Compare commits

...

240 Commits

Author SHA1 Message Date
takatost
5d48406d64 feat: bump version to 0.3.29 (#1462) 2023-11-06 06:55:17 -06:00
takatost
2b2dbabc11 fix: prompt variables validate when using external data tools (#1465) 2023-11-06 06:31:41 -06:00
zxhlyh
13b64bc55a fix: refresh api-based-extension (#1464) 2023-11-06 20:29:41 +08:00
zxhlyh
279f099ba0 fix: chat style (#1463) 2023-11-06 20:11:55 +08:00
zxhlyh
32747641e4 feat: add api-based extension & external data tool & moderation (#1459) 2023-11-06 19:36:32 +08:00
Garfield Dai
db43ed6f41 feat: add api-based extension & external data tool & moderation backend (#1403)
Co-authored-by: takatost <takatost@gmail.com>
2023-11-06 19:36:16 +08:00
YiLi
7699621983 fix: Use correct typehint for return values (#1454)
Co-authored-by: lethe <lethe>
2023-11-06 04:50:51 -06:00
takatost
4dfbcd0b4e feat: support chatglm_turbo model #1443 (#1460) 2023-11-06 04:33:05 -06:00
crazywoola
a9ee18300e fix: service suggested api (#1452) 2023-11-04 19:59:14 +08:00
dependabot[bot]
b4861d2b5c chore(deps): bump word-wrap from 1.2.3 to 1.2.5 in /web (#1440)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-11-01 11:26:25 +08:00
dependabot[bot]
913f2b84a6 chore(deps-dev): bump postcss from 8.4.24 to 8.4.31 in /web (#1439)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-11-01 11:24:43 +08:00
dependabot[bot]
cc89933d8f chore(deps): bump crypto-js from 4.1.1 to 4.2.0 in /web (#1437)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-11-01 11:24:33 +08:00
dependabot[bot]
a14ea6582d chore(deps): bump semver from 5.7.1 to 5.7.2 in /web (#1436)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-11-01 11:24:24 +08:00
takatost
076f3289d2 feat: add spark v3.0 llm support (#1434) 2023-10-31 03:13:11 -05:00
crazywoola
518083dfe0 fix: metadata not saved (#1429) 2023-10-30 14:39:15 +08:00
crazywoola
2b366bb321 fix: delete app and setting modal is not wokring in firefox (#1427) 2023-10-29 14:22:05 +08:00
Hickays
292d4c077a fix: Add icons for apps in "Related apps list" (#1425) 2023-10-27 17:55:38 +08:00
zxhlyh
fc4c03640d fix: provider delete api key modal z-index (#1416) 2023-10-26 10:35:03 +08:00
Charlie.Wei
985253197f mermaid front-end rendering initialization exception handling logic o… (#1407) 2023-10-26 10:19:04 +08:00
Hickays
48b4249790 fix: workspace app avatar is abnormal (#1411) 2023-10-26 10:18:38 +08:00
takatost
fb64fcb271 feat: upgrade xinference-client to 0.5.4 (#1402) 2023-10-23 05:49:32 -05:00
takatost
41e452dcc5 fix: hex problem (#1395) 2023-10-22 04:15:54 -05:00
yangbo.zhou
d218c66e25 Added diagram picture file for docker-compose yaml file visualization. (#1374) 2023-10-22 09:55:31 +08:00
Panmuse
e173b1cb2a Update README_CN.md (#1390) 2023-10-21 20:41:26 -05:00
Panmuse
9b598db559 Update README.md (#1389) 2023-10-21 20:41:15 -05:00
takatost
e122d677ad fix: return wrong when init 0 quota in trial provider (#1394) 2023-10-21 14:02:38 -05:00
takatost
4c63cbf5b1 feat: adjust anthropic (#1387) 2023-10-20 02:27:46 -05:00
Charlie.Wei
288705fefd Chrome Dify Chatbot Plug-in (#1378)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
Co-authored-by: crazywoola <427733928@qq.com>
2023-10-19 07:54:43 -05:00
Joel
8c4ae98f3d feat: add advanced prompt doc link (#1363) 2023-10-19 17:52:30 +08:00
Joel
08aa367892 feat: add context missing warning (#1384)
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
2023-10-19 17:52:14 +08:00
Joel
ff527a0190 fix: not load dataset config (#1381) 2023-10-19 13:55:25 +08:00
zxhlyh
6e05f8ca93 fix: npm run start (#1380) 2023-10-19 11:38:03 +08:00
Joel
6309d070d1 feat: enchance prompt mode copywriting (#1379) 2023-10-19 11:19:34 +08:00
Garfield Dai
fe14130b3c refactor advanced prompt core. (#1350) 2023-10-18 20:02:52 +08:00
wayne.wang
52ebffa857 fix: app config zhipu chatglm_std model, but it still use chatglm_lit… (#1377)
Co-authored-by: wayne.wang <wayne.wang@beibei.com>
2023-10-18 05:07:36 -05:00
zxhlyh
d14f15863d fix: i18n runtime error (#1376) 2023-10-18 16:00:56 +08:00
takatost
7c9b585a47 feat: support weixin ernie-bot-4 and chat mode (#1375) 2023-10-18 02:35:24 -05:00
takatost
c039f4af83 fix: app model config detached in completion thread (#1366) 2023-10-17 08:18:08 -05:00
takatost
07285e5f8b feat: optimize completion model agent (#1364) 2023-10-17 06:54:59 -05:00
Chenglong.li
16d80ebab3 Fix milvus configuration error (#1362)
Signed-off-by: JackLCL <chenglong.li@zilliz.com>
2023-10-17 17:40:40 +08:00
zxhlyh
61e816f24c feat: logo (#1356) 2023-10-16 15:26:25 +08:00
takatost
2feb16d957 feat: bump version to 0.3.28 (#1349) 2023-10-14 11:49:56 -05:00
crazywoola
3043fbe73b remove the suggested api for completion app (#1347) 2023-10-14 10:05:33 -05:00
Hickays
9f99c3f55b fix: modal z-index (#1343) 2023-10-13 05:55:03 -05:00
Joel
a07a6d8c26 feat: switch to generation model set default stop word (#1341) 2023-10-13 16:47:22 +08:00
Garfield Dai
695841a3cf Feat/advanced prompt enhancement (#1340) 2023-10-13 16:47:01 +08:00
takatost
3efaa713da feat: use xinference client instead of xinference (#1339) 2023-10-13 02:46:09 -05:00
takatost
9822f687f7 fix: max tokens of OpenAI gpt-3.5-turbo-instruct to 4097 (#1338) 2023-10-13 02:07:07 -05:00
crazywoola
b9d83c04bc fix: modal z-index (#1337) 2023-10-13 14:58:53 +08:00
Charlie.Wei
298ad6782d Add Message Suggested Api (#1326)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
2023-10-13 14:07:32 +08:00
takatost
f4be2b8bcd fix: raise error in minimax stream generate (#1336) 2023-10-12 23:48:28 -05:00
crazywoola
e83e239faf fix: value.join is not a function in log list (#1332) 2023-10-13 11:34:24 +08:00
taokuizu
62bf7f0fc2 fix: new app with template display (#1322) 2023-10-13 10:18:33 +08:00
takatost
7dea485d57 feat: bump version to 0.3.27 (#1331) 2023-10-12 10:37:48 -05:00
zxhlyh
5b9858a8a3 feat: advanced prompt (#1330)
Co-authored-by: Joel <iamjoel007@gmail.com>
Co-authored-by: JzoNg <jzongcode@gmail.com>
Co-authored-by: Gillian97 <jinling.sunshine@gmail.com>
2023-10-12 23:14:28 +08:00
Garfield Dai
42a5b3ec17 feat: advanced prompt backend (#1301)
Co-authored-by: takatost <takatost@gmail.com>
2023-10-12 10:13:10 -05:00
takatost
2d1cb076c6 fix: dataset segment not exist return agent response (#1329) 2023-10-12 04:40:20 -05:00
Jyong
289c93d081 Feat/improve document delete logic (#1325)
Co-authored-by: jyong <jyong@dify.ai>
2023-10-12 13:30:44 +08:00
takatost
c0fe706597 feat: adjust to only build the latest image when pushing a tag. (#1324) 2023-10-11 23:38:07 -05:00
takatost
9cba1c8bf4 fix: retriever_resource missing (#1317) 2023-10-11 14:37:11 -05:00
takatost
cbf095465c feat: remove llm client use (#1316) 2023-10-11 14:02:53 -05:00
KVOJJJin
c007dbdc13 Feat: add document of authorization (#1311) 2023-10-11 08:03:36 -05:00
takatost
ff493d017b fix: minimax tests (#1313) 2023-10-11 07:49:26 -05:00
Jyong
7f6ad9653e Fix/grpc gevent compatible (#1314)
Co-authored-by: jyong <jyong@dify.ai>
2023-10-11 20:48:35 +08:00
takatost
2851a9f04e feat: optimize minimax llm call (#1312) 2023-10-11 07:17:41 -05:00
takatost
c536f85b2e fix: compatibility issues with the tongyi model. (#1310) 2023-10-11 05:16:26 -05:00
takatost
b1352ff8b7 feat: using random sampling to check if it violates the review mechan… (#1308) 2023-10-11 04:11:20 -05:00
Jyong
cc63c8499f bump version to 0.3.26 (#1307)
Co-authored-by: jyong <jyong@dify.ai>
2023-10-11 16:11:24 +08:00
Jyong
f191b8b8d1 milvus docker compose env (#1306)
Co-authored-by: jyong <jyong@dify.ai>
2023-10-11 16:05:37 +08:00
Jyong
5003db987d milvus secure check fix (#1305)
Co-authored-by: jyong <jyong@dify.ai>
2023-10-11 13:11:06 +08:00
Jyong
07aab5e868 Feat/add milvus vector db (#1302)
Co-authored-by: jyong <jyong@dify.ai>
2023-10-10 21:56:24 +08:00
takatost
875dfbbf0e fix: openllm completion start with prompt, remove it (#1303) 2023-10-10 04:44:19 -05:00
Charlie.Wei
9e7efa45d4 document segmentApi Add get&update&delete operate (#1285)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
2023-10-10 13:27:06 +08:00
takatost
8bf892b306 feat: bump version to 0.3.25 (#1300) 2023-10-10 13:03:49 +08:00
takatost
8480b0197b fix: prompt for baichuan text generation models (#1299) 2023-10-10 13:01:18 +08:00
zxhlyh
df07fb5951 feat: provider add baichuan (#1298) 2023-10-09 23:10:43 -05:00
takatost
4ab4bcc074 feat: support openllm embedding (#1293) 2023-10-09 23:09:35 -05:00
takatost
1d4f019de4 feat: add baichuan llm support (#1294)
Co-authored-by: zxhlyh <jasonapring2015@outlook.com>
2023-10-09 23:09:26 -05:00
takatost
677aacc8e3 feat: upgrade xinference client to 0.5.2 (#1292) 2023-10-09 08:12:58 -05:00
takatost
fda937175d feat: qdrant support in docker compose (#1286) 2023-10-08 12:04:04 -05:00
takatost
024250803a feat: move login_required wrapper outside (#1281) 2023-10-08 05:21:32 -05:00
Charlie.Wei
b711ce33b7 Application share qrcode (#1277)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
Co-authored-by: crazywoola <427733928@qq.com>
2023-10-08 09:34:49 +08:00
Rhon Joe
52bec63275 chore(web): strong type (#1259) 2023-10-07 04:42:16 -05:00
qiuqiua
657fa80f4d fix devcontainer issue (#1273) 2023-10-07 10:34:25 +08:00
takatost
373e90ee6d fix: detached model in completion thread (#1269) 2023-10-02 22:27:25 +08:00
takatost
41d4c5b424 fix: count down thread in completion db not commit (#1267) 2023-10-02 10:19:26 +08:00
takatost
86a9dea428 fix: db not commit when streaming output (#1266) 2023-10-01 16:41:52 +08:00
takatost
8606d80c66 fix: request timeout when openai completion (#1265) 2023-10-01 16:00:23 +08:00
takatost
5bffa1d918 feat: bump version to 0.3.24 (#1262) 2023-09-28 18:32:06 +08:00
zxhlyh
c9b0fe47bf Fix/notion sync (#1258) 2023-09-28 14:39:13 +08:00
zxhlyh
bcd744b6b7 fix: doc (#1256) 2023-09-28 11:26:04 +08:00
Jyong
5e511e01bf Fix/dataset api key delete (#1255)
Co-authored-by: jyong <jyong@dify.ai>
2023-09-28 10:41:41 +08:00
crazywoola
52291c645e fix: dataset footer styles (#1254) 2023-09-28 10:06:52 +08:00
takatost
a31466d34e fix: db session not commit before long llm call running (#1251) 2023-09-27 21:40:26 +08:00
takatost
d38eac959b fix: wenxin model name invalid when llm call (#1248) 2023-09-27 16:29:13 +08:00
zxhlyh
9dbb8acd4b Feat/dataset support api service (#1240)
Co-authored-by: Joel <iamjoel007@gmail.com>
Co-authored-by: crazywoola <427733928@qq.com>
2023-09-27 16:06:49 +08:00
Jyong
46154c6705 Feat/dataset service api (#1245)
Co-authored-by: jyong <jyong@dify.ai>
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
2023-09-27 16:06:32 +08:00
Garfield Dai
54ff03c35d fix: dataset query error. (#1244) 2023-09-27 15:24:54 +08:00
Garfield Dai
18c710c906 feat: support binding context var (#1227)
Co-authored-by: Joel <iamjoel007@gmail.com>
2023-09-27 14:53:22 +08:00
KVOJJJin
59236b789f Fix: dataset list refresh (#1216) 2023-09-27 10:31:46 +08:00
KVOJJJin
fd3d43cae1 Fix: debounce of dataset creation (#1237) 2023-09-27 10:31:27 +08:00
Rhon Joe
8eae643911 Fix App logs page modal show different model icon. (#1224) 2023-09-27 08:54:52 +08:00
crazywoola
fd9413874a fix: FATAL: role "root" does not exist. (#1233) 2023-09-26 10:20:00 +08:00
zxhlyh
227f9fb77d Feat/api jwt (#1212) 2023-09-25 12:49:16 +08:00
Joel
c40ee7e629 feat: batch run support retry errors and decrease rate limit times (#1215) 2023-09-25 10:20:50 +08:00
KVOJJJin
841e967d48 Fix: add loading for dataset creation (#1214) 2023-09-24 01:35:20 -05:00
Joel
9df0dcedae fix: dataset eslint error (#1221) 2023-09-22 22:38:33 +08:00
Jyong
724e053732 Fix/qdrant data issue (#1203)
Co-authored-by: jyong <jyong@dify.ai>
2023-09-22 14:21:26 +08:00
Garfield Dai
e409895c02 Feat/huggingface embedding support (#1211)
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
2023-09-22 13:59:02 +08:00
takatost
32d9b6181c fix: transaction not commit during long LLM calls (#1213) 2023-09-22 12:43:06 +08:00
takatost
2b018fade2 fix: transaction hangs due to message commit block during long LLM calls (#1206) 2023-09-21 11:22:10 +08:00
Rhon Joe
e65f9cb17a Complete type defined. (#1200) 2023-09-19 23:27:06 -05:00
zxhlyh
1367f34398 fix: provider spark free quota text (#1201) 2023-09-20 11:46:25 +08:00
crazywoola
e47f6b879a add help wanted issue template (#1199) 2023-09-19 20:02:41 -05:00
takatost
5809edd74b feat: bump version to 0.3.23 (#1198) 2023-09-20 00:14:36 +08:00
bowen
05bfa11915 build: update devDependencies (#1125) 2023-09-19 13:31:48 +08:00
takatost
435f804c6f fix: gpt-3.5-turbo-instruct context size to 8192 (#1196) 2023-09-19 02:10:22 +08:00
takatost
ae3f1ac0a9 feat: support gpt-3.5-turbo-instruct model (#1195) 2023-09-19 02:05:04 +08:00
Jyong
269a465fc4 Feat/improve vector database logic (#1193)
Co-authored-by: jyong <jyong@dify.ai>
2023-09-18 18:15:41 +08:00
zxhlyh
60e0bbd713 Feat/provider add zhipuai (#1192)
Co-authored-by: Joel <iamjoel007@gmail.com>
2023-09-18 18:02:05 +08:00
takatost
827c97f0d3 feat: add zhipuai (#1188) 2023-09-18 17:32:31 +08:00
takatost
c8bd76cd66 fix: inference embedding validate (#1187) 2023-09-16 03:09:36 +08:00
crazywoola
ec5f585df4 1111 wrong embedding model displayed in datasets (#1186) 2023-09-15 07:54:45 -05:00
Rhon Joe
1de48f33ca feat(web): service request return generics type (#1157) 2023-09-15 07:54:20 -05:00
Joel
6b41a9593e fix: text error (#1184) 2023-09-15 14:15:28 +08:00
Joel
82267083e8 fix: model param description error (#1183) 2023-09-15 11:36:01 +08:00
Joel
c385961d33 chore: Optimization model parameter description (#1181) 2023-09-15 11:14:14 +08:00
charli117
20bab6edec Restore the application template (#1174)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
2023-09-14 08:28:32 -05:00
charli117
67bed54f32 Mermaid front end rendering (#1166)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
2023-09-14 14:09:23 +08:00
leo
562a571281 fix: Improved fallback solution for avatar image loading failure (#1172) 2023-09-14 13:31:35 +08:00
Matri
fc68c81791 fix: correct invite url (#1173) 2023-09-14 12:07:34 +08:00
Jyong
5d9070bc60 Feat/add blocking mode resource return (#1171)
Co-authored-by: jyong <jyong@dify.ai>
2023-09-13 18:53:35 +08:00
crazywoola
b11fb0dfd1 fix LocalAI is missing in lang/en (#1169) 2023-09-13 10:08:33 +08:00
crazywoola
d1c5c5f160 add video to cn readme (#1165) 2023-09-12 08:30:12 -05:00
crazywoola
0b1d1440aa Update README.md (#1164) 2023-09-12 07:48:35 -05:00
Joel
0c420d64b3 chore: hover conversation show option button (#1160) 2023-09-12 16:35:13 +08:00
takatost
f9082104ed feat: add hosted moderation (#1158) 2023-09-12 10:26:12 +08:00
takatost
983834cd52 feat: spark check (#1134) 2023-09-11 17:31:03 +08:00
zxhlyh
96d10c8b39 feat: spark free quota verify (#1152) 2023-09-11 17:30:54 +08:00
takatost
24cb992843 feat: bump version to 0.3.22 (#1153) 2023-09-11 12:04:06 +08:00
crazywoola
7907c0bf58 Update bug_report.yml (#1151) 2023-09-11 10:48:37 +08:00
crazywoola
ebf4fd9a09 Update issue template (#1150) 2023-09-11 10:45:10 +08:00
Rhon Joe
38b9901274 fix(web): complete some ts type (#1148) 2023-09-11 09:30:17 +08:00
Jyong
642842d61b Feat:dataset retiever resource (#1123)
Co-authored-by: jyong <jyong@dify.ai>
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
2023-09-10 15:17:43 +08:00
KVOJJJin
e161c511af Feat:csv & docx support (#1139)
Co-authored-by: jyong <jyong@dify.ai>
2023-09-10 15:17:22 +08:00
takatost
f29e82685e feat: bump version to 0.3.21 (#1145) 2023-09-10 12:34:54 +08:00
takatost
3a5ae96e7b fix: TRANSFORMERS_OFFLINE orders in Dockerfile (#1144) 2023-09-10 12:26:13 +08:00
takatost
b63a685386 feat: set transformers offline default true (#1143) 2023-09-10 12:20:58 +08:00
takatost
877da82b06 feat: cache huggingface gpt2 tokenizer files (#1138) 2023-09-10 12:16:21 +08:00
takatost
6637629045 fix: remove the deprecated depends_on.condition format (#1142) 2023-09-10 12:07:20 +08:00
Joel
e925b6c572 fix: log page compatible old query (#1141) 2023-09-10 11:29:25 +08:00
Joel
5412f4aba5 fix: in log page not show user query (#1140) 2023-09-10 09:30:30 +08:00
Joel
2d5ad0d208 feat: support optional query content (#1097)
Co-authored-by: Garfield Dai <dai.hai@foxmail.com>
2023-09-10 00:12:34 +08:00
takatost
1ade70aa1e feat: bump version to 0.3.20 (#1135) 2023-09-09 23:47:14 +08:00
takatost
2658c4d57b fix: answer returned null when response_mode was blocking (#1133) 2023-09-09 23:22:21 +08:00
zxhlyh
84c76bc04a Feat/chat add origin (#1130) 2023-09-09 19:17:12 +08:00
takatost
6effcd3755 feat: optimize celery start cmd (#1129) 2023-09-09 13:48:29 +08:00
李锐东
d9866489f0 feat: add health check and depend condition in docker compose (#1113) 2023-09-09 13:47:08 +08:00
takatost
c4d8bdc3db fix: hf hosted inference check (#1128) 2023-09-09 00:29:48 +08:00
Joel
681eb1cfcc fix: click inner link no jump (#1118) 2023-09-08 10:21:42 +08:00
Matri
a5d21f3b09 fix: shortening invite url (#1100)
Co-authored-by: MatriQi <matri@aifi.io>
2023-09-07 17:15:57 +08:00
Joel
7ba068c3e4 fix: self host embedding missing base url config (#1116) 2023-09-07 14:56:38 +08:00
bowen
b201eeedbd fix: optimize styles (#1112) 2023-09-07 14:24:09 +08:00
Rhon Joe
f28cb84977 fix(web): fix AppCard Menu popover open bug (#1107) 2023-09-07 09:47:31 +08:00
Joel
714872cd58 chore: enchancment frontend readme (#1110) 2023-09-07 09:43:24 +08:00
Joel
0708bd60ee fix: try to fix chunk load error (#1109) 2023-09-06 15:47:53 +08:00
Joel
23a6c85b80 chore: handle workspace apps scrollbar (#1101) 2023-09-05 15:56:21 +08:00
bowen
4a28599fbd fix: optimize feedback and app icon (#1099) 2023-09-05 09:13:59 +08:00
seewhy
7c66d3c793 feat: Optimize the description for Azure deployment name (#1091) 2023-09-04 14:26:22 +08:00
Joel
cc9edfffd8 fix: markdown code lang capitalization and line number color (#1098) 2023-09-04 11:31:25 +08:00
Joel
6fa2454c9a fix: change frontend start script (#1096) 2023-09-04 11:10:32 +08:00
crazywoola
487e699021 fix: ui in chat openning statement (#1094) 2023-09-04 10:26:46 +08:00
takatost
a7cdb745c1 feat: support spark v2 validate (#1086) 2023-09-01 20:53:32 +08:00
takatost
73c86ee6a0 fix: prompt of title generation (#1084) 2023-09-01 14:55:58 +08:00
takatost
48eb590065 feat: optimize last_active_at update (#1083) 2023-09-01 13:58:26 +08:00
takatost
33562a9d8d feat: optimize prompt (#1080) 2023-09-01 11:46:06 +08:00
Rhon Joe
c9194ba382 chore(api): api image multistage build (#1069) 2023-09-01 11:13:22 +08:00
takatost
a199fa6388 feat: optimize high load sql query of document segment (#1078) 2023-09-01 10:52:39 +08:00
takatost
4c8608dc61 feat: optimize conversation title generation output must be a valid JSON (#1077) 2023-09-01 10:31:42 +08:00
Garfield Dai
a6b0f788e7 feat: add visual studio code debug config. (#1068)
Co-authored-by: Keruberosu <631677014@qq.com>
2023-09-01 09:15:06 +08:00
takatost
df6604a734 feat: optimize generation of conversation title (#1075) 2023-09-01 02:28:37 +08:00
takatost
1ca86cf9ce feat: bump version to 0.3.19 (#1074) 2023-08-31 21:42:58 +08:00
takatost
78e26f8b75 fix: summary no docs (#1073) 2023-08-31 20:19:26 +08:00
takatost
2191312bb9 fix: segments query missing idx hit (#1072) 2023-08-31 19:39:44 +08:00
takatost
fcc6b41ab7 feat: decrease claude model request time by set max top_k to 10 (#1071) 2023-08-31 18:23:44 +08:00
Joel
9458b8978f feat: siderbar operation support portal (#1061) 2023-08-31 17:46:51 +08:00
takatost
d75e8aeafa feat: disable anthropic retry (#1067) 2023-08-31 16:44:46 +08:00
takatost
2eba98a465 feat: optimize anthropic connection pool (#1066) 2023-08-31 16:18:59 +08:00
takatost
a7a7aab7a0 fix: csv import error (#1063) 2023-08-31 15:42:28 +08:00
crazywoola
86bfbb47d5 chore: doc issue (#1062) 2023-08-31 14:54:16 +08:00
yezhwi
d33a269548 refactor(file extractor): file extractor (#1059) 2023-08-31 14:45:31 +08:00
Matri
d3f8ea2df0 Feat/support to invite multiple users (#1011) 2023-08-31 01:18:31 +08:00
Jyong
7df56ed617 fix error weaviate vector (#1058)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-30 20:34:17 +08:00
Joel
e34dcc0406 feat: code support copy (#1057) 2023-08-30 18:08:47 +08:00
Joel
a834ba8759 feat: support rename conversation (#1056) 2023-08-30 17:32:32 +08:00
KVOJJJin
c67f345d0e Fix: disable operations of dataset when embedding unavailable (#1055)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-30 17:27:19 +08:00
yezhwi
8b8e510bfe fix: handle AttributeError for datasets and index (#1052) 2023-08-30 11:14:16 +08:00
crazywoola
3db839a5cb 773 change embed title welcome to use (#1053) 2023-08-30 11:03:25 +08:00
takatost
417c19577a feat: add LocalAI local embedding model support (#1021)
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
2023-08-29 22:22:02 +08:00
Jyong
b5953039de recreate qdrant vector (#1049)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-29 15:00:36 +08:00
Jyong
a43e80dd9c add qdrant migration (#1046)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-29 10:37:04 +08:00
WangBooth
ad5f27bc5f fix openpyxl dimensions error (#1041) 2023-08-29 10:36:48 +08:00
Joel
05e0985f29 chore: match new dataset tool format (#1044) 2023-08-29 09:07:45 +08:00
takatost
7b3314c5db fix: dataset desc (#1045) 2023-08-29 09:07:27 +08:00
Jyong
a55ba6e614 Fix/ignore economy dataset (#1043)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-29 03:37:45 +08:00
bowen
f9bec1edf8 chore: perfect type definition (#1003) 2023-08-28 19:48:53 +08:00
Jyong
16199e968e fix notion import limit check (#1042)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-28 16:49:03 +08:00
takatost
02452421d5 fix: pub generate message text return null (#1037) 2023-08-28 16:43:54 +08:00
zxhlyh
3a5c7c75ad Fix/model selector (#1032) 2023-08-28 10:54:41 +08:00
zxhlyh
a7415ecfd8 Fix/upload document limit (#1033) 2023-08-28 10:53:45 +08:00
KVOJJJin
934def5fcc Fix: eslint (#1030) 2023-08-27 17:06:16 +08:00
takatost
0796791de5 feat: hf inference endpoint stream support (#1028) 2023-08-26 19:48:34 +08:00
takatost
6c148b223d fix: dataset query truncated (#1026) 2023-08-26 17:35:17 +08:00
zxhlyh
4b168f4838 fix: maintenance notice (#1025) 2023-08-26 16:09:55 +08:00
takatost
1c114eaef3 feat: update contributing (#1020) 2023-08-25 21:19:13 +08:00
Jyong
e053215155 fix document estimate parameter (#1019)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-25 20:10:08 +08:00
zxhlyh
13482b0fc1 feat: maintenance notice (#1016) 2023-08-25 19:38:52 +08:00
Jyong
38fa152cc4 fix update document index technique (#1018)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-25 18:29:55 +08:00
Uranus
2d9616c29c fix: xinference last token being ignored (#1013) 2023-08-25 18:15:05 +08:00
Jyong
915e26527b update dataset index struct (#1012)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-25 15:52:33 +08:00
Jyong
2d604d9330 Fix/filter empty segment (#1004)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-25 15:50:29 +08:00
Jyong
e7199826cc embedding model available check (#1009)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-25 00:25:16 +08:00
crazywoola
70e24b7594 fix: loading and calc rem (#1006) 2023-08-24 23:24:33 +08:00
yezhwi
c1602aafc7 refactor:cache in place & function name (#1001) 2023-08-24 22:54:21 +08:00
crazywoola
a3fec11438 fix: styles (#1005) 2023-08-24 22:37:46 +08:00
Jyong
b1fd1b3ab3 Feat/vector db manage (#997)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-24 21:27:31 +08:00
Jyong
5397799aac document limit (#999)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-24 21:27:13 +08:00
takatost
8e837dde1a feat: bump version to 0.3.18 (#1000) 2023-08-24 18:13:18 +08:00
takatost
9ae91a2ec3 feat: optimize xinference request max token key and stop reason (#998) 2023-08-24 18:11:15 +08:00
Matri
276d3d10a0 fix: apps loading issue (#994) 2023-08-24 17:57:38 +08:00
crazywoola
f13623184a fix style in app share (#995) 2023-08-24 17:57:25 +08:00
takatost
ef61e1487f fix: safetensor arm complie error (#996) 2023-08-24 17:38:10 +08:00
takatost
701e2b334f feat: remove unnecessary prompt of baichuan (#993) 2023-08-24 15:30:59 +08:00
takatost
6ebd6e7890 feat: bump version to 0.3.17 (#992) 2023-08-24 15:12:47 +08:00
takatost
bd3a9b2f8d fix: xinference-chat-stream-response (#991) 2023-08-24 14:39:34 +08:00
takatost
18d3877151 feat: optimize xinference stream (#989) 2023-08-24 13:58:34 +08:00
takatost
53e83d8697 feat: optimize baichuan prompt (#988) 2023-08-24 12:07:10 +08:00
Matri
6377fc75c6 chore: update lintrc config (#986) 2023-08-24 11:46:59 +08:00
takatost
2c30d19cbe feat: add baichuan prompt (#985) 2023-08-24 10:22:36 +08:00
takatost
9b247fccd4 feat: adjust hf max tokens (#979) 2023-08-23 22:24:50 +08:00
924 changed files with 37135 additions and 7495 deletions

View File

@@ -1,11 +1,8 @@
FROM mcr.microsoft.com/devcontainers/anaconda:0-3
FROM mcr.microsoft.com/devcontainers/python:3.10
COPY . .
# Copy environment.yml (if found) to a temp location so we update the environment. Also
# copy "noop.txt" so the COPY instruction does not fail if no environment.yml exists.
COPY environment.yml* .devcontainer/noop.txt /tmp/conda-tmp/
RUN if [ -f "/tmp/conda-tmp/environment.yml" ]; then umask 0002 && /opt/conda/bin/conda env update -n base -f /tmp/conda-tmp/environment.yml; fi \
&& rm -rf /tmp/conda-tmp
# [Optional] Uncomment this section to install additional OS packages.
# RUN apt-get update && export DEBIAN_FRONTEND=noninteractive \
# && apt-get -y install --no-install-recommends <your-package-list-here>
# && apt-get -y install --no-install-recommends <your-package-list-here>

View File

@@ -1,13 +1,12 @@
// For format details, see https://aka.ms/devcontainer.json. For config options, see the
// README at: https://github.com/devcontainers/templates/tree/main/src/anaconda
{
"name": "Anaconda (Python 3)",
"name": "Python 3.10",
"build": {
"context": "..",
"dockerfile": "Dockerfile"
},
"features": {
"ghcr.io/dhoeric/features/act:1": {},
"ghcr.io/devcontainers/features/node:1": {
"nodeGypDependencies": true,
"version": "lts"

49
.github/ISSUE_TEMPLATE/bug_report.yml vendored Normal file
View File

@@ -0,0 +1,49 @@
name: "🕷️ Bug report"
description: Report errors or unexpected behavior
labels:
- bug
body:
- type: markdown
attributes:
value: Please make sure to [search for existing issues](https://github.com/langgenius/dify/issues) before filing a new one!
- type: input
attributes:
label: Dify version
placeholder: 0.3.21
description: See about section in Dify console
validations:
required: true
- type: dropdown
attributes:
label: Cloud or Self Hosted
description: How / Where was Dify installed from?
multiple: true
options:
- Cloud
- Self Hosted
- Other (please specify in "Steps to Reproduce")
validations:
required: true
- type: textarea
attributes:
label: Steps to reproduce
description: We highly suggest including screenshots and a bug report log.
placeholder: Having detailed steps helps us reproduce the bug.
validations:
required: true
- type: textarea
attributes:
label: ✔️ Expected Behavior
placeholder: What were you expecting?
validations:
required: false
- type: textarea
attributes:
label: ❌ Actual Behavior
placeholder: What happened instead?
validations:
required: false

8
.github/ISSUE_TEMPLATE/config.yml vendored Normal file
View File

@@ -0,0 +1,8 @@
blank_issues_enabled: false
contact_links:
- name: "\U0001F4DA Dify user documentation"
url: https://docs.dify.ai/getting-started/readme
about: Documentation for users of Dify
- name: "\U0001F4DA Dify dev documentation"
url: https://docs.dify.ai/getting-started/install-self-hosted
about: Documentation for people interested in developing and contributing for Dify

View File

@@ -0,0 +1,11 @@
name: "📚 Documentation Issue"
description: Report issues in our documentation
labels:
- ducumentation
body:
- type: textarea
attributes:
label: Provide a description of requested docs changes
placeholder: Briefly describe which document needs to be corrected and why.
validations:
required: true

View File

@@ -0,0 +1,26 @@
name: "⭐ Feature or enhancement request"
description: Propose something new.
labels:
- enhancement
body:
- type: textarea
attributes:
label: Description of the new feature / enhancement
placeholder: What is the expected behavior of the proposed feature?
validations:
required: true
- type: textarea
attributes:
label: Scenario when this would be used?
placeholder: What is the scenario this would be used? Why is this important to your workflow as a dify user?
validations:
required: true
- type: textarea
attributes:
label: Supporting information
placeholder: "Having additional evidence, data, tweets, blog posts, research, ... anything is extremely helpful. This information provides context to the scenario that may otherwise be lost."
validations:
required: false
- type: markdown
attributes:
value: Please limit one request per issue.

