(dataset_id=dataset.id).update(update_params)
db.session.commit()
click.echo(click.style('Cleaned unused dataset {} from db success!'.format(dataset.id),
fg='green'))
except Exception as e:
click.echo(
click.style('clean dataset index error: {} {}'.format(e.__class__.__name__, str(e)),
fg='red'))
end_at = time.perf_counter()
click.echo(click.style('Cleaned unused dataset from db success latency: {}'.format(end_at - start_at), fg='green'))
@click.command('sync-anthropic-hosted-providers', help='Sync anthropic hosted providers.')
def sync_anthropic_hosted_providers():
if not hosted_model_providers.anthropic:
click.echo(click.style('Anthropic hosted provider is not configured.', fg='red'))
return
click.echo(click.style('Start sync anthropic hosted providers.', fg='green'))
count = 0
page = 1
while True:
try:
tenants = db.session.query(Tenant).order_by(Tenant.created_at.desc()).paginate(page=page, per_page=50)
providers = db.session.query(Provider).filter(
Provider.provider_name == 'anthropic',
Provider.provider_type == ProviderType.SYSTEM.value,
Provider.quota_type == ProviderQuotaType.TRIAL.value,
).order_by(Provider.created_at.desc()).paginate(page=page, per_page=100)
except NotFound:
break
page += 1
for tenant in tenants:
for provider in providers:
try:
click.echo('Syncing tenant anthropic hosted provider: {}'.format(tenant.id))
ProviderService.create_system_provider(
tenant,
ProviderName.ANTHROPIC.value,
current_app.config['ANTHROPIC_HOSTED_QUOTA_LIMIT'],
True
)
click.echo('Syncing tenant anthropic hosted provider: {}'.format(provider.tenant_id))
original_quota_limit = provider.quota_limit
new_quota_limit = hosted_model_providers.anthropic.quota_limit
division = math.ceil(new_quota_limit / 1000)
provider.quota_limit = new_quota_limit if original_quota_limit == 1000 \
else original_quota_limit * division
provider.quota_used = division * provider.quota_used
db.session.commit()
count += 1
except Exception as e:
click.echo(click.style('Sync tenant anthropic hosted provider error: {} {}'.format(e.__class__.__name__, str(e)), fg='red'))
click.echo(click.style(
'Sync tenant anthropic hosted provider error: {} {}'.format(e.__class__.__name__, str(e)),
fg='red'))
continue
click.echo(click.style('Congratulations! Synced {} anthropic hosted providers.'.format(count), fg='green'))
@@ -231,3 +299,4 @@ def register_commands(app):
app.cli.add_command(reset_encrypt_key_pair)
app.cli.add_command(recreate_all_dataset_indexes)
app.cli.add_command(sync_anthropic_hosted_providers)
app.cli.add_command(clean_unused_dataset_indexes)

View File

@@ -41,6 +41,7 @@ DEFAULTS = {
'SESSION_USE_SIGNER': 'True',
'DEPLOY_ENV': 'PRODUCTION',
'SQLALCHEMY_POOL_SIZE': 30,
'SQLALCHEMY_POOL_RECYCLE': 3600,
'SQLALCHEMY_ECHO': 'False',
'SENTRY_TRACES_SAMPLE_RATE': 1.0,
'SENTRY_PROFILES_SAMPLE_RATE': 1.0,
@@ -50,10 +51,18 @@ DEFAULTS = {
'PDF_PREVIEW': 'True',
'LOG_LEVEL': 'INFO',
'DISABLE_PROVIDER_CONFIG_VALIDATION': 'False',
'DEFAULT_LLM_PROVIDER': 'openai',
'OPENAI_HOSTED_QUOTA_LIMIT': 200,
'ANTHROPIC_HOSTED_QUOTA_LIMIT': 1000,
'TENANT_DOCUMENT_COUNT': 100
'HOSTED_OPENAI_QUOTA_LIMIT': 200,
'HOSTED_OPENAI_ENABLED': 'False',
'HOSTED_OPENAI_PAID_ENABLED': 'False',
'HOSTED_OPENAI_PAID_INCREASE_QUOTA': 1,
'HOSTED_AZURE_OPENAI_ENABLED': 'False',
'HOSTED_AZURE_OPENAI_QUOTA_LIMIT': 200,
'HOSTED_ANTHROPIC_QUOTA_LIMIT': 1000000,
'HOSTED_ANTHROPIC_ENABLED': 'False',
'HOSTED_ANTHROPIC_PAID_ENABLED': 'False',
'HOSTED_ANTHROPIC_PAID_INCREASE_QUOTA': 1,
'TENANT_DOCUMENT_COUNT': 100,
'CLEAN_DAY_SETTING': 30
}
@@ -89,7 +98,7 @@ class Config:
self.CONSOLE_URL = get_env('CONSOLE_URL')
self.API_URL = get_env('API_URL')
self.APP_URL = get_env('APP_URL')
self.CURRENT_VERSION = "0.3.10"
self.CURRENT_VERSION = "0.3.14"
self.COMMIT_SHA = get_env('COMMIT_SHA')
self.EDITION = "SELF_HOSTED"
self.DEPLOY_ENV = get_env('DEPLOY_ENV')
@@ -181,7 +190,10 @@ class Config:
}
self.SQLALCHEMY_DATABASE_URI = f"postgresql://{db_credentials['DB_USERNAME']}:{db_credentials['DB_PASSWORD']}@{db_credentials['DB_HOST']}:{db_credentials['DB_PORT']}/{db_credentials['DB_DATABASE']}"
self.SQLALCHEMY_ENGINE_OPTIONS = {'pool_size': int(get_env('SQLALCHEMY_POOL_SIZE'))}
self.SQLALCHEMY_ENGINE_OPTIONS = {
'pool_size': int(get_env('SQLALCHEMY_POOL_SIZE')),
'pool_recycle': int(get_env('SQLALCHEMY_POOL_RECYCLE'))
}
self.SQLALCHEMY_ECHO = get_bool_env('SQLALCHEMY_ECHO')
@@ -193,20 +205,35 @@ class Config:
self.BROKER_USE_SSL = self.CELERY_BROKER_URL.startswith('rediss://')
# hosted provider credentials
self.OPENAI_API_KEY = get_env('OPENAI_API_KEY')
self.ANTHROPIC_API_KEY = get_env('ANTHROPIC_API_KEY')
self.HOSTED_OPENAI_ENABLED = get_bool_env('HOSTED_OPENAI_ENABLED')
self.HOSTED_OPENAI_API_KEY = get_env('HOSTED_OPENAI_API_KEY')
self.HOSTED_OPENAI_API_BASE = get_env('HOSTED_OPENAI_API_BASE')
self.HOSTED_OPENAI_API_ORGANIZATION = get_env('HOSTED_OPENAI_API_ORGANIZATION')
self.HOSTED_OPENAI_QUOTA_LIMIT = get_env('HOSTED_OPENAI_QUOTA_LIMIT')
self.HOSTED_OPENAI_PAID_ENABLED = get_bool_env('HOSTED_OPENAI_PAID_ENABLED')
self.HOSTED_OPENAI_PAID_STRIPE_PRICE_ID = get_env('HOSTED_OPENAI_PAID_STRIPE_PRICE_ID')
self.HOSTED_OPENAI_PAID_INCREASE_QUOTA = int(get_env('HOSTED_OPENAI_PAID_INCREASE_QUOTA'))
self.OPENAI_HOSTED_QUOTA_LIMIT = get_env('OPENAI_HOSTED_QUOTA_LIMIT')
self.ANTHROPIC_HOSTED_QUOTA_LIMIT = get_env('ANTHROPIC_HOSTED_QUOTA_LIMIT')
self.HOSTED_AZURE_OPENAI_ENABLED = get_bool_env('HOSTED_AZURE_OPENAI_ENABLED')
self.HOSTED_AZURE_OPENAI_API_KEY = get_env('HOSTED_AZURE_OPENAI_API_KEY')
self.HOSTED_AZURE_OPENAI_API_BASE = get_env('HOSTED_AZURE_OPENAI_API_BASE')
self.HOSTED_AZURE_OPENAI_QUOTA_LIMIT = get_env('HOSTED_AZURE_OPENAI_QUOTA_LIMIT')
self.HOSTED_ANTHROPIC_ENABLED = get_bool_env('HOSTED_ANTHROPIC_ENABLED')
self.HOSTED_ANTHROPIC_API_BASE = get_env('HOSTED_ANTHROPIC_API_BASE')
self.HOSTED_ANTHROPIC_API_KEY = get_env('HOSTED_ANTHROPIC_API_KEY')
self.HOSTED_ANTHROPIC_QUOTA_LIMIT = get_env('HOSTED_ANTHROPIC_QUOTA_LIMIT')
self.HOSTED_ANTHROPIC_PAID_ENABLED = get_bool_env('HOSTED_ANTHROPIC_PAID_ENABLED')
self.HOSTED_ANTHROPIC_PAID_STRIPE_PRICE_ID = get_env('HOSTED_ANTHROPIC_PAID_STRIPE_PRICE_ID')
self.HOSTED_ANTHROPIC_PAID_INCREASE_QUOTA = get_env('HOSTED_ANTHROPIC_PAID_INCREASE_QUOTA')
self.STRIPE_API_KEY = get_env('STRIPE_API_KEY')
self.STRIPE_WEBHOOK_SECRET = get_env('STRIPE_WEBHOOK_SECRET')
# By default it is False
# You could disable it for compatibility with certain OpenAPI providers
self.DISABLE_PROVIDER_CONFIG_VALIDATION = get_bool_env('DISABLE_PROVIDER_CONFIG_VALIDATION')
# For temp use only
# set default LLM provider, default is 'openai', support `azure_openai`
self.DEFAULT_LLM_PROVIDER = get_env('DEFAULT_LLM_PROVIDER')
# notion import setting
self.NOTION_CLIENT_ID = get_env('NOTION_CLIENT_ID')
self.NOTION_CLIENT_SECRET = get_env('NOTION_CLIENT_SECRET')
@@ -215,6 +242,7 @@ class Config:
self.NOTION_INTEGRATION_TOKEN = get_env('NOTION_INTEGRATION_TOKEN')
self.TENANT_DOCUMENT_COUNT = get_env('TENANT_DOCUMENT_COUNT')
self.CLEAN_DAY_SETTING = get_env('CLEAN_DAY_SETTING')
class CloudEditionConfig(Config):

View File

@@ -18,7 +18,13 @@ from .auth import login, oauth, data_source_oauth, activate
from .datasets import datasets, datasets_document, datasets_segments, file, hit_testing, data_source
# Import workspace controllers
from .workspace import workspace, members, providers, account
from .workspace import workspace, members, providers, model_providers, account, tool_providers, models
# Import explore controllers
from .explore import installed_app, recommended_app, completion, conversation, message, parameter, saved_message, audio
# Import universal chat controllers
from .universal_chat import chat, conversation, message, parameter, audio
# Import webhook controllers
from .webhook import stripe

View File

@@ -55,7 +55,7 @@ class InsertExploreAppListApi(Resource):
app = App.query.filter(App.id == args['app_id']).first()
if not app:
raise NotFound('App not found')
raise NotFound(f'App \'{args["app_id"]}\' is not found')
site = app.site
if not site:
@@ -63,10 +63,12 @@ class InsertExploreAppListApi(Resource):
copy_right = args['copyright'] if args['copyright'] else ''
privacy_policy = args['privacy_policy'] if args['privacy_policy'] else ''
else:
desc = site.description if (site.description if not args['desc'] else args['desc']) else ''
copy_right = site.copyright if (site.copyright if not args['copyright'] else args['copyright']) else ''
privacy_policy = site.privacy_policy \
if (site.privacy_policy if not args['privacy_policy'] else args['privacy_policy']) else ''
desc = site.description if site.description else \
args['desc'] if args['desc'] else ''
copy_right = site.copyright if site.copyright else \
args['copyright'] if args['copyright'] else ''
privacy_policy = site.privacy_policy if site.privacy_policy else \
args['privacy_policy'] if args['privacy_policy'] else ''
recommended_app = RecommendedApp.query.filter(RecommendedApp.app_id == args['app_id']).first()

View File

@@ -2,16 +2,17 @@
import json
from datetime import datetime
import flask
from flask_login import login_required, current_user
from flask_restful import Resource, reqparse, fields, marshal_with, abort, inputs
from werkzeug.exceptions import Unauthorized, Forbidden
from werkzeug.exceptions import Forbidden
from constants.model_template import model_templates, demo_model_templates
from controllers.console import api
from controllers.console.app.error import AppNotFoundError
from controllers.console.app.error import AppNotFoundError, ProviderNotInitializeError
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.model_providers.model_factory import ModelFactory
from core.model_providers.models.entity.model_params import ModelType
from events.app_event import app_was_created, app_was_deleted
from libs.helper import TimestampField
from extensions.ext_database import db
@@ -24,6 +25,7 @@ model_config_fields = {
'suggested_questions_after_answer': fields.Raw(attribute='suggested_questions_after_answer_dict'),
'speech_to_text': fields.Raw(attribute='speech_to_text_dict'),
'more_like_this': fields.Raw(attribute='more_like_this_dict'),
'sensitive_word_avoidance': fields.Raw(attribute='sensitive_word_avoidance_dict'),
'model': fields.Raw(attribute='model_dict'),
'user_input_form': fields.Raw(attribute='user_input_form_list'),
'pre_prompt': fields.String,
@@ -96,7 +98,8 @@ class AppListApi(Resource):
args = parser.parse_args()
app_models = db.paginate(
db.select(App).where(App.tenant_id == current_user.current_tenant_id).order_by(App.created_at.desc()),
db.select(App).where(App.tenant_id == current_user.current_tenant_id,
App.is_universal == False).order_by(App.created_at.desc()),
page=args['page'],
per_page=args['limit'],
error_out=False)
@@ -124,9 +127,9 @@ class AppListApi(Resource):
if args['model_config'] is not None:
# validate config
model_configuration = AppModelConfigService.validate_configuration(
tenant_id=current_user.current_tenant_id,
account=current_user,
config=args['model_config'],
mode=args['mode']
config=args['model_config']
)
app = App(
@@ -147,6 +150,7 @@ class AppListApi(Resource):
suggested_questions_after_answer=json.dumps(model_configuration['suggested_questions_after_answer']),
speech_to_text=json.dumps(model_configuration['speech_to_text']),
more_like_this=json.dumps(model_configuration['more_like_this']),
sensitive_word_avoidance=json.dumps(model_configuration['sensitive_word_avoidance']),
model=json.dumps(model_configuration['model']),
user_input_form=json.dumps(model_configuration['user_input_form']),
pre_prompt=model_configuration['pre_prompt'],
@@ -161,6 +165,21 @@ class AppListApi(Resource):
app = App(**model_config_template['app'])
app_model_config = AppModelConfig(**model_config_template['model_config'])
default_model = ModelFactory.get_default_model(
tenant_id=current_user.current_tenant_id,
model_type=ModelType.TEXT_GENERATION
)
if default_model:
model_dict = app_model_config.model_dict
model_dict['provider'] = default_model.provider_name
model_dict['name'] = default_model.model_name
app_model_config.model = json.dumps(model_dict)
else:
raise ProviderNotInitializeError(
f"No Text Generation Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
app.name = args['name']
app.mode = args['mode']
app.icon = args['icon']
@@ -275,6 +294,10 @@ class AppApi(Resource):
def delete(self, app_id):
"""Delete app"""
app_id = str(app_id)
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
app = _get_app(app_id, current_user.current_tenant_id)
db.session.delete(app)
@@ -294,19 +317,13 @@ class AppNameApi(Resource):
@account_initialization_required
@marshal_with(app_detail_fields)
def post(self, app_id):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
app_id = str(app_id)
app = _get_app(app_id, current_user.current_tenant_id)
parser = reqparse.RequestParser()
parser.add_argument('name', type=str, required=True, location='json')
args = parser.parse_args()
app = db.get_or_404(App, str(app_id))
if app.tenant_id != flask.session.get('tenant_id'):
raise Unauthorized()
app.name = args.get('name')
app.updated_at = datetime.utcnow()
db.session.commit()
@@ -319,20 +336,14 @@ class AppIconApi(Resource):
@account_initialization_required
@marshal_with(app_detail_fields)
def post(self, app_id):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
app_id = str(app_id)
app = _get_app(app_id, current_user.current_tenant_id)
parser = reqparse.RequestParser()
parser.add_argument('icon', type=str, location='json')
parser.add_argument('icon_background', type=str, location='json')
args = parser.parse_args()
app = db.get_or_404(App, str(app_id))
if app.tenant_id != flask.session.get('tenant_id'):
raise Unauthorized()
app.icon = args.get('icon')
app.icon_background = args.get('icon_background')
app.updated_at = datetime.utcnow()
@@ -386,29 +397,6 @@ class AppApiStatus(Resource):
return app
class AppRateLimit(Resource):
@setup_required
@login_required
@account_initialization_required
@marshal_with(app_detail_fields)
def post(self, app_id):
parser = reqparse.RequestParser()
parser.add_argument('api_rpm', type=inputs.natural, required=False, location='json')
parser.add_argument('api_rph', type=inputs.natural, required=False, location='json')
args = parser.parse_args()
app_id = str(app_id)
app = _get_app(app_id, current_user.current_tenant_id)
if args.get('api_rpm'):
app.api_rpm = args.get('api_rpm')
if args.get('api_rph'):
app.api_rph = args.get('api_rph')
app.updated_at = datetime.utcnow()
db.session.commit()
return app
class AppCopy(Resource):
@staticmethod
def create_app_copy(app):
@@ -438,6 +426,7 @@ class AppCopy(Resource):
suggested_questions_after_answer=app_config.suggested_questions_after_answer,
speech_to_text=app_config.speech_to_text,
more_like_this=app_config.more_like_this,
sensitive_word_avoidance=app_config.sensitive_word_avoidance,
model=app_config.model,
user_input_form=app_config.user_input_form,
pre_prompt=app_config.pre_prompt,
@@ -470,21 +459,11 @@ class AppCopy(Resource):
return copy_app, 201
class AppExport(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, app_id):
# todo
pass
api.add_resource(AppListApi, '/apps')
api.add_resource(AppTemplateApi, '/app-templates')
api.add_resource(AppApi, '/apps/<uuid:app_id>')
api.add_resource(AppCopy, '/apps/<uuid:app_id>/copy')
api.add_resource(AppNameApi, '/apps/<uuid:app_id>/name')
api.add_resource(AppIconApi, '/apps/<uuid:app_id>/icon')
api.add_resource(AppSiteStatus, '/apps/<uuid:app_id>/site-enable')
api.add_resource(AppApiStatus, '/apps/<uuid:app_id>/api-enable')
api.add_resource(AppRateLimit, '/apps/<uuid:app_id>/rate-limit')

View File

@@ -14,7 +14,7 @@ from controllers.console.app.error import AppUnavailableError, \
UnsupportedAudioTypeError, ProviderNotSupportSpeechToTextError
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.llm.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
from core.model_providers.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from flask_restful import Resource
from services.audio_service import AudioService

View File

@@ -17,7 +17,7 @@ from controllers.console.app.error import ConversationCompletedError, AppUnavail
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.conversation_message_task import PubHandler
from core.llm.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
from core.model_providers.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from libs.helper import uuid_value
from flask_restful import Resource, reqparse
@@ -41,8 +41,11 @@ class CompletionMessageApi(Resource):
parser.add_argument('inputs', type=dict, required=True, location='json')
parser.add_argument('query', type=str, location='json')
parser.add_argument('model_config', type=dict, required=True, location='json')
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
args = parser.parse_args()
streaming = args['response_mode'] != 'blocking'
account = flask_login.current_user
try:
@@ -51,7 +54,7 @@ class CompletionMessageApi(Resource):
user=account,
args=args,
from_source='console',
streaming=True,
streaming=streaming,
is_model_config_override=True
)
@@ -111,8 +114,11 @@ class ChatMessageApi(Resource):
parser.add_argument('query', type=str, required=True, location='json')
parser.add_argument('model_config', type=dict, required=True, location='json')
parser.add_argument('conversation_id', type=uuid_value, location='json')
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
args = parser.parse_args()
streaming = args['response_mode'] != 'blocking'
account = flask_login.current_user
try:
@@ -121,7 +127,7 @@ class ChatMessageApi(Resource):
user=account,
args=args,
from_source='console',
streaming=True,
streaming=streaming,
is_model_config_override=True
)

View File

@@ -95,6 +95,7 @@ class CompletionConversationApi(Resource):
'status': fields.String,
'from_source': fields.String,
'from_end_user_id': fields.String,
'from_end_user_session_id': fields.String(),
'from_account_id': fields.String,
'read_at': TimestampField,
'created_at': TimestampField,
@@ -160,7 +161,7 @@ class CompletionConversationApi(Resource):
if args['end']:
end_datetime = datetime.strptime(args['end'], '%Y-%m-%d %H:%M')
end_datetime = end_datetime.replace(second=0)
end_datetime = end_datetime.replace(second=59)
end_datetime_timezone = timezone.localize(end_datetime)
end_datetime_utc = end_datetime_timezone.astimezone(utc_timezone)
@@ -246,6 +247,7 @@ class ChatConversationApi(Resource):
'status': fields.String,
'from_source': fields.String,
'from_end_user_id': fields.String,
'from_end_user_session_id': fields.String,
'from_account_id': fields.String,
'summary': fields.String(attribute='summary_or_query'),
'read_at': TimestampField,
@@ -316,7 +318,7 @@ class ChatConversationApi(Resource):
if args['end']:
end_datetime = datetime.strptime(args['end'], '%Y-%m-%d %H:%M')
end_datetime = end_datetime.replace(second=0)
end_datetime = end_datetime.replace(second=59)
end_datetime_timezone = timezone.localize(end_datetime)
end_datetime_utc = end_datetime_timezone.astimezone(utc_timezone)

View File

@@ -7,7 +7,7 @@ from controllers.console.app.error import ProviderNotInitializeError, ProviderQu
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.generator.llm_generator import LLMGenerator
from core.llm.error import ProviderTokenNotInitError, QuotaExceededError, LLMBadRequestError, LLMAPIConnectionError, \
from core.model_providers.error import ProviderTokenNotInitError, QuotaExceededError, LLMBadRequestError, LLMAPIConnectionError, \
LLMAPIUnavailableError, LLMRateLimitError, LLMAuthorizationError, ModelCurrentlyNotSupportError

View File

@@ -14,7 +14,7 @@ from controllers.console.app.error import CompletionRequestError, ProviderNotIni
AppMoreLikeThisDisabledError, ProviderQuotaExceededError, ProviderModelCurrentlyNotSupportError
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.llm.error import LLMRateLimitError, LLMBadRequestError, LLMAuthorizationError, LLMAPIConnectionError, \
from core.model_providers.error import LLMRateLimitError, LLMBadRequestError, LLMAuthorizationError, LLMAPIConnectionError, \
ProviderTokenNotInitError, LLMAPIUnavailableError, QuotaExceededError, ModelCurrentlyNotSupportError
from libs.helper import uuid_value, TimestampField
from libs.infinite_scroll_pagination import InfiniteScrollPagination

View File

@@ -28,9 +28,9 @@ class ModelConfigResource(Resource):
# validate config
model_configuration = AppModelConfigService.validate_configuration(
tenant_id=current_user.current_tenant_id,
account=current_user,
config=request.json,
mode=app_model.mode
config=request.json
)
new_app_model_config = AppModelConfig(
@@ -43,6 +43,7 @@ class ModelConfigResource(Resource):
suggested_questions_after_answer=json.dumps(model_configuration['suggested_questions_after_answer']),
speech_to_text=json.dumps(model_configuration['speech_to_text']),
more_like_this=json.dumps(model_configuration['more_like_this']),
sensitive_word_avoidance=json.dumps(model_configuration['sensitive_word_avoidance']),
model=json.dumps(model_configuration['model']),
user_input_form=json.dumps(model_configuration['user_input_form']),
pre_prompt=model_configuration['pre_prompt'],

View File

@@ -80,6 +80,13 @@ class AppSite(Resource):
if value is not None:
setattr(site, attr_name, value)
if attr_name == 'title':
app_model.name = value
elif attr_name == 'icon':
app_model.icon = value
elif attr_name == 'icon_background':
app_model.icon_background = value
db.session.commit()
return site

