Compare commits
78 Commits
yinghu5-pa
...
replace_ag
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
9d1e01bf61 | ||
|
|
073e5443ec | ||
|
|
36461d7303 | ||
|
|
e8cdf7d668 | ||
|
|
c7bec31873 | ||
|
|
c48cd651e4 | ||
|
|
d627209ee3 | ||
|
|
c50dfb2510 | ||
|
|
4ce847cdb7 | ||
|
|
319dbdaa6b | ||
|
|
1a0c5f03c6 | ||
|
|
bbd53443ab | ||
|
|
2764a6dcd8 | ||
|
|
11fa7d5e99 | ||
|
|
76c088dc0b | ||
|
|
cee24a083c | ||
|
|
5cc047ce34 | ||
|
|
46a29cc253 | ||
|
|
8fe2d5d0be | ||
|
|
68747a9688 | ||
|
|
1bd56af994 | ||
|
|
583428c6a7 | ||
|
|
853f1302af | ||
|
|
340fa075bd | ||
|
|
b7f24762a3 | ||
|
|
d4dcbd18ef | ||
|
|
87baeb833d | ||
|
|
03179296b4 | ||
|
|
139f2aeeeb | ||
|
|
61a8befe05 | ||
|
|
4582e53b8a | ||
|
|
566ffb2edc | ||
|
|
a04463d5e3 | ||
|
|
31b1d69e40 | ||
|
|
fe2a6674e0 | ||
|
|
60591d8d56 | ||
|
|
7636de02e4 | ||
|
|
d397e3f631 | ||
|
|
0736912c69 | ||
|
|
e8f2313e07 | ||
|
|
6d24c1c77a | ||
|
|
5a50ae0471 | ||
|
|
fecc22719a | ||
|
|
2204fe8e36 | ||
|
|
b50dd8f47a | ||
|
|
bf8d03425c | ||
|
|
1b6342aa5b | ||
|
|
527b146a80 | ||
|
|
7159ce3731 | ||
|
|
671dff7f51 | ||
|
|
8fe19291c8 | ||
|
|
35c5cf5de8 | ||
|
|
63b789ae91 | ||
|
|
d670dbf0aa | ||
|
|
0701b8cfff | ||
|
|
effa2a28cf | ||
|
|
adcd113f53 | ||
|
|
4269669f73 | ||
|
|
12657ac945 | ||
|
|
43d0a18270 | ||
|
|
5362321d3a | ||
|
|
eb245fd085 | ||
|
|
4cab86260f | ||
|
|
694207f76b | ||
|
|
555e2405b9 | ||
|
|
7a92435269 | ||
|
|
c9085c3c68 | ||
|
|
36aaed748b | ||
|
|
9180f1066d | ||
|
|
5aecea8e47 | ||
|
|
6723395e31 | ||
|
|
785ffb9a1e | ||
|
|
428ba481b2 | ||
|
|
2dfcfa0436 | ||
|
|
8a5ad1fc72 | ||
|
|
24cacaaa48 | ||
|
|
6ead1b12db | ||
|
|
8dac9d1035 |
1
.github/code_spell_ignore.txt
vendored
@@ -1,2 +1,3 @@
|
||||
ModelIn
|
||||
modelin
|
||||
pressEnter
|
||||
65
.github/workflows/_build_comps_base_image.yml
vendored
Normal file
@@ -0,0 +1,65 @@
|
||||
# Copyright (C) 2025 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
name: Build Comps Base Image
|
||||
permissions: read-all
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
node:
|
||||
required: true
|
||||
type: string
|
||||
build:
|
||||
default: true
|
||||
required: false
|
||||
type: boolean
|
||||
tag:
|
||||
default: "latest"
|
||||
required: false
|
||||
type: string
|
||||
opea_branch:
|
||||
default: "main"
|
||||
required: false
|
||||
type: string
|
||||
inject_commit:
|
||||
default: false
|
||||
required: false
|
||||
type: boolean
|
||||
|
||||
jobs:
|
||||
pre-build-image-check:
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
should_skip: ${{ steps.check-skip.outputs.should_skip }}
|
||||
steps:
|
||||
- name: Check if job should be skipped
|
||||
id: check-skip
|
||||
run: |
|
||||
should_skip=false
|
||||
if [[ "${{ inputs.node }}" == "gaudi3" || "${{ inputs.node }}" == "rocm" || "${{ inputs.node }}" == "arc" ]]; then
|
||||
should_skip=true
|
||||
fi
|
||||
echo "should_skip=$should_skip"
|
||||
echo "should_skip=$should_skip" >> $GITHUB_OUTPUT
|
||||
|
||||
build-images:
|
||||
needs: [ pre-build-image-check ]
|
||||
if: ${{ needs.pre-build-image-check.outputs.should_skip == 'false' && fromJSON(inputs.build) }}
|
||||
runs-on: "docker-build-${{ inputs.node }}"
|
||||
steps:
|
||||
- name: Clean Up Working Directory
|
||||
run: sudo rm -rf ${{github.workspace}}/*
|
||||
|
||||
- name: Clone Required Repo
|
||||
run: |
|
||||
git clone --depth 1 --branch ${{ inputs.opea_branch }} https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps && git rev-parse HEAD && cd ../ && ls -l
|
||||
|
||||
- name: Build Image
|
||||
uses: opea-project/validation/actions/image-build@main
|
||||
with:
|
||||
work_dir: ${{ github.workspace }}/GenAIComps
|
||||
docker_compose_path: ${{ github.workspace }}/GenAIComps/.github/workflows/docker/compose/base-compose.yaml
|
||||
registry: ${OPEA_IMAGE_REPO}opea
|
||||
inject_commit: ${{ inputs.inject_commit }}
|
||||
tag: ${{ inputs.tag }}
|
||||
103
.github/workflows/_build_image.yml
vendored
Normal file
@@ -0,0 +1,103 @@
|
||||
# Copyright (C) 2025 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
name: Build Images
|
||||
permissions: read-all
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
node:
|
||||
required: true
|
||||
type: string
|
||||
build:
|
||||
default: true
|
||||
required: false
|
||||
type: boolean
|
||||
example:
|
||||
required: true
|
||||
type: string
|
||||
services:
|
||||
default: ""
|
||||
required: false
|
||||
type: string
|
||||
tag:
|
||||
default: "latest"
|
||||
required: false
|
||||
type: string
|
||||
opea_branch:
|
||||
default: "main"
|
||||
required: false
|
||||
type: string
|
||||
inject_commit:
|
||||
default: false
|
||||
required: false
|
||||
type: boolean
|
||||
|
||||
jobs:
|
||||
pre-build-image-check:
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
should_skip: ${{ steps.check-skip.outputs.should_skip }}
|
||||
steps:
|
||||
- name: Check if job should be skipped
|
||||
id: check-skip
|
||||
run: |
|
||||
should_skip=false
|
||||
if [[ "${{ inputs.node }}" == "gaudi3" || "${{ inputs.node }}" == "rocm" || "${{ inputs.node }}" == "arc" ]]; then
|
||||
should_skip=true
|
||||
fi
|
||||
echo "should_skip=$should_skip"
|
||||
echo "should_skip=$should_skip" >> $GITHUB_OUTPUT
|
||||
|
||||
build-images:
|
||||
needs: [ pre-build-image-check ]
|
||||
if: ${{ needs.pre-build-image-check.outputs.should_skip == 'false' && fromJSON(inputs.build) }}
|
||||
runs-on: "docker-build-${{ inputs.node }}"
|
||||
steps:
|
||||
- name: Clean Up Working Directory
|
||||
run: sudo rm -rf ${{github.workspace}}/*
|
||||
|
||||
- name: Get Checkout Ref
|
||||
run: |
|
||||
if [ "${{ github.event_name }}" == "pull_request" ] || [ "${{ github.event_name }}" == "pull_request_target" ]; then
|
||||
echo "CHECKOUT_REF=refs/pull/${{ github.event.number }}/merge" >> $GITHUB_ENV
|
||||
else
|
||||
echo "CHECKOUT_REF=${{ github.ref }}" >> $GITHUB_ENV
|
||||
fi
|
||||
|
||||
- name: Checkout out GenAIExamples
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ env.CHECKOUT_REF }}
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Clone Required Repo
|
||||
run: |
|
||||
cd ${{ github.workspace }}/${{ inputs.example }}/docker_image_build
|
||||
docker_compose_path=${{ github.workspace }}/${{ inputs.example }}/docker_image_build/build.yaml
|
||||
if [[ $(grep -c "vllm:" ${docker_compose_path}) != 0 ]]; then
|
||||
git clone https://github.com/vllm-project/vllm.git && cd vllm
|
||||
# Get the latest tag
|
||||
VLLM_VER=$(git describe --tags "$(git rev-list --tags --max-count=1)")
|
||||
echo "Check out vLLM tag ${VLLM_VER}"
|
||||
git checkout ${VLLM_VER} &> /dev/null && cd ../
|
||||
fi
|
||||
if [[ $(grep -c "vllm-gaudi:" ${docker_compose_path}) != 0 ]]; then
|
||||
git clone https://github.com/HabanaAI/vllm-fork.git && cd vllm-fork
|
||||
# Get the latest tag
|
||||
VLLM_VER=$(git describe --tags "$(git rev-list --tags --max-count=1)")
|
||||
echo "Check out vLLM tag ${VLLM_VER}"
|
||||
git checkout ${VLLM_VER} &> /dev/null && cd ../
|
||||
fi
|
||||
git clone --depth 1 --branch ${{ inputs.opea_branch }} https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps && git rev-parse HEAD && cd ../
|
||||
|
||||
- name: Build Image
|
||||
uses: opea-project/validation/actions/image-build@main
|
||||
with:
|
||||
work_dir: ${{ github.workspace }}/${{ inputs.example }}/docker_image_build
|
||||
docker_compose_path: ${{ github.workspace }}/${{ inputs.example }}/docker_image_build/build.yaml
|
||||
service_list: ${{ inputs.services }}
|
||||
registry: ${OPEA_IMAGE_REPO}opea
|
||||
inject_commit: ${{ inputs.inject_commit }}
|
||||
tag: ${{ inputs.tag }}
|
||||
59
.github/workflows/_example-workflow.yml
vendored
@@ -54,61 +54,22 @@ jobs:
|
||||
# Image Build
|
||||
####################################################################################################
|
||||
build-images:
|
||||
runs-on: "docker-build-${{ inputs.node }}"
|
||||
steps:
|
||||
- name: Clean Up Working Directory
|
||||