11
.github/ISSUE_TEMPLATE/help_wanted.yml vendored Normal file
View File

@@ -0,0 +1,11 @@
name: "🤝 Help Wanted"
description: "Request help from the community"
labels:
- help-wanted
body:
- type: textarea
attributes:
label: Provide a description of the help you need
placeholder: Briefly describe what you need help with.
validations:
required: true

View File

@@ -0,0 +1,46 @@
name: "🌐 Localization/Translation issue"
description: Report incorrect translations.
labels:
- translation
body:
- type: markdown
attributes:
value: Please make sure to [search for existing issues](https://github.com/langgenius/dify/issues) before filing a new one!
- type: input
attributes:
label: Dify version
placeholder: 0.3.21
description: Hover over system tray icon or look at Settings
validations:
required: true
- type: input
attributes:
label: Utility with translation issue
placeholder: Some area
description: Please input here the utility with the translation issue
validations:
required: true
- type: input
attributes:
label: 🌐 Language affected
placeholder: "German"
validations:
required: true
- type: textarea
attributes:
label: ❌ Actual phrase(s)
placeholder: What is there? Please include a screenshot as that is extremely helpful.
validations:
required: true
- type: textarea
attributes:
label: ✔️ Expected phrase(s)
placeholder: What was expected?
validations:
required: true
- type: textarea
attributes:
label: Why is the current translation wrong
placeholder: Why do you feel this is incorrect?
validations:
required: true

View File

@@ -1,32 +0,0 @@
---
name: "\U0001F41B Bug report"
about: Create a report to help us improve
title: ''
labels: bug
assignees: ''
---
<!--
Please provide a clear and concise description of what the bug is. Include
screenshots if needed. Please test using the latest version of the relevant
Dify packages to make sure your issue has not already been fixed.
-->
Dify version: Cloud | Self Host
## Steps To Reproduce
<!--
Your bug will get fixed much faster if we can run your code and it doesn't
have dependencies other than Dify. Issues without reproduction steps or
code examples may be immediately closed as not actionable.
-->
1.
2.
## The current behavior
## The expected behavior

View File

@@ -1,20 +0,0 @@
---
name: "\U0001F680 Feature request"
about: Suggest an idea for this project
title: ''
labels: enhancement
assignees: ''
---
**Is your feature request related to a problem? Please describe.**
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
**Describe the solution you'd like**
A clear and concise description of what you want to happen.
**Describe alternatives you've considered**
A clear and concise description of any alternative solutions or features you've considered.
**Additional context**
Add any other context or screenshots about the feature request here.

View File

@@ -1,10 +0,0 @@
---
name: "\U0001F914 Questions and Help"
about: Ask a usage or consultation question
title: ''
labels: ''
assignees: ''
---

View File

@@ -31,7 +31,7 @@ jobs:
with:
images: langgenius/dify-api
tags: |
type=raw,value=latest,enable={{is_default_branch}}
type=raw,value=latest,enable=${{ startsWith(github.ref, 'refs/tags/') }}
type=ref,event=branch
type=sha,enable=true,priority=100,prefix=,suffix=,format=long
type=semver,pattern={{major}}.{{minor}}.{{patch}}

View File

@@ -31,7 +31,7 @@ jobs:
with:
images: langgenius/dify-web
tags: |
type=raw,value=latest,enable={{is_default_branch}}
type=raw,value=latest,enable=${{ startsWith(github.ref, 'refs/tags/') }}
type=ref,event=branch
type=sha,enable=true,priority=100,prefix=,suffix=,format=long
type=semver,pattern={{major}}.{{minor}}.{{patch}}

View File

@@ -1,36 +0,0 @@
import os
import re
from zhon.hanzi import punctuation
def has_chinese_characters(text):
for char in text:
if '\u4e00' <= char <= '\u9fff' or char in punctuation:
return True
return False
def check_file_for_chinese_comments(file_path):
with open(file_path, 'r', encoding='utf-8') as file:
for line_number, line in enumerate(file, start=1):
if has_chinese_characters(line):
print(f"Found Chinese characters in {file_path} on line {line_number}:")
print(line.strip())
return True
return False
def main():
has_chinese = False
excluded_files = ["model_template.py", 'stopwords.py', 'commands.py',
'indexing_runner.py', 'web_reader_tool.py', 'spark_provider.py']
for root, _, files in os.walk("."):
for file in files:
if file.endswith(".py") and file not in excluded_files:
file_path = os.path.join(root, file)
if check_file_for_chinese_comments(file_path):
has_chinese = True
if has_chinese:
raise Exception("Found Chinese characters in Python files. Please remove them.")
if __name__ == "__main__":
main()

View File

@@ -1,31 +0,0 @@
name: Check for Chinese comments
on:
push:
branches:
- 'main'
pull_request:
branches:
- main
jobs:
check-chinese-comments:
runs-on: ubuntu-latest
steps:
- name: Check out repository
uses: actions/checkout@v2
- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: 3.9
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install zhon
- name: Run script to check for Chinese comments
run: |
python .github/workflows/check_no_chinese_comments.py

4
.gitignore vendored
View File

@@ -144,9 +144,11 @@ docker/volumes/app/storage/*
docker/volumes/db/data/*
docker/volumes/redis/data/*
docker/volumes/weaviate/*
docker/volumes/qdrant/*
sdks/python-client/build
sdks/python-client/dist
sdks/python-client/dify_client.egg-info
.vscode/
.vscode/*
!.vscode/launch.json

View File

@@ -53,9 +53,9 @@ Did you have an issue, like a merge conflict, or don't know how to open a pull r
## Community channels
Stuck somewhere? Have any questions? Join the [Discord Community Server](https://discord.gg/AhzKf7dNgk). We are here to help!
Stuck somewhere? Have any questions? Join the [Discord Community Server](https://discord.gg/j3XRWSPBf7). We are here to help!
### i18n (Internationalization) Support
We are looking for contributors to help with translations in other languages. If you are interested in helping, please join the [Discord Community Server](https://discord.gg/AhzKf7dNgk) and let us know.
Also check out the [Frontend i18n README]((web/i18n/README_EN.md)) for more information.
Also check out the [Frontend i18n README]((web/i18n/README_EN.md)) for more information.

View File

@@ -16,15 +16,15 @@
## 本地开发
要设置一个可工作的开发环境,只需 fork 项目的 git 存储库,并使用适当的软件包管理器安装后端和前端依赖项,然后创建并运行 docker-compose 堆栈
要设置一个可工作的开发环境,只需 fork 项目的 git 存储库,并使用适当的软件包管理器安装后端和前端依赖项,然后创建并运行 docker-compose。
### Fork存储库
您需要 fork [存储](https://github.com/langgenius/dify)。
您需要 fork [Git 仓](https://github.com/langgenius/dify)。
### 克隆存储库
克隆您在 GitHub 上 fork 的存储库:
克隆您在 GitHub 上 fork 的库:
```
git clone git@github.com:<github_username>/dify.git

View File

@@ -52,4 +52,4 @@ git clone git@github.com:<github_username>/dify.git
## コミュニティチャンネル
お困りですか?何か質問がありますか? [Discord Community サーバ](https://discord.gg/AhzKf7dNgk)に参加してください。私たちがお手伝いします!
お困りですか?何か質問がありますか? [Discord Community サーバ](https://discord.gg/j3XRWSPBf7) に参加してください。私たちがお手伝いします!

View File

@@ -16,6 +16,10 @@ Out-of-the-box web sites supporting form mode and chat conversation mode
A single API encompassing plugin capabilities, context enhancement, and more, saving you backend coding effort
Visual data analysis, log review, and annotation for applications
https://github.com/langgenius/dify/assets/100913391/f6e658d5-31b3-4c16-a0af-9e191da4d0f6
## Highlighted Features
**1. LLMs support:** Choose capabilities based on different models when building your Dify AI apps. Dify is compatible with Langchain, meaning it will support various LLMs. Currently supported:
@@ -33,7 +37,6 @@ Visual data analysis, log review, and annotation for applications
We provide the following free resources for registered Dify cloud users (sign up at [dify.ai](https://dify.ai)):
* 600,000 free Claude model tokens to build Claude-powered apps
* 200 free OpenAI queries to build OpenAI-based apps

View File

@@ -17,7 +17,7 @@
- 一套 API 即可包含插件、上下文增强等能力,替你省下了后端代码的编写工作
- 可视化的对应用进行数据分析,查阅日志或进行标注
https://github.com/langgenius/dify/assets/100913391/f6e658d5-31b3-4c16-a0af-9e191da4d0f6
## 核心能力
1. **模型支持:** 你可以在 Dify 上选择基于不同模型的能力来开发你的 AI 应用。Dify 兼容 Langchain这意味着我们将逐步支持多种 LLMs ,目前支持的模型供应商:
@@ -36,7 +36,6 @@
我们为所有注册云端版的用户免费提供以下资源(登录 [dify.ai](https://cloud.dify.ai) 即可使用):
* 60 万 Tokens Claude 模型的消息调用额度,用于创建基于 Claude 模型的 AI 应用
* 200 次 OpenAI 模型的消息调用额度,用于创建基于 OpenAI 模型的 AI 应用
* 300 万 讯飞星火大模型 Token 的调用额度,用于创建基于讯飞星火大模型的 AI 应用
* 100 万 MiniMax Token 的调用额度,用于创建基于 MiniMax 模型的 AI 应用

View File

@@ -50,25 +50,7 @@ S3_REGION=your-region
WEB_API_CORS_ALLOW_ORIGINS=http://127.0.0.1:3000,*
CONSOLE_CORS_ALLOW_ORIGINS=http://127.0.0.1:3000,*
# Cookie configuration
COOKIE_HTTPONLY=true
COOKIE_SAMESITE=None
COOKIE_SECURE=true
# Session configuration
SESSION_PERMANENT=true
SESSION_USE_SIGNER=true
## support redis, sqlalchemy
SESSION_TYPE=redis
# session redis configuration
SESSION_REDIS_HOST=localhost
SESSION_REDIS_PORT=6379
SESSION_REDIS_PASSWORD=difyai123456
SESSION_REDIS_DB=2
# Vector database configuration, support: weaviate, qdrant
# Vector database configuration, support: weaviate, qdrant, milvus
VECTOR_STORE=weaviate
# Weaviate configuration
@@ -77,9 +59,16 @@ WEAVIATE_API_KEY=WVF5YThaHlkYwhGUSmCRgsX3tD5ngdN8pkih
WEAVIATE_GRPC_ENABLED=false
WEAVIATE_BATCH_SIZE=100
# Qdrant configuration, use `path:` prefix for local mode or `https://your-qdrant-cluster-url.qdrant.io` for remote mode
QDRANT_URL=path:storage/qdrant
QDRANT_API_KEY=your-qdrant-api-key
# Qdrant configuration, use `http://localhost:6333` for local mode or `https://your-qdrant-cluster-url.qdrant.io` for remote mode
QDRANT_URL=http://localhost:6333
QDRANT_API_KEY=difyai123456
# Milvus configuration
MILVUS_HOST=127.0.0.1
MILVUS_PORT=19530
MILVUS_USER=root
MILVUS_PASSWORD=Milvus
MILVUS_SECURE=false
# Mail configuration, support: resend
MAIL_TYPE=

27
api/.vscode/launch.json vendored Normal file
View File

@@ -0,0 +1,27 @@
{
// Use IntelliSense to learn about possible attributes.
// Hover to view descriptions of existing attributes.
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
"version": "0.2.0",
"configurations": [
{
"name": "Python: Flask",
"type": "python",
"request": "launch",
"module": "flask",
"env": {
"FLASK_APP": "app.py",
"FLASK_DEBUG": "1",
"GEVENT_SUPPORT": "True"
},
"args": [
"run",
"--host=0.0.0.0",
"--port=5001",
"--debug"
],
"jinja": true,
"justMyCode": true
}
]
}

View File

@@ -1,7 +1,18 @@
FROM python:3.10-slim
# packages install stage
FROM python:3.10-slim AS base
LABEL maintainer="takatost@gmail.com"
RUN apt-get update \
&& apt-get install -y --no-install-recommends gcc g++ python3-dev libc-dev libffi-dev
COPY requirements.txt /requirements.txt
RUN pip install --prefix=/pkg -r requirements.txt
# build stage
FROM python:3.10-slim AS builder
ENV FLASK_APP app.py
ENV EDITION SELF_HOSTED
ENV DEPLOY_ENV PRODUCTION
@@ -15,15 +26,17 @@ EXPOSE 5001
WORKDIR /app/api
RUN apt-get update && \
apt-get install -y bash curl wget vim gcc g++ python3-dev libc-dev libffi-dev nodejs
COPY requirements.txt /app/api/requirements.txt
RUN pip install -r requirements.txt
RUN apt-get update \
&& apt-get install -y --no-install-recommends bash curl wget vim nodejs \
&& apt-get autoremove \
&& rm -rf /var/lib/apt/lists/*
COPY --from=base /pkg /usr/local
COPY . /app/api/
RUN python -c "from transformers import GPT2TokenizerFast; GPT2TokenizerFast.from_pretrained('gpt2')"
ENV TRANSFORMERS_OFFLINE true
COPY docker/entrypoint.sh /entrypoint.sh
RUN chmod +x /entrypoint.sh

View File

@@ -52,11 +52,13 @@
flask run --host 0.0.0.0 --port=5001 --debug
```
7. Setup your application by visiting http://localhost:5001/console/api/setup or other apis...
8. If you need to debug local async processing, you can run `celery -A app.celery worker -Q dataset,generation,mail`, celery can do dataset importing and other async tasks.
8. If you need to debug local async processing, you can run `celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail`, celery can do dataset importing and other async tasks.
8. Start frontend:
8. Start frontend
You can start the frontend by running `npm install && npm run dev` in web/ folder, or you can use docker to start the frontend, for example:
```
docker run -it -d --platform linux/amd64 -p 3000:3000 -e EDITION=SELF_HOSTED -e CONSOLE_URL=http://127.0.0.1:5000 --name web-self-hosted langgenius/dify-web:latest
docker run -it -d --platform linux/amd64 -p 3000:3000 -e EDITION=SELF_HOSTED -e CONSOLE_URL=http://127.0.0.1:5001 --name web-self-hosted langgenius/dify-web:latest
```
This will start a dify frontend, now you are all set, happy coding!

View File

@@ -1,24 +1,25 @@
# -*- coding:utf-8 -*-
import os
from datetime import datetime
from werkzeug.exceptions import Forbidden
from werkzeug.exceptions import Unauthorized
if not os.environ.get("DEBUG") or os.environ.get("DEBUG").lower() != 'true':
from gevent import monkey
monkey.patch_all()
if os.environ.get("VECTOR_STORE") == 'milvus':
import grpc.experimental.gevent
grpc.experimental.gevent.init_gevent()
import logging
import json
import threading
from flask import Flask, request, Response, session
import flask_login
from flask import Flask, request, Response
from flask_cors import CORS
from core.model_providers.providers import hosted
from extensions import ext_session, ext_celery, ext_sentry, ext_redis, ext_login, ext_migrate, \
ext_database, ext_storage, ext_mail, ext_stripe
from extensions import ext_celery, ext_sentry, ext_redis, ext_login, ext_migrate, \
ext_database, ext_storage, ext_mail, ext_stripe, ext_code_based_extension
from extensions.ext_database import db
from extensions.ext_login import login_manager
@@ -27,12 +28,10 @@ from models import model, account, dataset, web, task, source, tool
from events import event_handlers
# DO NOT REMOVE ABOVE
import core
from config import Config, CloudEditionConfig
from commands import register_commands
from models.account import TenantAccountJoin, AccountStatus
from models.model import Account, EndUser, App
from services.account_service import TenantService
from services.account_service import AccountService
from libs.passport import PassportService
import warnings
warnings.simplefilter("ignore", ResourceWarning)
@@ -80,82 +79,39 @@ def create_app(test_config=None) -> Flask:
def initialize_extensions(app):
# Since the application instance is now created, pass it to each Flask
# extension instance to bind it to the Flask application instance (app)
ext_code_based_extension.init()
ext_database.init_app(app)
ext_migrate.init(app, db)
ext_redis.init_app(app)
ext_storage.init_app(app)
ext_celery.init_app(app)
ext_session.init_app(app)
ext_login.init_app(app)
ext_mail.init_app(app)
ext_sentry.init_app(app)
ext_stripe.init_app(app)
def _create_tenant_for_account(account):
tenant = TenantService.create_tenant(f"{account.name}'s Workspace")
TenantService.create_tenant_member(tenant, account, role='owner')
account.current_tenant = tenant
return tenant
# Flask-Login configuration
@login_manager.user_loader
def load_user(user_id):
"""Load user based on the user_id."""
@login_manager.request_loader
def load_user_from_request(request_from_flask_login):
"""Load user based on the request."""
if request.blueprint == 'console':
# Check if the user_id contains a dot, indicating the old format
if '.' in user_id:
tenant_id, account_id = user_id.split('.')
else:
account_id = user_id
auth_header = request.headers.get('Authorization', '')
if ' ' not in auth_header:
raise Unauthorized('Invalid Authorization header format. Expected \'Bearer <api-key>\' format.')
auth_scheme, auth_token = auth_header.split(None, 1)
auth_scheme = auth_scheme.lower()
if auth_scheme != 'bearer':
raise Unauthorized('Invalid Authorization header format. Expected \'Bearer <api-key>\' format.')
decoded = PassportService().verify(auth_token)
user_id = decoded.get('user_id')
account = db.session.query(Account).filter(Account.id == account_id).first()
if account:
if account.status == AccountStatus.BANNED.value or account.status == AccountStatus.CLOSED.value:
raise Forbidden('Account is banned or closed.')
workspace_id = session.get('workspace_id')
if workspace_id:
tenant_account_join = db.session.query(TenantAccountJoin).filter(
TenantAccountJoin.account_id == account.id,
TenantAccountJoin.tenant_id == workspace_id
).first()
if not tenant_account_join:
tenant_account_join = db.session.query(TenantAccountJoin).filter(
TenantAccountJoin.account_id == account.id).first()
if tenant_account_join:
account.current_tenant_id = tenant_account_join.tenant_id
else:
_create_tenant_for_account(account)
session['workspace_id'] = account.current_tenant_id
else:
account.current_tenant_id = workspace_id
else:
tenant_account_join = db.session.query(TenantAccountJoin).filter(
TenantAccountJoin.account_id == account.id).first()
if tenant_account_join:
account.current_tenant_id = tenant_account_join.tenant_id
else:
_create_tenant_for_account(account)
session['workspace_id'] = account.current_tenant_id
account.last_active_at = datetime.utcnow()
db.session.commit()
# Log in the user with the updated user_id
flask_login.login_user(account, remember=True)
return account
return AccountService.load_user(user_id)
else:
return None
@login_manager.unauthorized_handler
def unauthorized_handler():
"""Handle unauthorized requests."""
@@ -212,6 +168,7 @@ if app.config['TESTING']:
@app.after_request
def after_request(response):
"""Add Version headers to the response."""
response.set_cookie('remember_token', '', expires=0)
response.headers.add('X-Version', app.config['CURRENT_VERSION'])
response.headers.add('X-Env', app.config['DEPLOY_ENV'])
return response