View File

@@ -398,9 +398,74 @@ class AverageResponseTimeStatistic(Resource):
})
class TokensPerSecondStatistic(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, app_id):
account = current_user
app_id = str(app_id)
app_model = _get_app(app_id)
parser = reqparse.RequestParser()
parser.add_argument('start', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
parser.add_argument('end', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
args = parser.parse_args()
sql_query = '''SELECT date(DATE_TRUNC('day', created_at AT TIME ZONE 'UTC' AT TIME ZONE :tz )) AS date,
CASE
WHEN SUM(provider_response_latency) = 0 THEN 0
ELSE (SUM(answer_tokens) / SUM(provider_response_latency))
END as tokens_per_second
FROM messages
WHERE app_id = :app_id'''
arg_dict = {'tz': account.timezone, 'app_id': app_model.id}
timezone = pytz.timezone(account.timezone)
utc_timezone = pytz.utc
if args['start']:
start_datetime = datetime.strptime(args['start'], '%Y-%m-%d %H:%M')
start_datetime = start_datetime.replace(second=0)
start_datetime_timezone = timezone.localize(start_datetime)
start_datetime_utc = start_datetime_timezone.astimezone(utc_timezone)
sql_query += ' and created_at >= :start'
arg_dict['start'] = start_datetime_utc
if args['end']:
end_datetime = datetime.strptime(args['end'], '%Y-%m-%d %H:%M')
end_datetime = end_datetime.replace(second=0)
end_datetime_timezone = timezone.localize(end_datetime)
end_datetime_utc = end_datetime_timezone.astimezone(utc_timezone)
sql_query += ' and created_at < :end'
arg_dict['end'] = end_datetime_utc
sql_query += ' GROUP BY date order by date'
with db.engine.begin() as conn:
rs = conn.execute(db.text(sql_query), arg_dict)
response_data = []
for i in rs:
response_data.append({
'date': str(i.date),
'tps': round(i.tokens_per_second, 4)
})
return jsonify({
'data': response_data
})
api.add_resource(DailyConversationStatistic, '/apps/<uuid:app_id>/statistics/daily-conversations')
api.add_resource(DailyTerminalsStatistic, '/apps/<uuid:app_id>/statistics/daily-end-users')
api.add_resource(DailyTokenCostStatistic, '/apps/<uuid:app_id>/statistics/token-costs')
api.add_resource(AverageSessionInteractionStatistic, '/apps/<uuid:app_id>/statistics/average-session-interactions')
api.add_resource(UserSatisfactionRateStatistic, '/apps/<uuid:app_id>/statistics/user-satisfaction-rate')
api.add_resource(AverageResponseTimeStatistic, '/apps/<uuid:app_id>/statistics/average-response-time')
api.add_resource(TokensPerSecondStatistic, '/apps/<uuid:app_id>/statistics/tokens-per-second')

View File

@@ -35,7 +35,7 @@ class LoginApi(Resource):
try:
TenantService.switch_tenant(account)
except Exception:
raise AccountNotLinkTenantError("Account not link tenant")
pass
flask_login.login_user(account, remember=args['remember_me'])
AccountService.update_last_login(account, request)

View File

@@ -255,7 +255,7 @@ class DataSourceNotionApi(Resource):
# validate args
DocumentService.estimate_args_validate(args)
indexing_runner = IndexingRunner()
response = indexing_runner.notion_indexing_estimate(args['notion_info_list'], args['process_rule'])
response = indexing_runner.notion_indexing_estimate(current_user.current_tenant_id, args['notion_info_list'], args['process_rule'])
return response, 200

View File

@@ -3,13 +3,15 @@ from flask import request
from flask_login import login_required, current_user
from flask_restful import Resource, reqparse, fields, marshal, marshal_with
from werkzeug.exceptions import NotFound, Forbidden
import services
from controllers.console import api
from controllers.console.app.error import ProviderNotInitializeError
from controllers.console.datasets.error import DatasetNameDuplicateError
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.indexing_runner import IndexingRunner
from core.model_providers.error import LLMBadRequestError
from core.model_providers.model_factory import ModelFactory
from libs.helper import TimestampField
from extensions.ext_database import db
from models.dataset import DocumentSegment, Document
@@ -98,6 +100,15 @@ class DatasetListApi(Resource):
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
try:
dataset = DatasetService.create_empty_dataset(
tenant_id=current_user.current_tenant_id,
@@ -221,6 +232,7 @@ class DatasetIndexingEstimateApi(Resource):
parser = reqparse.RequestParser()
parser.add_argument('info_list', type=dict, required=True, nullable=True, location='json')
parser.add_argument('process_rule', type=dict, required=True, nullable=True, location='json')
parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
args = parser.parse_args()
# validate args
DocumentService.estimate_args_validate(args)
@@ -235,12 +247,26 @@ class DatasetIndexingEstimateApi(Resource):
raise NotFound("File not found.")
indexing_runner = IndexingRunner()
response = indexing_runner.file_indexing_estimate(file_details, args['process_rule'])
try:
response = indexing_runner.file_indexing_estimate(current_user.current_tenant_id, file_details,
args['process_rule'], args['doc_form'])
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
elif args['info_list']['data_source_type'] == 'notion_import':
indexing_runner = IndexingRunner()
response = indexing_runner.notion_indexing_estimate(args['info_list']['notion_info_list'],
args['process_rule'])
try:
response = indexing_runner.notion_indexing_estimate(current_user.current_tenant_id,
args['info_list']['notion_info_list'],
args['process_rule'], args['doc_form'])
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
else:
raise ValueError('Data source type not support')
return response, 200

View File

@@ -18,7 +18,9 @@ from controllers.console.datasets.error import DocumentAlreadyFinishedError, Inv
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.indexing_runner import IndexingRunner
from core.llm.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from core.model_providers.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError, \
LLMBadRequestError
from core.model_providers.model_factory import ModelFactory
from extensions.ext_redis import redis_client
from libs.helper import TimestampField
from extensions.ext_database import db
@@ -60,6 +62,7 @@ document_fields = {
'display_status': fields.String,
'word_count': fields.Integer,
'hit_count': fields.Integer,
'doc_form': fields.String,
}
document_with_segments_fields = {
@@ -86,6 +89,7 @@ document_with_segments_fields = {
'total_segments': fields.Integer
}
class DocumentResource(Resource):
def get_document(self, dataset_id: str, document_id: str) -> Document:
dataset = DatasetService.get_dataset(dataset_id)
@@ -269,6 +273,7 @@ class DatasetDocumentListApi(Resource):
parser.add_argument('process_rule', type=dict, required=False, location='json')
parser.add_argument('duplicate', type=bool, nullable=False, location='json')
parser.add_argument('original_document_id', type=str, required=False, location='json')
parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
args = parser.parse_args()
if not dataset.indexing_technique and not args['indexing_technique']:
@@ -277,6 +282,15 @@ class DatasetDocumentListApi(Resource):
# validate args
DocumentService.document_create_args_validate(args)
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
try:
documents, batch = DocumentService.save_document_with_dataset_id(dataset, args, current_user)
except ProviderTokenNotInitError as ex:
@@ -313,8 +327,18 @@ class DatasetInitApi(Resource):
nullable=False, location='json')
parser.add_argument('data_source', type=dict, required=True, nullable=True, location='json')
parser.add_argument('process_rule', type=dict, required=True, nullable=True, location='json')
parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
args = parser.parse_args()
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
# validate args
DocumentService.document_create_args_validate(args)
@@ -380,7 +404,13 @@ class DocumentIndexingEstimateApi(DocumentResource):
indexing_runner = IndexingRunner()
response = indexing_runner.file_indexing_estimate([file], data_process_rule_dict)
try:
response = indexing_runner.file_indexing_estimate(current_user.current_tenant_id, [file],
data_process_rule_dict)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
return response
@@ -441,12 +471,24 @@ class DocumentBatchIndexingEstimateApi(DocumentResource):
raise NotFound("File not found.")
indexing_runner = IndexingRunner()
response = indexing_runner.file_indexing_estimate(file_details, data_process_rule_dict)
try:
response = indexing_runner.file_indexing_estimate(current_user.current_tenant_id, file_details,
data_process_rule_dict)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
elif dataset.data_source_type:
indexing_runner = IndexingRunner()
response = indexing_runner.notion_indexing_estimate(info_list,
data_process_rule_dict)
try:
response = indexing_runner.notion_indexing_estimate(current_user.current_tenant_id,
info_list,
data_process_rule_dict)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
else:
raise ValueError('Data source type not support')
return response
@@ -488,6 +530,8 @@ class DocumentBatchIndexingStatusApi(DocumentResource):
DocumentSegment.status != 're_segment').count()
document.completed_segments = completed_segments
document.total_segments = total_segments
if document.is_paused:
document.indexing_status = 'paused'
documents_status.append(marshal(document, self.document_status_fields))
data = {
'data': documents_status
@@ -583,7 +627,8 @@ class DocumentDetailApi(DocumentResource):
'segment_count': document.segment_count,
'average_segment_length': document.average_segment_length,
'hit_count': document.hit_count,
'display_status': document.display_status
'display_status': document.display_status,
'doc_form': document.doc_form
}
else:
process_rules = DatasetService.get_process_rules(dataset_id)
@@ -614,7 +659,8 @@ class DocumentDetailApi(DocumentResource):
'segment_count': document.segment_count,
'average_segment_length': document.average_segment_length,
'hit_count': document.hit_count,
'display_status': document.display_status
'display_status': document.display_status,
'doc_form': document.doc_form
}
return response, 200

View File

@@ -15,8 +15,8 @@ from extensions.ext_redis import redis_client
from models.dataset import DocumentSegment
from libs.helper import TimestampField
from services.dataset_service import DatasetService, DocumentService
from tasks.add_segment_to_index_task import add_segment_to_index_task
from services.dataset_service import DatasetService, DocumentService, SegmentService
from tasks.enable_segment_to_index_task import enable_segment_to_index_task
from tasks.remove_segment_from_index_task import remove_segment_from_index_task
segment_fields = {
@@ -24,6 +24,7 @@ segment_fields = {
'position': fields.Integer,
'document_id': fields.String,
'content': fields.String,
'answer': fields.String,
'word_count': fields.Integer,
'tokens': fields.Integer,
'keywords': fields.List(fields.String),
@@ -125,6 +126,7 @@ class DatasetDocumentSegmentListApi(Resource):
return {
'data': marshal(segments, segment_fields),
'doc_form': document.doc_form,
'has_more': has_more,
'limit': limit,
'total': total
@@ -180,7 +182,7 @@ class DatasetDocumentSegmentApi(Resource):
# Set cache to prevent indexing the same segment multiple times
redis_client.setex(indexing_cache_key, 600, 1)
add_segment_to_index_task.delay(segment.id)
enable_segment_to_index_task.delay(segment.id)
return {'result': 'success'}, 200
elif action == "disable":
@@ -202,7 +204,91 @@ class DatasetDocumentSegmentApi(Resource):
raise InvalidActionError()
class DatasetDocumentSegmentAddApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, dataset_id, document_id):
# check dataset
dataset_id = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise NotFound('Dataset not found.')
# check document
document_id = str(document_id)
document = DocumentService.get_document(dataset_id, document_id)
if not document:
raise NotFound('Document not found.')
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
# validate args
parser = reqparse.RequestParser()
parser.add_argument('content', type=str, required=True, nullable=False, location='json')
parser.add_argument('answer', type=str, required=False, nullable=True, location='json')
parser.add_argument('keywords', type=list, required=False, nullable=True, location='json')
args = parser.parse_args()
SegmentService.segment_create_args_validate(args, document)
segment = SegmentService.create_segment(args, document)
return {
'data': marshal(segment, segment_fields),
'doc_form': document.doc_form
}, 200
class DatasetDocumentSegmentUpdateApi(Resource):
@setup_required
@login_required
@account_initialization_required
def patch(self, dataset_id, document_id, segment_id):
# check dataset
dataset_id = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise NotFound('Dataset not found.')
# check document
document_id = str(document_id)
document = DocumentService.get_document(dataset_id, document_id)
if not document:
raise NotFound('Document not found.')
# check segment
segment_id = str(segment_id)
segment = DocumentSegment.query.filter(
DocumentSegment.id == str(segment_id),
DocumentSegment.tenant_id == current_user.current_tenant_id
).first()
if not segment:
raise NotFound('Segment not found.')
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
# validate args
parser = reqparse.RequestParser()
parser.add_argument('content', type=str, required=True, nullable=False, location='json')
parser.add_argument('answer', type=str, required=False, nullable=True, location='json')
parser.add_argument('keywords', type=list, required=False, nullable=True, location='json')
args = parser.parse_args()
SegmentService.segment_create_args_validate(args, document)
segment = SegmentService.update_segment(args, segment, document)
return {
'data': marshal(segment, segment_fields),
'doc_form': document.doc_form
}, 200
api.add_resource(DatasetDocumentSegmentListApi,
'/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments')
api.add_resource(DatasetDocumentSegmentApi,
'/datasets/<uuid:dataset_id>/segments/<uuid:segment_id>/<string:action>')
api.add_resource(DatasetDocumentSegmentAddApi,
'/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segment')
api.add_resource(DatasetDocumentSegmentUpdateApi,
'/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/<uuid:segment_id>')

View File

@@ -11,7 +11,7 @@ from controllers.console.app.error import ProviderNotInitializeError, ProviderQu
from controllers.console.datasets.error import HighQualityDatasetOnlyError, DatasetNotInitializedError
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.llm.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from core.model_providers.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from libs.helper import TimestampField
from services.dataset_service import DatasetService
from services.hit_testing_service import HitTestingService
@@ -28,6 +28,7 @@ segment_fields = {
'position': fields.Integer,
'document_id': fields.String,
'content': fields.String,
'answer': fields.String,
'word_count': fields.Integer,
'tokens': fields.Integer,
'keywords': fields.List(fields.String),
@@ -101,6 +102,8 @@ class HitTestingApi(Resource):
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except ValueError as e:
raise ValueError(str(e))
except Exception as e:
logging.exception("Hit testing failed.")
raise InternalServerError(str(e))

View File

@@ -11,7 +11,7 @@ from controllers.console.app.error import AppUnavailableError, ProviderNotInitia
NoAudioUploadedError, AudioTooLargeError, \
UnsupportedAudioTypeError, ProviderNotSupportSpeechToTextError
from controllers.console.explore.wraps import InstalledAppResource
from core.llm.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
from core.model_providers.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from services.audio_service import AudioService
from services.errors.audio import NoAudioUploadedServiceError, AudioTooLargeServiceError, \

View File

@@ -15,7 +15,7 @@ from controllers.console.app.error import ConversationCompletedError, AppUnavail
from controllers.console.explore.error import NotCompletionAppError, NotChatAppError
from controllers.console.explore.wraps import InstalledAppResource
from core.conversation_message_task import PubHandler
from core.llm.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
from core.model_providers.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from libs.helper import uuid_value
from services.completion_service import CompletionService

View File

@@ -65,7 +65,10 @@ class ConversationApi(InstalledAppResource):
raise NotChatAppError()
conversation_id = str(c_id)
ConversationService.delete(app_model, conversation_id, current_user)
try:
ConversationService.delete(app_model, conversation_id, current_user)
except ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
WebConversationService.unpin(app_model, conversation_id, current_user)
return {"result": "success"}, 204

View File

@@ -15,7 +15,7 @@ from controllers.console.app.error import AppMoreLikeThisDisabledError, Provider
ProviderQuotaExceededError, ProviderModelCurrentlyNotSupportError, CompletionRequestError
from controllers.console.explore.error import NotCompletionAppError, AppSuggestedQuestionsAfterAnswerDisabledError
from controllers.console.explore.wraps import InstalledAppResource
from core.llm.error import LLMRateLimitError, LLMBadRequestError, LLMAuthorizationError, LLMAPIConnectionError, \
from core.model_providers.error import LLMRateLimitError, LLMBadRequestError, LLMAuthorizationError, LLMAPIConnectionError, \
ProviderTokenNotInitError, LLMAPIUnavailableError, QuotaExceededError, ModelCurrentlyNotSupportError
from libs.helper import uuid_value, TimestampField
from services.completion_service import CompletionService

View File

@@ -4,6 +4,8 @@ from flask_restful import marshal_with, fields
from controllers.console import api
from controllers.console.explore.wraps import InstalledAppResource
from models.model import InstalledApp
class AppParameterApi(InstalledAppResource):
"""Resource for app variables."""
@@ -27,7 +29,7 @@ class AppParameterApi(InstalledAppResource):
}
@marshal_with(parameters_fields)
def get(self, installed_app):
def get(self, installed_app: InstalledApp):
"""Retrieve app parameters."""
app_model = installed_app.app
app_model_config = app_model.app_model_config

View File

@@ -19,15 +19,16 @@ from .wraps import only_edition_self_hosted
class SetupApi(Resource):
@only_edition_self_hosted
def get(self):
setup_status = get_setup_status()
if setup_status:
return {
'step': 'finished',
'setup_at': setup_status.setup_at.isoformat()
}
return {'step': 'not_start'}
if current_app.config['EDITION'] == 'SELF_HOSTED':
setup_status = get_setup_status()
if setup_status:
return {
'step': 'finished',
'setup_at': setup_status.setup_at.isoformat()
}
return {'step': 'not_start'}
return {'step': 'finished'}
@only_edition_self_hosted
def post(self):

View File

@@ -0,0 +1,66 @@
# -*- coding:utf-8 -*-
import logging
from flask import request
from werkzeug.exceptions import InternalServerError
import services
from controllers.console import api
from controllers.console.app.error import AppUnavailableError, ProviderNotInitializeError, \
ProviderQuotaExceededError, ProviderModelCurrentlyNotSupportError, CompletionRequestError, \
NoAudioUploadedError, AudioTooLargeError, \
UnsupportedAudioTypeError, ProviderNotSupportSpeechToTextError
from controllers.console.universal_chat.wraps import UniversalChatResource
from core.model_providers.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from services.audio_service import AudioService
from services.errors.audio import NoAudioUploadedServiceError, AudioTooLargeServiceError, \
UnsupportedAudioTypeServiceError, ProviderNotSupportSpeechToTextServiceError
from models.model import AppModelConfig
class UniversalChatAudioApi(UniversalChatResource):
def post(self, universal_app):
app_model = universal_app
app_model_config: AppModelConfig = app_model.app_model_config
if not app_model_config.speech_to_text_dict['enabled']:
raise AppUnavailableError()
file = request.files['file']
try:
response = AudioService.transcript(
tenant_id=app_model.tenant_id,
file=file,
)
return response
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
raise AppUnavailableError()
except NoAudioUploadedServiceError:
raise NoAudioUploadedError()
except AudioTooLargeServiceError as e:
raise AudioTooLargeError(str(e))
except UnsupportedAudioTypeServiceError:
raise UnsupportedAudioTypeError()
except ProviderNotSupportSpeechToTextServiceError:
raise ProviderNotSupportSpeechToTextError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
raise CompletionRequestError(str(e))
except ValueError as e:
raise e
except Exception as e:
logging.exception("internal server error.")
raise InternalServerError()
api.add_resource(UniversalChatAudioApi, '/universal-chat/audio-to-text')

View File

@@ -0,0 +1,138 @@
import json
import logging
from typing import Generator, Union
from flask import Response, stream_with_context
from flask_login import current_user
from flask_restful import reqparse
from werkzeug.exceptions import InternalServerError, NotFound
import services
from controllers.console import api
from controllers.console.app.error import ConversationCompletedError, AppUnavailableError, ProviderNotInitializeError, \
ProviderQuotaExceededError, ProviderModelCurrentlyNotSupportError, CompletionRequestError
from controllers.console.universal_chat.wraps import UniversalChatResource
from core.conversation_message_task import PubHandler
from core.model_providers.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError, \
LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError, LLMRateLimitError, LLMAuthorizationError
from libs.helper import uuid_value
from services.completion_service import CompletionService
class UniversalChatApi(UniversalChatResource):
def post(self, universal_app):
app_model = universal_app
parser = reqparse.RequestParser()
parser.add_argument('query', type=str, required=True, location='json')
parser.add_argument('conversation_id', type=uuid_value, location='json')
parser.add_argument('provider', type=str, required=True, location='json')
parser.add_argument('model', type=str, required=True, location='json')
parser.add_argument('tools', type=list, required=True, location='json')
args = parser.parse_args()
app_model_config = app_model.app_model_config
# update app model config
args['model_config'] = app_model_config.to_dict()
args['model_config']['model']['name'] = args['model']
args['model_config']['model']['provider'] = args['provider']
args['model_config']['agent_mode']['tools'] = args['tools']
if not args['model_config']['agent_mode']['tools']:
args['model_config']['agent_mode']['tools'] = [
{
"current_datetime": {
"enabled": True
}
}
]
else:
args['model_config']['agent_mode']['tools'].append({
"current_datetime": {
"enabled": True
}
})
args['inputs'] = {}
del args['model']
del args['tools']
try:
response = CompletionService.completion(
app_model=app_model,
user=current_user,
args=args,
from_source='console',
streaming=True,
is_model_config_override=True,
)
return compact_response(response)
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
except services.errors.conversation.ConversationCompletedError:
raise ConversationCompletedError()
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
raise AppUnavailableError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
raise CompletionRequestError(str(e))
except ValueError as e:
raise e
except Exception as e:
logging.exception("internal server error.")
raise InternalServerError()
class UniversalChatStopApi(UniversalChatResource):
def post(self, universal_app, task_id):
PubHandler.stop(current_user, task_id)
return {'result': 'success'}, 200
def compact_response(response: Union[dict | Generator]) -> Response:
if isinstance(response, dict):
return Response(response=json.dumps(response), status=200, mimetype='application/json')
else:
def generate() -> Generator:
try:
for chunk in response:
yield chunk
except services.errors.conversation.ConversationNotExistsError:
yield "data: " + json.dumps(api.handle_error(NotFound("Conversation Not Exists.")).get_json()) + "\n\n"
except services.errors.conversation.ConversationCompletedError:
yield "data: " + json.dumps(api.handle_error(ConversationCompletedError()).get_json()) + "\n\n"
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
yield "data: " + json.dumps(api.handle_error(AppUnavailableError()).get_json()) + "\n\n"
except ProviderTokenNotInitError:
yield "data: " + json.dumps(api.handle_error(ProviderNotInitializeError()).get_json()) + "\n\n"
except QuotaExceededError:
yield "data: " + json.dumps(api.handle_error(ProviderQuotaExceededError()).get_json()) + "\n\n"
except ModelCurrentlyNotSupportError:
yield "data: " + json.dumps(api.handle_error(ProviderModelCurrentlyNotSupportError()).get_json()) + "\n\n"
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
yield "data: " + json.dumps(api.handle_error(CompletionRequestError(str(e))).get_json()) + "\n\n"
except ValueError as e:
yield "data: " + json.dumps(api.handle_error(e).get_json()) + "\n\n"
except Exception:
logging.exception("internal server error.")
yield "data: " + json.dumps(api.handle_error(InternalServerError()).get_json()) + "\n\n"
return Response(stream_with_context(generate()), status=200,
mimetype='text/event-stream')
api.add_resource(UniversalChatApi, '/universal-chat/messages')
api.add_resource(UniversalChatStopApi, '/universal-chat/messages/<string:task_id>/stop')

