mirror of
https://github.com/langgenius/dify.git
synced 2026-01-10 00:04:14 +00:00
Compare commits
67 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
5d48406d64 | ||
|
|
2b2dbabc11 | ||
|
|
13b64bc55a | ||
|
|
279f099ba0 | ||
|
|
32747641e4 | ||
|
|
db43ed6f41 | ||
|
|
7699621983 | ||
|
|
4dfbcd0b4e | ||
|
|
a9ee18300e | ||
|
|
b4861d2b5c | ||
|
|
913f2b84a6 | ||
|
|
cc89933d8f | ||
|
|
a14ea6582d | ||
|
|
076f3289d2 | ||
|
|
518083dfe0 | ||
|
|
2b366bb321 | ||
|
|
292d4c077a | ||
|
|
fc4c03640d | ||
|
|
985253197f | ||
|
|
48b4249790 | ||
|
|
fb64fcb271 | ||
|
|
41e452dcc5 | ||
|
|
d218c66e25 | ||
|
|
e173b1cb2a | ||
|
|
9b598db559 | ||
|
|
e122d677ad | ||
|
|
4c63cbf5b1 | ||
|
|
288705fefd | ||
|
|
8c4ae98f3d | ||
|
|
08aa367892 | ||
|
|
ff527a0190 | ||
|
|
6e05f8ca93 | ||
|
|
6309d070d1 | ||
|
|
fe14130b3c | ||
|
|
52ebffa857 | ||
|
|
d14f15863d | ||
|
|
7c9b585a47 | ||
|
|
c039f4af83 | ||
|
|
07285e5f8b | ||
|
|
16d80ebab3 | ||
|
|
61e816f24c | ||
|
|
2feb16d957 | ||
|
|
3043fbe73b | ||
|
|
9f99c3f55b | ||
|
|
a07a6d8c26 | ||
|
|
695841a3cf | ||
|
|
3efaa713da | ||
|
|
9822f687f7 | ||
|
|
b9d83c04bc | ||
|
|
298ad6782d | ||
|
|
f4be2b8bcd | ||
|
|
e83e239faf | ||
|
|
62bf7f0fc2 | ||
|
|
7dea485d57 | ||
|
|
5b9858a8a3 | ||
|
|
42a5b3ec17 | ||
|
|
2d1cb076c6 | ||
|
|
289c93d081 | ||
|
|
c0fe706597 | ||
|
|
9cba1c8bf4 | ||
|
|
cbf095465c | ||
|
|
c007dbdc13 | ||
|
|
ff493d017b | ||
|
|
7f6ad9653e | ||
|
|
2851a9f04e | ||
|
|
c536f85b2e | ||
|
|
b1352ff8b7 |
2
.github/workflows/build-api-image.yml
vendored
2
.github/workflows/build-api-image.yml
vendored
@@ -31,7 +31,7 @@ jobs:
|
||||
with:
|
||||
images: langgenius/dify-api
|
||||
tags: |
|
||||
type=raw,value=latest,enable={{is_default_branch}}
|
||||
type=raw,value=latest,enable=${{ startsWith(github.ref, 'refs/tags/') }}
|
||||
type=ref,event=branch
|
||||
type=sha,enable=true,priority=100,prefix=,suffix=,format=long
|
||||
type=semver,pattern={{major}}.{{minor}}.{{patch}}
|
||||
|
||||
2
.github/workflows/build-web-image.yml
vendored
2
.github/workflows/build-web-image.yml
vendored
@@ -31,7 +31,7 @@ jobs:
|
||||
with:
|
||||
images: langgenius/dify-web
|
||||
tags: |
|
||||
type=raw,value=latest,enable={{is_default_branch}}
|
||||
type=raw,value=latest,enable=${{ startsWith(github.ref, 'refs/tags/') }}
|
||||
type=ref,event=branch
|
||||
type=sha,enable=true,priority=100,prefix=,suffix=,format=long
|
||||
type=semver,pattern={{major}}.{{minor}}.{{patch}}
|
||||
|
||||
37
.github/workflows/check_no_chinese_comments.py
vendored
37
.github/workflows/check_no_chinese_comments.py
vendored
@@ -1,37 +0,0 @@
|
||||
import os
|
||||
import re
|
||||
from zhon.hanzi import punctuation
|
||||
|
||||
def has_chinese_characters(text):
|
||||
for char in text:
|
||||
if '\u4e00' <= char <= '\u9fff' or char in punctuation:
|
||||
return True
|
||||
return False
|
||||
|
||||
def check_file_for_chinese_comments(file_path):
|
||||
with open(file_path, 'r', encoding='utf-8') as file:
|
||||
for line_number, line in enumerate(file, start=1):
|
||||
if has_chinese_characters(line):
|
||||
print(f"Found Chinese characters in {file_path} on line {line_number}:")
|
||||
print(line.strip())
|
||||
return True
|
||||
return False
|
||||
|
||||
def main():
|
||||
has_chinese = False
|
||||
excluded_files = ["model_template.py", 'stopwords.py', 'commands.py',
|
||||
'indexing_runner.py', 'web_reader_tool.py', 'spark_provider.py',
|
||||
'prompts.py']
|
||||
|
||||
for root, _, files in os.walk("."):
|
||||
for file in files:
|
||||
if file.endswith(".py") and file not in excluded_files:
|
||||
file_path = os.path.join(root, file)
|
||||
if check_file_for_chinese_comments(file_path):
|
||||
has_chinese = True
|
||||
|
||||
if has_chinese:
|
||||
raise Exception("Found Chinese characters in Python files. Please remove them.")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
31
.github/workflows/check_no_chinese_comments.yml
vendored
31
.github/workflows/check_no_chinese_comments.yml
vendored
@@ -1,31 +0,0 @@
|
||||
name: Check for Chinese comments
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- 'main'
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
|
||||
jobs:
|
||||
check-chinese-comments:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Check out repository
|
||||
uses: actions/checkout@v2
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: 3.9
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install zhon
|
||||
|
||||
- name: Run script to check for Chinese comments
|
||||
run: |
|
||||
python .github/workflows/check_no_chinese_comments.py
|
||||
@@ -37,7 +37,6 @@ https://github.com/langgenius/dify/assets/100913391/f6e658d5-31b3-4c16-a0af-9e19
|
||||
|
||||
|
||||
We provide the following free resources for registered Dify cloud users (sign up at [dify.ai](https://dify.ai)):
|
||||
* 600,000 free Claude model tokens to build Claude-powered apps
|
||||
* 200 free OpenAI queries to build OpenAI-based apps
|
||||
|
||||
|
||||
|
||||
@@ -36,7 +36,6 @@ https://github.com/langgenius/dify/assets/100913391/f6e658d5-31b3-4c16-a0af-9e19
|
||||
|
||||
|
||||
我们为所有注册云端版的用户免费提供以下资源(登录 [dify.ai](https://cloud.dify.ai) 即可使用):
|
||||
* 60 万 Tokens Claude 模型的消息调用额度,用于创建基于 Claude 模型的 AI 应用
|
||||
* 200 次 OpenAI 模型的消息调用额度,用于创建基于 OpenAI 模型的 AI 应用
|
||||
* 300 万 讯飞星火大模型 Token 的调用额度,用于创建基于讯飞星火大模型的 AI 应用
|
||||
* 100 万 MiniMax Token 的调用额度,用于创建基于 MiniMax 模型的 AI 应用
|
||||
|
||||
@@ -10,7 +10,7 @@
|
||||
"request": "launch",
|
||||
"module": "flask",
|
||||
"env": {
|
||||
"FLASK_APP": "api/app.py",
|
||||
"FLASK_APP": "app.py",
|
||||
"FLASK_DEBUG": "1",
|
||||
"GEVENT_SUPPORT": "True"
|
||||
},
|
||||
@@ -6,6 +6,9 @@ from werkzeug.exceptions import Unauthorized
|
||||
if not os.environ.get("DEBUG") or os.environ.get("DEBUG").lower() != 'true':
|
||||
from gevent import monkey
|
||||
monkey.patch_all()
|
||||
if os.environ.get("VECTOR_STORE") == 'milvus':
|
||||
import grpc.experimental.gevent
|
||||
grpc.experimental.gevent.init_gevent()
|
||||
|
||||
import logging
|
||||
import json
|
||||
@@ -16,7 +19,7 @@ from flask_cors import CORS
|
||||
|
||||
from core.model_providers.providers import hosted
|
||||
from extensions import ext_celery, ext_sentry, ext_redis, ext_login, ext_migrate, \
|
||||
ext_database, ext_storage, ext_mail, ext_stripe
|
||||
ext_database, ext_storage, ext_mail, ext_stripe, ext_code_based_extension
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_login import login_manager
|
||||
|
||||
@@ -76,6 +79,7 @@ def create_app(test_config=None) -> Flask:
|
||||
def initialize_extensions(app):
|
||||
# Since the application instance is now created, pass it to each Flask
|
||||
# extension instance to bind it to the Flask application instance (app)
|
||||
ext_code_based_extension.init()
|
||||
ext_database.init_app(app)
|
||||
ext_migrate.init(app, db)
|
||||
ext_redis.init_app(app)
|
||||
|
||||
@@ -57,6 +57,7 @@ DEFAULTS = {
|
||||
'CLEAN_DAY_SETTING': 30,
|
||||
'UPLOAD_FILE_SIZE_LIMIT': 15,
|
||||
'UPLOAD_FILE_BATCH_LIMIT': 5,
|
||||
'OUTPUT_MODERATION_BUFFER_SIZE': 300
|
||||
}
|
||||
|
||||
|
||||
@@ -92,7 +93,7 @@ class Config:
|
||||
self.CONSOLE_URL = get_env('CONSOLE_URL')
|
||||
self.API_URL = get_env('API_URL')
|
||||
self.APP_URL = get_env('APP_URL')
|
||||
self.CURRENT_VERSION = "0.3.26"
|
||||
self.CURRENT_VERSION = "0.3.29"
|
||||
self.COMMIT_SHA = get_env('COMMIT_SHA')
|
||||
self.EDITION = "SELF_HOSTED"
|
||||
self.DEPLOY_ENV = get_env('DEPLOY_ENV')
|
||||
@@ -228,6 +229,9 @@ class Config:
|
||||
self.UPLOAD_FILE_SIZE_LIMIT = int(get_env('UPLOAD_FILE_SIZE_LIMIT'))
|
||||
self.UPLOAD_FILE_BATCH_LIMIT = int(get_env('UPLOAD_FILE_BATCH_LIMIT'))
|
||||
|
||||
# moderation settings
|
||||
self.OUTPUT_MODERATION_BUFFER_SIZE = int(get_env('OUTPUT_MODERATION_BUFFER_SIZE'))
|
||||
|
||||
|
||||
class CloudEditionConfig(Config):
|
||||
|
||||
|
||||
@@ -31,6 +31,7 @@ model_templates = {
|
||||
'model': json.dumps({
|
||||
"provider": "openai",
|
||||
"name": "gpt-3.5-turbo-instruct",
|
||||
"mode": "completion",
|
||||
"completion_params": {
|
||||
"max_tokens": 512,
|
||||
"temperature": 1,
|
||||
@@ -81,6 +82,7 @@ model_templates = {
|
||||
'model': json.dumps({
|
||||
"provider": "openai",
|
||||
"name": "gpt-3.5-turbo",
|
||||
"mode": "chat",
|
||||
"completion_params": {
|
||||
"max_tokens": 512,
|
||||
"temperature": 1,
|
||||
@@ -137,10 +139,11 @@ demo_model_templates = {
|
||||
},
|
||||
opening_statement='',
|
||||
suggested_questions=None,
|
||||
pre_prompt="Please translate the following text into {{target_language}}:\n",
|
||||
pre_prompt="Please translate the following text into {{target_language}}:\n{{query}}\ntranslate:",
|
||||
model=json.dumps({
|
||||
"provider": "openai",
|
||||
"name": "gpt-3.5-turbo-instruct",
|
||||
"mode": "completion",
|
||||
"completion_params": {
|
||||
"max_tokens": 1000,
|
||||
"temperature": 0,
|
||||
@@ -169,6 +172,13 @@ demo_model_templates = {
|
||||
'Italian',
|
||||
]
|
||||
}
|
||||
},{
|
||||
"paragraph": {
|
||||
"label": "Query",
|
||||
"variable": "query",
|
||||
"required": True,
|
||||
"default": ""
|
||||
}
|
||||
}
|
||||
])
|
||||
)
|
||||
@@ -200,6 +210,7 @@ demo_model_templates = {
|
||||
model=json.dumps({
|
||||
"provider": "openai",
|
||||
"name": "gpt-3.5-turbo",
|
||||
"mode": "chat",
|
||||
"completion_params": {
|
||||
"max_tokens": 300,
|
||||
"temperature": 0.8,
|
||||
@@ -255,10 +266,11 @@ demo_model_templates = {
|
||||
},
|
||||
opening_statement='',
|
||||
suggested_questions=None,
|
||||
pre_prompt="请将以下文本翻译为{{target_language}}:\n",
|
||||
pre_prompt="请将以下文本翻译为{{target_language}}:\n{{query}}\n翻译:",
|
||||
model=json.dumps({
|
||||
"provider": "openai",
|
||||
"name": "gpt-3.5-turbo-instruct",
|
||||
"mode": "completion",
|
||||
"completion_params": {
|
||||
"max_tokens": 1000,
|
||||
"temperature": 0,
|
||||
@@ -287,6 +299,13 @@ demo_model_templates = {
|
||||
"意大利语",
|
||||
]
|
||||
}
|
||||
},{
|
||||
"paragraph": {
|
||||
"label": "文本内容",
|
||||
"variable": "query",
|
||||
"required": True,
|
||||
"default": ""
|
||||
}
|
||||
}
|
||||
])
|
||||
)
|
||||
@@ -318,6 +337,7 @@ demo_model_templates = {
|
||||
model=json.dumps({
|
||||
"provider": "openai",
|
||||
"name": "gpt-3.5-turbo",
|
||||
"mode": "chat",
|
||||
"completion_params": {
|
||||
"max_tokens": 300,
|
||||
"temperature": 0.8,
|
||||
|
||||
@@ -6,10 +6,10 @@ bp = Blueprint('console', __name__, url_prefix='/console/api')
|
||||
api = ExternalApi(bp)
|
||||
|
||||
# Import other controllers
|
||||
from . import setup, version, apikey, admin
|
||||
from . import extension, setup, version, apikey, admin
|
||||
|
||||
# Import app controllers
|
||||
from .app import app, site, completion, model_config, statistic, conversation, message, generator, audio
|
||||
from .app import advanced_prompt_template, app, site, completion, model_config, statistic, conversation, message, generator, audio
|
||||
|
||||
# Import auth controllers
|
||||
from .auth import login, oauth, data_source_oauth, activate
|
||||
|
||||
25
api/controllers/console/app/advanced_prompt_template.py
Normal file
25
api/controllers/console/app/advanced_prompt_template.py
Normal file
@@ -0,0 +1,25 @@
|
||||
from flask_restful import Resource, reqparse
|
||||
|
||||
from controllers.console import api
|
||||
from controllers.console.setup import setup_required
|
||||
from controllers.console.wraps import account_initialization_required
|
||||
from libs.login import login_required
|
||||
from services.advanced_prompt_template_service import AdvancedPromptTemplateService
|
||||
|
||||
class AdvancedPromptTemplateList(Resource):
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def get(self):
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('app_mode', type=str, required=True, location='args')
|
||||
parser.add_argument('model_mode', type=str, required=True, location='args')
|
||||
parser.add_argument('has_context', type=str, required=False, default='true', location='args')
|
||||
parser.add_argument('model_name', type=str, required=True, location='args')
|
||||
args = parser.parse_args()
|
||||
|
||||
return AdvancedPromptTemplateService.get_prompt(args)
|
||||
|
||||
api.add_resource(AdvancedPromptTemplateList, '/app/prompt-templates')
|
||||
@@ -12,35 +12,6 @@ from core.model_providers.error import ProviderTokenNotInitError, QuotaExceededE
|
||||
LLMAPIUnavailableError, LLMRateLimitError, LLMAuthorizationError, ModelCurrentlyNotSupportError
|
||||
|
||||
|
||||
class IntroductionGenerateApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('prompt_template', type=str, required=True, location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
account = current_user
|
||||
|
||||
try:
|
||||
answer = LLMGenerator.generate_introduction(
|
||||
account.current_tenant_id,
|
||||
args['prompt_template']
|
||||
)
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
except QuotaExceededError:
|
||||
raise ProviderQuotaExceededError()
|
||||
except ModelCurrentlyNotSupportError:
|
||||
raise ProviderModelCurrentlyNotSupportError()
|
||||
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
|
||||
LLMRateLimitError, LLMAuthorizationError) as e:
|
||||
raise CompletionRequestError(str(e))
|
||||
|
||||
return {'introduction': answer}
|
||||
|
||||
|
||||
class RuleGenerateApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@@ -72,5 +43,4 @@ class RuleGenerateApi(Resource):
|
||||
return rules
|
||||
|
||||
|
||||
api.add_resource(IntroductionGenerateApi, '/introduction-generate')
|
||||
api.add_resource(RuleGenerateApi, '/rule-generate')
|
||||
|
||||
@@ -295,8 +295,8 @@ class MessageSuggestedQuestionApi(Resource):
|
||||
try:
|
||||
questions = MessageService.get_suggested_questions_after_answer(
|
||||
app_model=app_model,
|
||||
user=current_user,
|
||||
message_id=message_id,
|
||||
user=current_user,
|
||||
check_enabled=False
|
||||
)
|
||||
except MessageNotExistsError:
|
||||
@@ -329,7 +329,7 @@ class MessageApi(Resource):
|
||||
message_id = str(message_id)
|
||||
|
||||
# get app info
|
||||
app_model = _get_app(app_id, 'chat')
|
||||
app_model = _get_app(app_id)
|
||||
|
||||
message = db.session.query(Message).filter(
|
||||
Message.id == message_id,
|
||||
|
||||
@@ -27,6 +27,7 @@ class AppParameterApi(InstalledAppResource):
|
||||
'retriever_resource': fields.Raw,
|
||||
'more_like_this': fields.Raw,
|
||||
'user_input_form': fields.Raw,
|
||||
'sensitive_word_avoidance': fields.Raw
|
||||
}
|
||||
|
||||
@marshal_with(parameters_fields)
|
||||
@@ -42,7 +43,8 @@ class AppParameterApi(InstalledAppResource):
|
||||
'speech_to_text': app_model_config.speech_to_text_dict,
|
||||
'retriever_resource': app_model_config.retriever_resource_dict,
|
||||
'more_like_this': app_model_config.more_like_this_dict,
|
||||
'user_input_form': app_model_config.user_input_form_list
|
||||
'user_input_form': app_model_config.user_input_form_list,
|
||||
'sensitive_word_avoidance': app_model_config.sensitive_word_avoidance_dict
|
||||
}
|
||||
|
||||
|
||||
|
||||
114
api/controllers/console/extension.py
Normal file
114
api/controllers/console/extension.py
Normal file
@@ -0,0 +1,114 @@
|
||||
from flask_restful import Resource, reqparse, marshal_with
|
||||
from flask_login import current_user
|
||||
|
||||
from controllers.console import api
|
||||
from controllers.console.setup import setup_required
|
||||
from controllers.console.wraps import account_initialization_required
|
||||
from libs.login import login_required
|
||||
from models.api_based_extension import APIBasedExtension
|
||||
from fields.api_based_extension_fields import api_based_extension_fields
|
||||
from services.code_based_extension_service import CodeBasedExtensionService
|
||||
from services.api_based_extension_service import APIBasedExtensionService
|
||||
|
||||
|
||||
class CodeBasedExtensionAPI(Resource):
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def get(self):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('module', type=str, required=True, location='args')
|
||||
args = parser.parse_args()
|
||||
|
||||
return {
|
||||
'module': args['module'],
|
||||
'data': CodeBasedExtensionService.get_code_based_extension(args['module'])
|
||||
}
|
||||
|
||||
|
||||
class APIBasedExtensionAPI(Resource):
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
@marshal_with(api_based_extension_fields)
|
||||
def get(self):
|
||||
tenant_id = current_user.current_tenant_id
|
||||
return APIBasedExtensionService.get_all_by_tenant_id(tenant_id)
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
@marshal_with(api_based_extension_fields)
|
||||
def post(self):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('name', type=str, required=True, location='json')
|
||||
parser.add_argument('api_endpoint', type=str, required=True, location='json')
|
||||
parser.add_argument('api_key', type=str, required=True, location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
extension_data = APIBasedExtension(
|
||||
tenant_id=current_user.current_tenant_id,
|
||||
name=args['name'],
|
||||
api_endpoint=args['api_endpoint'],
|
||||
api_key=args['api_key']
|
||||
)
|
||||
|
||||
return APIBasedExtensionService.save(extension_data)
|
||||
|
||||
|
||||
class APIBasedExtensionDetailAPI(Resource):
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
@marshal_with(api_based_extension_fields)
|
||||
def get(self, id):
|
||||
api_based_extension_id = str(id)
|
||||
tenant_id = current_user.current_tenant_id
|
||||
|
||||
return APIBasedExtensionService.get_with_tenant_id(tenant_id, api_based_extension_id)
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
@marshal_with(api_based_extension_fields)
|
||||
def post(self, id):
|
||||
api_based_extension_id = str(id)
|
||||
tenant_id = current_user.current_tenant_id
|
||||
|
||||
extension_data_from_db = APIBasedExtensionService.get_with_tenant_id(tenant_id, api_based_extension_id)
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('name', type=str, required=True, location='json')
|
||||
parser.add_argument('api_endpoint', type=str, required=True, location='json')
|
||||
parser.add_argument('api_key', type=str, required=True, location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
extension_data_from_db.name = args['name']
|
||||
extension_data_from_db.api_endpoint = args['api_endpoint']
|
||||
|
||||
if args['api_key'] != '[__HIDDEN__]':
|
||||
extension_data_from_db.api_key = args['api_key']
|
||||
|
||||
return APIBasedExtensionService.save(extension_data_from_db)
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def delete(self, id):
|
||||
api_based_extension_id = str(id)
|
||||
tenant_id = current_user.current_tenant_id
|
||||
|
||||
extension_data_from_db = APIBasedExtensionService.get_with_tenant_id(tenant_id, api_based_extension_id)
|
||||
|
||||
APIBasedExtensionService.delete(extension_data_from_db)
|
||||
|
||||
return {'result': 'success'}
|
||||
|
||||
|
||||
api.add_resource(CodeBasedExtensionAPI, '/code-based-extension')
|
||||
|
||||
api.add_resource(APIBasedExtensionAPI, '/api-based-extension')
|
||||
api.add_resource(APIBasedExtensionDetailAPI, '/api-based-extension/<uuid:id>')
|
||||
@@ -28,6 +28,7 @@ class AppParameterApi(AppApiResource):
|
||||
'retriever_resource': fields.Raw,
|
||||
'more_like_this': fields.Raw,
|
||||
'user_input_form': fields.Raw,
|
||||
'sensitive_word_avoidance': fields.Raw
|
||||
}
|
||||
|
||||
@marshal_with(parameters_fields)
|
||||
@@ -42,7 +43,8 @@ class AppParameterApi(AppApiResource):
|
||||
'speech_to_text': app_model_config.speech_to_text_dict,
|
||||
'retriever_resource': app_model_config.retriever_resource_dict,
|
||||
'more_like_this': app_model_config.more_like_this_dict,
|
||||
'user_input_form': app_model_config.user_input_form_list
|
||||
'user_input_form': app_model_config.user_input_form_list,
|
||||
'sensitive_word_avoidance': app_model_config.sensitive_word_avoidance_dict
|
||||
}
|
||||
|
||||
|
||||
|
||||
@@ -183,4 +183,3 @@ api.add_resource(CompletionApi, '/completion-messages')
|
||||
api.add_resource(CompletionStopApi, '/completion-messages/<string:task_id>/stop')
|
||||
api.add_resource(ChatApi, '/chat-messages')
|
||||
api.add_resource(ChatStopApi, '/chat-messages/<string:task_id>/stop')
|
||||
|
||||
|
||||
@@ -54,6 +54,7 @@ class ConversationDetailApi(AppApiResource):
|
||||
raise NotFound("Conversation Not Exists.")
|
||||
return {"result": "success"}, 204
|
||||
|
||||
|
||||
class ConversationRenameApi(AppApiResource):
|
||||
|
||||
@marshal_with(simple_conversation_fields)
|
||||
|
||||
@@ -10,6 +10,8 @@ from controllers.service_api.app.error import NotChatAppError
|
||||
from controllers.service_api.wraps import AppApiResource
|
||||
from libs.helper import TimestampField, uuid_value
|
||||
from services.message_service import MessageService
|
||||
from extensions.ext_database import db
|
||||
from models.model import Message, EndUser
|
||||
|
||||
|
||||
class MessageListApi(AppApiResource):
|
||||
@@ -96,5 +98,38 @@ class MessageFeedbackApi(AppApiResource):
|
||||
return {'result': 'success'}
|
||||
|
||||
|
||||
class MessageSuggestedApi(AppApiResource):
|
||||
def get(self, app_model, end_user, message_id):
|
||||
message_id = str(message_id)
|
||||
if app_model.mode != 'chat':
|
||||
raise NotChatAppError()
|
||||
try:
|
||||
message = db.session.query(Message).filter(
|
||||
Message.id == message_id,
|
||||
Message.app_id == app_model.id,
|
||||
).first()
|
||||
|
||||
if end_user is None and message.from_end_user_id is not None:
|
||||
user = db.session.query(EndUser) \
|
||||
.filter(
|
||||
EndUser.tenant_id == app_model.tenant_id,
|
||||
EndUser.id == message.from_end_user_id,
|
||||
EndUser.type == 'service_api'
|
||||
).first()
|
||||
else:
|
||||
user = end_user
|
||||
questions = MessageService.get_suggested_questions_after_answer(
|
||||
app_model=app_model,
|
||||
user=user,
|
||||
message_id=message_id,
|
||||
check_enabled=False
|
||||
)
|
||||
except services.errors.message.MessageNotExistsError:
|
||||
raise NotFound("Message Not Exists.")
|
||||
|
||||
return {'result': 'success', 'data': questions}
|
||||
|
||||
|
||||
api.add_resource(MessageListApi, '/messages')
|
||||
api.add_resource(MessageFeedbackApi, '/messages/<uuid:message_id>/feedbacks')
|
||||
api.add_resource(MessageSuggestedApi, '/messages/<uuid:message_id>/suggested')
|
||||
|
||||
@@ -27,6 +27,7 @@ class AppParameterApi(WebApiResource):
|
||||
'retriever_resource': fields.Raw,
|
||||
'more_like_this': fields.Raw,
|
||||
'user_input_form': fields.Raw,
|
||||
'sensitive_word_avoidance': fields.Raw
|
||||
}
|
||||
|
||||
@marshal_with(parameters_fields)
|
||||
@@ -41,7 +42,8 @@ class AppParameterApi(WebApiResource):
|
||||
'speech_to_text': app_model_config.speech_to_text_dict,
|
||||
'retriever_resource': app_model_config.retriever_resource_dict,
|
||||
'more_like_this': app_model_config.more_like_this_dict,
|
||||
'user_input_form': app_model_config.user_input_form_list
|
||||
'user_input_form': app_model_config.user_input_form_list,
|
||||
'sensitive_word_avoidance': app_model_config.sensitive_word_avoidance_dict
|
||||
}
|
||||
|
||||
|
||||
|
||||
@@ -139,7 +139,7 @@ class ChatStopApi(WebApiResource):
|
||||
return {'result': 'success'}, 200
|
||||
|
||||
|
||||
def compact_response(response: Union[dict | Generator]) -> Response:
|
||||
def compact_response(response: Union[dict, Generator]) -> Response:
|
||||
if isinstance(response, dict):
|
||||
return Response(response=json.dumps(response), status=200, mimetype='application/json')
|
||||
else:
|
||||
|
||||
@@ -115,7 +115,7 @@ class MessageMoreLikeThisApi(WebApiResource):
|
||||
streaming = args['response_mode'] == 'streaming'
|
||||
|
||||
try:
|
||||
response = CompletionService.generate_more_like_this(app_model, end_user, message_id, streaming)
|
||||
response = CompletionService.generate_more_like_this(app_model, end_user, message_id, streaming, 'web_app')
|
||||
return compact_response(response)
|
||||
except MessageNotExistsError:
|
||||
raise NotFound("Message Not Exists.")
|
||||
|
||||
@@ -0,0 +1 @@
|
||||
import core.moderation.base
|
||||
@@ -2,14 +2,18 @@ import json
|
||||
from typing import Tuple, List, Any, Union, Sequence, Optional, cast
|
||||
|
||||
from langchain.agents import OpenAIFunctionsAgent, BaseSingleActionAgent
|
||||
from langchain.agents.openai_functions_agent.base import _format_intermediate_steps, _parse_ai_message
|
||||
from langchain.callbacks.base import BaseCallbackManager
|
||||
from langchain.callbacks.manager import Callbacks
|
||||
from langchain.prompts.chat import BaseMessagePromptTemplate
|
||||
from langchain.schema import AgentAction, AgentFinish, SystemMessage
|
||||
from langchain.schema import AgentAction, AgentFinish, SystemMessage, Generation, LLMResult, AIMessage
|
||||
from langchain.schema.language_model import BaseLanguageModel
|
||||
from langchain.tools import BaseTool
|
||||
from pydantic import root_validator
|
||||
|
||||
from core.model_providers.models.entity.message import to_prompt_messages
|
||||
from core.model_providers.models.llm.base import BaseLLM
|
||||
from core.third_party.langchain.llms.fake import FakeLLM
|
||||
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
|
||||
|
||||
|
||||
@@ -24,6 +28,10 @@ class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
|
||||
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
@root_validator
|
||||
def validate_llm(cls, values: dict) -> dict:
|
||||
return values
|
||||
|
||||
def should_use_agent(self, query: str):
|
||||
"""
|
||||
return should use agent
|
||||
@@ -65,17 +73,57 @@ class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
|
||||
return AgentFinish(return_values={"output": observation}, log=observation)
|
||||
|
||||
try:
|
||||
agent_decision = super().plan(intermediate_steps, callbacks, **kwargs)
|
||||
agent_decision = self.real_plan(intermediate_steps, callbacks, **kwargs)
|
||||
if isinstance(agent_decision, AgentAction):
|
||||
tool_inputs = agent_decision.tool_input
|
||||
if isinstance(tool_inputs, dict) and 'query' in tool_inputs:
|
||||
if isinstance(tool_inputs, dict) and 'query' in tool_inputs and 'chat_history' not in kwargs:
|
||||
tool_inputs['query'] = kwargs['input']
|
||||
agent_decision.tool_input = tool_inputs
|
||||
else:
|
||||
agent_decision.return_values['output'] = ''
|
||||
return agent_decision
|
||||
except Exception as e:
|
||||
new_exception = self.model_instance.handle_exceptions(e)
|
||||
raise new_exception
|
||||
|
||||
def real_plan(
|
||||
self,
|
||||
intermediate_steps: List[Tuple[AgentAction, str]],
|
||||
callbacks: Callbacks = None,
|
||||
**kwargs: Any,
|
||||
) -> Union[AgentAction, AgentFinish]:
|
||||
"""Given input, decided what to do.