View File

@@ -1,22 +1,32 @@
import datetime
import json
import math
import random
import string
import threading
import time
import uuid
import click
from flask import current_app
from tqdm import tqdm
from flask import current_app, Flask
from langchain.embeddings import OpenAIEmbeddings
from werkzeug.exceptions import NotFound
from core.embedding.cached_embedding import CacheEmbedding
from core.index.index import IndexBuilder
from core.model_providers.model_factory import ModelFactory
from core.model_providers.models.embedding.openai_embedding import OpenAIEmbedding
from core.model_providers.models.entity.model_params import ModelType
from core.model_providers.providers.hosted import hosted_model_providers
from core.model_providers.providers.openai_provider import OpenAIProvider
from libs.password import password_pattern, valid_password, hash_password
from libs.helper import email as email_validate
from extensions.ext_database import db
from libs.rsa import generate_key_pair
from models.account import InvitationCode, Tenant
from models.dataset import Dataset, DatasetQuery, Document
from models.model import Account
from models.account import InvitationCode, Tenant, TenantAccountJoin
from models.dataset import Dataset, DatasetQuery, Document, DatasetCollectionBinding
from models.model import Account, AppModelConfig, App
import secrets
import base64
@@ -231,7 +241,13 @@ def clean_unused_dataset_indexes():
kw_index = IndexBuilder.get_index(dataset, 'economy')
# delete from vector index
if vector_index:
vector_index.delete()
if dataset.collection_binding_id:
vector_index.delete_by_group_id(dataset.id)
else:
if dataset.collection_binding_id:
vector_index.delete_by_group_id(dataset.id)
else:
vector_index.delete()
kw_index.delete()
# update document
update_params = {
@@ -296,6 +312,412 @@ def sync_anthropic_hosted_providers():
click.echo(click.style('Congratulations! Synced {} anthropic hosted providers.'.format(count), fg='green'))
@click.command('create-qdrant-indexes', help='Create qdrant indexes.')
def create_qdrant_indexes():
click.echo(click.style('Start create qdrant indexes.', fg='green'))
create_count = 0
page = 1
while True:
try:
datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \
.order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
except NotFound:
break
page += 1
for dataset in datasets:
if dataset.index_struct_dict:
if dataset.index_struct_dict['type'] != 'qdrant':
try:
click.echo('Create dataset qdrant index: {}'.format(dataset.id))
try:
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except Exception:
try:
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id
)
dataset.embedding_model = embedding_model.name
dataset.embedding_model_provider = embedding_model.model_provider.provider_name
except Exception:
provider = Provider(
id='provider_id',
tenant_id=dataset.tenant_id,
provider_name='openai',
provider_type=ProviderType.SYSTEM.value,
encrypted_config=json.dumps({'openai_api_key': 'TEST'}),
is_valid=True,
)
model_provider = OpenAIProvider(provider=provider)
embedding_model = OpenAIEmbedding(name="text-embedding-ada-002",
model_provider=model_provider)
embeddings = CacheEmbedding(embedding_model)
from core.index.vector_index.qdrant_vector_index import QdrantVectorIndex, QdrantConfig
index = QdrantVectorIndex(
dataset=dataset,
config=QdrantConfig(
endpoint=current_app.config.get('QDRANT_URL'),
api_key=current_app.config.get('QDRANT_API_KEY'),
root_path=current_app.root_path
),
embeddings=embeddings
)
if index:
index.create_qdrant_dataset(dataset)
index_struct = {
"type": 'qdrant',
"vector_store": {
"class_prefix": dataset.index_struct_dict['vector_store']['class_prefix']}
}
dataset.index_struct = json.dumps(index_struct)
db.session.commit()
create_count += 1
else:
click.echo('passed.')
except Exception as e:
click.echo(
click.style('Create dataset index error: {} {}'.format(e.__class__.__name__, str(e)),
fg='red'))
continue
click.echo(click.style('Congratulations! Create {} dataset indexes.'.format(create_count), fg='green'))
@click.command('update-qdrant-indexes', help='Update qdrant indexes.')
def update_qdrant_indexes():
click.echo(click.style('Start Update qdrant indexes.', fg='green'))
create_count = 0
page = 1
while True:
try:
datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \
.order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
except NotFound:
break
page += 1
for dataset in datasets:
if dataset.index_struct_dict:
if dataset.index_struct_dict['type'] != 'qdrant':
try:
click.echo('Update dataset qdrant index: {}'.format(dataset.id))
try:
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except Exception:
provider = Provider(
id='provider_id',
tenant_id=dataset.tenant_id,
provider_name='openai',
provider_type=ProviderType.CUSTOM.value,
encrypted_config=json.dumps({'openai_api_key': 'TEST'}),
is_valid=True,
)
model_provider = OpenAIProvider(provider=provider)
embedding_model = OpenAIEmbedding(name="text-embedding-ada-002",
model_provider=model_provider)
embeddings = CacheEmbedding(embedding_model)
from core.index.vector_index.qdrant_vector_index import QdrantVectorIndex, QdrantConfig
index = QdrantVectorIndex(
dataset=dataset,
config=QdrantConfig(
endpoint=current_app.config.get('QDRANT_URL'),
api_key=current_app.config.get('QDRANT_API_KEY'),
root_path=current_app.root_path
),
embeddings=embeddings
)
if index:
index.update_qdrant_dataset(dataset)
create_count += 1
else:
click.echo('passed.')
except Exception as e:
click.echo(
click.style('Create dataset index error: {} {}'.format(e.__class__.__name__, str(e)),
fg='red'))
continue
click.echo(click.style('Congratulations! Update {} dataset indexes.'.format(create_count), fg='green'))
@click.command('normalization-collections', help='restore all collections in one')
def normalization_collections():
click.echo(click.style('Start normalization collections.', fg='green'))
normalization_count = []
page = 1
while True:
try:
datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \
.order_by(Dataset.created_at.desc()).paginate(page=page, per_page=100)
except NotFound:
break
datasets_result = datasets.items
page += 1
for i in range(0, len(datasets_result), 5):
threads = []
sub_datasets = datasets_result[i:i + 5]
for dataset in sub_datasets:
document_format_thread = threading.Thread(target=deal_dataset_vector, kwargs={
'flask_app': current_app._get_current_object(),
'dataset': dataset,
'normalization_count': normalization_count
})
threads.append(document_format_thread)
document_format_thread.start()
for thread in threads:
thread.join()
click.echo(click.style('Congratulations! restore {} dataset indexes.'.format(len(normalization_count)), fg='green'))
def deal_dataset_vector(flask_app: Flask, dataset: Dataset, normalization_count: list):
with flask_app.app_context():
try:
click.echo('restore dataset index: {}'.format(dataset.id))
try:
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except Exception:
provider = Provider(
id='provider_id',
tenant_id=dataset.tenant_id,
provider_name='openai',
provider_type=ProviderType.CUSTOM.value,
encrypted_config=json.dumps({'openai_api_key': 'TEST'}),
is_valid=True,
)
model_provider = OpenAIProvider(provider=provider)
embedding_model = OpenAIEmbedding(name="text-embedding-ada-002",
model_provider=model_provider)
embeddings = CacheEmbedding(embedding_model)
dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
filter(DatasetCollectionBinding.provider_name == embedding_model.model_provider.provider_name,
DatasetCollectionBinding.model_name == embedding_model.name). \
order_by(DatasetCollectionBinding.created_at). \
first()
if not dataset_collection_binding:
dataset_collection_binding = DatasetCollectionBinding(
provider_name=embedding_model.model_provider.provider_name,
model_name=embedding_model.name,
collection_name="Vector_index_" + str(uuid.uuid4()).replace("-", "_") + '_Node'
)
db.session.add(dataset_collection_binding)
db.session.commit()
from core.index.vector_index.qdrant_vector_index import QdrantVectorIndex, QdrantConfig
index = QdrantVectorIndex(
dataset=dataset,
config=QdrantConfig(
endpoint=current_app.config.get('QDRANT_URL'),
api_key=current_app.config.get('QDRANT_API_KEY'),
root_path=current_app.root_path
),
embeddings=embeddings
)
if index:
# index.delete_by_group_id(dataset.id)
index.restore_dataset_in_one(dataset, dataset_collection_binding)
else:
click.echo('passed.')
normalization_count.append(1)
except Exception as e:
click.echo(
click.style('Create dataset index error: {} {}'.format(e.__class__.__name__, str(e)),
fg='red'))
@click.command('update_app_model_configs', help='Migrate data to support paragraph variable.')
@click.option("--batch-size", default=500, help="Number of records to migrate in each batch.")
def update_app_model_configs(batch_size):
pre_prompt_template = '{{default_input}}'
user_input_form_template = {
"en-US": [
{
"paragraph": {
"label": "Query",
"variable": "default_input",
"required": False,
"default": ""
}
}
],
"zh-Hans": [
{
"paragraph": {
"label": "查询内容",
"variable": "default_input",
"required": False,
"default": ""
}
}
]
}
click.secho("Start migrate old data that the text generator can support paragraph variable.", fg='green')
total_records = db.session.query(AppModelConfig) \
.join(App, App.app_model_config_id == AppModelConfig.id) \
.filter(App.mode == 'completion') \
.count()
if total_records == 0:
click.secho("No data to migrate.", fg='green')
return
num_batches = (total_records + batch_size - 1) // batch_size
with tqdm(total=total_records, desc="Migrating Data") as pbar:
for i in range(num_batches):
offset = i * batch_size
limit = min(batch_size, total_records - offset)
click.secho(f"Fetching batch {i + 1}/{num_batches} from source database...", fg='green')
data_batch = db.session.query(AppModelConfig) \
.join(App, App.app_model_config_id == AppModelConfig.id) \
.filter(App.mode == 'completion') \
.order_by(App.created_at) \
.offset(offset).limit(limit).all()
if not data_batch:
click.secho("No more data to migrate.", fg='green')
break
try:
click.secho(f"Migrating {len(data_batch)} records...", fg='green')
for data in data_batch:
# click.secho(f"Migrating data {data.id}, pre_prompt: {data.pre_prompt}, user_input_form: {data.user_input_form}", fg='green')
if data.pre_prompt is None:
data.pre_prompt = pre_prompt_template
else:
if pre_prompt_template in data.pre_prompt:
continue
data.pre_prompt += pre_prompt_template
app_data = db.session.query(App) \
.filter(App.id == data.app_id) \
.one()
account_data = db.session.query(Account) \
.join(TenantAccountJoin, Account.id == TenantAccountJoin.account_id) \
.filter(TenantAccountJoin.role == 'owner') \
.filter(TenantAccountJoin.tenant_id == app_data.tenant_id) \
.one_or_none()
if not account_data:
continue
if data.user_input_form is None or data.user_input_form == 'null':
data.user_input_form = json.dumps(user_input_form_template[account_data.interface_language])
else:
raw_json_data = json.loads(data.user_input_form)
raw_json_data.append(user_input_form_template[account_data.interface_language][0])
data.user_input_form = json.dumps(raw_json_data)
# click.secho(f"Updated data {data.id}, pre_prompt: {data.pre_prompt}, user_input_form: {data.user_input_form}", fg='green')
db.session.commit()
except Exception as e:
click.secho(f"Error while migrating data: {e}, app_id: {data.app_id}, app_model_config_id: {data.id}",
fg='red')
continue
click.secho(f"Successfully migrated batch {i + 1}/{num_batches}.", fg='green')
pbar.update(len(data_batch))
@click.command('migrate_default_input_to_dataset_query_variable')
@click.option("--batch-size", default=500, help="Number of records to migrate in each batch.")
def migrate_default_input_to_dataset_query_variable(batch_size):
click.secho("Starting...", fg='green')
total_records = db.session.query(AppModelConfig) \
.join(App, App.app_model_config_id == AppModelConfig.id) \
.filter(App.mode == 'completion') \
.filter(AppModelConfig.dataset_query_variable == None) \
.count()
if total_records == 0:
click.secho("No data to migrate.", fg='green')
return
num_batches = (total_records + batch_size - 1) // batch_size
with tqdm(total=total_records, desc="Migrating Data") as pbar:
for i in range(num_batches):
offset = i * batch_size
limit = min(batch_size, total_records - offset)
click.secho(f"Fetching batch {i + 1}/{num_batches} from source database...", fg='green')
data_batch = db.session.query(AppModelConfig) \
.join(App, App.app_model_config_id == AppModelConfig.id) \
.filter(App.mode == 'completion') \
.filter(AppModelConfig.dataset_query_variable == None) \
.order_by(App.created_at) \
.offset(offset).limit(limit).all()
if not data_batch:
click.secho("No more data to migrate.", fg='green')
break
try:
click.secho(f"Migrating {len(data_batch)} records...", fg='green')
for data in data_batch:
config = AppModelConfig.to_dict(data)
tools = config["agent_mode"]["tools"]
dataset_exists = "dataset" in str(tools)
if not dataset_exists:
continue
user_input_form = config.get("user_input_form", [])
for form in user_input_form:
paragraph = form.get('paragraph')
if paragraph \
and paragraph.get('variable') == 'query':
data.dataset_query_variable = 'query'
break
if paragraph \
and paragraph.get('variable') == 'default_input':
data.dataset_query_variable = 'default_input'
break
db.session.commit()
except Exception as e:
click.secho(f"Error while migrating data: {e}, app_id: {data.app_id}, app_model_config_id: {data.id}",
fg='red')
continue
click.secho(f"Successfully migrated batch {i + 1}/{num_batches}.", fg='green')
pbar.update(len(data_batch))
def register_commands(app):
app.cli.add_command(reset_password)
app.cli.add_command(reset_email)
@@ -304,3 +726,8 @@ def register_commands(app):
app.cli.add_command(recreate_all_dataset_indexes)
app.cli.add_command(sync_anthropic_hosted_providers)
app.cli.add_command(clean_unused_dataset_indexes)
app.cli.add_command(create_qdrant_indexes)
app.cli.add_command(update_qdrant_indexes)
app.cli.add_command(update_app_model_configs)
app.cli.add_command(normalization_collections)
app.cli.add_command(migrate_default_input_to_dataset_query_variable)

View File

@@ -10,9 +10,6 @@ from extensions.ext_redis import redis_client
dotenv.load_dotenv()
DEFAULTS = {
'COOKIE_HTTPONLY': 'True',
'COOKIE_SECURE': 'True',
'COOKIE_SAMESITE': 'None',
'DB_USERNAME': 'postgres',
'DB_PASSWORD': '',
'DB_HOST': 'localhost',
@@ -22,10 +19,6 @@ DEFAULTS = {
'REDIS_PORT': '6379',
'REDIS_DB': '0',
'REDIS_USE_SSL': 'False',
'SESSION_REDIS_HOST': 'localhost',
'SESSION_REDIS_PORT': '6379',
'SESSION_REDIS_DB': '2',
'SESSION_REDIS_USE_SSL': 'False',
'OAUTH_REDIRECT_PATH': '/console/api/oauth/authorize',
'OAUTH_REDIRECT_INDEX_PATH': '/',
'CONSOLE_WEB_URL': 'https://cloud.dify.ai',
@@ -36,9 +29,6 @@ DEFAULTS = {
'STORAGE_TYPE': 'local',
'STORAGE_LOCAL_PATH': 'storage',
'CHECK_UPDATE_URL': 'https://updates.dify.ai',
'SESSION_TYPE': 'sqlalchemy',
'SESSION_PERMANENT': 'True',
'SESSION_USE_SIGNER': 'True',
'DEPLOY_ENV': 'PRODUCTION',
'SQLALCHEMY_POOL_SIZE': 30,
'SQLALCHEMY_POOL_RECYCLE': 3600,
@@ -61,10 +51,13 @@ DEFAULTS = {
'HOSTED_ANTHROPIC_PAID_INCREASE_QUOTA': 1000000,
'HOSTED_ANTHROPIC_PAID_MIN_QUANTITY': 20,
'HOSTED_ANTHROPIC_PAID_MAX_QUANTITY': 100,
'HOSTED_MODERATION_ENABLED': 'False',
'HOSTED_MODERATION_PROVIDERS': '',
'TENANT_DOCUMENT_COUNT': 100,
'CLEAN_DAY_SETTING': 30,
'UPLOAD_FILE_SIZE_LIMIT': 15,
'UPLOAD_FILE_BATCH_LIMIT': 5,
'OUTPUT_MODERATION_BUFFER_SIZE': 300
}
@@ -100,7 +93,7 @@ class Config:
self.CONSOLE_URL = get_env('CONSOLE_URL')
self.API_URL = get_env('API_URL')
self.APP_URL = get_env('APP_URL')
self.CURRENT_VERSION = "0.3.16"
self.CURRENT_VERSION = "0.3.29"
self.COMMIT_SHA = get_env('COMMIT_SHA')
self.EDITION = "SELF_HOSTED"
self.DEPLOY_ENV = get_env('DEPLOY_ENV')
@@ -113,20 +106,6 @@ class Config:
# Alternatively you can set it with `SECRET_KEY` environment variable.
self.SECRET_KEY = get_env('SECRET_KEY')
# cookie settings
self.REMEMBER_COOKIE_HTTPONLY = get_bool_env('COOKIE_HTTPONLY')
self.SESSION_COOKIE_HTTPONLY = get_bool_env('COOKIE_HTTPONLY')
self.REMEMBER_COOKIE_SAMESITE = get_env('COOKIE_SAMESITE')
self.SESSION_COOKIE_SAMESITE = get_env('COOKIE_SAMESITE')
self.REMEMBER_COOKIE_SECURE = get_bool_env('COOKIE_SECURE')
self.SESSION_COOKIE_SECURE = get_bool_env('COOKIE_SECURE')
self.PERMANENT_SESSION_LIFETIME = timedelta(days=7)
# session settings, only support sqlalchemy, redis
self.SESSION_TYPE = get_env('SESSION_TYPE')
self.SESSION_PERMANENT = get_bool_env('SESSION_PERMANENT')
self.SESSION_USE_SIGNER = get_bool_env('SESSION_USE_SIGNER')
# redis settings
self.REDIS_HOST = get_env('REDIS_HOST')
self.REDIS_PORT = get_env('REDIS_PORT')
@@ -135,14 +114,6 @@ class Config:
self.REDIS_DB = get_env('REDIS_DB')
self.REDIS_USE_SSL = get_bool_env('REDIS_USE_SSL')
# session redis settings
self.SESSION_REDIS_HOST = get_env('SESSION_REDIS_HOST')
self.SESSION_REDIS_PORT = get_env('SESSION_REDIS_PORT')
self.SESSION_REDIS_USERNAME = get_env('SESSION_REDIS_USERNAME')
self.SESSION_REDIS_PASSWORD = get_env('SESSION_REDIS_PASSWORD')
self.SESSION_REDIS_DB = get_env('SESSION_REDIS_DB')
self.SESSION_REDIS_USE_SSL = get_bool_env('SESSION_REDIS_USE_SSL')
# storage settings
self.STORAGE_TYPE = get_env('STORAGE_TYPE')
self.STORAGE_LOCAL_PATH = get_env('STORAGE_LOCAL_PATH')
@@ -165,6 +136,14 @@ class Config:
self.QDRANT_URL = get_env('QDRANT_URL')
self.QDRANT_API_KEY = get_env('QDRANT_API_KEY')
# milvus setting
self.MILVUS_HOST = get_env('MILVUS_HOST')
self.MILVUS_PORT = get_env('MILVUS_PORT')
self.MILVUS_USER = get_env('MILVUS_USER')
self.MILVUS_PASSWORD = get_env('MILVUS_PASSWORD')
self.MILVUS_SECURE = get_env('MILVUS_SECURE')
# cors settings
self.CONSOLE_CORS_ALLOW_ORIGINS = get_cors_allow_origins(
'CONSOLE_CORS_ALLOW_ORIGINS', self.CONSOLE_WEB_URL)
@@ -230,6 +209,9 @@ class Config:
self.HOSTED_ANTHROPIC_PAID_MIN_QUANTITY = int(get_env('HOSTED_ANTHROPIC_PAID_MIN_QUANTITY'))
self.HOSTED_ANTHROPIC_PAID_MAX_QUANTITY = int(get_env('HOSTED_ANTHROPIC_PAID_MAX_QUANTITY'))
self.HOSTED_MODERATION_ENABLED = get_bool_env('HOSTED_MODERATION_ENABLED')
self.HOSTED_MODERATION_PROVIDERS = get_env('HOSTED_MODERATION_PROVIDERS')
self.STRIPE_API_KEY = get_env('STRIPE_API_KEY')
self.STRIPE_WEBHOOK_SECRET = get_env('STRIPE_WEBHOOK_SECRET')
@@ -247,6 +229,9 @@ class Config:
self.UPLOAD_FILE_SIZE_LIMIT = int(get_env('UPLOAD_FILE_SIZE_LIMIT'))
self.UPLOAD_FILE_BATCH_LIMIT = int(get_env('UPLOAD_FILE_BATCH_LIMIT'))
# moderation settings
self.OUTPUT_MODERATION_BUFFER_SIZE = int(get_env('OUTPUT_MODERATION_BUFFER_SIZE'))
class CloudEditionConfig(Config):

View File

@@ -16,7 +16,7 @@ model_templates = {
},
'model_config': {
'provider': 'openai',
'model_id': 'text-davinci-003',
'model_id': 'gpt-3.5-turbo-instruct',
'configs': {
'prompt_template': '',
'prompt_variables': [],
@@ -30,7 +30,8 @@ model_templates = {
},
'model': json.dumps({
"provider": "openai",
"name": "text-davinci-003",
"name": "gpt-3.5-turbo-instruct",
"mode": "completion",
"completion_params": {
"max_tokens": 512,
"temperature": 1,
@@ -38,7 +39,18 @@ model_templates = {
"presence_penalty": 0,
"frequency_penalty": 0
}
})
}),
'user_input_form': json.dumps([
{
"paragraph": {
"label": "Query",
"variable": "query",
"required": True,
"default": ""
}
}
]),
'pre_prompt': '{{query}}'
}
},
@@ -70,6 +82,7 @@ model_templates = {
'model': json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo",
"mode": "chat",
"completion_params": {
"max_tokens": 512,
"temperature": 1,
@@ -93,7 +106,7 @@ demo_model_templates = {
'mode': 'completion',
'model_config': AppModelConfig(
provider='openai',
model_id='text-davinci-003',
model_id='gpt-3.5-turbo-instruct',
configs={
'prompt_template': "Please translate the following text into {{target_language}}:\n",
'prompt_variables': [
@@ -126,10 +139,11 @@ demo_model_templates = {
},
opening_statement='',
suggested_questions=None,
pre_prompt="Please translate the following text into {{target_language}}:\n",
pre_prompt="Please translate the following text into {{target_language}}:\n{{query}}\ntranslate:",
model=json.dumps({
"provider": "openai",
"name": "text-davinci-003",
"name": "gpt-3.5-turbo-instruct",
"mode": "completion",
"completion_params": {
"max_tokens": 1000,
"temperature": 0,
@@ -158,6 +172,13 @@ demo_model_templates = {
'Italian',
]
}
},{
"paragraph": {
"label": "Query",
"variable": "query",
"required": True,
"default": ""
}
}
])
)
@@ -189,6 +210,7 @@ demo_model_templates = {
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo",
"mode": "chat",
"completion_params": {
"max_tokens": 300,
"temperature": 0.8,
@@ -211,7 +233,7 @@ demo_model_templates = {
'mode': 'completion',
'model_config': AppModelConfig(
provider='openai',
model_id='text-davinci-003',
model_id='gpt-3.5-turbo-instruct',
configs={
'prompt_template': "请将以下文本翻译为{{target_language}}:\n",
'prompt_variables': [
@@ -244,10 +266,11 @@ demo_model_templates = {
},
opening_statement='',
suggested_questions=None,
pre_prompt="请将以下文本翻译为{{target_language}}:\n",
pre_prompt="请将以下文本翻译为{{target_language}}:\n{{query}}\n翻译:",
model=json.dumps({
"provider": "openai",
"name": "text-davinci-003",
"name": "gpt-3.5-turbo-instruct",
"mode": "completion",
"completion_params": {
"max_tokens": 1000,
"temperature": 0,
@@ -276,6 +299,13 @@ demo_model_templates = {
"意大利语",
]
}
},{
"paragraph": {
"label": "文本内容",
"variable": "query",
"required": True,
"default": ""
}
}
])
)
@@ -307,6 +337,7 @@ demo_model_templates = {
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo",
"mode": "chat",
"completion_params": {
"max_tokens": 300,
"temperature": 0.8,

View File

@@ -6,10 +6,10 @@ bp = Blueprint('console', __name__, url_prefix='/console/api')
api = ExternalApi(bp)
# Import other controllers
from . import setup, version, apikey, admin
from . import extension, setup, version, apikey, admin
# Import app controllers
from .app import app, site, completion, model_config, statistic, conversation, message, generator, audio
from .app import advanced_prompt_template, app, site, completion, model_config, statistic, conversation, message, generator, audio
# Import auth controllers
from .auth import login, oauth, data_source_oauth, activate

View File

@@ -1,5 +1,5 @@
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
import flask_restful
from flask_restful import Resource, fields, marshal_with
from werkzeug.exceptions import Forbidden
@@ -81,6 +81,7 @@ class BaseApiKeyListResource(Resource):
key = ApiToken.generate_api_key(self.token_prefix, 24)
api_token = ApiToken()
setattr(api_token, self.resource_id_field, resource_id)
api_token.tenant_id = current_user.current_tenant_id
api_token.token = key
api_token.type = self.resource_type
db.session.add(api_token)

View File

@@ -0,0 +1,25 @@
from flask_restful import Resource, reqparse
from controllers.console import api
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from libs.login import login_required
from services.advanced_prompt_template_service import AdvancedPromptTemplateService
class AdvancedPromptTemplateList(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
parser = reqparse.RequestParser()
parser.add_argument('app_mode', type=str, required=True, location='args')
parser.add_argument('model_mode', type=str, required=True, location='args')
parser.add_argument('has_context', type=str, required=False, default='true', location='args')
parser.add_argument('model_name', type=str, required=True, location='args')
args = parser.parse_args()
return AdvancedPromptTemplateService.get_prompt(args)
api.add_resource(AdvancedPromptTemplateList, '/app/prompt-templates')

View File

@@ -3,10 +3,9 @@ import json
import logging
from datetime import datetime
import flask
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, reqparse, fields, marshal_with, abort, inputs
from libs.login import login_required
from flask_restful import Resource, reqparse, marshal_with, abort, inputs
from werkzeug.exceptions import Forbidden
from constants.model_template import model_templates, demo_model_templates
@@ -17,41 +16,13 @@ from controllers.console.wraps import account_initialization_required
from core.model_providers.error import ProviderTokenNotInitError, LLMBadRequestError
from core.model_providers.model_factory import ModelFactory
from core.model_providers.model_provider_factory import ModelProviderFactory
from core.model_providers.models.entity.model_params import ModelType
from events.app_event import app_was_created, app_was_deleted
from libs.helper import TimestampField
from fields.app_fields import app_pagination_fields, app_detail_fields, template_list_fields, \
app_detail_fields_with_site
from extensions.ext_database import db
from models.model import App, AppModelConfig, Site
from services.app_model_config_service import AppModelConfigService
model_config_fields = {
'opening_statement': fields.String,
'suggested_questions': fields.Raw(attribute='suggested_questions_list'),
'suggested_questions_after_answer': fields.Raw(attribute='suggested_questions_after_answer_dict'),
'speech_to_text': fields.Raw(attribute='speech_to_text_dict'),
'more_like_this': fields.Raw(attribute='more_like_this_dict'),
'sensitive_word_avoidance': fields.Raw(attribute='sensitive_word_avoidance_dict'),
'model': fields.Raw(attribute='model_dict'),
'user_input_form': fields.Raw(attribute='user_input_form_list'),
'pre_prompt': fields.String,
'agent_mode': fields.Raw(attribute='agent_mode_dict'),
}
app_detail_fields = {
'id': fields.String,
'name': fields.String,
'mode': fields.String,
'icon': fields.String,
'icon_background': fields.String,
'enable_site': fields.Boolean,
'enable_api': fields.Boolean,
'api_rpm': fields.Integer,
'api_rph': fields.Integer,
'is_demo': fields.Boolean,
'model_config': fields.Nested(model_config_fields, attribute='app_model_config'),
'created_at': TimestampField
}
def _get_app(app_id, tenant_id):
app = db.session.query(App).filter(App.id == app_id, App.tenant_id == tenant_id).first()
@@ -61,35 +32,6 @@ def _get_app(app_id, tenant_id):
class AppListApi(Resource):
prompt_config_fields = {
'prompt_template': fields.String,
}
model_config_partial_fields = {
'model': fields.Raw(attribute='model_dict'),
'pre_prompt': fields.String,
}
app_partial_fields = {
'id': fields.String,
'name': fields.String,
'mode': fields.String,
'icon': fields.String,
'icon_background': fields.String,
'enable_site': fields.Boolean,
'enable_api': fields.Boolean,
'is_demo': fields.Boolean,
'model_config': fields.Nested(model_config_partial_fields, attribute='app_model_config'),
'created_at': TimestampField
}
app_pagination_fields = {
'page': fields.Integer,
'limit': fields.Integer(attribute='per_page'),
'total': fields.Integer,
'has_more': fields.Boolean(attribute='has_next'),
'data': fields.List(fields.Nested(app_partial_fields), attribute='items')
}
@setup_required
@login_required
@@ -161,7 +103,8 @@ class AppListApi(Resource):
model_configuration = AppModelConfigService.validate_configuration(
tenant_id=current_user.current_tenant_id,
account=current_user,
config=model_config_dict
config=model_config_dict,
mode=args['mode']
)
app = App(
@@ -235,18 +178,6 @@ class AppListApi(Resource):
class AppTemplateApi(Resource):
template_fields = {
'name': fields.String,
'icon': fields.String,
'icon_background': fields.String,
'description': fields.String,
'mode': fields.String,
'model_config': fields.Nested(model_config_fields),
}
template_list_fields = {
'data': fields.List(fields.Nested(template_fields)),
}
@setup_required
@login_required
@@ -265,38 +196,6 @@ class AppTemplateApi(Resource):
class AppApi(Resource):
site_fields = {
'access_token': fields.String(attribute='code'),
'code': fields.String,
'title': fields.String,
'icon': fields.String,
'icon_background': fields.String,
'description': fields.String,
'default_language': fields.String,
'customize_domain': fields.String,
'copyright': fields.String,
'privacy_policy': fields.String,
'customize_token_strategy': fields.String,
'prompt_public': fields.Boolean,
'app_base_url': fields.String,
}
app_detail_fields_with_site = {
'id': fields.String,
'name': fields.String,
'mode': fields.String,
'icon': fields.String,
'icon_background': fields.String,
'enable_site': fields.Boolean,
'enable_api': fields.Boolean,
'api_rpm': fields.Integer,
'api_rph': fields.Integer,
'is_demo': fields.Boolean,
'model_config': fields.Nested(model_config_fields, attribute='app_model_config'),
'site': fields.Nested(site_fields),
'api_base_url': fields.String,
'created_at': TimestampField
}
@setup_required
@login_required

View File

@@ -2,8 +2,8 @@
import logging
from flask import request
from core.login.login import login_required
from werkzeug.exceptions import InternalServerError, NotFound
from libs.login import login_required
from werkzeug.exceptions import InternalServerError
import services
from controllers.console import api

View File

@@ -5,7 +5,7 @@ from typing import Generator, Union
import flask_login
from flask import Response, stream_with_context
from core.login.login import login_required
from libs.login import login_required
from werkzeug.exceptions import InternalServerError, NotFound
import services
@@ -39,9 +39,10 @@ class CompletionMessageApi(Resource):
parser = reqparse.RequestParser()
parser.add_argument('inputs', type=dict, required=True, location='json')
parser.add_argument('query', type=str, location='json')
parser.add_argument('query', type=str, location='json', default='')
parser.add_argument('model_config', type=dict, required=True, location='json')
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
parser.add_argument('retriever_from', type=str, required=False, default='dev', location='json')
args = parser.parse_args()
streaming = args['response_mode'] != 'blocking'
@@ -115,6 +116,7 @@ class ChatMessageApi(Resource):
parser.add_argument('model_config', type=dict, required=True, location='json')
parser.add_argument('conversation_id', type=uuid_value, location='json')
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
parser.add_argument('retriever_from', type=str, required=False, default='dev', location='json')
args = parser.parse_args()
streaming = args['response_mode'] != 'blocking'

View File

@@ -2,8 +2,8 @@ from datetime import datetime
import pytz
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, reqparse, fields, marshal_with
from libs.login import login_required
from flask_restful import Resource, reqparse, marshal_with
from flask_restful.inputs import int_range
from sqlalchemy import or_, func
from sqlalchemy.orm import joinedload
@@ -13,107 +13,14 @@ from controllers.console import api
from controllers.console.app import _get_app
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from libs.helper import TimestampField, datetime_string, uuid_value
from fields.conversation_fields import conversation_pagination_fields, conversation_detail_fields, \
conversation_message_detail_fields, conversation_with_summary_pagination_fields
from libs.helper import datetime_string
from extensions.ext_database import db
from models.model import Message, MessageAnnotation, Conversation
account_fields = {
'id': fields.String,
'name': fields.String,
'email': fields.String
}
feedback_fields = {
'rating': fields.String,
'content': fields.String,
'from_source': fields.String,
'from_end_user_id': fields.String,
'from_account': fields.Nested(account_fields, allow_null=True),
}
annotation_fields = {
'content': fields.String,
'account': fields.Nested(account_fields, allow_null=True),
'created_at': TimestampField
}
message_detail_fields = {
'id': fields.String,
'conversation_id': fields.String,
'inputs': fields.Raw,
'query': fields.String,
'message': fields.Raw,
'message_tokens': fields.Integer,
'answer': fields.String,
'answer_tokens': fields.Integer,
'provider_response_latency': fields.Float,
'from_source': fields.String,
'from_end_user_id': fields.String,
'from_account_id': fields.String,
'feedbacks': fields.List(fields.Nested(feedback_fields)),
'annotation': fields.Nested(annotation_fields, allow_null=True),
'created_at': TimestampField
}
feedback_stat_fields = {
'like': fields.Integer,
'dislike': fields.Integer
}
model_config_fields = {
'opening_statement': fields.String,
'suggested_questions': fields.Raw,
'model': fields.Raw,
'user_input_form': fields.Raw,
'pre_prompt': fields.String,
'agent_mode': fields.Raw,
}
class CompletionConversationApi(Resource):
class MessageTextField(fields.Raw):
def format(self, value):
return value[0]['text'] if value else ''
simple_configs_fields = {
'prompt_template': fields.String,
}
simple_model_config_fields = {
'model': fields.Raw(attribute='model_dict'),
'pre_prompt': fields.String,
}
simple_message_detail_fields = {
'inputs': fields.Raw,
'query': fields.String,
'message': MessageTextField,
'answer': fields.String,
}
conversation_fields = {
'id': fields.String,
'status': fields.String,
'from_source': fields.String,
'from_end_user_id': fields.String,
'from_end_user_session_id': fields.String(),
'from_account_id': fields.String,
'read_at': TimestampField,
'created_at': TimestampField,
'annotation': fields.Nested(annotation_fields, allow_null=True),
'model_config': fields.Nested(simple_model_config_fields),
'user_feedback_stats': fields.Nested(feedback_stat_fields),
'admin_feedback_stats': fields.Nested(feedback_stat_fields),
'message': fields.Nested(simple_message_detail_fields, attribute='first_message')
}
conversation_pagination_fields = {
'page': fields.Integer,
'limit': fields.Integer(attribute='per_page'),
'total': fields.Integer,
'has_more': fields.Boolean(attribute='has_next'),
'data': fields.List(fields.Nested(conversation_fields), attribute='items')
}
@setup_required
@login_required
@@ -191,21 +98,11 @@ class CompletionConversationApi(Resource):
class CompletionConversationDetailApi(Resource):
conversation_detail_fields = {
'id': fields.String,
'status': fields.String,
'from_source': fields.String,
'from_end_user_id': fields.String,
'from_account_id': fields.String,
'created_at': TimestampField,
'model_config': fields.Nested(model_config_fields),
'message': fields.Nested(message_detail_fields, attribute='first_message'),
}
@setup_required
@login_required
@account_initialization_required
@marshal_with(conversation_detail_fields)
@marshal_with(conversation_message_detail_fields)
def get(self, app_id, conversation_id):
app_id = str(app_id)
conversation_id = str(conversation_id)
@@ -234,44 +131,11 @@ class CompletionConversationDetailApi(Resource):
class ChatConversationApi(Resource):
simple_configs_fields = {
'prompt_template': fields.String,
}
simple_model_config_fields = {
'model': fields.Raw(attribute='model_dict'),
'pre_prompt': fields.String,
}
conversation_fields = {
'id': fields.String,
'status': fields.String,
'from_source': fields.String,
'from_end_user_id': fields.String,
'from_end_user_session_id': fields.String,
'from_account_id': fields.String,
'summary': fields.String(attribute='summary_or_query'),
'read_at': TimestampField,
'created_at': TimestampField,
'annotated': fields.Boolean,
'model_config': fields.Nested(simple_model_config_fields),
'message_count': fields.Integer,
'user_feedback_stats': fields.Nested(feedback_stat_fields),
'admin_feedback_stats': fields.Nested(feedback_stat_fields)
}
conversation_pagination_fields = {
'page': fields.Integer,
'limit': fields.Integer(attribute='per_page'),
'total': fields.Integer,
'has_more': fields.Boolean(attribute='has_next'),
'data': fields.List(fields.Nested(conversation_fields), attribute='items')
}
@setup_required
@login_required
@account_initialization_required
@marshal_with(conversation_pagination_fields)
@marshal_with(conversation_with_summary_pagination_fields)
def get(self, app_id):
app_id = str(app_id)
@@ -356,19 +220,6 @@ class ChatConversationApi(Resource):
class ChatConversationDetailApi(Resource):
conversation_detail_fields = {
'id': fields.String,
'status': fields.String,
'from_source': fields.String,
'from_end_user_id': fields.String,
'from_account_id': fields.String,
'created_at': TimestampField,
'annotated': fields.Boolean,
'model_config': fields.Nested(model_config_fields),
'message_count': fields.Integer,
'user_feedback_stats': fields.Nested(feedback_stat_fields),
'admin_feedback_stats': fields.Nested(feedback_stat_fields)
}
@setup_required
@login_required