View File

@@ -0,0 +1,118 @@
# -*- coding:utf-8 -*-
from flask_login import current_user
from flask_restful import fields, reqparse, marshal_with
from flask_restful.inputs import int_range
from werkzeug.exceptions import NotFound
from controllers.console import api
from controllers.console.universal_chat.wraps import UniversalChatResource
from libs.helper import TimestampField, uuid_value
from services.conversation_service import ConversationService
from services.errors.conversation import LastConversationNotExistsError, ConversationNotExistsError
from services.web_conversation_service import WebConversationService
conversation_fields = {
'id': fields.String,
'name': fields.String,
'inputs': fields.Raw,
'status': fields.String,
'introduction': fields.String,
'created_at': TimestampField,
'model_config': fields.Raw,
}
conversation_infinite_scroll_pagination_fields = {
'limit': fields.Integer,
'has_more': fields.Boolean,
'data': fields.List(fields.Nested(conversation_fields))
}
class UniversalChatConversationListApi(UniversalChatResource):
@marshal_with(conversation_infinite_scroll_pagination_fields)
def get(self, universal_app):
app_model = universal_app
parser = reqparse.RequestParser()
parser.add_argument('last_id', type=uuid_value, location='args')
parser.add_argument('limit', type=int_range(1, 100), required=False, default=20, location='args')
parser.add_argument('pinned', type=str, choices=['true', 'false', None], location='args')
args = parser.parse_args()
pinned = None
if 'pinned' in args and args['pinned'] is not None:
pinned = True if args['pinned'] == 'true' else False
try:
return WebConversationService.pagination_by_last_id(
app_model=app_model,
user=current_user,
last_id=args['last_id'],
limit=args['limit'],
pinned=pinned
)
except LastConversationNotExistsError:
raise NotFound("Last Conversation Not Exists.")
class UniversalChatConversationApi(UniversalChatResource):
def delete(self, universal_app, c_id):
app_model = universal_app
conversation_id = str(c_id)
try:
ConversationService.delete(app_model, conversation_id, current_user)
except ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
WebConversationService.unpin(app_model, conversation_id, current_user)
return {"result": "success"}, 204
class UniversalChatConversationRenameApi(UniversalChatResource):
@marshal_with(conversation_fields)
def post(self, universal_app, c_id):
app_model = universal_app
conversation_id = str(c_id)
parser = reqparse.RequestParser()
parser.add_argument('name', type=str, required=True, location='json')
args = parser.parse_args()
try:
return ConversationService.rename(app_model, conversation_id, current_user, args['name'])
except ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
class UniversalChatConversationPinApi(UniversalChatResource):
def patch(self, universal_app, c_id):
app_model = universal_app
conversation_id = str(c_id)
try:
WebConversationService.pin(app_model, conversation_id, current_user)
except ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
return {"result": "success"}
class UniversalChatConversationUnPinApi(UniversalChatResource):
def patch(self, universal_app, c_id):
app_model = universal_app
conversation_id = str(c_id)
WebConversationService.unpin(app_model, conversation_id, current_user)
return {"result": "success"}
api.add_resource(UniversalChatConversationRenameApi, '/universal-chat/conversations/<uuid:c_id>/name')
api.add_resource(UniversalChatConversationListApi, '/universal-chat/conversations')
api.add_resource(UniversalChatConversationApi, '/universal-chat/conversations/<uuid:c_id>')
api.add_resource(UniversalChatConversationPinApi, '/universal-chat/conversations/<uuid:c_id>/pin')
api.add_resource(UniversalChatConversationUnPinApi, '/universal-chat/conversations/<uuid:c_id>/unpin')

View File

@@ -0,0 +1,127 @@
# -*- coding:utf-8 -*-
import logging
from flask_login import current_user
from flask_restful import reqparse, fields, marshal_with
from flask_restful.inputs import int_range
from werkzeug.exceptions import NotFound, InternalServerError
import services
from controllers.console import api
from controllers.console.app.error import ProviderNotInitializeError, \
ProviderQuotaExceededError, ProviderModelCurrentlyNotSupportError, CompletionRequestError
from controllers.console.explore.error import AppSuggestedQuestionsAfterAnswerDisabledError
from controllers.console.universal_chat.wraps import UniversalChatResource
from core.model_providers.error import LLMRateLimitError, LLMBadRequestError, LLMAuthorizationError, LLMAPIConnectionError, \
ProviderTokenNotInitError, LLMAPIUnavailableError, QuotaExceededError, ModelCurrentlyNotSupportError
from libs.helper import uuid_value, TimestampField
from services.errors.conversation import ConversationNotExistsError
from services.errors.message import MessageNotExistsError, SuggestedQuestionsAfterAnswerDisabledError
from services.message_service import MessageService
class UniversalChatMessageListApi(UniversalChatResource):
feedback_fields = {
'rating': fields.String
}
agent_thought_fields = {
'id': fields.String,
'chain_id': fields.String,
'message_id': fields.String,
'position': fields.Integer,
'thought': fields.String,
'tool': fields.String,
'tool_input': fields.String,
'created_at': TimestampField
}
message_fields = {
'id': fields.String,
'conversation_id': fields.String,
'inputs': fields.Raw,
'query': fields.String,
'answer': fields.String,
'feedback': fields.Nested(feedback_fields, attribute='user_feedback', allow_null=True),
'created_at': TimestampField,
'agent_thoughts': fields.List(fields.Nested(agent_thought_fields))
}
message_infinite_scroll_pagination_fields = {
'limit': fields.Integer,
'has_more': fields.Boolean,
'data': fields.List(fields.Nested(message_fields))
}
@marshal_with(message_infinite_scroll_pagination_fields)
def get(self, universal_app):
app_model = universal_app
parser = reqparse.RequestParser()
parser.add_argument('conversation_id', required=True, type=uuid_value, location='args')
parser.add_argument('first_id', type=uuid_value, location='args')
parser.add_argument('limit', type=int_range(1, 100), required=False, default=20, location='args')
args = parser.parse_args()
try:
return MessageService.pagination_by_first_id(app_model, current_user,
args['conversation_id'], args['first_id'], args['limit'])
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
except services.errors.message.FirstMessageNotExistsError:
raise NotFound("First Message Not Exists.")
class UniversalChatMessageFeedbackApi(UniversalChatResource):
def post(self, universal_app, message_id):
app_model = universal_app
message_id = str(message_id)
parser = reqparse.RequestParser()
parser.add_argument('rating', type=str, choices=['like', 'dislike', None], location='json')
args = parser.parse_args()
try:
MessageService.create_feedback(app_model, message_id, current_user, args['rating'])
except services.errors.message.MessageNotExistsError:
raise NotFound("Message Not Exists.")
return {'result': 'success'}
class UniversalChatMessageSuggestedQuestionApi(UniversalChatResource):
def get(self, universal_app, message_id):
app_model = universal_app
message_id = str(message_id)
try:
questions = MessageService.get_suggested_questions_after_answer(
app_model=app_model,
user=current_user,
message_id=message_id
)
except MessageNotExistsError:
raise NotFound("Message not found")
except ConversationNotExistsError:
raise NotFound("Conversation not found")
except SuggestedQuestionsAfterAnswerDisabledError:
raise AppSuggestedQuestionsAfterAnswerDisabledError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
raise CompletionRequestError(str(e))
except Exception:
logging.exception("internal server error.")
raise InternalServerError()
return {'data': questions}
api.add_resource(UniversalChatMessageListApi, '/universal-chat/messages')
api.add_resource(UniversalChatMessageFeedbackApi, '/universal-chat/messages/<uuid:message_id>/feedbacks')
api.add_resource(UniversalChatMessageSuggestedQuestionApi, '/universal-chat/messages/<uuid:message_id>/suggested-questions')

View File

@@ -0,0 +1,33 @@
# -*- coding:utf-8 -*-
from flask_restful import marshal_with, fields
from controllers.console import api
from controllers.console.universal_chat.wraps import UniversalChatResource
from models.model import App
class UniversalChatParameterApi(UniversalChatResource):
"""Resource for app variables."""
parameters_fields = {
'opening_statement': fields.String,
'suggested_questions': fields.Raw,
'suggested_questions_after_answer': fields.Raw,
'speech_to_text': fields.Raw,
}
@marshal_with(parameters_fields)
def get(self, universal_app: App):
"""Retrieve app parameters."""
app_model = universal_app
app_model_config = app_model.app_model_config
return {
'opening_statement': app_model_config.opening_statement,
'suggested_questions': app_model_config.suggested_questions_list,
'suggested_questions_after_answer': app_model_config.suggested_questions_after_answer_dict,
'speech_to_text': app_model_config.speech_to_text_dict,
}
api.add_resource(UniversalChatParameterApi, '/universal-chat/parameters')

View File

@@ -0,0 +1,84 @@
import json
from functools import wraps
from flask_login import login_required, current_user
from flask_restful import Resource
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from extensions.ext_database import db
from models.model import App, AppModelConfig
def universal_chat_app_required(view=None):
def decorator(view):
@wraps(view)
def decorated(*args, **kwargs):
# get universal chat app
universal_app = db.session.query(App).filter(
App.tenant_id == current_user.current_tenant_id,
App.is_universal == True
).first()
if universal_app is None:
# create universal app if not exists
universal_app = App(
tenant_id=current_user.current_tenant_id,
name='Universal Chat',
mode='chat',
is_universal=True,
icon='',
icon_background='',
api_rpm=0,
api_rph=0,
enable_site=False,
enable_api=False,
status='normal'
)
db.session.add(universal_app)
db.session.flush()
app_model_config = AppModelConfig(
provider="",
model_id="",
configs={},
opening_statement='',
suggested_questions=json.dumps([]),
suggested_questions_after_answer=json.dumps({'enabled': True}),
speech_to_text=json.dumps({'enabled': True}),
more_like_this=None,
sensitive_word_avoidance=None,
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo-16k",
"completion_params": {
"max_tokens": 800,
"temperature": 0.8,
"top_p": 1,
"presence_penalty": 0,
"frequency_penalty": 0
}
}),
user_input_form=json.dumps([]),
pre_prompt='',
agent_mode=json.dumps({"enabled": True, "strategy": "function_call", "tools": []}),
)
app_model_config.app_id = universal_app.id
db.session.add(app_model_config)
db.session.flush()
universal_app.app_model_config_id = app_model_config.id
db.session.commit()
return view(universal_app, *args, **kwargs)
return decorated
if view:
return decorator(view)
return decorator
class UniversalChatResource(Resource):
# must be reversed if there are multiple decorators
method_decorators = [universal_chat_app_required, account_initialization_required, login_required, setup_required]

View File

@@ -0,0 +1,53 @@
import logging
import stripe
from flask import request, current_app
from flask_restful import Resource
from controllers.console import api
from controllers.console.setup import setup_required
from controllers.console.wraps import only_edition_cloud
from services.provider_checkout_service import ProviderCheckoutService
class StripeWebhookApi(Resource):
@setup_required
@only_edition_cloud
def post(self):
payload = request.data
sig_header = request.headers.get('STRIPE_SIGNATURE')
webhook_secret = current_app.config.get('STRIPE_WEBHOOK_SECRET')
try:
event = stripe.Webhook.construct_event(
payload, sig_header, webhook_secret
)
except ValueError as e:
# Invalid payload
return 'Invalid payload', 400
except stripe.error.SignatureVerificationError as e:
# Invalid signature
return 'Invalid signature', 400
# Handle the checkout.session.completed event
if event['type'] == 'checkout.session.completed':
logging.debug(event['data']['object']['id'])
logging.debug(event['data']['object']['amount_subtotal'])
logging.debug(event['data']['object']['currency'])
logging.debug(event['data']['object']['payment_intent'])
logging.debug(event['data']['object']['payment_status'])
logging.debug(event['data']['object']['metadata'])
# Fulfill the purchase...
provider_checkout_service = ProviderCheckoutService()
try:
provider_checkout_service.fulfill_provider_order(event)
except Exception as e:
logging.debug(str(e))
return 'success', 200
return 'success', 200
api.add_resource(StripeWebhookApi, '/webhook/stripe')

View File

@@ -0,0 +1,301 @@
from flask_login import login_required, current_user
from flask_restful import Resource, reqparse
from werkzeug.exceptions import Forbidden
from controllers.console import api
from controllers.console.app.error import ProviderNotInitializeError
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.model_providers.error import LLMBadRequestError
from core.model_providers.providers.base import CredentialsValidateFailedError
from services.provider_checkout_service import ProviderCheckoutService
from services.provider_service import ProviderService
class ModelProviderListApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
tenant_id = current_user.current_tenant_id
provider_service = ProviderService()
provider_list = provider_service.get_provider_list(tenant_id)
return provider_list
class ModelProviderValidateApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, provider_name: str):
parser = reqparse.RequestParser()
parser.add_argument('config', type=dict, required=True, nullable=False, location='json')
args = parser.parse_args()
provider_service = ProviderService()
result = True
error = None
try:
provider_service.custom_provider_config_validate(
provider_name=provider_name,
config=args['config']
)
except CredentialsValidateFailedError as ex:
result = False
error = str(ex)
response = {'result': 'success' if result else 'error'}
if not result:
response['error'] = error
return response
class ModelProviderUpdateApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, provider_name: str):
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
parser = reqparse.RequestParser()
parser.add_argument('config', type=dict, required=True, nullable=False, location='json')
args = parser.parse_args()
provider_service = ProviderService()
try:
provider_service.save_custom_provider_config(
tenant_id=current_user.current_tenant_id,
provider_name=provider_name,
config=args['config']
)
except CredentialsValidateFailedError as ex:
raise ValueError(str(ex))
return {'result': 'success'}, 201
@setup_required
@login_required
@account_initialization_required
def delete(self, provider_name: str):
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
provider_service = ProviderService()
provider_service.delete_custom_provider(
tenant_id=current_user.current_tenant_id,
provider_name=provider_name
)
return {'result': 'success'}, 204
class ModelProviderModelValidateApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, provider_name: str):
parser = reqparse.RequestParser()
parser.add_argument('model_name', type=str, required=True, nullable=False, location='json')
parser.add_argument('model_type', type=str, required=True, nullable=False,
choices=['text-generation', 'embeddings', 'speech2text'], location='json')
parser.add_argument('config', type=dict, required=True, nullable=False, location='json')
args = parser.parse_args()
provider_service = ProviderService()
result = True
error = None
try:
provider_service.custom_provider_model_config_validate(
provider_name=provider_name,
model_name=args['model_name'],
model_type=args['model_type'],
config=args['config']
)
except CredentialsValidateFailedError as ex:
result = False
error = str(ex)
response = {'result': 'success' if result else 'error'}
if not result:
response['error'] = error
return response
class ModelProviderModelUpdateApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, provider_name: str):
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
parser = reqparse.RequestParser()
parser.add_argument('model_name', type=str, required=True, nullable=False, location='json')
parser.add_argument('model_type', type=str, required=True, nullable=False,
choices=['text-generation', 'embeddings', 'speech2text'], location='json')
parser.add_argument('config', type=dict, required=True, nullable=False, location='json')
args = parser.parse_args()
provider_service = ProviderService()
try:
provider_service.add_or_save_custom_provider_model_config(
tenant_id=current_user.current_tenant_id,
provider_name=provider_name,
model_name=args['model_name'],
model_type=args['model_type'],
config=args['config']
)
except CredentialsValidateFailedError as ex:
raise ValueError(str(ex))
return {'result': 'success'}, 200
@setup_required
@login_required
@account_initialization_required
def delete(self, provider_name: str):
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
parser = reqparse.RequestParser()
parser.add_argument('model_name', type=str, required=True, nullable=False, location='args')
parser.add_argument('model_type', type=str, required=True, nullable=False,
choices=['text-generation', 'embeddings', 'speech2text'], location='args')
args = parser.parse_args()
provider_service = ProviderService()
provider_service.delete_custom_provider_model(
tenant_id=current_user.current_tenant_id,
provider_name=provider_name,
model_name=args['model_name'],
model_type=args['model_type']
)
return {'result': 'success'}, 204
class PreferredProviderTypeUpdateApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, provider_name: str):
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
parser = reqparse.RequestParser()
parser.add_argument('preferred_provider_type', type=str, required=True, nullable=False,
choices=['system', 'custom'], location='json')
args = parser.parse_args()
provider_service = ProviderService()
provider_service.switch_preferred_provider(
tenant_id=current_user.current_tenant_id,
provider_name=provider_name,
preferred_provider_type=args['preferred_provider_type']
)
return {'result': 'success'}
class ModelProviderModelParameterRuleApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, provider_name: str):
parser = reqparse.RequestParser()
parser.add_argument('model_name', type=str, required=True, nullable=False, location='args')
args = parser.parse_args()
provider_service = ProviderService()
try:
parameter_rules = provider_service.get_model_parameter_rules(
tenant_id=current_user.current_tenant_id,
model_provider_name=provider_name,
model_name=args['model_name'],
model_type='text-generation'
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"Current Text Generation Model is invalid. Please switch to the available model.")
rules = {
k: {
'enabled': v.enabled,
'min': v.min,
'max': v.max,
'default': v.default
}
for k, v in vars(parameter_rules).items()
}
return rules
class ModelProviderPaymentCheckoutUrlApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, provider_name: str):
provider_service = ProviderCheckoutService()
provider_checkout = provider_service.create_checkout(
tenant_id=current_user.current_tenant_id,
provider_name=provider_name,
account=current_user
)
return {
'url': provider_checkout.get_checkout_url()
}
class ModelProviderFreeQuotaSubmitApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, provider_name: str):
provider_service = ProviderService()
result = provider_service.free_quota_submit(
tenant_id=current_user.current_tenant_id,
provider_name=provider_name
)
return result
api.add_resource(ModelProviderListApi, '/workspaces/current/model-providers')
api.add_resource(ModelProviderValidateApi, '/workspaces/current/model-providers/<string:provider_name>/validate')
api.add_resource(ModelProviderUpdateApi, '/workspaces/current/model-providers/<string:provider_name>')
api.add_resource(ModelProviderModelValidateApi,
'/workspaces/current/model-providers/<string:provider_name>/models/validate')
api.add_resource(ModelProviderModelUpdateApi,
'/workspaces/current/model-providers/<string:provider_name>/models')
api.add_resource(PreferredProviderTypeUpdateApi,
'/workspaces/current/model-providers/<string:provider_name>/preferred-provider-type')
api.add_resource(ModelProviderModelParameterRuleApi,
'/workspaces/current/model-providers/<string:provider_name>/models/parameter-rules')
api.add_resource(ModelProviderPaymentCheckoutUrlApi,
'/workspaces/current/model-providers/<string:provider_name>/checkout-url')
api.add_resource(ModelProviderFreeQuotaSubmitApi,
'/workspaces/current/model-providers/<string:provider_name>/free-quota-submit')

View File

@@ -0,0 +1,108 @@
from flask_login import login_required, current_user
from flask_restful import Resource, reqparse
from controllers.console import api
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.model_providers.model_provider_factory import ModelProviderFactory
from core.model_providers.models.entity.model_params import ModelType
from models.provider import ProviderType
from services.provider_service import ProviderService
class DefaultModelApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
parser = reqparse.RequestParser()
parser.add_argument('model_type', type=str, required=True, nullable=False,
choices=['text-generation', 'embeddings', 'speech2text'], location='args')
args = parser.parse_args()
tenant_id = current_user.current_tenant_id
provider_service = ProviderService()
default_model = provider_service.get_default_model_of_model_type(
tenant_id=tenant_id,
model_type=args['model_type']
)
if not default_model:
return None
model_provider = ModelProviderFactory.get_preferred_model_provider(
tenant_id,
default_model.provider_name
)
if not model_provider:
return {
'model_name': default_model.model_name,
'model_type': default_model.model_type,
'model_provider': {
'provider_name': default_model.provider_name
}
}
provider = model_provider.provider
rst = {
'model_name': default_model.model_name,
'model_type': default_model.model_type,
'model_provider': {
'provider_name': provider.provider_name,
'provider_type': provider.provider_type
}
}
model_provider_rules = ModelProviderFactory.get_provider_rule(default_model.provider_name)
if provider.provider_type == ProviderType.SYSTEM.value:
rst['model_provider']['quota_type'] = provider.quota_type
rst['model_provider']['quota_unit'] = model_provider_rules['system_config']['quota_unit']
rst['model_provider']['quota_limit'] = provider.quota_limit
rst['model_provider']['quota_used'] = provider.quota_used
return rst
@setup_required
@login_required
@account_initialization_required
def post(self):
parser = reqparse.RequestParser()
parser.add_argument('model_name', type=str, required=True, nullable=False, location='json')
parser.add_argument('model_type', type=str, required=True, nullable=False,
choices=['text-generation', 'embeddings', 'speech2text'], location='json')
parser.add_argument('provider_name', type=str, required=True, nullable=False, location='json')
args = parser.parse_args()
provider_service = ProviderService()
provider_service.update_default_model_of_model_type(
tenant_id=current_user.current_tenant_id,
model_type=args['model_type'],
provider_name=args['provider_name'],
model_name=args['model_name']
)
return {'result': 'success'}
class ValidModelApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, model_type):
ModelType.value_of(model_type)
provider_service = ProviderService()
valid_models = provider_service.get_valid_model_list(
tenant_id=current_user.current_tenant_id,
model_type=model_type
)
return valid_models
api.add_resource(DefaultModelApi, '/workspaces/current/default-model')
api.add_resource(ValidModelApi, '/workspaces/current/models/model-type/<string:model_type>')

View File

@@ -1,20 +1,13 @@
# -*- coding:utf-8 -*-
import base64
import json
import logging
from flask import current_app
from flask_login import login_required, current_user
from flask_restful import Resource, reqparse, abort
from flask_restful import Resource, reqparse
from werkzeug.exceptions import Forbidden
from controllers.console import api
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.llm.provider.errors import ValidateFailedError
from extensions.ext_database import db
from libs import rsa
from models.provider import Provider, ProviderType, ProviderName
from core.model_providers.providers.base import CredentialsValidateFailedError
from models.provider import ProviderType
from services.provider_service import ProviderService
@@ -35,26 +28,26 @@ class ProviderListApi(Resource):
plaintext, the rest is replaced by * and the last two bits are displayed in plaintext
"""
ProviderService.init_supported_provider(current_user.current_tenant)
providers = Provider.query.filter_by(tenant_id=tenant_id).all()
provider_service = ProviderService()
provider_info_list = provider_service.get_provider_list(tenant_id)
provider_list = [
{
'provider_name': p.provider_name,
'provider_type': p.provider_type,
'is_valid': p.is_valid,
'last_used': p.last_used,
'is_enabled': p.is_enabled,
'provider_name': p['provider_name'],
'provider_type': p['provider_type'],
'is_valid': p['is_valid'],
'last_used': p['last_used'],
'is_enabled': p['is_valid'],
**({
'quota_type': p.quota_type,
'quota_limit': p.quota_limit,
'quota_used': p.quota_used
} if p.provider_type == ProviderType.SYSTEM.value else {}),
'token': ProviderService.get_obfuscated_api_key(current_user.current_tenant,
ProviderName(p.provider_name), only_custom=True)
if p.provider_type == ProviderType.CUSTOM.value else None
'quota_type': p['quota_type'],
'quota_limit': p['quota_limit'],
'quota_used': p['quota_used']
} if p['provider_type'] == ProviderType.SYSTEM.value else {}),
'token': (p['config'] if p['provider_name'] != 'openai' else p['config']['openai_api_key'])
if p['config'] else None
}
for p in providers
for name, provider_info in provider_info_list.items()
for p in provider_info['providers']
]
return provider_list
@@ -66,79 +59,28 @@ class ProviderTokenApi(Resource):
@login_required
@account_initialization_required
def post(self, provider):
if provider not in [p.value for p in ProviderName]:
abort(404)
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
logging.log(logging.ERROR,
f'User {current_user.id} is not authorized to update provider token, current_role is {current_user.current_tenant.current_role}')
raise Forbidden()
parser = reqparse.RequestParser()
parser.add_argument('token', type=ProviderService.get_token_type(
tenant=current_user.current_tenant,
provider_name=ProviderName(provider)
), required=True, nullable=False, location='json')
parser.add_argument('token', required=True, nullable=False, location='json')
args = parser.parse_args()
if args['token']:
try:
ProviderService.validate_provider_configs(
tenant=current_user.current_tenant,
provider_name=ProviderName(provider),
configs=args['token']
)
token_is_valid = True
except ValidateFailedError as ex:
raise ValueError(str(ex))
if provider == 'openai':
args['token'] = {
'openai_api_key': args['token']
}
base64_encrypted_token = ProviderService.get_encrypted_token(
tenant=current_user.current_tenant,
provider_name=ProviderName(provider),
configs=args['token']
provider_service = ProviderService()
try:
provider_service.save_custom_provider_config(
tenant_id=current_user.current_tenant_id,
provider_name=provider,
config=args['token']
)
else:
base64_encrypted_token = None
token_is_valid = False
tenant = current_user.current_tenant
provider_model = db.session.query(Provider).filter(
Provider.tenant_id == tenant.id,
Provider.provider_name == provider,
Provider.provider_type == ProviderType.CUSTOM.value
).first()
# Only allow updating token for CUSTOM provider type
if provider_model:
provider_model.encrypted_config = base64_encrypted_token
provider_model.is_valid = token_is_valid
else:
provider_model = Provider(tenant_id=tenant.id, provider_name=provider,
provider_type=ProviderType.CUSTOM.value,
encrypted_config=base64_encrypted_token,
is_valid=token_is_valid)
db.session.add(provider_model)
if provider in [ProviderName.OPENAI.value, ProviderName.AZURE_OPENAI.value] and provider_model.is_valid:
other_providers = db.session.query(Provider).filter(
Provider.tenant_id == tenant.id,
Provider.provider_name.in_([ProviderName.OPENAI.value, ProviderName.AZURE_OPENAI.value]),
Provider.provider_name != provider,
Provider.provider_type == ProviderType.CUSTOM.value
).all()
for other_provider in other_providers:
other_provider.is_valid = False
db.session.commit()
if provider in [ProviderName.AZURE_OPENAI.value, ProviderName.COHERE.value,
ProviderName.HUGGINGFACEHUB.value]:
return {'result': 'success', 'warning': 'MOCK: This provider is not supported yet.'}, 201
except CredentialsValidateFailedError as ex:
raise ValueError(str(ex))
return {'result': 'success'}, 201
@@ -149,33 +91,28 @@ class ProviderTokenValidateApi(Resource):
@login_required
@account_initialization_required
def post(self, provider):
if provider not in [p.value for p in ProviderName]:
abort(404)
parser = reqparse.RequestParser()
parser.add_argument('token', type=ProviderService.get_token_type(
tenant=current_user.current_tenant,
provider_name=ProviderName(provider)
), required=True, nullable=False, location='json')
parser.add_argument('token', required=True, nullable=False, location='json')
args = parser.parse_args()
# todo: remove this when the provider is supported
if provider in [ProviderName.COHERE.value,
ProviderName.HUGGINGFACEHUB.value]:
return {'result': 'success', 'warning': 'MOCK: This provider is not supported yet.'}
provider_service = ProviderService()
if provider == 'openai':
args['token'] = {
'openai_api_key': args['token']
}
result = True
error = None
try:
ProviderService.validate_provider_configs(
tenant=current_user.current_tenant,
provider_name=ProviderName(provider),
configs=args['token']
provider_service.custom_provider_config_validate(
provider_name=provider,
config=args['token']
)
except ValidateFailedError as e:
except CredentialsValidateFailedError as ex:
result = False
error = str(e)
error = str(ex)
response = {'result': 'success' if result else 'error'}
@@ -185,91 +122,9 @@ class ProviderTokenValidateApi(Resource):
return response
class ProviderSystemApi(Resource):
@setup_required
@login_required
@account_initialization_required
def put(self, provider):
if provider not in [p.value for p in ProviderName]:
abort(404)
parser = reqparse.RequestParser()
parser.add_argument('is_enabled', type=bool, required=True, location='json')
args = parser.parse_args()
tenant = current_user.current_tenant_id
provider_model = Provider.query.filter_by(tenant_id=tenant.id, provider_name=provider).first()
if provider_model and provider_model.provider_type == ProviderType.SYSTEM.value:
provider_model.is_valid = args['is_enabled']
db.session.commit()
elif not provider_model:
if provider == ProviderName.OPENAI.value:
quota_limit = current_app.config['OPENAI_HOSTED_QUOTA_LIMIT']
elif provider == ProviderName.ANTHROPIC.value:
quota_limit = current_app.config['ANTHROPIC_HOSTED_QUOTA_LIMIT']
else:
quota_limit = 0
ProviderService.create_system_provider(
tenant,
provider,
quota_limit,
args['is_enabled']
)
else:
abort(403)
return {'result': 'success'}
@setup_required
@login_required
@account_initialization_required
def get(self, provider):
if provider not in [p.value for p in ProviderName]:
abort(404)
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
provider_model = db.session.query(Provider).filter(Provider.tenant_id == current_user.current_tenant_id,
Provider.provider_name == provider,
Provider.provider_type == ProviderType.SYSTEM.value).first()
system_model = None
if provider_model:
system_model = {
'result': 'success',
'provider': {
'provider_name': provider_model.provider_name,
'provider_type': provider_model.provider_type,
'is_valid': provider_model.is_valid,
'last_used': provider_model.last_used,
'is_enabled': provider_model.is_enabled,
'quota_type': provider_model.quota_type,
'quota_limit': provider_model.quota_limit,
'quota_used': provider_model.quota_used
}
}
else:
abort(404)
return system_model
api.add_resource(ProviderTokenApi, '/providers/<provider>/token',
endpoint='current_providers_token') # Deprecated
api.add_resource(ProviderTokenValidateApi, '/providers/<provider>/token-validate',
endpoint='current_providers_token_validate') # Deprecated
api.add_resource(ProviderTokenApi, '/workspaces/current/providers/<provider>/token',
endpoint='workspaces_current_providers_token') # PUT for updating provider token
api.add_resource(ProviderTokenValidateApi, '/workspaces/current/providers/<provider>/token-validate',
endpoint='workspaces_current_providers_token_validate') # POST for validating provider token
api.add_resource(ProviderListApi, '/workspaces/current/providers') # GET for getting providers list
api.add_resource(ProviderSystemApi, '/workspaces/current/providers/<provider>/system',
endpoint='workspaces_current_providers_system') # GET for getting provider quota, PUT for updating provider status