|
||||
|
||||
Args:
|
||||
intermediate_steps: Steps the LLM has taken to date, along with observations
|
||||
**kwargs: User inputs.
|
||||
|
||||
Returns:
|
||||
Action specifying what tool to use.
|
||||
"""
|
||||
agent_scratchpad = _format_intermediate_steps(intermediate_steps)
|
||||
selected_inputs = {
|
||||
k: kwargs[k] for k in self.prompt.input_variables if k != "agent_scratchpad"
|
||||
}
|
||||
full_inputs = dict(**selected_inputs, agent_scratchpad=agent_scratchpad)
|
||||
prompt = self.prompt.format_prompt(**full_inputs)
|
||||
messages = prompt.to_messages()
|
||||
prompt_messages = to_prompt_messages(messages)
|
||||
result = self.model_instance.run(
|
||||
messages=prompt_messages,
|
||||
functions=self.functions,
|
||||
)
|
||||
|
||||
ai_message = AIMessage(
|
||||
content=result.content,
|
||||
additional_kwargs={
|
||||
'function_call': result.function_call
|
||||
}
|
||||
)
|
||||
|
||||
agent_decision = _parse_ai_message(ai_message)
|
||||
return agent_decision
|
||||
|
||||
async def aplan(
|
||||
self,
|
||||
intermediate_steps: List[Tuple[AgentAction, str]],
|
||||
@@ -87,7 +135,7 @@ class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
|
||||
@classmethod
|
||||
def from_llm_and_tools(
|
||||
cls,
|
||||
llm: BaseLanguageModel,
|
||||
model_instance: BaseLLM,
|
||||
tools: Sequence[BaseTool],
|
||||
callback_manager: Optional[BaseCallbackManager] = None,
|
||||
extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None,
|
||||
@@ -96,11 +144,15 @@ class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
|
||||
),
|
||||
**kwargs: Any,
|
||||
) -> BaseSingleActionAgent:
|
||||
return super().from_llm_and_tools(
|
||||
llm=llm,
|
||||
tools=tools,
|
||||
callback_manager=callback_manager,
|
||||
prompt = cls.create_prompt(
|
||||
extra_prompt_messages=extra_prompt_messages,
|
||||
system_message=system_message,
|
||||
)
|
||||
return cls(
|
||||
model_instance=model_instance,
|
||||
llm=FakeLLM(response=''),
|
||||
prompt=prompt,
|
||||
tools=tools,
|
||||
callback_manager=callback_manager,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@@ -5,21 +5,40 @@ from langchain.agents.openai_functions_agent.base import _parse_ai_message, \
|
||||
_format_intermediate_steps
|
||||
from langchain.callbacks.base import BaseCallbackManager
|
||||
from langchain.callbacks.manager import Callbacks
|
||||
from langchain.chat_models.openai import _convert_message_to_dict, _import_tiktoken
|
||||
from langchain.memory.prompt import SUMMARY_PROMPT
|
||||
from langchain.prompts.chat import BaseMessagePromptTemplate
|
||||
from langchain.schema import AgentAction, AgentFinish, SystemMessage
|
||||
from langchain.schema.language_model import BaseLanguageModel
|
||||
from langchain.schema import AgentAction, AgentFinish, SystemMessage, AIMessage, HumanMessage, BaseMessage, \
|
||||
get_buffer_string
|
||||
from langchain.tools import BaseTool
|
||||
from pydantic import root_validator
|
||||
|
||||
from core.agent.agent.calc_token_mixin import ExceededLLMTokensLimitError
|
||||
from core.agent.agent.openai_function_call_summarize_mixin import OpenAIFunctionCallSummarizeMixin
|
||||
from core.agent.agent.calc_token_mixin import ExceededLLMTokensLimitError, CalcTokenMixin
|
||||
from core.chain.llm_chain import LLMChain
|
||||
from core.model_providers.models.entity.message import to_prompt_messages
|
||||
from core.model_providers.models.llm.base import BaseLLM
|
||||
from core.third_party.langchain.llms.fake import FakeLLM
|
||||
|
||||
|
||||
class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, OpenAIFunctionCallSummarizeMixin):
|
||||
class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, CalcTokenMixin):
|
||||
moving_summary_buffer: str = ""
|
||||
moving_summary_index: int = 0
|
||||
summary_model_instance: BaseLLM = None
|
||||
model_instance: BaseLLM
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
@root_validator
|
||||
def validate_llm(cls, values: dict) -> dict:
|
||||
return values
|
||||
|
||||
@classmethod
|
||||
def from_llm_and_tools(
|
||||
cls,
|
||||
llm: BaseLanguageModel,
|
||||
model_instance: BaseLLM,
|
||||
tools: Sequence[BaseTool],
|
||||
callback_manager: Optional[BaseCallbackManager] = None,
|
||||
extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None,
|
||||
@@ -28,12 +47,16 @@ class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, OpenAIFunctio
|
||||
),
|
||||
**kwargs: Any,
|
||||
) -> BaseSingleActionAgent:
|
||||
return super().from_llm_and_tools(
|
||||
llm=llm,
|
||||
prompt = cls.create_prompt(
|
||||
extra_prompt_messages=extra_prompt_messages,
|
||||
system_message=system_message,
|
||||
)
|
||||
return cls(
|
||||
model_instance=model_instance,
|
||||
llm=FakeLLM(response=''),
|
||||
prompt=prompt,
|
||||
tools=tools,
|
||||
callback_manager=callback_manager,
|
||||
extra_prompt_messages=extra_prompt_messages,
|
||||
system_message=cls.get_system_message(),
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@@ -44,23 +67,26 @@ class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, OpenAIFunctio
|
||||
:param query:
|
||||
:return:
|
||||
"""
|
||||
original_max_tokens = self.llm.max_tokens
|
||||
self.llm.max_tokens = 40
|
||||
original_max_tokens = self.model_instance.model_kwargs.max_tokens
|
||||
self.model_instance.model_kwargs.max_tokens = 40
|
||||
|
||||
prompt = self.prompt.format_prompt(input=query, agent_scratchpad=[])
|
||||
messages = prompt.to_messages()
|
||||
|
||||
try:
|
||||
predicted_message = self.llm.predict_messages(
|
||||
messages, functions=self.functions, callbacks=None
|
||||
prompt_messages = to_prompt_messages(messages)
|
||||
result = self.model_instance.run(
|
||||
messages=prompt_messages,
|
||||
functions=self.functions,
|
||||
callbacks=None
|
||||
)
|
||||
except Exception as e:
|
||||
new_exception = self.model_instance.handle_exceptions(e)
|
||||
raise new_exception
|
||||
|
||||
function_call = predicted_message.additional_kwargs.get("function_call", {})
|
||||
function_call = result.function_call
|
||||
|
||||
self.llm.max_tokens = original_max_tokens
|
||||
self.model_instance.model_kwargs.max_tokens = original_max_tokens
|
||||
|
||||
return True if function_call else False
|
||||
|
||||
@@ -93,10 +119,19 @@ class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, OpenAIFunctio
|
||||
except ExceededLLMTokensLimitError as e:
|
||||
return AgentFinish(return_values={"output": str(e)}, log=str(e))
|
||||
|
||||
predicted_message = self.llm.predict_messages(
|
||||
messages, functions=self.functions, callbacks=callbacks
|
||||
prompt_messages = to_prompt_messages(messages)
|
||||
result = self.model_instance.run(
|
||||
messages=prompt_messages,
|
||||
functions=self.functions,
|
||||
)
|
||||
agent_decision = _parse_ai_message(predicted_message)
|
||||
|
||||
ai_message = AIMessage(
|
||||
content=result.content,
|
||||
additional_kwargs={
|
||||
'function_call': result.function_call
|
||||
}
|
||||
)
|
||||
agent_decision = _parse_ai_message(ai_message)
|
||||
|
||||
if isinstance(agent_decision, AgentAction) and agent_decision.tool == 'dataset':
|
||||
tool_inputs = agent_decision.tool_input
|
||||
@@ -122,3 +157,142 @@ class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, OpenAIFunctio
|
||||
return super().return_stopped_response(early_stopping_method, intermediate_steps, **kwargs)
|
||||
except ValueError:
|
||||
return AgentFinish({"output": "I'm sorry, I don't know how to respond to that."}, "")
|
||||
|
||||
def summarize_messages_if_needed(self, messages: List[BaseMessage], **kwargs) -> List[BaseMessage]:
|
||||
# calculate rest tokens and summarize previous function observation messages if rest_tokens < 0
|
||||
rest_tokens = self.get_message_rest_tokens(self.model_instance, messages, **kwargs)
|
||||
rest_tokens = rest_tokens - 20 # to deal with the inaccuracy of rest_tokens
|
||||
if rest_tokens >= 0:
|
||||
return messages
|
||||
|
||||
system_message = None
|
||||
human_message = None
|
||||
should_summary_messages = []
|
||||
for message in messages:
|
||||
if isinstance(message, SystemMessage):
|
||||
system_message = message
|
||||
elif isinstance(message, HumanMessage):
|
||||
human_message = message
|
||||
else:
|
||||
should_summary_messages.append(message)
|
||||
|
||||
if len(should_summary_messages) > 2:
|
||||
ai_message = should_summary_messages[-2]
|
||||
function_message = should_summary_messages[-1]
|
||||
should_summary_messages = should_summary_messages[self.moving_summary_index:-2]
|
||||
self.moving_summary_index = len(should_summary_messages)
|
||||
else:
|
||||
error_msg = "Exceeded LLM tokens limit, stopped."
|
||||
raise ExceededLLMTokensLimitError(error_msg)
|
||||
|
||||
new_messages = [system_message, human_message]
|
||||
|
||||
if self.moving_summary_index == 0:
|
||||
should_summary_messages.insert(0, human_message)
|
||||
|
||||
self.moving_summary_buffer = self.predict_new_summary(
|
||||
messages=should_summary_messages,
|
||||
existing_summary=self.moving_summary_buffer
|
||||
)
|
||||
|
||||
new_messages.append(AIMessage(content=self.moving_summary_buffer))
|
||||
new_messages.append(ai_message)
|
||||
new_messages.append(function_message)
|
||||
|
||||
return new_messages
|
||||
|
||||
def predict_new_summary(
|
||||
self, messages: List[BaseMessage], existing_summary: str
|
||||
) -> str:
|
||||
new_lines = get_buffer_string(
|
||||
messages,
|
||||
human_prefix="Human",
|
||||
ai_prefix="AI",
|
||||
)
|
||||
|
||||
chain = LLMChain(model_instance=self.summary_model_instance, prompt=SUMMARY_PROMPT)
|
||||
return chain.predict(summary=existing_summary, new_lines=new_lines)
|
||||
|
||||
def get_num_tokens_from_messages(self, model_instance: BaseLLM, messages: List[BaseMessage], **kwargs) -> int:
|
||||
"""Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package.
|
||||
|
||||
Official documentation: https://github.com/openai/openai-cookbook/blob/
|
||||
main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb"""
|
||||
if model_instance.model_provider.provider_name == 'azure_openai':
|
||||
model = model_instance.base_model_name
|
||||
model = model.replace("gpt-35", "gpt-3.5")
|
||||
else:
|
||||
model = model_instance.base_model_name
|
||||
|
||||
tiktoken_ = _import_tiktoken()
|
||||
try:
|
||||
encoding = tiktoken_.encoding_for_model(model)
|
||||
except KeyError:
|
||||
model = "cl100k_base"
|
||||
encoding = tiktoken_.get_encoding(model)
|
||||
|
||||
if model.startswith("gpt-3.5-turbo"):
|
||||
# every message follows <im_start>{role/name}\n{content}<im_end>\n
|
||||
tokens_per_message = 4
|
||||
# if there's a name, the role is omitted
|
||||
tokens_per_name = -1
|
||||
elif model.startswith("gpt-4"):
|
||||
tokens_per_message = 3
|
||||
tokens_per_name = 1
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"get_num_tokens_from_messages() is not presently implemented "
|
||||
f"for model {model}."
|
||||
"See https://github.com/openai/openai-python/blob/main/chatml.md for "
|
||||
"information on how messages are converted to tokens."
|
||||
)
|
||||
num_tokens = 0
|
||||
for m in messages:
|
||||
message = _convert_message_to_dict(m)
|
||||
num_tokens += tokens_per_message
|
||||
for key, value in message.items():
|
||||
if key == "function_call":
|
||||
for f_key, f_value in value.items():
|
||||
num_tokens += len(encoding.encode(f_key))
|
||||
num_tokens += len(encoding.encode(f_value))
|
||||
else:
|
||||
num_tokens += len(encoding.encode(value))
|
||||
|
||||
if key == "name":
|
||||
num_tokens += tokens_per_name
|
||||
# every reply is primed with <im_start>assistant
|
||||
num_tokens += 3
|
||||
|
||||
if kwargs.get('functions'):
|
||||
for function in kwargs.get('functions'):
|
||||
num_tokens += len(encoding.encode('name'))
|
||||
num_tokens += len(encoding.encode(function.get("name")))
|
||||
num_tokens += len(encoding.encode('description'))
|
||||
num_tokens += len(encoding.encode(function.get("description")))
|
||||
parameters = function.get("parameters")
|
||||
num_tokens += len(encoding.encode('parameters'))
|
||||
if 'title' in parameters:
|
||||
num_tokens += len(encoding.encode('title'))
|
||||
num_tokens += len(encoding.encode(parameters.get("title")))
|
||||
num_tokens += len(encoding.encode('type'))
|
||||
num_tokens += len(encoding.encode(parameters.get("type")))
|
||||
if 'properties' in parameters:
|
||||
num_tokens += len(encoding.encode('properties'))
|
||||
for key, value in parameters.get('properties').items():
|
||||
num_tokens += len(encoding.encode(key))
|
||||
for field_key, field_value in value.items():
|
||||
num_tokens += len(encoding.encode(field_key))
|
||||
if field_key == 'enum':
|
||||
for enum_field in field_value:
|
||||
num_tokens += 3
|
||||
num_tokens += len(encoding.encode(enum_field))
|
||||
else:
|
||||
num_tokens += len(encoding.encode(field_key))
|
||||
num_tokens += len(encoding.encode(str(field_value)))
|
||||
if 'required' in parameters:
|
||||
num_tokens += len(encoding.encode('required'))
|
||||
for required_field in parameters['required']:
|
||||
num_tokens += 3
|
||||
num_tokens += len(encoding.encode(required_field))
|
||||
|
||||
return num_tokens
|
||||
|
||||
@@ -1,140 +0,0 @@
|
||||
from typing import cast, List
|
||||
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.chat_models.openai import _convert_message_to_dict
|
||||
from langchain.memory.summary import SummarizerMixin
|
||||
from langchain.schema import SystemMessage, HumanMessage, BaseMessage, AIMessage
|
||||
from langchain.schema.language_model import BaseLanguageModel
|
||||
from pydantic import BaseModel
|
||||
|
||||
from core.agent.agent.calc_token_mixin import ExceededLLMTokensLimitError, CalcTokenMixin
|
||||
from core.model_providers.models.llm.base import BaseLLM
|
||||
|
||||
|
||||
class OpenAIFunctionCallSummarizeMixin(BaseModel, CalcTokenMixin):
|
||||
moving_summary_buffer: str = ""
|
||||
moving_summary_index: int = 0
|
||||
summary_llm: BaseLanguageModel = None
|
||||
model_instance: BaseLLM
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
def summarize_messages_if_needed(self, messages: List[BaseMessage], **kwargs) -> List[BaseMessage]:
|
||||
# calculate rest tokens and summarize previous function observation messages if rest_tokens < 0
|
||||
rest_tokens = self.get_message_rest_tokens(self.model_instance, messages, **kwargs)
|
||||
rest_tokens = rest_tokens - 20 # to deal with the inaccuracy of rest_tokens
|
||||
if rest_tokens >= 0:
|
||||
return messages
|
||||
|
||||
system_message = None
|
||||
human_message = None
|
||||
should_summary_messages = []
|
||||
for message in messages:
|
||||
if isinstance(message, SystemMessage):
|
||||
system_message = message
|
||||
elif isinstance(message, HumanMessage):
|
||||
human_message = message
|
||||
else:
|
||||
should_summary_messages.append(message)
|
||||
|
||||
if len(should_summary_messages) > 2:
|
||||
ai_message = should_summary_messages[-2]
|
||||
function_message = should_summary_messages[-1]
|
||||
should_summary_messages = should_summary_messages[self.moving_summary_index:-2]
|
||||
self.moving_summary_index = len(should_summary_messages)
|
||||
else:
|
||||
error_msg = "Exceeded LLM tokens limit, stopped."
|
||||
raise ExceededLLMTokensLimitError(error_msg)
|
||||
|
||||
new_messages = [system_message, human_message]
|
||||
|
||||
if self.moving_summary_index == 0:
|
||||
should_summary_messages.insert(0, human_message)
|
||||
|
||||
summary_handler = SummarizerMixin(llm=self.summary_llm)
|
||||
self.moving_summary_buffer = summary_handler.predict_new_summary(
|
||||
messages=should_summary_messages,
|
||||
existing_summary=self.moving_summary_buffer
|
||||
)
|
||||
|
||||
new_messages.append(AIMessage(content=self.moving_summary_buffer))
|
||||
new_messages.append(ai_message)
|
||||
new_messages.append(function_message)
|
||||
|
||||
return new_messages
|
||||
|
||||
def get_num_tokens_from_messages(self, model_instance: BaseLLM, messages: List[BaseMessage], **kwargs) -> int:
|
||||
"""Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package.
|
||||
|
||||
Official documentation: https://github.com/openai/openai-cookbook/blob/
|
||||
main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb"""
|
||||
llm = cast(ChatOpenAI, model_instance.client)
|
||||
model, encoding = llm._get_encoding_model()
|
||||
if model.startswith("gpt-3.5-turbo"):
|
||||
# every message follows <im_start>{role/name}\n{content}<im_end>\n
|
||||
tokens_per_message = 4
|
||||
# if there's a name, the role is omitted
|
||||
tokens_per_name = -1
|
||||
elif model.startswith("gpt-4"):
|
||||
tokens_per_message = 3
|
||||
tokens_per_name = 1
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"get_num_tokens_from_messages() is not presently implemented "
|
||||
f"for model {model}."
|
||||
"See https://github.com/openai/openai-python/blob/main/chatml.md for "
|
||||
"information on how messages are converted to tokens."
|
||||
)
|
||||
num_tokens = 0
|
||||
for m in messages:
|
||||
message = _convert_message_to_dict(m)
|
||||
num_tokens += tokens_per_message
|
||||
for key, value in message.items():
|
||||
if key == "function_call":
|
||||
for f_key, f_value in value.items():
|
||||
num_tokens += len(encoding.encode(f_key))
|
||||
num_tokens += len(encoding.encode(f_value))
|
||||
else:
|
||||
num_tokens += len(encoding.encode(value))
|
||||
|
||||
if key == "name":
|
||||
num_tokens += tokens_per_name
|
||||
# every reply is primed with <im_start>assistant
|
||||
num_tokens += 3
|
||||
|
||||
if kwargs.get('functions'):
|
||||
for function in kwargs.get('functions'):
|
||||
num_tokens += len(encoding.encode('name'))
|
||||
num_tokens += len(encoding.encode(function.get("name")))
|
||||
num_tokens += len(encoding.encode('description'))
|
||||
num_tokens += len(encoding.encode(function.get("description")))
|
||||
parameters = function.get("parameters")
|
||||
num_tokens += len(encoding.encode('parameters'))
|
||||
if 'title' in parameters:
|
||||
num_tokens += len(encoding.encode('title'))
|
||||
num_tokens += len(encoding.encode(parameters.get("title")))
|
||||
num_tokens += len(encoding.encode('type'))
|
||||
num_tokens += len(encoding.encode(parameters.get("type")))
|
||||
if 'properties' in parameters:
|
||||
num_tokens += len(encoding.encode('properties'))
|
||||
for key, value in parameters.get('properties').items():
|
||||
num_tokens += len(encoding.encode(key))
|
||||
for field_key, field_value in value.items():
|
||||
num_tokens += len(encoding.encode(field_key))
|
||||
if field_key == 'enum':
|
||||
for enum_field in field_value:
|
||||
num_tokens += 3
|
||||
num_tokens += len(encoding.encode(enum_field))
|
||||
else:
|
||||
num_tokens += len(encoding.encode(field_key))
|
||||
num_tokens += len(encoding.encode(str(field_value)))
|
||||
if 'required' in parameters:
|
||||
num_tokens += len(encoding.encode('required'))
|
||||
for required_field in parameters['required']:
|
||||
num_tokens += 3
|
||||
num_tokens += len(encoding.encode(required_field))
|
||||
|
||||
return num_tokens
|
||||
@@ -1,107 +0,0 @@
|
||||
from typing import List, Tuple, Any, Union, Sequence, Optional
|
||||
|
||||
from langchain.agents import BaseMultiActionAgent
|
||||
from langchain.agents.openai_functions_multi_agent.base import OpenAIMultiFunctionsAgent, _format_intermediate_steps, \
|
||||
_parse_ai_message
|
||||
from langchain.callbacks.base import BaseCallbackManager
|
||||
from langchain.callbacks.manager import Callbacks
|
||||
from langchain.prompts.chat import BaseMessagePromptTemplate
|
||||
from langchain.schema import AgentAction, AgentFinish, SystemMessage
|
||||
from langchain.schema.language_model import BaseLanguageModel
|
||||
from langchain.tools import BaseTool
|
||||
|
||||
from core.agent.agent.calc_token_mixin import ExceededLLMTokensLimitError
|
||||
from core.agent.agent.openai_function_call_summarize_mixin import OpenAIFunctionCallSummarizeMixin
|
||||
|
||||
|
||||
class AutoSummarizingOpenMultiAIFunctionCallAgent(OpenAIMultiFunctionsAgent, OpenAIFunctionCallSummarizeMixin):
|
||||
|
||||
@classmethod
|
||||
def from_llm_and_tools(
|
||||
cls,
|
||||
llm: BaseLanguageModel,
|
||||
tools: Sequence[BaseTool],
|
||||
callback_manager: Optional[BaseCallbackManager] = None,
|
||||
extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None,
|
||||
system_message: Optional[SystemMessage] = SystemMessage(
|
||||
content="You are a helpful AI assistant."
|
||||
),
|
||||
**kwargs: Any,
|
||||
) -> BaseMultiActionAgent:
|
||||
return super().from_llm_and_tools(
|
||||
llm=llm,
|
||||
tools=tools,
|
||||
callback_manager=callback_manager,
|
||||
extra_prompt_messages=extra_prompt_messages,
|
||||
system_message=cls.get_system_message(),
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def should_use_agent(self, query: str):
|
||||
"""
|
||||
return should use agent
|
||||
|
||||
:param query:
|
||||
:return:
|
||||
"""
|
||||
original_max_tokens = self.llm.max_tokens
|
||||
self.llm.max_tokens = 15
|
||||
|
||||
prompt = self.prompt.format_prompt(input=query, agent_scratchpad=[])
|
||||
messages = prompt.to_messages()
|
||||
|
||||
try:
|
||||
predicted_message = self.llm.predict_messages(
|
||||
messages, functions=self.functions, callbacks=None
|
||||
)
|
||||
except Exception as e:
|
||||
new_exception = self.model_instance.handle_exceptions(e)
|
||||
raise new_exception
|
||||
|
||||
function_call = predicted_message.additional_kwargs.get("function_call", {})
|
||||
|
||||
self.llm.max_tokens = original_max_tokens
|
||||
|
||||
return True if function_call else False
|
||||
|
||||
def plan(
|
||||
self,
|
||||
intermediate_steps: List[Tuple[AgentAction, str]],
|
||||
callbacks: Callbacks = None,
|
||||
**kwargs: Any,
|
||||
) -> Union[AgentAction, AgentFinish]:
|
||||
"""Given input, decided what to do.
|
||||
|
||||
Args:
|
||||
intermediate_steps: Steps the LLM has taken to date, along with observations
|
||||
**kwargs: User inputs.
|
||||
|
||||
Returns:
|
||||
Action specifying what tool to use.
|
||||
"""
|
||||
agent_scratchpad = _format_intermediate_steps(intermediate_steps)
|
||||
selected_inputs = {
|
||||
k: kwargs[k] for k in self.prompt.input_variables if k != "agent_scratchpad"
|
||||
}
|
||||
full_inputs = dict(**selected_inputs, agent_scratchpad=agent_scratchpad)
|
||||
prompt = self.prompt.format_prompt(**full_inputs)
|
||||
messages = prompt.to_messages()
|
||||
|
||||
# summarize messages if rest_tokens < 0
|
||||
try:
|
||||
messages = self.summarize_messages_if_needed(messages, functions=self.functions)
|
||||
except ExceededLLMTokensLimitError as e:
|
||||
return AgentFinish(return_values={"output": str(e)}, log=str(e))
|
||||
|
||||
predicted_message = self.llm.predict_messages(
|
||||
messages, functions=self.functions, callbacks=callbacks
|
||||
)
|
||||
agent_decision = _parse_ai_message(predicted_message)
|
||||
return agent_decision
|
||||
|
||||
@classmethod
|
||||
def get_system_message(cls):
|
||||
# get current time
|
||||
return SystemMessage(content="You are a helpful AI assistant.\n"
|
||||
"The current date or current time you know is wrong.\n"
|
||||
"Respond directly if appropriate.")
|
||||
@@ -1,10 +1,9 @@
|
||||
import re
|
||||
from typing import List, Tuple, Any, Union, Sequence, Optional, cast
|
||||
|
||||
from langchain import BasePromptTemplate
|
||||
from langchain import BasePromptTemplate, PromptTemplate
|
||||
from langchain.agents import StructuredChatAgent, AgentOutputParser, Agent
|
||||
from langchain.agents.structured_chat.base import HUMAN_MESSAGE_TEMPLATE
|
||||
from langchain.base_language import BaseLanguageModel
|
||||
from langchain.callbacks.base import BaseCallbackManager
|
||||
from langchain.callbacks.manager import Callbacks
|
||||
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate
|
||||
@@ -12,6 +11,8 @@ from langchain.schema import AgentAction, AgentFinish, OutputParserException
|
||||
from langchain.tools import BaseTool
|
||||
from langchain.agents.structured_chat.prompt import PREFIX, SUFFIX
|
||||
|
||||
from core.chain.llm_chain import LLMChain
|
||||
from core.model_providers.models.entity.model_params import ModelMode
|
||||
from core.model_providers.models.llm.base import BaseLLM
|
||||
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
|
||||
|
||||
@@ -49,7 +50,6 @@ Action:
|
||||
|
||||
|
||||
class StructuredMultiDatasetRouterAgent(StructuredChatAgent):
|
||||
model_instance: BaseLLM
|
||||
dataset_tools: Sequence[BaseTool]
|
||||
|
||||
class Config:
|
||||
@@ -93,12 +93,16 @@ class StructuredMultiDatasetRouterAgent(StructuredChatAgent):
|
||||
rst = tool.run(tool_input={'query': kwargs['input']})
|
||||
return AgentFinish(return_values={"output": rst}, log=rst)
|
||||
|
||||
if intermediate_steps:
|
||||
_, observation = intermediate_steps[-1]
|
||||
return AgentFinish(return_values={"output": observation}, log=observation)
|
||||
|
||||
full_inputs = self.get_full_inputs(intermediate_steps, **kwargs)
|
||||
|
||||
try:
|
||||
full_output = self.llm_chain.predict(callbacks=callbacks, **full_inputs)
|
||||
except Exception as e:
|
||||
new_exception = self.model_instance.handle_exceptions(e)
|
||||
new_exception = self.llm_chain.model_instance.handle_exceptions(e)
|
||||
raise new_exception
|
||||
|
||||
try:
|
||||
@@ -108,6 +112,10 @@ class StructuredMultiDatasetRouterAgent(StructuredChatAgent):
|
||||
if isinstance(tool_inputs, dict) and 'query' in tool_inputs:
|
||||
tool_inputs['query'] = kwargs['input']
|
||||
agent_decision.tool_input = tool_inputs
|
||||
elif isinstance(tool_inputs, str):
|
||||
agent_decision.tool_input = kwargs['input']
|
||||
else:
|
||||
agent_decision.return_values['output'] = ''
|
||||
return agent_decision
|
||||
except OutputParserException:
|
||||
return AgentFinish({"output": "I'm sorry, the answer of model is invalid, "
|
||||
@@ -142,10 +150,65 @@ class StructuredMultiDatasetRouterAgent(StructuredChatAgent):
|
||||
]
|
||||
return ChatPromptTemplate(input_variables=input_variables, messages=messages)
|
||||
|
||||
@classmethod
|
||||
def create_completion_prompt(
|
||||
cls,
|
||||
tools: Sequence[BaseTool],
|
||||
prefix: str = PREFIX,
|
||||
format_instructions: str = FORMAT_INSTRUCTIONS,
|
||||
input_variables: Optional[List[str]] = None,
|
||||
) -> PromptTemplate:
|
||||
"""Create prompt in the style of the zero shot agent.
