Co-authored-by: root <root@idc708073.jf.intel.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Sihan Chen <39623753+Spycsh@users.noreply.github.com>
166 lines
6.1 KiB
Python
166 lines
6.1 KiB
Python
# Copyright (C) 2024 Intel Corporation
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import asyncio
|
|
import os
|
|
from typing import List
|
|
|
|
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
|
|
from comps.cores.mega.gateway import read_text_from_file
|
|
from comps.cores.proto.api_protocol import (
|
|
ChatCompletionRequest,
|
|
ChatCompletionResponse,
|
|
ChatCompletionResponseChoice,
|
|
ChatMessage,
|
|
UsageInfo,
|
|
)
|
|
from comps.cores.proto.docarray import LLMParams
|
|
from fastapi import File, Request, UploadFile
|
|
from fastapi.responses import StreamingResponse
|
|
|
|
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
|
|
|
|
DATA_SERVICE_HOST_IP = os.getenv("DATA_SERVICE_HOST_IP", "0.0.0.0")
|
|
DATA_SERVICE_PORT = int(os.getenv("DATA_SERVICE_PORT", 7079))
|
|
|
|
LLM_SERVICE_HOST_IP = os.getenv("LLM_SERVICE_HOST_IP", "0.0.0.0")
|
|
LLM_SERVICE_PORT = int(os.getenv("LLM_SERVICE_PORT", 9000))
|
|
|
|
|
|
class DocSumService(Gateway):
|
|
def __init__(self, host="0.0.0.0", port=8000):
|
|
self.host = host
|
|
self.port = port
|
|
self.megaservice = ServiceOrchestrator()
|
|
|
|
def add_remote_service(self):
|
|
|
|
data = MicroService(
|
|
name="multimedia2text",
|
|
host=DATA_SERVICE_HOST_IP,
|
|
port=DATA_SERVICE_PORT,
|
|
endpoint="/v1/multimedia2text",
|
|
use_remote_service=True,
|
|
service_type=ServiceType.DATAPREP,
|
|
)
|
|
|
|
llm = MicroService(
|
|
name="llm",
|
|
host=LLM_SERVICE_HOST_IP,
|
|
port=LLM_SERVICE_PORT,
|
|
endpoint="/v1/chat/docsum",
|
|
use_remote_service=True,
|
|
service_type=ServiceType.LLM,
|
|
)
|
|
self.megaservice.add(llm)
|
|
|
|
async def handle_request(self, request: Request, files: List[UploadFile] = File(default=None)):
|
|
|
|
if "application/json" in request.headers.get("content-type"):
|
|
data = await request.json()
|
|
stream_opt = data.get("stream", True)
|
|
chat_request = ChatCompletionRequest.model_validate(data)
|
|
prompt = self._handle_message(chat_request.messages)
|
|
|
|
initial_inputs_data = {data["type"]: prompt}
|
|
|
|
elif "multipart/form-data" in request.headers.get("content-type"):
|
|
data = await request.form()
|
|
stream_opt = data.get("stream", True)
|
|
chat_request = ChatCompletionRequest.model_validate(data)
|
|
|
|
data_type = data.get("type")
|
|
|
|
file_summaries = []
|
|
if files:
|
|
for file in files:
|
|
file_path = f"/tmp/{file.filename}"
|
|
|
|
if data_type is not None and data_type in ["audio", "video"]:
|
|
raise ValueError(
|
|
"Audio and Video file uploads are not supported in docsum with curl request, please use the UI."
|
|
)
|
|
|
|
else:
|
|
import aiofiles
|
|
|
|
async with aiofiles.open(file_path, "wb") as f:
|
|
await f.write(await file.read())
|
|
|
|
docs = read_text_from_file(file, file_path)
|
|
os.remove(file_path)
|
|
|
|
if isinstance(docs, list):
|
|
file_summaries.extend(docs)
|
|
else:
|
|
file_summaries.append(docs)
|
|
|
|
if file_summaries:
|
|
prompt = self._handle_message(chat_request.messages) + "\n".join(file_summaries)
|
|
else:
|
|
prompt = self._handle_message(chat_request.messages)
|
|
|
|
data_type = data.get("type")
|
|
if data_type is not None:
|
|
initial_inputs_data = {}
|
|
initial_inputs_data[data_type] = prompt
|
|
else:
|
|
initial_inputs_data = {"query": prompt}
|
|
|
|
else:
|
|
raise ValueError(f"Unknown request type: {request.headers.get('content-type')}")
|
|
|
|
parameters = LLMParams(
|
|
max_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024,
|
|
top_k=chat_request.top_k if chat_request.top_k else 10,
|
|
top_p=chat_request.top_p if chat_request.top_p else 0.95,
|
|
temperature=chat_request.temperature if chat_request.temperature else 0.01,
|
|
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
|
|
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
|
|
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
|
|
streaming=stream_opt,
|
|
model=chat_request.model if chat_request.model else None,
|
|
language=chat_request.language if chat_request.language else "auto",
|
|
)
|
|
|
|
result_dict, runtime_graph = await self.megaservice.schedule(
|
|
initial_inputs=initial_inputs_data, llm_parameters=parameters
|
|
)
|
|
|
|
for node, response in result_dict.items():
|
|
# Here it suppose the last microservice in the megaservice is LLM.
|
|
if (
|
|
isinstance(response, StreamingResponse)
|
|
and node == list(self.megaservice.services.keys())[-1]
|
|
and self.megaservice.services[node].service_type == ServiceType.LLM
|
|
):
|
|
return response
|
|
last_node = runtime_graph.all_leaves()[-1]
|
|
response = result_dict[last_node]["text"]
|
|
choices = []
|
|
usage = UsageInfo()
|
|
choices.append(
|
|
ChatCompletionResponseChoice(
|
|
index=0,
|
|
message=ChatMessage(role="assistant", content=response),
|
|
finish_reason="stop",
|
|
)
|
|
)
|
|
return ChatCompletionResponse(model="docsum", choices=choices, usage=usage)
|
|
|
|
def start(self):
|
|
super().__init__(
|
|
megaservice=self.megaservice,
|
|
host=self.host,
|
|
port=self.port,
|
|
endpoint=str(MegaServiceEndpoint.DOC_SUMMARY),
|
|
input_datatype=ChatCompletionRequest,
|
|
output_datatype=ChatCompletionResponse,
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
docsum = DocSumService(port=MEGA_SERVICE_PORT)
|
|
docsum.add_remote_service()
|
|
docsum.start()
|