run: sudo rm -rf ${{github.workspace}}/*
|
||||
|
||||
- name: Get Checkout Ref
|
||||
run: |
|
||||
if [ "${{ github.event_name }}" == "pull_request" ] || [ "${{ github.event_name }}" == "pull_request_target" ]; then
|
||||
echo "CHECKOUT_REF=refs/pull/${{ github.event.number }}/merge" >> $GITHUB_ENV
|
||||
else
|
||||
echo "CHECKOUT_REF=${{ github.ref }}" >> $GITHUB_ENV
|
||||
fi
|
||||
|
||||
- name: Checkout out GenAIExamples
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ env.CHECKOUT_REF }}
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Clone Required Repo
|
||||
run: |
|
||||
cd ${{ github.workspace }}/${{ inputs.example }}/docker_image_build
|
||||
docker_compose_path=${{ github.workspace }}/${{ inputs.example }}/docker_image_build/build.yaml
|
||||
if [[ $(grep -c "vllm:" ${docker_compose_path}) != 0 ]]; then
|
||||
git clone https://github.com/vllm-project/vllm.git && cd vllm
|
||||
# Get the latest tag
|
||||
VLLM_VER="$(git describe --tags "$(git rev-list --tags --max-count=1)" )"
|
||||
echo "Check out vLLM tag ${VLLM_VER}"
|
||||
git checkout ${VLLM_VER} &> /dev/null
|
||||
# make sure do not change the pwd
|
||||
git rev-parse HEAD && cd ../
|
||||
fi
|
||||
if [[ $(grep -c "vllm-gaudi:" ${docker_compose_path}) != 0 ]]; then
|
||||
git clone --depth 1 --branch v0.6.4.post2+Gaudi-1.19.0 https://github.com/HabanaAI/vllm-fork.git
|
||||
fi
|
||||
git clone --depth 1 --branch ${{ inputs.opea_branch }} https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps && git rev-parse HEAD && cd ../
|
||||
|
||||
- name: Build Image
|
||||
if: ${{ fromJSON(inputs.build) }}
|
||||
uses: opea-project/validation/actions/image-build@main
|
||||
with:
|
||||
work_dir: ${{ github.workspace }}/${{ inputs.example }}/docker_image_build
|
||||
docker_compose_path: ${{ github.workspace }}/${{ inputs.example }}/docker_image_build/build.yaml
|
||||
service_list: ${{ inputs.services }}
|
||||
registry: ${OPEA_IMAGE_REPO}opea
|
||||
inject_commit: ${{ inputs.inject_commit }}
|
||||
tag: ${{ inputs.tag }}
|
||||
uses: ./.github/workflows/_build_image.yml
|
||||
with:
|
||||
node: ${{ inputs.node }}
|
||||
build: ${{ fromJSON(inputs.build) }}
|
||||
example: ${{ inputs.example }}
|
||||
services: ${{ inputs.services }}
|
||||
tag: ${{ inputs.tag }}
|
||||
opea_branch: ${{ inputs.opea_branch }}
|
||||
inject_commit: ${{ inputs.inject_commit }}
|
||||
|
||||
####################################################################################################
|
||||
# Docker Compose Test
|
||||
####################################################################################################
|
||||
test-example-compose:
|
||||
needs: [build-images]
|
||||
if: ${{ fromJSON(inputs.test_compose) }}
|
||||
if: ${{ inputs.test_compose }}
|
||||
uses: ./.github/workflows/_run-docker-compose.yml
|
||||
with:
|
||||
tag: ${{ inputs.tag }}
|
||||
|
||||
4
.github/workflows/_helm-e2e.yml
vendored
@@ -134,7 +134,7 @@ jobs:
|
||||
CHART_NAME="${example,,}" # CodeGen
|
||||
echo "CHART_NAME=$CHART_NAME" >> $GITHUB_ENV
|
||||
echo "RELEASE_NAME=${CHART_NAME}$(date +%Y%m%d%H%M%S)" >> $GITHUB_ENV
|
||||
echo "NAMESPACE=${CHART_NAME}-$(date +%Y%m%d%H%M%S)" >> $GITHUB_ENV
|
||||
echo "NAMESPACE=${CHART_NAME}-$(head -c 4 /dev/urandom | xxd -p)" >> $GITHUB_ENV
|
||||
echo "ROLLOUT_TIMEOUT_SECONDS=600s" >> $GITHUB_ENV
|
||||
echo "TEST_TIMEOUT_SECONDS=600s" >> $GITHUB_ENV
|
||||
echo "KUBECTL_TIMEOUT_SECONDS=60s" >> $GITHUB_ENV
|
||||
@@ -173,7 +173,7 @@ jobs:
|
||||
$RELEASE_NAME \
|
||||
oci://ghcr.io/opea-project/charts/${CHART_NAME} \
|
||||
--set global.HUGGINGFACEHUB_API_TOKEN=${HFTOKEN} \
|
||||
--set global.modelUseHostPath=/home/sdp/.cache/huggingface/hub \
|
||||
--set global.modelUseHostPath=/data2/hf_model \
|
||||
--set GOOGLE_API_KEY=${{ env.GOOGLE_API_KEY}} \
|
||||
--set GOOGLE_CSE_ID=${{ env.GOOGLE_CSE_ID}} \
|
||||
--set web-retriever.GOOGLE_API_KEY=${{ env.GOOGLE_API_KEY}} \
|
||||
|
||||
23
.github/workflows/_run-docker-compose.yml
vendored
@@ -64,9 +64,14 @@ jobs:
|
||||
cd ${{ github.workspace }}/${{ inputs.example }}/tests
|
||||
run_test_cases=""
|
||||
|
||||
default_test_case=$(find . -type f -name "test_compose_on_${{ inputs.hardware }}.sh" | cut -d/ -f2)
|
||||
if [ "${{ inputs.hardware }}" == "gaudi2" ] || [ "${{ inputs.hardware }}" == "gaudi3" ]; then
|
||||
hardware="gaudi"
|
||||
else
|
||||
hardware="${{ inputs.hardware }}"
|
||||
fi
|
||||
default_test_case=$(find . -type f -name "test_compose_on_$hardware.sh" | cut -d/ -f2)
|
||||
if [ "$default_test_case" ]; then run_test_cases="$default_test_case"; fi
|
||||
other_test_cases=$(find . -type f -name "test_compose_*_on_${{ inputs.hardware }}.sh" | cut -d/ -f2)
|
||||
other_test_cases=$(find . -type f -name "test_compose_*_on_$hardware.sh" | cut -d/ -f2)
|
||||
echo "default_test_case=$default_test_case"
|
||||
echo "other_test_cases=$other_test_cases"
|
||||
|
||||
@@ -99,7 +104,7 @@ jobs:
|
||||
|
||||
compose-test:
|
||||
needs: [get-test-case]
|
||||
if: ${{ needs.get-test-case.outputs.test_cases != '' }}
|
||||
if: ${{ needs.get-test-case.outputs.test_cases != '[""]' }}
|
||||
strategy:
|
||||
matrix:
|
||||
test_case: ${{ fromJSON(needs.get-test-case.outputs.test_cases) }}
|
||||
@@ -110,6 +115,11 @@ jobs:
|
||||
- name: Clean up Working Directory
|
||||
run: |
|
||||
sudo rm -rf ${{github.workspace}}/* || true
|
||||
|
||||
# clean up containers use ports
|
||||
cid=$(docker ps --format '{{.Names}} : {{.Ports}}' | grep -v ' : $' | grep -v 5000 | awk -F' : ' '{print $1}')
|
||||
if [[ ! -z "$cid" ]]; then docker stop $cid && docker rm $cid && sleep 1s; fi
|
||||
|
||||
docker system prune -f
|
||||
docker rmi $(docker images --filter reference="*/*/*:latest" -q) || true
|
||||
docker rmi $(docker images --filter reference="*/*:ci" -q) || true
|
||||
@@ -160,7 +170,7 @@ jobs:
|
||||
export model_cache="~/.cache/huggingface/hub"
|
||||
fi
|
||||
fi
|
||||
if [ -f ${test_case} ]; then timeout 30m bash ${test_case}; else echo "Test script {${test_case}} not found, skip test!"; fi
|
||||
if [ -f "${test_case}" ]; then timeout 60m bash "${test_case}"; else echo "Test script {${test_case}} not found, skip test!"; fi
|
||||
|
||||
- name: Clean up container after test
|
||||
shell: bash
|
||||
@@ -170,6 +180,11 @@ jobs:
|
||||
export test_case=${{ matrix.test_case }}
|
||||
export hardware=${{ inputs.hardware }}
|
||||
bash ${{ github.workspace }}/.github/workflows/scripts/docker_compose_clean_up.sh "containers"
|
||||
|
||||
# clean up containers use ports
|
||||
cid=$(docker ps --format '{{.Names}} : {{.Ports}}' | grep -v ' : $' | grep -v 5000 | awk -F' : ' '{print $1}')
|
||||
if [[ ! -z "$cid" ]]; then docker stop $cid && docker rm $cid && sleep 1s; fi
|
||||
|
||||
docker system prune -f
|
||||
docker rmi $(docker images --filter reference="*:5000/*/*" -q) || true
|
||||
|
||||
|
||||
28
.github/workflows/daily_check_issue_and_pr.yml
vendored
Normal file
@@ -0,0 +1,28 @@
|
||||
# Copyright (C) 2025 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
name: Check stale issue and pr
|
||||
|
||||
on:
|
||||
schedule:
|
||||
- cron: "30 22 * * *"
|
||||
|
||||
jobs:
|
||||
close-issues:
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
issues: write
|
||||
pull-requests: write
|
||||
steps:
|
||||
- uses: actions/stale@v9
|
||||
with:
|
||||
days-before-issue-stale: 30
|
||||
days-before-pr-stale: 30
|
||||
days-before-issue-close: 7
|
||||
days-before-pr-close: 7
|
||||
stale-issue-message: "This issue is stale because it has been open 30 days with no activity. Remove stale label or comment or this will be closed in 7 days."
|
||||
stale-pr-message: "This PR is stale because it has been open 30 days with no activity. Remove stale label or comment or this will be closed in 7 days."
|
||||
close-issue-message: "This issue was closed because it has been stalled for 7 days with no activity."
|
||||
close-pr-message: "This PR was closed because it has been stalled for 7 days with no activity."