|
||||
|
||||
Args:
|
||||
tools: List of tools the agent will have access to, used to format the
|
||||
prompt.
|
||||
prefix: String to put before the list of tools.
|
||||
input_variables: List of input variables the final prompt will expect.
|
||||
|
||||
Returns:
|
||||
A PromptTemplate with the template assembled from the pieces here.
|
||||
"""
|
||||
suffix = """Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.
|
||||
Question: {input}
|
||||
Thought: {agent_scratchpad}
|
||||
"""
|
||||
|
||||
tool_strings = "\n".join([f"{tool.name}: {tool.description}" for tool in tools])
|
||||
tool_names = ", ".join([tool.name for tool in tools])
|
||||
format_instructions = format_instructions.format(tool_names=tool_names)
|
||||
template = "\n\n".join([prefix, tool_strings, format_instructions, suffix])
|
||||
if input_variables is None:
|
||||
input_variables = ["input", "agent_scratchpad"]
|
||||
return PromptTemplate(template=template, input_variables=input_variables)
|
||||
|
||||
def _construct_scratchpad(
|
||||
self, intermediate_steps: List[Tuple[AgentAction, str]]
|
||||
) -> str:
|
||||
agent_scratchpad = ""
|
||||
for action, observation in intermediate_steps:
|
||||
agent_scratchpad += action.log
|
||||
agent_scratchpad += f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}"
|
||||
|
||||
if not isinstance(agent_scratchpad, str):
|
||||
raise ValueError("agent_scratchpad should be of type string.")
|
||||
if agent_scratchpad:
|
||||
llm_chain = cast(LLMChain, self.llm_chain)
|
||||
if llm_chain.model_instance.model_mode == ModelMode.CHAT:
|
||||
return (
|
||||
f"This was your previous work "
|
||||
f"(but I haven't seen any of it! I only see what "
|
||||
f"you return as final answer):\n{agent_scratchpad}"
|
||||
)
|
||||
else:
|
||||
return agent_scratchpad
|
||||
else:
|
||||
return agent_scratchpad
|
||||
|
||||
@classmethod
|
||||
def from_llm_and_tools(
|
||||
cls,
|
||||
llm: BaseLanguageModel,
|
||||
model_instance: BaseLLM,
|
||||
tools: Sequence[BaseTool],
|
||||
callback_manager: Optional[BaseCallbackManager] = None,
|
||||
output_parser: Optional[AgentOutputParser] = None,
|
||||
@@ -157,17 +220,36 @@ class StructuredMultiDatasetRouterAgent(StructuredChatAgent):
|
||||
memory_prompts: Optional[List[BasePromptTemplate]] = None,
|
||||
**kwargs: Any,
|
||||
) -> Agent:
|
||||
return super().from_llm_and_tools(
|
||||
llm=llm,
|
||||
tools=tools,
|
||||
"""Construct an agent from an LLM and tools."""
|
||||
cls._validate_tools(tools)
|
||||
if model_instance.model_mode == ModelMode.CHAT:
|
||||
prompt = cls.create_prompt(
|
||||
tools,
|
||||
prefix=prefix,
|
||||
suffix=suffix,
|
||||
human_message_template=human_message_template,
|
||||
format_instructions=format_instructions,
|
||||
input_variables=input_variables,
|
||||
memory_prompts=memory_prompts,
|
||||
)
|
||||
else:
|
||||
prompt = cls.create_completion_prompt(
|
||||
tools,
|
||||
prefix=prefix,
|
||||
format_instructions=format_instructions,
|
||||
input_variables=input_variables
|
||||
)
|
||||
llm_chain = LLMChain(
|
||||
model_instance=model_instance,
|
||||
prompt=prompt,
|
||||
callback_manager=callback_manager,
|
||||
output_parser=output_parser,
|
||||
prefix=prefix,
|
||||
suffix=suffix,
|
||||
human_message_template=human_message_template,
|
||||
format_instructions=format_instructions,
|
||||
input_variables=input_variables,
|
||||
memory_prompts=memory_prompts,
|
||||
)
|
||||
tool_names = [tool.name for tool in tools]
|
||||
_output_parser = output_parser
|
||||
return cls(
|
||||
llm_chain=llm_chain,
|
||||
allowed_tools=tool_names,
|
||||
output_parser=_output_parser,
|
||||
dataset_tools=tools,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@@ -1,19 +1,21 @@
|
||||
import re
|
||||
from typing import List, Tuple, Any, Union, Sequence, Optional
|
||||
from typing import List, Tuple, Any, Union, Sequence, Optional, cast
|
||||
|
||||
from langchain import BasePromptTemplate
|
||||
from langchain import BasePromptTemplate, PromptTemplate
|
||||
from langchain.agents import StructuredChatAgent, AgentOutputParser, Agent
|
||||
from langchain.agents.structured_chat.base import HUMAN_MESSAGE_TEMPLATE
|
||||
from langchain.base_language import BaseLanguageModel
|
||||
from langchain.callbacks.base import BaseCallbackManager
|
||||
from langchain.callbacks.manager import Callbacks
|
||||
from langchain.memory.summary import SummarizerMixin
|
||||
from langchain.memory.prompt import SUMMARY_PROMPT
|
||||
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate
|
||||
from langchain.schema import AgentAction, AgentFinish, AIMessage, HumanMessage, OutputParserException
|
||||
from langchain.schema import AgentAction, AgentFinish, AIMessage, HumanMessage, OutputParserException, BaseMessage, \
|
||||
get_buffer_string
|
||||
from langchain.tools import BaseTool
|
||||
from langchain.agents.structured_chat.prompt import PREFIX, SUFFIX
|
||||
|
||||
from core.agent.agent.calc_token_mixin import CalcTokenMixin, ExceededLLMTokensLimitError
|
||||
from core.chain.llm_chain import LLMChain
|
||||
from core.model_providers.models.entity.model_params import ModelMode
|
||||
from core.model_providers.models.llm.base import BaseLLM
|
||||
|
||||
FORMAT_INSTRUCTIONS = """Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
|
||||
@@ -52,8 +54,7 @@ Action:
|
||||
class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
|
||||
moving_summary_buffer: str = ""
|
||||
moving_summary_index: int = 0
|
||||
summary_llm: BaseLanguageModel = None
|
||||
model_instance: BaseLLM
|
||||
summary_model_instance: BaseLLM = None
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
@@ -95,14 +96,14 @@ class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
|
||||
if prompts:
|
||||
messages = prompts[0].to_messages()
|
||||
|
||||
rest_tokens = self.get_message_rest_tokens(self.model_instance, messages)
|
||||
rest_tokens = self.get_message_rest_tokens(self.llm_chain.model_instance, messages)
|
||||
if rest_tokens < 0:
|
||||
full_inputs = self.summarize_messages(intermediate_steps, **kwargs)
|
||||
|
||||
try:
|
||||
full_output = self.llm_chain.predict(callbacks=callbacks, **full_inputs)
|
||||
except Exception as e:
|
||||
new_exception = self.model_instance.handle_exceptions(e)
|
||||
new_exception = self.llm_chain.model_instance.handle_exceptions(e)
|
||||
raise new_exception
|
||||
|
||||
try:
|
||||
@@ -118,7 +119,7 @@ class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
|
||||
"I don't know how to respond to that."}, "")
|
||||
|
||||
def summarize_messages(self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs):
|
||||
if len(intermediate_steps) >= 2 and self.summary_llm:
|
||||
if len(intermediate_steps) >= 2 and self.summary_model_instance:
|
||||
should_summary_intermediate_steps = intermediate_steps[self.moving_summary_index:-1]
|
||||
should_summary_messages = [AIMessage(content=observation)
|
||||
for _, observation in should_summary_intermediate_steps]
|
||||
@@ -130,11 +131,10 @@ class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
|
||||
error_msg = "Exceeded LLM tokens limit, stopped."
|
||||
raise ExceededLLMTokensLimitError(error_msg)
|
||||
|
||||
summary_handler = SummarizerMixin(llm=self.summary_llm)
|
||||
if self.moving_summary_buffer and 'chat_history' in kwargs:
|
||||
kwargs["chat_history"].pop()
|
||||
|
||||
self.moving_summary_buffer = summary_handler.predict_new_summary(
|
||||
self.moving_summary_buffer = self.predict_new_summary(
|
||||
messages=should_summary_messages,
|
||||
existing_summary=self.moving_summary_buffer
|
||||
)
|
||||
@@ -144,6 +144,18 @@ class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
|
||||
|
||||
return self.get_full_inputs([intermediate_steps[-1]], **kwargs)
|
||||
|
||||
def predict_new_summary(
|
||||
self, messages: List[BaseMessage], existing_summary: str
|
||||
) -> str:
|
||||
new_lines = get_buffer_string(
|
||||
messages,
|
||||
human_prefix="Human",
|
||||
ai_prefix="AI",
|
||||
)
|
||||
|
||||
chain = LLMChain(model_instance=self.summary_model_instance, prompt=SUMMARY_PROMPT)
|
||||
return chain.predict(summary=existing_summary, new_lines=new_lines)
|
||||
|
||||
@classmethod
|
||||
def create_prompt(
|
||||
cls,
|
||||
@@ -173,10 +185,65 @@ class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
|
||||
]
|
||||
return ChatPromptTemplate(input_variables=input_variables, messages=messages)
|
||||
|
||||
@classmethod
|
||||
def create_completion_prompt(
|
||||
cls,
|
||||
tools: Sequence[BaseTool],
|
||||
prefix: str = PREFIX,
|
||||
format_instructions: str = FORMAT_INSTRUCTIONS,
|
||||
input_variables: Optional[List[str]] = None,
|
||||
) -> PromptTemplate:
|
||||
"""Create prompt in the style of the zero shot agent.
|
||||
|
||||
Args:
|
||||
tools: List of tools the agent will have access to, used to format the
|
||||
prompt.
|
||||
prefix: String to put before the list of tools.
|
||||
input_variables: List of input variables the final prompt will expect.
|
||||
|
||||
Returns:
|
||||
A PromptTemplate with the template assembled from the pieces here.
|
||||
"""
|
||||
suffix = """Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.
|
||||
Question: {input}
|
||||
Thought: {agent_scratchpad}
|
||||
"""
|
||||
|
||||
tool_strings = "\n".join([f"{tool.name}: {tool.description}" for tool in tools])
|
||||
tool_names = ", ".join([tool.name for tool in tools])
|
||||
format_instructions = format_instructions.format(tool_names=tool_names)
|
||||
template = "\n\n".join([prefix, tool_strings, format_instructions, suffix])
|
||||
if input_variables is None:
|
||||
input_variables = ["input", "agent_scratchpad"]
|
||||
return PromptTemplate(template=template, input_variables=input_variables)
|
||||
|
||||
def _construct_scratchpad(
|
||||
self, intermediate_steps: List[Tuple[AgentAction, str]]
|
||||
) -> str:
|
||||
agent_scratchpad = ""
|
||||
for action, observation in intermediate_steps:
|
||||
agent_scratchpad += action.log
|
||||
agent_scratchpad += f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}"
|
||||
|
||||
if not isinstance(agent_scratchpad, str):
|
||||
raise ValueError("agent_scratchpad should be of type string.")
|
||||
if agent_scratchpad:
|
||||
llm_chain = cast(LLMChain, self.llm_chain)
|
||||
if llm_chain.model_instance.model_mode == ModelMode.CHAT:
|
||||
return (
|
||||
f"This was your previous work "
|
||||
f"(but I haven't seen any of it! I only see what "
|
||||
f"you return as final answer):\n{agent_scratchpad}"
|
||||
)
|
||||
else:
|
||||
return agent_scratchpad
|
||||
else:
|
||||
return agent_scratchpad
|
||||
|
||||
@classmethod
|
||||
def from_llm_and_tools(
|
||||
cls,
|
||||
llm: BaseLanguageModel,
|
||||
model_instance: BaseLLM,
|
||||
tools: Sequence[BaseTool],
|
||||
callback_manager: Optional[BaseCallbackManager] = None,
|
||||
output_parser: Optional[AgentOutputParser] = None,
|
||||
@@ -188,16 +255,35 @@ class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
|
||||
memory_prompts: Optional[List[BasePromptTemplate]] = None,
|
||||
**kwargs: Any,
|
||||
) -> Agent:
|
||||
return super().from_llm_and_tools(
|
||||
llm=llm,
|
||||
tools=tools,
|
||||
"""Construct an agent from an LLM and tools."""
|
||||
cls._validate_tools(tools)
|
||||
if model_instance.model_mode == ModelMode.CHAT:
|
||||
prompt = cls.create_prompt(
|
||||
tools,
|
||||
prefix=prefix,
|
||||
suffix=suffix,
|
||||
human_message_template=human_message_template,
|
||||
format_instructions=format_instructions,
|
||||
input_variables=input_variables,
|
||||
memory_prompts=memory_prompts,
|
||||
)
|
||||
else:
|
||||
prompt = cls.create_completion_prompt(
|
||||
tools,
|
||||
prefix=prefix,
|
||||
format_instructions=format_instructions,
|
||||
input_variables=input_variables,
|
||||
)
|
||||
llm_chain = LLMChain(
|
||||
model_instance=model_instance,
|
||||
prompt=prompt,
|
||||
callback_manager=callback_manager,
|
||||
output_parser=output_parser,
|
||||
prefix=prefix,
|
||||
suffix=suffix,
|
||||
human_message_template=human_message_template,
|
||||
format_instructions=format_instructions,
|
||||
input_variables=input_variables,
|
||||
memory_prompts=memory_prompts,
|
||||
)
|
||||
tool_names = [tool.name for tool in tools]
|
||||
_output_parser = output_parser
|
||||
return cls(
|
||||
llm_chain=llm_chain,
|
||||
allowed_tools=tool_names,
|
||||
output_parser=_output_parser,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@@ -10,7 +10,6 @@ from pydantic import BaseModel, Extra
|
||||
|
||||
from core.agent.agent.multi_dataset_router_agent import MultiDatasetRouterAgent
|
||||
from core.agent.agent.openai_function_call import AutoSummarizingOpenAIFunctionCallAgent
|
||||
from core.agent.agent.openai_multi_function_call import AutoSummarizingOpenMultiAIFunctionCallAgent
|
||||
from core.agent.agent.output_parser.structured_chat import StructuredChatOutputParser
|
||||
from core.agent.agent.structed_multi_dataset_router_agent import StructuredMultiDatasetRouterAgent
|
||||
from core.agent.agent.structured_chat import AutoSummarizingStructuredChatAgent
|
||||
@@ -27,7 +26,6 @@ class PlanningStrategy(str, enum.Enum):
|
||||
REACT_ROUTER = 'react_router'
|
||||
REACT = 'react'
|
||||
FUNCTION_CALL = 'function_call'
|
||||
MULTI_FUNCTION_CALL = 'multi_function_call'
|
||||
|
||||
|
||||
class AgentConfiguration(BaseModel):
|
||||
@@ -64,30 +62,18 @@ class AgentExecutor:
|
||||
if self.configuration.strategy == PlanningStrategy.REACT:
|
||||
agent = AutoSummarizingStructuredChatAgent.from_llm_and_tools(
|
||||
model_instance=self.configuration.model_instance,
|
||||
llm=self.configuration.model_instance.client,
|
||||
tools=self.configuration.tools,
|
||||
output_parser=StructuredChatOutputParser(),
|
||||
summary_llm=self.configuration.summary_model_instance.client
|
||||
summary_model_instance=self.configuration.summary_model_instance
|
||||
if self.configuration.summary_model_instance else None,
|
||||
verbose=True
|
||||
)
|
||||
elif self.configuration.strategy == PlanningStrategy.FUNCTION_CALL:
|
||||
agent = AutoSummarizingOpenAIFunctionCallAgent.from_llm_and_tools(
|
||||
model_instance=self.configuration.model_instance,
|
||||
llm=self.configuration.model_instance.client,
|
||||
tools=self.configuration.tools,
|
||||
extra_prompt_messages=self.configuration.memory.buffer if self.configuration.memory else None, # used for read chat histories memory
|
||||
summary_llm=self.configuration.summary_model_instance.client
|
||||
if self.configuration.summary_model_instance else None,
|
||||
verbose=True
|
||||
)
|
||||
elif self.configuration.strategy == PlanningStrategy.MULTI_FUNCTION_CALL:
|
||||
agent = AutoSummarizingOpenMultiAIFunctionCallAgent.from_llm_and_tools(
|
||||
model_instance=self.configuration.model_instance,
|
||||
llm=self.configuration.model_instance.client,
|
||||
tools=self.configuration.tools,
|
||||
extra_prompt_messages=self.configuration.memory.buffer if self.configuration.memory else None, # used for read chat histories memory
|
||||
summary_llm=self.configuration.summary_model_instance.client
|
||||
summary_model_instance=self.configuration.summary_model_instance
|
||||
if self.configuration.summary_model_instance else None,
|
||||
verbose=True
|
||||
)
|
||||
@@ -95,7 +81,6 @@ class AgentExecutor:
|
||||
self.configuration.tools = [t for t in self.configuration.tools if isinstance(t, DatasetRetrieverTool)]
|
||||
agent = MultiDatasetRouterAgent.from_llm_and_tools(
|
||||
model_instance=self.configuration.model_instance,
|
||||
llm=self.configuration.model_instance.client,
|
||||
tools=self.configuration.tools,
|
||||
extra_prompt_messages=self.configuration.memory.buffer if self.configuration.memory else None,
|
||||
verbose=True
|
||||
@@ -104,7 +89,6 @@ class AgentExecutor:
|
||||
self.configuration.tools = [t for t in self.configuration.tools if isinstance(t, DatasetRetrieverTool)]
|
||||
agent = StructuredMultiDatasetRouterAgent.from_llm_and_tools(
|
||||
model_instance=self.configuration.model_instance,
|
||||
llm=self.configuration.model_instance.client,
|
||||
tools=self.configuration.tools,
|
||||
output_parser=StructuredChatOutputParser(),
|
||||
verbose=True
|
||||
|
||||
@@ -1,13 +1,25 @@
|
||||
import logging
|
||||
from typing import Any, Dict, List, Union
|
||||
import threading
|
||||
import time
|
||||
from typing import Any, Dict, List, Union, Optional
|
||||
|
||||
from flask import Flask, current_app
|
||||
from langchain.callbacks.base import BaseCallbackHandler
|
||||
from langchain.schema import LLMResult, BaseMessage
|
||||
from pydantic import BaseModel
|
||||
|
||||
from core.callback_handler.entity.llm_message import LLMMessage
|
||||
from core.conversation_message_task import ConversationMessageTask, ConversationTaskStoppedException
|
||||
from core.conversation_message_task import ConversationMessageTask, ConversationTaskStoppedException, \
|
||||
ConversationTaskInterruptException
|
||||
from core.model_providers.models.entity.message import to_prompt_messages, PromptMessage
|
||||
from core.model_providers.models.llm.base import BaseLLM
|
||||
from core.moderation.base import ModerationOutputsResult, ModerationAction
|
||||
from core.moderation.factory import ModerationFactory
|
||||
|
||||
|
||||
class ModerationRule(BaseModel):
|
||||
type: str
|
||||
config: Dict[str, Any]
|
||||
|
||||
|
||||
class LLMCallbackHandler(BaseCallbackHandler):
|
||||
@@ -20,6 +32,24 @@ class LLMCallbackHandler(BaseCallbackHandler):
|
||||
self.start_at = None
|
||||
self.conversation_message_task = conversation_message_task
|
||||
|
||||
self.output_moderation_handler = None
|
||||
self.init_output_moderation()
|
||||
|
||||
def init_output_moderation(self):
|
||||
app_model_config = self.conversation_message_task.app_model_config
|
||||
sensitive_word_avoidance_dict = app_model_config.sensitive_word_avoidance_dict
|
||||
|
||||
if sensitive_word_avoidance_dict and sensitive_word_avoidance_dict.get("enabled"):
|
||||
self.output_moderation_handler = OutputModerationHandler(
|
||||
tenant_id=self.conversation_message_task.tenant_id,
|
||||
app_id=self.conversation_message_task.app.id,
|
||||
rule=ModerationRule(
|
||||
type=sensitive_word_avoidance_dict.get("type"),
|
||||
config=sensitive_word_avoidance_dict.get("config")
|
||||
),
|
||||
on_message_replace_func=self.conversation_message_task.on_message_replace
|
||||
)
|
||||
|
||||
@property
|
||||
def always_verbose(self) -> bool:
|
||||
"""Whether to call verbose callbacks even if verbose is False."""
|
||||
@@ -59,10 +89,19 @@ class LLMCallbackHandler(BaseCallbackHandler):
|
||||
self.llm_message.prompt_tokens = self.model_instance.get_num_tokens([PromptMessage(content=prompts[0])])
|
||||
|
||||
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
|
||||
if not self.conversation_message_task.streaming:
|
||||
self.conversation_message_task.append_message_text(response.generations[0][0].text)
|
||||
if self.output_moderation_handler:
|
||||
self.output_moderation_handler.stop_thread()
|
||||
|
||||
self.llm_message.completion = self.output_moderation_handler.moderation_completion(
|
||||
completion=response.generations[0][0].text,
|
||||
public_event=True if self.conversation_message_task.streaming else False
|
||||
)
|
||||
else:
|
||||
self.llm_message.completion = response.generations[0][0].text
|
||||
|
||||
if not self.conversation_message_task.streaming:
|
||||
self.conversation_message_task.append_message_text(self.llm_message.completion)
|
||||
|
||||
if response.llm_output and 'token_usage' in response.llm_output:
|
||||
if 'prompt_tokens' in response.llm_output['token_usage']:
|
||||
self.llm_message.prompt_tokens = response.llm_output['token_usage']['prompt_tokens']
|
||||
@@ -79,23 +118,161 @@ class LLMCallbackHandler(BaseCallbackHandler):
|
||||
self.conversation_message_task.save_message(self.llm_message)
|
||||
|
||||
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
|
||||
try:
|
||||
self.conversation_message_task.append_message_text(token)
|
||||
except ConversationTaskStoppedException as ex:
|
||||
if self.output_moderation_handler and self.output_moderation_handler.should_direct_output():
|
||||
# stop subscribe new token when output moderation should direct output
|
||||
ex = ConversationTaskInterruptException()
|
||||
self.on_llm_error(error=ex)
|
||||
raise ex
|
||||
|
||||
self.llm_message.completion += token
|
||||
try:
|
||||
self.conversation_message_task.append_message_text(token)
|
||||
self.llm_message.completion += token
|
||||
|
||||
if self.output_moderation_handler:
|
||||
self.output_moderation_handler.append_new_token(token)
|
||||
except ConversationTaskStoppedException as ex:
|
||||
self.on_llm_error(error=ex)
|
||||
raise ex
|
||||
|
||||
def on_llm_error(
|
||||
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
|
||||
) -> None:
|
||||
"""Do nothing."""
|
||||
if self.output_moderation_handler:
|
||||
self.output_moderation_handler.stop_thread()
|
||||
|
||||
if isinstance(error, ConversationTaskStoppedException):
|
||||
if self.conversation_message_task.streaming:
|
||||
self.llm_message.completion_tokens = self.model_instance.get_num_tokens(
|
||||
[PromptMessage(content=self.llm_message.completion)]
|
||||
)
|
||||
self.conversation_message_task.save_message(llm_message=self.llm_message, by_stopped=True)
|
||||
if isinstance(error, ConversationTaskInterruptException):
|
||||
self.llm_message.completion = self.output_moderation_handler.get_final_output()
|
||||
self.llm_message.completion_tokens = self.model_instance.get_num_tokens(
|
||||
[PromptMessage(content=self.llm_message.completion)]
|
||||
)
|
||||
self.conversation_message_task.save_message(llm_message=self.llm_message)
|
||||
else:
|
||||
logging.debug("on_llm_error: %s", error)
|
||||
|
||||
|
||||
class OutputModerationHandler(BaseModel):
|
||||
DEFAULT_BUFFER_SIZE: int = 300
|
||||
|
||||
tenant_id: str
|
||||
app_id: str
|
||||
|
||||
rule: ModerationRule
|
||||
on_message_replace_func: Any
|
||||
|
||||
thread: Optional[threading.Thread] = None
|
||||
thread_running: bool = True
|
||||
buffer: str = ''
|
||||
is_final_chunk: bool = False
|
||||
final_output: Optional[str] = None
|
||||
|
||||
class Config:
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
def should_direct_output(self):
|
||||
return self.final_output is not None
|
||||
|
||||
def get_final_output(self):
|
||||
return self.final_output
|
||||
|
||||
def append_new_token(self, token: str):
|
||||
self.buffer += token
|
||||
|
||||
if not self.thread:
|
||||
self.thread = self.start_thread()
|
||||
|
||||
def moderation_completion(self, completion: str, public_event: bool = False) -> str:
|
||||
self.buffer = completion
|
||||
self.is_final_chunk = True
|
||||
|
||||
result = self.moderation(
|
||||
tenant_id=self.tenant_id,
|
||||
app_id=self.app_id,
|
||||
moderation_buffer=completion
|
||||
)
|
||||
|
||||
if not result or not result.flagged:
|
||||
return completion
|
||||
|
||||
if result.action == ModerationAction.DIRECT_OUTPUT:
|
||||
final_output = result.preset_response
|
||||
else:
|
||||
final_output = result.text
|
||||
|
||||
if public_event:
|
||||
self.on_message_replace_func(final_output)
|
||||
|
||||
return final_output
|
||||
|
||||
def start_thread(self) -> threading.Thread:
|
||||
buffer_size = int(current_app.config.get('MODERATION_BUFFER_SIZE', self.DEFAULT_BUFFER_SIZE))
|
||||
thread = threading.Thread(target=self.worker, kwargs={
|
||||
'flask_app': current_app._get_current_object(),
|
||||
'buffer_size': buffer_size if buffer_size > 0 else self.DEFAULT_BUFFER_SIZE
|
||||
})
|
||||
|
||||
thread.start()
|
||||
|
||||
return thread
|
||||
|
||||
def stop_thread(self):
|
||||
if self.thread and self.thread.is_alive():
|
||||
self.thread_running = False
|
||||
|
||||
def worker(self, flask_app: Flask, buffer_size: int):
|
||||
with flask_app.app_context():
|
||||
current_length = 0
|
||||
while self.thread_running:
|
||||
moderation_buffer = self.buffer
|
||||
buffer_length = len(moderation_buffer)
|
||||
if not self.is_final_chunk:
|
||||
chunk_length = buffer_length - current_length
|
||||
if 0 <= chunk_length < buffer_size:
|
||||
time.sleep(1)
|
||||
continue
|
||||
|
||||
current_length = buffer_length
|
||||
|
||||
result = self.moderation(
|
||||
tenant_id=self.tenant_id,
|
||||
app_id=self.app_id,
|
||||
moderation_buffer=moderation_buffer
|
||||
)
|
||||
|
||||
if not result or not result.flagged:
|
||||
continue
|
||||
|
||||
if result.action == ModerationAction.DIRECT_OUTPUT:
|
||||
final_output = result.preset_response
|
||||
self.final_output = final_output
|
||||
else:
|
||||
final_output = result.text + self.buffer[len(moderation_buffer):]
|
||||
|
||||
# trigger replace event
|
||||
if self.thread_running:
|
||||
self.on_message_replace_func(final_output)
|
||||
|
||||
if result.action == ModerationAction.DIRECT_OUTPUT:
|
||||
break
|
||||
|
||||
def moderation(self, tenant_id: str, app_id: str, moderation_buffer: str) -> Optional[ModerationOutputsResult]:
|
||||
try:
|
||||
moderation_factory = ModerationFactory(
|
||||
name=self.rule.type,
|
||||
app_id=app_id,
|
||||
tenant_id=tenant_id,
|
||||
config=self.rule.config
|
||||
)
|
||||
|
||||
result: ModerationOutputsResult = moderation_factory.moderation_for_outputs(moderation_buffer)
|
||||
return result
|
||||
except Exception as e:
|
||||
logging.error("Moderation Output error: %s", e)
|
||||
|
||||
return None
|
||||
|
||||
36
api/core/chain/llm_chain.py
Normal file
36
api/core/chain/llm_chain.py
Normal file
@@ -0,0 +1,36 @@
|
||||
from typing import List, Dict, Any, Optional
|
||||
|
||||
from langchain import LLMChain as LCLLMChain
|
||||
from langchain.callbacks.manager import CallbackManagerForChainRun
|
||||
from langchain.schema import LLMResult, Generation
|
||||
from langchain.schema.language_model import BaseLanguageModel
|
||||
|
||||
from core.model_providers.models.entity.message import to_prompt_messages
|
||||
from core.model_providers.models.llm.base import BaseLLM
|
||||
from core.third_party.langchain.llms.fake import FakeLLM
|
||||
|
||||
|
||||
class LLMChain(LCLLMChain):
|
||||
model_instance: BaseLLM
|
||||
"""The language model instance to use."""
|
||||
llm: BaseLanguageModel = FakeLLM(response="")
|
||||
|
||||
def generate(
|
||||
self,
|
||||
input_list: List[Dict[str, Any]],
|
||||
run_manager: Optional[CallbackManagerForChainRun] = None,
|
||||
) -> LLMResult:
|
||||
"""Generate LLM result from inputs."""
|
||||
prompts, stop = self.prep_prompts(input_list, run_manager=run_manager)
|
||||
messages = prompts[0].to_messages()
|
||||
prompt_messages = to_prompt_messages(messages)
|
||||
result = self.model_instance.run(
|
||||
messages=prompt_messages,
|
||||
stop=stop
|
||||
)
|
||||
|
||||
generations = [
|
||||
[Generation(text=result.content)]
|
||||
]
|
||||
|
||||
return LLMResult(generations=generations)
|
||||
@@ -1,92 +0,0 @@
|
||||
import enum
|
||||
import logging
|
||||
from typing import List, Dict, Optional, Any
|
||||
|
||||
from langchain.callbacks.manager import CallbackManagerForChainRun
|
||||
from langchain.chains.base import Chain
|
||||
from pydantic import BaseModel
|
||||
|
||||
from core.model_providers.error import LLMBadRequestError
|
||||
from core.model_providers.model_factory import ModelFactory
|
||||
from core.model_providers.models.llm.base import BaseLLM
|
||||
from core.model_providers.models.moderation import openai_moderation
|
||||
|
||||
|
||||
class SensitiveWordAvoidanceRule(BaseModel):
|
||||
class Type(enum.Enum):
|
||||
MODERATION = "moderation"
|
||||
KEYWORDS = "keywords"
|
||||
|
||||
type: Type
|
||||
canned_response: str = 'Your content violates our usage policy. Please revise and try again.'