View File

@@ -1,5 +1,5 @@
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource, reqparse
from controllers.console import api
@@ -12,35 +12,6 @@ from core.model_providers.error import ProviderTokenNotInitError, QuotaExceededE
LLMAPIUnavailableError, LLMRateLimitError, LLMAuthorizationError, ModelCurrentlyNotSupportError
class IntroductionGenerateApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self):
parser = reqparse.RequestParser()
parser.add_argument('prompt_template', type=str, required=True, location='json')
args = parser.parse_args()
account = current_user
try:
answer = LLMGenerator.generate_introduction(
account.current_tenant_id,
args['prompt_template']
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
raise CompletionRequestError(str(e))
return {'introduction': answer}
class RuleGenerateApi(Resource):
@setup_required
@login_required
@@ -72,5 +43,4 @@ class RuleGenerateApi(Resource):
return rules
api.add_resource(IntroductionGenerateApi, '/introduction-generate')
api.add_resource(RuleGenerateApi, '/rule-generate')

View File

@@ -16,8 +16,9 @@ from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.model_providers.error import LLMRateLimitError, LLMBadRequestError, LLMAuthorizationError, LLMAPIConnectionError, \
ProviderTokenNotInitError, LLMAPIUnavailableError, QuotaExceededError, ModelCurrentlyNotSupportError
from core.login.login import login_required
from libs.helper import uuid_value, TimestampField
from libs.login import login_required
from fields.conversation_fields import message_detail_fields
from libs.helper import uuid_value
from libs.infinite_scroll_pagination import InfiniteScrollPagination
from extensions.ext_database import db
from models.model import MessageAnnotation, Conversation, Message, MessageFeedback
@@ -27,44 +28,6 @@ from services.errors.conversation import ConversationNotExistsError
from services.errors.message import MessageNotExistsError
from services.message_service import MessageService
account_fields = {
'id': fields.String,
'name': fields.String,
'email': fields.String
}
feedback_fields = {
'rating': fields.String,
'content': fields.String,
'from_source': fields.String,
'from_end_user_id': fields.String,
'from_account': fields.Nested(account_fields, allow_null=True),
}
annotation_fields = {
'content': fields.String,
'account': fields.Nested(account_fields, allow_null=True),
'created_at': TimestampField
}
message_detail_fields = {
'id': fields.String,
'conversation_id': fields.String,
'inputs': fields.Raw,
'query': fields.String,
'message': fields.Raw,
'message_tokens': fields.Integer,
'answer': fields.String,
'answer_tokens': fields.Integer,
'provider_response_latency': fields.Float,
'from_source': fields.String,
'from_end_user_id': fields.String,
'from_account_id': fields.String,
'feedbacks': fields.List(fields.Nested(feedback_fields)),
'annotation': fields.Nested(annotation_fields, allow_null=True),
'created_at': TimestampField
}
class ChatMessageListApi(Resource):
message_infinite_scroll_pagination_fields = {
@@ -332,8 +295,8 @@ class MessageSuggestedQuestionApi(Resource):
try:
questions = MessageService.get_suggested_questions_after_answer(
app_model=app_model,
user=current_user,
message_id=message_id,
user=current_user,
check_enabled=False
)
except MessageNotExistsError:
@@ -366,7 +329,7 @@ class MessageApi(Resource):
message_id = str(message_id)
# get app info
app_model = _get_app(app_id, 'chat')
app_model = _get_app(app_id)
message = db.session.query(Message).filter(
Message.id == message_id,

View File

@@ -1,5 +1,4 @@
# -*- coding:utf-8 -*-
import json
from flask import request
from flask_restful import Resource
@@ -9,7 +8,7 @@ from controllers.console import api
from controllers.console.app import _get_app
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.login.login import login_required
from libs.login import login_required
from events.app_event import app_model_config_was_updated
from extensions.ext_database import db
from models.model import AppModelConfig
@@ -31,7 +30,8 @@ class ModelConfigResource(Resource):
model_configuration = AppModelConfigService.validate_configuration(
tenant_id=current_user.current_tenant_id,
account=current_user,
config=request.json
config=request.json,
mode=app_model.mode
)
new_app_model_config = AppModelConfig(

View File

@@ -1,33 +1,18 @@
# -*- coding:utf-8 -*-
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, reqparse, fields, marshal_with
from libs.login import login_required
from flask_restful import Resource, reqparse, marshal_with
from werkzeug.exceptions import NotFound, Forbidden
from controllers.console import api
from controllers.console.app import _get_app
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from fields.app_fields import app_site_fields
from libs.helper import supported_language
from extensions.ext_database import db
from models.model import Site
app_site_fields = {
'app_id': fields.String,
'access_token': fields.String(attribute='code'),
'code': fields.String,
'title': fields.String,
'icon': fields.String,
'icon_background': fields.String,
'description': fields.String,
'default_language': fields.String,
'customize_domain': fields.String,
'copyright': fields.String,
'privacy_policy': fields.String,
'customize_token_strategy': fields.String,
'prompt_public': fields.Boolean
}
def parse_app_site_args():
parser = reqparse.RequestParser()

View File

@@ -5,7 +5,7 @@ from datetime import datetime
import pytz
from flask import jsonify
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource, reqparse
from controllers.console import api

View File

@@ -16,26 +16,25 @@ from services.account_service import RegisterService
class ActivateCheckApi(Resource):
def get(self):
parser = reqparse.RequestParser()
parser.add_argument('workspace_id', type=str, required=True, nullable=False, location='args')
parser.add_argument('email', type=email, required=True, nullable=False, location='args')
parser.add_argument('workspace_id', type=str, required=False, nullable=True, location='args')
parser.add_argument('email', type=email, required=False, nullable=True, location='args')
parser.add_argument('token', type=str, required=True, nullable=False, location='args')
args = parser.parse_args()
account = RegisterService.get_account_if_token_valid(args['workspace_id'], args['email'], args['token'])
workspaceId = args['workspace_id']
reg_email = args['email']
token = args['token']
tenant = db.session.query(Tenant).filter(
Tenant.id == args['workspace_id'],
Tenant.status == 'normal'
).first()
invitation = RegisterService.get_invitation_if_token_valid(workspaceId, reg_email, token)
return {'is_valid': account is not None, 'workspace_name': tenant.name}
return {'is_valid': invitation is not None, 'workspace_name': invitation['tenant'].name if invitation else None}
class ActivateApi(Resource):
def post(self):
parser = reqparse.RequestParser()
parser.add_argument('workspace_id', type=str, required=True, nullable=False, location='json')
parser.add_argument('email', type=email, required=True, nullable=False, location='json')
parser.add_argument('workspace_id', type=str, required=False, nullable=True, location='json')
parser.add_argument('email', type=email, required=False, nullable=True, location='json')
parser.add_argument('token', type=str, required=True, nullable=False, location='json')
parser.add_argument('name', type=str_len(30), required=True, nullable=False, location='json')
parser.add_argument('password', type=valid_password, required=True, nullable=False, location='json')
@@ -44,12 +43,13 @@ class ActivateApi(Resource):
parser.add_argument('timezone', type=timezone, required=True, nullable=False, location='json')
args = parser.parse_args()
account = RegisterService.get_account_if_token_valid(args['workspace_id'], args['email'], args['token'])
if account is None:
invitation = RegisterService.get_invitation_if_token_valid(args['workspace_id'], args['email'], args['token'])
if invitation is None:
raise AlreadyActivateError()
RegisterService.revoke_token(args['workspace_id'], args['email'], args['token'])
account = invitation['account']
account.name = args['name']
# generate password salt

View File

@@ -1,16 +1,13 @@
import logging
from datetime import datetime
from typing import Optional
import flask_login
import requests
from flask import request, redirect, current_app, session
from flask import request, redirect, current_app
from flask_login import current_user
from flask_restful import Resource
from werkzeug.exceptions import Forbidden
from core.login.login import login_required
from libs.login import login_required
from libs.oauth_data_source import NotionOAuth
from controllers.console import api
from ..setup import setup_required
@@ -45,15 +42,34 @@ class OAuthDataSource(Resource):
if current_app.config.get('NOTION_INTEGRATION_TYPE') == 'internal':
internal_secret = current_app.config.get('NOTION_INTERNAL_SECRET')
oauth_provider.save_internal_access_token(internal_secret)
return redirect(f'{current_app.config.get("CONSOLE_WEB_URL")}?oauth_data_source=success')
return { 'data': '' }
else:
auth_url = oauth_provider.get_authorization_url()
return redirect(auth_url)
return { 'data': auth_url }, 200
class OAuthDataSourceCallback(Resource):
def get(self, provider: str):
OAUTH_DATASOURCE_PROVIDERS = get_oauth_providers()
with current_app.app_context():
oauth_provider = OAUTH_DATASOURCE_PROVIDERS.get(provider)
if not oauth_provider:
return {'error': 'Invalid provider'}, 400
if 'code' in request.args:
code = request.args.get('code')
return redirect(f'{current_app.config.get("CONSOLE_WEB_URL")}?type=notion&code={code}')
elif 'error' in request.args:
error = request.args.get('error')
return redirect(f'{current_app.config.get("CONSOLE_WEB_URL")}?type=notion&error={error}')
else:
return redirect(f'{current_app.config.get("CONSOLE_WEB_URL")}?type=notion&error=Access denied')
class OAuthDataSourceBinding(Resource):
def get(self, provider: str):
OAUTH_DATASOURCE_PROVIDERS = get_oauth_providers()
with current_app.app_context():
@@ -69,12 +85,7 @@ class OAuthDataSourceCallback(Resource):
f"An error occurred during the OAuthCallback process with {provider}: {e.response.text}")
return {'error': 'OAuth data source process failed'}, 400
return redirect(f'{current_app.config.get("CONSOLE_WEB_URL")}?oauth_data_source=success')
elif 'error' in request.args:
error = request.args.get('error')
return redirect(f'{current_app.config.get("CONSOLE_WEB_URL")}?oauth_data_source={error}')
else:
return redirect(f'{current_app.config.get("CONSOLE_WEB_URL")}?oauth_data_source=access_denied')
return {'result': 'success'}, 200
class OAuthDataSourceSync(Resource):
@@ -101,4 +112,5 @@ class OAuthDataSourceSync(Resource):
api.add_resource(OAuthDataSource, '/oauth/data-source/<string:provider>')
api.add_resource(OAuthDataSourceCallback, '/oauth/data-source/callback/<string:provider>')
api.add_resource(OAuthDataSourceBinding, '/oauth/data-source/binding/<string:provider>')
api.add_resource(OAuthDataSourceSync, '/oauth/data-source/<string:provider>/<uuid:binding_id>/sync')

View File

@@ -6,7 +6,6 @@ from flask_restful import Resource, reqparse
import services
from controllers.console import api
from controllers.console.error import AccountNotLinkTenantError
from controllers.console.setup import setup_required
from libs.helper import email
from libs.password import valid_password
@@ -37,12 +36,12 @@ class LoginApi(Resource):
except Exception:
pass
flask_login.login_user(account, remember=args['remember_me'])
AccountService.update_last_login(account, request)
# todo: return the user info
token = AccountService.get_account_jwt_token(account)
return {'result': 'success'}
return {'result': 'success', 'data': token}
class LogoutApi(Resource):

View File

@@ -2,9 +2,8 @@ import logging
from datetime import datetime
from typing import Optional
import flask_login
import requests
from flask import request, redirect, current_app, session
from flask import request, redirect, current_app
from flask_restful import Resource
from libs.oauth import OAuthUserInfo, GitHubOAuth, GoogleOAuth
@@ -75,12 +74,11 @@ class OAuthCallback(Resource):
account.initialized_at = datetime.utcnow()
db.session.commit()
# login user
session.clear()
flask_login.login_user(account, remember=True)
AccountService.update_last_login(account, request)
return redirect(f'{current_app.config.get("CONSOLE_WEB_URL")}?oauth_login=success')
token = AccountService.get_account_jwt_token(account)
return redirect(f'{current_app.config.get("CONSOLE_WEB_URL")}?console_token={token}')
def _get_account_by_openid_or_email(provider: str, user_info: OAuthUserInfo) -> Optional[Account]:

View File

@@ -2,10 +2,10 @@ import datetime
import json
from cachetools import TTLCache
from flask import request, current_app
from flask import request
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, marshal_with, fields, reqparse, marshal
from libs.login import login_required
from flask_restful import Resource, marshal_with, reqparse
from werkzeug.exceptions import NotFound
from controllers.console import api
@@ -14,7 +14,7 @@ from controllers.console.wraps import account_initialization_required
from core.data_loader.loader.notion import NotionLoader
from core.indexing_runner import IndexingRunner
from extensions.ext_database import db
from libs.helper import TimestampField
from fields.data_source_fields import integrate_notion_info_list_fields, integrate_list_fields
from models.dataset import Document
from models.source import DataSourceBinding
from services.dataset_service import DatasetService, DocumentService
@@ -24,37 +24,6 @@ cache = TTLCache(maxsize=None, ttl=30)
class DataSourceApi(Resource):
integrate_icon_fields = {
'type': fields.String,
'url': fields.String,
'emoji': fields.String
}
integrate_page_fields = {
'page_name': fields.String,
'page_id': fields.String,
'page_icon': fields.Nested(integrate_icon_fields, allow_null=True),
'parent_id': fields.String,
'type': fields.String
}
integrate_workspace_fields = {
'workspace_name': fields.String,
'workspace_id': fields.String,
'workspace_icon': fields.String,
'pages': fields.List(fields.Nested(integrate_page_fields)),
'total': fields.Integer
}
integrate_fields = {
'id': fields.String,
'provider': fields.String,
'created_at': TimestampField,
'is_bound': fields.Boolean,
'disabled': fields.Boolean,
'link': fields.String,
'source_info': fields.Nested(integrate_workspace_fields)
}
integrate_list_fields = {
'data': fields.List(fields.Nested(integrate_fields)),
}
@setup_required
@login_required
@@ -131,28 +100,6 @@ class DataSourceApi(Resource):
class DataSourceNotionListApi(Resource):
integrate_icon_fields = {
'type': fields.String,
'url': fields.String,
'emoji': fields.String
}
integrate_page_fields = {
'page_name': fields.String,
'page_id': fields.String,
'page_icon': fields.Nested(integrate_icon_fields, allow_null=True),
'is_bound': fields.Boolean,
'parent_id': fields.String,
'type': fields.String
}
integrate_workspace_fields = {
'workspace_name': fields.String,
'workspace_id': fields.String,
'workspace_icon': fields.String,
'pages': fields.List(fields.Nested(integrate_page_fields))
}
integrate_notion_info_list_fields = {
'notion_info': fields.List(fields.Nested(integrate_workspace_fields)),
}
@setup_required
@login_required

View File

@@ -1,8 +1,11 @@
# -*- coding:utf-8 -*-
from flask import request
import flask_restful
from flask import request, current_app
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, reqparse, fields, marshal, marshal_with
from controllers.console.apikey import api_key_list, api_key_fields
from libs.login import login_required
from flask_restful import Resource, reqparse, marshal, marshal_with
from werkzeug.exceptions import NotFound, Forbidden
import services
from controllers.console import api
@@ -12,45 +15,16 @@ from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.indexing_runner import IndexingRunner
from core.model_providers.error import LLMBadRequestError, ProviderTokenNotInitError
from core.model_providers.model_factory import ModelFactory
from core.model_providers.models.entity.model_params import ModelType
from libs.helper import TimestampField
from fields.app_fields import related_app_list
from fields.dataset_fields import dataset_detail_fields, dataset_query_detail_fields
from fields.document_fields import document_status_fields
from extensions.ext_database import db
from models.dataset import DocumentSegment, Document
from models.model import UploadFile
from models.model import UploadFile, ApiToken
from services.dataset_service import DatasetService, DocumentService
from services.provider_service import ProviderService
dataset_detail_fields = {
'id': fields.String,
'name': fields.String,
'description': fields.String,
'provider': fields.String,
'permission': fields.String,
'data_source_type': fields.String,
'indexing_technique': fields.String,
'app_count': fields.Integer,
'document_count': fields.Integer,
'word_count': fields.Integer,
'created_by': fields.String,
'created_at': TimestampField,
'updated_by': fields.String,
'updated_at': TimestampField,
'embedding_model': fields.String,
'embedding_model_provider': fields.String,
'embedding_available': fields.Boolean
}
dataset_query_detail_fields = {
"id": fields.String,
"content": fields.String,
"source": fields.String,
"source_app_id": fields.String,
"created_by_role": fields.String,
"created_by": fields.String,
"created_at": TimestampField
}
def _validate_name(name):
if not name or len(name) < 1 or len(name) > 40:
@@ -82,18 +56,25 @@ class DatasetListApi(Resource):
# check embedding setting
provider_service = ProviderService()
valid_model_list = provider_service.get_valid_model_list(current_user.current_tenant_id, ModelType.EMBEDDINGS.value)
valid_model_list = provider_service.get_valid_model_list(current_user.current_tenant_id,
ModelType.EMBEDDINGS.value)
# if len(valid_model_list) == 0:
# raise ProviderNotInitializeError(
# f"No Embedding Model available. Please configure a valid provider "
# f"in the Settings -> Model Provider.")
model_names = [item['model_name'] for item in valid_model_list]
model_names = []
for valid_model in valid_model_list:
model_names.append(f"{valid_model['model_name']}:{valid_model['model_provider']['provider_name']}")
data = marshal(datasets, dataset_detail_fields)
for item in data:
if item['embedding_model'] in model_names:
item['embedding_available'] = True
if item['indexing_technique'] == 'high_quality':
item_model = f"{item['embedding_model']}:{item['embedding_model_provider']}"
if item_model in model_names:
item['embedding_available'] = True
else:
item['embedding_available'] = False
else:
item['embedding_available'] = False
item['embedding_available'] = True
response = {
'data': data,
'has_more': len(datasets) == limit,
@@ -119,14 +100,6 @@ class DatasetListApi(Resource):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
try:
dataset = DatasetService.create_empty_dataset(
@@ -150,20 +123,40 @@ class DatasetApi(Resource):
dataset = DatasetService.get_dataset(dataset_id_str)
if dataset is None:
raise NotFound("Dataset not found.")
try:
DatasetService.check_dataset_permission(
dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
return marshal(dataset, dataset_detail_fields), 200
data = marshal(dataset, dataset_detail_fields)
# check embedding setting
provider_service = ProviderService()
# get valid model list
valid_model_list = provider_service.get_valid_model_list(current_user.current_tenant_id,
ModelType.EMBEDDINGS.value)
model_names = []
for valid_model in valid_model_list:
model_names.append(f"{valid_model['model_name']}:{valid_model['model_provider']['provider_name']}")
if data['indexing_technique'] == 'high_quality':
item_model = f"{data['embedding_model']}:{data['embedding_model_provider']}"
if item_model in model_names:
data['embedding_available'] = True
else:
data['embedding_available'] = False
else:
data['embedding_available'] = True
return data, 200
@setup_required
@login_required
@account_initialization_required
def patch(self, dataset_id):
dataset_id_str = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id_str)
if dataset is None:
raise NotFound("Dataset not found.")
# check user's model setting
DatasetService.check_dataset_model_setting(dataset)
parser = reqparse.RequestParser()
parser.add_argument('name', nullable=False,
@@ -251,9 +244,11 @@ class DatasetIndexingEstimateApi(Resource):
parser = reqparse.RequestParser()
parser.add_argument('info_list', type=dict, required=True, nullable=True, location='json')
parser.add_argument('process_rule', type=dict, required=True, nullable=True, location='json')
parser.add_argument('indexing_technique', type=str, required=True, nullable=True, location='json')
parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
parser.add_argument('dataset_id', type=str, required=False, nullable=False, location='json')
parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False, location='json')
parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False,
location='json')
args = parser.parse_args()
# validate args
DocumentService.estimate_args_validate(args)
@@ -272,7 +267,8 @@ class DatasetIndexingEstimateApi(Resource):
try:
response = indexing_runner.file_indexing_estimate(current_user.current_tenant_id, file_details,
args['process_rule'], args['doc_form'],
args['doc_language'], args['dataset_id'])
args['doc_language'], args['dataset_id'],
args['indexing_technique'])
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
@@ -287,7 +283,8 @@ class DatasetIndexingEstimateApi(Resource):
response = indexing_runner.notion_indexing_estimate(current_user.current_tenant_id,
args['info_list']['notion_info_list'],
args['process_rule'], args['doc_form'],
args['doc_language'], args['dataset_id'])
args['doc_language'], args['dataset_id'],
args['indexing_technique'])
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
@@ -300,18 +297,6 @@ class DatasetIndexingEstimateApi(Resource):
class DatasetRelatedAppListApi(Resource):
app_detail_kernel_fields = {
'id': fields.String,
'name': fields.String,
'mode': fields.String,
'icon': fields.String,
'icon_background': fields.String,
}
related_app_list = {
'data': fields.List(fields.Nested(app_detail_kernel_fields)),
'total': fields.Integer,
}
@setup_required
@login_required
@@ -343,24 +328,6 @@ class DatasetRelatedAppListApi(Resource):
class DatasetIndexingStatusApi(Resource):
document_status_fields = {
'id': fields.String,
'indexing_status': fields.String,
'processing_started_at': TimestampField,
'parsing_completed_at': TimestampField,
'cleaning_completed_at': TimestampField,
'splitting_completed_at': TimestampField,
'completed_at': TimestampField,
'paused_at': TimestampField,
'error': fields.String,
'stopped_at': TimestampField,
'completed_segments': fields.Integer,
'total_segments': fields.Integer,
}
document_status_fields_list = {
'data': fields.List(fields.Nested(document_status_fields))
}
@setup_required
@login_required
@@ -380,16 +347,101 @@ class DatasetIndexingStatusApi(Resource):
DocumentSegment.status != 're_segment').count()
document.completed_segments = completed_segments
document.total_segments = total_segments
documents_status.append(marshal(document, self.document_status_fields))
documents_status.append(marshal(document, document_status_fields))
data = {
'data': documents_status
}
return data
class DatasetApiKeyApi(Resource):
max_keys = 10
token_prefix = 'dataset-'
resource_type = 'dataset'
@setup_required
@login_required
@account_initialization_required
@marshal_with(api_key_list)
def get(self):
keys = db.session.query(ApiToken). \
filter(ApiToken.type == self.resource_type, ApiToken.tenant_id == current_user.current_tenant_id). \
all()
return {"items": keys}
@setup_required
@login_required
@account_initialization_required
@marshal_with(api_key_fields)
def post(self):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
current_key_count = db.session.query(ApiToken). \
filter(ApiToken.type == self.resource_type, ApiToken.tenant_id == current_user.current_tenant_id). \
count()
if current_key_count >= self.max_keys:
flask_restful.abort(
400,
message=f"Cannot create more than {self.max_keys} API keys for this resource type.",
code='max_keys_exceeded'
)
key = ApiToken.generate_api_key(self.token_prefix, 24)
api_token = ApiToken()
api_token.tenant_id = current_user.current_tenant_id
api_token.token = key
api_token.type = self.resource_type
db.session.add(api_token)
db.session.commit()
return api_token, 200
class DatasetApiDeleteApi(Resource):
resource_type = 'dataset'
@setup_required
@login_required
@account_initialization_required
def delete(self, api_key_id):
api_key_id = str(api_key_id)
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
key = db.session.query(ApiToken). \
filter(ApiToken.tenant_id == current_user.current_tenant_id, ApiToken.type == self.resource_type,
ApiToken.id == api_key_id). \
first()
if key is None:
flask_restful.abort(404, message='API key not found')
db.session.query(ApiToken).filter(ApiToken.id == api_key_id).delete()
db.session.commit()
return {'result': 'success'}, 204
class DatasetApiBaseUrlApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
return {
'api_base_url': (current_app.config['SERVICE_API_URL'] if current_app.config['SERVICE_API_URL']
else request.host_url.rstrip('/')) + '/v1'
}
api.add_resource(DatasetListApi, '/datasets')
api.add_resource(DatasetApi, '/datasets/<uuid:dataset_id>')
api.add_resource(DatasetQueryApi, '/datasets/<uuid:dataset_id>/queries')
api.add_resource(DatasetIndexingEstimateApi, '/datasets/indexing-estimate')
api.add_resource(DatasetRelatedAppListApi, '/datasets/<uuid:dataset_id>/related-apps')
api.add_resource(DatasetIndexingStatusApi, '/datasets/<uuid:dataset_id>/indexing-status')
api.add_resource(DatasetApiKeyApi, '/datasets/api-keys')
api.add_resource(DatasetApiDeleteApi, '/datasets/api-keys/<uuid:api_key_id>')
api.add_resource(DatasetApiBaseUrlApi, '/datasets/api-base-info')