|
||||
repo-token: ${{ secrets.ACTION_TOKEN }}
|
||||
start-date: "2025-03-01T00:00:00Z"
|
||||
984
.github/workflows/dockerhub-description.yml
vendored
Normal file
@@ -0,0 +1,984 @@
|
||||
# Copyright (C) 2025 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
name: Update Docker Hub Description
|
||||
on:
|
||||
schedule:
|
||||
- cron: "0 0 * * 0"
|
||||
workflow_dispatch:
|
||||
|
||||
jobs:
|
||||
dockerHubDescription:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout current repository
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Description for audioqna
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/audioqna
|
||||
short-description: "The docker image served as an audioqna gateway and using language modeling to generate answers to user queries by converting audio input to text, and then using text-to-speech (TTS) to convert those answers back to speech for interaction."
|
||||
readme-filepath: AudioQnA/README.md
|
||||
enable-url-completion: true
|
||||
|
||||
- name: Description for audioqna-ui
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/audioqna-ui
|
||||
short-description: "The docker image acted as the audioqna UI entry for enabling seamless interaction with users"
|
||||
readme-filepath: AudioQnA/ui/svelte/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for audioqna-multilang
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/audioqna-multilang
|
||||
short-description: "The docker image served as an audioqna gateway and using language modeling to generate answers to user queries by converting multilingual audio input to text, and then use multilingual text-to-speech (TTS) to convert those answers back to speech for interaction."
|
||||
readme-filepath: AudioQnA/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for avatarchatbot
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/avatarchatbot
|
||||
short-description: "The docker image served as a avatarchatbot gateway and interacted with users by understanding their questions and providing relevant answers."
|
||||
readme-filepath: AvatarChatbot/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for chatqna
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/chatqna
|
||||
short-description: "The docker image served as a chatqna gateway and interacted with users by understanding their questions and providing relevant answers."
|
||||
readme-filepath: ChatQnA/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for chatqna-ui
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/chatqna-ui
|
||||
short-description: "The docker image acted as the chatqna UI entry for facilitating interaction with users for question answering"
|
||||
readme-filepath: ChatQnA/ui/svelte/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for chatqna-conversation-ui
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/chatqna-conversation-ui
|
||||
short-description: "The purpose of the docker image is to provide a user interface for chat-based Q&A using React. It allows for interaction with users and supports continuing conversations with a history that is stored in the browser's local storage."
|
||||
readme-filepath: ChatQnA/ui/react/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for codegen
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/codegen
|
||||
short-description: "The docker image served as the codegen gateway to provide service of the automatic creation of source code from a higher-level representation"
|
||||
readme-filepath: CodeGen/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for codegen-ui
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/codegen-ui
|
||||
short-description: "The docker image acted as the codegen UI entry for facilitating interaction with users for automatically generating code from user's description"
|
||||
readme-filepath: CodeGen/ui/svelte/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for codegen-react-ui
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/codegen-react-ui
|
||||
short-description: "The purpose of the docker image is to provide a user interface for Codegen using React. It allows generating the appropriate code based on the current user input."
|
||||
readme-filepath: CodeGen/ui/react/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for codetrans
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/codetrans
|
||||
short-description: "The docker image served as a codetrans gateway to provide service of converting source code written in one programming language into an equivalent version in another programming language"
|
||||
readme-filepath: CodeTrans/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for codetrans-ui
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/codetrans-ui
|
||||
short-description: "The docker image acted as the codetrans UI entry for facilitating interaction with users for translating one programming language to another one"
|
||||
readme-filepath: CodeTrans/ui/svelte/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for doc-index-retriever
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/doc-index-retriever
|
||||
short-description: "The docker image acts as a DocRetriever gateway, It uses different methods to match user queries with a set of free text records."
|
||||
readme-filepath: DocIndexRetriever/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for docsum
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/docsum
|
||||
short-description: "The docker image served as a docsum gateway to provide service of capturing the main points and essential details of the original text"
|
||||
readme-filepath: Docsum/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for docsum-ui
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/docsum-ui
|
||||
short-description: "The docker image acted as the docsum UI entry for facilitating interaction with users for document summarization"
|
||||
readme-filepath: Docsum/ui/svelte/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for docsum-react-ui
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/docsum-react-ui
|
||||
short-description: "The purpose of the docker image is to provide a user interface for document summary using React. It allows upload a file or paste text and then click on “Generate Summary” to get a condensed summary of the generated content and automatically scroll to the bottom of the summary."
|
||||
readme-filepath: Docsum/ui/react/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for docsum-gradio-ui
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/docsum-gradio-ui
|
||||
short-description: "The purpose of the docker image is to provides a user interface for summarizing documents and text using a Dockerized frontend application. Users can upload files or paste text to generate summaries."
|
||||
readme-filepath: Docsum/ui/gradio/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for edgecraftrag
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/edgecraftrag
|
||||
short-description: "The docker image served as an Edge Craft RAG (EC-RAG) gateway, delivering a customizable and production-ready Retrieval-Augmented Generation system optimized for edge solutions."
|
||||
readme-filepath: EdgeCraftRag/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for edgecraftrag-ui
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/edgecraftrag-ui
|
||||
short-description: "The docker image acted as the Edge Craft RAG (EC-RAG) UI entry. It ensuring high-quality, performant interactions tailored for edge environments."
|
||||
readme-filepath: EdgeCraftRag/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for edgecraftrag-server
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/edgecraftrag-server
|
||||
short-description: "The docker image served as an Edge Craft RAG (EC-RAG) server, delivering a customizable and production-ready Retrieval-Augmented Generation system optimized for edge solutions."
|
||||
readme-filepath: EdgeCraftRag/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for graphrag
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/graphrag
|
||||
short-description: "The docker image served as a GraphRAG gateway, leveraging a knowledge graph derived from source documents to address both local and global queries."
|
||||
readme-filepath: GraphRag/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for graphrag-ui
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/graphrag-ui
|
||||
short-description: "The docker image acted as the GraphRAG UI entry for facilitating interaction with users"
|
||||
readme-filepath: GraphRag/ui/svelte/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for graphrag-react-ui
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/graphrag-react-ui
|
||||
short-description: "The purpose of the docker image is to provide a user interface for GraphRAG using React."
|
||||
readme-filepath: GraphRag/ui/react/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for multimodalqna
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/multimodalqna
|
||||
short-description: "The docker image served as a multimodalqna gateway and dynamically fetches the most relevant multimodal information (frames, transcripts, and/or subtitles) from the user's video collection to solve the problem."
|
||||
readme-filepath: MultimodalQnA/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for multimodalqna-ui
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/multimodalqna-ui
|
||||
short-description: "The docker image serves as the multimodalqna UI entry point for easy interaction with users. Answers to questions are generated from videos uploaded by users."
|
||||
readme-filepath: MultimodalQnA/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for productivity-suite-react-ui-server
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/productivity-suite-react-ui-server
|
||||
short-description: "The purpose of the docker image is to provide a user interface for Productivity Suite Application using React. It allows interaction by uploading documents and inputs."
|
||||
readme-filepath: ProductivitySuite/ui/react/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for searchqna
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/searchqna
|
||||
short-description: "The docker image served as the searchqna gateway to provide service of retrieving accurate and relevant answers to user queries from a knowledge base or dataset"
|
||||
readme-filepath: SearchQnA/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for searchqna-ui
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/searchqna-ui
|
||||
short-description: "The docker image acted as the searchqna UI entry for facilitating interaction with users for question answering"
|
||||
readme-filepath: SearchQnA/ui/svelte/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for translation
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/translation
|
||||
short-description: "The docker image served as the translation gateway to provide service of language translation"
|
||||
readme-filepath: Translation/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for translation-ui
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/translation-ui
|
||||
short-description: "The docker image acted as the translation UI entry for facilitating interaction with users for language translation"
|
||||
readme-filepath: Translation/ui/svelte/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for videoqna
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/videoqna
|
||||
short-description: "The docker image acts as videoqna gateway, interacting with the user by retrieving videos based on user prompts"
|
||||
readme-filepath: VideoQnA/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for videoqna-ui
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/videoqna-ui
|
||||
short-description: "The docker image serves as the user interface entry point for the videoqna, facilitating interaction with the user and retrieving the video based on user prompts."
|
||||
readme-filepath: VideoQnA/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for visualqna
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/visualqna
|
||||
short-description: "The docker image acts as a videoqna gateway, outputting answers in natural language based on a combination of images and questions"
|
||||
readme-filepath: VisualQnA/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for visualqna-ui
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/visualqna-ui
|
||||
short-description: "The docker image serves as the user interface portal for VisualQnA, facilitating interaction with the user and outputting answers in natural language based on a combination of images and questions from the user."
|
||||
readme-filepath: VisualQnA/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/agent-ui
|
||||
short-description: "The docker image exposed the OPEA agent microservice UI entry for GenAI application use."
|
||||
readme-filepath: AgentQnA/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for text2image-ui
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/text2image-ui
|
||||
short-description: "The docker image exposed the OPEA text-to-image microservice UI entry for GenAI application use."
|
||||
readme-filepath: Text2Image/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for text2sql-react-ui
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/text2sql-react-ui
|
||||
short-description: "The docker image exposed the OPEA text to Structured Query Language microservice react UI entry for GenAI application use."
|
||||
readme-filepath: DBQnA/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Checkout GenAIComps
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
repository: opea-project/GenAIComps
|
||||
path: GenAIComps
|
||||
|
||||
- name: Description for agent
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/agent
|
||||
short-description: "The docker image exposed the OPEA agent microservice for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/agent/src/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/asr
|
||||
short-description: "The docker image exposed the OPEA Audio-Speech-Recognition microservice for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/asr/src/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/animation
|
||||
short-description: "The purpose of the Docker image is to expose the OPEA Avatar Animation microservice for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/animation/src/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/chathistory-mongo
|
||||
short-description: "The docker image exposes OPEA Chat History microservice which based on MongoDB database, designed to allow user to store, retrieve and manage chat conversations"
|
||||
readme-filepath: GenAIComps/comps/chathistory/src/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/dataprep
|
||||
short-description: "The docker image exposed the OPEA dataprep microservice for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/dataprep/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/embedding
|
||||
short-description: "The docker image exposed the OPEA mosec embedding microservice for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/embeddings/src/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/embedding-multimodal-clip
|
||||
short-description: "The docker image exposed the OPEA mosec embedding microservice base on Langchain framework for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/third_parties/clip/src/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/embedding-multimodal-bridgetower
|
||||
short-description: "The docker image exposes OPEA multimodal embedded microservices based on bridgetower for use by GenAI applications."
