# Copyright (C) 2024 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import asyncio import os from typing import List from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType from comps.cores.mega.gateway import read_text_from_file from comps.cores.proto.api_protocol import ( ChatCompletionRequest, ChatCompletionResponse, ChatCompletionResponseChoice, ChatMessage, UsageInfo, ) from comps.cores.proto.docarray import LLMParams from fastapi import File, Request, UploadFile from fastapi.responses import StreamingResponse MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888)) DATA_SERVICE_HOST_IP = os.getenv("DATA_SERVICE_HOST_IP", "0.0.0.0") DATA_SERVICE_PORT = int(os.getenv("DATA_SERVICE_PORT", 7079)) LLM_SERVICE_HOST_IP = os.getenv("LLM_SERVICE_HOST_IP", "0.0.0.0") LLM_SERVICE_PORT = int(os.getenv("LLM_SERVICE_PORT", 9000)) class DocSumService(Gateway): def __init__(self, host="0.0.0.0", port=8000): self.host = host self.port = port self.megaservice = ServiceOrchestrator() def add_remote_service(self): data = MicroService( name="multimedia2text", host=DATA_SERVICE_HOST_IP, port=DATA_SERVICE_PORT, endpoint="/v1/multimedia2text", use_remote_service=True, service_type=ServiceType.DATAPREP, ) llm = MicroService( name="llm", host=LLM_SERVICE_HOST_IP, port=LLM_SERVICE_PORT, endpoint="/v1/chat/docsum", use_remote_service=True, service_type=ServiceType.LLM, ) self.megaservice.add(llm) async def handle_request(self, request: Request, files: List[UploadFile] = File(default=None)): if "application/json" in request.headers.get("content-type"): data = await request.json() stream_opt = data.get("stream", True) chat_request = ChatCompletionRequest.model_validate(data) prompt = self._handle_message(chat_request.messages) initial_inputs_data = {data["type"]: prompt} elif "multipart/form-data" in request.headers.get("content-type"): data = await request.form() stream_opt = data.get("stream", True) chat_request = ChatCompletionRequest.model_validate(data) data_type = data.get("type") file_summaries = [] if files: for file in files: file_path = f"/tmp/{file.filename}" if data_type is not None and data_type in ["audio", "video"]: raise ValueError( "Audio and Video file uploads are not supported in docsum with curl request, please use the UI." ) else: import aiofiles async with aiofiles.open(file_path, "wb") as f: await f.write(await file.read()) docs = read_text_from_file(file, file_path) os.remove(file_path) if isinstance(docs, list): file_summaries.extend(docs) else: file_summaries.append(docs) if file_summaries: prompt = self._handle_message(chat_request.messages) + "\n".join(file_summaries) else: prompt = self._handle_message(chat_request.messages) data_type = data.get("type") if data_type is not None: initial_inputs_data = {} initial_inputs_data[data_type] = prompt else: initial_inputs_data = {"query": prompt} else: raise ValueError(f"Unknown request type: {request.headers.get('content-type')}") parameters = LLMParams( max_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024, top_k=chat_request.top_k if chat_request.top_k else 10, top_p=chat_request.top_p if chat_request.top_p else 0.95, temperature=chat_request.temperature if chat_request.temperature else 0.01, frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0, presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0, repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03, streaming=stream_opt, model=chat_request.model if chat_request.model else None, language=chat_request.language if chat_request.language else "auto", ) result_dict, runtime_graph = await self.megaservice.schedule( initial_inputs=initial_inputs_data, llm_parameters=parameters ) for node, response in result_dict.items(): # Here it suppose the last microservice in the megaservice is LLM. if ( isinstance(response, StreamingResponse) and node == list(self.megaservice.services.keys())[-1] and self.megaservice.services[node].service_type == ServiceType.LLM ): return response last_node = runtime_graph.all_leaves()[-1] response = result_dict[last_node]["text"] choices = [] usage = UsageInfo() choices.append( ChatCompletionResponseChoice( index=0, message=ChatMessage(role="assistant", content=response), finish_reason="stop", ) ) return ChatCompletionResponse(model="docsum", choices=choices, usage=usage) def start(self): super().__init__( megaservice=self.megaservice, host=self.host, port=self.port, endpoint=str(MegaServiceEndpoint.DOC_SUMMARY), input_datatype=ChatCompletionRequest, output_datatype=ChatCompletionResponse, ) if __name__ == "__main__": docsum = DocSumService(port=MEGA_SERVICE_PORT) docsum.add_remote_service() docsum.start()