View File

@@ -1,11 +1,10 @@
# -*- coding:utf-8 -*-
import random
from datetime import datetime
from typing import List
from flask import request
from flask import request, current_app
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource, fields, marshal, marshal_with, reqparse
from sqlalchemy import desc, asc
from werkzeug.exceptions import NotFound, Forbidden
@@ -23,7 +22,8 @@ from core.model_providers.error import ProviderTokenNotInitError, QuotaExceededE
LLMBadRequestError
from core.model_providers.model_factory import ModelFactory
from extensions.ext_redis import redis_client
from libs.helper import TimestampField
from fields.document_fields import document_with_segments_fields, document_fields, \
dataset_and_document_fields, document_status_fields
from extensions.ext_database import db
from models.dataset import DatasetProcessRule, Dataset
from models.dataset import Document, DocumentSegment
@@ -32,64 +32,6 @@ from services.dataset_service import DocumentService, DatasetService
from tasks.add_document_to_index_task import add_document_to_index_task
from tasks.remove_document_from_index_task import remove_document_from_index_task
dataset_fields = {
'id': fields.String,
'name': fields.String,
'description': fields.String,
'permission': fields.String,
'data_source_type': fields.String,
'indexing_technique': fields.String,
'created_by': fields.String,
'created_at': TimestampField,
}
document_fields = {
'id': fields.String,
'position': fields.Integer,
'data_source_type': fields.String,
'data_source_info': fields.Raw(attribute='data_source_info_dict'),
'dataset_process_rule_id': fields.String,
'name': fields.String,
'created_from': fields.String,
'created_by': fields.String,
'created_at': TimestampField,
'tokens': fields.Integer,
'indexing_status': fields.String,
'error': fields.String,
'enabled': fields.Boolean,
'disabled_at': TimestampField,
'disabled_by': fields.String,
'archived': fields.Boolean,
'display_status': fields.String,
'word_count': fields.Integer,
'hit_count': fields.Integer,
'doc_form': fields.String,
}
document_with_segments_fields = {
'id': fields.String,
'position': fields.Integer,
'data_source_type': fields.String,
'data_source_info': fields.Raw(attribute='data_source_info_dict'),
'dataset_process_rule_id': fields.String,
'name': fields.String,
'created_from': fields.String,
'created_by': fields.String,
'created_at': TimestampField,
'tokens': fields.Integer,
'indexing_status': fields.String,
'error': fields.String,
'enabled': fields.Boolean,
'disabled_at': TimestampField,
'disabled_by': fields.String,
'archived': fields.Boolean,
'display_status': fields.String,
'word_count': fields.Integer,
'hit_count': fields.Integer,
'completed_segments': fields.Integer,
'total_segments': fields.Integer
}
class DocumentResource(Resource):
def get_document(self, dataset_id: str, document_id: str) -> Document:
@@ -138,6 +80,10 @@ class GetProcessRuleApi(Resource):
req_data = request.args
document_id = req_data.get('document_id')
# get default rules
mode = DocumentService.DEFAULT_RULES['mode']
rules = DocumentService.DEFAULT_RULES['rules']
if document_id:
# get the latest process rule
document = Document.query.get_or_404(document_id)
@@ -158,11 +104,9 @@ class GetProcessRuleApi(Resource):
order_by(DatasetProcessRule.created_at.desc()). \
limit(1). \
one_or_none()
mode = dataset_process_rule.mode
rules = dataset_process_rule.rules_dict
else:
mode = DocumentService.DEFAULT_RULES['mode']
rules = DocumentService.DEFAULT_RULES['rules']
if dataset_process_rule:
mode = dataset_process_rule.mode
rules = dataset_process_rule.rules_dict
return {
'mode': mode,
@@ -275,7 +219,8 @@ class DatasetDocumentListApi(Resource):
parser.add_argument('duplicate', type=bool, nullable=False, location='json')
parser.add_argument('original_document_id', type=str, required=False, location='json')
parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False, location='json')
parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False,
location='json')
args = parser.parse_args()
if not dataset.indexing_technique and not args['indexing_technique']:
@@ -284,20 +229,6 @@ class DatasetDocumentListApi(Resource):
# validate args
DocumentService.document_create_args_validate(args)
# check embedding model setting
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
try:
documents, batch = DocumentService.save_document_with_dataset_id(dataset, args, current_user)
except ProviderTokenNotInitError as ex:
@@ -314,11 +245,6 @@ class DatasetDocumentListApi(Resource):
class DatasetInitApi(Resource):
dataset_and_document_fields = {
'dataset': fields.Nested(dataset_fields),
'documents': fields.List(fields.Nested(document_fields)),
'batch': fields.String
}
@setup_required
@login_required
@@ -335,17 +261,20 @@ class DatasetInitApi(Resource):
parser.add_argument('data_source', type=dict, required=True, nullable=True, location='json')
parser.add_argument('process_rule', type=dict, required=True, nullable=True, location='json')
parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False, location='json')
parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False,
location='json')
args = parser.parse_args()
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
if args['indexing_technique'] == 'high_quality':
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
# validate args
DocumentService.document_create_args_validate(args)
@@ -414,7 +343,8 @@ class DocumentIndexingEstimateApi(DocumentResource):
try:
response = indexing_runner.file_indexing_estimate(current_user.current_tenant_id, [file],
data_process_rule_dict, None, dataset_id)
data_process_rule_dict, None,
'English', dataset_id)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
@@ -483,7 +413,8 @@ class DocumentBatchIndexingEstimateApi(DocumentResource):
indexing_runner = IndexingRunner()
try:
response = indexing_runner.file_indexing_estimate(current_user.current_tenant_id, file_details,
data_process_rule_dict, None, dataset_id)
data_process_rule_dict, None,
'English', dataset_id)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
@@ -497,7 +428,7 @@ class DocumentBatchIndexingEstimateApi(DocumentResource):
response = indexing_runner.notion_indexing_estimate(current_user.current_tenant_id,
info_list,
data_process_rule_dict,
None, dataset_id)
None, 'English', dataset_id)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
@@ -510,24 +441,6 @@ class DocumentBatchIndexingEstimateApi(DocumentResource):
class DocumentBatchIndexingStatusApi(DocumentResource):
document_status_fields = {
'id': fields.String,
'indexing_status': fields.String,
'processing_started_at': TimestampField,
'parsing_completed_at': TimestampField,
'cleaning_completed_at': TimestampField,
'splitting_completed_at': TimestampField,
'completed_at': TimestampField,
'paused_at': TimestampField,
'error': fields.String,
'stopped_at': TimestampField,
'completed_segments': fields.Integer,
'total_segments': fields.Integer,
}
document_status_fields_list = {
'data': fields.List(fields.Nested(document_status_fields))
}
@setup_required
@login_required
@@ -547,7 +460,7 @@ class DocumentBatchIndexingStatusApi(DocumentResource):
document.total_segments = total_segments
if document.is_paused:
document.indexing_status = 'paused'
documents_status.append(marshal(document, self.document_status_fields))
documents_status.append(marshal(document, document_status_fields))
data = {
'data': documents_status
}
@@ -555,20 +468,6 @@ class DocumentBatchIndexingStatusApi(DocumentResource):
class DocumentIndexingStatusApi(DocumentResource):
document_status_fields = {
'id': fields.String,
'indexing_status': fields.String,
'processing_started_at': TimestampField,
'parsing_completed_at': TimestampField,
'cleaning_completed_at': TimestampField,
'splitting_completed_at': TimestampField,
'completed_at': TimestampField,
'paused_at': TimestampField,
'error': fields.String,
'stopped_at': TimestampField,
'completed_segments': fields.Integer,
'total_segments': fields.Integer,
}
@setup_required
@login_required
@@ -592,7 +491,7 @@ class DocumentIndexingStatusApi(DocumentResource):
document.total_segments = total_segments
if document.is_paused:
document.indexing_status = 'paused'
return marshal(document, self.document_status_fields)
return marshal(document, document_status_fields)
class DocumentDetailApi(DocumentResource):
@@ -725,6 +624,12 @@ class DocumentDeleteApi(DocumentResource):
def delete(self, dataset_id, document_id):
dataset_id = str(dataset_id)
document_id = str(document_id)
dataset = DatasetService.get_dataset(dataset_id)
if dataset is None:
raise NotFound("Dataset not found.")
# check user's model setting
DatasetService.check_dataset_model_setting(dataset)
document = self.get_document(dataset_id, document_id)
try:
@@ -787,6 +692,12 @@ class DocumentStatusApi(DocumentResource):
def patch(self, dataset_id, document_id, action):
dataset_id = str(dataset_id)
document_id = str(document_id)
dataset = DatasetService.get_dataset(dataset_id)
if dataset is None:
raise NotFound("Dataset not found.")
# check user's model setting
DatasetService.check_dataset_model_setting(dataset)
document = self.get_document(dataset_id, document_id)
# The role of the current user in the ta table must be admin or owner
@@ -855,6 +766,14 @@ class DocumentStatusApi(DocumentResource):
if not document.archived:
raise InvalidActionError('Document is not archived.')
# check document limit
if current_app.config['EDITION'] == 'CLOUD':
documents_count = DocumentService.get_tenant_documents_count()
total_count = documents_count + 1
tenant_document_count = int(current_app.config['TENANT_DOCUMENT_COUNT'])
if total_count > tenant_document_count:
raise ValueError(f"All your documents have overed limit {tenant_document_count}.")
document.archived = False
document.archived_at = None
document.archived_by = None
@@ -872,6 +791,10 @@ class DocumentStatusApi(DocumentResource):
class DocumentPauseApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def patch(self, dataset_id, document_id):
"""pause document."""
dataset_id = str(dataset_id)
@@ -901,6 +824,9 @@ class DocumentPauseApi(DocumentResource):
class DocumentRecoverApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def patch(self, dataset_id, document_id):
"""recover document."""
dataset_id = str(dataset_id)
@@ -926,6 +852,21 @@ class DocumentRecoverApi(DocumentResource):
return {'result': 'success'}, 204
class DocumentLimitApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def get(self):
"""get document limit"""
documents_count = DocumentService.get_tenant_documents_count()
tenant_document_count = int(current_app.config['TENANT_DOCUMENT_COUNT'])
return {
'documents_count': documents_count,
'documents_limit': tenant_document_count
}, 200
api.add_resource(GetProcessRuleApi, '/datasets/process-rule')
api.add_resource(DatasetDocumentListApi,
'/datasets/<uuid:dataset_id>/documents')
@@ -951,3 +892,4 @@ api.add_resource(DocumentStatusApi,
'/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/status/<string:action>')
api.add_resource(DocumentPauseApi, '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/pause')
api.add_resource(DocumentRecoverApi, '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/resume')
api.add_resource(DocumentLimitApi, '/datasets/limit')

View File

@@ -3,7 +3,7 @@ import uuid
from datetime import datetime
from flask import request
from flask_login import current_user
from flask_restful import Resource, reqparse, fields, marshal
from flask_restful import Resource, reqparse, marshal
from werkzeug.exceptions import NotFound, Forbidden
import services
@@ -14,48 +14,18 @@ from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.model_providers.error import LLMBadRequestError, ProviderTokenNotInitError
from core.model_providers.model_factory import ModelFactory
from core.login.login import login_required
from libs.login import login_required
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from fields.segment_fields import segment_fields
from models.dataset import DocumentSegment
from libs.helper import TimestampField
from services.dataset_service import DatasetService, DocumentService, SegmentService
from tasks.enable_segment_to_index_task import enable_segment_to_index_task
from tasks.disable_segment_from_index_task import disable_segment_from_index_task
from tasks.batch_create_segment_to_index_task import batch_create_segment_to_index_task
import pandas as pd
segment_fields = {
'id': fields.String,
'position': fields.Integer,
'document_id': fields.String,
'content': fields.String,
'answer': fields.String,
'word_count': fields.Integer,
'tokens': fields.Integer,
'keywords': fields.List(fields.String),
'index_node_id': fields.String,
'index_node_hash': fields.String,
'hit_count': fields.Integer,
'enabled': fields.Boolean,
'disabled_at': TimestampField,
'disabled_by': fields.String,
'status': fields.String,
'created_by': fields.String,
'created_at': TimestampField,
'indexing_at': TimestampField,
'completed_at': TimestampField,
'error': fields.String,
'stopped_at': TimestampField
}
segment_list_response = {
'data': fields.List(fields.Nested(segment_fields)),
'has_more': fields.Boolean,
'limit': fields.Integer
}
class DatasetDocumentSegmentListApi(Resource):
@setup_required
@@ -149,7 +119,8 @@ class DatasetDocumentSegmentApi(Resource):
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise NotFound('Dataset not found.')
# check user's model setting
DatasetService.check_dataset_model_setting(dataset)
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
@@ -158,20 +129,20 @@ class DatasetDocumentSegmentApi(Resource):
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
# check embedding model setting
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
if dataset.indexing_technique == 'high_quality':
# check embedding model setting
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
segment = DocumentSegment.query.filter(
DocumentSegment.id == str(segment_id),
@@ -244,18 +215,19 @@ class DatasetDocumentSegmentAddApi(Resource):
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
# check embedding model setting
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
if dataset.indexing_technique == 'high_quality':
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
@@ -284,25 +256,28 @@ class DatasetDocumentSegmentUpdateApi(Resource):
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise NotFound('Dataset not found.')
# check user's model setting
DatasetService.check_dataset_model_setting(dataset)
# check document
document_id = str(document_id)
document = DocumentService.get_document(dataset_id, document_id)
if not document:
raise NotFound('Document not found.')
# check embedding model setting
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
# check segment
if dataset.indexing_technique == 'high_quality':
# check embedding model setting
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
# check segment
segment_id = str(segment_id)
segment = DocumentSegment.query.filter(
DocumentSegment.id == str(segment_id),
@@ -339,6 +314,8 @@ class DatasetDocumentSegmentUpdateApi(Resource):
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise NotFound('Dataset not found.')
# check user's model setting
DatasetService.check_dataset_model_setting(dataset)
# check document
document_id = str(document_id)
document = DocumentService.get_document(dataset_id, document_id)
@@ -378,18 +355,6 @@ class DatasetDocumentSegmentBatchImportApi(Resource):
document = DocumentService.get_document(dataset_id, document_id)
if not document:
raise NotFound('Document not found.')
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
# get file from request
file = request.files['file']
# check file

View File

@@ -1,40 +1,27 @@
import datetime
import hashlib
import tempfile
import chardet
import time
import uuid
from pathlib import Path
from cachetools import TTLCache
from flask import request, current_app
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, marshal_with, fields
from werkzeug.exceptions import NotFound
import services
from libs.login import login_required
from flask_restful import Resource, marshal_with
from controllers.console import api
from controllers.console.datasets.error import NoFileUploadedError, TooManyFilesError, FileTooLargeError, \
UnsupportedFileTypeError
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.data_loader.file_extractor import FileExtractor
from extensions.ext_storage import storage
from libs.helper import TimestampField
from extensions.ext_database import db
from models.model import UploadFile
from fields.file_fields import upload_config_fields, file_fields
from services.file_service import FileService
cache = TTLCache(maxsize=None, ttl=30)
ALLOWED_EXTENSIONS = ['txt', 'markdown', 'md', 'pdf', 'html', 'htm', 'xlsx']
ALLOWED_EXTENSIONS = ['txt', 'markdown', 'md', 'pdf', 'html', 'htm', 'xlsx', 'docx', 'csv']
PREVIEW_WORDS_LIMIT = 3000
class FileApi(Resource):
upload_config_fields = {
'file_size_limit': fields.Integer,
'batch_count_limit': fields.Integer
}
@setup_required
@login_required
@@ -48,16 +35,6 @@ class FileApi(Resource):
'batch_count_limit': batch_count_limit
}, 200
file_fields = {
'id': fields.String,
'name': fields.String,
'size': fields.Integer,
'extension': fields.String,
'mime_type': fields.String,
'created_by': fields.String,
'created_at': TimestampField,
}
@setup_required
@login_required
@account_initialization_required
@@ -73,45 +50,13 @@ class FileApi(Resource):
if len(request.files) > 1:
raise TooManyFilesError()
file_content = file.read()
file_size = len(file_content)
file_size_limit = current_app.config.get("UPLOAD_FILE_SIZE_LIMIT") * 1024 * 1024
if file_size > file_size_limit:
message = "({file_size} > {file_size_limit})"
raise FileTooLargeError(message)
extension = file.filename.split('.')[-1]
if extension not in ALLOWED_EXTENSIONS:
try:
upload_file = FileService.upload_file(file)
except services.errors.file.FileTooLargeError as file_too_large_error:
raise FileTooLargeError(file_too_large_error.description)
except services.errors.file.UnsupportedFileTypeError:
raise UnsupportedFileTypeError()
# user uuid as file name
file_uuid = str(uuid.uuid4())
file_key = 'upload_files/' + current_user.current_tenant_id + '/' + file_uuid + '.' + extension
# save file to storage
storage.save(file_key, file_content)
# save file to db
config = current_app.config
upload_file = UploadFile(
tenant_id=current_user.current_tenant_id,
storage_type=config['STORAGE_TYPE'],
key=file_key,
name=file.filename,
size=file_size,
extension=extension,
mime_type=file.mimetype,
created_by=current_user.id,
created_at=datetime.datetime.utcnow(),
used=False,
hash=hashlib.sha3_256(file_content).hexdigest()
)
db.session.add(upload_file)
db.session.commit()
return upload_file, 201
@@ -121,26 +66,7 @@ class FilePreviewApi(Resource):
@account_initialization_required
def get(self, file_id):
file_id = str(file_id)
key = file_id + request.path
cached_response = cache.get(key)
if cached_response and time.time() - cached_response['timestamp'] < cache.ttl:
return cached_response['response']
upload_file = db.session.query(UploadFile) \
.filter(UploadFile.id == file_id) \
.first()
if not upload_file:
raise NotFound("File not found")
# extract text from file
extension = upload_file.extension
if extension not in ALLOWED_EXTENSIONS:
raise UnsupportedFileTypeError()
text = FileExtractor.load(upload_file, return_text=True)
text = text[0:PREVIEW_WORDS_LIMIT] if text else ''
text = FileService.get_file_preview(file_id)
return {'content': text}

View File

@@ -1,8 +1,8 @@
import logging
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, reqparse, marshal, fields
from libs.login import login_required
from flask_restful import Resource, reqparse, marshal
from werkzeug.exceptions import InternalServerError, NotFound, Forbidden
import services
@@ -14,48 +14,10 @@ from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.model_providers.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError, \
LLMBadRequestError
from libs.helper import TimestampField
from fields.hit_testing_fields import hit_testing_record_fields
from services.dataset_service import DatasetService
from services.hit_testing_service import HitTestingService
document_fields = {
'id': fields.String,
'data_source_type': fields.String,
'name': fields.String,
'doc_type': fields.String,
}
segment_fields = {
'id': fields.String,
'position': fields.Integer,
'document_id': fields.String,
'content': fields.String,
'answer': fields.String,
'word_count': fields.Integer,
'tokens': fields.Integer,
'keywords': fields.List(fields.String),
'index_node_id': fields.String,
'index_node_hash': fields.String,
'hit_count': fields.Integer,
'enabled': fields.Boolean,
'disabled_at': TimestampField,
'disabled_by': fields.String,
'status': fields.String,
'created_by': fields.String,
'created_at': TimestampField,
'indexing_at': TimestampField,
'completed_at': TimestampField,
'error': fields.String,
'stopped_at': TimestampField,
'document': fields.Nested(document_fields),
}
hit_testing_record_fields = {
'segment': fields.Nested(segment_fields),
'score': fields.Float,
'tsne_position': fields.Raw
}
class HitTestingApi(Resource):

View File

@@ -31,8 +31,9 @@ class CompletionApi(InstalledAppResource):
parser = reqparse.RequestParser()
parser.add_argument('inputs', type=dict, required=True, location='json')
parser.add_argument('query', type=str, location='json')
parser.add_argument('query', type=str, location='json', default='')
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
parser.add_argument('retriever_from', type=str, required=False, default='explore_app', location='json')
args = parser.parse_args()
streaming = args['response_mode'] == 'streaming'
@@ -92,6 +93,7 @@ class ChatApi(InstalledAppResource):
parser.add_argument('query', type=str, required=True, location='json')
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
parser.add_argument('conversation_id', type=uuid_value, location='json')
parser.add_argument('retriever_from', type=str, required=False, default='explore_app', location='json')
args = parser.parse_args()
streaming = args['response_mode'] == 'streaming'

View File

@@ -7,26 +7,12 @@ from werkzeug.exceptions import NotFound
from controllers.console import api
from controllers.console.explore.error import NotChatAppError
from controllers.console.explore.wraps import InstalledAppResource
from fields.conversation_fields import conversation_infinite_scroll_pagination_fields, simple_conversation_fields
from libs.helper import TimestampField, uuid_value
from services.conversation_service import ConversationService
from services.errors.conversation import LastConversationNotExistsError, ConversationNotExistsError
from services.web_conversation_service import WebConversationService
conversation_fields = {
'id': fields.String,
'name': fields.String,
'inputs': fields.Raw,
'status': fields.String,
'introduction': fields.String,
'created_at': TimestampField
}
conversation_infinite_scroll_pagination_fields = {
'limit': fields.Integer,
'has_more': fields.Boolean,
'data': fields.List(fields.Nested(conversation_fields))
}
class ConversationListApi(InstalledAppResource):
@@ -76,7 +62,7 @@ class ConversationApi(InstalledAppResource):
class ConversationRenameApi(InstalledAppResource):
@marshal_with(conversation_fields)
@marshal_with(simple_conversation_fields)
def post(self, installed_app, c_id):
app_model = installed_app.app
if app_model.mode != 'chat':

View File

@@ -2,8 +2,8 @@
from datetime import datetime
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, reqparse, fields, marshal_with, inputs
from libs.login import login_required
from flask_restful import Resource, reqparse, marshal_with, inputs
from sqlalchemy import and_
from werkzeug.exceptions import NotFound, Forbidden, BadRequest
@@ -11,32 +11,10 @@ from controllers.console import api
from controllers.console.explore.wraps import InstalledAppResource
from controllers.console.wraps import account_initialization_required
from extensions.ext_database import db
from libs.helper import TimestampField
from fields.installed_app_fields import installed_app_list_fields
from models.model import App, InstalledApp, RecommendedApp
from services.account_service import TenantService
app_fields = {
'id': fields.String,
'name': fields.String,
'mode': fields.String,
'icon': fields.String,
'icon_background': fields.String
}
installed_app_fields = {
'id': fields.String,
'app': fields.Nested(app_fields),
'app_owner_tenant_id': fields.String,
'is_pinned': fields.Boolean,
'last_used_at': TimestampField,
'editable': fields.Boolean,
'uninstallable': fields.Boolean,
}
installed_app_list_fields = {
'installed_apps': fields.List(fields.Nested(installed_app_fields))
}
class InstalledAppsListApi(Resource):
@login_required

View File

@@ -17,6 +17,7 @@ from controllers.console.explore.error import NotCompletionAppError, AppSuggeste
from controllers.console.explore.wraps import InstalledAppResource
from core.model_providers.error import LLMRateLimitError, LLMBadRequestError, LLMAuthorizationError, LLMAPIConnectionError, \
ProviderTokenNotInitError, LLMAPIUnavailableError, QuotaExceededError, ModelCurrentlyNotSupportError
from fields.message_fields import message_infinite_scroll_pagination_fields
from libs.helper import uuid_value, TimestampField
from services.completion_service import CompletionService
from services.errors.app import MoreLikeThisDisabledError
@@ -26,25 +27,6 @@ from services.message_service import MessageService
class MessageListApi(InstalledAppResource):
feedback_fields = {
'rating': fields.String
}
message_fields = {
'id': fields.String,
'conversation_id': fields.String,
'inputs': fields.Raw,
'query': fields.String,
'answer': fields.String,
'feedback': fields.Nested(feedback_fields, attribute='user_feedback', allow_null=True),
'created_at': TimestampField
}
message_infinite_scroll_pagination_fields = {
'limit': fields.Integer,
'has_more': fields.Boolean,
'data': fields.List(fields.Nested(message_fields))
}
@marshal_with(message_infinite_scroll_pagination_fields)
def get(self, installed_app):

View File

@@ -24,8 +24,10 @@ class AppParameterApi(InstalledAppResource):
'suggested_questions': fields.Raw,
'suggested_questions_after_answer': fields.Raw,
'speech_to_text': fields.Raw,
'retriever_resource': fields.Raw,
'more_like_this': fields.Raw,
'user_input_form': fields.Raw,
'sensitive_word_avoidance': fields.Raw
}
@marshal_with(parameters_fields)
@@ -39,8 +41,10 @@ class AppParameterApi(InstalledAppResource):
'suggested_questions': app_model_config.suggested_questions_list,
'suggested_questions_after_answer': app_model_config.suggested_questions_after_answer_dict,
'speech_to_text': app_model_config.speech_to_text_dict,
'retriever_resource': app_model_config.retriever_resource_dict,
'more_like_this': app_model_config.more_like_this_dict,
'user_input_form': app_model_config.user_input_form_list
'user_input_form': app_model_config.user_input_form_list,
'sensitive_word_avoidance': app_model_config.sensitive_word_avoidance_dict
}

View File

@@ -1,6 +1,6 @@
# -*- coding:utf-8 -*-
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource, fields, marshal_with
from sqlalchemy import and_

View File

@@ -1,5 +1,5 @@
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource
from functools import wraps

View File

@@ -0,0 +1,114 @@
from flask_restful import Resource, reqparse, marshal_with
from flask_login import current_user
from controllers.console import api
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from libs.login import login_required
from models.api_based_extension import APIBasedExtension
from fields.api_based_extension_fields import api_based_extension_fields
from services.code_based_extension_service import CodeBasedExtensionService
from services.api_based_extension_service import APIBasedExtensionService
class CodeBasedExtensionAPI(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
parser = reqparse.RequestParser()
parser.add_argument('module', type=str, required=True, location='args')
args = parser.parse_args()
return {
'module': args['module'],
'data': CodeBasedExtensionService.get_code_based_extension(args['module'])
}
class APIBasedExtensionAPI(Resource):
@setup_required
@login_required
@account_initialization_required
@marshal_with(api_based_extension_fields)
def get(self):
tenant_id = current_user.current_tenant_id
return APIBasedExtensionService.get_all_by_tenant_id(tenant_id)
@setup_required
@login_required
@account_initialization_required
@marshal_with(api_based_extension_fields)
def post(self):
parser = reqparse.RequestParser()
parser.add_argument('name', type=str, required=True, location='json')
parser.add_argument('api_endpoint', type=str, required=True, location='json')
parser.add_argument('api_key', type=str, required=True, location='json')
args = parser.parse_args()
extension_data = APIBasedExtension(
tenant_id=current_user.current_tenant_id,
name=args['name'],
api_endpoint=args['api_endpoint'],
api_key=args['api_key']
)
return APIBasedExtensionService.save(extension_data)
class APIBasedExtensionDetailAPI(Resource):
@setup_required
@login_required
@account_initialization_required
@marshal_with(api_based_extension_fields)
def get(self, id):
api_based_extension_id = str(id)
tenant_id = current_user.current_tenant_id
return APIBasedExtensionService.get_with_tenant_id(tenant_id, api_based_extension_id)
@setup_required
@login_required
@account_initialization_required
@marshal_with(api_based_extension_fields)
def post(self, id):
api_based_extension_id = str(id)
tenant_id = current_user.current_tenant_id
extension_data_from_db = APIBasedExtensionService.get_with_tenant_id(tenant_id, api_based_extension_id)
parser = reqparse.RequestParser()
parser.add_argument('name', type=str, required=True, location='json')
parser.add_argument('api_endpoint', type=str, required=True, location='json')
parser.add_argument('api_key', type=str, required=True, location='json')
args = parser.parse_args()
extension_data_from_db.name = args['name']
extension_data_from_db.api_endpoint = args['api_endpoint']
if args['api_key'] != '[__HIDDEN__]':
extension_data_from_db.api_key = args['api_key']
return APIBasedExtensionService.save(extension_data_from_db)
@setup_required
@login_required
@account_initialization_required
def delete(self, id):
api_based_extension_id = str(id)
tenant_id = current_user.current_tenant_id
extension_data_from_db = APIBasedExtensionService.get_with_tenant_id(tenant_id, api_based_extension_id)
APIBasedExtensionService.delete(extension_data_from_db)
return {'result': 'success'}
api.add_resource(CodeBasedExtensionAPI, '/code-based-extension')
api.add_resource(APIBasedExtensionAPI, '/api-based-extension')
api.add_resource(APIBasedExtensionDetailAPI, '/api-based-extension/<uuid:id>')

View File

@@ -1,7 +1,6 @@
# -*- coding:utf-8 -*-
from functools import wraps
import flask_login
from flask import request, current_app
from flask_restful import Resource, reqparse
@@ -58,9 +57,6 @@ class SetupApi(Resource):
)
setup()
# Login
flask_login.login_user(account)
AccountService.update_last_login(account, request)
return {'result': 'success'}, 201

View File

@@ -29,6 +29,7 @@ class UniversalChatApi(UniversalChatResource):
parser.add_argument('provider', type=str, required=True, location='json')
parser.add_argument('model', type=str, required=True, location='json')
parser.add_argument('tools', type=list, required=True, location='json')
parser.add_argument('retriever_from', type=str, required=False, default='universal_app', location='json')
args = parser.parse_args()
app_model_config = app_model.app_model_config

View File

@@ -6,31 +6,17 @@ from werkzeug.exceptions import NotFound
from controllers.console import api
from controllers.console.universal_chat.wraps import UniversalChatResource
from fields.conversation_fields import conversation_with_model_config_infinite_scroll_pagination_fields, \
conversation_with_model_config_fields
from libs.helper import TimestampField, uuid_value
from services.conversation_service import ConversationService
from services.errors.conversation import LastConversationNotExistsError, ConversationNotExistsError
from services.web_conversation_service import WebConversationService
conversation_fields = {
'id': fields.String,
'name': fields.String,
'inputs': fields.Raw,
'status': fields.String,
'introduction': fields.String,
'created_at': TimestampField,
'model_config': fields.Raw,
}
conversation_infinite_scroll_pagination_fields = {
'limit': fields.Integer,
'has_more': fields.Boolean,
'data': fields.List(fields.Nested(conversation_fields))
}
class UniversalChatConversationListApi(UniversalChatResource):
@marshal_with(conversation_infinite_scroll_pagination_fields)
@marshal_with(conversation_with_model_config_infinite_scroll_pagination_fields)
def get(self, universal_app):
app_model = universal_app
@@ -73,7 +59,7 @@ class UniversalChatConversationApi(UniversalChatResource):
class UniversalChatConversationRenameApi(UniversalChatResource):
@marshal_with(conversation_fields)
@marshal_with(conversation_with_model_config_fields)
def post(self, universal_app, c_id):
app_model = universal_app
conversation_id = str(c_id)

View File

@@ -36,6 +36,25 @@ class UniversalChatMessageListApi(UniversalChatResource):
'created_at': TimestampField
}
retriever_resource_fields = {
'id': fields.String,
'message_id': fields.String,
'position': fields.Integer,
'dataset_id': fields.String,
'dataset_name': fields.String,
'document_id': fields.String,
'document_name': fields.String,
'data_source_type': fields.String,
'segment_id': fields.String,
'score': fields.Float,
'hit_count': fields.Integer,
'word_count': fields.Integer,
'segment_position': fields.Integer,
'index_node_hash': fields.String,
'content': fields.String,
'created_at': TimestampField
}
message_fields = {
'id': fields.String,
'conversation_id': fields.String,
@@ -43,6 +62,7 @@ class UniversalChatMessageListApi(UniversalChatResource):
'query': fields.String,
'answer': fields.String,
'feedback': fields.Nested(feedback_fields, attribute='user_feedback', allow_null=True),
'retriever_resources': fields.List(fields.Nested(retriever_resource_fields)),
'created_at': TimestampField,
'agent_thoughts': fields.List(fields.Nested(agent_thought_fields))
}

View File

@@ -1,4 +1,6 @@
# -*- coding:utf-8 -*-
import json
from flask_restful import marshal_with, fields
from controllers.console import api
@@ -14,6 +16,7 @@ class UniversalChatParameterApi(UniversalChatResource):
'suggested_questions': fields.Raw,
'suggested_questions_after_answer': fields.Raw,
'speech_to_text': fields.Raw,
'retriever_resource': fields.Raw,
}
@marshal_with(parameters_fields)
@@ -21,12 +24,14 @@ class UniversalChatParameterApi(UniversalChatResource):
"""Retrieve app parameters."""
app_model = universal_app
app_model_config = app_model.app_model_config
app_model_config.retriever_resource = json.dumps({'enabled': True})
return {
'opening_statement': app_model_config.opening_statement,
'suggested_questions': app_model_config.suggested_questions_list,
'suggested_questions_after_answer': app_model_config.suggested_questions_after_answer_dict,
'speech_to_text': app_model_config.speech_to_text_dict,
'retriever_resource': app_model_config.retriever_resource_dict,
}

View File

@@ -2,7 +2,7 @@ import json
from functools import wraps
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
@@ -47,6 +47,7 @@ def universal_chat_app_required(view=None):
suggested_questions=json.dumps([]),
suggested_questions_after_answer=json.dumps({'enabled': True}),
speech_to_text=json.dumps({'enabled': True}),
retriever_resource=json.dumps({'enabled': True}),
more_like_this=None,
sensitive_word_avoidance=None,
model=json.dumps({

View File

@@ -4,7 +4,7 @@ from datetime import datetime
import pytz
from flask import current_app, request
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource, reqparse, fields, marshal_with
from services.errors.account import CurrentPasswordIncorrectError as ServiceCurrentPasswordIncorrectError