|
||||
readme-filepath: GenAIComps/comps/third_parties/bridgetower/src/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/embedding-multimodal-bridgetower-gaudi
|
||||
short-description: "The docker image exposes OPEA multimodal embedded microservices based on bridgetower for use by GenAI applications on the Gaudi."
|
||||
readme-filepath: GenAIComps/comps/third_parties/bridgetower/src/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/feedbackmanagement-mongo
|
||||
short-description: "The docker image exposes that the OPEA feedback management microservice uses a MongoDB database for GenAI applications."
|
||||
readme-filepath: GenAIComps/comps/feedback_management/src/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/finetuning
|
||||
short-description: "The docker image exposed the OPEA Fine-tuning microservice for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/finetuning/src/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/finetuning-gaudi
|
||||
short-description: "The docker image exposed the OPEA Fine-tuning microservice for GenAI application use on the Gaudi."
|
||||
readme-filepath: GenAIComps/comps/finetuning/src/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/gpt-sovits
|
||||
short-description: "The docker image exposed the OPEA GPT-SoVITS service for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/tts/src/integrations/dependency/gpt-sovits/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/guardrails
|
||||
short-description: "The docker image exposed the OPEA guardrail microservice for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/guardrails/src/guardrails/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/guardrails-toxicity-predictionguard
|
||||
short-description: "The docker image exposed the OPEA guardrail microservice to provide toxicity detection for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/guardrails/src/toxicity_detection/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/guardrails-pii-predictionguard
|
||||
short-description: "The docker image exposed the OPEA guardrail microservice to provide PII detection for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/guardrails/src/pii_detection/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/guardrails-injection-predictionguard
|
||||
short-description: "The docker image exposed the OPEA guardrail microservice to provide injection predictionguard for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/guardrails/src/prompt_injection/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/guardrails-hallucination-detection
|
||||
short-description: "The docker image exposed the OPEA guardrail microservice to provide hallucination detection for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/guardrails/src/hallucination_detection/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/guardrails-factuality-predictionguard
|
||||
short-description: "The docker image exposed the OPEA guardrail microservice to provide factuality predictionguard for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/guardrails/src/factuality_alignment/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/guardrails-bias-detection
|
||||
short-description: "The docker image exposed the OPEA guardrail microservice to provide bias detection for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/guardrails/src/bias_detection/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/image2image-gaudi
|
||||
short-description: "The purpose of the Docker image is to expose the OPEA Image-to-Image microservice for GenAI application use on the Gaudi."
|
||||
readme-filepath: GenAIComps/comps/image2image/src/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/image2image
|
||||
short-description: "The purpose of the Docker image is to expose the OPEA Image-to-Image microservice for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/image2image/src/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/image2video-gaudi
|
||||
short-description: "The purpose of the Docker image is to expose the OPEA image-to-video microservice for GenAI application use on the Gaudi."
|
||||
readme-filepath: GenAIComps/comps/image2image/src/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/image2video
|
||||
short-description: "The purpose of the Docker image is to expose the OPEA image-to-video microservice for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/image2video/src/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/llm-textgen
|
||||
short-description: "The docker image exposed the OPEA LLM microservice upon textgen docker image for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/llms/src/text-generation/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/llm-textgen-gaudi
|
||||
short-description: "The docker image exposed the OPEA LLM microservice upon textgen docker image for GenAI application use on the Gaudi2."
|
||||
readme-filepath: GenAIComps/comps/llms/src/text-generation/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/llm-eval
|
||||
short-description: "The docker image exposed the OPEA LLM microservice upon eval docker image for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/llms/utils/lm-eval/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/llm-docsum
|
||||
short-description: "The docker image exposed the OPEA LLM microservice upon docsum docker image for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/llms/src/doc-summarization/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/llm-faqgen
|
||||
short-description: "This docker image is designed to build a frequently asked questions microservice using the HuggingFace Text Generation Inference(TGI) framework. The microservice accepts document input and generates a FAQ."
|
||||
readme-filepath: GenAIComps/comps/llms/src/faq-generation/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/lvm
|
||||
short-description: "The docker image exposed the OPEA large visual model (LVM) microservice for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/lvms/src/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/lvm-llava
|
||||
short-description: "The docker image exposed the OPEA microservice running LLaVA as a large visual model (LVM) server for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/lvms/src/integrations/dependency/llava/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/lvm-video-llama
|
||||
short-description: "The docker image exposed the OPEA microservice running Video-Llama as a large visual model (LVM) for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/lvms/src/integrations/dependency/video-llama/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/lvm-predictionguard
|
||||
short-description: "The docker image exposed the OPEA microservice running predictionguard as a large visual model (LVM) server for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/lvms/src/integrations/dependency/predictionguard/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/llava-gaudi
|
||||
short-description: "The docker image exposed the OPEA microservice running LLaVA as a large visual model (LVM) service for GenAI application use on the Gaudi2."
|
||||
readme-filepath: GenAIComps/comps/lvms/src/integrations/dependency/llava/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/lvm-llama-vision
|
||||
short-description: "The docker image exposed the OPEA microservice running Llama Vision as the base large visual model service for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/lvms/src/integrations/dependency/llama-vision/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/lvm-llama-vision-tp
|
||||
short-description: "The docker image exposed the OPEA microservice running Llama Vision with deepspeed as the base large visual model service for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/lvms/src/integrations/dependency/llama-vision/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for lvm-llama-vision-guard
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/lvm-llama-vision-guard
|
||||
short-description: "The docker image exposed the OPEA microservice running Llama Vision Guard as the base large visual model service for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/lvms/src/integrations/dependency/llama-vision/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for promptregistry-mongo
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/promptregistry-mongo
|
||||
short-description: "The docker image exposes the OPEA Prompt Registry microservices which based on MongoDB database, designed to store and retrieve user's preferred prompts."
|
||||
readme-filepath: GenAIComps/comps/prompt_registry/src/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for reranking
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/reranking
|
||||
short-description: "The docker image exposed the OPEA reranking microservice for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/rerankings/src/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for retriever
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/retriever
|
||||
short-description: "The docker image exposed the OPEA retrieval microservice for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/retrievers/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for text2image
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/text2image
|
||||
short-description: "The docker image exposed the OPEA text-to-image microservice for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/text2image/src/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for text2image-gaudi
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/text2image-gaudi
|
||||
short-description: "The docker image exposed the OPEA text-to-image microservice for GenAI application use on the Gaudi."
|
||||
readme-filepath: GenAIComps/comps/text2image/src/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for text2sql
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/text2sql
|
||||
short-description: "The docker image exposed the OPEA text to Structured Query Language microservice for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/text2sql/src/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for tts
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/tts
|
||||
short-description: "The docker image exposed the OPEA Text-To-Speech microservice for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/tts/src/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for speecht5
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/speecht5
|
||||
short-description: "The docker image exposed the OPEA SpeechT5 service for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/tts/src/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for speecht5-gaudi
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/speecht5-gaudi
|
||||
short-description: "The docker image exposed the OPEA SpeechT5 service on Gaudi2 for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/tts/src/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for gpt-sovits
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/gpt-sovits
|
||||
short-description: "The docker image exposed the OPEA gpt-sovits service for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/tts/src/integrations/dependency/gpt-sovits/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for nginx
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/nginx
|
||||
short-description: "The docker image exposed the OPEA nginx microservice for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/third_parties/nginx/deployment/kubernetes/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for vectorstore-pathway
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/vectorstore-pathway
|
||||
short-description: "The docker image exposed the OPEA Vectorstores microservice with Pathway for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/third_parties/pathway/src/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for wav2lip
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/wav2lip
|
||||
short-description: "The docker image exposed the OPEA Generate lip movements from audio files microservice with Pathway for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/third_parties/wav2lip/deployment/kubernetes/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for wav2lip-gaudi
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/wav2lip-gaudi
|
||||
short-description: "The docker image exposed the OPEA Generate lip movements from audio files microservice with Pathway for GenAI application use on the Gaudi2."
|
||||
readme-filepath: GenAIComps/comps/third_parties/wav2lip/deployment/kubernetes/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for vllm-arc
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/vllm-arc
|
||||
short-description: "The docker image powered by vllm-project for deploying and serving vllm Models on Arc."
|
||||
readme-filepath: GenAIComps/comps/third_parties/vllm/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for whisper-gaudi
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/whisper-gaudi
|
||||
short-description: "The docker image exposed the OPEA Whisper service on Gaudi2 for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/asr/src/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for whisper
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/whisper
|
||||
short-description: "The docker image exposed the OPEA Whisper service for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/asr/src/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for web-retriever
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/web-retriever
|
||||
short-description: "The docker image exposed the OPEA retrieval microservice based on chroma vectordb for GenAI application use."
|
||||
readme-filepath: GenAIComps/comps/web_retrievers/src/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Checkout vllm-openvino
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
repository: vllm-project/vllm
|
||||
path: vllm
|
||||
|
||||
- name: Description for vllm-openvino
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/vllm-openvino
|
||||
short-description: "The docker image powered by vllm-project for deploying and serving vllm Models of the Openvino Framework."
|
||||
readme-filepath: vllm/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Checkout vllm-gaudi
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
repository: HabanaAI/vllm-fork
|
||||
ref: habana_main
|
||||
path: vllm-fork
|
||||
|
||||
- name: Description for vllm-gaudi
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/vllm-gaudi
|
||||
short-description: "The docker image powered by vllm-project for deploying and serving vllm Models on Gaudi2."
|
||||
readme-filepath: vllm-fork/README.md
|
||||
enable-url-completion: false
|
||||
|
||||
- name: Description for vllm
|
||||
uses: peter-evans/dockerhub-description@v4
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: opea/vllm
|
||||
short-description: "The docker image powered by vllm-project for deploying and serving vllm Models."