|
||||
extra_params: dict = {}
|
||||
|
||||
|
||||
class SensitiveWordAvoidanceChain(Chain):
|
||||
input_key: str = "input" #: :meta private:
|
||||
output_key: str = "output" #: :meta private:
|
||||
|
||||
model_instance: BaseLLM
|
||||
sensitive_word_avoidance_rule: SensitiveWordAvoidanceRule
|
||||
|
||||
@property
|
||||
def _chain_type(self) -> str:
|
||||
return "sensitive_word_avoidance_chain"
|
||||
|
||||
@property
|
||||
def input_keys(self) -> List[str]:
|
||||
"""Expect input key.
|
||||
|
||||
:meta private:
|
||||
"""
|
||||
return [self.input_key]
|
||||
|
||||
@property
|
||||
def output_keys(self) -> List[str]:
|
||||
"""Return output key.
|
||||
|
||||
:meta private:
|
||||
"""
|
||||
return [self.output_key]
|
||||
|
||||
def _check_sensitive_word(self, text: str) -> bool:
|
||||
for word in self.sensitive_word_avoidance_rule.extra_params.get('sensitive_words', []):
|
||||
if word in text:
|
||||
return False
|
||||
return True
|
||||
|
||||
def _check_moderation(self, text: str) -> bool:
|
||||
moderation_model_instance = ModelFactory.get_moderation_model(
|
||||
tenant_id=self.model_instance.model_provider.provider.tenant_id,
|
||||
model_provider_name='openai',
|
||||
model_name=openai_moderation.DEFAULT_MODEL
|
||||
)
|
||||
|
||||
try:
|
||||
return moderation_model_instance.run(text=text)
|
||||
except Exception as ex:
|
||||
logging.exception(ex)
|
||||
raise LLMBadRequestError('Rate limit exceeded, please try again later.')
|
||||
|
||||
def _call(
|
||||
self,
|
||||
inputs: Dict[str, Any],
|
||||
run_manager: Optional[CallbackManagerForChainRun] = None,
|
||||
) -> Dict[str, Any]:
|
||||
text = inputs[self.input_key]
|
||||
|
||||
if self.sensitive_word_avoidance_rule.type == SensitiveWordAvoidanceRule.Type.KEYWORDS:
|
||||
result = self._check_sensitive_word(text)
|
||||
else:
|
||||
result = self._check_moderation(text)
|
||||
|
||||
if not result:
|
||||
raise SensitiveWordAvoidanceError(self.sensitive_word_avoidance_rule.canned_response)
|
||||
|
||||
return {self.output_key: text}
|
||||
|
||||
|
||||
class SensitiveWordAvoidanceError(Exception):
|
||||
def __init__(self, message):
|
||||
super().__init__(message)
|
||||
self.message = message
|
||||
@@ -1,14 +1,18 @@
|
||||
import concurrent
|
||||
import json
|
||||
import logging
|
||||
from typing import Optional, List, Union
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from typing import Optional, List, Union, Tuple
|
||||
|
||||
from flask import current_app, Flask
|
||||
from requests.exceptions import ChunkedEncodingError
|
||||
|
||||
from core.agent.agent_executor import AgentExecuteResult, PlanningStrategy
|
||||
from core.callback_handler.main_chain_gather_callback_handler import MainChainGatherCallbackHandler
|
||||
from core.callback_handler.llm_callback_handler import LLMCallbackHandler
|
||||
from core.chain.sensitive_word_avoidance_chain import SensitiveWordAvoidanceError
|
||||
from core.conversation_message_task import ConversationMessageTask, ConversationTaskStoppedException
|
||||
from core.conversation_message_task import ConversationMessageTask, ConversationTaskStoppedException, \
|
||||
ConversationTaskInterruptException
|
||||
from core.external_data_tool.factory import ExternalDataToolFactory
|
||||
from core.model_providers.error import LLMBadRequestError
|
||||
from core.memory.read_only_conversation_token_db_buffer_shared_memory import \
|
||||
ReadOnlyConversationTokenDBBufferSharedMemory
|
||||
@@ -16,10 +20,11 @@ from core.model_providers.model_factory import ModelFactory
|
||||
from core.model_providers.models.entity.message import PromptMessage
|
||||
from core.model_providers.models.llm.base import BaseLLM
|
||||
from core.orchestrator_rule_parser import OrchestratorRuleParser
|
||||
from core.prompt.prompt_builder import PromptBuilder
|
||||
from core.prompt.prompts import MORE_LIKE_THIS_GENERATE_PROMPT
|
||||
from models.dataset import DocumentSegment, Dataset, Document
|
||||
from models.model import App, AppModelConfig, Account, Conversation, Message, EndUser
|
||||
from core.prompt.prompt_template import PromptTemplateParser
|
||||
from core.prompt.prompt_transform import PromptTransform
|
||||
from models.model import App, AppModelConfig, Account, Conversation, EndUser
|
||||
from core.moderation.base import ModerationException, ModerationAction
|
||||
from core.moderation.factory import ModerationFactory
|
||||
|
||||
|
||||
class Completion:
|
||||
@@ -30,7 +35,7 @@ class Completion:
|
||||
"""
|
||||
errors: ProviderTokenNotInitError
|
||||
"""
|
||||
query = PromptBuilder.process_template(query)
|
||||
query = PromptTemplateParser.remove_template_variables(query)
|
||||
|
||||
memory = None
|
||||
if conversation:
|
||||
@@ -78,26 +83,35 @@ class Completion:
|
||||
)
|
||||
|
||||
try:
|
||||
# parse sensitive_word_avoidance_chain
|
||||
chain_callback = MainChainGatherCallbackHandler(conversation_message_task)
|
||||
sensitive_word_avoidance_chain = orchestrator_rule_parser.to_sensitive_word_avoidance_chain(
|
||||
final_model_instance, [chain_callback])
|
||||
if sensitive_word_avoidance_chain:
|
||||
try:
|
||||
query = sensitive_word_avoidance_chain.run(query)
|
||||
except SensitiveWordAvoidanceError as ex:
|
||||
cls.run_final_llm(
|
||||
model_instance=final_model_instance,
|
||||
mode=app.mode,
|
||||
app_model_config=app_model_config,
|
||||
query=query,
|
||||
inputs=inputs,
|
||||
agent_execute_result=None,
|
||||
conversation_message_task=conversation_message_task,
|
||||
memory=memory,
|
||||
fake_response=ex.message
|
||||
)
|
||||
return
|
||||
|
||||
try:
|
||||
# process sensitive_word_avoidance
|
||||
inputs, query = cls.moderation_for_inputs(app.id, app.tenant_id, app_model_config, inputs, query)
|
||||
except ModerationException as e:
|
||||
cls.run_final_llm(
|
||||
model_instance=final_model_instance,
|
||||
mode=app.mode,
|
||||
app_model_config=app_model_config,
|
||||
query=query,
|
||||
inputs=inputs,
|
||||
agent_execute_result=None,
|
||||
conversation_message_task=conversation_message_task,
|
||||
memory=memory,
|
||||
fake_response=str(e)
|
||||
)
|
||||
return
|
||||
|
||||
# fill in variable inputs from external data tools if exists
|
||||
external_data_tools = app_model_config.external_data_tools_list
|
||||
if external_data_tools:
|
||||
inputs = cls.fill_in_inputs_from_external_data_tools(
|
||||
tenant_id=app.tenant_id,
|
||||
app_id=app.id,
|
||||
external_data_tools=external_data_tools,
|
||||
inputs=inputs,
|
||||
query=query
|
||||
)
|
||||
|
||||
# get agent executor
|
||||
agent_executor = orchestrator_rule_parser.to_agent_executor(
|
||||
@@ -137,19 +151,110 @@ class Completion:
|
||||
memory=memory,
|
||||
fake_response=fake_response
|
||||
)
|
||||
except ConversationTaskStoppedException:
|
||||
except (ConversationTaskInterruptException, ConversationTaskStoppedException):
|
||||
return
|
||||
except ChunkedEncodingError as e:
|
||||
# Interrupt by LLM (like OpenAI), handle it.
|
||||
logging.warning(f'ChunkedEncodingError: {e}')
|
||||
conversation_message_task.end()
|
||||
return
|
||||
|
||||
|
||||
@classmethod
|
||||
def moderation_for_inputs(cls, app_id: str, tenant_id: str, app_model_config: AppModelConfig, inputs: dict, query: str):
|
||||
if not app_model_config.sensitive_word_avoidance_dict['enabled']:
|
||||
return inputs, query
|
||||
|
||||
type = app_model_config.sensitive_word_avoidance_dict['type']
|
||||
|
||||
moderation = ModerationFactory(type, app_id, tenant_id, app_model_config.sensitive_word_avoidance_dict['config'])
|
||||
moderation_result = moderation.moderation_for_inputs(inputs, query)
|
||||
|
||||
if not moderation_result.flagged:
|
||||
return inputs, query
|
||||
|
||||
if moderation_result.action == ModerationAction.DIRECT_OUTPUT:
|
||||
raise ModerationException(moderation_result.preset_response)
|
||||
elif moderation_result.action == ModerationAction.OVERRIDED:
|
||||
inputs = moderation_result.inputs
|
||||
query = moderation_result.query
|
||||
|
||||
return inputs, query
|
||||
|
||||
@classmethod
|
||||
def fill_in_inputs_from_external_data_tools(cls, tenant_id: str, app_id: str, external_data_tools: list[dict],
|
||||
inputs: dict, query: str) -> dict:
|
||||
"""
|
||||
Fill in variable inputs from external data tools if exists.
|
||||
|
||||
:param tenant_id: workspace id
|
||||
:param app_id: app id
|
||||
:param external_data_tools: external data tools configs
|
||||
:param inputs: the inputs
|
||||
:param query: the query
|
||||
:return: the filled inputs
|
||||
"""
|
||||
# Group tools by type and config
|
||||
grouped_tools = {}
|
||||
for tool in external_data_tools:
|
||||
if not tool.get("enabled"):
|
||||
continue
|
||||
|
||||
tool_key = (tool.get("type"), json.dumps(tool.get("config"), sort_keys=True))
|
||||
grouped_tools.setdefault(tool_key, []).append(tool)
|
||||
|
||||
results = {}
|
||||
with ThreadPoolExecutor() as executor:
|
||||
futures = {}
|
||||
for tools in grouped_tools.values():
|
||||
# Only query the first tool in each group
|
||||
first_tool = tools[0]
|
||||
future = executor.submit(
|
||||
cls.query_external_data_tool, current_app._get_current_object(), tenant_id, app_id, first_tool,
|
||||
inputs, query
|
||||
)
|
||||
for tool in tools:
|
||||
futures[future] = tool
|
||||
|
||||
for future in concurrent.futures.as_completed(futures):
|
||||
tool_key, result = future.result()
|
||||
if tool_key in grouped_tools:
|
||||
for tool in grouped_tools[tool_key]:
|
||||
results[tool['variable']] = result
|
||||
|
||||
inputs.update(results)
|
||||
return inputs
|
||||
|
||||
@classmethod
|
||||
def query_external_data_tool(cls, flask_app: Flask, tenant_id: str, app_id: str, external_data_tool: dict,
|
||||
inputs: dict, query: str) -> Tuple[Optional[str], Optional[str]]:
|
||||
with flask_app.app_context():
|
||||
tool_variable = external_data_tool.get("variable")
|
||||
tool_type = external_data_tool.get("type")
|
||||
tool_config = external_data_tool.get("config")
|
||||
|
||||
external_data_tool_factory = ExternalDataToolFactory(
|
||||
name=tool_type,
|
||||
tenant_id=tenant_id,
|
||||
app_id=app_id,
|
||||
variable=tool_variable,
|
||||
config=tool_config
|
||||
)
|
||||
|
||||
# query external data tool
|
||||
result = external_data_tool_factory.query(
|
||||
inputs=inputs,
|
||||
query=query
|
||||
)
|
||||
|
||||
tool_key = (external_data_tool.get("type"), json.dumps(external_data_tool.get("config"), sort_keys=True))
|
||||
|
||||
return tool_key, result
|
||||
|
||||
@classmethod
|
||||
def get_query_for_agent(cls, app: App, app_model_config: AppModelConfig, query: str, inputs: dict) -> str:
|
||||
if app.mode != 'completion':
|
||||
return query
|
||||
|
||||
|
||||
return inputs.get(app_model_config.dataset_query_variable, "")
|
||||
|
||||
@classmethod
|
||||
@@ -159,15 +264,33 @@ class Completion:
|
||||
conversation_message_task: ConversationMessageTask,
|
||||
memory: Optional[ReadOnlyConversationTokenDBBufferSharedMemory],
|
||||
fake_response: Optional[str]):
|
||||
prompt_transform = PromptTransform()
|
||||
|
||||
# get llm prompt
|
||||
prompt_messages, stop_words = model_instance.get_prompt(
|
||||
mode=mode,
|
||||
pre_prompt=app_model_config.pre_prompt,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
context=agent_execute_result.output if agent_execute_result else None,
|
||||
memory=memory
|
||||
)
|
||||
if app_model_config.prompt_type == 'simple':
|
||||
prompt_messages, stop_words = prompt_transform.get_prompt(
|
||||
mode=mode,
|
||||
pre_prompt=app_model_config.pre_prompt,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
context=agent_execute_result.output if agent_execute_result else None,
|
||||
memory=memory,
|
||||
model_instance=model_instance
|
||||
)
|
||||
else:
|
||||
prompt_messages = prompt_transform.get_advanced_prompt(
|
||||
app_mode=mode,
|
||||
app_model_config=app_model_config,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
context=agent_execute_result.output if agent_execute_result else None,
|
||||
memory=memory,
|
||||
model_instance=model_instance
|
||||
)
|
||||
|
||||
model_config = app_model_config.model_dict
|
||||
completion_params = model_config.get("completion_params", {})
|
||||
stop_words = completion_params.get("stop", [])
|
||||
|
||||
cls.recale_llm_max_tokens(
|
||||
model_instance=model_instance,
|
||||
@@ -176,7 +299,7 @@ class Completion:
|
||||
|
||||
response = model_instance.run(
|
||||
messages=prompt_messages,
|
||||
stop=stop_words,
|
||||
stop=stop_words if stop_words else None,
|
||||
callbacks=[LLMCallbackHandler(model_instance, conversation_message_task)],
|
||||
fake_response=fake_response
|
||||
)
|
||||
@@ -227,15 +350,30 @@ class Completion:
|
||||
if max_tokens is None:
|
||||
max_tokens = 0
|
||||
|
||||
prompt_transform = PromptTransform()
|
||||
prompt_messages = []
|
||||
|
||||
# get prompt without memory and context
|
||||
prompt_messages, _ = model_instance.get_prompt(
|
||||
mode=mode,
|
||||
pre_prompt=app_model_config.pre_prompt,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
context=None,
|
||||
memory=None
|
||||
)
|
||||
if app_model_config.prompt_type == 'simple':
|
||||
prompt_messages, _ = prompt_transform.get_prompt(
|
||||
mode=mode,
|
||||
pre_prompt=app_model_config.pre_prompt,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
context=None,
|
||||
memory=None,
|
||||
model_instance=model_instance
|
||||
)
|
||||
else:
|
||||
prompt_messages = prompt_transform.get_advanced_prompt(
|
||||
app_mode=mode,
|
||||
app_model_config=app_model_config,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
context=None,
|
||||
memory=None,
|
||||
model_instance=model_instance
|
||||
)
|
||||
|
||||
prompt_tokens = model_instance.get_num_tokens(prompt_messages)
|
||||
rest_tokens = model_limited_tokens - max_tokens - prompt_tokens
|
||||
@@ -266,52 +404,3 @@ class Completion:
|
||||
model_kwargs = model_instance.get_model_kwargs()
|
||||
model_kwargs.max_tokens = max_tokens
|
||||
model_instance.set_model_kwargs(model_kwargs)
|
||||
|
||||
@classmethod
|
||||
def generate_more_like_this(cls, task_id: str, app: App, message: Message, pre_prompt: str,
|
||||
app_model_config: AppModelConfig, user: Account, streaming: bool):
|
||||
|
||||
final_model_instance = ModelFactory.get_text_generation_model_from_model_config(
|
||||
tenant_id=app.tenant_id,
|
||||
model_config=app_model_config.model_dict,
|
||||
streaming=streaming
|
||||
)
|
||||
|
||||
# get llm prompt
|
||||
old_prompt_messages, _ = final_model_instance.get_prompt(
|
||||
mode='completion',
|
||||
pre_prompt=pre_prompt,
|
||||
inputs=message.inputs,
|
||||
query=message.query,
|
||||
context=None,
|
||||
memory=None
|
||||
)
|
||||
|
||||
original_completion = message.answer.strip()
|
||||
|
||||
prompt = MORE_LIKE_THIS_GENERATE_PROMPT
|
||||
prompt = prompt.format(prompt=old_prompt_messages[0].content, original_completion=original_completion)
|
||||
|
||||
prompt_messages = [PromptMessage(content=prompt)]
|
||||
|
||||
conversation_message_task = ConversationMessageTask(
|
||||
task_id=task_id,
|
||||
app=app,
|
||||
app_model_config=app_model_config,
|
||||
user=user,
|
||||
inputs=message.inputs,
|
||||
query=message.query,
|
||||
is_override=True if message.override_model_configs else False,
|
||||
streaming=streaming,
|
||||
model_instance=final_model_instance
|
||||
)
|
||||
|
||||
cls.recale_llm_max_tokens(
|
||||
model_instance=final_model_instance,
|
||||
prompt_messages=prompt_messages
|
||||
)
|
||||
|
||||
final_model_instance.run(
|
||||
messages=prompt_messages,
|
||||
callbacks=[LLMCallbackHandler(final_model_instance, conversation_message_task)]
|
||||
)
|
||||
|
||||
@@ -10,7 +10,7 @@ from core.model_providers.model_factory import ModelFactory
|
||||
from core.model_providers.models.entity.message import to_prompt_messages, MessageType
|
||||
from core.model_providers.models.llm.base import BaseLLM
|
||||
from core.prompt.prompt_builder import PromptBuilder
|
||||
from core.prompt.prompt_template import JinjaPromptTemplate
|
||||
from core.prompt.prompt_template import PromptTemplateParser
|
||||
from events.message_event import message_was_created
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
@@ -74,10 +74,10 @@ class ConversationMessageTask:
|
||||
if self.mode == 'chat':
|
||||
introduction = self.app_model_config.opening_statement
|
||||
if introduction:
|
||||
prompt_template = JinjaPromptTemplate.from_template(template=introduction)
|
||||
prompt_inputs = {k: self.inputs[k] for k in prompt_template.input_variables if k in self.inputs}
|
||||
prompt_template = PromptTemplateParser(template=introduction)
|
||||
prompt_inputs = {k: self.inputs[k] for k in prompt_template.variable_keys if k in self.inputs}
|
||||
try:
|
||||
introduction = prompt_template.format(**prompt_inputs)
|
||||
introduction = prompt_template.format(prompt_inputs)
|
||||
except KeyError:
|
||||
pass
|
||||
|
||||
@@ -150,12 +150,12 @@ class ConversationMessageTask:
|
||||
message_tokens = llm_message.prompt_tokens
|
||||
answer_tokens = llm_message.completion_tokens
|
||||
|
||||
message_unit_price = self.model_instance.get_tokens_unit_price(MessageType.HUMAN)
|
||||
message_price_unit = self.model_instance.get_price_unit(MessageType.HUMAN)
|
||||
message_unit_price = self.model_instance.get_tokens_unit_price(MessageType.USER)
|
||||
message_price_unit = self.model_instance.get_price_unit(MessageType.USER)
|
||||
answer_unit_price = self.model_instance.get_tokens_unit_price(MessageType.ASSISTANT)
|
||||
answer_price_unit = self.model_instance.get_price_unit(MessageType.ASSISTANT)
|
||||
|
||||
message_total_price = self.model_instance.calc_tokens_price(message_tokens, MessageType.HUMAN)
|
||||
message_total_price = self.model_instance.calc_tokens_price(message_tokens, MessageType.USER)
|
||||
answer_total_price = self.model_instance.calc_tokens_price(answer_tokens, MessageType.ASSISTANT)
|
||||
total_price = message_total_price + answer_total_price
|
||||
|
||||
@@ -163,7 +163,7 @@ class ConversationMessageTask:
|
||||
self.message.message_tokens = message_tokens
|
||||
self.message.message_unit_price = message_unit_price
|
||||
self.message.message_price_unit = message_price_unit
|
||||
self.message.answer = PromptBuilder.process_template(
|
||||
self.message.answer = PromptTemplateParser.remove_template_variables(
|
||||
llm_message.completion.strip()) if llm_message.completion else ''
|
||||
self.message.answer_tokens = answer_tokens
|
||||
self.message.answer_unit_price = answer_unit_price
|
||||
@@ -226,15 +226,15 @@ class ConversationMessageTask:
|
||||
|
||||
def on_agent_end(self, message_agent_thought: MessageAgentThought, agent_model_instance: BaseLLM,
|
||||
agent_loop: AgentLoop):
|
||||
agent_message_unit_price = agent_model_instance.get_tokens_unit_price(MessageType.HUMAN)
|
||||
agent_message_price_unit = agent_model_instance.get_price_unit(MessageType.HUMAN)
|
||||
agent_message_unit_price = agent_model_instance.get_tokens_unit_price(MessageType.USER)
|
||||
agent_message_price_unit = agent_model_instance.get_price_unit(MessageType.USER)
|
||||
agent_answer_unit_price = agent_model_instance.get_tokens_unit_price(MessageType.ASSISTANT)
|
||||
agent_answer_price_unit = agent_model_instance.get_price_unit(MessageType.ASSISTANT)
|
||||
|
||||
loop_message_tokens = agent_loop.prompt_tokens
|
||||
loop_answer_tokens = agent_loop.completion_tokens
|
||||
|
||||
loop_message_total_price = agent_model_instance.calc_tokens_price(loop_message_tokens, MessageType.HUMAN)
|
||||
loop_message_total_price = agent_model_instance.calc_tokens_price(loop_message_tokens, MessageType.USER)
|
||||
loop_answer_total_price = agent_model_instance.calc_tokens_price(loop_answer_tokens, MessageType.ASSISTANT)
|
||||
loop_total_price = loop_message_total_price + loop_answer_total_price
|
||||
|
||||
@@ -290,6 +290,10 @@ class ConversationMessageTask:
|
||||
db.session.commit()
|
||||
self.retriever_resource = resource
|
||||
|
||||
def on_message_replace(self, text: str):
|
||||
if text is not None:
|
||||
self._pub_handler.pub_message_replace(text)
|
||||
|
||||
def message_end(self):
|
||||
self._pub_handler.pub_message_end(self.retriever_resource)
|
||||
|
||||
@@ -342,6 +346,24 @@ class PubHandler:
|
||||
self.pub_end()
|
||||
raise ConversationTaskStoppedException()
|
||||
|
||||
def pub_message_replace(self, text: str):
|
||||
content = {
|
||||
'event': 'message_replace',
|
||||
'data': {
|
||||
'task_id': self._task_id,
|
||||
'message_id': str(self._message.id),
|
||||
'text': text,
|
||||
'mode': self._conversation.mode,
|
||||
'conversation_id': str(self._conversation.id)
|
||||
}
|
||||
}
|
||||
|
||||
redis_client.publish(self._channel, json.dumps(content))
|
||||
|
||||
if self._is_stopped():
|
||||
self.pub_end()
|
||||
raise ConversationTaskStoppedException()
|
||||
|
||||
def pub_chain(self, message_chain: MessageChain):
|
||||
if self._chain_pub:
|
||||
content = {
|
||||
@@ -443,3 +465,7 @@ class PubHandler:
|
||||
|
||||
class ConversationTaskStoppedException(Exception):
|
||||
pass
|
||||
|
||||
|
||||
class ConversationTaskInterruptException(Exception):
|
||||
pass
|
||||
|
||||
0
api/core/extension/__init__.py
Normal file
0
api/core/extension/__init__.py
Normal file
62
api/core/extension/api_based_extension_requestor.py
Normal file
62
api/core/extension/api_based_extension_requestor.py
Normal file
@@ -0,0 +1,62 @@
|
||||
import os
|
||||
|
||||
import requests
|
||||
|
||||
from models.api_based_extension import APIBasedExtensionPoint
|
||||
|
||||
|
||||
class APIBasedExtensionRequestor:
|
||||
timeout: (int, int) = (5, 60)
|
||||
"""timeout for request connect and read"""
|
||||
|
||||
def __init__(self, api_endpoint: str, api_key: str) -> None:
|
||||
self.api_endpoint = api_endpoint
|
||||
self.api_key = api_key
|
||||
|
||||
def request(self, point: APIBasedExtensionPoint, params: dict) -> dict:
|
||||
"""
|
||||
Request the api.
|
||||
|
||||
:param point: the api point
|
||||
:param params: the request params
|
||||
:return: the response json
|
||||
"""
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": "Bearer {}".format(self.api_key)
|
||||
}
|
||||
|
||||
url = self.api_endpoint
|
||||
|
||||
try:
|
||||
# proxy support for security
|
||||
proxies = None
|
||||
if os.environ.get("API_BASED_EXTENSION_HTTP_PROXY") and os.environ.get("API_BASED_EXTENSION_HTTPS_PROXY"):
|
||||
proxies = {
|
||||
'http': os.environ.get("API_BASED_EXTENSION_HTTP_PROXY"),
|
||||
'https': os.environ.get("API_BASED_EXTENSION_HTTPS_PROXY"),
|
||||
}
|
||||
|
||||
response = requests.request(
|
||||
method='POST',
|
||||
url=url,
|
||||
json={
|
||||
'point': point.value,
|
||||
'params': params
|
||||
},
|
||||
headers=headers,
|
||||
timeout=self.timeout,
|
||||
proxies=proxies
|
||||
)
|
||||
except requests.exceptions.Timeout:
|
||||
raise ValueError("request timeout")
|
||||
except requests.exceptions.ConnectionError:
|
||||
raise ValueError("request connection error")
|
||||
|
||||
if response.status_code != 200:
|
||||
raise ValueError("request error, status_code: {}, content: {}".format(
|
||||
response.status_code,
|
||||
response.text[:100]
|
||||
))
|
||||
|
||||
return response.json()
|
||||
111
api/core/extension/extensible.py
Normal file
111
api/core/extension/extensible.py
Normal file
@@ -0,0 +1,111 @@
|
||||
import enum
|
||||
import importlib.util
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
from collections import OrderedDict
|
||||
from typing import Any, Optional
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class ExtensionModule(enum.Enum):
|
||||
MODERATION = 'moderation'
|
||||
EXTERNAL_DATA_TOOL = 'external_data_tool'
|
||||
|
||||
|
||||
class ModuleExtension(BaseModel):
|
||||
extension_class: Any
|
||||
name: str
|
||||
label: Optional[dict] = None
|
||||
form_schema: Optional[list] = None
|
||||
builtin: bool = True
|
||||
position: Optional[int] = None
|
||||
|
||||
|
||||
class Extensible:
|
||||
module: ExtensionModule
|
||||
|
||||
name: str
|
||||
tenant_id: str
|
||||
config: Optional[dict] = None
|
||||
|
||||
def __init__(self, tenant_id: str, config: Optional[dict] = None) -> None:
|
||||
self.tenant_id = tenant_id
|
||||
self.config = config
|
||||
|
||||
@classmethod
|
||||
def scan_extensions(cls):
|
||||
extensions = {}
|
||||
|
||||
# get the path of the current class
|
||||
current_path = os.path.abspath(cls.__module__.replace(".", os.path.sep) + '.py')
|
||||
current_dir_path = os.path.dirname(current_path)
|
||||
|
||||
# traverse subdirectories
|
||||
for subdir_name in os.listdir(current_dir_path):
|
||||
if subdir_name.startswith('__'):
|
||||
continue
|
||||
|
||||
subdir_path = os.path.join(current_dir_path, subdir_name)
|
||||
extension_name = subdir_name
|
||||
if os.path.isdir(subdir_path):
|
||||
file_names = os.listdir(subdir_path)
|
||||
|
||||
# is builtin extension, builtin extension
|
||||
# in the front-end page and business logic, there are special treatments.
|
||||
builtin = False
|
||||
position = None
|
||||
if '__builtin__' in file_names:
|
||||
builtin = True
|
||||
|
||||
builtin_file_path = os.path.join(subdir_path, '__builtin__')
|
||||
if os.path.exists(builtin_file_path):
|
||||
with open(builtin_file_path, 'r') as f:
|
||||
position = int(f.read().strip())
|
||||
|
||||
if (extension_name + '.py') not in file_names:
|
||||
logging.warning(f"Missing {extension_name}.py file in {subdir_path}, Skip.")
|
||||
continue
|
||||
|
||||
# Dynamic loading {subdir_name}.py file and find the subclass of Extensible
|
||||
py_path = os.path.join(subdir_path, extension_name + '.py')
|
||||
spec = importlib.util.spec_from_file_location(extension_name, py_path)
|
||||
mod = importlib.util.module_from_spec(spec)
|
||||
spec.loader.exec_module(mod)
|
||||
|
||||
extension_class = None
|
||||
for name, obj in vars(mod).items():
|
||||
if isinstance(obj, type) and issubclass(obj, cls) and obj != cls:
|
||||
extension_class = obj
|
||||
break
|
||||
|
||||
if not extension_class:
|
||||
logging.warning(f"Missing subclass of {cls.__name__} in {py_path}, Skip.")
|
||||
continue
|
||||
|
||||
json_data = {}
|
||||
if not builtin:
|
||||
if 'schema.json' not in file_names:
|
||||
logging.warning(f"Missing schema.json file in {subdir_path}, Skip.")