View File

@@ -1,7 +1,7 @@
# -*- coding:utf-8 -*-
from flask import current_app
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource, reqparse, marshal_with, abort, fields, marshal
import services
@@ -49,46 +49,43 @@ class MemberInviteEmailApi(Resource):
@account_initialization_required
def post(self):
parser = reqparse.RequestParser()
parser.add_argument('email', type=str, required=True, location='json')
parser.add_argument('emails', type=str, required=True, location='json', action='append')
parser.add_argument('role', type=str, required=True, default='admin', location='json')
args = parser.parse_args()
invitee_email = args['email']
invitee_emails = args['emails']
invitee_role = args['role']
if invitee_role not in ['admin', 'normal']:
return {'code': 'invalid-role', 'message': 'Invalid role'}, 400
inviter = current_user
try:
token = RegisterService.invite_new_member(inviter.current_tenant, invitee_email, role=invitee_role,
inviter=inviter)
account = db.session.query(Account, TenantAccountJoin.role).join(
TenantAccountJoin, Account.id == TenantAccountJoin.account_id
).filter(Account.email == args['email']).first()
account, role = account
account = marshal(account, account_fields)
account['role'] = role
except services.errors.account.CannotOperateSelfError as e:
return {'code': 'cannot-operate-self', 'message': str(e)}, 400
except services.errors.account.NoPermissionError as e:
return {'code': 'forbidden', 'message': str(e)}, 403
except services.errors.account.AccountAlreadyInTenantError as e:
return {'code': 'email-taken', 'message': str(e)}, 409
except Exception as e:
return {'code': 'unexpected-error', 'message': str(e)}, 500
# todo:413
invitation_results = []
console_web_url = current_app.config.get("CONSOLE_WEB_URL")
for invitee_email in invitee_emails:
try:
token = RegisterService.invite_new_member(inviter.current_tenant, invitee_email, role=invitee_role,
inviter=inviter)
account = db.session.query(Account, TenantAccountJoin.role).join(
TenantAccountJoin, Account.id == TenantAccountJoin.account_id
).filter(Account.email == invitee_email).first()
account, role = account
invitation_results.append({
'status': 'success',
'email': invitee_email,
'url': f'{console_web_url}/activate?email={invitee_email}&token={token}'
})
account = marshal(account, account_fields)
account['role'] = role
except Exception as e:
invitation_results.append({
'status': 'failed',
'email': invitee_email,
'message': str(e)
})
return {
'result': 'success',
'account': account,
'invite_url': '{}/activate?workspace_id={}&email={}&token={}'.format(
current_app.config.get("CONSOLE_WEB_URL"),
str(current_user.current_tenant_id),
invitee_email,
token
)
'invitation_results': invitation_results,
}, 201

View File

@@ -1,5 +1,5 @@
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource, reqparse
from werkzeug.exceptions import Forbidden
@@ -246,7 +246,8 @@ class ModelProviderModelParameterRuleApi(Resource):
'enabled': v.enabled,
'min': v.min,
'max': v.max,
'default': v.default
'default': v.default,
'precision': v.precision
}
for k, v in vars(parameter_rules).items()
}
@@ -285,6 +286,25 @@ class ModelProviderFreeQuotaSubmitApi(Resource):
return result
class ModelProviderFreeQuotaQualificationVerifyApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, provider_name: str):
parser = reqparse.RequestParser()
parser.add_argument('token', type=str, required=False, nullable=True, location='args')
args = parser.parse_args()
provider_service = ProviderService()
result = provider_service.free_quota_qualification_verify(
tenant_id=current_user.current_tenant_id,
provider_name=provider_name,
token=args['token']
)
return result
api.add_resource(ModelProviderListApi, '/workspaces/current/model-providers')
api.add_resource(ModelProviderValidateApi, '/workspaces/current/model-providers/<string:provider_name>/validate')
api.add_resource(ModelProviderUpdateApi, '/workspaces/current/model-providers/<string:provider_name>')
@@ -300,3 +320,5 @@ api.add_resource(ModelProviderPaymentCheckoutUrlApi,
'/workspaces/current/model-providers/<string:provider_name>/checkout-url')
api.add_resource(ModelProviderFreeQuotaSubmitApi,
'/workspaces/current/model-providers/<string:provider_name>/free-quota-submit')
api.add_resource(ModelProviderFreeQuotaQualificationVerifyApi,
'/workspaces/current/model-providers/<string:provider_name>/free-quota-qualification-verify')

View File

@@ -1,5 +1,5 @@
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource, reqparse
from controllers.console import api

View File

@@ -1,6 +1,6 @@
# -*- coding:utf-8 -*-
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource, reqparse
from werkzeug.exceptions import Forbidden

View File

@@ -1,7 +1,7 @@
import json
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource, abort, reqparse
from werkzeug.exceptions import Forbidden

View File

@@ -3,9 +3,8 @@ import logging
from flask import request
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource, fields, marshal_with, reqparse, marshal, inputs
from flask_restful.inputs import int_range
from controllers.console import api
from controllers.console.admin import admin_required

View File

@@ -9,4 +9,4 @@ api = ExternalApi(bp)
from .app import completion, app, conversation, message, audio
from .dataset import document
from .dataset import document, segment, dataset

View File

@@ -25,8 +25,10 @@ class AppParameterApi(AppApiResource):
'suggested_questions': fields.Raw,
'suggested_questions_after_answer': fields.Raw,
'speech_to_text': fields.Raw,
'retriever_resource': fields.Raw,
'more_like_this': fields.Raw,
'user_input_form': fields.Raw,
'sensitive_word_avoidance': fields.Raw
}
@marshal_with(parameters_fields)
@@ -39,8 +41,10 @@ class AppParameterApi(AppApiResource):
'suggested_questions': app_model_config.suggested_questions_list,
'suggested_questions_after_answer': app_model_config.suggested_questions_after_answer_dict,
'speech_to_text': app_model_config.speech_to_text_dict,
'retriever_resource': app_model_config.retriever_resource_dict,
'more_like_this': app_model_config.more_like_this_dict,
'user_input_form': app_model_config.user_input_form_list
'user_input_form': app_model_config.user_input_form_list,
'sensitive_word_avoidance': app_model_config.sensitive_word_avoidance_dict
}

View File

@@ -27,9 +27,11 @@ class CompletionApi(AppApiResource):
parser = reqparse.RequestParser()
parser.add_argument('inputs', type=dict, required=True, location='json')
parser.add_argument('query', type=str, location='json')
parser.add_argument('query', type=str, location='json', default='')
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
parser.add_argument('user', type=str, location='json')
parser.add_argument('retriever_from', type=str, required=False, default='dev', location='json')
args = parser.parse_args()
streaming = args['response_mode'] == 'streaming'
@@ -91,6 +93,8 @@ class ChatApi(AppApiResource):
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
parser.add_argument('conversation_id', type=uuid_value, location='json')
parser.add_argument('user', type=str, location='json')
parser.add_argument('retriever_from', type=str, required=False, default='dev', location='json')
args = parser.parse_args()
streaming = args['response_mode'] == 'streaming'
@@ -179,4 +183,3 @@ api.add_resource(CompletionApi, '/completion-messages')
api.add_resource(CompletionStopApi, '/completion-messages/<string:task_id>/stop')
api.add_resource(ChatApi, '/chat-messages')
api.add_resource(ChatStopApi, '/chat-messages/<string:task_id>/stop')

View File

@@ -8,25 +8,11 @@ from controllers.service_api import api
from controllers.service_api.app import create_or_update_end_user_for_user_id
from controllers.service_api.app.error import NotChatAppError
from controllers.service_api.wraps import AppApiResource
from fields.conversation_fields import conversation_infinite_scroll_pagination_fields, simple_conversation_fields
from libs.helper import TimestampField, uuid_value
import services
from services.conversation_service import ConversationService
conversation_fields = {
'id': fields.String,
'name': fields.String,
'inputs': fields.Raw,
'status': fields.String,
'introduction': fields.String,
'created_at': TimestampField
}
conversation_infinite_scroll_pagination_fields = {
'limit': fields.Integer,
'has_more': fields.Boolean,
'data': fields.List(fields.Nested(conversation_fields))
}
class ConversationApi(AppApiResource):
@@ -50,7 +36,7 @@ class ConversationApi(AppApiResource):
raise NotFound("Last Conversation Not Exists.")
class ConversationDetailApi(AppApiResource):
@marshal_with(conversation_fields)
@marshal_with(simple_conversation_fields)
def delete(self, app_model, end_user, c_id):
if app_model.mode != 'chat':
raise NotChatAppError()
@@ -68,9 +54,10 @@ class ConversationDetailApi(AppApiResource):
raise NotFound("Conversation Not Exists.")
return {"result": "success"}, 204
class ConversationRenameApi(AppApiResource):
@marshal_with(conversation_fields)
@marshal_with(simple_conversation_fields)
def post(self, app_model, end_user, c_id):
if app_model.mode != 'chat':
raise NotChatAppError()

View File

@@ -10,12 +10,32 @@ from controllers.service_api.app.error import NotChatAppError
from controllers.service_api.wraps import AppApiResource
from libs.helper import TimestampField, uuid_value
from services.message_service import MessageService
from extensions.ext_database import db
from models.model import Message, EndUser
class MessageListApi(AppApiResource):
feedback_fields = {
'rating': fields.String
}
retriever_resource_fields = {
'id': fields.String,
'message_id': fields.String,
'position': fields.Integer,
'dataset_id': fields.String,
'dataset_name': fields.String,
'document_id': fields.String,
'document_name': fields.String,
'data_source_type': fields.String,
'segment_id': fields.String,
'score': fields.Float,
'hit_count': fields.Integer,
'word_count': fields.Integer,
'segment_position': fields.Integer,
'index_node_hash': fields.String,
'content': fields.String,
'created_at': TimestampField
}
message_fields = {
'id': fields.String,
@@ -24,6 +44,7 @@ class MessageListApi(AppApiResource):
'query': fields.String,
'answer': fields.String,
'feedback': fields.Nested(feedback_fields, attribute='user_feedback', allow_null=True),
'retriever_resources': fields.List(fields.Nested(retriever_resource_fields)),
'created_at': TimestampField
}
@@ -77,5 +98,38 @@ class MessageFeedbackApi(AppApiResource):
return {'result': 'success'}
class MessageSuggestedApi(AppApiResource):
def get(self, app_model, end_user, message_id):
message_id = str(message_id)
if app_model.mode != 'chat':
raise NotChatAppError()
try:
message = db.session.query(Message).filter(
Message.id == message_id,
Message.app_id == app_model.id,
).first()
if end_user is None and message.from_end_user_id is not None:
user = db.session.query(EndUser) \
.filter(
EndUser.tenant_id == app_model.tenant_id,
EndUser.id == message.from_end_user_id,
EndUser.type == 'service_api'
).first()
else:
user = end_user
questions = MessageService.get_suggested_questions_after_answer(
app_model=app_model,
user=user,
message_id=message_id,
check_enabled=False
)
except services.errors.message.MessageNotExistsError:
raise NotFound("Message Not Exists.")
return {'result': 'success', 'data': questions}
api.add_resource(MessageListApi, '/messages')
api.add_resource(MessageFeedbackApi, '/messages/<uuid:message_id>/feedbacks')
api.add_resource(MessageSuggestedApi, '/messages/<uuid:message_id>/suggested')

View File

@@ -0,0 +1,81 @@
from flask import request
from flask_restful import reqparse, marshal
import services.dataset_service
from controllers.service_api import api
from controllers.service_api.dataset.error import DatasetNameDuplicateError
from controllers.service_api.wraps import DatasetApiResource
from libs.login import current_user
from core.model_providers.models.entity.model_params import ModelType
from fields.dataset_fields import dataset_detail_fields
from services.dataset_service import DatasetService
from services.provider_service import ProviderService
def _validate_name(name):
if not name or len(name) < 1 or len(name) > 40:
raise ValueError('Name must be between 1 to 40 characters.')
return name
class DatasetApi(DatasetApiResource):
"""Resource for get datasets."""
def get(self, tenant_id):
page = request.args.get('page', default=1, type=int)
limit = request.args.get('limit', default=20, type=int)
provider = request.args.get('provider', default="vendor")
datasets, total = DatasetService.get_datasets(page, limit, provider,
tenant_id, current_user)
# check embedding setting
provider_service = ProviderService()
valid_model_list = provider_service.get_valid_model_list(current_user.current_tenant_id,
ModelType.EMBEDDINGS.value)
model_names = []
for valid_model in valid_model_list:
model_names.append(f"{valid_model['model_name']}:{valid_model['model_provider']['provider_name']}")
data = marshal(datasets, dataset_detail_fields)
for item in data:
if item['indexing_technique'] == 'high_quality':
item_model = f"{item['embedding_model']}:{item['embedding_model_provider']}"
if item_model in model_names:
item['embedding_available'] = True
else:
item['embedding_available'] = False
else:
item['embedding_available'] = True
response = {
'data': data,
'has_more': len(datasets) == limit,
'limit': limit,
'total': total,
'page': page
}
return response, 200
"""Resource for datasets."""
def post(self, tenant_id):
parser = reqparse.RequestParser()
parser.add_argument('name', nullable=False, required=True,
help='type is required. Name must be between 1 to 40 characters.',
type=_validate_name)
parser.add_argument('indexing_technique', type=str, location='json',
choices=('high_quality', 'economy'),
help='Invalid indexing technique.')
args = parser.parse_args()
try:
dataset = DatasetService.create_empty_dataset(
tenant_id=tenant_id,
name=args['name'],
indexing_technique=args['indexing_technique'],
account=current_user
)
except services.errors.dataset.DatasetNameDuplicateError:
raise DatasetNameDuplicateError()
return marshal(dataset, dataset_detail_fields), 200
api.add_resource(DatasetApi, '/datasets')

View File

@@ -1,114 +1,287 @@
import datetime
import uuid
import json
from flask import current_app
from flask_restful import reqparse
from flask import request
from flask_restful import reqparse, marshal
from sqlalchemy import desc
from werkzeug.exceptions import NotFound
import services.dataset_service
from controllers.service_api import api
from controllers.service_api.app.error import ProviderNotInitializeError
from controllers.service_api.dataset.error import ArchivedDocumentImmutableError, DocumentIndexingError, \
DatasetNotInitedError
NoFileUploadedError, TooManyFilesError
from controllers.service_api.wraps import DatasetApiResource
from libs.login import current_user
from core.model_providers.error import ProviderTokenNotInitError
from extensions.ext_database import db
from extensions.ext_storage import storage
from models.model import UploadFile
from fields.document_fields import document_fields, document_status_fields
from models.dataset import Dataset, Document, DocumentSegment
from services.dataset_service import DocumentService
from services.file_service import FileService
class DocumentListApi(DatasetApiResource):
class DocumentAddByTextApi(DatasetApiResource):
"""Resource for documents."""
def post(self, dataset):
"""Create document."""
def post(self, tenant_id, dataset_id):
"""Create document by text."""
parser = reqparse.RequestParser()
parser.add_argument('name', type=str, required=True, nullable=False, location='json')
parser.add_argument('text', type=str, required=True, nullable=False, location='json')
parser.add_argument('doc_type', type=str, location='json')
parser.add_argument('doc_metadata', type=dict, location='json')
parser.add_argument('process_rule', type=dict, required=False, nullable=True, location='json')
parser.add_argument('original_document_id', type=str, required=False, location='json')
parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False,
location='json')
parser.add_argument('indexing_technique', type=str, choices=Dataset.INDEXING_TECHNIQUE_LIST, nullable=False,
location='json')
args = parser.parse_args()
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == tenant_id,
Dataset.id == dataset_id
).first()
if not dataset.indexing_technique:
raise DatasetNotInitedError("Dataset indexing technique must be set.")
if not dataset:
raise ValueError('Dataset is not exist.')
doc_type = args.get('doc_type')
doc_metadata = args.get('doc_metadata')
if not dataset.indexing_technique and not args['indexing_technique']:
raise ValueError('indexing_technique is required.')
if doc_type and doc_type not in DocumentService.DOCUMENT_METADATA_SCHEMA:
raise ValueError('Invalid doc_type.')
# user uuid as file name
file_uuid = str(uuid.uuid4())
file_key = 'upload_files/' + dataset.tenant_id + '/' + file_uuid + '.txt'
# save file to storage
storage.save(file_key, args.get('text'))
# save file to db
config = current_app.config
upload_file = UploadFile(
tenant_id=dataset.tenant_id,
storage_type=config['STORAGE_TYPE'],
key=file_key,
name=args.get('name') + '.txt',
size=len(args.get('text')),
extension='txt',
mime_type='text/plain',
created_by=dataset.created_by,
created_at=datetime.datetime.utcnow(),
used=True,
used_by=dataset.created_by,
used_at=datetime.datetime.utcnow()
)
db.session.add(upload_file)
db.session.commit()
document_data = {
'data_source': {
'type': 'upload_file',
'info': [
{
'upload_file_id': upload_file.id
}
]
upload_file = FileService.upload_text(args.get('text'), args.get('name'))
data_source = {
'type': 'upload_file',
'info_list': {
'data_source_type': 'upload_file',
'file_info_list': {
'file_ids': [upload_file.id]
}
}
}
args['data_source'] = data_source
# validate args
DocumentService.document_create_args_validate(args)
try:
documents, batch = DocumentService.save_document_with_dataset_id(
dataset=dataset,
document_data=document_data,
account=dataset.created_by_account,
dataset_process_rule=dataset.latest_process_rule,
document_data=args,
account=current_user,
dataset_process_rule=dataset.latest_process_rule if 'process_rule' not in args else None,
created_from='api'
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
document = documents[0]
if doc_type and doc_metadata:
metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[doc_type]
document.doc_metadata = {}
for key, value_type in metadata_schema.items():
value = doc_metadata.get(key)
if value is not None and isinstance(value, value_type):
document.doc_metadata[key] = value
document.doc_type = doc_type
document.updated_at = datetime.datetime.utcnow()
db.session.commit()
return {'id': document.id}
documents_and_batch_fields = {
'document': marshal(document, document_fields),
'batch': batch
}
return documents_and_batch_fields, 200
class DocumentApi(DatasetApiResource):
def delete(self, dataset, document_id):
class DocumentUpdateByTextApi(DatasetApiResource):
"""Resource for update documents."""
def post(self, tenant_id, dataset_id, document_id):
"""Update document by text."""
parser = reqparse.RequestParser()
parser.add_argument('name', type=str, required=False, nullable=True, location='json')
parser.add_argument('text', type=str, required=False, nullable=True, location='json')
parser.add_argument('process_rule', type=dict, required=False, nullable=True, location='json')
parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False,
location='json')
args = parser.parse_args()
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == tenant_id,
Dataset.id == dataset_id
).first()
if not dataset:
raise ValueError('Dataset is not exist.')
if args['text']:
upload_file = FileService.upload_text(args.get('text'), args.get('name'))
data_source = {
'type': 'upload_file',
'info_list': {
'data_source_type': 'upload_file',
'file_info_list': {
'file_ids': [upload_file.id]
}
}
}
args['data_source'] = data_source
# validate args
args['original_document_id'] = str(document_id)
DocumentService.document_create_args_validate(args)
try:
documents, batch = DocumentService.save_document_with_dataset_id(
dataset=dataset,
document_data=args,
account=current_user,
dataset_process_rule=dataset.latest_process_rule if 'process_rule' not in args else None,
created_from='api'
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
document = documents[0]
documents_and_batch_fields = {
'document': marshal(document, document_fields),
'batch': batch
}
return documents_and_batch_fields, 200
class DocumentAddByFileApi(DatasetApiResource):
"""Resource for documents."""
def post(self, tenant_id, dataset_id):
"""Create document by upload file."""
args = {}
if 'data' in request.form:
args = json.loads(request.form['data'])
if 'doc_form' not in args:
args['doc_form'] = 'text_model'
if 'doc_language' not in args:
args['doc_language'] = 'English'
# get dataset info
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == tenant_id,
Dataset.id == dataset_id
).first()
if not dataset:
raise ValueError('Dataset is not exist.')
if not dataset.indexing_technique and not args['indexing_technique']:
raise ValueError('indexing_technique is required.')
# save file info
file = request.files['file']
# check file
if 'file' not in request.files:
raise NoFileUploadedError()
if len(request.files) > 1:
raise TooManyFilesError()
upload_file = FileService.upload_file(file)
data_source = {
'type': 'upload_file',
'info_list': {
'file_info_list': {
'file_ids': [upload_file.id]
}
}
}
args['data_source'] = data_source
# validate args
DocumentService.document_create_args_validate(args)
try:
documents, batch = DocumentService.save_document_with_dataset_id(
dataset=dataset,
document_data=args,
account=dataset.created_by_account,
dataset_process_rule=dataset.latest_process_rule if 'process_rule' not in args else None,
created_from='api'
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
document = documents[0]
documents_and_batch_fields = {
'document': marshal(document, document_fields),
'batch': batch
}
return documents_and_batch_fields, 200
class DocumentUpdateByFileApi(DatasetApiResource):
"""Resource for update documents."""
def post(self, tenant_id, dataset_id, document_id):
"""Update document by upload file."""
args = {}
if 'data' in request.form:
args = json.loads(request.form['data'])
if 'doc_form' not in args:
args['doc_form'] = 'text_model'
if 'doc_language' not in args:
args['doc_language'] = 'English'
# get dataset info
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == tenant_id,
Dataset.id == dataset_id
).first()
if not dataset:
raise ValueError('Dataset is not exist.')
if 'file' in request.files:
# save file info
file = request.files['file']
if len(request.files) > 1:
raise TooManyFilesError()
upload_file = FileService.upload_file(file)
data_source = {
'type': 'upload_file',
'info_list': {
'file_info_list': {
'file_ids': [upload_file.id]
}
}
}
args['data_source'] = data_source
# validate args
args['original_document_id'] = str(document_id)
DocumentService.document_create_args_validate(args)
try:
documents, batch = DocumentService.save_document_with_dataset_id(
dataset=dataset,
document_data=args,
account=dataset.created_by_account,
dataset_process_rule=dataset.latest_process_rule if 'process_rule' not in args else None,
created_from='api'
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
document = documents[0]
documents_and_batch_fields = {
'document': marshal(document, document_fields),
'batch': batch
}
return documents_and_batch_fields, 200
class DocumentDeleteApi(DatasetApiResource):
def delete(self, tenant_id, dataset_id, document_id):
"""Delete document."""
document_id = str(document_id)
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
# get dataset info
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == tenant_id,
Dataset.id == dataset_id
).first()
if not dataset:
raise ValueError('Dataset is not exist.')
document = DocumentService.get_document(dataset.id, document_id)
@@ -126,8 +299,85 @@ class DocumentApi(DatasetApiResource):
except services.errors.document.DocumentIndexingError:
raise DocumentIndexingError('Cannot delete document during indexing.')
return {'result': 'success'}, 204
return {'result': 'success'}, 200
api.add_resource(DocumentListApi, '/documents')
api.add_resource(DocumentApi, '/documents/<uuid:document_id>')
class DocumentListApi(DatasetApiResource):
def get(self, tenant_id, dataset_id):
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
page = request.args.get('page', default=1, type=int)
limit = request.args.get('limit', default=20, type=int)
search = request.args.get('keyword', default=None, type=str)
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == tenant_id,
Dataset.id == dataset_id
).first()
if not dataset:
raise NotFound('Dataset not found.')
query = Document.query.filter_by(
dataset_id=str(dataset_id), tenant_id=tenant_id)
if search:
search = f'%{search}%'
query = query.filter(Document.name.like(search))
query = query.order_by(desc(Document.created_at))
paginated_documents = query.paginate(
page=page, per_page=limit, max_per_page=100, error_out=False)
documents = paginated_documents.items
response = {
'data': marshal(documents, document_fields),
'has_more': len(documents) == limit,
'limit': limit,
'total': paginated_documents.total,
'page': page
}
return response
class DocumentIndexingStatusApi(DatasetApiResource):
def get(self, tenant_id, dataset_id, batch):
dataset_id = str(dataset_id)
batch = str(batch)
tenant_id = str(tenant_id)
# get dataset
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == tenant_id,
Dataset.id == dataset_id
).first()
if not dataset:
raise NotFound('Dataset not found.')
# get documents
documents = DocumentService.get_batch_documents(dataset_id, batch)
if not documents:
raise NotFound('Documents not found.')
documents_status = []
for document in documents:
completed_segments = DocumentSegment.query.filter(DocumentSegment.completed_at.isnot(None),
DocumentSegment.document_id == str(document.id),
DocumentSegment.status != 're_segment').count()
total_segments = DocumentSegment.query.filter(DocumentSegment.document_id == str(document.id),
DocumentSegment.status != 're_segment').count()
document.completed_segments = completed_segments
document.total_segments = total_segments
if document.is_paused:
document.indexing_status = 'paused'
documents_status.append(marshal(document, document_status_fields))
data = {
'data': documents_status
}
return data
api.add_resource(DocumentAddByTextApi, '/datasets/<uuid:dataset_id>/document/create_by_text')
api.add_resource(DocumentAddByFileApi, '/datasets/<uuid:dataset_id>/document/create_by_file')
api.add_resource(DocumentUpdateByTextApi, '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update_by_text')
api.add_resource(DocumentUpdateByFileApi, '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update_by_file')
api.add_resource(DocumentDeleteApi, '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>')
api.add_resource(DocumentListApi, '/datasets/<uuid:dataset_id>/documents')
api.add_resource(DocumentIndexingStatusApi, '/datasets/<uuid:dataset_id>/documents/<string:batch>/indexing-status')

View File

@@ -1,20 +1,73 @@
# -*- coding:utf-8 -*-
from libs.exception import BaseHTTPException
class NoFileUploadedError(BaseHTTPException):
error_code = 'no_file_uploaded'
description = "Please upload your file."
code = 400
class TooManyFilesError(BaseHTTPException):
error_code = 'too_many_files'
description = "Only one file is allowed."
code = 400
class FileTooLargeError(BaseHTTPException):
error_code = 'file_too_large'
description = "File size exceeded. {message}"
code = 413
class UnsupportedFileTypeError(BaseHTTPException):
error_code = 'unsupported_file_type'
description = "File type not allowed."
code = 415
class HighQualityDatasetOnlyError(BaseHTTPException):
error_code = 'high_quality_dataset_only'
description = "Current operation only supports 'high-quality' datasets."
code = 400
class DatasetNotInitializedError(BaseHTTPException):
error_code = 'dataset_not_initialized'
description = "The dataset is still being initialized or indexing. Please wait a moment."
code = 400
class ArchivedDocumentImmutableError(BaseHTTPException):
error_code = 'archived_document_immutable'
description = "Cannot operate when document was archived."
description = "The archived document is not editable."
code = 403
class DatasetNameDuplicateError(BaseHTTPException):
error_code = 'dataset_name_duplicate'
description = "The dataset name already exists. Please modify your dataset name."
code = 409
class InvalidActionError(BaseHTTPException):
error_code = 'invalid_action'
description = "Invalid action."
code = 400
class DocumentAlreadyFinishedError(BaseHTTPException):
error_code = 'document_already_finished'
description = "The document has been processed. Please refresh the page or go to the document details."
code = 400
class DocumentIndexingError(BaseHTTPException):
error_code = 'document_indexing'
description = "Cannot operate document during indexing."
code = 403
description = "The document is being processed and cannot be edited."
code = 400
class DatasetNotInitedError(BaseHTTPException):
error_code = 'dataset_not_inited'
description = "The dataset is still being initialized or indexing. Please wait a moment."
code = 403
class InvalidMetadataError(BaseHTTPException):
error_code = 'invalid_metadata'
description = "The metadata content is incorrect. Please check and verify."
code = 400

View File

@@ -0,0 +1,201 @@
from flask_login import current_user
from flask_restful import reqparse, marshal
from werkzeug.exceptions import NotFound
from controllers.service_api import api
from controllers.service_api.app.error import ProviderNotInitializeError
from controllers.service_api.wraps import DatasetApiResource
from core.model_providers.error import ProviderTokenNotInitError, LLMBadRequestError
from core.model_providers.model_factory import ModelFactory
from extensions.ext_database import db
from fields.segment_fields import segment_fields
from models.dataset import Dataset, DocumentSegment
from services.dataset_service import DatasetService, DocumentService, SegmentService
class SegmentApi(DatasetApiResource):
"""Resource for segments."""
def post(self, tenant_id, dataset_id, document_id):
"""Create single segment."""
# check dataset
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == tenant_id,
Dataset.id == dataset_id
).first()
if not dataset:
raise NotFound('Dataset not found.')
# check document
document_id = str(document_id)
document = DocumentService.get_document(dataset.id, document_id)
if not document:
raise NotFound('Document not found.')
# check embedding model setting
if dataset.indexing_technique == 'high_quality':
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
# validate args
parser = reqparse.RequestParser()
parser.add_argument('segments', type=list, required=False, nullable=True, location='json')
args = parser.parse_args()
for args_item in args['segments']:
SegmentService.segment_create_args_validate(args_item, document)
segments = SegmentService.multi_create_segment(args['segments'], document, dataset)
return {
'data': marshal(segments, segment_fields),
'doc_form': document.doc_form
}, 200
def get(self, tenant_id, dataset_id, document_id):
"""Create single segment."""
# check dataset
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == tenant_id,
Dataset.id == dataset_id
).first()
if not dataset:
raise NotFound('Dataset not found.')
# check document
document_id = str(document_id)
document = DocumentService.get_document(dataset.id, document_id)
if not document:
raise NotFound('Document not found.')
# check embedding model setting
if dataset.indexing_technique == 'high_quality':
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
parser = reqparse.RequestParser()
parser.add_argument('status', type=str,
action='append', default=[], location='args')
parser.add_argument('keyword', type=str, default=None, location='args')
args = parser.parse_args()
status_list = args['status']
keyword = args['keyword']
query = DocumentSegment.query.filter(
DocumentSegment.document_id == str(document_id),
DocumentSegment.tenant_id == current_user.current_tenant_id
)
if status_list:
query = query.filter(DocumentSegment.status.in_(status_list))
if keyword:
query = query.where(DocumentSegment.content.ilike(f'%{keyword}%'))
total = query.count()
segments = query.order_by(DocumentSegment.position).all()
return {
'data': marshal(segments, segment_fields),
'doc_form': document.doc_form,
'total': total
}, 200
class DatasetSegmentApi(DatasetApiResource):
def delete(self, tenant_id, dataset_id, document_id, segment_id):
# check dataset
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == tenant_id,
Dataset.id == dataset_id
).first()
if not dataset:
raise NotFound('Dataset not found.')
# check user's model setting
DatasetService.check_dataset_model_setting(dataset)
# check document
document_id = str(document_id)
document = DocumentService.get_document(dataset_id, document_id)
if not document:
raise NotFound('Document not found.')
# check segment
segment = DocumentSegment.query.filter(
DocumentSegment.id == str(segment_id),
DocumentSegment.tenant_id == current_user.current_tenant_id
).first()
if not segment:
raise NotFound('Segment not found.')
SegmentService.delete_segment(segment, document, dataset)
return {'result': 'success'}, 200
def post(self, tenant_id, dataset_id, document_id, segment_id):
# check dataset
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == tenant_id,
Dataset.id == dataset_id
).first()
if not dataset:
raise NotFound('Dataset not found.')
# check user's model setting
DatasetService.check_dataset_model_setting(dataset)
# check document
document_id = str(document_id)
document = DocumentService.get_document(dataset_id, document_id)
if not document:
raise NotFound('Document not found.')
if dataset.indexing_technique == 'high_quality':
# check embedding model setting
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
# check segment
segment_id = str(segment_id)
segment = DocumentSegment.query.filter(
DocumentSegment.id == str(segment_id),
DocumentSegment.tenant_id == current_user.current_tenant_id
).first()
if not segment:
raise NotFound('Segment not found.')
# validate args
parser = reqparse.RequestParser()
parser.add_argument('segments', type=dict, required=False, nullable=True, location='json')
args = parser.parse_args()
SegmentService.segment_create_args_validate(args['segments'], document)
segment = SegmentService.update_segment(args['segments'], segment, document, dataset)
return {
'data': marshal(segment, segment_fields),
'doc_form': document.doc_form
}, 200
api.add_resource(SegmentApi, '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments')
api.add_resource(DatasetSegmentApi, '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/<uuid:segment_id>')