View File

@@ -0,0 +1,136 @@
import json
from flask_login import login_required, current_user
from flask_restful import Resource, abort, reqparse
from werkzeug.exceptions import Forbidden
from controllers.console import api
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.tool.provider.errors import ToolValidateFailedError
from core.tool.provider.tool_provider_service import ToolProviderService
from extensions.ext_database import db
from models.tool import ToolProvider, ToolProviderName
class ToolProviderListApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
tenant_id = current_user.current_tenant_id
tool_credential_dict = {}
for tool_name in ToolProviderName:
tool_credential_dict[tool_name.value] = {
'tool_name': tool_name.value,
'is_enabled': False,
'credentials': None
}
tool_providers = db.session.query(ToolProvider).filter(ToolProvider.tenant_id == tenant_id).all()
for p in tool_providers:
if p.is_enabled:
tool_credential_dict[p.tool_name] = {
'tool_name': p.tool_name,
'is_enabled': p.is_enabled,
'credentials': ToolProviderService(tenant_id, p.tool_name).get_credentials(obfuscated=True)
}
return list(tool_credential_dict.values())
class ToolProviderCredentialsApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, provider):
if provider not in [p.value for p in ToolProviderName]:
abort(404)
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden(f'User {current_user.id} is not authorized to update provider token, '
f'current_role is {current_user.current_tenant.current_role}')
parser = reqparse.RequestParser()
parser.add_argument('credentials', type=dict, required=True, nullable=False, location='json')
args = parser.parse_args()
tenant_id = current_user.current_tenant_id
tool_provider_service = ToolProviderService(tenant_id, provider)
try:
tool_provider_service.credentials_validate(args['credentials'])
except ToolValidateFailedError as ex:
raise ValueError(str(ex))
encrypted_credentials = json.dumps(tool_provider_service.encrypt_credentials(args['credentials']))
tenant = current_user.current_tenant
tool_provider_model = db.session.query(ToolProvider).filter(
ToolProvider.tenant_id == tenant.id,
ToolProvider.tool_name == provider,
).first()
# Only allow updating token for CUSTOM provider type
if tool_provider_model:
tool_provider_model.encrypted_credentials = encrypted_credentials
tool_provider_model.is_enabled = True
else:
tool_provider_model = ToolProvider(
tenant_id=tenant.id,
tool_name=provider,
encrypted_credentials=encrypted_credentials,
is_enabled=True
)
db.session.add(tool_provider_model)
db.session.commit()
return {'result': 'success'}, 201
class ToolProviderCredentialsValidateApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, provider):
if provider not in [p.value for p in ToolProviderName]:
abort(404)
parser = reqparse.RequestParser()
parser.add_argument('credentials', type=dict, required=True, nullable=False, location='json')
args = parser.parse_args()
result = True
error = None
tenant_id = current_user.current_tenant_id
tool_provider_service = ToolProviderService(tenant_id, provider)
try:
tool_provider_service.credentials_validate(args['credentials'])
except ToolValidateFailedError as ex:
result = False
error = str(ex)
response = {'result': 'success' if result else 'error'}
if not result:
response['error'] = error
return response
api.add_resource(ToolProviderListApi, '/workspaces/current/tool-providers')
api.add_resource(ToolProviderCredentialsApi, '/workspaces/current/tool-providers/<provider>/credentials')
api.add_resource(ToolProviderCredentialsValidateApi,
'/workspaces/current/tool-providers/<provider>/credentials-validate')

View File

@@ -30,7 +30,7 @@ tenant_fields = {
'created_at': TimestampField,
'role': fields.String,
'providers': fields.List(fields.Nested(provider_fields)),
'in_trail': fields.Boolean,
'in_trial': fields.Boolean,
'trial_end_reason': fields.String,
}

View File

@@ -4,6 +4,8 @@ from flask_restful import fields, marshal_with
from controllers.service_api import api
from controllers.service_api.wraps import AppApiResource
from models.model import App
class AppParameterApi(AppApiResource):
"""Resource for app variables."""
@@ -28,7 +30,7 @@ class AppParameterApi(AppApiResource):
}
@marshal_with(parameters_fields)
def get(self, app_model, end_user):
def get(self, app_model: App, end_user):
"""Retrieve app parameters."""
app_model_config = app_model.app_model_config

View File

@@ -9,7 +9,7 @@ from controllers.service_api.app.error import AppUnavailableError, ProviderNotIn
ProviderModelCurrentlyNotSupportError, NoAudioUploadedError, AudioTooLargeError, UnsupportedAudioTypeError, \
ProviderNotSupportSpeechToTextError
from controllers.service_api.wraps import AppApiResource
from core.llm.error import LLMBadRequestError, LLMAuthorizationError, LLMAPIUnavailableError, LLMAPIConnectionError, \
from core.model_providers.error import LLMBadRequestError, LLMAuthorizationError, LLMAPIUnavailableError, LLMAPIConnectionError, \
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from models.model import App, AppModelConfig
from services.audio_service import AudioService

View File

@@ -14,7 +14,7 @@ from controllers.service_api.app.error import AppUnavailableError, ProviderNotIn
ProviderModelCurrentlyNotSupportError
from controllers.service_api.wraps import AppApiResource
from core.conversation_message_task import PubHandler
from core.llm.error import LLMBadRequestError, LLMAuthorizationError, LLMAPIUnavailableError, LLMAPIConnectionError, \
from core.model_providers.error import LLMBadRequestError, LLMAuthorizationError, LLMAPIUnavailableError, LLMAPIConnectionError, \
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from libs.helper import uuid_value
from services.completion_service import CompletionService

View File

@@ -64,9 +64,9 @@ class ConversationDetailApi(AppApiResource):
try:
ConversationService.delete(app_model, conversation_id, end_user)
return {"result": "success"}
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
return {"result": "success"}, 204
class ConversationRenameApi(AppApiResource):

View File

@@ -11,7 +11,7 @@ from controllers.service_api.app.error import ProviderNotInitializeError
from controllers.service_api.dataset.error import ArchivedDocumentImmutableError, DocumentIndexingError, \
DatasetNotInitedError
from controllers.service_api.wraps import DatasetApiResource
from core.llm.error import ProviderTokenNotInitError
from core.model_providers.error import ProviderTokenNotInitError
from extensions.ext_database import db
from extensions.ext_storage import storage
from models.model import UploadFile

View File

@@ -4,6 +4,8 @@ from flask_restful import marshal_with, fields
from controllers.web import api
from controllers.web.wraps import WebApiResource
from models.model import App
class AppParameterApi(WebApiResource):
"""Resource for app variables."""
@@ -27,7 +29,7 @@ class AppParameterApi(WebApiResource):
}
@marshal_with(parameters_fields)
def get(self, app_model, end_user):
def get(self, app_model: App, end_user):
"""Retrieve app parameters."""
app_model_config = app_model.app_model_config

View File

@@ -10,7 +10,7 @@ from controllers.web.error import AppUnavailableError, ProviderNotInitializeErro
ProviderQuotaExceededError, ProviderModelCurrentlyNotSupportError, NoAudioUploadedError, AudioTooLargeError, \
UnsupportedAudioTypeError, ProviderNotSupportSpeechToTextError
from controllers.web.wraps import WebApiResource
from core.llm.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
from core.model_providers.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from services.audio_service import AudioService
from services.errors.audio import NoAudioUploadedServiceError, AudioTooLargeServiceError, \

View File

@@ -14,7 +14,7 @@ from controllers.web.error import AppUnavailableError, ConversationCompletedErro
ProviderQuotaExceededError, ProviderModelCurrentlyNotSupportError
from controllers.web.wraps import WebApiResource
from core.conversation_message_task import PubHandler
from core.llm.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
from core.model_providers.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from libs.helper import uuid_value
from services.completion_service import CompletionService

View File

@@ -62,7 +62,10 @@ class ConversationApi(WebApiResource):
raise NotChatAppError()
conversation_id = str(c_id)
ConversationService.delete(app_model, conversation_id, end_user)
try:
ConversationService.delete(app_model, conversation_id, end_user)
except ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
WebConversationService.unpin(app_model, conversation_id, end_user)
return {"result": "success"}, 204

View File

@@ -14,7 +14,7 @@ from controllers.web.error import NotChatAppError, CompletionRequestError, Provi
AppMoreLikeThisDisabledError, NotCompletionAppError, AppSuggestedQuestionsAfterAnswerDisabledError, \
ProviderQuotaExceededError, ProviderModelCurrentlyNotSupportError
from controllers.web.wraps import WebApiResource
from core.llm.error import LLMRateLimitError, LLMBadRequestError, LLMAuthorizationError, LLMAPIConnectionError, \
from core.model_providers.error import LLMRateLimitError, LLMBadRequestError, LLMAuthorizationError, LLMAPIConnectionError, \
ProviderTokenNotInitError, LLMAPIUnavailableError, QuotaExceededError, ModelCurrentlyNotSupportError
from libs.helper import uuid_value, TimestampField
from services.completion_service import CompletionService

View File

@@ -11,13 +11,13 @@ from libs.passport import PassportService
class PassportResource(Resource):
"""Base resource for passport."""
def get(self):
app_id = request.headers.get('X-App-Code')
if app_id is None:
app_code = request.headers.get('X-App-Code')
if app_code is None:
raise Unauthorized('X-App-Code header is missing.')
# get site from db and check if it is normal
site = db.session.query(Site).filter(
Site.code == app_id,
Site.code == app_code,
Site.status == 'normal'
).first()
if not site:
@@ -41,6 +41,7 @@ class PassportResource(Resource):
"iss": site.app_id,
'sub': 'Web API Passport',
'app_id': site.app_id,
'app_code': app_code,
'end_user_id': end_user.id,
}

View File

@@ -6,7 +6,7 @@ from flask_restful import Resource
from werkzeug.exceptions import NotFound, Unauthorized
from extensions.ext_database import db
from models.model import App, EndUser
from models.model import App, EndUser, Site
from libs.passport import PassportService
def validate_jwt_token(view=None):
@@ -35,9 +35,15 @@ def decode_jwt_token():
if auth_scheme != 'bearer':
raise Unauthorized('Invalid Authorization header format. Expected \'Bearer <api-key>\' format.')
decoded = PassportService().verify(tk)
app_code = decoded.get('app_code')
app_model = db.session.query(App).filter(App.id == decoded['app_id']).first()
site = db.session.query(Site).filter(Site.code == app_code).first()
if not app_model:
raise NotFound()
if not app_code and not site:
raise Unauthorized('Site URL is no longer valid.')
if app_model.enable_site is False:
raise Unauthorized('Site is disabled.')
end_user = db.session.query(EndUser).filter(EndUser.id == decoded['end_user_id']).first()
if not end_user:
raise NotFound()

View File

@@ -1,36 +0,0 @@
import os
from typing import Optional
import langchain
from flask import Flask
from pydantic import BaseModel
from core.callback_handler.std_out_callback_handler import DifyStdOutCallbackHandler
from core.prompt.prompt_template import OneLineFormatter
class HostedOpenAICredential(BaseModel):
api_key: str
class HostedAnthropicCredential(BaseModel):
api_key: str
class HostedLLMCredentials(BaseModel):
openai: Optional[HostedOpenAICredential] = None
anthropic: Optional[HostedAnthropicCredential] = None
hosted_llm_credentials = HostedLLMCredentials()
def init_app(app: Flask):
if os.environ.get("DEBUG") and os.environ.get("DEBUG").lower() == 'true':
langchain.verbose = True
if app.config.get("OPENAI_API_KEY"):
hosted_llm_credentials.openai = HostedOpenAICredential(api_key=app.config.get("OPENAI_API_KEY"))
if app.config.get("ANTHROPIC_API_KEY"):
hosted_llm_credentials.anthropic = HostedAnthropicCredential(api_key=app.config.get("ANTHROPIC_API_KEY"))

View File

@@ -0,0 +1,31 @@
from typing import List
from langchain.schema import BaseMessage
from core.model_providers.models.entity.message import to_prompt_messages
from core.model_providers.models.llm.base import BaseLLM
class CalcTokenMixin:
def get_num_tokens_from_messages(self, model_instance: BaseLLM, messages: List[BaseMessage], **kwargs) -> int:
return model_instance.get_num_tokens(to_prompt_messages(messages))
def get_message_rest_tokens(self, model_instance: BaseLLM, messages: List[BaseMessage], **kwargs) -> int:
"""
Got the rest tokens available for the model after excluding messages tokens and completion max tokens
:param llm:
:param messages:
:return:
"""
llm_max_tokens = model_instance.model_rules.max_tokens.max
completion_max_tokens = model_instance.model_kwargs.max_tokens
used_tokens = self.get_num_tokens_from_messages(model_instance, messages, **kwargs)
rest_tokens = llm_max_tokens - completion_max_tokens - used_tokens
return rest_tokens
class ExceededLLMTokensLimitError(Exception):
pass

View File

@@ -0,0 +1,91 @@
from typing import Tuple, List, Any, Union, Sequence, Optional, cast
from langchain.agents import OpenAIFunctionsAgent, BaseSingleActionAgent
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.prompts.chat import BaseMessagePromptTemplate
from langchain.schema import AgentAction, AgentFinish, SystemMessage
from langchain.schema.language_model import BaseLanguageModel
from langchain.tools import BaseTool
from core.model_providers.models.llm.base import BaseLLM
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
"""
An Multi Dataset Retrieve Agent driven by Router.
"""
model_instance: BaseLLM
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def should_use_agent(self, query: str):
"""
return should use agent
:param query:
:return:
"""
return True
def plan(
self,
intermediate_steps: List[Tuple[AgentAction, str]],
callbacks: Callbacks = None,
**kwargs: Any,
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date, along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
if len(self.tools) == 0:
return AgentFinish(return_values={"output": ''}, log='')
elif len(self.tools) == 1:
tool = next(iter(self.tools))
tool = cast(DatasetRetrieverTool, tool)
rst = tool.run(tool_input={'dataset_id': tool.dataset_id, 'query': kwargs['input']})
return AgentFinish(return_values={"output": rst}, log=rst)
if intermediate_steps:
_, observation = intermediate_steps[-1]
return AgentFinish(return_values={"output": observation}, log=observation)
return super().plan(intermediate_steps, callbacks, **kwargs)
async def aplan(
self,
intermediate_steps: List[Tuple[AgentAction, str]],
callbacks: Callbacks = None,
**kwargs: Any,
) -> Union[AgentAction, AgentFinish]:
raise NotImplementedError()
@classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None,
system_message: Optional[SystemMessage] = SystemMessage(
content="You are a helpful AI assistant."
),
**kwargs: Any,
) -> BaseSingleActionAgent:
return super().from_llm_and_tools(
llm=llm,
tools=tools,
callback_manager=callback_manager,
extra_prompt_messages=extra_prompt_messages,
system_message=system_message,
**kwargs,
)

View File

@@ -0,0 +1,113 @@
from typing import List, Tuple, Any, Union, Sequence, Optional
from langchain.agents import OpenAIFunctionsAgent, BaseSingleActionAgent
from langchain.agents.openai_functions_agent.base import _parse_ai_message, \
_format_intermediate_steps
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.prompts.chat import BaseMessagePromptTemplate
from langchain.schema import AgentAction, AgentFinish, SystemMessage
from langchain.schema.language_model import BaseLanguageModel
from langchain.tools import BaseTool
from core.agent.agent.calc_token_mixin import ExceededLLMTokensLimitError
from core.agent.agent.openai_function_call_summarize_mixin import OpenAIFunctionCallSummarizeMixin
class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, OpenAIFunctionCallSummarizeMixin):
@classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None,
system_message: Optional[SystemMessage] = SystemMessage(
content="You are a helpful AI assistant."
),
**kwargs: Any,
) -> BaseSingleActionAgent:
return super().from_llm_and_tools(
llm=llm,
tools=tools,
callback_manager=callback_manager,
extra_prompt_messages=extra_prompt_messages,
system_message=cls.get_system_message(),
**kwargs,
)
def should_use_agent(self, query: str):
"""
return should use agent
:param query:
:return:
"""
original_max_tokens = self.llm.max_tokens
self.llm.max_tokens = 15
prompt = self.prompt.format_prompt(input=query, agent_scratchpad=[])
messages = prompt.to_messages()
predicted_message = self.llm.predict_messages(
messages, functions=self.functions, callbacks=None
)
function_call = predicted_message.additional_kwargs.get("function_call", {})
self.llm.max_tokens = original_max_tokens
return True if function_call else False
def plan(
self,
intermediate_steps: List[Tuple[AgentAction, str]],
callbacks: Callbacks = None,
**kwargs: Any,
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date, along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
agent_scratchpad = _format_intermediate_steps(intermediate_steps)
selected_inputs = {
k: kwargs[k] for k in self.prompt.input_variables if k != "agent_scratchpad"
}
full_inputs = dict(**selected_inputs, agent_scratchpad=agent_scratchpad)
prompt = self.prompt.format_prompt(**full_inputs)
messages = prompt.to_messages()
# summarize messages if rest_tokens < 0
try:
messages = self.summarize_messages_if_needed(messages, functions=self.functions)
except ExceededLLMTokensLimitError as e:
return AgentFinish(return_values={"output": str(e)}, log=str(e))
predicted_message = self.llm.predict_messages(
messages, functions=self.functions, callbacks=callbacks
)
agent_decision = _parse_ai_message(predicted_message)
return agent_decision
@classmethod
def get_system_message(cls):
return SystemMessage(content="You are a helpful AI assistant.\n"
"The current date or current time you know is wrong.\n"
"Respond directly if appropriate.")
def return_stopped_response(
self,
early_stopping_method: str,
intermediate_steps: List[Tuple[AgentAction, str]],
**kwargs: Any,
) -> AgentFinish:
try:
return super().return_stopped_response(early_stopping_method, intermediate_steps, **kwargs)
except ValueError:
return AgentFinish({"output": "I'm sorry, I don't know how to respond to that."}, "")