|
||||
continue
|
||||
|
||||
json_path = os.path.join(subdir_path, 'schema.json')
|
||||
json_data = {}
|
||||
if os.path.exists(json_path):
|
||||
with open(json_path, 'r') as f:
|
||||
json_data = json.load(f)
|
||||
|
||||
extensions[extension_name] = ModuleExtension(
|
||||
extension_class=extension_class,
|
||||
name=extension_name,
|
||||
label=json_data.get('label'),
|
||||
form_schema=json_data.get('form_schema'),
|
||||
builtin=builtin,
|
||||
position=position
|
||||
)
|
||||
|
||||
sorted_items = sorted(extensions.items(), key=lambda x: (x[1].position is None, x[1].position))
|
||||
sorted_extensions = OrderedDict(sorted_items)
|
||||
|
||||
return sorted_extensions
|
||||
47
api/core/extension/extension.py
Normal file
47
api/core/extension/extension.py
Normal file
@@ -0,0 +1,47 @@
|
||||
from core.extension.extensible import ModuleExtension, ExtensionModule
|
||||
from core.external_data_tool.base import ExternalDataTool
|
||||
from core.moderation.base import Moderation
|
||||
|
||||
|
||||
class Extension:
|
||||
__module_extensions: dict[str, dict[str, ModuleExtension]] = {}
|
||||
|
||||
module_classes = {
|
||||
ExtensionModule.MODERATION: Moderation,
|
||||
ExtensionModule.EXTERNAL_DATA_TOOL: ExternalDataTool
|
||||
}
|
||||
|
||||
def init(self):
|
||||
for module, module_class in self.module_classes.items():
|
||||
self.__module_extensions[module.value] = module_class.scan_extensions()
|
||||
|
||||
def module_extensions(self, module: str) -> list[ModuleExtension]:
|
||||
module_extensions = self.__module_extensions.get(module)
|
||||
|
||||
if not module_extensions:
|
||||
raise ValueError(f"Extension Module {module} not found")
|
||||
|
||||
return list(module_extensions.values())
|
||||
|
||||
def module_extension(self, module: ExtensionModule, extension_name: str) -> ModuleExtension:
|
||||
module_extensions = self.__module_extensions.get(module.value)
|
||||
|
||||
if not module_extensions:
|
||||
raise ValueError(f"Extension Module {module} not found")
|
||||
|
||||
module_extension = module_extensions.get(extension_name)
|
||||
|
||||
if not module_extension:
|
||||
raise ValueError(f"Extension {extension_name} not found")
|
||||
|
||||
return module_extension
|
||||
|
||||
def extension_class(self, module: ExtensionModule, extension_name: str) -> type:
|
||||
module_extension = self.module_extension(module, extension_name)
|
||||
return module_extension.extension_class
|
||||
|
||||
def validate_form_schema(self, module: ExtensionModule, extension_name: str, config: dict) -> None:
|
||||
module_extension = self.module_extension(module, extension_name)
|
||||
form_schema = module_extension.form_schema
|
||||
|
||||
# TODO validate form_schema
|
||||
0
api/core/external_data_tool/__init__.py
Normal file
0
api/core/external_data_tool/__init__.py
Normal file
1
api/core/external_data_tool/api/__builtin__
Normal file
1
api/core/external_data_tool/api/__builtin__
Normal file
@@ -0,0 +1 @@
|
||||
1
|
||||
0
api/core/external_data_tool/api/__init__.py
Normal file
0
api/core/external_data_tool/api/__init__.py
Normal file
92
api/core/external_data_tool/api/api.py
Normal file
92
api/core/external_data_tool/api/api.py
Normal file
@@ -0,0 +1,92 @@
|
||||
from typing import Optional
|
||||
|
||||
from core.extension.api_based_extension_requestor import APIBasedExtensionRequestor
|
||||
from core.external_data_tool.base import ExternalDataTool
|
||||
from core.helper import encrypter
|
||||
from extensions.ext_database import db
|
||||
from models.api_based_extension import APIBasedExtension, APIBasedExtensionPoint
|
||||
|
||||
|
||||
class ApiExternalDataTool(ExternalDataTool):
|
||||
"""
|
||||
The api external data tool.
|
||||
"""
|
||||
|
||||
name: str = "api"
|
||||
"""the unique name of external data tool"""
|
||||
|
||||
@classmethod
|
||||
def validate_config(cls, tenant_id: str, config: dict) -> None:
|
||||
"""
|
||||
Validate the incoming form config data.
|
||||
|
||||
:param tenant_id: the id of workspace
|
||||
:param config: the form config data
|
||||
:return:
|
||||
"""
|
||||
# own validation logic
|
||||
api_based_extension_id = config.get("api_based_extension_id")
|
||||
if not api_based_extension_id:
|
||||
raise ValueError("api_based_extension_id is required")
|
||||
|
||||
# get api_based_extension
|
||||
api_based_extension = db.session.query(APIBasedExtension).filter(
|
||||
APIBasedExtension.tenant_id == tenant_id,
|
||||
APIBasedExtension.id == api_based_extension_id
|
||||
).first()
|
||||
|
||||
if not api_based_extension:
|
||||
raise ValueError("api_based_extension_id is invalid")
|
||||
|
||||
def query(self, inputs: dict, query: Optional[str] = None) -> str:
|
||||
"""
|
||||
Query the external data tool.
|
||||
|
||||
:param inputs: user inputs
|
||||
:param query: the query of chat app
|
||||
:return: the tool query result
|
||||
"""
|
||||
# get params from config
|
||||
api_based_extension_id = self.config.get("api_based_extension_id")
|
||||
|
||||
# get api_based_extension
|
||||
api_based_extension = db.session.query(APIBasedExtension).filter(
|
||||
APIBasedExtension.tenant_id == self.tenant_id,
|
||||
APIBasedExtension.id == api_based_extension_id
|
||||
).first()
|
||||
|
||||
if not api_based_extension:
|
||||
raise ValueError("[External data tool] API query failed, variable: {}, "
|
||||
"error: api_based_extension_id is invalid"
|
||||
.format(self.config.get('variable')))
|
||||
|
||||
# decrypt api_key
|
||||
api_key = encrypter.decrypt_token(
|
||||
tenant_id=self.tenant_id,
|
||||
token=api_based_extension.api_key
|
||||
)
|
||||
|
||||
try:
|
||||
# request api
|
||||
requestor = APIBasedExtensionRequestor(
|
||||
api_endpoint=api_based_extension.api_endpoint,
|
||||
api_key=api_key
|
||||
)
|
||||
except Exception as e:
|
||||
raise ValueError("[External data tool] API query failed, variable: {}, error: {}".format(
|
||||
self.config.get('variable'),
|
||||
e
|
||||
))
|
||||
|
||||
response_json = requestor.request(point=APIBasedExtensionPoint.APP_EXTERNAL_DATA_TOOL_QUERY, params={
|
||||
'app_id': self.app_id,
|
||||
'tool_variable': self.variable,
|
||||
'inputs': inputs,
|
||||
'query': query
|
||||
})
|
||||
|
||||
if 'result' not in response_json:
|
||||
raise ValueError("[External data tool] API query failed, variable: {}, error: result not found in response"
|
||||
.format(self.config.get('variable')))
|
||||
|
||||
return response_json['result']
|
||||
45
api/core/external_data_tool/base.py
Normal file
45
api/core/external_data_tool/base.py
Normal file
@@ -0,0 +1,45 @@
|
||||
from abc import abstractmethod, ABC
|
||||
from typing import Optional
|
||||
|
||||
from core.extension.extensible import Extensible, ExtensionModule
|
||||
|
||||
|
||||
class ExternalDataTool(Extensible, ABC):
|
||||
"""
|
||||
The base class of external data tool.
|
||||
"""
|
||||
|
||||
module: ExtensionModule = ExtensionModule.EXTERNAL_DATA_TOOL
|
||||
|
||||
app_id: str
|
||||
"""the id of app"""
|
||||
variable: str
|
||||
"""the tool variable name of app tool"""
|
||||
|
||||
def __init__(self, tenant_id: str, app_id: str, variable: str, config: Optional[dict] = None) -> None:
|
||||
super().__init__(tenant_id, config)
|
||||
self.app_id = app_id
|
||||
self.variable = variable
|
||||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
def validate_config(cls, tenant_id: str, config: dict) -> None:
|
||||
"""
|
||||
Validate the incoming form config data.
|
||||
|
||||
:param tenant_id: the id of workspace
|
||||
:param config: the form config data
|
||||
:return:
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def query(self, inputs: dict, query: Optional[str] = None) -> str:
|
||||
"""
|
||||
Query the external data tool.
|
||||
|
||||
:param inputs: user inputs
|
||||
:param query: the query of chat app
|
||||
:return: the tool query result
|
||||
"""
|
||||
raise NotImplementedError
|
||||
40
api/core/external_data_tool/factory.py
Normal file
40
api/core/external_data_tool/factory.py
Normal file
@@ -0,0 +1,40 @@
|
||||
from typing import Optional
|
||||
|
||||
from core.extension.extensible import ExtensionModule
|
||||
from extensions.ext_code_based_extension import code_based_extension
|
||||
|
||||
|
||||
class ExternalDataToolFactory:
|
||||
|
||||
def __init__(self, name: str, tenant_id: str, app_id: str, variable: str, config: dict) -> None:
|
||||
extension_class = code_based_extension.extension_class(ExtensionModule.EXTERNAL_DATA_TOOL, name)
|
||||
self.__extension_instance = extension_class(
|
||||
tenant_id=tenant_id,
|
||||
app_id=app_id,
|
||||
variable=variable,
|
||||
config=config
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def validate_config(cls, name: str, tenant_id: str, config: dict) -> None:
|
||||
"""
|
||||
Validate the incoming form config data.
|
||||
|
||||
:param name: the name of external data tool
|
||||
:param tenant_id: the id of workspace
|
||||
:param config: the form config data
|
||||
:return:
|
||||
"""
|
||||
code_based_extension.validate_form_schema(ExtensionModule.EXTERNAL_DATA_TOOL, name, config)
|
||||
extension_class = code_based_extension.extension_class(ExtensionModule.EXTERNAL_DATA_TOOL, name)
|
||||
extension_class.validate_config(tenant_id, config)
|
||||
|
||||
def query(self, inputs: dict, query: Optional[str] = None) -> str:
|
||||
"""
|
||||
Query the external data tool.
|
||||
|
||||
:param inputs: user inputs
|
||||
:param query: the query of chat app
|
||||
:return: the tool query result
|
||||
"""
|
||||
return self.__extension_instance.query(inputs, query)
|
||||
@@ -10,9 +10,8 @@ from core.model_providers.models.entity.model_params import ModelKwargs
|
||||
from core.prompt.output_parser.rule_config_generator import RuleConfigGeneratorOutputParser
|
||||
|
||||
from core.prompt.output_parser.suggested_questions_after_answer import SuggestedQuestionsAfterAnswerOutputParser
|
||||
from core.prompt.prompt_template import JinjaPromptTemplate, OutLinePromptTemplate
|
||||
from core.prompt.prompts import CONVERSATION_TITLE_PROMPT, CONVERSATION_SUMMARY_PROMPT, INTRODUCTION_GENERATE_PROMPT, \
|
||||
GENERATOR_QA_PROMPT
|
||||
from core.prompt.prompt_template import PromptTemplateParser
|
||||
from core.prompt.prompts import CONVERSATION_TITLE_PROMPT, GENERATOR_QA_PROMPT
|
||||
|
||||
|
||||
class LLMGenerator:
|
||||
@@ -44,78 +43,19 @@ class LLMGenerator:
|
||||
|
||||
return answer.strip()
|
||||
|
||||
@classmethod
|
||||
def generate_conversation_summary(cls, tenant_id: str, messages):
|
||||
max_tokens = 200
|
||||
|
||||
model_instance = ModelFactory.get_text_generation_model(
|
||||
tenant_id=tenant_id,
|
||||
model_kwargs=ModelKwargs(
|
||||
max_tokens=max_tokens
|
||||
)
|
||||
)
|
||||
|
||||
prompt = CONVERSATION_SUMMARY_PROMPT
|
||||
prompt_with_empty_context = prompt.format(context='')
|
||||
prompt_tokens = model_instance.get_num_tokens([PromptMessage(content=prompt_with_empty_context)])
|
||||
max_context_token_length = model_instance.model_rules.max_tokens.max
|
||||
max_context_token_length = max_context_token_length if max_context_token_length else 1500
|
||||
rest_tokens = max_context_token_length - prompt_tokens - max_tokens - 1
|
||||
|
||||
context = ''
|
||||
for message in messages:
|
||||
if not message.answer:
|
||||
continue
|
||||
|
||||
if len(message.query) > 2000:
|
||||
query = message.query[:300] + "...[TRUNCATED]..." + message.query[-300:]
|
||||
else:
|
||||
query = message.query
|
||||
|
||||
if len(message.answer) > 2000:
|
||||
answer = message.answer[:300] + "...[TRUNCATED]..." + message.answer[-300:]
|
||||
else:
|
||||
answer = message.answer
|
||||
|
||||
message_qa_text = "\n\nHuman:" + query + "\n\nAssistant:" + answer
|
||||
if rest_tokens - model_instance.get_num_tokens([PromptMessage(content=context + message_qa_text)]) > 0:
|
||||
context += message_qa_text
|
||||
|
||||
if not context:
|
||||
return '[message too long, no summary]'
|
||||
|
||||
prompt = prompt.format(context=context)
|
||||
prompts = [PromptMessage(content=prompt)]
|
||||
response = model_instance.run(prompts)
|
||||
answer = response.content
|
||||
return answer.strip()
|
||||
|
||||
@classmethod
|
||||
def generate_introduction(cls, tenant_id: str, pre_prompt: str):
|
||||
prompt = INTRODUCTION_GENERATE_PROMPT
|
||||
prompt = prompt.format(prompt=pre_prompt)
|
||||
|
||||
model_instance = ModelFactory.get_text_generation_model(
|
||||
tenant_id=tenant_id
|
||||
)
|
||||
|
||||
prompts = [PromptMessage(content=prompt)]
|
||||
response = model_instance.run(prompts)
|
||||
answer = response.content
|
||||
return answer.strip()
|
||||
|
||||
@classmethod
|
||||
def generate_suggested_questions_after_answer(cls, tenant_id: str, histories: str):
|
||||
output_parser = SuggestedQuestionsAfterAnswerOutputParser()
|
||||
format_instructions = output_parser.get_format_instructions()
|
||||
|
||||
prompt = JinjaPromptTemplate(
|
||||
template="{{histories}}\n{{format_instructions}}\nquestions:\n",
|
||||
input_variables=["histories"],
|
||||
partial_variables={"format_instructions": format_instructions}
|
||||
prompt_template = PromptTemplateParser(
|
||||
template="{{histories}}\n{{format_instructions}}\nquestions:\n"
|
||||
)
|
||||
|
||||
_input = prompt.format_prompt(histories=histories)
|
||||
prompt = prompt_template.format({
|
||||
"histories": histories,
|
||||
"format_instructions": format_instructions
|
||||
})
|
||||
|
||||
try:
|
||||
model_instance = ModelFactory.get_text_generation_model(
|
||||
@@ -128,10 +68,10 @@ class LLMGenerator:
|
||||
except ProviderTokenNotInitError:
|
||||
return []
|
||||
|
||||
prompts = [PromptMessage(content=_input.to_string())]
|
||||
prompt_messages = [PromptMessage(content=prompt)]
|
||||
|
||||
try:
|
||||
output = model_instance.run(prompts)
|
||||
output = model_instance.run(prompt_messages)
|
||||
questions = output_parser.parse(output.content)
|
||||
except LLMError:
|
||||
questions = []
|
||||
@@ -145,19 +85,21 @@ class LLMGenerator:
|
||||
def generate_rule_config(cls, tenant_id: str, audiences: str, hoping_to_solve: str) -> dict:
|
||||
output_parser = RuleConfigGeneratorOutputParser()
|
||||
|
||||
prompt = OutLinePromptTemplate(
|
||||
template=output_parser.get_format_instructions(),
|
||||
input_variables=["audiences", "hoping_to_solve"],
|
||||
partial_variables={
|
||||
"variable": '{variable}',
|
||||
"lanA": '{lanA}',
|
||||
"lanB": '{lanB}',
|
||||
"topic": '{topic}'
|
||||
},
|
||||
validate_template=False
|
||||
prompt_template = PromptTemplateParser(
|
||||
template=output_parser.get_format_instructions()
|
||||
)
|
||||
|
||||
_input = prompt.format_prompt(audiences=audiences, hoping_to_solve=hoping_to_solve)
|
||||
prompt = prompt_template.format(
|
||||
inputs={
|
||||
"audiences": audiences,
|
||||
"hoping_to_solve": hoping_to_solve,
|
||||
"variable": "{{variable}}",
|
||||
"lanA": "{{lanA}}",
|
||||
"lanB": "{{lanB}}",
|
||||
"topic": "{{topic}}"
|
||||
},
|
||||
remove_template_variables=False
|
||||
)
|
||||
|
||||
model_instance = ModelFactory.get_text_generation_model(
|
||||
tenant_id=tenant_id,
|
||||
@@ -167,10 +109,10 @@ class LLMGenerator:
|
||||
)
|
||||
)
|
||||
|
||||
prompts = [PromptMessage(content=_input.to_string())]
|
||||
prompt_messages = [PromptMessage(content=prompt)]
|
||||
|
||||
try:
|
||||
output = model_instance.run(prompts)
|
||||
output = model_instance.run(prompt_messages)
|
||||
rule_config = output_parser.parse(output.content)
|
||||
except LLMError as e:
|
||||
raise e
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import logging
|
||||
import random
|
||||
|
||||
import openai
|
||||
|
||||
@@ -16,19 +17,20 @@ def check_moderation(model_provider: BaseModelProvider, text: str) -> bool:
|
||||
length = 2000
|
||||
text_chunks = [text[i:i + length] for i in range(0, len(text), length)]
|
||||
|
||||
max_text_chunks = 32
|
||||
chunks = [text_chunks[i:i + max_text_chunks] for i in range(0, len(text_chunks), max_text_chunks)]
|
||||
if len(text_chunks) == 0:
|
||||
return True
|
||||
|
||||
for text_chunk in chunks:
|
||||
try:
|
||||
moderation_result = openai.Moderation.create(input=text_chunk,
|
||||
api_key=hosted_model_providers.openai.api_key)
|
||||
except Exception as ex:
|
||||
logging.exception(ex)
|
||||
raise LLMBadRequestError('Rate limit exceeded, please try again later.')
|
||||
text_chunk = random.choice(text_chunks)
|
||||
|
||||
for result in moderation_result.results:
|
||||
if result['flagged'] is True:
|
||||
return False
|
||||
try:
|
||||
moderation_result = openai.Moderation.create(input=text_chunk,
|
||||
api_key=hosted_model_providers.openai.api_key)
|
||||
except Exception as ex:
|
||||
logging.exception(ex)
|
||||
raise LLMBadRequestError('Rate limit exceeded, please try again later.')
|
||||
|
||||
for result in moderation_result.results:
|
||||
if result['flagged'] is True:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
@@ -167,8 +167,6 @@ class Milvus(VectorStore):
|
||||
self._init()
|
||||
|
||||
@property
|
||||
|
||||
|
||||
def embeddings(self) -> Embeddings:
|
||||
return self.embedding_func
|
||||
|
||||
|
||||
@@ -11,6 +11,7 @@ from flask import current_app, Flask
|
||||
from flask_login import current_user
|
||||
from langchain.schema import Document
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter
|
||||
from sqlalchemy.orm.exc import ObjectDeletedError
|
||||
|
||||
from core.data_loader.file_extractor import FileExtractor
|
||||
from core.data_loader.loader.notion import NotionLoader
|
||||
@@ -79,6 +80,8 @@ class IndexingRunner:
|
||||
dataset_document.error = str(e.description)
|
||||
dataset_document.stopped_at = datetime.datetime.utcnow()
|
||||
db.session.commit()
|
||||
except ObjectDeletedError:
|
||||
logging.warning('Document deleted, document id: {}'.format(dataset_document.id))
|
||||
except Exception as e:
|
||||
logging.exception("consume document failed")
|
||||
dataset_document.indexing_status = 'error'
|
||||
@@ -276,13 +279,14 @@ class IndexingRunner:
|
||||
)
|
||||
if len(preview_texts) > 0:
|
||||
# qa model document
|
||||
response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0], doc_language)
|
||||
response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0],
|
||||
doc_language)
|
||||
document_qa_list = self.format_split_text(response)
|
||||
return {
|
||||
"total_segments": total_segments * 20,
|
||||
"tokens": total_segments * 2000,
|
||||
"total_price": '{:f}'.format(
|
||||
text_generation_model.calc_tokens_price(total_segments * 2000, MessageType.HUMAN)),
|
||||
text_generation_model.calc_tokens_price(total_segments * 2000, MessageType.USER)),
|
||||
"currency": embedding_model.get_currency(),
|
||||
"qa_preview": document_qa_list,
|
||||
"preview": preview_texts
|
||||
@@ -372,13 +376,14 @@ class IndexingRunner:
|
||||
)
|
||||
if len(preview_texts) > 0:
|
||||
# qa model document
|
||||
response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0], doc_language)
|
||||
response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0],
|
||||
doc_language)
|
||||
document_qa_list = self.format_split_text(response)
|
||||
return {
|
||||
"total_segments": total_segments * 20,
|
||||
"tokens": total_segments * 2000,
|
||||
"total_price": '{:f}'.format(
|
||||
text_generation_model.calc_tokens_price(total_segments * 2000, MessageType.HUMAN)),
|
||||
text_generation_model.calc_tokens_price(total_segments * 2000, MessageType.USER)),
|
||||
"currency": embedding_model.get_currency(),
|
||||
"qa_preview": document_qa_list,
|
||||
"preview": preview_texts
|
||||
@@ -582,7 +587,6 @@ class IndexingRunner:
|
||||
|
||||
all_qa_documents.extend(format_documents)
|
||||
|
||||
|
||||
def _split_to_documents_for_estimate(self, text_docs: List[Document], splitter: TextSplitter,
|
||||
processing_rule: DatasetProcessRule) -> List[Document]:
|
||||
"""
|
||||
@@ -734,6 +738,9 @@ class IndexingRunner:
|
||||
count = DatasetDocument.query.filter_by(id=document_id, is_paused=True).count()
|
||||
if count > 0:
|
||||
raise DocumentIsPausedException()
|
||||
document = DatasetDocument.query.filter_by(id=document_id).first()
|
||||
if not document:
|
||||
raise DocumentIsDeletedPausedException()
|
||||
|
||||
update_params = {
|
||||
DatasetDocument.indexing_status: after_indexing_status
|
||||
@@ -781,3 +788,7 @@ class IndexingRunner:
|
||||
|
||||
class DocumentIsPausedException(Exception):
|
||||
pass
|
||||
|
||||
|
||||
class DocumentIsDeletedPausedException(Exception):
|
||||
pass
|
||||
|
||||
@@ -31,7 +31,7 @@ class ReadOnlyConversationTokenDBBufferSharedMemory(BaseChatMemory):
|
||||
|
||||
chat_messages: List[PromptMessage] = []
|
||||
for message in messages:
|
||||
chat_messages.append(PromptMessage(content=message.query, type=MessageType.HUMAN))
|
||||
chat_messages.append(PromptMessage(content=message.query, type=MessageType.USER))
|
||||
chat_messages.append(PromptMessage(content=message.answer, type=MessageType.ASSISTANT))
|
||||
|
||||
if not chat_messages:
|
||||
|
||||
@@ -211,6 +211,9 @@ class ModelProviderFactory:
|
||||
Provider.quota_type == ProviderQuotaType.TRIAL.value
|
||||
).first()
|
||||
|
||||
if provider.quota_limit == 0:
|
||||
return None
|
||||
|
||||
return provider
|
||||
|
||||
no_system_provider = True
|
||||
|
||||
@@ -1,8 +1,7 @@
|
||||
from core.third_party.langchain.embeddings.xinference_embedding import XinferenceEmbedding as XinferenceEmbeddings
|
||||
|
||||
from core.model_providers.error import LLMBadRequestError
|
||||
from core.model_providers.providers.base import BaseModelProvider
|
||||
from core.model_providers.models.embedding.base import BaseEmbedding
|
||||
from core.third_party.langchain.embeddings.xinference_embedding import XinferenceEmbeddings
|
||||
|
||||
|
||||
class XinferenceEmbedding(BaseEmbedding):
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import enum
|
||||
|
||||
from langchain.schema import HumanMessage, AIMessage, SystemMessage, BaseMessage
|
||||
from langchain.schema import HumanMessage, AIMessage, SystemMessage, BaseMessage, FunctionMessage
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
@@ -9,26 +9,31 @@ class LLMRunResult(BaseModel):
|
||||
prompt_tokens: int
|
||||
completion_tokens: int
|
||||
source: list = None
|
||||
function_call: dict = None
|
||||
|
||||
|
||||
class MessageType(enum.Enum):
|
||||
HUMAN = 'human'
|
||||
USER = 'user'
|
||||
ASSISTANT = 'assistant'
|
||||
SYSTEM = 'system'
|
||||
|
||||
|
||||
class PromptMessage(BaseModel):
|
||||
type: MessageType = MessageType.HUMAN
|
||||
type: MessageType = MessageType.USER
|
||||
content: str = ''
|
||||
function_call: dict = None
|
||||
|
||||
|
||||
def to_lc_messages(messages: list[PromptMessage]):
|
||||
lc_messages = []
|
||||
for message in messages:
|
||||
if message.type == MessageType.HUMAN:
|
||||
if message.type == MessageType.USER:
|
||||
lc_messages.append(HumanMessage(content=message.content))
|
||||
elif message.type == MessageType.ASSISTANT:
|
||||
lc_messages.append(AIMessage(content=message.content))
|
||||
additional_kwargs = {}
|
||||
if message.function_call:
|
||||
additional_kwargs['function_call'] = message.function_call
|
||||
lc_messages.append(AIMessage(content=message.content, additional_kwargs=additional_kwargs))
|
||||
elif message.type == MessageType.SYSTEM:
|
||||
lc_messages.append(SystemMessage(content=message.content))
|
||||
|
||||
@@ -39,11 +44,21 @@ def to_prompt_messages(messages: list[BaseMessage]):
|
||||
prompt_messages = []
|
||||
for message in messages:
|
||||
if isinstance(message, HumanMessage):
|
||||
prompt_messages.append(PromptMessage(content=message.content, type=MessageType.HUMAN))
|
||||
prompt_messages.append(PromptMessage(content=message.content, type=MessageType.USER))
|
||||
elif isinstance(message, AIMessage):
|
||||
prompt_messages.append(PromptMessage(content=message.content, type=MessageType.ASSISTANT))
|
||||
message_kwargs = {
|
||||
'content': message.content,
|
||||
'type': MessageType.ASSISTANT
|
||||
}
|
||||
|
||||
if 'function_call' in message.additional_kwargs:
|
||||
message_kwargs['function_call'] = message.additional_kwargs['function_call']
|
||||
|
||||
prompt_messages.append(PromptMessage(**message_kwargs))
|
||||
elif isinstance(message, SystemMessage):
|
||||
prompt_messages.append(PromptMessage(content=message.content, type=MessageType.SYSTEM))
|
||||
elif isinstance(message, FunctionMessage):
|
||||
prompt_messages.append(PromptMessage(content=message.content, type=MessageType.USER))
|
||||
return prompt_messages
|
||||
|
||||
|
||||
|
||||
@@ -81,7 +81,20 @@ class AzureOpenAIModel(BaseLLM):
|
||||
:return:
|
||||
"""
|
||||
prompts = self._get_prompt_from_messages(messages)
|
||||
return self._client.generate([prompts], stop, callbacks)
|
||||
generate_kwargs = {
|
||||
'stop': stop,
|
||||
'callbacks': callbacks
|
||||
}
|
||||
|
||||
if isinstance(prompts, str):
|
||||
generate_kwargs['prompts'] = [prompts]
|
||||
else:
|
||||
generate_kwargs['messages'] = [prompts]
|
||||
|
||||
if 'functions' in kwargs:
|
||||
generate_kwargs['functions'] = kwargs['functions']
|
||||
|
||||
return self._client.generate(**generate_kwargs)
|
||||
|
||||
@property
|
||||
def base_model_name(self) -> str:
|
||||
|
||||
@@ -37,12 +37,6 @@ class BaichuanModel(BaseLLM):
|
||||
prompts = self._get_prompt_from_messages(messages)
|
||||
return self._client.generate([prompts], stop, callbacks)
|
||||
|
||||
def prompt_file_name(self, mode: str) -> str:
|
||||
if mode == 'completion':
|
||||
return 'baichuan_completion'
|
||||
else:
|
||||
return 'baichuan_chat'
|
||||
|
||||
def get_num_tokens(self, messages: List[PromptMessage]) -> int:
|
||||
"""
|
||||
get num tokens of prompt messages.