|
||||
readme-filepath: vllm-fork/README.md
|
||||
enable-url-completion: false
|
||||
2
.github/workflows/manual-docker-scan.yml
vendored
@@ -12,7 +12,7 @@ on:
|
||||
type: string
|
||||
examples:
|
||||
default: ""
|
||||
description: 'List of examples to publish "AgentQnA,AudioQnA,ChatQnA,CodeGen,CodeTrans,DocIndexRetriever,DocSum,FaqGen,InstructionTuning,MultimodalQnA,ProductivitySuite,RerankFinetuning,SearchQnA,Translation,VideoQnA,VisualQnA"'
|
||||
description: 'List of examples to publish "AgentQnA,AudioQnA,ChatQnA,CodeGen,CodeTrans,DocIndexRetriever,DocSum,InstructionTuning,MultimodalQnA,ProductivitySuite,RerankFinetuning,SearchQnA,Translation,VideoQnA,VisualQnA"'
|
||||
required: false
|
||||
type: string
|
||||
images:
|
||||
|
||||
29
.github/workflows/manual-example-workflow.yml
vendored
@@ -7,7 +7,7 @@ on:
|
||||
inputs:
|
||||
nodes:
|
||||
default: "gaudi,xeon"
|
||||
description: "Hardware to run test"
|
||||
description: "Hardware to run test gaudi,gaudi3,xeon,rocm,arc"
|
||||
required: true
|
||||
type: string
|
||||
examples:
|
||||
@@ -20,11 +20,6 @@ on:
|
||||
description: "Tag to apply to images"
|
||||
required: true
|
||||
type: string
|
||||
# deploy_gmc:
|
||||
# default: false
|
||||
# description: 'Whether to deploy gmc'
|
||||
# required: true
|
||||
# type: boolean
|
||||
build:
|
||||
default: true
|
||||
description: 'Build test required images for Examples'
|
||||
@@ -40,11 +35,6 @@ on:
|
||||
description: 'Test examples with helm charts'
|
||||
required: false
|
||||
type: boolean
|
||||
# test_gmc:
|
||||
# default: false
|
||||
# description: 'Test examples with gmc'
|
||||
# required: false
|
||||
# type: boolean
|
||||
opea_branch:
|
||||
default: "main"
|
||||
description: 'OPEA branch for image build'
|
||||
@@ -52,12 +42,12 @@ on:
|
||||
type: string
|
||||
inject_commit:
|
||||
default: false
|
||||
description: "inject commit to docker images true or false"
|
||||
description: "inject commit to docker images"
|
||||
required: false
|
||||
type: boolean
|
||||
use_model_cache:
|
||||
default: false
|
||||
description: "use model cache true or false"
|
||||
description: "use model cache"
|
||||
required: false
|
||||
type: boolean
|
||||
|
||||
@@ -79,24 +69,20 @@ jobs:
|
||||
nodes_json=$(printf '%s\n' "${nodes[@]}" | sort -u | jq -R '.' | jq -sc '.')
|
||||
echo "nodes=$nodes_json" >> $GITHUB_OUTPUT
|
||||
|
||||
build-deploy-gmc:
|
||||
build-comps-base:
|
||||
needs: [get-test-matrix]
|
||||
if: false
|
||||
#${{ fromJSON(inputs.deploy_gmc) }}
|
||||
strategy:
|
||||
matrix:
|
||||
node: ${{ fromJson(needs.get-test-matrix.outputs.nodes) }}
|
||||
fail-fast: false
|
||||
uses: ./.github/workflows/_gmc-workflow.yml
|
||||
uses: ./.github/workflows/_build_comps_base_image.yml
|
||||
with:
|
||||
node: ${{ matrix.node }}
|
||||
build: ${{ fromJSON(inputs.build) }}
|
||||
tag: ${{ inputs.tag }}
|
||||
opea_branch: ${{ inputs.opea_branch }}
|
||||
secrets: inherit
|
||||
|
||||
run-examples:
|
||||
needs: [get-test-matrix] #[get-test-matrix, build-deploy-gmc]
|
||||
if: always()
|
||||
needs: [get-test-matrix, build-comps-base]
|
||||
strategy:
|
||||
matrix:
|
||||
example: ${{ fromJson(needs.get-test-matrix.outputs.examples) }}
|
||||
@@ -110,7 +96,6 @@ jobs:
|
||||
build: ${{ fromJSON(inputs.build) }}
|
||||
test_compose: ${{ fromJSON(inputs.test_compose) }}
|
||||
test_helmchart: ${{ fromJSON(inputs.test_helmchart) }}
|
||||
# test_gmc: ${{ fromJSON(inputs.test_gmc) }}
|
||||
opea_branch: ${{ inputs.opea_branch }}
|
||||
inject_commit: ${{ inputs.inject_commit }}
|
||||
use_model_cache: ${{ inputs.use_model_cache }}
|
||||
|
||||
4
.github/workflows/manual-image-build.yml
vendored
@@ -32,9 +32,9 @@ on:
|
||||
type: string
|
||||
inject_commit:
|
||||
default: false
|
||||
description: "inject commit to docker images true or false"
|
||||
description: "inject commit to docker images"
|
||||
required: false
|
||||
type: string
|
||||
type: boolean
|
||||
|
||||
jobs:
|
||||
get-test-matrix:
|
||||
|
||||
@@ -32,6 +32,12 @@ jobs:
|
||||
echo "TAG=$TAG" >> $GITHUB_OUTPUT
|
||||
echo "PUBLISH_TAGS=$PUBLISH_TAGS" >> $GITHUB_OUTPUT
|
||||
|
||||
build-comps-base:
|
||||
needs: [get-build-matrix]
|
||||
uses: ./.github/workflows/_build_comps_base_image.yml
|
||||
with:
|
||||
node: gaudi
|
||||
|
||||
build-and-test:
|
||||
needs: get-build-matrix
|
||||
if: ${{ needs.get-build-matrix.outputs.examples_json != '' }}
|
||||
@@ -44,6 +50,7 @@ jobs:
|
||||
node: gaudi
|
||||
example: ${{ matrix.example }}
|
||||
test_compose: true
|
||||
inject_commit: true
|
||||
secrets: inherit
|
||||
|
||||
get-image-list:
|
||||
@@ -54,7 +61,7 @@ jobs:
|
||||
|
||||
publish:
|
||||
needs: [get-build-matrix, get-image-list, build-and-test]
|
||||
if: ${{ needs.get-image-list.outputs.matrix != '' }}
|
||||
if: always() && ${{ needs.get-image-list.outputs.matrix != '' }}
|
||||
strategy:
|
||||
matrix:
|
||||
image: ${{ fromJSON(needs.get-image-list.outputs.matrix) }}
|
||||
|
||||
8
.github/workflows/pr-link-path-scan.yml
vendored
@@ -76,13 +76,7 @@ jobs:
|
||||
cd ${{github.workspace}}
|
||||
fail="FALSE"
|
||||
repo_name=${{ github.event.pull_request.head.repo.full_name }}
|
||||
if [ "$(echo "$repo_name"|cut -d'/' -f1)" != "opea-project" ]; then
|
||||
owner=$(echo "${{ github.event.pull_request.head.repo.full_name }}" |cut -d'/' -f1)
|
||||
branch="https://github.com/$owner/GenAIExamples/tree/${{ github.event.pull_request.head.ref }}"
|
||||
else
|
||||
branch="https://github.com/opea-project/GenAIExamples/blob/${{ github.event.pull_request.head.ref }}"
|
||||
fi
|
||||
link_head="https://github.com/opea-project/GenAIExamples/blob/main"
|
||||
branch="https://github.com/$repo_name/blob/${{ github.event.pull_request.head.ref }}"
|
||||
|
||||
merged_commit=$(git log -1 --format='%H')
|
||||
changed_files="$(git diff --name-status --diff-filter=ARM ${{ github.event.pull_request.base.sha }} ${merged_commit} | awk '/\.md$/ {print $NF}')"
|
||||
|
||||
@@ -30,13 +30,20 @@ case "$1" in
|
||||
echo "$ports"
|
||||
for port in $ports; do
|
||||
if [[ $port =~ [a-zA-Z_-] ]]; then
|
||||
port=$(grep -E "export $port=" tests/$test_case | cut -d'=' -f2)
|
||||
echo "Search port value $port from the test case..."
|
||||
port_fix=$(grep -E "export $port=" tests/$test_case | cut -d'=' -f2)
|
||||
if [[ "$port_fix" == "" ]]; then
|
||||
echo "Can't find the port value from the test case, use the default value in yaml..."
|
||||
port_fix=$(yq '.services[].ports[]' $yaml_file | grep $port | cut -d':' -f2 | grep -o '[0-9a-zA-Z]\+')
|
||||
fi
|
||||
port=$port_fix
|
||||
fi
|
||||
if [[ $port =~ [0-9] ]]; then
|
||||
if [[ $port == 5000 ]]; then
|
||||
echo "Error: Port 5000 is used by local docker registry, please DO NOT use it in docker compose deployment!!!"
|
||||
exit 1
|
||||
fi
|
||||
echo "Check port $port..."
|
||||
cid=$(docker ps --filter "publish=${port}" --format "{{.ID}}")
|
||||
if [[ ! -z "$cid" ]]; then docker stop $cid && docker rm $cid && echo "release $port"; fi
|
||||
fi
|
||||
|
||||
1
.github/workflows/scripts/get_test_matrix.sh
vendored
@@ -12,6 +12,7 @@ run_matrix="{\"include\":["
|
||||
|
||||
examples=$(printf '%s\n' "${changed_files[@]}" | grep '/' | cut -d'/' -f1 | sort -u)
|
||||
for example in ${examples}; do
|
||||
if [[ ! -d $WORKSPACE/$example ]]; then continue; fi
|
||||
cd $WORKSPACE/$example
|
||||
if [[ ! $(find . -type f | grep ${test_mode}) ]]; then continue; fi
|
||||
cd tests
|
||||
|
||||
4
.github/workflows/weekly-update-images.yml
vendored
@@ -1,11 +1,9 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
name: Weekly update base images and 3rd party images
|
||||
name: Weekly update 3rd party images
|
||||
|
||||
on:
|
||||
schedule:
|
||||
- cron: "0 0 * * 0"
|
||||
workflow_dispatch:
|
||||
|
||||
permissions:
|
||||
|
||||
@@ -1,8 +1,16 @@
|
||||
# Agents for Question Answering
|
||||
|
||||
## Table of contents
|
||||
|
||||
1. [Overview](#overview)
|
||||
2. [Deploy with Docker](#deploy-with-docker)
|
||||
3. [Launch the UI](#launch-the-ui)
|
||||
4. [Validate Services](#validate-services)
|
||||
5. [Register Tools](#how-to-register-other-tools-with-the-ai-agent)
|
||||
|
||||
## Overview
|
||||
|
||||
This example showcases a hierarchical multi-agent system for question-answering applications. The architecture diagram is shown below. The supervisor agent interfaces with the user and dispatch tasks to two worker agents to gather information and come up with answers. The worker RAG agent uses the retrieval tool to retrieve relevant documents from the knowledge base (a vector database). The worker SQL agent retrieve relevant data from the SQL database. Although not included in this example, but other tools such as a web search tool or a knowledge graph query tool can be used by the supervisor agent to gather information from additional sources.