View File

@@ -0,0 +1,140 @@
from typing import cast, List
from langchain.chat_models import ChatOpenAI
from langchain.chat_models.openai import _convert_message_to_dict
from langchain.memory.summary import SummarizerMixin
from langchain.schema import SystemMessage, HumanMessage, BaseMessage, AIMessage
from langchain.schema.language_model import BaseLanguageModel
from pydantic import BaseModel
from core.agent.agent.calc_token_mixin import ExceededLLMTokensLimitError, CalcTokenMixin
from core.model_providers.models.llm.base import BaseLLM
class OpenAIFunctionCallSummarizeMixin(BaseModel, CalcTokenMixin):
moving_summary_buffer: str = ""
moving_summary_index: int = 0
summary_llm: BaseLanguageModel
model_instance: BaseLLM
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def summarize_messages_if_needed(self, messages: List[BaseMessage], **kwargs) -> List[BaseMessage]:
# calculate rest tokens and summarize previous function observation messages if rest_tokens < 0
rest_tokens = self.get_message_rest_tokens(self.model_instance, messages, **kwargs)
rest_tokens = rest_tokens - 20 # to deal with the inaccuracy of rest_tokens
if rest_tokens >= 0:
return messages
system_message = None
human_message = None
should_summary_messages = []
for message in messages:
if isinstance(message, SystemMessage):
system_message = message
elif isinstance(message, HumanMessage):
human_message = message
else:
should_summary_messages.append(message)
if len(should_summary_messages) > 2:
ai_message = should_summary_messages[-2]
function_message = should_summary_messages[-1]
should_summary_messages = should_summary_messages[self.moving_summary_index:-2]
self.moving_summary_index = len(should_summary_messages)
else:
error_msg = "Exceeded LLM tokens limit, stopped."
raise ExceededLLMTokensLimitError(error_msg)
new_messages = [system_message, human_message]
if self.moving_summary_index == 0:
should_summary_messages.insert(0, human_message)
summary_handler = SummarizerMixin(llm=self.summary_llm)
self.moving_summary_buffer = summary_handler.predict_new_summary(
messages=should_summary_messages,
existing_summary=self.moving_summary_buffer
)
new_messages.append(AIMessage(content=self.moving_summary_buffer))
new_messages.append(ai_message)
new_messages.append(function_message)
return new_messages
def get_num_tokens_from_messages(self, llm: BaseLanguageModel, messages: List[BaseMessage], **kwargs) -> int:
"""Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package.
Official documentation: https://github.com/openai/openai-cookbook/blob/
main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb"""
llm = cast(ChatOpenAI, llm)
model, encoding = llm._get_encoding_model()
if model.startswith("gpt-3.5-turbo"):
# every message follows <im_start>{role/name}\n{content}<im_end>\n
tokens_per_message = 4
# if there's a name, the role is omitted
tokens_per_name = -1
elif model.startswith("gpt-4"):
tokens_per_message = 3
tokens_per_name = 1
else:
raise NotImplementedError(
f"get_num_tokens_from_messages() is not presently implemented "
f"for model {model}."
"See https://github.com/openai/openai-python/blob/main/chatml.md for "
"information on how messages are converted to tokens."
)
num_tokens = 0
for m in messages:
message = _convert_message_to_dict(m)
num_tokens += tokens_per_message
for key, value in message.items():
if key == "function_call":
for f_key, f_value in value.items():
num_tokens += len(encoding.encode(f_key))
num_tokens += len(encoding.encode(f_value))
else:
num_tokens += len(encoding.encode(value))
if key == "name":
num_tokens += tokens_per_name
# every reply is primed with <im_start>assistant
num_tokens += 3
if kwargs.get('functions'):
for function in kwargs.get('functions'):
num_tokens += len(encoding.encode('name'))
num_tokens += len(encoding.encode(function.get("name")))
num_tokens += len(encoding.encode('description'))
num_tokens += len(encoding.encode(function.get("description")))
parameters = function.get("parameters")
num_tokens += len(encoding.encode('parameters'))
if 'title' in parameters:
num_tokens += len(encoding.encode('title'))
num_tokens += len(encoding.encode(parameters.get("title")))
num_tokens += len(encoding.encode('type'))
num_tokens += len(encoding.encode(parameters.get("type")))
if 'properties' in parameters:
num_tokens += len(encoding.encode('properties'))
for key, value in parameters.get('properties').items():
num_tokens += len(encoding.encode(key))
for field_key, field_value in value.items():
num_tokens += len(encoding.encode(field_key))
if field_key == 'enum':
for enum_field in field_value:
num_tokens += 3
num_tokens += len(encoding.encode(enum_field))
else:
num_tokens += len(encoding.encode(field_key))
num_tokens += len(encoding.encode(str(field_value)))
if 'required' in parameters:
num_tokens += len(encoding.encode('required'))
for required_field in parameters['required']:
num_tokens += 3
num_tokens += len(encoding.encode(required_field))
return num_tokens

View File

@@ -0,0 +1,103 @@
from typing import List, Tuple, Any, Union, Sequence, Optional
from langchain.agents import BaseMultiActionAgent
from langchain.agents.openai_functions_multi_agent.base import OpenAIMultiFunctionsAgent, _format_intermediate_steps, \
_parse_ai_message
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.prompts.chat import BaseMessagePromptTemplate
from langchain.schema import AgentAction, AgentFinish, SystemMessage
from langchain.schema.language_model import BaseLanguageModel
from langchain.tools import BaseTool
from core.agent.agent.calc_token_mixin import ExceededLLMTokensLimitError
from core.agent.agent.openai_function_call_summarize_mixin import OpenAIFunctionCallSummarizeMixin
class AutoSummarizingOpenMultiAIFunctionCallAgent(OpenAIMultiFunctionsAgent, OpenAIFunctionCallSummarizeMixin):
@classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None,
system_message: Optional[SystemMessage] = SystemMessage(
content="You are a helpful AI assistant."
),
**kwargs: Any,
) -> BaseMultiActionAgent:
return super().from_llm_and_tools(
llm=llm,
tools=tools,
callback_manager=callback_manager,
extra_prompt_messages=extra_prompt_messages,
system_message=cls.get_system_message(),
**kwargs,
)
def should_use_agent(self, query: str):
"""
return should use agent
:param query:
:return:
"""
original_max_tokens = self.llm.max_tokens
self.llm.max_tokens = 15
prompt = self.prompt.format_prompt(input=query, agent_scratchpad=[])
messages = prompt.to_messages()
predicted_message = self.llm.predict_messages(
messages, functions=self.functions, callbacks=None
)
function_call = predicted_message.additional_kwargs.get("function_call", {})
self.llm.max_tokens = original_max_tokens
return True if function_call else False
def plan(
self,
intermediate_steps: List[Tuple[AgentAction, str]],
callbacks: Callbacks = None,
**kwargs: Any,
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date, along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
agent_scratchpad = _format_intermediate_steps(intermediate_steps)
selected_inputs = {
k: kwargs[k] for k in self.prompt.input_variables if k != "agent_scratchpad"
}
full_inputs = dict(**selected_inputs, agent_scratchpad=agent_scratchpad)
prompt = self.prompt.format_prompt(**full_inputs)
messages = prompt.to_messages()
# summarize messages if rest_tokens < 0
try:
messages = self.summarize_messages_if_needed(messages, functions=self.functions)
except ExceededLLMTokensLimitError as e:
return AgentFinish(return_values={"output": str(e)}, log=str(e))
predicted_message = self.llm.predict_messages(
messages, functions=self.functions, callbacks=callbacks
)
agent_decision = _parse_ai_message(predicted_message)
return agent_decision
@classmethod
def get_system_message(cls):
# get current time
return SystemMessage(content="You are a helpful AI assistant.\n"
"The current date or current time you know is wrong.\n"
"Respond directly if appropriate.")

View File

@@ -0,0 +1,29 @@
import json
import re
from typing import Union
from langchain.agents.structured_chat.output_parser import StructuredChatOutputParser as LCStructuredChatOutputParser, \
logger
from langchain.schema import AgentAction, AgentFinish, OutputParserException
class StructuredChatOutputParser(LCStructuredChatOutputParser):
def parse(self, text: str) -> Union[AgentAction, AgentFinish]:
try:
action_match = re.search(r"```(.*?)\n?(.*?)```", text, re.DOTALL)
if action_match is not None:
response = json.loads(action_match.group(2).strip(), strict=False)
if isinstance(response, list):
# gpt turbo frequently ignores the directive to emit a single action
logger.warning("Got multiple action responses: %s", response)
response = response[0]
if response["action"] == "Final Answer":
return AgentFinish({"output": response["action_input"]}, text)
else:
return AgentAction(
response["action"], response.get("action_input", {}), text
)
else:
return AgentFinish({"output": text}, text)
except Exception as e:
raise OutputParserException(f"Could not parse LLM output: {text}") from e

View File

@@ -0,0 +1,162 @@
import re
from typing import List, Tuple, Any, Union, Sequence, Optional, cast
from langchain import BasePromptTemplate
from langchain.agents import StructuredChatAgent, AgentOutputParser, Agent
from langchain.agents.structured_chat.base import HUMAN_MESSAGE_TEMPLATE
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate
from langchain.schema import AgentAction, AgentFinish, OutputParserException
from langchain.tools import BaseTool
from langchain.agents.structured_chat.prompt import PREFIX, SUFFIX
from core.model_providers.models.llm.base import BaseLLM
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
FORMAT_INSTRUCTIONS = """Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
The nouns in the format of "Thought", "Action", "Action Input", "Final Answer" must be expressed in English.
Valid "action" values: "Final Answer" or {tool_names}
Provide only ONE action per $JSON_BLOB, as shown:
```
{{{{
"action": $TOOL_NAME,
"action_input": $INPUT
}}}}
```
Follow this format:
Question: input question to answer
Thought: consider previous and subsequent steps
Action:
```
$JSON_BLOB
```
Observation: action result
... (repeat Thought/Action/Observation N times)
Thought: I know what to respond
Action:
```
{{{{
"action": "Final Answer",
"action_input": "Final response to human"
}}}}
```"""
class StructuredMultiDatasetRouterAgent(StructuredChatAgent):
model_instance: BaseLLM
dataset_tools: Sequence[BaseTool]
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def should_use_agent(self, query: str):
"""
return should use agent
Using the ReACT mode to determine whether an agent is needed is costly,
so it's better to just use an Agent for reasoning, which is cheaper.
:param query:
:return:
"""
return True
def plan(
self,
intermediate_steps: List[Tuple[AgentAction, str]],
callbacks: Callbacks = None,
**kwargs: Any,
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date,
along with observations
callbacks: Callbacks to run.
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
if len(self.dataset_tools) == 0:
return AgentFinish(return_values={"output": ''}, log='')
elif len(self.dataset_tools) == 1:
tool = next(iter(self.dataset_tools))
tool = cast(DatasetRetrieverTool, tool)
rst = tool.run(tool_input={'dataset_id': tool.dataset_id, 'query': kwargs['input']})
return AgentFinish(return_values={"output": rst}, log=rst)
full_inputs = self.get_full_inputs(intermediate_steps, **kwargs)
full_output = self.llm_chain.predict(callbacks=callbacks, **full_inputs)
try:
return self.output_parser.parse(full_output)
except OutputParserException:
return AgentFinish({"output": "I'm sorry, the answer of model is invalid, "
"I don't know how to respond to that."}, "")
@classmethod
def create_prompt(
cls,
tools: Sequence[BaseTool],
prefix: str = PREFIX,
suffix: str = SUFFIX,
human_message_template: str = HUMAN_MESSAGE_TEMPLATE,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
memory_prompts: Optional[List[BasePromptTemplate]] = None,
) -> BasePromptTemplate:
tool_strings = []
for tool in tools:
args_schema = re.sub("}", "}}}}", re.sub("{", "{{{{", str(tool.args)))
tool_strings.append(f"{tool.name}: {tool.description}, args: {args_schema}")
formatted_tools = "\n".join(tool_strings)
unique_tool_names = set(tool.name for tool in tools)
tool_names = ", ".join('"' + name + '"' for name in unique_tool_names)
format_instructions = format_instructions.format(tool_names=tool_names)
template = "\n\n".join([prefix, formatted_tools, format_instructions, suffix])
if input_variables is None:
input_variables = ["input", "agent_scratchpad"]
_memory_prompts = memory_prompts or []
messages = [
SystemMessagePromptTemplate.from_template(template),
*_memory_prompts,
HumanMessagePromptTemplate.from_template(human_message_template),
]
return ChatPromptTemplate(input_variables=input_variables, messages=messages)
@classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
output_parser: Optional[AgentOutputParser] = None,
prefix: str = PREFIX,
suffix: str = SUFFIX,
human_message_template: str = HUMAN_MESSAGE_TEMPLATE,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
memory_prompts: Optional[List[BasePromptTemplate]] = None,
**kwargs: Any,
) -> Agent:
return super().from_llm_and_tools(
llm=llm,
tools=tools,
callback_manager=callback_manager,
output_parser=output_parser,
prefix=prefix,
suffix=suffix,
human_message_template=human_message_template,
format_instructions=format_instructions,
input_variables=input_variables,
memory_prompts=memory_prompts,
dataset_tools=tools,
**kwargs,
)

View File

@@ -0,0 +1,193 @@
import re
from typing import List, Tuple, Any, Union, Sequence, Optional
from langchain import BasePromptTemplate
from langchain.agents import StructuredChatAgent, AgentOutputParser, Agent
from langchain.agents.structured_chat.base import HUMAN_MESSAGE_TEMPLATE
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.memory.summary import SummarizerMixin
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate
from langchain.schema import AgentAction, AgentFinish, AIMessage, HumanMessage, OutputParserException
from langchain.tools import BaseTool
from langchain.agents.structured_chat.prompt import PREFIX, SUFFIX
from core.agent.agent.calc_token_mixin import CalcTokenMixin, ExceededLLMTokensLimitError
from core.model_providers.models.llm.base import BaseLLM
FORMAT_INSTRUCTIONS = """Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
The nouns in the format of "Thought", "Action", "Action Input", "Final Answer" must be expressed in English.
Valid "action" values: "Final Answer" or {tool_names}
Provide only ONE action per $JSON_BLOB, as shown:
```
{{{{
"action": $TOOL_NAME,
"action_input": $INPUT
}}}}
```
Follow this format:
Question: input question to answer
Thought: consider previous and subsequent steps
Action:
```
$JSON_BLOB
```
Observation: action result
... (repeat Thought/Action/Observation N times)
Thought: I know what to respond
Action:
```
{{{{
"action": "Final Answer",
"action_input": "Final response to human"
}}}}
```"""
class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
moving_summary_buffer: str = ""
moving_summary_index: int = 0
summary_llm: BaseLanguageModel
model_instance: BaseLLM
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def should_use_agent(self, query: str):
"""
return should use agent
Using the ReACT mode to determine whether an agent is needed is costly,
so it's better to just use an Agent for reasoning, which is cheaper.
:param query:
:return:
"""
return True
def plan(
self,
intermediate_steps: List[Tuple[AgentAction, str]],
callbacks: Callbacks = None,
**kwargs: Any,
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date,
along with observations
callbacks: Callbacks to run.
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
full_inputs = self.get_full_inputs(intermediate_steps, **kwargs)
prompts, _ = self.llm_chain.prep_prompts(input_list=[self.llm_chain.prep_inputs(full_inputs)])
messages = []
if prompts:
messages = prompts[0].to_messages()
rest_tokens = self.get_message_rest_tokens(self.model_instance, messages)
if rest_tokens < 0:
full_inputs = self.summarize_messages(intermediate_steps, **kwargs)
full_output = self.llm_chain.predict(callbacks=callbacks, **full_inputs)
try:
return self.output_parser.parse(full_output)
except OutputParserException:
return AgentFinish({"output": "I'm sorry, the answer of model is invalid, "
"I don't know how to respond to that."}, "")
def summarize_messages(self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs):
if len(intermediate_steps) >= 2:
should_summary_intermediate_steps = intermediate_steps[self.moving_summary_index:-1]
should_summary_messages = [AIMessage(content=observation)
for _, observation in should_summary_intermediate_steps]
if self.moving_summary_index == 0:
should_summary_messages.insert(0, HumanMessage(content=kwargs.get("input")))
self.moving_summary_index = len(intermediate_steps)
else:
error_msg = "Exceeded LLM tokens limit, stopped."
raise ExceededLLMTokensLimitError(error_msg)
summary_handler = SummarizerMixin(llm=self.summary_llm)
if self.moving_summary_buffer and 'chat_history' in kwargs:
kwargs["chat_history"].pop()
self.moving_summary_buffer = summary_handler.predict_new_summary(
messages=should_summary_messages,
existing_summary=self.moving_summary_buffer
)
if 'chat_history' in kwargs:
kwargs["chat_history"].append(AIMessage(content=self.moving_summary_buffer))
return self.get_full_inputs([intermediate_steps[-1]], **kwargs)
@classmethod
def create_prompt(
cls,
tools: Sequence[BaseTool],
prefix: str = PREFIX,
suffix: str = SUFFIX,
human_message_template: str = HUMAN_MESSAGE_TEMPLATE,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
memory_prompts: Optional[List[BasePromptTemplate]] = None,
) -> BasePromptTemplate:
tool_strings = []
for tool in tools:
args_schema = re.sub("}", "}}}}", re.sub("{", "{{{{", str(tool.args)))
tool_strings.append(f"{tool.name}: {tool.description}, args: {args_schema}")
formatted_tools = "\n".join(tool_strings)
tool_names = ", ".join([('"' + tool.name + '"') for tool in tools])
format_instructions = format_instructions.format(tool_names=tool_names)
template = "\n\n".join([prefix, formatted_tools, format_instructions, suffix])
if input_variables is None:
input_variables = ["input", "agent_scratchpad"]
_memory_prompts = memory_prompts or []
messages = [
SystemMessagePromptTemplate.from_template(template),
*_memory_prompts,
HumanMessagePromptTemplate.from_template(human_message_template),
]
return ChatPromptTemplate(input_variables=input_variables, messages=messages)
@classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
output_parser: Optional[AgentOutputParser] = None,
prefix: str = PREFIX,
suffix: str = SUFFIX,
human_message_template: str = HUMAN_MESSAGE_TEMPLATE,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
memory_prompts: Optional[List[BasePromptTemplate]] = None,
**kwargs: Any,
) -> Agent:
return super().from_llm_and_tools(
llm=llm,
tools=tools,
callback_manager=callback_manager,
output_parser=output_parser,
prefix=prefix,
suffix=suffix,
human_message_template=human_message_template,
format_instructions=format_instructions,
input_variables=input_variables,
memory_prompts=memory_prompts,
**kwargs,
)

View File

@@ -1,86 +0,0 @@
from typing import Optional
from langchain import LLMChain
from langchain.agents import ZeroShotAgent, AgentExecutor, ConversationalAgent
from langchain.callbacks.manager import CallbackManager
from langchain.memory.chat_memory import BaseChatMemory
from core.callback_handler.agent_loop_gather_callback_handler import AgentLoopGatherCallbackHandler
from core.callback_handler.dataset_tool_callback_handler import DatasetToolCallbackHandler
from core.callback_handler.std_out_callback_handler import DifyStdOutCallbackHandler
from core.llm.llm_builder import LLMBuilder
class AgentBuilder:
@classmethod
def to_agent_chain(cls, tenant_id: str, tools, memory: Optional[BaseChatMemory],
dataset_tool_callback_handler: DatasetToolCallbackHandler,
agent_loop_gather_callback_handler: AgentLoopGatherCallbackHandler):
llm = LLMBuilder.to_llm(
tenant_id=tenant_id,
model_name=agent_loop_gather_callback_handler.model_name,
temperature=0,
max_tokens=1024,
callbacks=[agent_loop_gather_callback_handler, DifyStdOutCallbackHandler()]
)
for tool in tools:
tool.callbacks = [
agent_loop_gather_callback_handler,
dataset_tool_callback_handler,
DifyStdOutCallbackHandler()
]
prompt = cls.build_agent_prompt_template(
tools=tools,
memory=memory,
)
agent_llm_chain = LLMChain(
llm=llm,
prompt=prompt,
)
agent = cls.build_agent(agent_llm_chain=agent_llm_chain, memory=memory)
agent_callback_manager = CallbackManager(
[agent_loop_gather_callback_handler, DifyStdOutCallbackHandler()]
)
agent_chain = AgentExecutor.from_agent_and_tools(
tools=tools,
agent=agent,
memory=memory,
callbacks=agent_callback_manager,
max_iterations=6,
early_stopping_method="generate",
# `generate` will continue to complete the last inference after reaching the iteration limit or request time limit
)
return agent_chain
@classmethod
def build_agent_prompt_template(cls, tools, memory: Optional[BaseChatMemory]):
if memory:
prompt = ConversationalAgent.create_prompt(
tools=tools,
)
else:
prompt = ZeroShotAgent.create_prompt(
tools=tools,
)
return prompt
@classmethod
def build_agent(cls, agent_llm_chain: LLMChain, memory: Optional[BaseChatMemory]):
if memory:
agent = ConversationalAgent(
llm_chain=agent_llm_chain
)
else:
agent = ZeroShotAgent(
llm_chain=agent_llm_chain
)
return agent

View File

@@ -0,0 +1,136 @@
import enum
import logging
from typing import Union, Optional
from langchain.agents import BaseSingleActionAgent, BaseMultiActionAgent
from langchain.callbacks.manager import Callbacks
from langchain.memory.chat_memory import BaseChatMemory
from langchain.tools import BaseTool
from pydantic import BaseModel, Extra
from core.agent.agent.multi_dataset_router_agent import MultiDatasetRouterAgent
from core.agent.agent.openai_function_call import AutoSummarizingOpenAIFunctionCallAgent
from core.agent.agent.openai_multi_function_call import AutoSummarizingOpenMultiAIFunctionCallAgent
from core.agent.agent.output_parser.structured_chat import StructuredChatOutputParser
from core.agent.agent.structed_multi_dataset_router_agent import StructuredMultiDatasetRouterAgent
from core.agent.agent.structured_chat import AutoSummarizingStructuredChatAgent
from langchain.agents import AgentExecutor as LCAgentExecutor
from core.model_providers.models.llm.base import BaseLLM
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
class PlanningStrategy(str, enum.Enum):
ROUTER = 'router'
REACT_ROUTER = 'react_router'
REACT = 'react'
FUNCTION_CALL = 'function_call'
MULTI_FUNCTION_CALL = 'multi_function_call'
class AgentConfiguration(BaseModel):
strategy: PlanningStrategy
model_instance: BaseLLM
tools: list[BaseTool]
summary_model_instance: BaseLLM
memory: Optional[BaseChatMemory] = None
callbacks: Callbacks = None
max_iterations: int = 6
max_execution_time: Optional[float] = None
early_stopping_method: str = "generate"
# `generate` will continue to complete the last inference after reaching the iteration limit or request time limit
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
class AgentExecuteResult(BaseModel):
strategy: PlanningStrategy
output: Optional[str]
configuration: AgentConfiguration
class AgentExecutor:
def __init__(self, configuration: AgentConfiguration):
self.configuration = configuration
self.agent = self._init_agent()
def _init_agent(self) -> Union[BaseSingleActionAgent | BaseMultiActionAgent]:
if self.configuration.strategy == PlanningStrategy.REACT:
agent = AutoSummarizingStructuredChatAgent.from_llm_and_tools(
model_instance=self.configuration.model_instance,
llm=self.configuration.model_instance.client,
tools=self.configuration.tools,
output_parser=StructuredChatOutputParser(),
summary_llm=self.configuration.summary_model_instance.client,
verbose=True
)
elif self.configuration.strategy == PlanningStrategy.FUNCTION_CALL:
agent = AutoSummarizingOpenAIFunctionCallAgent.from_llm_and_tools(
model_instance=self.configuration.model_instance,
llm=self.configuration.model_instance.client,
tools=self.configuration.tools,
extra_prompt_messages=self.configuration.memory.buffer if self.configuration.memory else None, # used for read chat histories memory
summary_llm=self.configuration.summary_model_instance.client,
verbose=True
)
elif self.configuration.strategy == PlanningStrategy.MULTI_FUNCTION_CALL:
agent = AutoSummarizingOpenMultiAIFunctionCallAgent.from_llm_and_tools(
model_instance=self.configuration.model_instance,
llm=self.configuration.model_instance.client,
tools=self.configuration.tools,
extra_prompt_messages=self.configuration.memory.buffer if self.configuration.memory else None, # used for read chat histories memory
summary_llm=self.configuration.summary_model_instance.client,
verbose=True
)
elif self.configuration.strategy == PlanningStrategy.ROUTER:
self.configuration.tools = [t for t in self.configuration.tools if isinstance(t, DatasetRetrieverTool)]
agent = MultiDatasetRouterAgent.from_llm_and_tools(
model_instance=self.configuration.model_instance,
llm=self.configuration.model_instance.client,
tools=self.configuration.tools,
extra_prompt_messages=self.configuration.memory.buffer if self.configuration.memory else None,
verbose=True
)
elif self.configuration.strategy == PlanningStrategy.REACT_ROUTER:
self.configuration.tools = [t for t in self.configuration.tools if isinstance(t, DatasetRetrieverTool)]
agent = StructuredMultiDatasetRouterAgent.from_llm_and_tools(
model_instance=self.configuration.model_instance,
llm=self.configuration.model_instance.client,
tools=self.configuration.tools,
output_parser=StructuredChatOutputParser(),
verbose=True
)
else:
raise NotImplementedError(f"Unknown Agent Strategy: {self.configuration.strategy}")
return agent
def should_use_agent(self, query: str) -> bool:
return self.agent.should_use_agent(query)
def run(self, query: str) -> AgentExecuteResult:
agent_executor = LCAgentExecutor.from_agent_and_tools(
agent=self.agent,
tools=self.configuration.tools,
memory=self.configuration.memory,
max_iterations=self.configuration.max_iterations,
max_execution_time=self.configuration.max_execution_time,
early_stopping_method=self.configuration.early_stopping_method,
callbacks=self.configuration.callbacks
)
try:
output = agent_executor.run(query)
except Exception:
logging.exception("agent_executor run failed")
output = None
return AgentExecuteResult(
output=output,
strategy=self.configuration.strategy,
configuration=self.configuration
)