|
||||
|
||||
@@ -1,27 +1,18 @@
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import time
|
||||
from abc import abstractmethod
|
||||
from typing import List, Optional, Any, Union, Tuple
|
||||
from typing import List, Optional, Any, Union
|
||||
import decimal
|
||||
import logging
|
||||
|
||||
from langchain.callbacks.manager import Callbacks
|
||||
from langchain.memory.chat_memory import BaseChatMemory
|
||||
from langchain.schema import LLMResult, SystemMessage, AIMessage, HumanMessage, BaseMessage, ChatGeneration
|
||||
from langchain.schema import LLMResult, BaseMessage, ChatGeneration
|
||||
|
||||
from core.callback_handler.std_out_callback_handler import DifyStreamingStdOutCallbackHandler, DifyStdOutCallbackHandler
|
||||
from core.helper import moderation
|
||||
from core.model_providers.models.base import BaseProviderModel
|
||||
from core.model_providers.models.entity.message import PromptMessage, MessageType, LLMRunResult, to_prompt_messages
|
||||
from core.model_providers.models.entity.message import PromptMessage, MessageType, LLMRunResult, to_lc_messages
|
||||
from core.model_providers.models.entity.model_params import ModelType, ModelKwargs, ModelMode, ModelKwargsRules
|
||||
from core.model_providers.providers.base import BaseModelProvider
|
||||
from core.prompt.prompt_builder import PromptBuilder
|
||||
from core.prompt.prompt_template import JinjaPromptTemplate
|
||||
from core.third_party.langchain.llms.fake import FakeLLM
|
||||
import logging
|
||||
|
||||
from extensions.ext_database import db
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -157,8 +148,11 @@ class BaseLLM(BaseProviderModel):
|
||||
except Exception as ex:
|
||||
raise self.handle_exceptions(ex)
|
||||
|
||||
function_call = None
|
||||
if isinstance(result.generations[0][0], ChatGeneration):
|
||||
completion_content = result.generations[0][0].message.content
|
||||
if 'function_call' in result.generations[0][0].message.additional_kwargs:
|
||||
function_call = result.generations[0][0].message.additional_kwargs.get('function_call')
|
||||
else:
|
||||
completion_content = result.generations[0][0].text
|
||||
|
||||
@@ -191,7 +185,8 @@ class BaseLLM(BaseProviderModel):
|
||||
return LLMRunResult(
|
||||
content=completion_content,
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens
|
||||
completion_tokens=completion_tokens,
|
||||
function_call=function_call
|
||||
)
|
||||
|
||||
@abstractmethod
|
||||
@@ -227,7 +222,7 @@ class BaseLLM(BaseProviderModel):
|
||||
:param message_type:
|
||||
:return:
|
||||
"""
|
||||
if message_type == MessageType.HUMAN or message_type == MessageType.SYSTEM:
|
||||
if message_type == MessageType.USER or message_type == MessageType.SYSTEM:
|
||||
unit_price = self.price_config['prompt']
|
||||
else:
|
||||
unit_price = self.price_config['completion']
|
||||
@@ -245,7 +240,7 @@ class BaseLLM(BaseProviderModel):
|
||||
:param message_type:
|
||||
:return: decimal.Decimal('0.0001')
|
||||
"""
|
||||
if message_type == MessageType.HUMAN or message_type == MessageType.SYSTEM:
|
||||
if message_type == MessageType.USER or message_type == MessageType.SYSTEM:
|
||||
unit_price = self.price_config['prompt']
|
||||
else:
|
||||
unit_price = self.price_config['completion']
|
||||
@@ -260,7 +255,7 @@ class BaseLLM(BaseProviderModel):
|
||||
:param message_type:
|
||||
:return: decimal.Decimal('0.000001')
|
||||
"""
|
||||
if message_type == MessageType.HUMAN or message_type == MessageType.SYSTEM:
|
||||
if message_type == MessageType.USER or message_type == MessageType.SYSTEM:
|
||||
price_unit = self.price_config['unit']
|
||||
else:
|
||||
price_unit = self.price_config['unit']
|
||||
@@ -315,121 +310,8 @@ class BaseLLM(BaseProviderModel):
|
||||
def support_streaming(self):
|
||||
return False
|
||||
|
||||
def get_prompt(self, mode: str,
|
||||
pre_prompt: str, inputs: dict,
|
||||
query: str,
|
||||
context: Optional[str],
|
||||
memory: Optional[BaseChatMemory]) -> \
|
||||
Tuple[List[PromptMessage], Optional[List[str]]]:
|
||||
prompt_rules = self._read_prompt_rules_from_file(self.prompt_file_name(mode))
|
||||
prompt, stops = self._get_prompt_and_stop(prompt_rules, pre_prompt, inputs, query, context, memory)
|
||||
return [PromptMessage(content=prompt)], stops
|
||||
|
||||
def prompt_file_name(self, mode: str) -> str:
|
||||
if mode == 'completion':
|
||||
return 'common_completion'
|
||||
else:
|
||||
return 'common_chat'
|
||||
|
||||
def _get_prompt_and_stop(self, prompt_rules: dict, pre_prompt: str, inputs: dict,
|
||||
query: str,
|
||||
context: Optional[str],
|
||||
memory: Optional[BaseChatMemory]) -> Tuple[str, Optional[list]]:
|
||||
context_prompt_content = ''
|
||||
if context and 'context_prompt' in prompt_rules:
|
||||
prompt_template = JinjaPromptTemplate.from_template(template=prompt_rules['context_prompt'])
|
||||
context_prompt_content = prompt_template.format(
|
||||
context=context
|
||||
)
|
||||
|
||||
pre_prompt_content = ''
|
||||
if pre_prompt:
|
||||
prompt_template = JinjaPromptTemplate.from_template(template=pre_prompt)
|
||||
prompt_inputs = {k: inputs[k] for k in prompt_template.input_variables if k in inputs}
|
||||
pre_prompt_content = prompt_template.format(
|
||||
**prompt_inputs
|
||||
)
|
||||
|
||||
prompt = ''
|
||||
for order in prompt_rules['system_prompt_orders']:
|
||||
if order == 'context_prompt':
|
||||
prompt += context_prompt_content
|
||||
elif order == 'pre_prompt':
|
||||
prompt += pre_prompt_content
|
||||
|
||||
query_prompt = prompt_rules['query_prompt'] if 'query_prompt' in prompt_rules else '{{query}}'
|
||||
|
||||
if memory and 'histories_prompt' in prompt_rules:
|
||||
# append chat histories
|
||||
tmp_human_message = PromptBuilder.to_human_message(
|
||||
prompt_content=prompt + query_prompt,
|
||||
inputs={
|
||||
'query': query
|
||||
}
|
||||
)
|
||||
|
||||
if self.model_rules.max_tokens.max:
|
||||
curr_message_tokens = self.get_num_tokens(to_prompt_messages([tmp_human_message]))
|
||||
max_tokens = self.model_kwargs.max_tokens
|
||||
rest_tokens = self.model_rules.max_tokens.max - max_tokens - curr_message_tokens
|
||||
rest_tokens = max(rest_tokens, 0)
|
||||
else:
|
||||
rest_tokens = 2000
|
||||
|
||||
memory.human_prefix = prompt_rules['human_prefix'] if 'human_prefix' in prompt_rules else 'Human'
|
||||
memory.ai_prefix = prompt_rules['assistant_prefix'] if 'assistant_prefix' in prompt_rules else 'Assistant'
|
||||
|
||||
histories = self._get_history_messages_from_memory(memory, rest_tokens)
|
||||
prompt_template = JinjaPromptTemplate.from_template(template=prompt_rules['histories_prompt'])
|
||||
histories_prompt_content = prompt_template.format(
|
||||
histories=histories
|
||||
)
|
||||
|
||||
prompt = ''
|
||||
for order in prompt_rules['system_prompt_orders']:
|
||||
if order == 'context_prompt':
|
||||
prompt += context_prompt_content
|
||||
elif order == 'pre_prompt':
|
||||
prompt += (pre_prompt_content + '\n') if pre_prompt_content else ''
|
||||
elif order == 'histories_prompt':
|
||||
prompt += histories_prompt_content
|
||||
|
||||
prompt_template = JinjaPromptTemplate.from_template(template=query_prompt)
|
||||
query_prompt_content = prompt_template.format(
|
||||
query=query
|
||||
)
|
||||
|
||||
prompt += query_prompt_content
|
||||
|
||||
prompt = re.sub(r'<\|.*?\|>', '', prompt)
|
||||
|
||||
stops = prompt_rules.get('stops')
|
||||
if stops is not None and len(stops) == 0:
|
||||
stops = None
|
||||
|
||||
return prompt, stops
|
||||
|
||||
def _read_prompt_rules_from_file(self, prompt_name: str) -> dict:
|
||||
# Get the absolute path of the subdirectory
|
||||
prompt_path = os.path.join(
|
||||
os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))),
|
||||
'prompt/generate_prompts')
|
||||
|
||||
json_file_path = os.path.join(prompt_path, f'{prompt_name}.json')
|
||||
# Open the JSON file and read its content
|
||||
with open(json_file_path, 'r') as json_file:
|
||||
return json.load(json_file)
|
||||
|
||||
def _get_history_messages_from_memory(self, memory: BaseChatMemory,
|
||||
max_token_limit: int) -> str:
|
||||
"""Get memory messages."""
|
||||
memory.max_token_limit = max_token_limit
|
||||
memory_key = memory.memory_variables[0]
|
||||
external_context = memory.load_memory_variables({})
|
||||
return external_context[memory_key]
|
||||
|
||||
def _get_prompt_from_messages(self, messages: List[PromptMessage],
|
||||
model_mode: Optional[ModelMode] = None) -> Union[str | List[BaseMessage]]:
|
||||
model_mode: Optional[ModelMode] = None) -> Union[str , List[BaseMessage]]:
|
||||
if not model_mode:
|
||||
model_mode = self.model_mode
|
||||
|
||||
@@ -442,16 +324,7 @@ class BaseLLM(BaseProviderModel):
|
||||
if len(messages) == 0:
|
||||
return []
|
||||
|
||||
chat_messages = []
|
||||
for message in messages:
|
||||
if message.type == MessageType.HUMAN:
|
||||
chat_messages.append(HumanMessage(content=message.content))
|
||||
elif message.type == MessageType.ASSISTANT:
|
||||
chat_messages.append(AIMessage(content=message.content))
|
||||
elif message.type == MessageType.SYSTEM:
|
||||
chat_messages.append(SystemMessage(content=message.content))
|
||||
|
||||
return chat_messages
|
||||
return to_lc_messages(messages)
|
||||
|
||||
def _to_model_kwargs_input(self, model_rules: ModelKwargsRules, model_kwargs: ModelKwargs) -> dict:
|
||||
"""
|
||||
|
||||
@@ -66,15 +66,6 @@ class HuggingfaceHubModel(BaseLLM):
|
||||
prompts = self._get_prompt_from_messages(messages)
|
||||
return self._client.get_num_tokens(prompts)
|
||||
|
||||
def prompt_file_name(self, mode: str) -> str:
|
||||
if 'baichuan' in self.name.lower():
|
||||
if mode == 'completion':
|
||||
return 'baichuan_completion'
|
||||
else:
|
||||
return 'baichuan_chat'
|
||||
else:
|
||||
return super().prompt_file_name(mode)
|
||||
|
||||
def _set_model_kwargs(self, model_kwargs: ModelKwargs):
|
||||
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, model_kwargs)
|
||||
self.client.model_kwargs = provider_model_kwargs
|
||||
|
||||
@@ -1,26 +1,23 @@
|
||||
import decimal
|
||||
from typing import List, Optional, Any
|
||||
|
||||
from langchain.callbacks.manager import Callbacks
|
||||
from langchain.llms import Minimax
|
||||
from langchain.schema import LLMResult
|
||||
|
||||
from core.model_providers.error import LLMBadRequestError
|
||||
from core.model_providers.models.llm.base import BaseLLM
|
||||
from core.model_providers.models.entity.message import PromptMessage, MessageType
|
||||
from core.model_providers.models.entity.message import PromptMessage
|
||||
from core.model_providers.models.entity.model_params import ModelMode, ModelKwargs
|
||||
from core.third_party.langchain.llms.minimax_llm import MinimaxChatLLM
|
||||
|
||||
|
||||
class MinimaxModel(BaseLLM):
|
||||
model_mode: ModelMode = ModelMode.COMPLETION
|
||||
model_mode: ModelMode = ModelMode.CHAT
|
||||
|
||||
def _init_client(self) -> Any:
|
||||
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, self.model_kwargs)
|
||||
return Minimax(
|
||||
return MinimaxChatLLM(
|
||||
model=self.name,
|
||||
model_kwargs={
|
||||
'stream': False
|
||||
},
|
||||
streaming=self.streaming,
|
||||
callbacks=self.callbacks,
|
||||
**self.credentials,
|
||||
**provider_model_kwargs
|
||||
@@ -49,7 +46,7 @@ class MinimaxModel(BaseLLM):
|
||||
:return:
|
||||
"""
|
||||
prompts = self._get_prompt_from_messages(messages)
|
||||
return max(self._client.get_num_tokens(prompts), 0)
|
||||
return max(self._client.get_num_tokens_from_messages(prompts), 0)
|
||||
|
||||
def get_currency(self):
|
||||
return 'RMB'
|
||||
@@ -65,3 +62,7 @@ class MinimaxModel(BaseLLM):
|
||||
return LLMBadRequestError(f"Minimax: {str(ex)}")
|
||||
else:
|
||||
return ex
|
||||
|
||||
@property
|
||||
def support_streaming(self):
|
||||
return True
|
||||
|
||||
@@ -33,7 +33,7 @@ MODEL_MAX_TOKENS = {
|
||||
'gpt-4': 8192,
|
||||
'gpt-4-32k': 32768,
|
||||
'gpt-3.5-turbo': 4096,
|
||||
'gpt-3.5-turbo-instruct': 8192,
|
||||
'gpt-3.5-turbo-instruct': 4097,
|
||||
'gpt-3.5-turbo-16k': 16384,
|
||||
'text-davinci-003': 4097,
|
||||
}
|
||||
@@ -106,7 +106,21 @@ class OpenAIModel(BaseLLM):
|
||||
raise ModelCurrentlyNotSupportError("Dify Hosted OpenAI GPT-4 currently not support.")
|
||||
|
||||
prompts = self._get_prompt_from_messages(messages)
|
||||
return self._client.generate([prompts], stop, callbacks)
|
||||
|
||||
generate_kwargs = {
|
||||
'stop': stop,
|
||||
'callbacks': callbacks
|
||||
}
|
||||
|
||||
if isinstance(prompts, str):
|
||||
generate_kwargs['prompts'] = [prompts]
|
||||
else:
|
||||
generate_kwargs['messages'] = [prompts]
|
||||
|
||||
if 'functions' in kwargs:
|
||||
generate_kwargs['functions'] = kwargs['functions']
|
||||
|
||||
return self._client.generate(**generate_kwargs)
|
||||
|
||||
def get_num_tokens(self, messages: List[PromptMessage]) -> int:
|
||||
"""
|
||||
|
||||
@@ -49,15 +49,6 @@ class OpenLLMModel(BaseLLM):
|
||||
prompts = self._get_prompt_from_messages(messages)
|
||||
return max(self._client.get_num_tokens(prompts), 0)
|
||||
|
||||
def prompt_file_name(self, mode: str) -> str:
|
||||
if 'baichuan' in self.name.lower():
|
||||
if mode == 'completion':
|
||||
return 'baichuan_completion'
|
||||
else:
|
||||
return 'baichuan_chat'
|
||||
else:
|
||||
return super().prompt_file_name(mode)
|
||||
|
||||
def _set_model_kwargs(self, model_kwargs: ModelKwargs):
|
||||
pass
|
||||
|
||||
|
||||
@@ -18,7 +18,6 @@ class TongyiModel(BaseLLM):
|
||||
|
||||
def _init_client(self) -> Any:
|
||||
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, self.model_kwargs)
|
||||
del provider_model_kwargs['max_tokens']
|
||||
return EnhanceTongyi(
|
||||
model_name=self.name,
|
||||
max_retries=1,
|
||||
@@ -58,7 +57,6 @@ class TongyiModel(BaseLLM):
|
||||
|
||||
def _set_model_kwargs(self, model_kwargs: ModelKwargs):
|
||||
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, model_kwargs)
|
||||
del provider_model_kwargs['max_tokens']
|
||||
for k, v in provider_model_kwargs.items():
|
||||
if hasattr(self.client, k):
|
||||
setattr(self.client, k, v)
|
||||
|
||||
@@ -6,17 +6,16 @@ from langchain.schema import LLMResult
|
||||
|
||||
from core.model_providers.error import LLMBadRequestError
|
||||
from core.model_providers.models.llm.base import BaseLLM
|
||||
from core.model_providers.models.entity.message import PromptMessage, MessageType
|
||||
from core.model_providers.models.entity.message import PromptMessage
|
||||
from core.model_providers.models.entity.model_params import ModelMode, ModelKwargs
|
||||
from core.third_party.langchain.llms.wenxin import Wenxin
|
||||
|
||||
|
||||
class WenxinModel(BaseLLM):
|
||||
model_mode: ModelMode = ModelMode.COMPLETION
|
||||
model_mode: ModelMode = ModelMode.CHAT
|
||||
|
||||
def _init_client(self) -> Any:
|
||||
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, self.model_kwargs)
|
||||
# TODO load price_config from configs(db)
|
||||
return Wenxin(
|
||||
model=self.name,
|
||||
streaming=self.streaming,
|
||||
@@ -38,7 +37,13 @@ class WenxinModel(BaseLLM):
|
||||
:return:
|
||||
"""
|
||||
prompts = self._get_prompt_from_messages(messages)
|
||||
return self._client.generate([prompts], stop, callbacks)
|
||||
|
||||
generate_kwargs = {'stop': stop, 'callbacks': callbacks, 'messages': [prompts]}
|
||||
|
||||
if 'functions' in kwargs:
|
||||
generate_kwargs['functions'] = kwargs['functions']
|
||||
|
||||
return self._client.generate(**generate_kwargs)
|
||||
|
||||
def get_num_tokens(self, messages: List[PromptMessage]) -> int:
|
||||
"""
|
||||
@@ -48,7 +53,7 @@ class WenxinModel(BaseLLM):
|
||||
:return:
|
||||
"""
|
||||
prompts = self._get_prompt_from_messages(messages)
|
||||
return max(self._client.get_num_tokens(prompts), 0)
|
||||
return max(self._client.get_num_tokens_from_messages(prompts), 0)
|
||||
|
||||
def _set_model_kwargs(self, model_kwargs: ModelKwargs):
|
||||
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, model_kwargs)
|
||||
@@ -58,3 +63,7 @@ class WenxinModel(BaseLLM):
|
||||
|
||||
def handle_exceptions(self, ex: Exception) -> Exception:
|
||||
return LLMBadRequestError(f"Wenxin: {str(ex)}")
|
||||
|
||||
@property
|
||||
def support_streaming(self):
|
||||
return True
|
||||
|
||||
@@ -59,15 +59,6 @@ class XinferenceModel(BaseLLM):
|
||||
prompts = self._get_prompt_from_messages(messages)
|
||||
return max(self._client.get_num_tokens(prompts), 0)
|
||||
|
||||
def prompt_file_name(self, mode: str) -> str:
|
||||
if 'baichuan' in self.name.lower():
|
||||
if mode == 'completion':
|
||||
return 'baichuan_completion'
|
||||
else:
|
||||
return 'baichuan_chat'
|
||||
else:
|
||||
return super().prompt_file_name(mode)
|
||||
|
||||
def _set_model_kwargs(self, model_kwargs: ModelKwargs):
|
||||
pass
|
||||
|
||||
|
||||
@@ -16,6 +16,7 @@ class ZhipuAIModel(BaseLLM):
|
||||
def _init_client(self) -> Any:
|
||||
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, self.model_kwargs)
|
||||
return ZhipuAIChatLLM(
|
||||
model=self.name,
|
||||
streaming=self.streaming,
|
||||
callbacks=self.callbacks,
|
||||
**self.credentials,
|
||||
|
||||
@@ -9,7 +9,7 @@ from langchain.schema import HumanMessage
|
||||
|
||||
from core.helper import encrypter
|
||||
from core.model_providers.models.base import BaseProviderModel
|
||||
from core.model_providers.models.entity.model_params import ModelKwargsRules, KwargRule
|
||||
from core.model_providers.models.entity.model_params import ModelKwargsRules, KwargRule, ModelMode
|
||||
from core.model_providers.models.entity.provider import ModelFeature
|
||||
from core.model_providers.models.llm.anthropic_model import AnthropicModel
|
||||
from core.model_providers.models.llm.base import ModelType
|
||||
@@ -34,10 +34,12 @@ class AnthropicProvider(BaseModelProvider):
|
||||
{
|
||||
'id': 'claude-instant-1',
|
||||
'name': 'claude-instant-1',
|
||||
'mode': ModelMode.CHAT.value,
|
||||
},
|
||||
{
|
||||
'id': 'claude-2',
|
||||
'name': 'claude-2',
|
||||
'mode': ModelMode.CHAT.value,
|
||||
'features': [
|
||||
ModelFeature.AGENT_THOUGHT.value
|
||||
]
|
||||
@@ -46,6 +48,9 @@ class AnthropicProvider(BaseModelProvider):
|
||||
else:
|
||||
return []
|
||||
|
||||
def _get_text_generation_model_mode(self, model_name) -> str:
|
||||
return ModelMode.CHAT.value
|
||||
|
||||
def get_model_class(self, model_type: ModelType) -> Type[BaseProviderModel]:
|
||||
"""
|
||||
Returns the model class.
|
||||
@@ -167,7 +172,7 @@ class AnthropicProvider(BaseModelProvider):
|
||||
|
||||
def should_deduct_quota(self):
|
||||
if hosted_model_providers.anthropic and \
|
||||
hosted_model_providers.anthropic.quota_limit and hosted_model_providers.anthropic.quota_limit > 0:
|
||||
hosted_model_providers.anthropic.quota_limit and hosted_model_providers.anthropic.quota_limit > -1:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
@@ -12,7 +12,7 @@ from core.helper import encrypter
|
||||
from core.model_providers.models.base import BaseProviderModel
|
||||
from core.model_providers.models.embedding.azure_openai_embedding import AzureOpenAIEmbedding, \
|
||||
AZURE_OPENAI_API_VERSION
|
||||
from core.model_providers.models.entity.model_params import ModelType, ModelKwargsRules, KwargRule
|
||||
from core.model_providers.models.entity.model_params import ModelType, ModelKwargsRules, KwargRule, ModelMode
|
||||
from core.model_providers.models.entity.provider import ModelFeature
|
||||
from core.model_providers.models.llm.azure_openai_model import AzureOpenAIModel
|
||||
from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError
|
||||
@@ -61,6 +61,10 @@ class AzureOpenAIProvider(BaseModelProvider):
|
||||
}
|
||||
|
||||
credentials = json.loads(provider_model.encrypted_config)
|
||||
|
||||
if provider_model.model_type == ModelType.TEXT_GENERATION.value:
|
||||
model_dict['mode'] = self._get_text_generation_model_mode(credentials['base_model_name'])
|
||||
|
||||
if credentials['base_model_name'] in [
|
||||
'gpt-4',
|
||||
'gpt-4-32k',
|
||||
@@ -77,12 +81,19 @@ class AzureOpenAIProvider(BaseModelProvider):
|
||||
|
||||
return model_list
|
||||
|
||||
def _get_text_generation_model_mode(self, model_name) -> str:
|
||||
if model_name == 'text-davinci-003':
|
||||
return ModelMode.COMPLETION.value
|
||||
else:
|
||||
return ModelMode.CHAT.value
|
||||
|
||||
def _get_fixed_model_list(self, model_type: ModelType) -> list[dict]:
|
||||
if model_type == ModelType.TEXT_GENERATION:
|
||||
models = [
|
||||
{
|
||||
'id': 'gpt-3.5-turbo',
|
||||
'name': 'gpt-3.5-turbo',
|
||||
'mode': ModelMode.CHAT.value,
|
||||
'features': [
|
||||
ModelFeature.AGENT_THOUGHT.value
|
||||
]
|
||||
@@ -90,6 +101,7 @@ class AzureOpenAIProvider(BaseModelProvider):
|
||||
{
|
||||
'id': 'gpt-3.5-turbo-16k',
|
||||
'name': 'gpt-3.5-turbo-16k',
|
||||
'mode': ModelMode.CHAT.value,
|
||||
'features': [
|
||||
ModelFeature.AGENT_THOUGHT.value
|
||||
]
|
||||
@@ -97,6 +109,7 @@ class AzureOpenAIProvider(BaseModelProvider):
|
||||
{
|
||||
'id': 'gpt-4',
|
||||
'name': 'gpt-4',
|
||||
'mode': ModelMode.CHAT.value,
|
||||
'features': [
|
||||
ModelFeature.AGENT_THOUGHT.value
|
||||
]
|
||||
@@ -104,6 +117,7 @@ class AzureOpenAIProvider(BaseModelProvider):
|
||||
{
|
||||
'id': 'gpt-4-32k',
|
||||
'name': 'gpt-4-32k',
|
||||
'mode': ModelMode.CHAT.value,
|
||||
'features': [
|
||||
ModelFeature.AGENT_THOUGHT.value
|
||||
]
|
||||
@@ -111,6 +125,7 @@ class AzureOpenAIProvider(BaseModelProvider):
|
||||
{
|
||||
'id': 'text-davinci-003',
|
||||
'name': 'text-davinci-003',
|
||||
'mode': ModelMode.COMPLETION.value,
|
||||
}
|
||||
]
|
||||
|
||||
@@ -314,7 +329,7 @@ class AzureOpenAIProvider(BaseModelProvider):
|
||||
|
||||
def should_deduct_quota(self):
|
||||
if hosted_model_providers.azure_openai \
|
||||
and hosted_model_providers.azure_openai.quota_limit and hosted_model_providers.azure_openai.quota_limit > 0:
|
||||
and hosted_model_providers.azure_openai.quota_limit and hosted_model_providers.azure_openai.quota_limit > -1:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
@@ -6,7 +6,7 @@ from langchain.schema import HumanMessage
|
||||
|
||||
from core.helper import encrypter
|
||||
from core.model_providers.models.base import BaseProviderModel
|
||||
from core.model_providers.models.entity.model_params import ModelKwargsRules, KwargRule, ModelType
|
||||
from core.model_providers.models.entity.model_params import ModelKwargsRules, KwargRule, ModelType, ModelMode
|
||||
from core.model_providers.models.llm.baichuan_model import BaichuanModel
|
||||
from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError
|
||||
from core.third_party.langchain.llms.baichuan_llm import BaichuanChatLLM
|
||||
@@ -21,6 +21,9 @@ class BaichuanProvider(BaseModelProvider):
|
||||
Returns the name of a provider.
|
||||
"""
|
||||
return 'baichuan'
|
||||
|
||||
def _get_text_generation_model_mode(self, model_name) -> str:
|
||||
return ModelMode.CHAT.value
|
||||
|
||||
def _get_fixed_model_list(self, model_type: ModelType) -> list[dict]:
|
||||
if model_type == ModelType.TEXT_GENERATION:
|
||||
@@ -28,6 +31,7 @@ class BaichuanProvider(BaseModelProvider):
|
||||
{
|
||||
'id': 'baichuan2-53b',
|
||||
'name': 'Baichuan2-53B',
|
||||
'mode': ModelMode.CHAT.value,
|
||||
}
|
||||
]
|
||||
else:
|
||||
|
||||
@@ -61,10 +61,19 @@ class BaseModelProvider(BaseModel, ABC):
|
||||
ProviderModel.is_valid == True
|
||||
).order_by(ProviderModel.created_at.asc()).all()
|
||||
|
||||
return [{
|
||||
'id': provider_model.model_name,
|
||||
'name': provider_model.model_name
|
||||
} for provider_model in provider_models]
|
||||
provider_model_list = []
|
||||
for provider_model in provider_models:
|
||||
provider_model_dict = {
|
||||
'id': provider_model.model_name,
|
||||
'name': provider_model.model_name
|
||||
}
|
||||
|
||||
if model_type == ModelType.TEXT_GENERATION:
|
||||
provider_model_dict['mode'] = self._get_text_generation_model_mode(provider_model.model_name)
|
||||
|
||||
provider_model_list.append(provider_model_dict)
|
||||
|
||||
return provider_model_list
|
||||
|
||||
@abstractmethod
|
||||
def _get_fixed_model_list(self, model_type: ModelType) -> list[dict]:
|
||||
@@ -76,6 +85,16 @@ class BaseModelProvider(BaseModel, ABC):
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def _get_text_generation_model_mode(self, model_name) -> str:
|
||||
"""
|
||||
get text generation model mode.
|
||||
|
||||
:param model_name:
|
||||
:return:
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def get_model_class(self, model_type: ModelType) -> Type:
|
||||
"""
|
||||
|
||||
@@ -6,7 +6,7 @@ from langchain.llms import ChatGLM
|
||||
|
||||
from core.helper import encrypter
|
||||
from core.model_providers.models.base import BaseProviderModel
|
||||
from core.model_providers.models.entity.model_params import ModelKwargsRules, KwargRule, ModelType
|
||||
from core.model_providers.models.entity.model_params import ModelKwargsRules, KwargRule, ModelType, ModelMode
|
||||
from core.model_providers.models.llm.chatglm_model import ChatGLMModel
|
||||
from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError
|
||||
from models.provider import ProviderType
|
||||
@@ -27,15 +27,20 @@ class ChatGLMProvider(BaseModelProvider):
|
||||
{
|
||||
'id': 'chatglm2-6b',
|
||||
'name': 'ChatGLM2-6B',
|
||||
'mode': ModelMode.COMPLETION.value,
|
||||
},
|
||||
{
|
||||
'id': 'chatglm-6b',
|
||||
'name': 'ChatGLM-6B',
|
||||
'mode': ModelMode.COMPLETION.value,
|
||||
}
|
||||
]
|
||||
else:
|
||||
return []
|
||||
|
||||
def _get_text_generation_model_mode(self, model_name) -> str:
|
||||
return ModelMode.COMPLETION.value
|
||||
|
||||
def get_model_class(self, model_type: ModelType) -> Type[BaseProviderModel]:
|
||||
"""
|
||||
Returns the model class.
|
||||
|
||||
@@ -11,7 +11,7 @@ class HostedOpenAI(BaseModel):
|
||||
api_organization: str = None
|
||||
api_key: str
|
||||
quota_limit: int = 0
|
||||
"""Quota limit for the openai hosted model. 0 means unlimited."""
|
||||
"""Quota limit for the openai hosted model. -1 means unlimited."""
|
||||
paid_enabled: bool = False
|
||||
paid_stripe_price_id: str = None
|
||||
paid_increase_quota: int = 1
|
||||
@@ -21,14 +21,14 @@ class HostedAzureOpenAI(BaseModel):
|
||||
api_base: str
|
||||
api_key: str
|
||||
quota_limit: int = 0
|
||||
"""Quota limit for the azure openai hosted model. 0 means unlimited."""
|
||||
"""Quota limit for the azure openai hosted model. -1 means unlimited."""
|
||||
|
||||
|
||||
class HostedAnthropic(BaseModel):
|
||||
api_base: str = None
|
||||
api_key: str
|
||||
quota_limit: int = 0
|
||||
"""Quota limit for the anthropic hosted model. 0 means unlimited."""