View File

@@ -2,12 +2,14 @@
from datetime import datetime
from functools import wraps
from flask import request
from flask import request, current_app
from flask_login import user_logged_in
from flask_restful import Resource
from werkzeug.exceptions import NotFound, Unauthorized
from libs.login import _get_user
from extensions.ext_database import db
from models.dataset import Dataset
from models.account import Tenant, TenantAccountJoin, Account
from models.model import ApiToken, App
@@ -43,12 +45,24 @@ def validate_dataset_token(view=None):
@wraps(view)
def decorated(*args, **kwargs):
api_token = validate_and_get_api_token('dataset')
dataset = db.session.query(Dataset).filter(Dataset.id == api_token.dataset_id).first()
if not dataset:
raise NotFound()
return view(dataset, *args, **kwargs)
tenant_account_join = db.session.query(Tenant, TenantAccountJoin) \
.filter(Tenant.id == api_token.tenant_id) \
.filter(TenantAccountJoin.tenant_id == Tenant.id) \
.filter(TenantAccountJoin.role == 'owner') \
.one_or_none()
if tenant_account_join:
tenant, ta = tenant_account_join
account = Account.query.filter_by(id=ta.account_id).first()
# Login admin
if account:
account.current_tenant = tenant
current_app.login_manager._update_request_context_with_user(account)
user_logged_in.send(current_app._get_current_object(), user=_get_user())
else:
raise Unauthorized("Tenant owner account is not exist.")
else:
raise Unauthorized("Tenant is not exist.")
return view(api_token.tenant_id, *args, **kwargs)
return decorated
if view:

View File

@@ -24,8 +24,10 @@ class AppParameterApi(WebApiResource):
'suggested_questions': fields.Raw,
'suggested_questions_after_answer': fields.Raw,
'speech_to_text': fields.Raw,
'retriever_resource': fields.Raw,
'more_like_this': fields.Raw,
'user_input_form': fields.Raw,
'sensitive_word_avoidance': fields.Raw
}
@marshal_with(parameters_fields)
@@ -38,8 +40,10 @@ class AppParameterApi(WebApiResource):
'suggested_questions': app_model_config.suggested_questions_list,
'suggested_questions_after_answer': app_model_config.suggested_questions_after_answer_dict,
'speech_to_text': app_model_config.speech_to_text_dict,
'retriever_resource': app_model_config.retriever_resource_dict,
'more_like_this': app_model_config.more_like_this_dict,
'user_input_form': app_model_config.user_input_form_list
'user_input_form': app_model_config.user_input_form_list,
'sensitive_word_avoidance': app_model_config.sensitive_word_avoidance_dict
}

View File

@@ -29,8 +29,10 @@ class CompletionApi(WebApiResource):
parser = reqparse.RequestParser()
parser.add_argument('inputs', type=dict, required=True, location='json')
parser.add_argument('query', type=str, location='json')
parser.add_argument('query', type=str, location='json', default='')
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
parser.add_argument('retriever_from', type=str, required=False, default='web_app', location='json')
args = parser.parse_args()
streaming = args['response_mode'] == 'streaming'
@@ -88,6 +90,8 @@ class ChatApi(WebApiResource):
parser.add_argument('query', type=str, required=True, location='json')
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
parser.add_argument('conversation_id', type=uuid_value, location='json')
parser.add_argument('retriever_from', type=str, required=False, default='web_app', location='json')
args = parser.parse_args()
streaming = args['response_mode'] == 'streaming'
@@ -135,7 +139,7 @@ class ChatStopApi(WebApiResource):
return {'result': 'success'}, 200
def compact_response(response: Union[dict | Generator]) -> Response:
def compact_response(response: Union[dict, Generator]) -> Response:
if isinstance(response, dict):
return Response(response=json.dumps(response), status=200, mimetype='application/json')
else:

View File

@@ -6,26 +6,12 @@ from werkzeug.exceptions import NotFound
from controllers.web import api
from controllers.web.error import NotChatAppError
from controllers.web.wraps import WebApiResource
from fields.conversation_fields import conversation_infinite_scroll_pagination_fields, simple_conversation_fields
from libs.helper import TimestampField, uuid_value
from services.conversation_service import ConversationService
from services.errors.conversation import LastConversationNotExistsError, ConversationNotExistsError
from services.web_conversation_service import WebConversationService
conversation_fields = {
'id': fields.String,
'name': fields.String,
'inputs': fields.Raw,
'status': fields.String,
'introduction': fields.String,
'created_at': TimestampField
}
conversation_infinite_scroll_pagination_fields = {
'limit': fields.Integer,
'has_more': fields.Boolean,
'data': fields.List(fields.Nested(conversation_fields))
}
class ConversationListApi(WebApiResource):
@@ -73,7 +59,7 @@ class ConversationApi(WebApiResource):
class ConversationRenameApi(WebApiResource):
@marshal_with(conversation_fields)
@marshal_with(simple_conversation_fields)
def post(self, app_model, end_user, c_id):
if app_model.mode != 'chat':
raise NotChatAppError()

View File

@@ -29,6 +29,25 @@ class MessageListApi(WebApiResource):
'rating': fields.String
}
retriever_resource_fields = {
'id': fields.String,
'message_id': fields.String,
'position': fields.Integer,
'dataset_id': fields.String,
'dataset_name': fields.String,
'document_id': fields.String,
'document_name': fields.String,
'data_source_type': fields.String,
'segment_id': fields.String,
'score': fields.Float,
'hit_count': fields.Integer,
'word_count': fields.Integer,
'segment_position': fields.Integer,
'index_node_hash': fields.String,
'content': fields.String,
'created_at': TimestampField
}
message_fields = {
'id': fields.String,
'conversation_id': fields.String,
@@ -36,6 +55,7 @@ class MessageListApi(WebApiResource):
'query': fields.String,
'answer': fields.String,
'feedback': fields.Nested(feedback_fields, attribute='user_feedback', allow_null=True),
'retriever_resources': fields.List(fields.Nested(retriever_resource_fields)),
'created_at': TimestampField
}
@@ -95,7 +115,7 @@ class MessageMoreLikeThisApi(WebApiResource):
streaming = args['response_mode'] == 'streaming'
try:
response = CompletionService.generate_more_like_this(app_model, end_user, message_id, streaming)
response = CompletionService.generate_more_like_this(app_model, end_user, message_id, streaming, 'web_app')
return compact_response(response)
except MessageNotExistsError:
raise NotFound("Message Not Exists.")

View File

@@ -0,0 +1 @@
import core.moderation.base

View File

@@ -1,14 +1,19 @@
import json
from typing import Tuple, List, Any, Union, Sequence, Optional, cast
from langchain.agents import OpenAIFunctionsAgent, BaseSingleActionAgent
from langchain.agents.openai_functions_agent.base import _format_intermediate_steps, _parse_ai_message
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.prompts.chat import BaseMessagePromptTemplate
from langchain.schema import AgentAction, AgentFinish, SystemMessage
from langchain.schema import AgentAction, AgentFinish, SystemMessage, Generation, LLMResult, AIMessage
from langchain.schema.language_model import BaseLanguageModel
from langchain.tools import BaseTool
from pydantic import root_validator
from core.model_providers.models.entity.message import to_prompt_messages
from core.model_providers.models.llm.base import BaseLLM
from core.third_party.langchain.llms.fake import FakeLLM
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
@@ -23,6 +28,10 @@ class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
arbitrary_types_allowed = True
@root_validator
def validate_llm(cls, values: dict) -> dict:
return values
def should_use_agent(self, query: str):
"""
return should use agent
@@ -52,7 +61,11 @@ class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
elif len(self.tools) == 1:
tool = next(iter(self.tools))
tool = cast(DatasetRetrieverTool, tool)
rst = tool.run(tool_input={'dataset_id': tool.dataset_id, 'query': kwargs['input']})
rst = tool.run(tool_input={'query': kwargs['input']})
# output = ''
# rst_json = json.loads(rst)
# for item in rst_json:
# output += f'{item["content"]}\n'
return AgentFinish(return_values={"output": rst}, log=rst)
if intermediate_steps:
@@ -60,11 +73,57 @@ class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
return AgentFinish(return_values={"output": observation}, log=observation)
try:
return super().plan(intermediate_steps, callbacks, **kwargs)
agent_decision = self.real_plan(intermediate_steps, callbacks, **kwargs)
if isinstance(agent_decision, AgentAction):
tool_inputs = agent_decision.tool_input
if isinstance(tool_inputs, dict) and 'query' in tool_inputs and 'chat_history' not in kwargs:
tool_inputs['query'] = kwargs['input']
agent_decision.tool_input = tool_inputs
else:
agent_decision.return_values['output'] = ''
return agent_decision
except Exception as e:
new_exception = self.model_instance.handle_exceptions(e)
raise new_exception
def real_plan(
self,
intermediate_steps: List[Tuple[AgentAction, str]],
callbacks: Callbacks = None,
**kwargs: Any,
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date, along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
agent_scratchpad = _format_intermediate_steps(intermediate_steps)
selected_inputs = {
k: kwargs[k] for k in self.prompt.input_variables if k != "agent_scratchpad"
}
full_inputs = dict(**selected_inputs, agent_scratchpad=agent_scratchpad)
prompt = self.prompt.format_prompt(**full_inputs)
messages = prompt.to_messages()
prompt_messages = to_prompt_messages(messages)
result = self.model_instance.run(
messages=prompt_messages,
functions=self.functions,
)
ai_message = AIMessage(
content=result.content,
additional_kwargs={
'function_call': result.function_call
}
)
agent_decision = _parse_ai_message(ai_message)
return agent_decision
async def aplan(
self,
intermediate_steps: List[Tuple[AgentAction, str]],
@@ -76,7 +135,7 @@ class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
@classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
model_instance: BaseLLM,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None,
@@ -85,11 +144,15 @@ class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
),
**kwargs: Any,
) -> BaseSingleActionAgent:
return super().from_llm_and_tools(
llm=llm,
tools=tools,
callback_manager=callback_manager,
prompt = cls.create_prompt(
extra_prompt_messages=extra_prompt_messages,
system_message=system_message,
)
return cls(
model_instance=model_instance,
llm=FakeLLM(response=''),
prompt=prompt,
tools=tools,
callback_manager=callback_manager,
**kwargs,
)

View File

@@ -5,21 +5,40 @@ from langchain.agents.openai_functions_agent.base import _parse_ai_message, \
_format_intermediate_steps
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.chat_models.openai import _convert_message_to_dict, _import_tiktoken
from langchain.memory.prompt import SUMMARY_PROMPT
from langchain.prompts.chat import BaseMessagePromptTemplate
from langchain.schema import AgentAction, AgentFinish, SystemMessage
from langchain.schema.language_model import BaseLanguageModel
from langchain.schema import AgentAction, AgentFinish, SystemMessage, AIMessage, HumanMessage, BaseMessage, \
get_buffer_string
from langchain.tools import BaseTool
from pydantic import root_validator
from core.agent.agent.calc_token_mixin import ExceededLLMTokensLimitError
from core.agent.agent.openai_function_call_summarize_mixin import OpenAIFunctionCallSummarizeMixin
from core.agent.agent.calc_token_mixin import ExceededLLMTokensLimitError, CalcTokenMixin
from core.chain.llm_chain import LLMChain
from core.model_providers.models.entity.message import to_prompt_messages
from core.model_providers.models.llm.base import BaseLLM
from core.third_party.langchain.llms.fake import FakeLLM
class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, OpenAIFunctionCallSummarizeMixin):
class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, CalcTokenMixin):
moving_summary_buffer: str = ""
moving_summary_index: int = 0
summary_model_instance: BaseLLM = None
model_instance: BaseLLM
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
@root_validator
def validate_llm(cls, values: dict) -> dict:
return values
@classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
model_instance: BaseLLM,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None,
@@ -28,12 +47,16 @@ class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, OpenAIFunctio
),
**kwargs: Any,
) -> BaseSingleActionAgent:
return super().from_llm_and_tools(
llm=llm,
prompt = cls.create_prompt(
extra_prompt_messages=extra_prompt_messages,
system_message=system_message,
)
return cls(
model_instance=model_instance,
llm=FakeLLM(response=''),
prompt=prompt,
tools=tools,
callback_manager=callback_manager,
extra_prompt_messages=extra_prompt_messages,
system_message=cls.get_system_message(),
**kwargs,
)
@@ -44,23 +67,26 @@ class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, OpenAIFunctio
:param query:
:return:
"""
original_max_tokens = self.llm.max_tokens
self.llm.max_tokens = 15
original_max_tokens = self.model_instance.model_kwargs.max_tokens
self.model_instance.model_kwargs.max_tokens = 40
prompt = self.prompt.format_prompt(input=query, agent_scratchpad=[])
messages = prompt.to_messages()
try:
predicted_message = self.llm.predict_messages(
messages, functions=self.functions, callbacks=None
prompt_messages = to_prompt_messages(messages)
result = self.model_instance.run(
messages=prompt_messages,
functions=self.functions,
callbacks=None
)
except Exception as e:
new_exception = self.model_instance.handle_exceptions(e)
raise new_exception
function_call = predicted_message.additional_kwargs.get("function_call", {})
function_call = result.function_call
self.llm.max_tokens = original_max_tokens
self.model_instance.model_kwargs.max_tokens = original_max_tokens
return True if function_call else False
@@ -93,10 +119,26 @@ class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, OpenAIFunctio
except ExceededLLMTokensLimitError as e:
return AgentFinish(return_values={"output": str(e)}, log=str(e))
predicted_message = self.llm.predict_messages(
messages, functions=self.functions, callbacks=callbacks
prompt_messages = to_prompt_messages(messages)
result = self.model_instance.run(
messages=prompt_messages,
functions=self.functions,
)
agent_decision = _parse_ai_message(predicted_message)
ai_message = AIMessage(
content=result.content,
additional_kwargs={
'function_call': result.function_call
}
)
agent_decision = _parse_ai_message(ai_message)
if isinstance(agent_decision, AgentAction) and agent_decision.tool == 'dataset':
tool_inputs = agent_decision.tool_input
if isinstance(tool_inputs, dict) and 'query' in tool_inputs:
tool_inputs['query'] = kwargs['input']
agent_decision.tool_input = tool_inputs
return agent_decision
@classmethod
@@ -115,3 +157,142 @@ class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, OpenAIFunctio
return super().return_stopped_response(early_stopping_method, intermediate_steps, **kwargs)
except ValueError:
return AgentFinish({"output": "I'm sorry, I don't know how to respond to that."}, "")
def summarize_messages_if_needed(self, messages: List[BaseMessage], **kwargs) -> List[BaseMessage]:
# calculate rest tokens and summarize previous function observation messages if rest_tokens < 0
rest_tokens = self.get_message_rest_tokens(self.model_instance, messages, **kwargs)
rest_tokens = rest_tokens - 20 # to deal with the inaccuracy of rest_tokens
if rest_tokens >= 0:
return messages
system_message = None
human_message = None
should_summary_messages = []
for message in messages:
if isinstance(message, SystemMessage):
system_message = message
elif isinstance(message, HumanMessage):
human_message = message
else:
should_summary_messages.append(message)
if len(should_summary_messages) > 2:
ai_message = should_summary_messages[-2]
function_message = should_summary_messages[-1]
should_summary_messages = should_summary_messages[self.moving_summary_index:-2]
self.moving_summary_index = len(should_summary_messages)
else:
error_msg = "Exceeded LLM tokens limit, stopped."
raise ExceededLLMTokensLimitError(error_msg)
new_messages = [system_message, human_message]
if self.moving_summary_index == 0:
should_summary_messages.insert(0, human_message)
self.moving_summary_buffer = self.predict_new_summary(
messages=should_summary_messages,
existing_summary=self.moving_summary_buffer
)
new_messages.append(AIMessage(content=self.moving_summary_buffer))
new_messages.append(ai_message)
new_messages.append(function_message)
return new_messages
def predict_new_summary(
self, messages: List[BaseMessage], existing_summary: str
) -> str:
new_lines = get_buffer_string(
messages,
human_prefix="Human",
ai_prefix="AI",
)
chain = LLMChain(model_instance=self.summary_model_instance, prompt=SUMMARY_PROMPT)
return chain.predict(summary=existing_summary, new_lines=new_lines)
def get_num_tokens_from_messages(self, model_instance: BaseLLM, messages: List[BaseMessage], **kwargs) -> int:
"""Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package.
Official documentation: https://github.com/openai/openai-cookbook/blob/
main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb"""
if model_instance.model_provider.provider_name == 'azure_openai':
model = model_instance.base_model_name
model = model.replace("gpt-35", "gpt-3.5")
else:
model = model_instance.base_model_name
tiktoken_ = _import_tiktoken()
try:
encoding = tiktoken_.encoding_for_model(model)
except KeyError:
model = "cl100k_base"
encoding = tiktoken_.get_encoding(model)
if model.startswith("gpt-3.5-turbo"):
# every message follows <im_start>{role/name}\n{content}<im_end>\n
tokens_per_message = 4
# if there's a name, the role is omitted
tokens_per_name = -1
elif model.startswith("gpt-4"):
tokens_per_message = 3
tokens_per_name = 1
else:
raise NotImplementedError(
f"get_num_tokens_from_messages() is not presently implemented "
f"for model {model}."
"See https://github.com/openai/openai-python/blob/main/chatml.md for "
"information on how messages are converted to tokens."
)
num_tokens = 0
for m in messages:
message = _convert_message_to_dict(m)
num_tokens += tokens_per_message
for key, value in message.items():
if key == "function_call":
for f_key, f_value in value.items():
num_tokens += len(encoding.encode(f_key))
num_tokens += len(encoding.encode(f_value))
else:
num_tokens += len(encoding.encode(value))
if key == "name":
num_tokens += tokens_per_name
# every reply is primed with <im_start>assistant
num_tokens += 3
if kwargs.get('functions'):
for function in kwargs.get('functions'):
num_tokens += len(encoding.encode('name'))
num_tokens += len(encoding.encode(function.get("name")))
num_tokens += len(encoding.encode('description'))
num_tokens += len(encoding.encode(function.get("description")))
parameters = function.get("parameters")
num_tokens += len(encoding.encode('parameters'))
if 'title' in parameters:
num_tokens += len(encoding.encode('title'))
num_tokens += len(encoding.encode(parameters.get("title")))
num_tokens += len(encoding.encode('type'))
num_tokens += len(encoding.encode(parameters.get("type")))
if 'properties' in parameters:
num_tokens += len(encoding.encode('properties'))
for key, value in parameters.get('properties').items():
num_tokens += len(encoding.encode(key))
for field_key, field_value in value.items():
num_tokens += len(encoding.encode(field_key))
if field_key == 'enum':
for enum_field in field_value:
num_tokens += 3
num_tokens += len(encoding.encode(enum_field))
else:
num_tokens += len(encoding.encode(field_key))
num_tokens += len(encoding.encode(str(field_value)))
if 'required' in parameters:
num_tokens += len(encoding.encode('required'))
for required_field in parameters['required']:
num_tokens += 3
num_tokens += len(encoding.encode(required_field))
return num_tokens

View File

@@ -1,140 +0,0 @@
from typing import cast, List
from langchain.chat_models import ChatOpenAI
from langchain.chat_models.openai import _convert_message_to_dict
from langchain.memory.summary import SummarizerMixin
from langchain.schema import SystemMessage, HumanMessage, BaseMessage, AIMessage
from langchain.schema.language_model import BaseLanguageModel
from pydantic import BaseModel
from core.agent.agent.calc_token_mixin import ExceededLLMTokensLimitError, CalcTokenMixin
from core.model_providers.models.llm.base import BaseLLM
class OpenAIFunctionCallSummarizeMixin(BaseModel, CalcTokenMixin):
moving_summary_buffer: str = ""
moving_summary_index: int = 0
summary_llm: BaseLanguageModel = None
model_instance: BaseLLM
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def summarize_messages_if_needed(self, messages: List[BaseMessage], **kwargs) -> List[BaseMessage]:
# calculate rest tokens and summarize previous function observation messages if rest_tokens < 0
rest_tokens = self.get_message_rest_tokens(self.model_instance, messages, **kwargs)
rest_tokens = rest_tokens - 20 # to deal with the inaccuracy of rest_tokens
if rest_tokens >= 0:
return messages
system_message = None
human_message = None
should_summary_messages = []
for message in messages:
if isinstance(message, SystemMessage):
system_message = message
elif isinstance(message, HumanMessage):
human_message = message
else:
should_summary_messages.append(message)
if len(should_summary_messages) > 2:
ai_message = should_summary_messages[-2]
function_message = should_summary_messages[-1]
should_summary_messages = should_summary_messages[self.moving_summary_index:-2]
self.moving_summary_index = len(should_summary_messages)
else:
error_msg = "Exceeded LLM tokens limit, stopped."
raise ExceededLLMTokensLimitError(error_msg)
new_messages = [system_message, human_message]
if self.moving_summary_index == 0:
should_summary_messages.insert(0, human_message)
summary_handler = SummarizerMixin(llm=self.summary_llm)
self.moving_summary_buffer = summary_handler.predict_new_summary(
messages=should_summary_messages,
existing_summary=self.moving_summary_buffer
)
new_messages.append(AIMessage(content=self.moving_summary_buffer))
new_messages.append(ai_message)
new_messages.append(function_message)
return new_messages
def get_num_tokens_from_messages(self, model_instance: BaseLLM, messages: List[BaseMessage], **kwargs) -> int:
"""Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package.
Official documentation: https://github.com/openai/openai-cookbook/blob/
main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb"""
llm = cast(ChatOpenAI, model_instance.client)
model, encoding = llm._get_encoding_model()
if model.startswith("gpt-3.5-turbo"):
# every message follows <im_start>{role/name}\n{content}<im_end>\n
tokens_per_message = 4
# if there's a name, the role is omitted
tokens_per_name = -1
elif model.startswith("gpt-4"):
tokens_per_message = 3
tokens_per_name = 1
else:
raise NotImplementedError(
f"get_num_tokens_from_messages() is not presently implemented "
f"for model {model}."
"See https://github.com/openai/openai-python/blob/main/chatml.md for "
"information on how messages are converted to tokens."
)
num_tokens = 0
for m in messages:
message = _convert_message_to_dict(m)
num_tokens += tokens_per_message
for key, value in message.items():
if key == "function_call":
for f_key, f_value in value.items():
num_tokens += len(encoding.encode(f_key))
num_tokens += len(encoding.encode(f_value))
else:
num_tokens += len(encoding.encode(value))
if key == "name":
num_tokens += tokens_per_name
# every reply is primed with <im_start>assistant
num_tokens += 3
if kwargs.get('functions'):
for function in kwargs.get('functions'):
num_tokens += len(encoding.encode('name'))
num_tokens += len(encoding.encode(function.get("name")))
num_tokens += len(encoding.encode('description'))
num_tokens += len(encoding.encode(function.get("description")))
parameters = function.get("parameters")
num_tokens += len(encoding.encode('parameters'))
if 'title' in parameters:
num_tokens += len(encoding.encode('title'))
num_tokens += len(encoding.encode(parameters.get("title")))
num_tokens += len(encoding.encode('type'))
num_tokens += len(encoding.encode(parameters.get("type")))
if 'properties' in parameters:
num_tokens += len(encoding.encode('properties'))
for key, value in parameters.get('properties').items():
num_tokens += len(encoding.encode(key))
for field_key, field_value in value.items():
num_tokens += len(encoding.encode(field_key))
if field_key == 'enum':
for enum_field in field_value:
num_tokens += 3
num_tokens += len(encoding.encode(enum_field))
else:
num_tokens += len(encoding.encode(field_key))
num_tokens += len(encoding.encode(str(field_value)))
if 'required' in parameters:
num_tokens += len(encoding.encode('required'))
for required_field in parameters['required']:
num_tokens += 3
num_tokens += len(encoding.encode(required_field))
return num_tokens

View File

@@ -1,107 +0,0 @@
from typing import List, Tuple, Any, Union, Sequence, Optional
from langchain.agents import BaseMultiActionAgent
from langchain.agents.openai_functions_multi_agent.base import OpenAIMultiFunctionsAgent, _format_intermediate_steps, \
_parse_ai_message
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.prompts.chat import BaseMessagePromptTemplate
from langchain.schema import AgentAction, AgentFinish, SystemMessage
from langchain.schema.language_model import BaseLanguageModel
from langchain.tools import BaseTool
from core.agent.agent.calc_token_mixin import ExceededLLMTokensLimitError
from core.agent.agent.openai_function_call_summarize_mixin import OpenAIFunctionCallSummarizeMixin
class AutoSummarizingOpenMultiAIFunctionCallAgent(OpenAIMultiFunctionsAgent, OpenAIFunctionCallSummarizeMixin):
@classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None,
system_message: Optional[SystemMessage] = SystemMessage(
content="You are a helpful AI assistant."
),
**kwargs: Any,
) -> BaseMultiActionAgent:
return super().from_llm_and_tools(
llm=llm,
tools=tools,
callback_manager=callback_manager,
extra_prompt_messages=extra_prompt_messages,
system_message=cls.get_system_message(),
**kwargs,
)
def should_use_agent(self, query: str):
"""
return should use agent
:param query:
:return:
"""
original_max_tokens = self.llm.max_tokens
self.llm.max_tokens = 15
prompt = self.prompt.format_prompt(input=query, agent_scratchpad=[])
messages = prompt.to_messages()
try:
predicted_message = self.llm.predict_messages(
messages, functions=self.functions, callbacks=None
)
except Exception as e:
new_exception = self.model_instance.handle_exceptions(e)
raise new_exception
function_call = predicted_message.additional_kwargs.get("function_call", {})
self.llm.max_tokens = original_max_tokens
return True if function_call else False
def plan(
self,
intermediate_steps: List[Tuple[AgentAction, str]],
callbacks: Callbacks = None,
**kwargs: Any,
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date, along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
agent_scratchpad = _format_intermediate_steps(intermediate_steps)
selected_inputs = {
k: kwargs[k] for k in self.prompt.input_variables if k != "agent_scratchpad"
}
full_inputs = dict(**selected_inputs, agent_scratchpad=agent_scratchpad)
prompt = self.prompt.format_prompt(**full_inputs)
messages = prompt.to_messages()
# summarize messages if rest_tokens < 0
try:
messages = self.summarize_messages_if_needed(messages, functions=self.functions)
except ExceededLLMTokensLimitError as e:
return AgentFinish(return_values={"output": str(e)}, log=str(e))
predicted_message = self.llm.predict_messages(
messages, functions=self.functions, callbacks=callbacks
)
agent_decision = _parse_ai_message(predicted_message)
return agent_decision
@classmethod
def get_system_message(cls):
# get current time
return SystemMessage(content="You are a helpful AI assistant.\n"
"The current date or current time you know is wrong.\n"
"Respond directly if appropriate.")