View File

@@ -1,25 +1,29 @@
import json
import logging
import time
from typing import Any, Dict, List, Union, Optional
from langchain.agents import openai_functions_agent, openai_functions_multi_agent
from langchain.callbacks.base import BaseCallbackHandler
from langchain.schema import AgentAction, AgentFinish, LLMResult
from langchain.schema import AgentAction, AgentFinish, LLMResult, ChatGeneration
from core.callback_handler.entity.agent_loop import AgentLoop
from core.conversation_message_task import ConversationMessageTask
from core.model_providers.models.llm.base import BaseLLM
class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
"""Callback Handler that prints to std out."""
raise_error: bool = True
def __init__(self, model_name, conversation_message_task: ConversationMessageTask) -> None:
def __init__(self, model_instant: BaseLLM, conversation_message_task: ConversationMessageTask) -> None:
"""Initialize callback handler."""
self.model_name = model_name
self.model_instant = model_instant
self.conversation_message_task = conversation_message_task
self._agent_loops = []
self._current_loop = None
self._message_agent_thought = None
self.current_chain = None
@property
@@ -29,6 +33,7 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
def clear_agent_loops(self) -> None:
self._agent_loops = []
self._current_loop = None
self._message_agent_thought = None
@property
def always_verbose(self) -> bool:
@@ -61,16 +66,29 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
# kwargs={}
if self._current_loop and self._current_loop.status == 'llm_started':
self._current_loop.status = 'llm_end'
self._current_loop.prompt_tokens = response.llm_output['token_usage']['prompt_tokens']
self._current_loop.completion = response.generations[0][0].text
self._current_loop.completion_tokens = response.llm_output['token_usage']['completion_tokens']
if response.llm_output:
self._current_loop.prompt_tokens = response.llm_output['token_usage']['prompt_tokens']
completion_generation = response.generations[0][0]
if isinstance(completion_generation, ChatGeneration):
completion_message = completion_generation.message
if 'function_call' in completion_message.additional_kwargs:
self._current_loop.completion \
= json.dumps({'function_call': completion_message.additional_kwargs['function_call']})
else:
self._current_loop.completion = response.generations[0][0].text
else:
self._current_loop.completion = completion_generation.text
if response.llm_output:
self._current_loop.completion_tokens = response.llm_output['token_usage']['completion_tokens']
def on_llm_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
logging.error(error)
logging.exception(error)
self._agent_loops = []
self._current_loop = None
self._message_agent_thought = None
def on_tool_start(
self,
@@ -89,15 +107,29 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
) -> Any:
"""Run on agent action."""
tool = action.tool
tool_input = action.tool_input
action_name_position = action.log.index("\nAction:") + 1 if action.log else -1
thought = action.log[:action_name_position].strip() if action.log else ''
tool_input = json.dumps({"query": action.tool_input}
if isinstance(action.tool_input, str) else action.tool_input)
completion = None
if isinstance(action, openai_functions_agent.base._FunctionsAgentAction) \
or isinstance(action, openai_functions_multi_agent.base._FunctionsAgentAction):
thought = action.log.strip()
completion = json.dumps({'function_call': action.message_log[0].additional_kwargs['function_call']})
else:
action_name_position = action.log.index("Action:") if action.log else -1
thought = action.log[:action_name_position].strip() if action.log else ''
if self._current_loop and self._current_loop.status == 'llm_end':
self._current_loop.status = 'agent_action'
self._current_loop.thought = thought
self._current_loop.tool_name = tool
self._current_loop.tool_input = tool_input
if completion is not None:
self._current_loop.completion = completion
self._message_agent_thought = self.conversation_message_task.on_agent_start(
self.current_chain,
self._current_loop
)
def on_tool_end(
self,
@@ -120,18 +152,22 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
self._current_loop.completed_at = time.perf_counter()
self._current_loop.latency = self._current_loop.completed_at - self._current_loop.started_at
self.conversation_message_task.on_agent_end(self.current_chain, self.model_name, self._current_loop)
self.conversation_message_task.on_agent_end(
self._message_agent_thought, self.model_instant, self._current_loop
)
self._agent_loops.append(self._current_loop)
self._current_loop = None
self._message_agent_thought = None
def on_tool_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Do nothing."""
logging.error(error)
logging.exception(error)
self._agent_loops = []
self._current_loop = None
self._message_agent_thought = None
def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> Any:
"""Run on agent end."""
@@ -141,10 +177,18 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
self._current_loop.completed = True
self._current_loop.completed_at = time.perf_counter()
self._current_loop.latency = self._current_loop.completed_at - self._current_loop.started_at
self._current_loop.thought = '[DONE]'
self._message_agent_thought = self.conversation_message_task.on_agent_start(
self.current_chain,
self._current_loop
)
self.conversation_message_task.on_agent_end(self.current_chain, self.model_name, self._current_loop)
self.conversation_message_task.on_agent_end(
self._message_agent_thought, self.model_instant, self._current_loop
)
self._agent_loops.append(self._current_loop)
self._current_loop = None
self._message_agent_thought = None
elif not self._current_loop and self._agent_loops:
self._agent_loops[-1].status = 'agent_finish'

View File

@@ -1,3 +1,4 @@
import json
import logging
from typing import Any, Dict, List, Union, Optional
@@ -43,9 +44,11 @@ class DatasetToolCallbackHandler(BaseCallbackHandler):
input_str: str,
**kwargs: Any,
) -> None:
tool_name = serialized.get('name')
dataset_id = tool_name[len("dataset-"):]
self.conversation_message_task.on_dataset_query_end(DatasetQueryObj(dataset_id=dataset_id, query=input_str))
# tool_name = serialized.get('name')
input_dict = json.loads(input_str.replace("'", "\""))
dataset_id = input_dict.get('dataset_id')
query = input_dict.get('query')
self.conversation_message_task.on_dataset_query_end(DatasetQueryObj(dataset_id=dataset_id, query=query))
def on_tool_end(
self,
@@ -65,4 +68,4 @@ class DatasetToolCallbackHandler(BaseCallbackHandler):
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Do nothing."""
logging.error(error)
logging.exception(error)

View File

@@ -10,9 +10,9 @@ class AgentLoop(BaseModel):
tool_output: str = None
prompt: str = None
prompt_tokens: int = None
prompt_tokens: int = 0
completion: str = None
completion_tokens: int = None
completion_tokens: int = 0
latency: float = None

View File

@@ -1,22 +1,22 @@
import logging
import time
from typing import Any, Dict, List, Union, Optional
from typing import Any, Dict, List, Union
from langchain.callbacks.base import BaseCallbackHandler
from langchain.schema import AgentAction, AgentFinish, LLMResult, HumanMessage, AIMessage, SystemMessage, BaseMessage
from langchain.schema import LLMResult, BaseMessage
from core.callback_handler.entity.llm_message import LLMMessage
from core.conversation_message_task import ConversationMessageTask, ConversationTaskStoppedException
from core.llm.streamable_chat_open_ai import StreamableChatOpenAI
from core.llm.streamable_open_ai import StreamableOpenAI
from core.model_providers.models.entity.message import to_prompt_messages, PromptMessage
from core.model_providers.models.llm.base import BaseLLM
class LLMCallbackHandler(BaseCallbackHandler):
raise_error: bool = True
def __init__(self, llm: Union[StreamableOpenAI, StreamableChatOpenAI],
def __init__(self, model_instance: BaseLLM,
conversation_message_task: ConversationMessageTask):
self.llm = llm
self.model_instance = model_instance
self.llm_message = LLMMessage()
self.start_at = None
self.conversation_message_task = conversation_message_task
@@ -48,7 +48,7 @@ class LLMCallbackHandler(BaseCallbackHandler):
})
self.llm_message.prompt = real_prompts
self.llm_message.prompt_tokens = self.llm.get_num_tokens_from_messages(messages[0])
self.llm_message.prompt_tokens = self.model_instance.get_num_tokens(to_prompt_messages(messages[0]))
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
@@ -60,7 +60,7 @@ class LLMCallbackHandler(BaseCallbackHandler):
"text": prompts[0]
}]
self.llm_message.prompt_tokens = self.llm.get_num_tokens(prompts[0])
self.llm_message.prompt_tokens = self.model_instance.get_num_tokens([PromptMessage(content=prompts[0])])
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
end_at = time.perf_counter()
@@ -70,7 +70,7 @@ class LLMCallbackHandler(BaseCallbackHandler):
self.conversation_message_task.append_message_text(response.generations[0][0].text)
self.llm_message.completion = response.generations[0][0].text
self.llm_message.completion_tokens = self.llm.get_num_tokens(self.llm_message.completion)
self.llm_message.completion_tokens = self.model_instance.get_num_tokens([PromptMessage(content=self.llm_message.completion)])
self.conversation_message_task.save_message(self.llm_message)
@@ -91,7 +91,9 @@ class LLMCallbackHandler(BaseCallbackHandler):
if self.conversation_message_task.streaming:
end_at = time.perf_counter()
self.llm_message.latency = end_at - self.start_at
self.llm_message.completion_tokens = self.llm.get_num_tokens(self.llm_message.completion)
self.llm_message.completion_tokens = self.model_instance.get_num_tokens(
[PromptMessage(content=self.llm_message.completion)]
)
self.conversation_message_task.save_message(llm_message=self.llm_message, by_stopped=True)
else:
logging.error(error)
logging.debug("on_llm_error: %s", error)

View File

@@ -5,9 +5,7 @@ from typing import Any, Dict, Union
from langchain.callbacks.base import BaseCallbackHandler
from core.callback_handler.agent_loop_gather_callback_handler import AgentLoopGatherCallbackHandler
from core.callback_handler.entity.chain_result import ChainResult
from core.constant import llm_constant
from core.conversation_message_task import ConversationMessageTask
@@ -20,15 +18,13 @@ class MainChainGatherCallbackHandler(BaseCallbackHandler):
self._current_chain_result = None
self._current_chain_message = None
self.conversation_message_task = conversation_message_task
self.agent_loop_gather_callback_handler = AgentLoopGatherCallbackHandler(
llm_constant.agent_model_name,
conversation_message_task
)
self.agent_callback = None
def clear_chain_results(self) -> None:
self._current_chain_result = None
self._current_chain_message = None
self.agent_loop_gather_callback_handler.current_chain = None
if self.agent_callback:
self.agent_callback.current_chain = None
@property
def always_verbose(self) -> bool:
@@ -58,7 +54,8 @@ class MainChainGatherCallbackHandler(BaseCallbackHandler):
started_at=time.perf_counter()
)
self._current_chain_message = self.conversation_message_task.init_chain(self._current_chain_result)
self.agent_loop_gather_callback_handler.current_chain = self._current_chain_message
if self.agent_callback:
self.agent_callback.current_chain = self._current_chain_message
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
"""Print out that we finished a chain."""
@@ -75,5 +72,5 @@ class MainChainGatherCallbackHandler(BaseCallbackHandler):
def on_chain_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
logging.error(error)
self.clear_chain_results()
logging.exception(error)
self.clear_chain_results()

View File

@@ -1,32 +0,0 @@
from typing import Optional
from core.callback_handler.std_out_callback_handler import DifyStdOutCallbackHandler
from core.chain.sensitive_word_avoidance_chain import SensitiveWordAvoidanceChain
from core.chain.tool_chain import ToolChain
class ChainBuilder:
@classmethod
def to_tool_chain(cls, tool, **kwargs) -> ToolChain:
return ToolChain(
tool=tool,
input_key=kwargs.get('input_key', 'input'),
output_key=kwargs.get('output_key', 'tool_output'),
callbacks=[DifyStdOutCallbackHandler()]
)
@classmethod
def to_sensitive_word_avoidance_chain(cls, tool_config: dict, **kwargs) -> Optional[
SensitiveWordAvoidanceChain]:
sensitive_words = tool_config.get("words", "")
if tool_config.get("enabled", False) \
and sensitive_words:
return SensitiveWordAvoidanceChain(
sensitive_words=sensitive_words.split(","),
canned_response=tool_config.get("canned_response", ''),
output_key="sensitive_word_avoidance_output",
callbacks=[DifyStdOutCallbackHandler()],
**kwargs
)
return None

View File

@@ -1,111 +0,0 @@
"""Base classes for LLM-powered router chains."""
from __future__ import annotations
from typing import Any, Dict, List, Optional, Type, cast, NamedTuple
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from pydantic import root_validator
from langchain.chains import LLMChain
from langchain.prompts import BasePromptTemplate
from langchain.schema import BaseOutputParser, OutputParserException
from libs.json_in_md_parser import parse_and_check_json_markdown
class Route(NamedTuple):
destination: Optional[str]
next_inputs: Dict[str, Any]
class LLMRouterChain(Chain):
"""A router chain that uses an LLM chain to perform routing."""
llm_chain: LLMChain
"""LLM chain used to perform routing"""
@root_validator()
def validate_prompt(cls, values: dict) -> dict:
prompt = values["llm_chain"].prompt
if prompt.output_parser is None:
raise ValueError(
"LLMRouterChain requires base llm_chain prompt to have an output"
" parser that converts LLM text output to a dictionary with keys"
" 'destination' and 'next_inputs'. Received a prompt with no output"
" parser."
)
return values
@property
def input_keys(self) -> List[str]:
"""Will be whatever keys the LLM chain prompt expects.
:meta private:
"""
return self.llm_chain.input_keys
def _validate_outputs(self, outputs: Dict[str, Any]) -> None:
super()._validate_outputs(outputs)
if not isinstance(outputs["next_inputs"], dict):
raise ValueError
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
output = cast(
Dict[str, Any],
self.llm_chain.predict_and_parse(**inputs),
)
return output
@classmethod
def from_llm(
cls, llm: BaseLanguageModel, prompt: BasePromptTemplate, **kwargs: Any
) -> LLMRouterChain:
"""Convenience constructor."""
llm_chain = LLMChain(llm=llm, prompt=prompt)
return cls(llm_chain=llm_chain, **kwargs)
@property
def output_keys(self) -> List[str]:
return ["destination", "next_inputs"]
def route(self, inputs: Dict[str, Any]) -> Route:
result = self(inputs)
return Route(result["destination"], result["next_inputs"])
class RouterOutputParser(BaseOutputParser[Dict[str, str]]):
"""Parser for output of router chain int he multi-prompt chain."""
default_destination: str = "DEFAULT"
next_inputs_type: Type = str
next_inputs_inner_key: str = "input"
def parse(self, text: str) -> Dict[str, Any]:
try:
expected_keys = ["destination", "next_inputs"]
parsed = parse_and_check_json_markdown(text, expected_keys)
if not isinstance(parsed["destination"], str):
raise ValueError("Expected 'destination' to be a string.")
if not isinstance(parsed["next_inputs"], self.next_inputs_type):
raise ValueError(
f"Expected 'next_inputs' to be {self.next_inputs_type}."
)
parsed["next_inputs"] = {self.next_inputs_inner_key: parsed["next_inputs"]}
if (
parsed["destination"].strip().lower()
== self.default_destination.lower()
):
parsed["destination"] = None
else:
parsed["destination"] = parsed["destination"].strip()
return parsed
except Exception as e:
raise OutputParserException(
f"Parsing text\n{text}\n of llm router raised following error:\n{e}"
)

View File

@@ -1,110 +0,0 @@
from typing import Optional, List, cast
from langchain.chains import SequentialChain
from langchain.chains.base import Chain
from langchain.memory.chat_memory import BaseChatMemory
from core.callback_handler.main_chain_gather_callback_handler import MainChainGatherCallbackHandler
from core.callback_handler.std_out_callback_handler import DifyStdOutCallbackHandler
from core.chain.chain_builder import ChainBuilder
from core.chain.multi_dataset_router_chain import MultiDatasetRouterChain
from core.conversation_message_task import ConversationMessageTask
from extensions.ext_database import db
from models.dataset import Dataset
class MainChainBuilder:
@classmethod
def to_langchain_components(cls, tenant_id: str, agent_mode: dict, memory: Optional[BaseChatMemory],
rest_tokens: int,
conversation_message_task: ConversationMessageTask):
first_input_key = "input"
final_output_key = "output"
chains = []
chain_callback_handler = MainChainGatherCallbackHandler(conversation_message_task)
# agent mode
tool_chains, chains_output_key = cls.get_agent_chains(
tenant_id=tenant_id,
agent_mode=agent_mode,
rest_tokens=rest_tokens,
memory=memory,
conversation_message_task=conversation_message_task
)
chains += tool_chains
if chains_output_key:
final_output_key = chains_output_key
if len(chains) == 0:
return None
for chain in chains:
chain = cast(Chain, chain)
chain.callbacks.append(chain_callback_handler)
# build main chain
overall_chain = SequentialChain(
chains=chains,
input_variables=[first_input_key],
output_variables=[final_output_key],
memory=memory, # only for use the memory prompt input key
)
return overall_chain
@classmethod
def get_agent_chains(cls, tenant_id: str, agent_mode: dict,
rest_tokens: int,
memory: Optional[BaseChatMemory],
conversation_message_task: ConversationMessageTask):
# agent mode
chains = []
if agent_mode and agent_mode.get('enabled'):
tools = agent_mode.get('tools', [])
pre_fixed_chains = []
# agent_tools = []
datasets = []
for tool in tools:
tool_type = list(tool.keys())[0]
tool_config = list(tool.values())[0]
if tool_type == 'sensitive-word-avoidance':
chain = ChainBuilder.to_sensitive_word_avoidance_chain(tool_config)
if chain:
pre_fixed_chains.append(chain)
elif tool_type == "dataset":
# get dataset from dataset id
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == tenant_id,
Dataset.id == tool_config.get("id")
).first()
if dataset:
datasets.append(dataset)
# add pre-fixed chains
chains += pre_fixed_chains
if len(datasets) > 0:
# tool to chain
multi_dataset_router_chain = MultiDatasetRouterChain.from_datasets(
tenant_id=tenant_id,
datasets=datasets,
conversation_message_task=conversation_message_task,
rest_tokens=rest_tokens,
callbacks=[DifyStdOutCallbackHandler()]
)
chains.append(multi_dataset_router_chain)
final_output_key = cls.get_chains_output_key(chains)
return chains, final_output_key
@classmethod
def get_chains_output_key(cls, chains: List[Chain]):
if len(chains) > 0:
return chains[-1].output_keys[0]
return None

View File

@@ -1,198 +0,0 @@
import math
import re
from typing import Mapping, List, Dict, Any, Optional
from langchain import PromptTemplate
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from pydantic import Extra
from core.callback_handler.dataset_tool_callback_handler import DatasetToolCallbackHandler
from core.callback_handler.std_out_callback_handler import DifyStdOutCallbackHandler
from core.chain.llm_router_chain import LLMRouterChain, RouterOutputParser
from core.conversation_message_task import ConversationMessageTask
from core.llm.llm_builder import LLMBuilder
from core.tool.dataset_index_tool import DatasetTool
from models.dataset import Dataset, DatasetProcessRule
DEFAULT_K = 2
CONTEXT_TOKENS_PERCENT = 0.3
MULTI_PROMPT_ROUTER_TEMPLATE = """
Given a raw text input to a language model select the model prompt best suited for \
the input. You will be given the names of the available prompts and a description of \
what the prompt is best suited for. You may also revise the original input if you \
think that revising it will ultimately lead to a better response from the language \
model.
<< FORMATTING >>
Return a markdown code snippet with a JSON object formatted to look like, \
no any other string out of markdown code snippet:
```json
{{{{
"destination": string \\ name of the prompt to use or "DEFAULT"
"next_inputs": string \\ a potentially modified version of the original input
}}}}
```
REMEMBER: "destination" MUST be one of the candidate prompt names specified below OR \
it can be "DEFAULT" if the input is not well suited for any of the candidate prompts.
REMEMBER: "next_inputs" can just be the original input if you don't think any \
modifications are needed.
<< CANDIDATE PROMPTS >>
{destinations}
<< INPUT >>
{{input}}
<< OUTPUT >>
"""
class MultiDatasetRouterChain(Chain):
"""Use a single chain to route an input to one of multiple candidate chains."""
router_chain: LLMRouterChain
"""Chain for deciding a destination chain and the input to it."""
dataset_tools: Mapping[str, DatasetTool]
"""Map of name to candidate chains that inputs can be routed to."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Will be whatever keys the router chain prompt expects.
:meta private:
"""
return self.router_chain.input_keys
@property
def output_keys(self) -> List[str]:
return ["text"]
@classmethod
def from_datasets(
cls,
tenant_id: str,
datasets: List[Dataset],
conversation_message_task: ConversationMessageTask,
rest_tokens: int,
**kwargs: Any,
):
"""Convenience constructor for instantiating from destination prompts."""
llm = LLMBuilder.to_llm(
tenant_id=tenant_id,
model_name='gpt-3.5-turbo',
temperature=0,
max_tokens=1024,
callbacks=[DifyStdOutCallbackHandler()]
)
destinations = ["[[{}]]: {}".format(d.id, d.description.replace('\n', ' ') if d.description
else ('useful for when you want to answer queries about the ' + d.name))
for d in datasets]
destinations_str = "\n".join(destinations)
router_template = MULTI_PROMPT_ROUTER_TEMPLATE.format(
destinations=destinations_str
)
router_prompt = PromptTemplate(
template=router_template,
input_variables=["input"],
output_parser=RouterOutputParser(),
)
router_chain = LLMRouterChain.from_llm(llm, router_prompt)
dataset_tools = {}
for dataset in datasets:
# fulfill description when it is empty
if dataset.available_document_count == 0 or dataset.available_document_count == 0:
continue
description = dataset.description
if not description:
description = 'useful for when you want to answer queries about the ' + dataset.name
k = cls._dynamic_calc_retrieve_k(dataset, rest_tokens)
if k == 0:
continue
dataset_tool = DatasetTool(
name=f"dataset-{dataset.id}",
description=description,
k=k,
dataset=dataset,
callbacks=[DatasetToolCallbackHandler(conversation_message_task), DifyStdOutCallbackHandler()]
)
dataset_tools[str(dataset.id)] = dataset_tool
return cls(
router_chain=router_chain,
dataset_tools=dataset_tools,
**kwargs,
)
@classmethod
def _dynamic_calc_retrieve_k(cls, dataset: Dataset, rest_tokens: int) -> int:
processing_rule = dataset.latest_process_rule
if not processing_rule:
return DEFAULT_K
if processing_rule.mode == "custom":
rules = processing_rule.rules_dict
if not rules:
return DEFAULT_K
segmentation = rules["segmentation"]
segment_max_tokens = segmentation["max_tokens"]
else:
segment_max_tokens = DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens']
# when rest_tokens is less than default context tokens
if rest_tokens < segment_max_tokens * DEFAULT_K:
return rest_tokens // segment_max_tokens
context_limit_tokens = math.floor(rest_tokens * CONTEXT_TOKENS_PERCENT)
# when context_limit_tokens is less than default context tokens, use default_k
if context_limit_tokens <= segment_max_tokens * DEFAULT_K:
return DEFAULT_K
# Expand the k value when there's still some room left in the 30% rest tokens space
return context_limit_tokens // segment_max_tokens
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
if len(self.dataset_tools) == 0:
return {"text": ''}
elif len(self.dataset_tools) == 1:
return {"text": next(iter(self.dataset_tools.values())).run(inputs['input'])}
route = self.router_chain.route(inputs)
destination = ''
if route.destination:
pattern = r'\b[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}\b'
match = re.search(pattern, route.destination, re.IGNORECASE)
if match:
destination = match.group()
if not destination:
return {"text": ''}
elif destination in self.dataset_tools:
return {"text": self.dataset_tools[destination].run(
route.next_inputs['input']
)}
else:
raise ValueError(
f"Received invalid destination chain name '{destination}'"
)

View File

@@ -1,51 +0,0 @@
from typing import List, Dict, Optional, Any
from langchain.callbacks.manager import CallbackManagerForChainRun, AsyncCallbackManagerForChainRun
from langchain.chains.base import Chain
from langchain.tools import BaseTool
class ToolChain(Chain):
input_key: str = "input" #: :meta private:
output_key: str = "output" #: :meta private:
tool: BaseTool
@property
def _chain_type(self) -> str:
return "tool_chain"
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return output key.
:meta private:
"""
return [self.output_key]
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
input = inputs[self.input_key]
output = self.tool.run(input, self.verbose)
return {self.output_key: output}
async def _acall(
self,
inputs: Dict[str, Any],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
"""Run the logic of this chain and return the output."""
input = inputs[self.input_key]
output = await self.tool.arun(input, self.verbose)
return {self.output_key: output}