|
||||
"""Quota limit for the anthropic hosted model. -1 means unlimited."""
|
||||
paid_enabled: bool = False
|
||||
paid_stripe_price_id: str = None
|
||||
paid_increase_quota: int = 1000000
|
||||
|
||||
@@ -5,7 +5,7 @@ import requests
|
||||
from huggingface_hub import HfApi
|
||||
|
||||
from core.helper import encrypter
|
||||
from core.model_providers.models.entity.model_params import KwargRule, ModelKwargsRules, ModelType
|
||||
from core.model_providers.models.entity.model_params import KwargRule, ModelKwargsRules, ModelType, ModelMode
|
||||
from core.model_providers.models.llm.huggingface_hub_model import HuggingfaceHubModel
|
||||
from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError
|
||||
|
||||
@@ -29,6 +29,9 @@ class HuggingfaceHubProvider(BaseModelProvider):
|
||||
def _get_fixed_model_list(self, model_type: ModelType) -> list[dict]:
|
||||
return []
|
||||
|
||||
def _get_text_generation_model_mode(self, model_name) -> str:
|
||||
return ModelMode.COMPLETION.value
|
||||
|
||||
def get_model_class(self, model_type: ModelType) -> Type[BaseProviderModel]:
|
||||
"""
|
||||
Returns the model class.
|
||||
|
||||
@@ -6,7 +6,7 @@ from langchain.schema import HumanMessage
|
||||
|
||||
from core.helper import encrypter
|
||||
from core.model_providers.models.embedding.localai_embedding import LocalAIEmbedding
|
||||
from core.model_providers.models.entity.model_params import ModelKwargsRules, ModelType, KwargRule
|
||||
from core.model_providers.models.entity.model_params import ModelKwargsRules, ModelType, KwargRule, ModelMode
|
||||
from core.model_providers.models.llm.localai_model import LocalAIModel
|
||||
from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError
|
||||
|
||||
@@ -27,6 +27,13 @@ class LocalAIProvider(BaseModelProvider):
|
||||
def _get_fixed_model_list(self, model_type: ModelType) -> list[dict]:
|
||||
return []
|
||||
|
||||
def _get_text_generation_model_mode(self, model_name) -> str:
|
||||
credentials = self.get_model_credentials(model_name, ModelType.TEXT_GENERATION)
|
||||
if credentials['completion_type'] == 'chat_completion':
|
||||
return ModelMode.CHAT.value
|
||||
else:
|
||||
return ModelMode.COMPLETION.value
|
||||
|
||||
def get_model_class(self, model_type: ModelType) -> Type[BaseProviderModel]:
|
||||
"""
|
||||
Returns the model class.
|
||||
|
||||
@@ -2,14 +2,15 @@ import json
|
||||
from json import JSONDecodeError
|
||||
from typing import Type
|
||||
|
||||
from langchain.llms import Minimax
|
||||
from langchain.schema import HumanMessage
|
||||
|
||||
from core.helper import encrypter
|
||||
from core.model_providers.models.base import BaseProviderModel
|
||||
from core.model_providers.models.embedding.minimax_embedding import MinimaxEmbedding
|
||||
from core.model_providers.models.entity.model_params import ModelKwargsRules, KwargRule, ModelType
|
||||
from core.model_providers.models.entity.model_params import ModelKwargsRules, KwargRule, ModelType, ModelMode
|
||||
from core.model_providers.models.llm.minimax_model import MinimaxModel
|
||||
from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError
|
||||
from core.third_party.langchain.llms.minimax_llm import MinimaxChatLLM
|
||||
from models.provider import ProviderType, ProviderQuotaType
|
||||
|
||||
|
||||
@@ -28,10 +29,12 @@ class MinimaxProvider(BaseModelProvider):
|
||||
{
|
||||
'id': 'abab5.5-chat',
|
||||
'name': 'abab5.5-chat',
|
||||
'mode': ModelMode.COMPLETION.value,
|
||||
},
|
||||
{
|
||||
'id': 'abab5-chat',
|
||||
'name': 'abab5-chat',
|
||||
'mode': ModelMode.COMPLETION.value,
|
||||
}
|
||||
]
|
||||
elif model_type == ModelType.EMBEDDINGS:
|
||||
@@ -44,6 +47,9 @@ class MinimaxProvider(BaseModelProvider):
|
||||
else:
|
||||
return []
|
||||
|
||||
def _get_text_generation_model_mode(self, model_name) -> str:
|
||||
return ModelMode.COMPLETION.value
|
||||
|
||||
def get_model_class(self, model_type: ModelType) -> Type[BaseProviderModel]:
|
||||
"""
|
||||
Returns the model class.
|
||||
@@ -98,14 +104,14 @@ class MinimaxProvider(BaseModelProvider):
|
||||
'minimax_api_key': credentials['minimax_api_key'],
|
||||
}
|
||||
|
||||
llm = Minimax(
|
||||
llm = MinimaxChatLLM(
|
||||
model='abab5.5-chat',
|
||||
max_tokens=10,
|
||||
temperature=0.01,
|
||||
**credential_kwargs
|
||||
)
|
||||
|
||||
llm("ping")
|
||||
llm([HumanMessage(content='ping')])
|
||||
except Exception as ex:
|
||||
raise CredentialsValidateFailedError(str(ex))
|
||||
|
||||
|
||||
@@ -13,8 +13,8 @@ from core.model_providers.models.entity.provider import ModelFeature
|
||||
from core.model_providers.models.speech2text.openai_whisper import OpenAIWhisper
|
||||
from core.model_providers.models.base import BaseProviderModel
|
||||
from core.model_providers.models.embedding.openai_embedding import OpenAIEmbedding
|
||||
from core.model_providers.models.entity.model_params import ModelKwargsRules, KwargRule, ModelType
|
||||
from core.model_providers.models.llm.openai_model import OpenAIModel
|
||||
from core.model_providers.models.entity.model_params import ModelKwargsRules, KwargRule, ModelType, ModelMode
|
||||
from core.model_providers.models.llm.openai_model import OpenAIModel, COMPLETION_MODELS
|
||||
from core.model_providers.models.moderation.openai_moderation import OpenAIModeration
|
||||
from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError
|
||||
from core.model_providers.providers.hosted import hosted_model_providers
|
||||
@@ -36,6 +36,7 @@ class OpenAIProvider(BaseModelProvider):
|
||||
{
|
||||
'id': 'gpt-3.5-turbo',
|
||||
'name': 'gpt-3.5-turbo',
|
||||
'mode': ModelMode.CHAT.value,
|
||||
'features': [
|
||||
ModelFeature.AGENT_THOUGHT.value
|
||||
]
|
||||
@@ -43,10 +44,12 @@ class OpenAIProvider(BaseModelProvider):
|
||||
{
|
||||
'id': 'gpt-3.5-turbo-instruct',
|
||||
'name': 'GPT-3.5-Turbo-Instruct',
|
||||
'mode': ModelMode.COMPLETION.value,
|
||||
},
|
||||
{
|
||||
'id': 'gpt-3.5-turbo-16k',
|
||||
'name': 'gpt-3.5-turbo-16k',
|
||||
'mode': ModelMode.CHAT.value,
|
||||
'features': [
|
||||
ModelFeature.AGENT_THOUGHT.value
|
||||
]
|
||||
@@ -54,6 +57,7 @@ class OpenAIProvider(BaseModelProvider):
|
||||
{
|
||||
'id': 'gpt-4',
|
||||
'name': 'gpt-4',
|
||||
'mode': ModelMode.CHAT.value,
|
||||
'features': [
|
||||
ModelFeature.AGENT_THOUGHT.value
|
||||
]
|
||||
@@ -61,6 +65,7 @@ class OpenAIProvider(BaseModelProvider):
|
||||
{
|
||||
'id': 'gpt-4-32k',
|
||||
'name': 'gpt-4-32k',
|
||||
'mode': ModelMode.CHAT.value,
|
||||
'features': [
|
||||
ModelFeature.AGENT_THOUGHT.value
|
||||
]
|
||||
@@ -68,6 +73,7 @@ class OpenAIProvider(BaseModelProvider):
|
||||
{
|
||||
'id': 'text-davinci-003',
|
||||
'name': 'text-davinci-003',
|
||||
'mode': ModelMode.COMPLETION.value,
|
||||
}
|
||||
]
|
||||
|
||||
@@ -100,6 +106,12 @@ class OpenAIProvider(BaseModelProvider):
|
||||
else:
|
||||
return []
|
||||
|
||||
def _get_text_generation_model_mode(self, model_name) -> str:
|
||||
if model_name in COMPLETION_MODELS:
|
||||
return ModelMode.COMPLETION.value
|
||||
else:
|
||||
return ModelMode.CHAT.value
|
||||
|
||||
def get_model_class(self, model_type: ModelType) -> Type[BaseProviderModel]:
|
||||
"""
|
||||
Returns the model class.
|
||||
@@ -132,7 +144,7 @@ class OpenAIProvider(BaseModelProvider):
|
||||
'gpt-4': 8192,
|
||||
'gpt-4-32k': 32768,
|
||||
'gpt-3.5-turbo': 4096,
|
||||
'gpt-3.5-turbo-instruct': 8192,
|
||||
'gpt-3.5-turbo-instruct': 4097,
|
||||
'gpt-3.5-turbo-16k': 16384,
|
||||
'text-davinci-003': 4097,
|
||||
}
|
||||
@@ -238,7 +250,7 @@ class OpenAIProvider(BaseModelProvider):
|
||||
|
||||
def should_deduct_quota(self):
|
||||
if hosted_model_providers.openai \
|
||||
and hosted_model_providers.openai.quota_limit and hosted_model_providers.openai.quota_limit > 0:
|
||||
and hosted_model_providers.openai.quota_limit and hosted_model_providers.openai.quota_limit > -1:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
@@ -3,7 +3,7 @@ from typing import Type
|
||||
|
||||
from core.helper import encrypter
|
||||
from core.model_providers.models.embedding.openllm_embedding import OpenLLMEmbedding
|
||||
from core.model_providers.models.entity.model_params import KwargRule, ModelKwargsRules, ModelType
|
||||
from core.model_providers.models.entity.model_params import KwargRule, ModelKwargsRules, ModelType, ModelMode
|
||||
from core.model_providers.models.llm.openllm_model import OpenLLMModel
|
||||
from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError
|
||||
|
||||
@@ -24,6 +24,9 @@ class OpenLLMProvider(BaseModelProvider):
|
||||
def _get_fixed_model_list(self, model_type: ModelType) -> list[dict]:
|
||||
return []
|
||||
|
||||
def _get_text_generation_model_mode(self, model_name) -> str:
|
||||
return ModelMode.COMPLETION.value
|
||||
|
||||
def get_model_class(self, model_type: ModelType) -> Type[BaseProviderModel]:
|
||||
"""
|
||||
Returns the model class.
|
||||
|
||||
@@ -6,7 +6,8 @@ import replicate
|
||||
from replicate.exceptions import ReplicateError
|
||||
|
||||
from core.helper import encrypter
|
||||
from core.model_providers.models.entity.model_params import KwargRule, KwargRuleType, ModelKwargsRules, ModelType
|
||||
from core.model_providers.models.entity.model_params import KwargRule, KwargRuleType, ModelKwargsRules, ModelType, \
|
||||
ModelMode
|
||||
from core.model_providers.models.llm.replicate_model import ReplicateModel
|
||||
from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError
|
||||
|
||||
@@ -26,6 +27,9 @@ class ReplicateProvider(BaseModelProvider):
|
||||
def _get_fixed_model_list(self, model_type: ModelType) -> list[dict]:
|
||||
return []
|
||||
|
||||
def _get_text_generation_model_mode(self, model_name) -> str:
|
||||
return ModelMode.CHAT.value if model_name.endswith('-chat') else ModelMode.COMPLETION.value
|
||||
|
||||
def get_model_class(self, model_type: ModelType) -> Type[BaseProviderModel]:
|
||||
"""
|
||||
Returns the model class.
|
||||
|
||||
@@ -7,7 +7,7 @@ from langchain.schema import HumanMessage
|
||||
|
||||
from core.helper import encrypter
|
||||
from core.model_providers.models.base import BaseProviderModel
|
||||
from core.model_providers.models.entity.model_params import ModelKwargsRules, KwargRule, ModelType
|
||||
from core.model_providers.models.entity.model_params import ModelKwargsRules, KwargRule, ModelType, ModelMode
|
||||
from core.model_providers.models.llm.spark_model import SparkModel
|
||||
from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError
|
||||
from core.third_party.langchain.llms.spark import ChatSpark
|
||||
@@ -28,17 +28,27 @@ class SparkProvider(BaseModelProvider):
|
||||
if model_type == ModelType.TEXT_GENERATION:
|
||||
return [
|
||||
{
|
||||
'id': 'spark',
|
||||
'name': 'Spark V1.5',
|
||||
'id': 'spark-v3',
|
||||
'name': 'Spark V3.0',
|
||||
'mode': ModelMode.CHAT.value,
|
||||
},
|
||||
{
|
||||
'id': 'spark-v2',
|
||||
'name': 'Spark V2.0',
|
||||
'mode': ModelMode.CHAT.value,
|
||||
},
|
||||
{
|
||||
'id': 'spark',
|
||||
'name': 'Spark V1.5',
|
||||
'mode': ModelMode.CHAT.value,
|
||||
}
|
||||
]
|
||||
else:
|
||||
return []
|
||||
|
||||
def _get_text_generation_model_mode(self, model_name) -> str:
|
||||
return ModelMode.CHAT.value
|
||||
|
||||
def get_model_class(self, model_type: ModelType) -> Type[BaseProviderModel]:
|
||||
"""
|
||||
Returns the model class.
|
||||
@@ -91,7 +101,7 @@ class SparkProvider(BaseModelProvider):
|
||||
|
||||
try:
|
||||
chat_llm = ChatSpark(
|
||||
model_name='spark-v2',
|
||||
model_name='spark-v3',
|
||||
max_tokens=10,
|
||||
temperature=0.01,
|
||||
**credential_kwargs
|
||||
@@ -105,10 +115,10 @@ class SparkProvider(BaseModelProvider):
|
||||
|
||||
chat_llm(messages)
|
||||
except SparkError as ex:
|
||||
# try spark v1.5 if v2.1 failed
|
||||
# try spark v2.1 if v3.1 failed
|
||||
try:
|
||||
chat_llm = ChatSpark(
|
||||
model_name='spark',
|
||||
model_name='spark-v2',
|
||||
max_tokens=10,
|
||||
temperature=0.01,
|
||||
**credential_kwargs
|
||||
@@ -122,10 +132,27 @@ class SparkProvider(BaseModelProvider):
|
||||
|
||||
chat_llm(messages)
|
||||
except SparkError as ex:
|
||||
raise CredentialsValidateFailedError(str(ex))
|
||||
except Exception as ex:
|
||||
logging.exception('Spark config validation failed')
|
||||
raise ex
|
||||
# try spark v1.5 if v2.1 failed
|
||||
try:
|
||||
chat_llm = ChatSpark(
|
||||
model_name='spark',
|
||||
max_tokens=10,
|
||||
temperature=0.01,
|
||||
**credential_kwargs
|
||||
)
|
||||
|
||||
messages = [
|
||||
HumanMessage(
|
||||
content="ping"
|
||||
)
|
||||
]
|
||||
|
||||
chat_llm(messages)
|
||||
except SparkError as ex:
|
||||
raise CredentialsValidateFailedError(str(ex))
|
||||
except Exception as ex:
|
||||
logging.exception('Spark config validation failed')
|
||||
raise ex
|
||||
except Exception as ex:
|
||||
logging.exception('Spark config validation failed')
|
||||
raise ex
|
||||
|
||||
@@ -4,7 +4,7 @@ from typing import Type
|
||||
|
||||
from core.helper import encrypter
|
||||
from core.model_providers.models.base import BaseProviderModel
|
||||
from core.model_providers.models.entity.model_params import ModelKwargsRules, KwargRule, ModelType
|
||||
from core.model_providers.models.entity.model_params import ModelKwargsRules, KwargRule, ModelType, ModelMode
|
||||
from core.model_providers.models.llm.tongyi_model import TongyiModel
|
||||
from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError
|
||||
from core.third_party.langchain.llms.tongyi_llm import EnhanceTongyi
|
||||
@@ -24,17 +24,22 @@ class TongyiProvider(BaseModelProvider):
|
||||
if model_type == ModelType.TEXT_GENERATION:
|
||||
return [
|
||||
{
|
||||
'id': 'qwen-v1',
|
||||
'name': 'qwen-v1',
|
||||
'id': 'qwen-turbo',
|
||||
'name': 'qwen-turbo',
|
||||
'mode': ModelMode.COMPLETION.value,
|
||||
},
|
||||
{
|
||||
'id': 'qwen-plus-v1',
|
||||
'name': 'qwen-plus-v1',
|
||||
'id': 'qwen-plus',
|
||||
'name': 'qwen-plus',
|
||||
'mode': ModelMode.COMPLETION.value,
|
||||
}
|
||||
]
|
||||
else:
|
||||
return []
|
||||
|
||||
def _get_text_generation_model_mode(self, model_name) -> str:
|
||||
return ModelMode.COMPLETION.value
|
||||
|
||||
def get_model_class(self, model_type: ModelType) -> Type[BaseProviderModel]:
|
||||
"""
|
||||
Returns the model class.
|
||||
@@ -58,16 +63,16 @@ class TongyiProvider(BaseModelProvider):
|
||||
:return:
|
||||
"""
|
||||
model_max_tokens = {
|
||||
'qwen-v1': 1500,
|
||||
'qwen-plus-v1': 6500
|
||||
'qwen-turbo': 6000,
|
||||
'qwen-plus': 6000
|
||||
}
|
||||
|
||||
return ModelKwargsRules(
|
||||
temperature=KwargRule[float](enabled=False),
|
||||
top_p=KwargRule[float](min=0, max=1, default=0.8, precision=2),
|
||||
temperature=KwargRule[float](min=0.01, max=1, default=1, precision=2),
|
||||
top_p=KwargRule[float](min=0.01, max=0.99, default=0.5, precision=2),
|
||||
presence_penalty=KwargRule[float](enabled=False),
|
||||
frequency_penalty=KwargRule[float](enabled=False),
|
||||
max_tokens=KwargRule[int](min=10, max=model_max_tokens.get(model_name), default=1024, precision=0),
|
||||
max_tokens=KwargRule[int](enabled=False, max=model_max_tokens.get(model_name)),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@@ -84,7 +89,7 @@ class TongyiProvider(BaseModelProvider):
|
||||
}
|
||||
|
||||
llm = EnhanceTongyi(
|
||||
model_name='qwen-v1',
|
||||
model_name='qwen-turbo',
|
||||
max_retries=1,
|
||||
**credential_kwargs
|
||||
)
|
||||
|
||||
@@ -2,9 +2,11 @@ import json
|
||||
from json import JSONDecodeError
|
||||
from typing import Type
|
||||
|
||||
from langchain.schema import HumanMessage
|
||||
|
||||
from core.helper import encrypter
|
||||
from core.model_providers.models.base import BaseProviderModel
|
||||
from core.model_providers.models.entity.model_params import ModelKwargsRules, KwargRule, ModelType
|
||||
from core.model_providers.models.entity.model_params import ModelKwargsRules, KwargRule, ModelType, ModelMode
|
||||
from core.model_providers.models.llm.wenxin_model import WenxinModel
|
||||
from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError
|
||||
from core.third_party.langchain.llms.wenxin import Wenxin
|
||||
@@ -23,22 +25,33 @@ class WenxinProvider(BaseModelProvider):
|
||||
def _get_fixed_model_list(self, model_type: ModelType) -> list[dict]:
|
||||
if model_type == ModelType.TEXT_GENERATION:
|
||||
return [
|
||||
{
|
||||
'id': 'ernie-bot-4',
|
||||
'name': 'ERNIE-Bot-4',
|
||||
'mode': ModelMode.CHAT.value,
|
||||
},
|
||||
{
|
||||
'id': 'ernie-bot',
|
||||
'name': 'ERNIE-Bot',
|
||||
'mode': ModelMode.CHAT.value,
|
||||
},
|
||||
{
|
||||
'id': 'ernie-bot-turbo',
|
||||
'name': 'ERNIE-Bot-turbo',
|
||||
'mode': ModelMode.CHAT.value,
|
||||
},
|
||||
{
|
||||
'id': 'bloomz-7b',
|
||||
'name': 'BLOOMZ-7B',
|
||||
'mode': ModelMode.CHAT.value,
|
||||
}
|
||||
]
|
||||
else:
|
||||
return []
|
||||
|
||||
def _get_text_generation_model_mode(self, model_name) -> str:
|
||||
return ModelMode.COMPLETION.value
|
||||
|
||||
def get_model_class(self, model_type: ModelType) -> Type[BaseProviderModel]:
|
||||
"""
|
||||
Returns the model class.
|
||||
@@ -62,11 +75,12 @@ class WenxinProvider(BaseModelProvider):
|
||||
:return:
|
||||
"""
|
||||
model_max_tokens = {
|
||||
'ernie-bot-4': 4800,
|
||||
'ernie-bot': 4800,
|
||||
'ernie-bot-turbo': 11200,
|
||||
}
|
||||
|
||||
if model_name in ['ernie-bot', 'ernie-bot-turbo']:
|
||||
if model_name in ['ernie-bot-4', 'ernie-bot', 'ernie-bot-turbo']:
|
||||
return ModelKwargsRules(
|
||||
temperature=KwargRule[float](min=0.01, max=1, default=0.95, precision=2),
|
||||
top_p=KwargRule[float](min=0.01, max=1, default=0.8, precision=2),
|
||||
@@ -105,7 +119,7 @@ class WenxinProvider(BaseModelProvider):
|
||||
**credential_kwargs
|
||||
)
|
||||
|
||||
llm("ping")
|
||||
llm([HumanMessage(content='ping')])
|
||||
except Exception as ex:
|
||||
raise CredentialsValidateFailedError(str(ex))
|
||||
|
||||
|
||||
@@ -2,15 +2,15 @@ import json
|
||||
from typing import Type
|
||||
|
||||
import requests
|
||||
from langchain.embeddings import XinferenceEmbeddings
|
||||
|
||||
from core.helper import encrypter
|
||||
from core.model_providers.models.embedding.xinference_embedding import XinferenceEmbedding
|
||||
from core.model_providers.models.entity.model_params import KwargRule, ModelKwargsRules, ModelType
|
||||
from core.model_providers.models.entity.model_params import KwargRule, ModelKwargsRules, ModelType, ModelMode
|
||||
from core.model_providers.models.llm.xinference_model import XinferenceModel
|
||||
from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError
|
||||
|
||||
from core.model_providers.models.base import BaseProviderModel
|
||||
from core.third_party.langchain.embeddings.xinference_embedding import XinferenceEmbeddings
|
||||
from core.third_party.langchain.llms.xinference_llm import XinferenceLLM
|
||||
from models.provider import ProviderType
|
||||
|
||||
@@ -26,6 +26,9 @@ class XinferenceProvider(BaseModelProvider):
|
||||
def _get_fixed_model_list(self, model_type: ModelType) -> list[dict]:
|
||||
return []
|
||||
|
||||
def _get_text_generation_model_mode(self, model_name) -> str:
|
||||
return ModelMode.COMPLETION.value
|
||||
|
||||
def get_model_class(self, model_type: ModelType) -> Type[BaseProviderModel]:
|
||||
"""
|
||||
Returns the model class.
|
||||
|
||||
@@ -7,7 +7,7 @@ from langchain.schema import HumanMessage
|
||||
from core.helper import encrypter
|
||||
from core.model_providers.models.base import BaseProviderModel
|
||||
from core.model_providers.models.embedding.zhipuai_embedding import ZhipuAIEmbedding
|
||||
from core.model_providers.models.entity.model_params import ModelKwargsRules, KwargRule, ModelType
|
||||
from core.model_providers.models.entity.model_params import ModelKwargsRules, KwargRule, ModelType, ModelMode
|
||||
from core.model_providers.models.llm.zhipuai_model import ZhipuAIModel
|
||||
from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError
|
||||
from core.third_party.langchain.llms.zhipuai_llm import ZhipuAIChatLLM
|
||||
@@ -26,21 +26,30 @@ class ZhipuAIProvider(BaseModelProvider):
|
||||
def _get_fixed_model_list(self, model_type: ModelType) -> list[dict]:
|
||||
if model_type == ModelType.TEXT_GENERATION:
|
||||
return [
|
||||
{
|
||||
'id': 'chatglm_turbo',
|
||||
'name': 'chatglm_turbo',
|
||||
'mode': ModelMode.CHAT.value,
|
||||
},
|
||||
{
|
||||
'id': 'chatglm_pro',
|
||||
'name': 'chatglm_pro',
|
||||
'mode': ModelMode.CHAT.value,
|
||||
},
|
||||
{
|
||||
'id': 'chatglm_std',
|
||||
'name': 'chatglm_std',
|
||||
'mode': ModelMode.CHAT.value,
|
||||
},
|
||||
{
|
||||
'id': 'chatglm_lite',
|
||||
'name': 'chatglm_lite',
|
||||
'mode': ModelMode.CHAT.value,
|
||||
},
|
||||
{
|
||||
'id': 'chatglm_lite_32k',
|
||||
'name': 'chatglm_lite_32k',
|
||||
'mode': ModelMode.CHAT.value,
|
||||
}
|
||||
]
|
||||
elif model_type == ModelType.EMBEDDINGS:
|
||||
@@ -53,6 +62,9 @@ class ZhipuAIProvider(BaseModelProvider):
|
||||
else:
|
||||
return []
|
||||
|
||||
def _get_text_generation_model_mode(self, model_name) -> str:
|
||||
return ModelMode.CHAT.value
|
||||
|
||||
def get_model_class(self, model_type: ModelType) -> Type[BaseProviderModel]:
|
||||
"""
|
||||
Returns the model class.
|
||||
|
||||
@@ -9,7 +9,7 @@
|
||||
"trial"
|
||||
],
|
||||
"quota_unit": "tokens",
|
||||
"quota_limit": 600000
|
||||
"quota_limit": 0
|
||||
},
|
||||
"model_flexibility": "fixed",
|
||||
"price_config": {
|
||||
|
||||
@@ -22,6 +22,12 @@
|
||||
"completion": "0.36",
|
||||
"unit": "0.0001",
|
||||
"currency": "RMB"
|
||||
},
|
||||
"spark-v3": {
|
||||
"prompt": "0.36",
|
||||
"completion": "0.36",
|
||||
"unit": "0.0001",
|
||||
"currency": "RMB"
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -3,5 +3,19 @@
|
||||
"custom"
|
||||
],
|
||||
"system_config": null,
|
||||
"model_flexibility": "fixed"
|
||||
"model_flexibility": "fixed",
|
||||
"price_config": {
|
||||
"qwen-turbo": {
|
||||
"prompt": "0.012",
|
||||
"completion": "0.012",
|
||||
"unit": "0.001",
|
||||
"currency": "RMB"
|
||||
},
|
||||
"qwen-plus": {
|
||||
"prompt": "0.14",
|
||||
"completion": "0.14",
|
||||
"unit": "0.001",
|
||||
"currency": "RMB"
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -5,6 +5,12 @@
|
||||
"system_config": null,
|
||||
"model_flexibility": "fixed",
|
||||
"price_config": {
|
||||
"ernie-bot-4": {
|
||||
"prompt": "0",
|
||||
"completion": "0",
|
||||
"unit": "0.001",
|
||||
"currency": "RMB"
|
||||
},
|
||||
"ernie-bot": {
|
||||
"prompt": "0.012",
|
||||
"completion": "0.012",
|
||||
|
||||
@@ -11,6 +11,12 @@
|
||||
},
|
||||
"model_flexibility": "fixed",
|
||||
"price_config": {
|
||||
"chatglm_turbo": {
|
||||
"prompt": "0.005",
|
||||
"completion": "0.005",
|
||||
"unit": "0.001",
|
||||
"currency": "RMB"
|
||||
},
|
||||
"chatglm_pro": {
|
||||
"prompt": "0.01",
|
||||
"completion": "0.01",
|
||||
|
||||
0
api/core/moderation/__init__.py
Normal file
0
api/core/moderation/__init__.py
Normal file
1
api/core/moderation/api/__builtin__
Normal file
1
api/core/moderation/api/__builtin__
Normal file
@@ -0,0 +1 @@
|
||||
3
|
||||
0
api/core/moderation/api/__init__.py
Normal file
0
api/core/moderation/api/__init__.py
Normal file
88
api/core/moderation/api/api.py
Normal file
88
api/core/moderation/api/api.py
Normal file
@@ -0,0 +1,88 @@
|
||||
from pydantic import BaseModel
|
||||
|
||||
from core.moderation.base import Moderation, ModerationInputsResult, ModerationOutputsResult, ModerationAction
|
||||
from core.extension.api_based_extension_requestor import APIBasedExtensionRequestor, APIBasedExtensionPoint
|
||||
from core.helper.encrypter import decrypt_token
|
||||
from extensions.ext_database import db
|
||||
from models.api_based_extension import APIBasedExtension
|
||||
|
||||
|
||||
class ModerationInputParams(BaseModel):
|
||||
app_id: str = ""
|
||||
inputs: dict = {}
|
||||
query: str = ""
|
||||
|
||||
|
||||
class ModerationOutputParams(BaseModel):
|
||||
app_id: str = ""
|
||||
text: str
|
||||
|
||||
|
||||
class ApiModeration(Moderation):
|
||||
name: str = "api"
|
||||
|
||||
@classmethod
|
||||
def validate_config(cls, tenant_id: str, config: dict) -> None:
|
||||
"""
|
||||
Validate the incoming form config data.
|
||||
|
||||
:param tenant_id: the id of workspace
|
||||
:param config: the form config data
|
||||
:return:
|
||||
"""
|
||||
cls._validate_inputs_and_outputs_config(config, False)
|
||||
|
||||
api_based_extension_id = config.get("api_based_extension_id")
|
||||
if not api_based_extension_id:
|
||||
raise ValueError("api_based_extension_id is required")
|
||||
|
||||
extension = cls._get_api_based_extension(tenant_id, api_based_extension_id)
|
||||
if not extension:
|
||||
raise ValueError("API-based Extension not found. Please check it again.")