View File

@@ -1,10 +1,9 @@
import re
from typing import List, Tuple, Any, Union, Sequence, Optional, cast
from langchain import BasePromptTemplate
from langchain import BasePromptTemplate, PromptTemplate
from langchain.agents import StructuredChatAgent, AgentOutputParser, Agent
from langchain.agents.structured_chat.base import HUMAN_MESSAGE_TEMPLATE
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate
@@ -12,6 +11,8 @@ from langchain.schema import AgentAction, AgentFinish, OutputParserException
from langchain.tools import BaseTool
from langchain.agents.structured_chat.prompt import PREFIX, SUFFIX
from core.chain.llm_chain import LLMChain
from core.model_providers.models.entity.model_params import ModelMode
from core.model_providers.models.llm.base import BaseLLM
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
@@ -49,7 +50,6 @@ Action:
class StructuredMultiDatasetRouterAgent(StructuredChatAgent):
model_instance: BaseLLM
dataset_tools: Sequence[BaseTool]
class Config:
@@ -90,19 +90,33 @@ class StructuredMultiDatasetRouterAgent(StructuredChatAgent):
elif len(self.dataset_tools) == 1:
tool = next(iter(self.dataset_tools))
tool = cast(DatasetRetrieverTool, tool)
rst = tool.run(tool_input={'dataset_id': tool.dataset_id, 'query': kwargs['input']})
rst = tool.run(tool_input={'query': kwargs['input']})
return AgentFinish(return_values={"output": rst}, log=rst)
if intermediate_steps:
_, observation = intermediate_steps[-1]
return AgentFinish(return_values={"output": observation}, log=observation)
full_inputs = self.get_full_inputs(intermediate_steps, **kwargs)
try:
full_output = self.llm_chain.predict(callbacks=callbacks, **full_inputs)
except Exception as e:
new_exception = self.model_instance.handle_exceptions(e)
new_exception = self.llm_chain.model_instance.handle_exceptions(e)
raise new_exception
try:
return self.output_parser.parse(full_output)
agent_decision = self.output_parser.parse(full_output)
if isinstance(agent_decision, AgentAction):
tool_inputs = agent_decision.tool_input
if isinstance(tool_inputs, dict) and 'query' in tool_inputs:
tool_inputs['query'] = kwargs['input']
agent_decision.tool_input = tool_inputs
elif isinstance(tool_inputs, str):
agent_decision.tool_input = kwargs['input']
else:
agent_decision.return_values['output'] = ''
return agent_decision
except OutputParserException:
return AgentFinish({"output": "I'm sorry, the answer of model is invalid, "
"I don't know how to respond to that."}, "")
@@ -136,10 +150,65 @@ class StructuredMultiDatasetRouterAgent(StructuredChatAgent):
]
return ChatPromptTemplate(input_variables=input_variables, messages=messages)
@classmethod
def create_completion_prompt(
cls,
tools: Sequence[BaseTool],
prefix: str = PREFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
) -> PromptTemplate:
"""Create prompt in the style of the zero shot agent.
Args:
tools: List of tools the agent will have access to, used to format the
prompt.
prefix: String to put before the list of tools.
input_variables: List of input variables the final prompt will expect.
Returns:
A PromptTemplate with the template assembled from the pieces here.
"""
suffix = """Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.
Question: {input}
Thought: {agent_scratchpad}
"""
tool_strings = "\n".join([f"{tool.name}: {tool.description}" for tool in tools])
tool_names = ", ".join([tool.name for tool in tools])
format_instructions = format_instructions.format(tool_names=tool_names)
template = "\n\n".join([prefix, tool_strings, format_instructions, suffix])
if input_variables is None:
input_variables = ["input", "agent_scratchpad"]
return PromptTemplate(template=template, input_variables=input_variables)
def _construct_scratchpad(
self, intermediate_steps: List[Tuple[AgentAction, str]]
) -> str:
agent_scratchpad = ""
for action, observation in intermediate_steps:
agent_scratchpad += action.log
agent_scratchpad += f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}"
if not isinstance(agent_scratchpad, str):
raise ValueError("agent_scratchpad should be of type string.")
if agent_scratchpad:
llm_chain = cast(LLMChain, self.llm_chain)
if llm_chain.model_instance.model_mode == ModelMode.CHAT:
return (
f"This was your previous work "
f"(but I haven't seen any of it! I only see what "
f"you return as final answer):\n{agent_scratchpad}"
)
else:
return agent_scratchpad
else:
return agent_scratchpad
@classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
model_instance: BaseLLM,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
output_parser: Optional[AgentOutputParser] = None,
@@ -151,17 +220,36 @@ class StructuredMultiDatasetRouterAgent(StructuredChatAgent):
memory_prompts: Optional[List[BasePromptTemplate]] = None,
**kwargs: Any,
) -> Agent:
return super().from_llm_and_tools(
llm=llm,
tools=tools,
"""Construct an agent from an LLM and tools."""
cls._validate_tools(tools)
if model_instance.model_mode == ModelMode.CHAT:
prompt = cls.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
human_message_template=human_message_template,
format_instructions=format_instructions,
input_variables=input_variables,
memory_prompts=memory_prompts,
)
else:
prompt = cls.create_completion_prompt(
tools,
prefix=prefix,
format_instructions=format_instructions,
input_variables=input_variables
)
llm_chain = LLMChain(
model_instance=model_instance,
prompt=prompt,
callback_manager=callback_manager,
output_parser=output_parser,
prefix=prefix,
suffix=suffix,
human_message_template=human_message_template,
format_instructions=format_instructions,
input_variables=input_variables,
memory_prompts=memory_prompts,
)
tool_names = [tool.name for tool in tools]
_output_parser = output_parser
return cls(
llm_chain=llm_chain,
allowed_tools=tool_names,
output_parser=_output_parser,
dataset_tools=tools,
**kwargs,
)

View File

@@ -1,19 +1,21 @@
import re
from typing import List, Tuple, Any, Union, Sequence, Optional
from typing import List, Tuple, Any, Union, Sequence, Optional, cast
from langchain import BasePromptTemplate
from langchain import BasePromptTemplate, PromptTemplate
from langchain.agents import StructuredChatAgent, AgentOutputParser, Agent
from langchain.agents.structured_chat.base import HUMAN_MESSAGE_TEMPLATE
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.memory.summary import SummarizerMixin
from langchain.memory.prompt import SUMMARY_PROMPT
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate
from langchain.schema import AgentAction, AgentFinish, AIMessage, HumanMessage, OutputParserException
from langchain.schema import AgentAction, AgentFinish, AIMessage, HumanMessage, OutputParserException, BaseMessage, \
get_buffer_string
from langchain.tools import BaseTool
from langchain.agents.structured_chat.prompt import PREFIX, SUFFIX
from core.agent.agent.calc_token_mixin import CalcTokenMixin, ExceededLLMTokensLimitError
from core.chain.llm_chain import LLMChain
from core.model_providers.models.entity.model_params import ModelMode
from core.model_providers.models.llm.base import BaseLLM
FORMAT_INSTRUCTIONS = """Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
@@ -52,8 +54,7 @@ Action:
class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
moving_summary_buffer: str = ""
moving_summary_index: int = 0
summary_llm: BaseLanguageModel = None
model_instance: BaseLLM
summary_model_instance: BaseLLM = None
class Config:
"""Configuration for this pydantic object."""
@@ -95,24 +96,30 @@ class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
if prompts:
messages = prompts[0].to_messages()
rest_tokens = self.get_message_rest_tokens(self.model_instance, messages)
rest_tokens = self.get_message_rest_tokens(self.llm_chain.model_instance, messages)
if rest_tokens < 0:
full_inputs = self.summarize_messages(intermediate_steps, **kwargs)
try:
full_output = self.llm_chain.predict(callbacks=callbacks, **full_inputs)
except Exception as e:
new_exception = self.model_instance.handle_exceptions(e)
new_exception = self.llm_chain.model_instance.handle_exceptions(e)
raise new_exception
try:
return self.output_parser.parse(full_output)
agent_decision = self.output_parser.parse(full_output)
if isinstance(agent_decision, AgentAction) and agent_decision.tool == 'dataset':
tool_inputs = agent_decision.tool_input
if isinstance(tool_inputs, dict) and 'query' in tool_inputs:
tool_inputs['query'] = kwargs['input']
agent_decision.tool_input = tool_inputs
return agent_decision
except OutputParserException:
return AgentFinish({"output": "I'm sorry, the answer of model is invalid, "
"I don't know how to respond to that."}, "")
def summarize_messages(self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs):
if len(intermediate_steps) >= 2 and self.summary_llm:
if len(intermediate_steps) >= 2 and self.summary_model_instance:
should_summary_intermediate_steps = intermediate_steps[self.moving_summary_index:-1]
should_summary_messages = [AIMessage(content=observation)
for _, observation in should_summary_intermediate_steps]
@@ -124,11 +131,10 @@ class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
error_msg = "Exceeded LLM tokens limit, stopped."
raise ExceededLLMTokensLimitError(error_msg)
summary_handler = SummarizerMixin(llm=self.summary_llm)
if self.moving_summary_buffer and 'chat_history' in kwargs:
kwargs["chat_history"].pop()
self.moving_summary_buffer = summary_handler.predict_new_summary(
self.moving_summary_buffer = self.predict_new_summary(
messages=should_summary_messages,
existing_summary=self.moving_summary_buffer
)
@@ -138,6 +144,18 @@ class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
return self.get_full_inputs([intermediate_steps[-1]], **kwargs)
def predict_new_summary(
self, messages: List[BaseMessage], existing_summary: str
) -> str:
new_lines = get_buffer_string(
messages,
human_prefix="Human",
ai_prefix="AI",
)
chain = LLMChain(model_instance=self.summary_model_instance, prompt=SUMMARY_PROMPT)
return chain.predict(summary=existing_summary, new_lines=new_lines)
@classmethod
def create_prompt(
cls,
@@ -167,10 +185,65 @@ class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
]
return ChatPromptTemplate(input_variables=input_variables, messages=messages)
@classmethod
def create_completion_prompt(
cls,
tools: Sequence[BaseTool],
prefix: str = PREFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
) -> PromptTemplate:
"""Create prompt in the style of the zero shot agent.
Args:
tools: List of tools the agent will have access to, used to format the
prompt.
prefix: String to put before the list of tools.
input_variables: List of input variables the final prompt will expect.
Returns:
A PromptTemplate with the template assembled from the pieces here.
"""
suffix = """Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.
Question: {input}
Thought: {agent_scratchpad}
"""
tool_strings = "\n".join([f"{tool.name}: {tool.description}" for tool in tools])
tool_names = ", ".join([tool.name for tool in tools])
format_instructions = format_instructions.format(tool_names=tool_names)
template = "\n\n".join([prefix, tool_strings, format_instructions, suffix])
if input_variables is None:
input_variables = ["input", "agent_scratchpad"]
return PromptTemplate(template=template, input_variables=input_variables)
def _construct_scratchpad(
self, intermediate_steps: List[Tuple[AgentAction, str]]
) -> str:
agent_scratchpad = ""
for action, observation in intermediate_steps:
agent_scratchpad += action.log
agent_scratchpad += f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}"
if not isinstance(agent_scratchpad, str):
raise ValueError("agent_scratchpad should be of type string.")
if agent_scratchpad:
llm_chain = cast(LLMChain, self.llm_chain)
if llm_chain.model_instance.model_mode == ModelMode.CHAT:
return (
f"This was your previous work "
f"(but I haven't seen any of it! I only see what "
f"you return as final answer):\n{agent_scratchpad}"
)
else:
return agent_scratchpad
else:
return agent_scratchpad
@classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
model_instance: BaseLLM,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
output_parser: Optional[AgentOutputParser] = None,
@@ -182,16 +255,35 @@ class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
memory_prompts: Optional[List[BasePromptTemplate]] = None,
**kwargs: Any,
) -> Agent:
return super().from_llm_and_tools(
llm=llm,
tools=tools,
"""Construct an agent from an LLM and tools."""
cls._validate_tools(tools)
if model_instance.model_mode == ModelMode.CHAT:
prompt = cls.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
human_message_template=human_message_template,
format_instructions=format_instructions,
input_variables=input_variables,
memory_prompts=memory_prompts,
)
else:
prompt = cls.create_completion_prompt(
tools,
prefix=prefix,
format_instructions=format_instructions,
input_variables=input_variables,
)
llm_chain = LLMChain(
model_instance=model_instance,
prompt=prompt,
callback_manager=callback_manager,
output_parser=output_parser,
prefix=prefix,
suffix=suffix,
human_message_template=human_message_template,
format_instructions=format_instructions,
input_variables=input_variables,
memory_prompts=memory_prompts,
)
tool_names = [tool.name for tool in tools]
_output_parser = output_parser
return cls(
llm_chain=llm_chain,
allowed_tools=tool_names,
output_parser=_output_parser,
**kwargs,
)

View File

@@ -10,12 +10,13 @@ from pydantic import BaseModel, Extra
from core.agent.agent.multi_dataset_router_agent import MultiDatasetRouterAgent
from core.agent.agent.openai_function_call import AutoSummarizingOpenAIFunctionCallAgent
from core.agent.agent.openai_multi_function_call import AutoSummarizingOpenMultiAIFunctionCallAgent
from core.agent.agent.output_parser.structured_chat import StructuredChatOutputParser
from core.agent.agent.structed_multi_dataset_router_agent import StructuredMultiDatasetRouterAgent
from core.agent.agent.structured_chat import AutoSummarizingStructuredChatAgent
from langchain.agents import AgentExecutor as LCAgentExecutor
from core.helper import moderation
from core.model_providers.error import LLMError
from core.model_providers.models.llm.base import BaseLLM
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
@@ -25,7 +26,6 @@ class PlanningStrategy(str, enum.Enum):
REACT_ROUTER = 'react_router'
REACT = 'react'
FUNCTION_CALL = 'function_call'
MULTI_FUNCTION_CALL = 'multi_function_call'
class AgentConfiguration(BaseModel):
@@ -62,30 +62,18 @@ class AgentExecutor:
if self.configuration.strategy == PlanningStrategy.REACT:
agent = AutoSummarizingStructuredChatAgent.from_llm_and_tools(
model_instance=self.configuration.model_instance,
llm=self.configuration.model_instance.client,
tools=self.configuration.tools,
output_parser=StructuredChatOutputParser(),
summary_llm=self.configuration.summary_model_instance.client
summary_model_instance=self.configuration.summary_model_instance
if self.configuration.summary_model_instance else None,
verbose=True
)
elif self.configuration.strategy == PlanningStrategy.FUNCTION_CALL:
agent = AutoSummarizingOpenAIFunctionCallAgent.from_llm_and_tools(
model_instance=self.configuration.model_instance,
llm=self.configuration.model_instance.client,
tools=self.configuration.tools,
extra_prompt_messages=self.configuration.memory.buffer if self.configuration.memory else None, # used for read chat histories memory
summary_llm=self.configuration.summary_model_instance.client
if self.configuration.summary_model_instance else None,
verbose=True
)
elif self.configuration.strategy == PlanningStrategy.MULTI_FUNCTION_CALL:
agent = AutoSummarizingOpenMultiAIFunctionCallAgent.from_llm_and_tools(
model_instance=self.configuration.model_instance,
llm=self.configuration.model_instance.client,
tools=self.configuration.tools,
extra_prompt_messages=self.configuration.memory.buffer if self.configuration.memory else None, # used for read chat histories memory
summary_llm=self.configuration.summary_model_instance.client
summary_model_instance=self.configuration.summary_model_instance
if self.configuration.summary_model_instance else None,
verbose=True
)
@@ -93,7 +81,6 @@ class AgentExecutor:
self.configuration.tools = [t for t in self.configuration.tools if isinstance(t, DatasetRetrieverTool)]
agent = MultiDatasetRouterAgent.from_llm_and_tools(
model_instance=self.configuration.model_instance,
llm=self.configuration.model_instance.client,
tools=self.configuration.tools,
extra_prompt_messages=self.configuration.memory.buffer if self.configuration.memory else None,
verbose=True
@@ -102,7 +89,6 @@ class AgentExecutor:
self.configuration.tools = [t for t in self.configuration.tools if isinstance(t, DatasetRetrieverTool)]
agent = StructuredMultiDatasetRouterAgent.from_llm_and_tools(
model_instance=self.configuration.model_instance,
llm=self.configuration.model_instance.client,
tools=self.configuration.tools,
output_parser=StructuredChatOutputParser(),
verbose=True
@@ -116,6 +102,18 @@ class AgentExecutor:
return self.agent.should_use_agent(query)
def run(self, query: str) -> AgentExecuteResult:
moderation_result = moderation.check_moderation(
self.configuration.model_instance.model_provider,
query
)
if not moderation_result:
return AgentExecuteResult(
output="I apologize for any confusion, but I'm an AI assistant to be helpful, harmless, and honest.",
strategy=self.configuration.strategy,
configuration=self.configuration
)
agent_executor = LCAgentExecutor.from_agent_and_tools(
agent=self.agent,
tools=self.configuration.tools,
@@ -128,7 +126,9 @@ class AgentExecutor:
try:
output = agent_executor.run(query)
except Exception:
except LLMError as ex:
raise ex
except Exception as ex:
logging.exception("agent_executor run failed")
output = None

View File

@@ -6,7 +6,7 @@ from typing import Any, Dict, List, Union, Optional
from langchain.agents import openai_functions_agent, openai_functions_multi_agent
from langchain.callbacks.base import BaseCallbackHandler
from langchain.schema import AgentAction, AgentFinish, LLMResult, ChatGeneration
from langchain.schema import AgentAction, AgentFinish, LLMResult, ChatGeneration, BaseMessage
from core.callback_handler.entity.agent_loop import AgentLoop
from core.conversation_message_task import ConversationMessageTask
@@ -18,9 +18,9 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
"""Callback Handler that prints to std out."""
raise_error: bool = True
def __init__(self, model_instant: BaseLLM, conversation_message_task: ConversationMessageTask) -> None:
def __init__(self, model_instance: BaseLLM, conversation_message_task: ConversationMessageTask) -> None:
"""Initialize callback handler."""
self.model_instant = model_instant
self.model_instance = model_instance
self.conversation_message_task = conversation_message_task
self._agent_loops = []
self._current_loop = None
@@ -46,6 +46,21 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
"""Whether to ignore chain callbacks."""
return True
def on_chat_model_start(
self,
serialized: Dict[str, Any],
messages: List[List[BaseMessage]],
**kwargs: Any
) -> Any:
if not self._current_loop:
# Agent start with a LLM query
self._current_loop = AgentLoop(
position=len(self._agent_loops) + 1,
prompt="\n".join([message.content for message in messages[0]]),
status='llm_started',
started_at=time.perf_counter()
)
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> None:
@@ -70,7 +85,7 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
if response.llm_output:
self._current_loop.prompt_tokens = response.llm_output['token_usage']['prompt_tokens']
else:
self._current_loop.prompt_tokens = self.model_instant.get_num_tokens(
self._current_loop.prompt_tokens = self.model_instance.get_num_tokens(
[PromptMessage(content=self._current_loop.prompt)]
)
completion_generation = response.generations[0][0]
@@ -87,7 +102,7 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
if response.llm_output:
self._current_loop.completion_tokens = response.llm_output['token_usage']['completion_tokens']
else:
self._current_loop.completion_tokens = self.model_instant.get_num_tokens(
self._current_loop.completion_tokens = self.model_instance.get_num_tokens(
[PromptMessage(content=self._current_loop.completion)]
)
@@ -162,7 +177,7 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
self._current_loop.latency = self._current_loop.completed_at - self._current_loop.started_at
self.conversation_message_task.on_agent_end(
self._message_agent_thought, self.model_instant, self._current_loop
self._message_agent_thought, self.model_instance, self._current_loop
)
self._agent_loops.append(self._current_loop)
@@ -193,7 +208,7 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
)
self.conversation_message_task.on_agent_end(
self._message_agent_thought, self.model_instant, self._current_loop
self._message_agent_thought, self.model_instance, self._current_loop
)
self._agent_loops.append(self._current_loop)

View File

@@ -1,5 +1,6 @@
import json
import logging
from json import JSONDecodeError
from typing import Any, Dict, List, Union, Optional
@@ -44,10 +45,15 @@ class DatasetToolCallbackHandler(BaseCallbackHandler):
input_str: str,
**kwargs: Any,
) -> None:
# tool_name = serialized.get('name')
input_dict = json.loads(input_str.replace("'", "\""))
dataset_id = input_dict.get('dataset_id')
query = input_dict.get('query')
tool_name: str = serialized.get('name')
dataset_id = tool_name.removeprefix('dataset-')
try:
input_dict = json.loads(input_str.replace("'", "\""))
query = input_dict.get('query')
except JSONDecodeError:
query = input_str
self.conversation_message_task.on_dataset_query_end(DatasetQueryObj(dataset_id=dataset_id, query=query))
def on_tool_end(
@@ -58,12 +64,9 @@ class DatasetToolCallbackHandler(BaseCallbackHandler):
llm_prefix: Optional[str] = None,
**kwargs: Any,
) -> None:
# kwargs={'name': 'Search'}
# llm_prefix='Thought:'
# observation_prefix='Observation: '
# output='53 years'
pass
def on_tool_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:

View File

@@ -6,4 +6,3 @@ class LLMMessage(BaseModel):
prompt_tokens: int = 0
completion: str = ''
completion_tokens: int = 0
latency: float = 0.0

View File

@@ -2,6 +2,7 @@ from typing import List
from langchain.schema import Document
from core.conversation_message_task import ConversationMessageTask
from extensions.ext_database import db
from models.dataset import DocumentSegment
@@ -9,8 +10,9 @@ from models.dataset import DocumentSegment
class DatasetIndexToolCallbackHandler:
"""Callback handler for dataset tool."""
def __init__(self, dataset_id: str) -> None:
def __init__(self, dataset_id: str, conversation_message_task: ConversationMessageTask) -> None:
self.dataset_id = dataset_id
self.conversation_message_task = conversation_message_task
def on_tool_end(self, documents: List[Document]) -> None:
"""Handle tool end."""
@@ -27,3 +29,7 @@ class DatasetIndexToolCallbackHandler:
)
db.session.commit()
def return_retriever_resource_info(self, resource: List):
"""Handle return_retriever_resource_info."""
self.conversation_message_task.on_dataset_query_finish(resource)

View File

@@ -1,14 +1,25 @@
import logging
import threading
import time
from typing import Any, Dict, List, Union
from typing import Any, Dict, List, Union, Optional
from flask import Flask, current_app
from langchain.callbacks.base import BaseCallbackHandler
from langchain.schema import LLMResult, BaseMessage
from pydantic import BaseModel
from core.callback_handler.entity.llm_message import LLMMessage
from core.conversation_message_task import ConversationMessageTask, ConversationTaskStoppedException
from core.conversation_message_task import ConversationMessageTask, ConversationTaskStoppedException, \
ConversationTaskInterruptException
from core.model_providers.models.entity.message import to_prompt_messages, PromptMessage
from core.model_providers.models.llm.base import BaseLLM
from core.moderation.base import ModerationOutputsResult, ModerationAction
from core.moderation.factory import ModerationFactory
class ModerationRule(BaseModel):
type: str
config: Dict[str, Any]
class LLMCallbackHandler(BaseCallbackHandler):
@@ -21,6 +32,24 @@ class LLMCallbackHandler(BaseCallbackHandler):
self.start_at = None
self.conversation_message_task = conversation_message_task
self.output_moderation_handler = None
self.init_output_moderation()
def init_output_moderation(self):
app_model_config = self.conversation_message_task.app_model_config
sensitive_word_avoidance_dict = app_model_config.sensitive_word_avoidance_dict
if sensitive_word_avoidance_dict and sensitive_word_avoidance_dict.get("enabled"):
self.output_moderation_handler = OutputModerationHandler(
tenant_id=self.conversation_message_task.tenant_id,
app_id=self.conversation_message_task.app.id,
rule=ModerationRule(
type=sensitive_word_avoidance_dict.get("type"),
config=sensitive_word_avoidance_dict.get("config")
),
on_message_replace_func=self.conversation_message_task.on_message_replace
)
@property
def always_verbose(self) -> bool:
"""Whether to call verbose callbacks even if verbose is False."""
@@ -32,7 +61,6 @@ class LLMCallbackHandler(BaseCallbackHandler):
messages: List[List[BaseMessage]],
**kwargs: Any
) -> Any:
self.start_at = time.perf_counter()
real_prompts = []
for message in messages[0]:
if message.type == 'human':
@@ -53,8 +81,6 @@ class LLMCallbackHandler(BaseCallbackHandler):
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> None:
self.start_at = time.perf_counter()
self.llm_message.prompt = [{
"role": 'user',
"text": prompts[0]
@@ -63,37 +89,190 @@ class LLMCallbackHandler(BaseCallbackHandler):
self.llm_message.prompt_tokens = self.model_instance.get_num_tokens([PromptMessage(content=prompts[0])])
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
end_at = time.perf_counter()
self.llm_message.latency = end_at - self.start_at
if self.output_moderation_handler:
self.output_moderation_handler.stop_thread()
if not self.conversation_message_task.streaming:
self.conversation_message_task.append_message_text(response.generations[0][0].text)
self.llm_message.completion = self.output_moderation_handler.moderation_completion(
completion=response.generations[0][0].text,
public_event=True if self.conversation_message_task.streaming else False
)
else:
self.llm_message.completion = response.generations[0][0].text
self.llm_message.completion_tokens = self.model_instance.get_num_tokens([PromptMessage(content=self.llm_message.completion)])
if not self.conversation_message_task.streaming:
self.conversation_message_task.append_message_text(self.llm_message.completion)
if response.llm_output and 'token_usage' in response.llm_output:
if 'prompt_tokens' in response.llm_output['token_usage']:
self.llm_message.prompt_tokens = response.llm_output['token_usage']['prompt_tokens']
if 'completion_tokens' in response.llm_output['token_usage']:
self.llm_message.completion_tokens = response.llm_output['token_usage']['completion_tokens']
else:
self.llm_message.completion_tokens = self.model_instance.get_num_tokens(
[PromptMessage(content=self.llm_message.completion)])
else:
self.llm_message.completion_tokens = self.model_instance.get_num_tokens(
[PromptMessage(content=self.llm_message.completion)])
self.conversation_message_task.save_message(self.llm_message)
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
try:
self.conversation_message_task.append_message_text(token)
except ConversationTaskStoppedException as ex:
if self.output_moderation_handler and self.output_moderation_handler.should_direct_output():
# stop subscribe new token when output moderation should direct output
ex = ConversationTaskInterruptException()
self.on_llm_error(error=ex)
raise ex
self.llm_message.completion += token
try:
self.conversation_message_task.append_message_text(token)
self.llm_message.completion += token
if self.output_moderation_handler:
self.output_moderation_handler.append_new_token(token)
except ConversationTaskStoppedException as ex:
self.on_llm_error(error=ex)
raise ex
def on_llm_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Do nothing."""
if self.output_moderation_handler:
self.output_moderation_handler.stop_thread()
if isinstance(error, ConversationTaskStoppedException):
if self.conversation_message_task.streaming:
end_at = time.perf_counter()
self.llm_message.latency = end_at - self.start_at
self.llm_message.completion_tokens = self.model_instance.get_num_tokens(
[PromptMessage(content=self.llm_message.completion)]
)
self.conversation_message_task.save_message(llm_message=self.llm_message, by_stopped=True)
if isinstance(error, ConversationTaskInterruptException):
self.llm_message.completion = self.output_moderation_handler.get_final_output()
self.llm_message.completion_tokens = self.model_instance.get_num_tokens(
[PromptMessage(content=self.llm_message.completion)]
)
self.conversation_message_task.save_message(llm_message=self.llm_message)
else:
logging.debug("on_llm_error: %s", error)
class OutputModerationHandler(BaseModel):
DEFAULT_BUFFER_SIZE: int = 300
tenant_id: str
app_id: str
rule: ModerationRule
on_message_replace_func: Any
thread: Optional[threading.Thread] = None
thread_running: bool = True
buffer: str = ''
is_final_chunk: bool = False
final_output: Optional[str] = None
class Config:
arbitrary_types_allowed = True
def should_direct_output(self):
return self.final_output is not None
def get_final_output(self):
return self.final_output
def append_new_token(self, token: str):
self.buffer += token
if not self.thread:
self.thread = self.start_thread()
def moderation_completion(self, completion: str, public_event: bool = False) -> str:
self.buffer = completion
self.is_final_chunk = True
result = self.moderation(
tenant_id=self.tenant_id,
app_id=self.app_id,
moderation_buffer=completion
)
if not result or not result.flagged:
return completion
if result.action == ModerationAction.DIRECT_OUTPUT:
final_output = result.preset_response
else:
final_output = result.text
if public_event:
self.on_message_replace_func(final_output)
return final_output
def start_thread(self) -> threading.Thread:
buffer_size = int(current_app.config.get('MODERATION_BUFFER_SIZE', self.DEFAULT_BUFFER_SIZE))
thread = threading.Thread(target=self.worker, kwargs={
'flask_app': current_app._get_current_object(),
'buffer_size': buffer_size if buffer_size > 0 else self.DEFAULT_BUFFER_SIZE
})
thread.start()
return thread
def stop_thread(self):
if self.thread and self.thread.is_alive():
self.thread_running = False
def worker(self, flask_app: Flask, buffer_size: int):
with flask_app.app_context():
current_length = 0
while self.thread_running:
moderation_buffer = self.buffer
buffer_length = len(moderation_buffer)
if not self.is_final_chunk:
chunk_length = buffer_length - current_length
if 0 <= chunk_length < buffer_size:
time.sleep(1)
continue
current_length = buffer_length
result = self.moderation(
tenant_id=self.tenant_id,
app_id=self.app_id,
moderation_buffer=moderation_buffer
)
if not result or not result.flagged:
continue
if result.action == ModerationAction.DIRECT_OUTPUT:
final_output = result.preset_response
self.final_output = final_output
else:
final_output = result.text + self.buffer[len(moderation_buffer):]
# trigger replace event
if self.thread_running:
self.on_message_replace_func(final_output)
if result.action == ModerationAction.DIRECT_OUTPUT:
break
def moderation(self, tenant_id: str, app_id: str, moderation_buffer: str) -> Optional[ModerationOutputsResult]:
try:
moderation_factory = ModerationFactory(
name=self.rule.type,
app_id=app_id,
tenant_id=tenant_id,
config=self.rule.config
)
result: ModerationOutputsResult = moderation_factory.moderation_for_outputs(moderation_buffer)
return result
except Exception as e:
logging.error("Moderation Output error: %s", e)
return None

View File

@@ -0,0 +1,36 @@
from typing import List, Dict, Any, Optional
from langchain import LLMChain as LCLLMChain
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.schema import LLMResult, Generation
from langchain.schema.language_model import BaseLanguageModel
from core.model_providers.models.entity.message import to_prompt_messages
from core.model_providers.models.llm.base import BaseLLM
from core.third_party.langchain.llms.fake import FakeLLM
class LLMChain(LCLLMChain):
model_instance: BaseLLM
"""The language model instance to use."""
llm: BaseLanguageModel = FakeLLM(response="")
def generate(
self,
input_list: List[Dict[str, Any]],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> LLMResult:
"""Generate LLM result from inputs."""
prompts, stop = self.prep_prompts(input_list, run_manager=run_manager)
messages = prompts[0].to_messages()
prompt_messages = to_prompt_messages(messages)
result = self.model_instance.run(
messages=prompt_messages,
stop=stop
)
generations = [
[Generation(text=result.content)]
]
return LLMResult(generations=generations)

Some files were not shown because too many files have changed in this diff Show More