View File

@@ -1,37 +1,31 @@
import logging
import re
from typing import Optional, List, Union, Tuple
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackHandler
from langchain.chat_models.base import BaseChatModel
from langchain.llms import BaseLLM
from langchain.schema import BaseMessage, HumanMessage
from langchain.schema import BaseMessage
from requests.exceptions import ChunkedEncodingError
from core.constant import llm_constant
from core.agent.agent_executor import AgentExecuteResult, PlanningStrategy
from core.callback_handler.main_chain_gather_callback_handler import MainChainGatherCallbackHandler
from core.callback_handler.llm_callback_handler import LLMCallbackHandler
from core.callback_handler.std_out_callback_handler import DifyStreamingStdOutCallbackHandler, \
DifyStdOutCallbackHandler
from core.conversation_message_task import ConversationMessageTask, ConversationTaskStoppedException
from core.llm.error import LLMBadRequestError
from core.llm.llm_builder import LLMBuilder
from core.chain.main_chain_builder import MainChainBuilder
from core.llm.streamable_chat_open_ai import StreamableChatOpenAI
from core.llm.streamable_open_ai import StreamableOpenAI
from core.model_providers.error import LLMBadRequestError
from core.memory.read_only_conversation_token_db_buffer_shared_memory import \
ReadOnlyConversationTokenDBBufferSharedMemory
from core.memory.read_only_conversation_token_db_string_buffer_shared_memory import \
ReadOnlyConversationTokenDBStringBufferSharedMemory
from core.model_providers.model_factory import ModelFactory
from core.model_providers.models.entity.message import PromptMessage, to_prompt_messages
from core.model_providers.models.llm.base import BaseLLM
from core.orchestrator_rule_parser import OrchestratorRuleParser
from core.prompt.prompt_builder import PromptBuilder
from core.prompt.prompt_template import JinjaPromptTemplate
from core.prompt.prompts import MORE_LIKE_THIS_GENERATE_PROMPT
from models.model import App, AppModelConfig, Account, Conversation, Message
from models.model import App, AppModelConfig, Account, Conversation, Message, EndUser
class Completion:
@classmethod
def generate(cls, task_id: str, app: App, app_model_config: AppModelConfig, query: str, inputs: dict,
user: Account, conversation: Optional[Conversation], streaming: bool, is_override: bool = False):
user: Union[Account, EndUser], conversation: Optional[Conversation], streaming: bool, is_override: bool = False):
"""
errors: ProviderTokenNotInitError
"""
@@ -49,12 +43,10 @@ class Completion:
inputs = conversation.inputs
rest_tokens_for_context_and_memory = cls.get_validate_rest_tokens(
mode=app.mode,
final_model_instance = ModelFactory.get_text_generation_model_from_model_config(
tenant_id=app.tenant_id,
app_model_config=app_model_config,
query=query,
inputs=inputs
model_config=app_model_config.model_dict,
streaming=streaming
)
conversation_message_task = ConversationMessageTask(
@@ -66,34 +58,56 @@ class Completion:
is_override=is_override,
inputs=inputs,
query=query,
streaming=streaming
streaming=streaming,
model_instance=final_model_instance
)
# build main chain include agent
main_chain = MainChainBuilder.to_langchain_components(
rest_tokens_for_context_and_memory = cls.get_validate_rest_tokens(
mode=app.mode,
model_instance=final_model_instance,
app_model_config=app_model_config,
query=query,
inputs=inputs
)
# init orchestrator rule parser
orchestrator_rule_parser = OrchestratorRuleParser(
tenant_id=app.tenant_id,
agent_mode=app_model_config.agent_mode_dict,
rest_tokens=rest_tokens_for_context_and_memory,
memory=ReadOnlyConversationTokenDBStringBufferSharedMemory(memory=memory) if memory else None,
conversation_message_task=conversation_message_task
app_model_config=app_model_config
)
chain_output = ''
if main_chain:
chain_output = main_chain.run(query)
# parse sensitive_word_avoidance_chain
chain_callback = MainChainGatherCallbackHandler(conversation_message_task)
sensitive_word_avoidance_chain = orchestrator_rule_parser.to_sensitive_word_avoidance_chain([chain_callback])
if sensitive_word_avoidance_chain:
query = sensitive_word_avoidance_chain.run(query)
# get agent executor
agent_executor = orchestrator_rule_parser.to_agent_executor(
conversation_message_task=conversation_message_task,
memory=memory,
rest_tokens=rest_tokens_for_context_and_memory,
chain_callback=chain_callback
)
# run agent executor
agent_execute_result = None
if agent_executor:
should_use_agent = agent_executor.should_use_agent(query)
if should_use_agent:
agent_execute_result = agent_executor.run(query)
# run the final llm
try:
cls.run_final_llm(
tenant_id=app.tenant_id,
model_instance=final_model_instance,
mode=app.mode,
app_model_config=app_model_config,
query=query,
inputs=inputs,
chain_output=chain_output,
agent_execute_result=agent_execute_result,
conversation_message_task=conversation_message_task,
memory=memory,
streaming=streaming
memory=memory
)
except ConversationTaskStoppedException:
return
@@ -104,54 +118,48 @@ class Completion:
return
@classmethod
def run_final_llm(cls, tenant_id: str, mode: str, app_model_config: AppModelConfig, query: str, inputs: dict,
chain_output: str,
def run_final_llm(cls, model_instance: BaseLLM, mode: str, app_model_config: AppModelConfig, query: str, inputs: dict,
agent_execute_result: Optional[AgentExecuteResult],
conversation_message_task: ConversationMessageTask,
memory: Optional[ReadOnlyConversationTokenDBBufferSharedMemory], streaming: bool):
final_llm = LLMBuilder.to_llm_from_model(
tenant_id=tenant_id,
model=app_model_config.model_dict,
streaming=streaming
)
memory: Optional[ReadOnlyConversationTokenDBBufferSharedMemory]):
# When no extra pre prompt is specified,
# the output of the agent can be used directly as the main output content without calling LLM again
fake_response = None
if not app_model_config.pre_prompt and agent_execute_result and agent_execute_result.output \
and agent_execute_result.strategy != PlanningStrategy.ROUTER:
fake_response = agent_execute_result.output
# get llm prompt
prompt, stop_words = cls.get_main_llm_prompt(
prompt_messages, stop_words = cls.get_main_llm_prompt(
mode=mode,
llm=final_llm,
model=app_model_config.model_dict,
pre_prompt=app_model_config.pre_prompt,
query=query,
inputs=inputs,
chain_output=chain_output,
agent_execute_result=agent_execute_result,
memory=memory
)
final_llm.callbacks = cls.get_llm_callbacks(final_llm, streaming, conversation_message_task)
cls.recale_llm_max_tokens(
final_llm=final_llm,
model=app_model_config.model_dict,
prompt=prompt,
mode=mode
model_instance=model_instance,
prompt_messages=prompt_messages,
)
response = final_llm.generate([prompt], stop_words)
response = model_instance.run(
messages=prompt_messages,
stop=stop_words,
callbacks=[LLMCallbackHandler(model_instance, conversation_message_task)],
fake_response=fake_response
)
return response
@classmethod
def get_main_llm_prompt(cls, mode: str, llm: BaseLanguageModel, model: dict,
def get_main_llm_prompt(cls, mode: str, model: dict,
pre_prompt: str, query: str, inputs: dict,
chain_output: Optional[str],
agent_execute_result: Optional[AgentExecuteResult],
memory: Optional[ReadOnlyConversationTokenDBBufferSharedMemory]) -> \
Tuple[Union[str | List[BaseMessage]], Optional[List[str]]]:
# disable template string in query
# query_params = JinjaPromptTemplate.from_template(template=query).input_variables
# if query_params:
# for query_param in query_params:
# if query_param not in inputs:
# inputs[query_param] = '{{' + query_param + '}}'
Tuple[List[PromptMessage], Optional[List[str]]]:
if mode == 'completion':
prompt_template = JinjaPromptTemplate.from_template(
template=("""Use the following context as your learned knowledge, inside <context></context> XML tags.
@@ -165,18 +173,13 @@ When answer to user:
- If you don't know when you are not sure, ask for clarification.
Avoid mentioning that you obtained the information from the context.
And answer according to the language of the user's question.
""" if chain_output else "")
""" if agent_execute_result else "")
+ (pre_prompt + "\n" if pre_prompt else "")
+ "{{query}}\n"
)
if chain_output:
inputs['context'] = chain_output
# context_params = JinjaPromptTemplate.from_template(template=chain_output).input_variables
# if context_params:
# for context_param in context_params:
# if context_param not in inputs:
# inputs[context_param] = '{{' + context_param + '}}'
if agent_execute_result:
inputs['context'] = agent_execute_result.output
prompt_inputs = {k: inputs[k] for k in prompt_template.input_variables if k in inputs}
prompt_content = prompt_template.format(
@@ -184,11 +187,7 @@ And answer according to the language of the user's question.
**prompt_inputs
)
if isinstance(llm, BaseChatModel):
# use chat llm as completion model
return [HumanMessage(content=prompt_content)], None
else:
return prompt_content, None
return [PromptMessage(content=prompt_content)], None
else:
messages: List[BaseMessage] = []
@@ -206,8 +205,8 @@ And answer according to the language of the user's question.
if pre_prompt_inputs:
human_inputs.update(pre_prompt_inputs)
if chain_output:
human_inputs['context'] = chain_output
if agent_execute_result:
human_inputs['context'] = agent_execute_result.output
human_message_prompt += """Use the following context as your learned knowledge, inside <context></context> XML tags.
<context>
@@ -233,25 +232,19 @@ And answer according to the language of the user's question.
inputs=human_inputs
)
curr_message_tokens = memory.llm.get_num_tokens_from_messages([tmp_human_message])
model_name = model['name']
max_tokens = model.get("completion_params").get('max_tokens')
rest_tokens = llm_constant.max_context_token_length[model_name] \
- max_tokens - curr_message_tokens
rest_tokens = max(rest_tokens, 0)
if memory.model_instance.model_rules.max_tokens.max:
curr_message_tokens = memory.model_instance.get_num_tokens(to_prompt_messages([tmp_human_message]))
max_tokens = model.get("completion_params").get('max_tokens')
rest_tokens = memory.model_instance.model_rules.max_tokens.max - max_tokens - curr_message_tokens
rest_tokens = max(rest_tokens, 0)
else:
rest_tokens = 2000
histories = cls.get_history_messages_from_memory(memory, rest_tokens)
# disable template string in query
# histories_params = JinjaPromptTemplate.from_template(template=histories).input_variables
# if histories_params:
# for histories_param in histories_params:
# if histories_param not in human_inputs:
# human_inputs[histories_param] = '{{' + histories_param + '}}'
human_message_prompt += "\n\n" if human_message_prompt else ""
human_message_prompt += "Here is the chat histories between human and assistant, " \
"inside <histories></histories> XML tags.\n\n<histories>"
human_message_prompt += histories + "</histories>"
"inside <histories></histories> XML tags.\n\n<histories>\n"
human_message_prompt += histories + "\n</histories>"
human_message_prompt += query_prompt
@@ -263,22 +256,14 @@ And answer according to the language of the user's question.
messages.append(human_message)
return messages, ['\nHuman:']
for message in messages:
message.content = re.sub(r'<\|.*?\|>', '', message.content)
@classmethod
def get_llm_callbacks(cls, llm: Union[StreamableOpenAI, StreamableChatOpenAI],
streaming: bool,
conversation_message_task: ConversationMessageTask) -> List[BaseCallbackHandler]:
llm_callback_handler = LLMCallbackHandler(llm, conversation_message_task)
if streaming:
return [llm_callback_handler, DifyStreamingStdOutCallbackHandler()]
else:
return [llm_callback_handler, DifyStdOutCallbackHandler()]
return to_prompt_messages(messages), ['\nHuman:', '</histories>']
@classmethod
def get_history_messages_from_memory(cls, memory: ReadOnlyConversationTokenDBBufferSharedMemory,
max_token_limit: int) -> \
str:
max_token_limit: int) -> str:
"""Get memory messages."""
memory.max_token_limit = max_token_limit
memory_key = memory.memory_variables[0]
@@ -290,15 +275,15 @@ And answer according to the language of the user's question.
conversation: Conversation,
**kwargs) -> ReadOnlyConversationTokenDBBufferSharedMemory:
# only for calc token in memory
memory_llm = LLMBuilder.to_llm_from_model(
memory_model_instance = ModelFactory.get_text_generation_model_from_model_config(
tenant_id=tenant_id,
model=app_model_config.model_dict
model_config=app_model_config.model_dict
)
# use llm config from conversation
memory = ReadOnlyConversationTokenDBBufferSharedMemory(
conversation=conversation,
llm=memory_llm,
model_instance=memory_model_instance,
max_token_limit=kwargs.get("max_token_limit", 2048),
memory_key=kwargs.get("memory_key", "chat_history"),
return_messages=kwargs.get("return_messages", True),
@@ -310,32 +295,29 @@ And answer according to the language of the user's question.
return memory
@classmethod
def get_validate_rest_tokens(cls, mode: str, tenant_id: str, app_model_config: AppModelConfig,
def get_validate_rest_tokens(cls, mode: str, model_instance: BaseLLM, app_model_config: AppModelConfig,
query: str, inputs: dict) -> int:
llm = LLMBuilder.to_llm_from_model(
tenant_id=tenant_id,
model=app_model_config.model_dict
)
model_limited_tokens = model_instance.model_rules.max_tokens.max
max_tokens = model_instance.get_model_kwargs().max_tokens
model_name = app_model_config.model_dict.get("name")
model_limited_tokens = llm_constant.max_context_token_length[model_name]
max_tokens = app_model_config.model_dict.get("completion_params").get('max_tokens')
if model_limited_tokens is None:
return -1
if max_tokens is None:
max_tokens = 0
# get prompt without memory and context
prompt, _ = cls.get_main_llm_prompt(
prompt_messages, _ = cls.get_main_llm_prompt(
mode=mode,
llm=llm,
model=app_model_config.model_dict,
pre_prompt=app_model_config.pre_prompt,
query=query,
inputs=inputs,
chain_output=None,
agent_execute_result=None,
memory=None
)
prompt_tokens = llm.get_num_tokens(prompt) if isinstance(prompt, str) \
else llm.get_num_tokens_from_messages(prompt)
prompt_tokens = model_instance.get_num_tokens(prompt_messages)
rest_tokens = model_limited_tokens - max_tokens - prompt_tokens
if rest_tokens < 0:
raise LLMBadRequestError("Query or prefix prompt is too long, you can reduce the prefix prompt, "
@@ -344,51 +326,54 @@ And answer according to the language of the user's question.
return rest_tokens
@classmethod
def recale_llm_max_tokens(cls, final_llm: BaseLanguageModel, model: dict,
prompt: Union[str, List[BaseMessage]], mode: str):
def recale_llm_max_tokens(cls, model_instance: BaseLLM, prompt_messages: List[PromptMessage]):
# recalc max_tokens if sum(prompt_token + max_tokens) over model token limit
model_name = model.get("name")
model_limited_tokens = llm_constant.max_context_token_length[model_name]
max_tokens = model.get("completion_params").get('max_tokens')
model_limited_tokens = model_instance.model_rules.max_tokens.max
max_tokens = model_instance.get_model_kwargs().max_tokens
if mode == 'completion' and isinstance(final_llm, BaseLLM):
prompt_tokens = final_llm.get_num_tokens(prompt)
else:
prompt_tokens = final_llm.get_num_tokens_from_messages(prompt)
if model_limited_tokens is None:
return
if max_tokens is None:
max_tokens = 0
prompt_tokens = model_instance.get_num_tokens(prompt_messages)
if prompt_tokens + max_tokens > model_limited_tokens:
max_tokens = max(model_limited_tokens - prompt_tokens, 16)
final_llm.max_tokens = max_tokens
# update model instance max tokens
model_kwargs = model_instance.get_model_kwargs()
model_kwargs.max_tokens = max_tokens
model_instance.set_model_kwargs(model_kwargs)
@classmethod
def generate_more_like_this(cls, task_id: str, app: App, message: Message, pre_prompt: str,
app_model_config: AppModelConfig, user: Account, streaming: bool):
llm = LLMBuilder.to_llm_from_model(
final_model_instance = ModelFactory.get_text_generation_model_from_model_config(
tenant_id=app.tenant_id,
model=app_model_config.model_dict,
model_config=app_model_config.model_dict,
streaming=streaming
)
# get llm prompt
original_prompt, _ = cls.get_main_llm_prompt(
old_prompt_messages, _ = cls.get_main_llm_prompt(
mode="completion",
llm=llm,
model=app_model_config.model_dict,
pre_prompt=pre_prompt,
query=message.query,
inputs=message.inputs,
chain_output=None,
agent_execute_result=None,
memory=None
)
original_completion = message.answer.strip()
prompt = MORE_LIKE_THIS_GENERATE_PROMPT
prompt = prompt.format(prompt=original_prompt, original_completion=original_completion)
prompt = prompt.format(prompt=old_prompt_messages[0].content, original_completion=original_completion)
if isinstance(llm, BaseChatModel):
prompt = [HumanMessage(content=prompt)]
prompt_messages = [PromptMessage(content=prompt)]
conversation_message_task = ConversationMessageTask(
task_id=task_id,
@@ -398,16 +383,16 @@ And answer according to the language of the user's question.
inputs=message.inputs,
query=message.query,
is_override=True if message.override_model_configs else False,
streaming=streaming
streaming=streaming,
model_instance=final_model_instance
)
llm.callbacks = cls.get_llm_callbacks(llm, streaming, conversation_message_task)
cls.recale_llm_max_tokens(
final_llm=llm,
model=app_model_config.model_dict,
prompt=prompt,
mode='completion'
model_instance=final_model_instance,
prompt_messages=prompt_messages
)
llm.generate([prompt])
final_model_instance.run(
messages=prompt_messages,
callbacks=[LLMCallbackHandler(final_model_instance, conversation_message_task)]
)

View File

@@ -1,109 +0,0 @@
from _decimal import Decimal
models = {
'claude-instant-1': 'anthropic', # 100,000 tokens
'claude-2': 'anthropic', # 100,000 tokens
'gpt-4': 'openai', # 8,192 tokens
'gpt-4-32k': 'openai', # 32,768 tokens
'gpt-3.5-turbo': 'openai', # 4,096 tokens
'gpt-3.5-turbo-16k': 'openai', # 16384 tokens
'text-davinci-003': 'openai', # 4,097 tokens
'text-davinci-002': 'openai', # 4,097 tokens
'text-curie-001': 'openai', # 2,049 tokens
'text-babbage-001': 'openai', # 2,049 tokens
'text-ada-001': 'openai', # 2,049 tokens
'text-embedding-ada-002': 'openai', # 8191 tokens, 1536 dimensions
'whisper-1': 'openai'
}
max_context_token_length = {
'claude-instant-1': 100000,
'claude-2': 100000,
'gpt-4': 8192,
'gpt-4-32k': 32768,
'gpt-3.5-turbo': 4096,
'gpt-3.5-turbo-16k': 16384,
'text-davinci-003': 4097,
'text-davinci-002': 4097,
'text-curie-001': 2049,
'text-babbage-001': 2049,
'text-ada-001': 2049,
'text-embedding-ada-002': 8191,
}
models_by_mode = {
'chat': [
'claude-instant-1', # 100,000 tokens
'claude-2', # 100,000 tokens
'gpt-4', # 8,192 tokens
'gpt-4-32k', # 32,768 tokens
'gpt-3.5-turbo', # 4,096 tokens
'gpt-3.5-turbo-16k', # 16,384 tokens
],
'completion': [
'claude-instant-1', # 100,000 tokens
'claude-2', # 100,000 tokens
'gpt-4', # 8,192 tokens
'gpt-4-32k', # 32,768 tokens
'gpt-3.5-turbo', # 4,096 tokens
'gpt-3.5-turbo-16k', # 16,384 tokens
'text-davinci-003', # 4,097 tokens
'text-davinci-002' # 4,097 tokens
'text-curie-001', # 2,049 tokens
'text-babbage-001', # 2,049 tokens
'text-ada-001' # 2,049 tokens
],
'embedding': [
'text-embedding-ada-002' # 8191 tokens, 1536 dimensions
]
}
model_currency = 'USD'
model_prices = {
'claude-instant-1': {
'prompt': Decimal('0.00163'),
'completion': Decimal('0.00551'),
},
'claude-2': {
'prompt': Decimal('0.01102'),
'completion': Decimal('0.03268'),
},
'gpt-4': {
'prompt': Decimal('0.03'),
'completion': Decimal('0.06'),
},
'gpt-4-32k': {
'prompt': Decimal('0.06'),
'completion': Decimal('0.12')
},
'gpt-3.5-turbo': {
'prompt': Decimal('0.0015'),
'completion': Decimal('0.002')
},
'gpt-3.5-turbo-16k': {
'prompt': Decimal('0.003'),
'completion': Decimal('0.004')
},
'text-davinci-003': {
'prompt': Decimal('0.02'),
'completion': Decimal('0.02')
},
'text-curie-001': {
'prompt': Decimal('0.002'),
'completion': Decimal('0.002')
},
'text-babbage-001': {
'prompt': Decimal('0.0005'),
'completion': Decimal('0.0005')
},
'text-ada-001': {
'prompt': Decimal('0.0004'),
'completion': Decimal('0.0004')
},
'text-embedding-ada-002': {
'usage': Decimal('0.0001'),
}
}
agent_model_name = 'text-davinci-003'