|
||||
This example showcases a hierarchical multi-agent system for question-answering applications. The architecture diagram below shows a supervisor agent that interfaces with the user and dispatches tasks to two worker agents to gather information and come up with answers. The worker RAG agent uses the retrieval tool to retrieve relevant documents from a knowledge base - a vector database. The worker SQL agent retrieves relevant data from a SQL database. Although not included in this example by default, other tools such as a web search tool or a knowledge graph query tool can be used by the supervisor agent to gather information from additional sources.
|
||||

|
||||
|
||||
The AgentQnA example is implemented using the component-level microservices defined in [GenAIComps](https://github.com/opea-project/GenAIComps). The flow chart below shows the information flow between different microservices for this example.
|
||||
@@ -75,190 +83,169 @@ flowchart LR
|
||||
|
||||
```
|
||||
|
||||
### Why Agent for question answering?
|
||||
### Why should AI Agents be used for question-answering?
|
||||
|
||||
1. Improve relevancy of retrieved context.
|
||||
RAG agent can rephrase user queries, decompose user queries, and iterate to get the most relevant context for answering user's questions. Compared to conventional RAG, RAG agent can significantly improve the correctness and relevancy of the answer.
|
||||
2. Expand scope of the agent.
|
||||
The supervisor agent can interact with multiple worker agents that specialize in different domains with different skills (e.g., retrieve documents, write SQL queries, etc.), and thus can answer questions in multiple domains.
|
||||
3. Hierarchical multi-agents can improve performance.
|
||||
Expert worker agents, such as RAG agent and SQL agent, can provide high-quality output for different aspects of a complex query, and the supervisor agent can aggregate the information together to provide a comprehensive answer. If we only use one agent and provide all the tools to this single agent, it may get overwhelmed and not able to provide accurate answers.
|
||||
1. **Improve relevancy of retrieved context.**
|
||||
RAG agents can rephrase user queries, decompose user queries, and iterate to get the most relevant context for answering a user's question. Compared to conventional RAG, RAG agents significantly improve the correctness and relevancy of the answer because of the iterations it goes through.
|
||||
2. **Expand scope of skills.**
|
||||
The supervisor agent interacts with multiple worker agents that specialize in different skills (e.g., retrieve documents, write SQL queries, etc.). Thus, it can answer questions with different methods.
|
||||
3. **Hierarchical multi-agents improve performance.**
|
||||
Expert worker agents, such as RAG agents and SQL agents, can provide high-quality output for different aspects of a complex query, and the supervisor agent can aggregate the information to provide a comprehensive answer. If only one agent is used and all tools are provided to this single agent, it can lead to large overhead or not use the best tool to provide accurate answers.
|
||||
|
||||
## Deploy with docker
|
||||
|
||||
1. Build agent docker image [Optional]
|
||||
### 1. Set up environment </br>
|
||||
|
||||
> [!NOTE]
|
||||
> the step is optional. The docker images will be automatically pulled when running the docker compose commands. This step is only needed if pulling images failed.
|
||||
|
||||
First, clone the opea GenAIComps repo.
|
||||
#### First, clone the `GenAIExamples` repo.
|
||||
|
||||
```
|
||||
export WORKDIR=<your-work-directory>
|
||||
cd $WORKDIR
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
git clone https://github.com/opea-project/GenAIExamples.git
|
||||
```
|
||||
|
||||
Then build the agent docker image. Both the supervisor agent and the worker agent will use the same docker image, but when we launch the two agents we will specify different strategies and register different tools.
|
||||
#### Second, set up environment variables.
|
||||
|
||||
##### For proxy environments only
|
||||
|
||||
```
|
||||
cd GenAIComps
|
||||
docker build -t opea/agent:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/agent/src/Dockerfile .
|
||||
export http_proxy="Your_HTTP_Proxy"
|
||||
export https_proxy="Your_HTTPs_Proxy"
|
||||
# Example: no_proxy="localhost, 127.0.0.1, 192.168.1.1"
|
||||
export no_proxy="Your_No_Proxy"
|
||||
```
|
||||
|
||||
2. Set up environment for this example </br>
|
||||
##### For using open-source llms
|
||||
|
||||
First, clone this repo.
|
||||
```
|
||||
export HUGGINGFACEHUB_API_TOKEN=<your-HF-token>
|
||||
export HF_CACHE_DIR=<directory-where-llms-are-downloaded> #so that no need to redownload every time
|
||||
```
|
||||
|
||||
```
|
||||
export WORKDIR=<your-work-directory>
|
||||
cd $WORKDIR
|
||||
git clone https://github.com/opea-project/GenAIExamples.git
|
||||
```
|
||||
##### [Optional] OPANAI_API_KEY to use OpenAI models
|
||||
|
||||
Second, set up env vars.
|
||||
```
|
||||
export OPENAI_API_KEY=<your-openai-key>
|
||||
```
|
||||
|
||||
```
|
||||
# Example: host_ip="192.168.1.1" or export host_ip="External_Public_IP"
|
||||
export host_ip=$(hostname -I | awk '{print $1}')
|
||||
# if you are in a proxy environment, also set the proxy-related environment variables
|
||||
export http_proxy="Your_HTTP_Proxy"
|
||||
export https_proxy="Your_HTTPs_Proxy"
|
||||
# Example: no_proxy="localhost, 127.0.0.1, 192.168.1.1"
|
||||
export no_proxy="Your_No_Proxy"
|
||||
#### Third, set up environment variables for the selected hardware using the corresponding `set_env.sh`
|
||||
|
||||
export TOOLSET_PATH=$WORKDIR/GenAIExamples/AgentQnA/tools/
|
||||
# for using open-source llms
|
||||
export HUGGINGFACEHUB_API_TOKEN=<your-HF-token>
|
||||
export HF_CACHE_DIR=<directory-where-llms-are-downloaded> #so that no need to redownload every time
|
||||
##### Gaudi
|
||||
|
||||
# optional: OPANAI_API_KEY if you want to use OpenAI models
|
||||
export OPENAI_API_KEY=<your-openai-key>
|
||||
```
|
||||
```
|
||||
source $WORKDIR/GenAIExamples/AgentQnA/docker_compose/intel/hpu/gaudi/set_env.sh
|
||||
```
|
||||
|
||||
3. Deploy the retrieval tool (i.e., DocIndexRetriever mega-service)
|
||||
##### Xeon
|
||||
|
||||
First, launch the mega-service.
|
||||
```
|
||||
source $WORKDIR/GenAIExamples/AgentQnA/docker_compose/intel/cpu/xeon/set_env.sh
|
||||
```
|
||||
|
||||
```
|
||||
cd $WORKDIR/GenAIExamples/AgentQnA/retrieval_tool
|
||||
bash launch_retrieval_tool.sh
|
||||
```
|
||||
### 2. Launch the multi-agent system. </br>
|
||||
|
||||
Then, ingest data into the vector database. Here we provide an example. You can ingest your own data.
|
||||
Two options are provided for the `llm_engine` of the agents: 1. open-source LLMs on Gaudi, 2. OpenAI models via API calls.
|
||||
|
||||
```
|
||||
bash run_ingest_data.sh
|
||||
```
|
||||
#### Gaudi
|
||||
|
||||
4. Prepare SQL database
|
||||
In this example, we will use the Chinook SQLite database. Run the commands below.
|
||||
On Gaudi, `meta-llama/Meta-Llama-3.1-70B-Instruct` will be served using vllm.
|
||||
By default, both the RAG agent and SQL agent will be launched to support the React Agent.
|
||||
The React Agent requires the DocIndexRetriever's [`compose.yaml`](../DocIndexRetriever/docker_compose/intel/cpu/xeon/compose.yaml) file, so two `compose.yaml` files need to be run with docker compose to start the multi-agent system.
|
||||
|
||||
```
|
||||
# Download data
|
||||
cd $WORKDIR
|
||||
git clone https://github.com/lerocha/chinook-database.git
|
||||
cp chinook-database/ChinookDatabase/DataSources/Chinook_Sqlite.sqlite $WORKDIR/GenAIExamples/AgentQnA/tests/
|
||||
```
|
||||
> **Note**: To enable the web search tool, skip this step and proceed to the "[Optional] Web Search Tool Support" section.
|
||||
|
||||
5. Launch other tools. </br>
|
||||
In this example, we will use some of the mock APIs provided in the Meta CRAG KDD Challenge to demonstrate the benefits of gaining additional context from mock knowledge graphs.
|
||||
```bash
|
||||
cd $WORKDIR/GenAIExamples/AgentQnA/docker_compose/intel/hpu/gaudi/
|
||||
docker compose -f $WORKDIR/GenAIExamples/DocIndexRetriever/docker_compose/intel/cpu/xeon/compose.yaml -f compose.yaml up -d
|
||||
```
|
||||
|
||||
```
|
||||
docker run -d -p=8080:8000 docker.io/aicrowd/kdd-cup-24-crag-mock-api:v0
|
||||
```
|
||||
To enable Open Telemetry Tracing, compose.telemetry.yaml file need to be merged along with default compose.yaml file.
|
||||
Gaudi example with Open Telemetry feature:
|
||||
|
||||
6. Launch multi-agent system. </br>
|
||||
We provide two options for `llm_engine` of the agents: 1. open-source LLMs on Intel Gaudi2, 2. OpenAI models via API calls.
|
||||
```bash
|
||||
cd $WORKDIR/GenAIExamples/AgentQnA/docker_compose/intel/hpu/gaudi/
|
||||
docker compose -f $WORKDIR/GenAIExamples/DocIndexRetriever/docker_compose/intel/cpu/xeon/compose.yaml -f compose.yaml -f compose.telemetry.yaml up -d
|
||||
```
|
||||
|
||||
::::{tab-set}
|
||||
:::{tab-item} Gaudi
|
||||
:sync: Gaudi
|
||||
##### [Optional] Web Search Tool Support
|
||||
|
||||
On Gaudi2 we will serve `meta-llama/Meta-Llama-3.1-70B-Instruct` using vllm.