|
||||
|
||||
def moderation_for_inputs(self, inputs: dict, query: str = "") -> ModerationInputsResult:
|
||||
flagged = False
|
||||
preset_response = ""
|
||||
|
||||
if self.config['inputs_config']['enabled']:
|
||||
params = ModerationInputParams(
|
||||
app_id=self.app_id,
|
||||
inputs=inputs,
|
||||
query=query
|
||||
)
|
||||
|
||||
result = self._get_config_by_requestor(APIBasedExtensionPoint.APP_MODERATION_INPUT, params.dict())
|
||||
return ModerationInputsResult(**result)
|
||||
|
||||
return ModerationInputsResult(flagged=flagged, action=ModerationAction.DIRECT_OUTPUT, preset_response=preset_response)
|
||||
|
||||
def moderation_for_outputs(self, text: str) -> ModerationOutputsResult:
|
||||
flagged = False
|
||||
preset_response = ""
|
||||
|
||||
if self.config['outputs_config']['enabled']:
|
||||
params = ModerationOutputParams(
|
||||
app_id=self.app_id,
|
||||
text=text
|
||||
)
|
||||
|
||||
result = self._get_config_by_requestor(APIBasedExtensionPoint.APP_MODERATION_OUTPUT, params.dict())
|
||||
return ModerationOutputsResult(**result)
|
||||
|
||||
return ModerationOutputsResult(flagged=flagged, action=ModerationAction.DIRECT_OUTPUT, preset_response=preset_response)
|
||||
|
||||
def _get_config_by_requestor(self, extension_point: APIBasedExtensionPoint, params: dict) -> dict:
|
||||
extension = self._get_api_based_extension(self.tenant_id, self.config.get("api_based_extension_id"))
|
||||
requestor = APIBasedExtensionRequestor(extension.api_endpoint, decrypt_token(self.tenant_id, extension.api_key))
|
||||
|
||||
result = requestor.request(extension_point, params)
|
||||
return result
|
||||
|
||||
@staticmethod
|
||||
def _get_api_based_extension(tenant_id: str, api_based_extension_id: str) -> APIBasedExtension:
|
||||
extension = db.session.query(APIBasedExtension).filter(
|
||||
APIBasedExtension.tenant_id == tenant_id,
|
||||
APIBasedExtension.id == api_based_extension_id
|
||||
).first()
|
||||
|
||||
return extension
|
||||
113
api/core/moderation/base.py
Normal file
113
api/core/moderation/base.py
Normal file
@@ -0,0 +1,113 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Optional
|
||||
from pydantic import BaseModel
|
||||
from enum import Enum
|
||||
|
||||
from core.extension.extensible import Extensible, ExtensionModule
|
||||
|
||||
|
||||
class ModerationAction(Enum):
|
||||
DIRECT_OUTPUT = 'direct_output'
|
||||
OVERRIDED = 'overrided'
|
||||
|
||||
|
||||
class ModerationInputsResult(BaseModel):
|
||||
flagged: bool = False
|
||||
action: ModerationAction
|
||||
preset_response: str = ""
|
||||
inputs: dict = {}
|
||||
query: str = ""
|
||||
|
||||
|
||||
class ModerationOutputsResult(BaseModel):
|
||||
flagged: bool = False
|
||||
action: ModerationAction
|
||||
preset_response: str = ""
|
||||
text: str = ""
|
||||
|
||||
|
||||
class Moderation(Extensible, ABC):
|
||||
"""
|
||||
The base class of moderation.
|
||||
"""
|
||||
module: ExtensionModule = ExtensionModule.MODERATION
|
||||
|
||||
def __init__(self, app_id: str, tenant_id: str, config: Optional[dict] = None) -> None:
|
||||
super().__init__(tenant_id, config)
|
||||
self.app_id = app_id
|
||||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
def validate_config(cls, tenant_id: str, config: dict) -> None:
|
||||
"""
|
||||
Validate the incoming form config data.
|
||||
|
||||
:param tenant_id: the id of workspace
|
||||
:param config: the form config data
|
||||
:return:
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def moderation_for_inputs(self, inputs: dict, query: str = "") -> ModerationInputsResult:
|
||||
"""
|
||||
Moderation for inputs.
|
||||
After the user inputs, this method will be called to perform sensitive content review
|
||||
on the user inputs and return the processed results.
|
||||
|
||||
:param inputs: user inputs
|
||||
:param query: query string (required in chat app)
|
||||
:return:
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def moderation_for_outputs(self, text: str) -> ModerationOutputsResult:
|
||||
"""
|
||||
Moderation for outputs.
|
||||
When LLM outputs content, the front end will pass the output content (may be segmented)
|
||||
to this method for sensitive content review, and the output content will be shielded if the review fails.
|
||||
|
||||
:param text: LLM output content
|
||||
:return:
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@classmethod
|
||||
def _validate_inputs_and_outputs_config(self, config: dict, is_preset_response_required: bool) -> None:
|
||||
# inputs_config
|
||||
inputs_config = config.get("inputs_config")
|
||||
if not isinstance(inputs_config, dict):
|
||||
raise ValueError("inputs_config must be a dict")
|
||||
|
||||
# outputs_config
|
||||
outputs_config = config.get("outputs_config")
|
||||
if not isinstance(outputs_config, dict):
|
||||
raise ValueError("outputs_config must be a dict")
|
||||
|
||||
inputs_config_enabled = inputs_config.get("enabled")
|
||||
outputs_config_enabled = outputs_config.get("enabled")
|
||||
if not inputs_config_enabled and not outputs_config_enabled:
|
||||
raise ValueError("At least one of inputs_config or outputs_config must be enabled")
|
||||
|
||||
# preset_response
|
||||
if not is_preset_response_required:
|
||||
return
|
||||
|
||||
if inputs_config_enabled:
|
||||
if not inputs_config.get("preset_response"):
|
||||
raise ValueError("inputs_config.preset_response is required")
|
||||
|
||||
if len(inputs_config.get("preset_response")) > 100:
|
||||
raise ValueError("inputs_config.preset_response must be less than 100 characters")
|
||||
|
||||
if outputs_config_enabled:
|
||||
if not outputs_config.get("preset_response"):
|
||||
raise ValueError("outputs_config.preset_response is required")
|
||||
|
||||
if len(outputs_config.get("preset_response")) > 100:
|
||||
raise ValueError("outputs_config.preset_response must be less than 100 characters")
|
||||
|
||||
|
||||
class ModerationException(Exception):
|
||||
pass
|
||||
48
api/core/moderation/factory.py
Normal file
48
api/core/moderation/factory.py
Normal file
@@ -0,0 +1,48 @@
|
||||
from core.extension.extensible import ExtensionModule
|
||||
from core.moderation.base import Moderation, ModerationInputsResult, ModerationOutputsResult
|
||||
from extensions.ext_code_based_extension import code_based_extension
|
||||
|
||||
|
||||
class ModerationFactory:
|
||||
__extension_instance: Moderation
|
||||
|
||||
def __init__(self, name: str, app_id: str, tenant_id: str, config: dict) -> None:
|
||||
extension_class = code_based_extension.extension_class(ExtensionModule.MODERATION, name)
|
||||
self.__extension_instance = extension_class(app_id, tenant_id, config)
|
||||
|
||||
@classmethod
|
||||
def validate_config(cls, name: str, tenant_id: str, config: dict) -> None:
|
||||
"""
|
||||
Validate the incoming form config data.
|
||||
|
||||
:param name: the name of extension
|
||||
:param tenant_id: the id of workspace
|
||||
:param config: the form config data
|
||||
:return:
|
||||
"""
|
||||
code_based_extension.validate_form_schema(ExtensionModule.MODERATION, name, config)
|
||||
extension_class = code_based_extension.extension_class(ExtensionModule.MODERATION, name)
|
||||
extension_class.validate_config(tenant_id, config)
|
||||
|
||||
def moderation_for_inputs(self, inputs: dict, query: str = "") -> ModerationInputsResult:
|
||||
"""
|
||||
Moderation for inputs.
|
||||
After the user inputs, this method will be called to perform sensitive content review
|
||||
on the user inputs and return the processed results.
|
||||
|
||||
:param inputs: user inputs
|
||||
:param query: query string (required in chat app)
|
||||
:return:
|
||||
"""
|
||||
return self.__extension_instance.moderation_for_inputs(inputs, query)
|
||||
|
||||
def moderation_for_outputs(self, text: str) -> ModerationOutputsResult:
|
||||
"""
|
||||
Moderation for outputs.
|
||||
When LLM outputs content, the front end will pass the output content (may be segmented)
|
||||
to this method for sensitive content review, and the output content will be shielded if the review fails.
|
||||
|
||||
:param text: LLM output content
|
||||
:return:
|
||||
"""
|
||||
return self.__extension_instance.moderation_for_outputs(text)
|
||||
1
api/core/moderation/keywords/__builtin__
Normal file
1
api/core/moderation/keywords/__builtin__
Normal file
@@ -0,0 +1 @@
|
||||
2
|
||||
0
api/core/moderation/keywords/__init__.py
Normal file
0
api/core/moderation/keywords/__init__.py
Normal file
60
api/core/moderation/keywords/keywords.py
Normal file
60
api/core/moderation/keywords/keywords.py
Normal file
@@ -0,0 +1,60 @@
|
||||
from core.moderation.base import Moderation, ModerationInputsResult, ModerationOutputsResult, ModerationAction
|
||||
|
||||
|
||||
class KeywordsModeration(Moderation):
|
||||
name: str = "keywords"
|
||||
|
||||
@classmethod
|
||||
def validate_config(cls, tenant_id: str, config: dict) -> None:
|
||||
"""
|
||||
Validate the incoming form config data.
|
||||
|
||||
:param tenant_id: the id of workspace
|
||||
:param config: the form config data
|
||||
:return:
|
||||
"""
|
||||
cls._validate_inputs_and_outputs_config(config, True)
|
||||
|
||||
if not config.get("keywords"):
|
||||
raise ValueError("keywords is required")
|
||||
|
||||
if len(config.get("keywords")) > 1000:
|
||||
raise ValueError("keywords length must be less than 1000")
|
||||
|
||||
def moderation_for_inputs(self, inputs: dict, query: str = "") -> ModerationInputsResult:
|
||||
flagged = False
|
||||
preset_response = ""
|
||||
|
||||
if self.config['inputs_config']['enabled']:
|
||||
preset_response = self.config['inputs_config']['preset_response']
|
||||
|
||||
if query:
|
||||
inputs['query__'] = query
|
||||
keywords_list = self.config['keywords'].split('\n')
|
||||
flagged = self._is_violated(inputs, keywords_list)
|
||||
|
||||
return ModerationInputsResult(flagged=flagged, action=ModerationAction.DIRECT_OUTPUT, preset_response=preset_response)
|
||||
|
||||
def moderation_for_outputs(self, text: str) -> ModerationOutputsResult:
|
||||
flagged = False
|
||||
preset_response = ""
|
||||
|
||||
if self.config['outputs_config']['enabled']:
|
||||
keywords_list = self.config['keywords'].split('\n')
|
||||
flagged = self._is_violated({'text': text}, keywords_list)
|
||||
preset_response = self.config['outputs_config']['preset_response']
|
||||
|
||||
return ModerationOutputsResult(flagged=flagged, action=ModerationAction.DIRECT_OUTPUT, preset_response=preset_response)
|
||||
|
||||
def _is_violated(self, inputs: dict, keywords_list: list) -> bool:
|
||||
for value in inputs.values():
|
||||
if self._check_keywords_in_value(keywords_list, value):
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def _check_keywords_in_value(self, keywords_list, value):
|
||||
for keyword in keywords_list:
|
||||
if keyword.lower() in value.lower():
|
||||
return True
|
||||
return False
|
||||
1
api/core/moderation/openai_moderation/__builtin__
Normal file
1
api/core/moderation/openai_moderation/__builtin__
Normal file
@@ -0,0 +1 @@
|
||||
1
|
||||
0
api/core/moderation/openai_moderation/__init__.py
Normal file
0
api/core/moderation/openai_moderation/__init__.py
Normal file
46
api/core/moderation/openai_moderation/openai_moderation.py
Normal file
46
api/core/moderation/openai_moderation/openai_moderation.py
Normal file
@@ -0,0 +1,46 @@
|
||||
from core.moderation.base import Moderation, ModerationInputsResult, ModerationOutputsResult, ModerationAction
|
||||
from core.model_providers.model_factory import ModelFactory
|
||||
|
||||
|
||||
class OpenAIModeration(Moderation):
|
||||
name: str = "openai_moderation"
|
||||
|
||||
@classmethod
|
||||
def validate_config(cls, tenant_id: str, config: dict) -> None:
|
||||
"""
|
||||
Validate the incoming form config data.
|
||||
|
||||
:param tenant_id: the id of workspace
|
||||
:param config: the form config data
|
||||
:return:
|
||||
"""
|
||||
cls._validate_inputs_and_outputs_config(config, True)
|
||||
|
||||
def moderation_for_inputs(self, inputs: dict, query: str = "") -> ModerationInputsResult:
|
||||
flagged = False
|
||||
preset_response = ""
|
||||
|
||||
if self.config['inputs_config']['enabled']:
|
||||
preset_response = self.config['inputs_config']['preset_response']
|
||||
|
||||
if query:
|
||||
inputs['query__'] = query
|
||||
flagged = self._is_violated(inputs)
|
||||
|
||||
return ModerationInputsResult(flagged=flagged, action=ModerationAction.DIRECT_OUTPUT, preset_response=preset_response)
|
||||
|
||||
def moderation_for_outputs(self, text: str) -> ModerationOutputsResult:
|
||||
flagged = False
|
||||
preset_response = ""
|
||||
|
||||
if self.config['outputs_config']['enabled']:
|
||||
flagged = self._is_violated({'text': text})
|
||||
preset_response = self.config['outputs_config']['preset_response']
|
||||
|
||||
return ModerationOutputsResult(flagged=flagged, action=ModerationAction.DIRECT_OUTPUT, preset_response=preset_response)
|
||||
|
||||
def _is_violated(self, inputs: dict):
|
||||
text = '\n'.join(inputs.values())
|
||||
openai_moderation = ModelFactory.get_moderation_model(self.tenant_id, "openai", "moderation")
|
||||
is_not_invalid = openai_moderation.run(text)
|
||||
return not is_not_invalid
|
||||
@@ -1,7 +1,5 @@
|
||||
import math
|
||||
from typing import Optional
|
||||
|
||||
from flask import current_app
|
||||
from langchain import WikipediaAPIWrapper
|
||||
from langchain.callbacks.manager import Callbacks
|
||||
from langchain.memory.chat_memory import BaseChatMemory
|
||||
@@ -13,7 +11,6 @@ from core.callback_handler.agent_loop_gather_callback_handler import AgentLoopGa
|
||||
from core.callback_handler.dataset_tool_callback_handler import DatasetToolCallbackHandler
|
||||
from core.callback_handler.main_chain_gather_callback_handler import MainChainGatherCallbackHandler
|
||||
from core.callback_handler.std_out_callback_handler import DifyStdOutCallbackHandler
|
||||
from core.chain.sensitive_word_avoidance_chain import SensitiveWordAvoidanceChain, SensitiveWordAvoidanceRule
|
||||
from core.conversation_message_task import ConversationMessageTask
|
||||
from core.model_providers.error import ProviderTokenNotInitError
|
||||
from core.model_providers.model_factory import ModelFactory
|
||||
@@ -27,7 +24,6 @@ from core.tool.web_reader_tool import WebReaderTool
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import Dataset, DatasetProcessRule
|
||||
from models.model import AppModelConfig
|
||||
from models.provider import ProviderType
|
||||
|
||||
|
||||
class OrchestratorRuleParser:
|
||||
@@ -39,18 +35,20 @@ class OrchestratorRuleParser:
|
||||
|
||||
def to_agent_executor(self, conversation_message_task: ConversationMessageTask, memory: Optional[BaseChatMemory],
|
||||
rest_tokens: int, chain_callback: MainChainGatherCallbackHandler,
|
||||
return_resource: bool = False, retriever_from: str = 'dev') -> Optional[AgentExecutor]:
|
||||
retriever_from: str = 'dev') -> Optional[AgentExecutor]:
|
||||
if not self.app_model_config.agent_mode_dict:
|
||||
return None
|
||||
|
||||
agent_mode_config = self.app_model_config.agent_mode_dict
|
||||
model_dict = self.app_model_config.model_dict
|
||||
return_resource = self.app_model_config.retriever_resource_dict.get('enabled', False)
|
||||
|
||||
chain = None
|
||||
if agent_mode_config and agent_mode_config.get('enabled'):
|
||||
tool_configs = agent_mode_config.get('tools', [])
|
||||
agent_provider_name = model_dict.get('provider', 'openai')
|
||||
agent_model_name = model_dict.get('name', 'gpt-4')
|
||||
dataset_configs = self.app_model_config.dataset_configs_dict
|
||||
|
||||
agent_model_instance = ModelFactory.get_text_generation_model(
|
||||
tenant_id=self.tenant_id,
|
||||
@@ -77,7 +75,7 @@ class OrchestratorRuleParser:
|
||||
# only OpenAI chat model (include Azure) support function call, use ReACT instead
|
||||
if agent_model_instance.model_mode != ModelMode.CHAT \
|
||||
or agent_model_instance.model_provider.provider_name not in ['openai', 'azure_openai']:
|
||||
if planning_strategy in [PlanningStrategy.FUNCTION_CALL, PlanningStrategy.MULTI_FUNCTION_CALL]:
|
||||
if planning_strategy == PlanningStrategy.FUNCTION_CALL:
|
||||
planning_strategy = PlanningStrategy.REACT
|
||||
elif planning_strategy == PlanningStrategy.ROUTER:
|
||||
planning_strategy = PlanningStrategy.REACT_ROUTER
|
||||
@@ -97,13 +95,14 @@ class OrchestratorRuleParser:
|
||||
summary_model_instance = None
|
||||
|
||||
tools = self.to_tools(
|
||||
agent_model_instance=agent_model_instance,
|
||||
tool_configs=tool_configs,
|
||||
callbacks=[agent_callback, DifyStdOutCallbackHandler()],
|
||||
agent_model_instance=agent_model_instance,
|
||||
conversation_message_task=conversation_message_task,
|
||||
rest_tokens=rest_tokens,
|
||||
callbacks=[agent_callback, DifyStdOutCallbackHandler()],
|
||||
return_resource=return_resource,
|
||||
retriever_from=retriever_from
|
||||
retriever_from=retriever_from,
|
||||
dataset_configs=dataset_configs
|
||||
)
|
||||
|
||||
if len(tools) == 0:
|
||||
@@ -125,66 +124,12 @@ class OrchestratorRuleParser:
|
||||
|
||||
return chain
|
||||
|
||||
def to_sensitive_word_avoidance_chain(self, model_instance: BaseLLM, callbacks: Callbacks = None, **kwargs) \
|
||||
-> Optional[SensitiveWordAvoidanceChain]:
|
||||
"""
|
||||
Convert app sensitive word avoidance config to chain
|
||||
|
||||
:param model_instance: model instance
|
||||
:param callbacks: callbacks for the chain
|
||||
:param kwargs:
|
||||
:return:
|
||||
"""
|
||||
sensitive_word_avoidance_rule = None
|
||||
|
||||
if self.app_model_config.sensitive_word_avoidance_dict:
|
||||
sensitive_word_avoidance_config = self.app_model_config.sensitive_word_avoidance_dict
|
||||
if sensitive_word_avoidance_config.get("enabled", False):
|
||||
if sensitive_word_avoidance_config.get('type') == 'moderation':
|
||||
sensitive_word_avoidance_rule = SensitiveWordAvoidanceRule(
|
||||
type=SensitiveWordAvoidanceRule.Type.MODERATION,
|
||||
canned_response=sensitive_word_avoidance_config.get("canned_response")
|
||||
if sensitive_word_avoidance_config.get("canned_response")
|
||||
else 'Your content violates our usage policy. Please revise and try again.',
|
||||
)
|
||||
else:
|
||||
sensitive_words = sensitive_word_avoidance_config.get("words", "")
|
||||
if sensitive_words:
|
||||
sensitive_word_avoidance_rule = SensitiveWordAvoidanceRule(
|
||||
type=SensitiveWordAvoidanceRule.Type.KEYWORDS,
|
||||
canned_response=sensitive_word_avoidance_config.get("canned_response")
|
||||
if sensitive_word_avoidance_config.get("canned_response")
|
||||
else 'Your content violates our usage policy. Please revise and try again.',
|
||||
extra_params={
|
||||
'sensitive_words': sensitive_words.split(','),
|
||||
}
|
||||
)
|
||||
|
||||
if sensitive_word_avoidance_rule:
|
||||
return SensitiveWordAvoidanceChain(
|
||||
model_instance=model_instance,
|
||||
sensitive_word_avoidance_rule=sensitive_word_avoidance_rule,
|
||||
output_key="sensitive_word_avoidance_output",
|
||||
callbacks=callbacks,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
return None
|
||||
|
||||
def to_tools(self, agent_model_instance: BaseLLM, tool_configs: list,
|
||||
conversation_message_task: ConversationMessageTask,
|
||||
rest_tokens: int, callbacks: Callbacks = None, return_resource: bool = False,
|
||||
retriever_from: str = 'dev') -> list[BaseTool]:
|
||||
def to_tools(self, tool_configs: list, callbacks: Callbacks = None, **kwargs) -> list[BaseTool]:
|
||||
"""
|
||||
Convert app agent tool configs to tools
|
||||
|
||||
:param agent_model_instance:
|
||||
:param rest_tokens:
|
||||
:param tool_configs: app agent tool configs
|
||||
:param conversation_message_task:
|
||||
:param callbacks:
|
||||
:param return_resource:
|
||||
:param retriever_from:
|
||||
:return:
|
||||
"""
|
||||
tools = []
|
||||
@@ -196,29 +141,35 @@ class OrchestratorRuleParser:
|
||||
|
||||
tool = None
|
||||
if tool_type == "dataset":
|
||||
tool = self.to_dataset_retriever_tool(tool_val, conversation_message_task, rest_tokens, return_resource, retriever_from)
|
||||
tool = self.to_dataset_retriever_tool(tool_config=tool_val, **kwargs)
|
||||
elif tool_type == "web_reader":
|
||||
tool = self.to_web_reader_tool(agent_model_instance)
|
||||
tool = self.to_web_reader_tool(tool_config=tool_val, **kwargs)
|
||||
elif tool_type == "google_search":
|
||||
tool = self.to_google_search_tool()
|
||||
tool = self.to_google_search_tool(tool_config=tool_val, **kwargs)
|
||||
elif tool_type == "wikipedia":
|
||||
tool = self.to_wikipedia_tool()
|
||||
tool = self.to_wikipedia_tool(tool_config=tool_val, **kwargs)
|
||||
elif tool_type == "current_datetime":
|
||||
tool = self.to_current_datetime_tool()
|
||||
tool = self.to_current_datetime_tool(tool_config=tool_val, **kwargs)
|
||||
|
||||
if tool:
|
||||
tool.callbacks.extend(callbacks)
|
||||
if tool.callbacks is not None:
|
||||
tool.callbacks.extend(callbacks)
|
||||
else:
|
||||
tool.callbacks = callbacks
|
||||
tools.append(tool)
|
||||
|
||||
return tools
|
||||
|
||||
def to_dataset_retriever_tool(self, tool_config: dict, conversation_message_task: ConversationMessageTask,
|
||||
rest_tokens: int, return_resource: bool = False, retriever_from: str = 'dev') \
|
||||
dataset_configs: dict, rest_tokens: int,
|
||||
return_resource: bool = False, retriever_from: str = 'dev',
|
||||
**kwargs) \
|
||||
-> Optional[BaseTool]:
|
||||
"""
|
||||
A dataset tool is a tool that can be used to retrieve information from a dataset
|
||||
:param rest_tokens:
|
||||
:param tool_config:
|
||||
:param dataset_configs:
|
||||
:param conversation_message_task:
|
||||
:param return_resource:
|
||||
:param retriever_from:
|
||||
@@ -236,10 +187,20 @@ class OrchestratorRuleParser:
|
||||
if dataset and dataset.available_document_count == 0 and dataset.available_document_count == 0:
|
||||
return None
|
||||
|
||||
k = self._dynamic_calc_retrieve_k(dataset, rest_tokens)
|
||||
top_k = dataset_configs.get("top_k", 2)
|
||||
|
||||
# dynamically adjust top_k when the remaining token number is not enough to support top_k
|
||||
top_k = self._dynamic_calc_retrieve_k(dataset=dataset, top_k=top_k, rest_tokens=rest_tokens)
|
||||
|
||||
score_threshold = None
|
||||
score_threshold_config = dataset_configs.get("score_threshold")
|
||||
if score_threshold_config and score_threshold_config.get("enable"):
|
||||
score_threshold = score_threshold_config.get("value")
|
||||
|
||||
tool = DatasetRetrieverTool.from_dataset(
|
||||
dataset=dataset,
|
||||
k=k,
|
||||
top_k=top_k,
|
||||
score_threshold=score_threshold,
|
||||
callbacks=[DatasetToolCallbackHandler(conversation_message_task)],
|
||||
conversation_message_task=conversation_message_task,
|
||||
return_resource=return_resource,
|
||||
@@ -248,7 +209,7 @@ class OrchestratorRuleParser:
|
||||
|
||||
return tool
|
||||
|
||||
def to_web_reader_tool(self, agent_model_instance: BaseLLM) -> Optional[BaseTool]:
|
||||
def to_web_reader_tool(self, tool_config: dict, agent_model_instance: BaseLLM, **kwargs) -> Optional[BaseTool]:
|
||||
"""
|
||||
A tool for reading web pages
|
||||
|
||||
@@ -269,15 +230,14 @@ class OrchestratorRuleParser:
|
||||
summary_model_instance = None
|
||||
|
||||
tool = WebReaderTool(
|
||||
llm=summary_model_instance.client if summary_model_instance else None,
|
||||
model_instance=summary_model_instance if summary_model_instance else None,
|
||||
max_chunk_length=4000,
|
||||
continue_reading=True,
|
||||
callbacks=[DifyStdOutCallbackHandler()]
|
||||
continue_reading=True
|
||||
)
|
||||
|
||||
return tool
|
||||
|
||||
def to_google_search_tool(self) -> Optional[BaseTool]:
|
||||
def to_google_search_tool(self, tool_config: dict, **kwargs) -> Optional[BaseTool]:
|
||||
tool_provider = SerpAPIToolProvider(tenant_id=self.tenant_id)
|
||||
func_kwargs = tool_provider.credentials_to_func_kwargs()
|
||||
if not func_kwargs:
|
||||
@@ -290,47 +250,39 @@ class OrchestratorRuleParser:
|
||||
"is not up to date. "
|
||||
"Input should be a search query.",
|
||||
func=OptimizedSerpAPIWrapper(**func_kwargs).run,
|
||||
args_schema=OptimizedSerpAPIInput,
|
||||
callbacks=[DifyStdOutCallbackHandler()]
|
||||
args_schema=OptimizedSerpAPIInput
|
||||
)
|
||||
|
||||
return tool
|
||||
|
||||
def to_current_datetime_tool(self) -> Optional[BaseTool]:
|
||||
tool = DatetimeTool(
|
||||
callbacks=[DifyStdOutCallbackHandler()]
|
||||
)
|
||||
def to_current_datetime_tool(self, tool_config: dict, **kwargs) -> Optional[BaseTool]:
|
||||
tool = DatetimeTool()
|
||||
|
||||
return tool
|
||||
|
||||
def to_wikipedia_tool(self) -> Optional[BaseTool]:
|
||||
def to_wikipedia_tool(self, tool_config: dict, **kwargs) -> Optional[BaseTool]:
|
||||
class WikipediaInput(BaseModel):
|
||||
query: str = Field(..., description="search query.")
|
||||
|
||||
return WikipediaQueryRun(
|
||||
name="wikipedia",
|
||||
api_wrapper=WikipediaAPIWrapper(doc_content_chars_max=4000),
|
||||
args_schema=WikipediaInput,
|
||||
callbacks=[DifyStdOutCallbackHandler()]
|
||||
args_schema=WikipediaInput
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _dynamic_calc_retrieve_k(cls, dataset: Dataset, rest_tokens: int) -> int:
|
||||
DEFAULT_K = 2
|
||||
CONTEXT_TOKENS_PERCENT = 0.3
|
||||
MAX_K = 10
|
||||
|
||||
def _dynamic_calc_retrieve_k(cls, dataset: Dataset, top_k: int, rest_tokens: int) -> int:
|
||||
if rest_tokens == -1:
|
||||
return DEFAULT_K
|
||||
return top_k
|
||||
|
||||
processing_rule = dataset.latest_process_rule
|
||||
if not processing_rule:
|
||||
return DEFAULT_K
|
||||
return top_k
|
||||
|
||||
if processing_rule.mode == "custom":
|
||||
rules = processing_rule.rules_dict
|
||||
if not rules:
|
||||
return DEFAULT_K
|
||||
return top_k
|
||||
|
||||
segmentation = rules["segmentation"]
|
||||
segment_max_tokens = segmentation["max_tokens"]
|
||||
@@ -338,14 +290,7 @@ class OrchestratorRuleParser:
|
||||
segment_max_tokens = DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens']
|
||||
|
||||
# when rest_tokens is less than default context tokens
|
||||
if rest_tokens < segment_max_tokens * DEFAULT_K:
|
||||
if rest_tokens < segment_max_tokens * top_k:
|
||||
return rest_tokens // segment_max_tokens
|
||||
|
||||
context_limit_tokens = math.floor(rest_tokens * CONTEXT_TOKENS_PERCENT)
|
||||
|
||||
# when context_limit_tokens is less than default context tokens, use default_k
|
||||
if context_limit_tokens <= segment_max_tokens * DEFAULT_K:
|
||||
return DEFAULT_K
|
||||
|
||||
# Expand the k value when there's still some room left in the 30% rest tokens space, but less than the MAX_K
|
||||
return min(context_limit_tokens // segment_max_tokens, MAX_K)
|
||||
return min(top_k, 10)
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user