View File

@@ -6,9 +6,9 @@ from core.callback_handler.entity.agent_loop import AgentLoop
from core.callback_handler.entity.dataset_query import DatasetQueryObj
from core.callback_handler.entity.llm_message import LLMMessage
from core.callback_handler.entity.chain_result import ChainResult
from core.constant import llm_constant
from core.llm.llm_builder import LLMBuilder
from core.llm.provider.llm_provider_service import LLMProviderService
from core.model_providers.model_factory import ModelFactory
from core.model_providers.models.entity.message import to_prompt_messages, MessageType
from core.model_providers.models.llm.base import BaseLLM
from core.prompt.prompt_builder import PromptBuilder
from core.prompt.prompt_template import JinjaPromptTemplate
from events.message_event import message_was_created
@@ -16,12 +16,11 @@ from extensions.ext_database import db
from extensions.ext_redis import redis_client
from models.dataset import DatasetQuery
from models.model import AppModelConfig, Conversation, Account, Message, EndUser, App, MessageAgentThought, MessageChain
from models.provider import ProviderType, Provider
class ConversationMessageTask:
def __init__(self, task_id: str, app: App, app_model_config: AppModelConfig, user: Account,
inputs: dict, query: str, streaming: bool,
inputs: dict, query: str, streaming: bool, model_instance: BaseLLM,
conversation: Optional[Conversation] = None, is_override: bool = False):
self.task_id = task_id
@@ -38,9 +37,12 @@ class ConversationMessageTask:
self.conversation = conversation
self.is_new_conversation = False
self.model_instance = model_instance
self.message = None
self.model_dict = self.app_model_config.model_dict
self.provider_name = self.model_dict.get('provider')
self.model_name = self.model_dict.get('name')
self.mode = app.mode
@@ -52,13 +54,10 @@ class ConversationMessageTask:
message=self.message,
conversation=self.conversation,
chain_pub=False, # disabled currently
agent_thought_pub=False # disabled currently
agent_thought_pub=True
)
def init(self):
provider_name = LLMBuilder.get_default_provider(self.app.tenant_id, self.model_name)
self.model_dict['provider'] = provider_name
override_model_configs = None
if self.is_override:
override_model_configs = {
@@ -69,6 +68,7 @@ class ConversationMessageTask:
"suggested_questions": self.app_model_config.suggested_questions_list,
"suggested_questions_after_answer": self.app_model_config.suggested_questions_after_answer_dict,
"more_like_this": self.app_model_config.more_like_this_dict,
"sensitive_word_avoidance": self.app_model_config.sensitive_word_avoidance_dict,
"user_input_form": self.app_model_config.user_input_form_list,
}
@@ -88,15 +88,19 @@ class ConversationMessageTask:
if self.app_model_config.pre_prompt:
system_message = PromptBuilder.to_system_message(self.app_model_config.pre_prompt, self.inputs)
system_instruction = system_message.content
llm = LLMBuilder.to_llm(self.tenant_id, self.model_name)
system_instruction_tokens = llm.get_num_tokens_from_messages([system_message])
model_instance = ModelFactory.get_text_generation_model(
tenant_id=self.tenant_id,
model_provider_name=self.provider_name,
model_name=self.model_name
)
system_instruction_tokens = model_instance.get_num_tokens(to_prompt_messages([system_message]))
if not self.conversation:
self.is_new_conversation = True
self.conversation = Conversation(
app_id=self.app_model_config.app_id,
app_model_config_id=self.app_model_config.id,
model_provider=self.model_dict.get('provider'),
model_provider=self.provider_name,
model_id=self.model_name,
override_model_configs=json.dumps(override_model_configs) if override_model_configs else None,
mode=self.mode,
@@ -116,7 +120,7 @@ class ConversationMessageTask:
self.message = Message(
app_id=self.app_model_config.app_id,
model_provider=self.model_dict.get('provider'),
model_provider=self.provider_name,
model_id=self.model_name,
override_model_configs=json.dumps(override_model_configs) if override_model_configs else None,
conversation_id=self.conversation.id,
@@ -130,7 +134,7 @@ class ConversationMessageTask:
answer_unit_price=0,
provider_response_latency=0,
total_price=0,
currency=llm_constant.model_currency,
currency=self.model_instance.get_currency(),
from_source=('console' if isinstance(self.user, Account) else 'api'),
from_end_user_id=(self.user.id if isinstance(self.user, EndUser) else None),
from_account_id=(self.user.id if isinstance(self.user, Account) else None),
@@ -144,12 +148,10 @@ class ConversationMessageTask:
self._pub_handler.pub_text(text)
def save_message(self, llm_message: LLMMessage, by_stopped: bool = False):
model_name = self.app_model_config.model_dict.get('name')
message_tokens = llm_message.prompt_tokens
answer_tokens = llm_message.completion_tokens
message_unit_price = llm_constant.model_prices[model_name]['prompt']
answer_unit_price = llm_constant.model_prices[model_name]['completion']
message_unit_price = self.model_instance.get_token_price(1, MessageType.HUMAN)
answer_unit_price = self.model_instance.get_token_price(1, MessageType.ASSISTANT)
total_price = self.calc_total_price(message_tokens, message_unit_price, answer_tokens, answer_unit_price)
@@ -162,8 +164,6 @@ class ConversationMessageTask:
self.message.provider_response_latency = llm_message.latency
self.message.total_price = total_price
self.update_provider_quota()
db.session.commit()
message_was_created.send(
@@ -175,20 +175,6 @@ class ConversationMessageTask:
if not by_stopped:
self.end()
def update_provider_quota(self):
llm_provider_service = LLMProviderService(
tenant_id=self.app.tenant_id,
provider_name=self.message.model_provider,
)
provider = llm_provider_service.get_provider_db_record()
if provider and provider.provider_type == ProviderType.SYSTEM.value:
db.session.query(Provider).filter(
Provider.tenant_id == self.app.tenant_id,
Provider.provider_name == provider.provider_name,
Provider.quota_limit > Provider.quota_used
).update({'quota_used': Provider.quota_used + 1})
def init_chain(self, chain_result: ChainResult):
message_chain = MessageChain(
message_id=self.message.id,
@@ -207,10 +193,31 @@ class ConversationMessageTask:
self._pub_handler.pub_chain(message_chain)
def on_agent_end(self, message_chain: MessageChain, agent_model_name: str,
def on_agent_start(self, message_chain: MessageChain, agent_loop: AgentLoop) -> MessageAgentThought:
message_agent_thought = MessageAgentThought(
message_id=self.message.id,
message_chain_id=message_chain.id,
position=agent_loop.position,
thought=agent_loop.thought,
tool=agent_loop.tool_name,
tool_input=agent_loop.tool_input,
message=agent_loop.prompt,
answer=agent_loop.completion,
created_by_role=('account' if isinstance(self.user, Account) else 'end_user'),
created_by=self.user.id
)
db.session.add(message_agent_thought)
db.session.flush()
self._pub_handler.pub_agent_thought(message_agent_thought)
return message_agent_thought
def on_agent_end(self, message_agent_thought: MessageAgentThought, agent_model_instant: BaseLLM,
agent_loop: AgentLoop):
agent_message_unit_price = llm_constant.model_prices[agent_model_name]['prompt']
agent_answer_unit_price = llm_constant.model_prices[agent_model_name]['completion']
agent_message_unit_price = agent_model_instant.get_token_price(1, MessageType.HUMAN)
agent_answer_unit_price = agent_model_instant.get_token_price(1, MessageType.ASSISTANT)
loop_message_tokens = agent_loop.prompt_tokens
loop_answer_tokens = agent_loop.completion_tokens
@@ -222,34 +229,18 @@ class ConversationMessageTask:
agent_answer_unit_price
)
message_agent_loop = MessageAgentThought(
message_id=self.message.id,
message_chain_id=message_chain.id,
position=agent_loop.position,
thought=agent_loop.thought,
tool=agent_loop.tool_name,
tool_input=agent_loop.tool_input,
observation=agent_loop.tool_output,
tool_process_data='', # currently not support
message=agent_loop.prompt,
message_token=loop_message_tokens,
message_unit_price=agent_message_unit_price,
answer=agent_loop.completion,
answer_token=loop_answer_tokens,
answer_unit_price=agent_answer_unit_price,
latency=agent_loop.latency,
tokens=agent_loop.prompt_tokens + agent_loop.completion_tokens,
total_price=loop_total_price,
currency=llm_constant.model_currency,
created_by_role=('account' if isinstance(self.user, Account) else 'end_user'),
created_by=self.user.id
)
db.session.add(message_agent_loop)
message_agent_thought.observation = agent_loop.tool_output
message_agent_thought.tool_process_data = '' # currently not support
message_agent_thought.message_token = loop_message_tokens
message_agent_thought.message_unit_price = agent_message_unit_price
message_agent_thought.answer_token = loop_answer_tokens
message_agent_thought.answer_unit_price = agent_answer_unit_price
message_agent_thought.latency = agent_loop.latency
message_agent_thought.tokens = agent_loop.prompt_tokens + agent_loop.completion_tokens
message_agent_thought.total_price = loop_total_price
message_agent_thought.currency = agent_model_instant.get_currency()
db.session.flush()
self._pub_handler.pub_agent_thought(message_agent_loop)
def on_dataset_query_end(self, dataset_query_obj: DatasetQueryObj):
dataset_query = DatasetQuery(
dataset_id=dataset_query_obj.dataset_id,
@@ -346,16 +337,14 @@ class PubHandler:
content = {
'event': 'agent_thought',
'data': {
'id': message_agent_thought.id,
'task_id': self._task_id,
'message_id': self._message.id,
'chain_id': message_agent_thought.message_chain_id,
'agent_thought_id': message_agent_thought.id,
'position': message_agent_thought.position,
'thought': message_agent_thought.thought,
'tool': message_agent_thought.tool,
'tool_input': message_agent_thought.tool_input,
'observation': message_agent_thought.observation,
'answer': message_agent_thought.answer,
'mode': self._conversation.mode,
'conversation_id': self._conversation.id
}
@@ -388,6 +377,15 @@ class PubHandler:
def _is_stopped(self):
return redis_client.get(self._stopped_cache_key) is not None
@classmethod
def ping(cls, user: Union[Account | EndUser], task_id: str):
content = {
'event': 'ping'
}
channel = cls.generate_channel_name(user, task_id)
redis_client.publish(channel, json.dumps(content))
@classmethod
def stop(cls, user: Union[Account | EndUser], task_id: str):
stopped_cache_key = cls.generate_stopped_cache_key(user, task_id)

View File

@@ -1,7 +1,8 @@
import tempfile
from pathlib import Path
from typing import List, Union
from typing import List, Union, Optional
import requests
from langchain.document_loaders import TextLoader, Docx2txtLoader
from langchain.schema import Document
@@ -13,6 +14,9 @@ from core.data_loader.loader.pdf import PdfLoader
from extensions.ext_storage import storage
from models.model import UploadFile
SUPPORT_URL_CONTENT_TYPES = ['application/pdf', 'text/plain']
USER_AGENT = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
class FileExtractor:
@classmethod
@@ -22,22 +26,41 @@ class FileExtractor:
file_path = f"{temp_dir}/{next(tempfile._get_candidate_names())}{suffix}"
storage.download(upload_file.key, file_path)
input_file = Path(file_path)
delimiter = '\n'
if input_file.suffix == '.xlsx':
loader = ExcelLoader(file_path)
elif input_file.suffix == '.pdf':
loader = PdfLoader(file_path, upload_file=upload_file)
elif input_file.suffix in ['.md', '.markdown']:
loader = MarkdownLoader(file_path, autodetect_encoding=True)
elif input_file.suffix in ['.htm', '.html']:
loader = HTMLLoader(file_path)
elif input_file.suffix == '.docx':
loader = Docx2txtLoader(file_path)
elif input_file.suffix == '.csv':
loader = CSVLoader(file_path, autodetect_encoding=True)
else:
# txt
loader = TextLoader(file_path, autodetect_encoding=True)
return cls.load_from_file(file_path, return_text, upload_file)
return delimiter.join([document.page_content for document in loader.load()]) if return_text else loader.load()
@classmethod
def load_from_url(cls, url: str, return_text: bool = False) -> Union[List[Document] | str]:
response = requests.get(url, headers={
"User-Agent": USER_AGENT
})
with tempfile.TemporaryDirectory() as temp_dir:
suffix = Path(url).suffix
file_path = f"{temp_dir}/{next(tempfile._get_candidate_names())}{suffix}"
with open(file_path, 'wb') as file:
file.write(response.content)
return cls.load_from_file(file_path, return_text)
@classmethod
def load_from_file(cls, file_path: str, return_text: bool = False,
upload_file: Optional[UploadFile] = None) -> Union[List[Document] | str]:
input_file = Path(file_path)
delimiter = '\n'
if input_file.suffix == '.xlsx':
loader = ExcelLoader(file_path)
elif input_file.suffix == '.pdf':
loader = PdfLoader(file_path, upload_file=upload_file)
elif input_file.suffix in ['.md', '.markdown']:
loader = MarkdownLoader(file_path, autodetect_encoding=True)
elif input_file.suffix in ['.htm', '.html']:
loader = HTMLLoader(file_path)
elif input_file.suffix == '.docx':
loader = Docx2txtLoader(file_path)
elif input_file.suffix == '.csv':
loader = CSVLoader(file_path, autodetect_encoding=True)
else:
# txt
loader = TextLoader(file_path, autodetect_encoding=True)
return delimiter.join([document.page_content for document in loader.load()]) if return_text else loader.load()

View File

@@ -39,7 +39,7 @@ class ExcelLoader(BaseLoader):
row_dict = dict(zip(keys, list(map(str, row))))
row_dict = {k: v for k, v in row_dict.items() if v}
item = ''.join(f'{k}:{v}\n' for k, v in row_dict.items())
document = Document(page_content=item)
document = Document(page_content=item, metadata={'source': self._file_path})
data.append(document)
return data

View File

@@ -3,7 +3,7 @@ from typing import Any, Dict, Optional, Sequence
from langchain.schema import Document
from sqlalchemy import func
from core.llm.token_calculator import TokenCalculator
from core.model_providers.model_factory import ModelFactory
from extensions.ext_database import db
from models.dataset import Dataset, DocumentSegment
@@ -13,12 +13,10 @@ class DatesetDocumentStore:
self,
dataset: Dataset,
user_id: str,
embedding_model_name: str,
document_id: Optional[str] = None,
):
self._dataset = dataset
self._user_id = user_id
self._embedding_model_name = embedding_model_name
self._document_id = document_id
@classmethod
@@ -39,10 +37,6 @@ class DatesetDocumentStore:
def user_id(self) -> Any:
return self._user_id
@property
def embedding_model_name(self) -> Any:
return self._embedding_model_name
@property
def docs(self) -> Dict[str, Document]:
document_segments = db.session.query(DocumentSegment).filter(
@@ -68,12 +62,16 @@ class DatesetDocumentStore:
self, docs: Sequence[Document], allow_update: bool = True
) -> None:
max_position = db.session.query(func.max(DocumentSegment.position)).filter(
DocumentSegment.document == self._document_id
DocumentSegment.document_id == self._document_id
).scalar()
if max_position is None:
max_position = 0
embedding_model = ModelFactory.get_embedding_model(
tenant_id=self._dataset.tenant_id
)
for doc in docs:
if not isinstance(doc, Document):
raise ValueError("doc must be a Document")
@@ -88,7 +86,7 @@ class DatesetDocumentStore:
)
# calc embedding use tokens
tokens = TokenCalculator.get_num_tokens(self._embedding_model_name, doc.page_content)
tokens = embedding_model.get_num_tokens(doc.page_content)
if not segment_document:
max_position += 1
@@ -105,9 +103,14 @@ class DatesetDocumentStore:
tokens=tokens,
created_by=self._user_id,
)
if 'answer' in doc.metadata and doc.metadata['answer']:
segment_document.answer = doc.metadata.pop('answer', '')
db.session.add(segment_document)
else:
segment_document.content = doc.page_content
if 'answer' in doc.metadata and doc.metadata['answer']:
segment_document.answer = doc.metadata.pop('answer', '')
segment_document.index_node_hash = doc.metadata['doc_hash']
segment_document.word_count = len(doc.page_content)
segment_document.tokens = tokens

View File

@@ -4,14 +4,14 @@ from typing import List
from langchain.embeddings.base import Embeddings
from sqlalchemy.exc import IntegrityError
from core.llm.wrappers.openai_wrapper import handle_openai_exceptions
from core.model_providers.models.embedding.base import BaseEmbedding
from extensions.ext_database import db
from libs import helper
from models.dataset import Embedding
class CacheEmbedding(Embeddings):
def __init__(self, embeddings: Embeddings):
def __init__(self, embeddings: BaseEmbedding):
self._embeddings = embeddings
def embed_documents(self, texts: List[str]) -> List[List[float]]:
@@ -21,48 +21,54 @@ class CacheEmbedding(Embeddings):
embedding_queue_texts = []
for text in texts:
hash = helper.generate_text_hash(text)
embedding = db.session.query(Embedding).filter_by(hash=hash).first()
embedding = db.session.query(Embedding).filter_by(model_name=self._embeddings.name, hash=hash).first()
if embedding:
text_embeddings.append(embedding.get_embedding())
else:
embedding_queue_texts.append(text)
embedding_results = self._embeddings.embed_documents(embedding_queue_texts)
i = 0
for text in embedding_queue_texts:
hash = helper.generate_text_hash(text)
if embedding_queue_texts:
try:
embedding = Embedding(hash=hash)
embedding.set_embedding(embedding_results[i])
db.session.add(embedding)
db.session.commit()
except IntegrityError:
db.session.rollback()
continue
except:
logging.exception('Failed to add embedding to db')
continue
embedding_results = self._embeddings.client.embed_documents(embedding_queue_texts)
except Exception as ex:
raise self._embeddings.handle_exceptions(ex)
i += 1
i = 0
for text in embedding_queue_texts:
hash = helper.generate_text_hash(text)
text_embeddings.extend(embedding_results)
try:
embedding = Embedding(model_name=self._embeddings.name, hash=hash)
embedding.set_embedding(embedding_results[i])
db.session.add(embedding)
db.session.commit()
except IntegrityError:
db.session.rollback()
continue
except:
logging.exception('Failed to add embedding to db')
continue
finally:
i += 1
text_embeddings.extend(embedding_results)
return text_embeddings
@handle_openai_exceptions
def embed_query(self, text: str) -> List[float]:
"""Embed query text."""
# use doc embedding cache or store if not exists
hash = helper.generate_text_hash(text)
embedding = db.session.query(Embedding).filter_by(hash=hash).first()
embedding = db.session.query(Embedding).filter_by(model_name=self._embeddings.name, hash=hash).first()
if embedding:
return embedding.get_embedding()
embedding_results = self._embeddings.embed_query(text)
try:
embedding_results = self._embeddings.client.embed_query(text)
except Exception as ex:
raise self._embeddings.handle_exceptions(ex)
try:
embedding = Embedding(hash=hash)
embedding = Embedding(model_name=self._embeddings.name, hash=hash)
embedding.set_embedding(embedding_results)
db.session.add(embedding)
db.session.commit()
@@ -72,3 +78,5 @@ class CacheEmbedding(Embeddings):
logging.exception('Failed to add embedding to db')
return embedding_results

View File

@@ -1,22 +1,17 @@
import logging
from langchain import PromptTemplate
from langchain.chat_models.base import BaseChatModel
from langchain.schema import HumanMessage, OutputParserException, BaseMessage
from langchain.schema import OutputParserException
from core.constant import llm_constant
from core.llm.llm_builder import LLMBuilder
from core.llm.streamable_open_ai import StreamableOpenAI
from core.llm.token_calculator import TokenCalculator
from core.model_providers.error import LLMError
from core.model_providers.model_factory import ModelFactory
from core.model_providers.models.entity.message import PromptMessage, MessageType
from core.model_providers.models.entity.model_params import ModelKwargs
from core.prompt.output_parser.rule_config_generator import RuleConfigGeneratorOutputParser
from core.prompt.output_parser.suggested_questions_after_answer import SuggestedQuestionsAfterAnswerOutputParser
from core.prompt.prompt_template import JinjaPromptTemplate, OutLinePromptTemplate
from core.prompt.prompts import CONVERSATION_TITLE_PROMPT, CONVERSATION_SUMMARY_PROMPT, INTRODUCTION_GENERATE_PROMPT
# gpt-3.5-turbo works not well
generate_base_model = 'text-davinci-003'
from core.prompt.prompts import CONVERSATION_TITLE_PROMPT, CONVERSATION_SUMMARY_PROMPT, INTRODUCTION_GENERATE_PROMPT, \
GENERATOR_QA_PROMPT
class LLMGenerator:
@@ -28,28 +23,35 @@ class LLMGenerator:
query = query[:300] + "...[TRUNCATED]..." + query[-300:]
prompt = prompt.format(query=query)
llm: StreamableOpenAI = LLMBuilder.to_llm(
model_instance = ModelFactory.get_text_generation_model(
tenant_id=tenant_id,
model_name='gpt-3.5-turbo',
max_tokens=50
model_kwargs=ModelKwargs(
max_tokens=50
)
)
if isinstance(llm, BaseChatModel):
prompt = [HumanMessage(content=prompt)]
response = llm.generate([prompt])
answer = response.generations[0][0].text
prompts = [PromptMessage(content=prompt)]
response = model_instance.run(prompts)
answer = response.content
return answer.strip()
@classmethod
def generate_conversation_summary(cls, tenant_id: str, messages):
max_tokens = 200
model = 'gpt-3.5-turbo'
model_instance = ModelFactory.get_text_generation_model(
tenant_id=tenant_id,
model_kwargs=ModelKwargs(
max_tokens=max_tokens
)
)
prompt = CONVERSATION_SUMMARY_PROMPT
prompt_with_empty_context = prompt.format(context='')
prompt_tokens = TokenCalculator.get_num_tokens(model, prompt_with_empty_context)
rest_tokens = llm_constant.max_context_token_length[model] - prompt_tokens - max_tokens - 1
prompt_tokens = model_instance.get_num_tokens([PromptMessage(content=prompt_with_empty_context)])
max_context_token_length = model_instance.model_rules.max_tokens.max
rest_tokens = max_context_token_length - prompt_tokens - max_tokens - 1
context = ''
for message in messages:
@@ -67,25 +69,16 @@ class LLMGenerator:
answer = message.answer
message_qa_text = "\n\nHuman:" + query + "\n\nAssistant:" + answer
if rest_tokens - TokenCalculator.get_num_tokens(model, context + message_qa_text) > 0:
if rest_tokens - model_instance.get_num_tokens([PromptMessage(content=context + message_qa_text)]) > 0:
context += message_qa_text
if not context:
return '[message too long, no summary]'
prompt = prompt.format(context=context)
llm: StreamableOpenAI = LLMBuilder.to_llm(
tenant_id=tenant_id,
model_name=model,
max_tokens=max_tokens
)
if isinstance(llm, BaseChatModel):
prompt = [HumanMessage(content=prompt)]
response = llm.generate([prompt])
answer = response.generations[0][0].text
prompts = [PromptMessage(content=prompt)]
response = model_instance.run(prompts)
answer = response.content
return answer.strip()
@classmethod
@@ -93,16 +86,13 @@ class LLMGenerator:
prompt = INTRODUCTION_GENERATE_PROMPT
prompt = prompt.format(prompt=pre_prompt)
llm: StreamableOpenAI = LLMBuilder.to_llm(
tenant_id=tenant_id,
model_name=generate_base_model,
model_instance = ModelFactory.get_text_generation_model(
tenant_id=tenant_id
)
if isinstance(llm, BaseChatModel):
prompt = [HumanMessage(content=prompt)]
response = llm.generate([prompt])
answer = response.generations[0][0].text
prompts = [PromptMessage(content=prompt)]
response = model_instance.run(prompts)
answer = response.content
return answer.strip()
@classmethod
@@ -118,25 +108,23 @@ class LLMGenerator:
_input = prompt.format_prompt(histories=histories)
llm: StreamableOpenAI = LLMBuilder.to_llm(
model_instance = ModelFactory.get_text_generation_model(
tenant_id=tenant_id,
model_name='gpt-3.5-turbo',
temperature=0,
max_tokens=256
model_kwargs=ModelKwargs(
max_tokens=256,
temperature=0
)
)
if isinstance(llm, BaseChatModel):
query = [HumanMessage(content=_input.to_string())]
else:
query = _input.to_string()
prompts = [PromptMessage(content=_input.to_string())]
try:
output = llm(query)
if isinstance(output, BaseMessage):
output = output.content
questions = output_parser.parse(output)
except Exception:
logging.exception("Error generating suggested questions after answer")
output = model_instance.run(prompts)
questions = output_parser.parse(output.content)
except LLMError:
questions = []
except Exception as e:
logging.exception(e)
questions = []
return questions
@@ -159,25 +147,25 @@ class LLMGenerator:
_input = prompt.format_prompt(audiences=audiences, hoping_to_solve=hoping_to_solve)
llm: StreamableOpenAI = LLMBuilder.to_llm(
model_instance = ModelFactory.get_text_generation_model(
tenant_id=tenant_id,
model_name=generate_base_model,
temperature=0,
max_tokens=512
model_kwargs=ModelKwargs(
max_tokens=512,
temperature=0
)
)
if isinstance(llm, BaseChatModel):
query = [HumanMessage(content=_input.to_string())]
else:
query = _input.to_string()
prompts = [PromptMessage(content=_input.to_string())]
try:
output = llm(query)
rule_config = output_parser.parse(output)
output = model_instance.run(prompts)
rule_config = output_parser.parse(output.content)
except LLMError as e:
raise e
except OutputParserException:
raise ValueError('Please give a valid input for intended audience or hoping to solve problems.')
except Exception:
logging.exception("Error generating prompt")
except Exception as e:
logging.exception(e)
rule_config = {
"prompt": "",
"variables": [],
@@ -185,3 +173,23 @@ class LLMGenerator:
}
return rule_config
@classmethod
def generate_qa_document(cls, tenant_id: str, query):
prompt = GENERATOR_QA_PROMPT
model_instance = ModelFactory.get_text_generation_model(
tenant_id=tenant_id,
model_kwargs=ModelKwargs(
max_tokens=2000
)
)
prompts = [
PromptMessage(content=prompt, type=MessageType.SYSTEM),
PromptMessage(content=query)
]
response = model_instance.run(prompts)
answer = response.content
return answer.strip()

View File

@@ -0,0 +1,20 @@
import base64
from extensions.ext_database import db
from libs import rsa
from models.account import Tenant
def obfuscated_token(token: str):
return token[:6] + '*' * (len(token) - 8) + token[-2:]
def encrypt_token(tenant_id: str, token: str):
tenant = db.session.query(Tenant).filter(Tenant.id == tenant_id).first()
encrypted_token = rsa.encrypt(token, tenant.encrypt_public_key)
return base64.b64encode(encrypted_token).decode()
def decrypt_token(tenant_id: str, token: str):
return rsa.decrypt(base64.b64decode(token), tenant_id)

View File

@@ -1,10 +1,9 @@
from flask import current_app
from langchain.embeddings import OpenAIEmbeddings
from core.embedding.cached_embedding import CacheEmbedding
from core.index.keyword_table_index.keyword_table_index import KeywordTableIndex, KeywordTableConfig
from core.index.vector_index.vector_index import VectorIndex
from core.llm.llm_builder import LLMBuilder
from core.model_providers.model_factory import ModelFactory
from models.dataset import Dataset
@@ -15,15 +14,11 @@ class IndexBuilder:
if not ignore_high_quality_check and dataset.indexing_technique != 'high_quality':
return None
model_credentials = LLMBuilder.get_model_credentials(
tenant_id=dataset.tenant_id,
model_provider=LLMBuilder.get_default_provider(dataset.tenant_id, 'text-embedding-ada-002'),
model_name='text-embedding-ada-002'
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id
)
embeddings = CacheEmbedding(OpenAIEmbeddings(
**model_credentials
))
embeddings = CacheEmbedding(embedding_model)
return VectorIndex(
dataset=dataset,

Some files were not shown because too many files have changed in this diff Show More