|
||||
<details>
|
||||
<summary> Instructions </summary>
|
||||
A web search tool is supported in this example and can be enabled by running docker compose with the `compose.webtool.yaml` file.
|
||||
The Google Search API is used. Follow the [instructions](https://python.langchain.com/docs/integrations/tools/google_search) to create an API key and enable the Custom Search API on a Google account. The environment variables `GOOGLE_CSE_ID` and `GOOGLE_API_KEY` need to be set.
|
||||
|
||||
First build vllm-gaudi docker image.
|
||||
```bash
|
||||
cd $WORKDIR/GenAIExamples/AgentQnA/docker_compose/intel/hpu/gaudi/
|
||||
export GOOGLE_CSE_ID="YOUR_ID"
|
||||
export GOOGLE_API_KEY="YOUR_API_KEY"
|
||||
docker compose -f $WORKDIR/GenAIExamples/DocIndexRetriever/docker_compose/intel/cpu/xeon/compose.yaml -f compose.yaml -f compose.webtool.yaml up -d
|
||||
```
|
||||
|
||||
```bash
|
||||
cd $WORKDIR
|
||||
git clone https://github.com/vllm-project/vllm.git
|
||||
cd ./vllm
|
||||
git checkout v0.6.6
|
||||
docker build --no-cache -f Dockerfile.hpu -t opea/vllm-gaudi:latest --shm-size=128g . --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy
|
||||
```
|
||||
</details>
|
||||
|
||||
Then launch vllm on Gaudi2 with the command below.
|
||||
#### Xeon
|
||||
|
||||
```bash
|
||||
vllm_port=8086
|
||||
model="meta-llama/Meta-Llama-3.1-70B-Instruct"
|
||||
docker run -d --runtime=habana --rm --name "vllm-gaudi-server" -e HABANA_VISIBLE_DEVICES=0,1,2,3 -p $vllm_port:8000 -v $vllm_volume:/data -e HF_TOKEN=$HF_TOKEN -e HUGGING_FACE_HUB_TOKEN=$HF_TOKEN -e HF_HOME=/data -e OMPI_MCA_btl_vader_single_copy_mechanism=none -e PT_HPU_ENABLE_LAZY_COLLECTIVES=true -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e no_proxy=$no_proxy -e VLLM_SKIP_WARMUP=true --cap-add=sys_nice --ipc=host opea/vllm-gaudi:latest --model ${model} --max-seq-len-to-capture 16384 --tensor-parallel-size 4
|
||||
```
|
||||
On Xeon, only OpenAI models are supported.
|
||||
By default, both the RAG Agent and SQL Agent will be launched to support the React Agent.
|
||||
The React Agent requires the DocIndexRetriever's [`compose.yaml`](../DocIndexRetriever/docker_compose/intel/cpu/xeon/compose.yaml) file, so two `compose yaml` files need to be run with docker compose to start the multi-agent system.
|
||||
|
||||
Then launch Agent microservices.
|
||||
```bash
|
||||
export OPENAI_API_KEY=<your-openai-key>
|
||||
cd $WORKDIR/GenAIExamples/AgentQnA/docker_compose/intel/cpu/xeon
|
||||
docker compose -f $WORKDIR/GenAIExamples/DocIndexRetriever/docker_compose/intel/cpu/xeon/compose.yaml -f compose_openai.yaml up -d
|
||||
```
|
||||
|
||||
```bash
|
||||
cd $WORKDIR/GenAIExamples/AgentQnA/docker_compose/intel/hpu/gaudi/
|
||||
bash launch_agent_service_gaudi.sh
|
||||
```
|
||||
### 3. Ingest Data into the vector database
|
||||
|
||||
:::
|
||||
:::{tab-item} Xeon
|
||||
:sync: Xeon
|
||||
The `run_ingest_data.sh` script will use an example jsonl file to ingest example documents into a vector database. Other ways to ingest data and other types of documents supported can be found in the OPEA dataprep microservice located in the opea-project/GenAIComps repo.
|
||||
|
||||
To use OpenAI models, run commands below.
|
||||
```bash
|
||||
cd $WORKDIR/GenAIExamples/AgentQnA/retrieval_tool/
|
||||
bash run_ingest_data.sh
|
||||
```
|
||||
|
||||
```
|
||||
export OPENAI_API_KEY=<your-openai-key>
|
||||
cd $WORKDIR/GenAIExamples/AgentQnA/docker_compose/intel/cpu/xeon
|
||||
bash launch_agent_service_openai.sh
|
||||
```
|
||||
> **Note**: This is a one-time operation.
|
||||
|
||||
:::
|
||||
::::
|
||||
## Launch the UI
|
||||
|
||||
## Deploy AgentQnA UI
|
||||
Open a web browser to http://localhost:5173 to access the UI. Ensure the environment variable `AGENT_URL` is set to http://$ip_address:9090/v1/chat/completions in [ui/svelte/.env](./ui/svelte/.env) or else the UI may not work properly.
|
||||
|
||||
The AgentQnA UI can be deployed locally or using Docker.
|
||||
The AgentQnA UI can be deployed locally or using Docker. To customize deployment, refer to the [AgentQnA UI Guide](./ui/svelte/README.md).
|
||||
|
||||
For detailed instructions on deploying AgentQnA UI, refer to the [AgentQnA UI Guide](./ui/svelte/README.md).
|
||||
|
||||
## Deploy using Helm Chart
|
||||
## [Optional] Deploy using Helm Charts
|
||||
|
||||
Refer to the [AgentQnA helm chart](./kubernetes/helm/README.md) for instructions on deploying AgentQnA on Kubernetes.
|
||||
|
||||
## Validate services
|
||||
## Validate Services
|
||||
|
||||
1. First look at logs of the agent docker containers:
|
||||
1. First look at logs for each of the agent docker containers:
|
||||
|
||||
```
|
||||
```bash
|
||||
# worker RAG agent
|
||||
docker logs rag-agent-endpoint
|
||||
|
||||
# worker SQL agent
|
||||
docker logs sql-agent-endpoint
|
||||
```
|
||||
|
||||
```
|
||||
# supervisor agent
|
||||
docker logs react-agent-endpoint
|
||||
```
|
||||
|
||||
You should see something like "HTTP server setup successful" if the docker containers are started successfully.</p>
|
||||
Look for the message "HTTP server setup successful" to confirm the agent docker container has started successfully.</p>
|
||||
|
||||
2. You can use python to validate the agent system
|
||||
2. Use python to validate each agent is working properly:
|
||||
|
||||
```bash
|
||||
# RAG worker agent
|
||||
python tests/test.py --prompt "Tell me about Michael Jackson song Thriller" --agent_role "worker" --ext_port 9095
|
||||
python $WORKDIR/GenAIExamples/AgentQnA/tests/test.py --prompt "Tell me about Michael Jackson song Thriller" --agent_role "worker" --ext_port 9095
|
||||
|
||||
# SQL agent
|
||||
python tests/test.py --prompt "How many employees in company" --agent_role "worker" --ext_port 9096
|
||||
python $WORKDIR/GenAIExamples/AgentQnA/tests/test.py --prompt "How many employees in company" --agent_role "worker" --ext_port 9096
|
||||
|
||||
# supervisor agent: this will test a two-turn conversation
|
||||
python tests/test.py --agent_role "supervisor" --ext_port 9090
|
||||
python $WORKDIR/GenAIExamples/AgentQnA/tests/test.py --agent_role "supervisor" --ext_port 9090
|
||||
```
|
||||
|
||||
## How to register your own tools with agent
|
||||
## How to register other tools with the AI agent
|
||||
|
||||
You can take a look at the tools yaml and python files in this example. For more details, please refer to the "Provide your own tools" section in the instructions [here](https://github.com/opea-project/GenAIComps/tree/main/comps/agent/src/README.md).
|
||||
The [tools](./tools) folder contains YAML and Python files for additional tools for the supervisor and worker agents. Refer to the "Provide your own tools" section in the instructions [here](https://github.com/opea-project/GenAIComps/tree/main/comps/agent/src/README.md) to add tools and customize the AI agents.
|
||||
|
||||
@@ -1,101 +1,342 @@
|
||||
# Single node on-prem deployment with Docker Compose on AMD GPU
|
||||
# Build Mega Service of AgentQnA on AMD ROCm GPU
|
||||
|
||||
This example showcases a hierarchical multi-agent system for question-answering applications. We deploy the example on Xeon. For LLMs, we use OpenAI models via API calls. For instructions on using open-source LLMs, please refer to the deployment guide [here](../../../../README.md).
|
||||
## Build Docker Images
|
||||
|
||||
## Deployment with docker
|
||||
### 1. Build Docker Image
|
||||
|
||||
1. First, clone this repo.
|
||||
```
|
||||
export WORKDIR=<your-work-directory>
|
||||
cd $WORKDIR
|
||||
git clone https://github.com/opea-project/GenAIExamples.git
|
||||
```
|
||||
2. Set up environment for this example </br>
|
||||
- #### Create application install directory and go to it:
|
||||
|
||||
```
|
||||
# Example: host_ip="192.168.1.1" or export host_ip="External_Public_IP"
|
||||
export host_ip=$(hostname -I | awk '{print $1}')
|
||||
# if you are in a proxy environment, also set the proxy-related environment variables
|
||||
export http_proxy="Your_HTTP_Proxy"
|
||||
export https_proxy="Your_HTTPs_Proxy"
|
||||
# Example: no_proxy="localhost, 127.0.0.1, 192.168.1.1"
|
||||
export no_proxy="Your_No_Proxy"
|
||||
```bash
|
||||
mkdir ~/agentqna-install && cd agentqna-install
|
||||
```
|
||||
|
||||
export TOOLSET_PATH=$WORKDIR/GenAIExamples/AgentQnA/tools/
|
||||
#OPANAI_API_KEY if you want to use OpenAI models
|
||||
export OPENAI_API_KEY=<your-openai-key>
|
||||
# Set AMD GPU settings
|
||||
export AGENTQNA_CARD_ID="card1"
|
||||
export AGENTQNA_RENDER_ID="renderD136"
|
||||
```
|
||||
- #### Clone the repository GenAIExamples (the default repository branch "main" is used here):
|
||||
|
||||
3. Deploy the retrieval tool (i.e., DocIndexRetriever mega-service)
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIExamples.git
|
||||
```
|
||||
|
||||
First, launch the mega-service.
|
||||
If you need to use a specific branch/tag of the GenAIExamples repository, then (v1.3 replace with its own value):
|
||||
|
||||
```
|
||||
cd $WORKDIR/GenAIExamples/AgentQnA/retrieval_tool
|
||||
bash launch_retrieval_tool.sh
|
||||
```
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIExamples.git && cd GenAIExamples && git checkout v1.3
|
||||
```
|
||||
|
||||
Then, ingest data into the vector database. Here we provide an example. You can ingest your own data.
|
||||
We remind you that when using a specific version of the code, you need to use the README from this version:
|
||||
|
||||
```
|
||||
bash run_ingest_data.sh
|
||||
```
|
||||
- #### Go to build directory:
|
||||
|
||||
4. Launch Tool service
|
||||
In this example, we will use some of the mock APIs provided in the Meta CRAG KDD Challenge to demonstrate the benefits of gaining additional context from mock knowledge graphs.
|
||||
```
|
||||
docker run -d -p=8080:8000 docker.io/aicrowd/kdd-cup-24-crag-mock-api:v0
|
||||
```
|
||||
5. Launch `Agent` service
|
||||
```bash
|
||||
cd ~/agentqna-install/GenAIExamples/AgentQnA/docker_image_build
|
||||
```
|
||||
|
||||
```
|
||||
cd $WORKDIR/GenAIExamples/AgentQnA/docker_compose/amd/gpu/rocm
|
||||
bash launch_agent_service_tgi_rocm.sh
|
||||
```
|
||||
- Cleaning up the GenAIComps repository if it was previously cloned in this directory.
|
||||
This is necessary if the build was performed earlier and the GenAIComps folder exists and is not empty:
|
||||
|
||||
6. [Optional] Build `Agent` docker image if pulling images failed.
|
||||
```bash
|
||||
echo Y | rm -R GenAIComps
|
||||
```
|
||||
|
||||
```
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
docker build -t opea/agent:latest -f comps/agent/src/Dockerfile .
|
||||
```
|
||||
- #### Clone the repository GenAIComps (the default repository branch "main" is used here):
|
||||
|
||||
## Validate services
|
||||
|
||||
First look at logs of the agent docker containers:
|
||||
|
||||
```
|
||||
# worker agent
|
||||
docker logs rag-agent-endpoint
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
```
|
||||
|
||||
```
|
||||
# supervisor agent
|
||||
docker logs react-agent-endpoint
|
||||
We remind you that when using a specific version of the code, you need to use the README from this version.
|
||||
|
||||
- #### Setting the list of images for the build (from the build file.yaml)
|
||||
|
||||
If you want to deploy a vLLM-based or TGI-based application, then the set of services is installed as follows:
|
||||
|
||||
#### vLLM-based application
|
||||
|
||||
```bash
|
||||
service_list="vllm-rocm agent agent-ui"
|
||||
```
|
||||
|
||||
#### TGI-based application
|
||||
|
||||
```bash
|
||||
service_list="agent agent-ui"
|
||||
```
|
||||
|
||||
- #### Optional. Pull TGI Docker Image (Do this if you want to use TGI)
|
||||
|
||||
```bash
|
||||
docker pull ghcr.io/huggingface/text-generation-inference:2.3.1-rocm
|
||||
```
|
||||
|
||||
- #### Build Docker Images
|
||||
|
||||
```bash
|
||||
docker compose -f build.yaml build ${service_list} --no-cache
|
||||
```
|
||||
|
||||
- #### Build DocIndexRetriever Docker Images
|
||||
|
||||
```bash
|
||||
cd ~/agentqna-install/GenAIExamples/DocIndexRetriever/docker_image_build/
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
service_list="doc-index-retriever dataprep embedding retriever reranking"
|
||||
docker compose -f build.yaml build ${service_list} --no-cache
|
||||
```
|
||||
|
||||
- #### Pull DocIndexRetriever Docker Images
|
||||
|
||||
```bash
|
||||
docker pull redis/redis-stack:7.2.0-v9
|
||||
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
|
||||
```
|
||||
|
||||
After the build, we check the list of images with the command:
|
||||
|
||||
```bash
|
||||
docker image ls
|
||||
```
|
||||
|
||||
The list of images should include:
|
||||
|
||||
##### vLLM-based application:
|
||||
|
||||
- opea/vllm-rocm:latest
|
||||
- opea/agent:latest
|
||||
- redis/redis-stack:7.2.0-v9
|
||||
- ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
|
||||
- opea/embedding:latest
|
||||
- opea/retriever:latest
|
||||
- opea/reranking:latest
|
||||
- opea/doc-index-retriever:latest
|
||||
|
||||
##### TGI-based application:
|
||||
|
||||
- ghcr.io/huggingface/text-generation-inference:2.3.1-rocm
|
||||
- opea/agent:latest
|
||||
- redis/redis-stack:7.2.0-v9
|
||||
- ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
|
||||
- opea/embedding:latest
|
||||
- opea/retriever:latest
|
||||
- opea/reranking:latest
|
||||
- opea/doc-index-retriever:latest
|
||||
|
||||
---
|
||||
|
||||
## Deploy the AgentQnA Application
|
||||
|
||||
### Docker Compose Configuration for AMD GPUs
|
||||
|
||||
To enable GPU support for AMD GPUs, the following configuration is added to the Docker Compose file:
|
||||
|
||||
- compose_vllm.yaml - for vLLM-based application
|
||||
- compose.yaml - for TGI-based
|
||||
|
||||
```yaml
|
||||
shm_size: 1g
|
||||
devices:
|
||||
- /dev/kfd:/dev/kfd
|
||||
- /dev/dri:/dev/dri
|
||||
cap_add:
|
||||
- SYS_PTRACE
|
||||
group_add:
|
||||
- video
|
||||
security_opt:
|
||||
- seccomp:unconfined
|
||||
```
|
||||
|
||||
You should see something like "HTTP server setup successful" if the docker containers are started successfully.</p>
|
||||
This configuration forwards all available GPUs to the container. To use a specific GPU, specify its `cardN` and `renderN` device IDs. For example:
|
||||
|
||||
Second, validate worker agent:
|
||||
|
||||
```
|
||||
curl http://${host_ip}:9095/v1/chat/completions -X POST -H "Content-Type: application/json" -d '{
|
||||
"query": "Most recent album by Taylor Swift"
|
||||
}'
|
||||
```yaml
|
||||
shm_size: 1g
|
||||
devices:
|
||||
- /dev/kfd:/dev/kfd
|
||||
- /dev/dri/card0:/dev/dri/card0
|
||||
- /dev/dri/render128:/dev/dri/render128
|
||||
cap_add:
|
||||
- SYS_PTRACE
|
||||
group_add:
|
||||
- video
|
||||
security_opt:
|
||||
- seccomp:unconfined
|
||||
```
|
||||
|
||||
Third, validate supervisor agent:
|
||||
**How to Identify GPU Device IDs:**
|
||||
Use AMD GPU driver utilities to determine the correct `cardN` and `renderN` IDs for your GPU.
|
||||
|
||||
```
|
||||
curl http://${host_ip}:9090/v1/chat/completions -X POST -H "Content-Type: application/json" -d '{
|
||||
"query": "Most recent album by Taylor Swift"
|
||||
}'
|
||||
### Set deploy environment variables
|
||||
|
||||
#### Setting variables in the operating system environment:
|
||||
|
||||
```bash
|
||||
### Replace the string 'server_address' with your local server IP address
|
||||
export host_ip='server_address'
|
||||
### Replace the string 'your_huggingfacehub_token' with your HuggingFacehub repository access token.
|
||||
export HUGGINGFACEHUB_API_TOKEN='your_huggingfacehub_token'
|
||||
### Replace the string 'your_langchain_api_key' with your LANGCHAIN API KEY.
|
||||
export LANGCHAIN_API_KEY='your_langchain_api_key'
|
||||
export LANGCHAIN_TRACING_V2=""
|
||||
```
|
||||
|
||||
## How to register your own tools with agent
|
||||
### Start the services:
|
||||
|
||||
You can take a look at the tools yaml and python files in this example. For more details, please refer to the "Provide your own tools" section in the instructions [here](https://github.com/opea-project/GenAIComps/tree/main/comps/agent/src/README.md).
|
||||
#### If you use vLLM
|
||||
|
||||
```bash
|
||||
cd ~/agentqna-install/GenAIExamples/AgentQnA/docker_compose/amd/gpu/rocm
|
||||
bash launch_agent_service_vllm_rocm.sh
|
||||
```
|
||||
|
||||
#### If you use TGI
|
||||
|
||||
```bash
|
||||
cd ~/agentqna-install/GenAIExamples/AgentQnA/docker_compose/amd/gpu/rocm
|
||||
bash launch_agent_service_tgi_rocm.sh
|
||||
```
|
||||
|
||||
All containers should be running and should not restart:
|
||||
|
||||
##### If you use vLLM:
|
||||
|
||||
- dataprep-redis-server
|
||||
- doc-index-retriever-server
|
||||
- embedding-server
|
||||
- rag-agent-endpoint
|
||||
- react-agent-endpoint
|
||||
- redis-vector-db
|
||||
- reranking-tei-xeon-server
|
||||
- retriever-redis-server
|
||||
- sql-agent-endpoint
|
||||
- tei-embedding-server
|
||||
- tei-reranking-server
|
||||
- vllm-service
|
||||
|
||||
##### If you use TGI:
|
||||
|
||||
- dataprep-redis-server
|
||||
- doc-index-retriever-server
|
||||
- embedding-server
|
||||
- rag-agent-endpoint
|
||||
- react-agent-endpoint
|
||||
- redis-vector-db
|
||||
- reranking-tei-xeon-server
|
||||
- retriever-redis-server
|
||||
- sql-agent-endpoint
|
||||
- tei-embedding-server
|
||||
- tei-reranking-server
|
||||
- tgi-service
|
||||
|
||||
---
|
||||
|
||||
## Validate the Services
|
||||
|
||||
### 1. Validate the vLLM/TGI Service
|
||||
|
||||
#### If you use vLLM:
|
||||
|
||||
```bash
|
||||
DATA='{"model": "Intel/neural-chat-7b-v3-3t", '\
|
||||
'"messages": [{"role": "user", "content": "What is Deep Learning?"}], "max_tokens": 256}'
|
||||
|
||||
curl http://${HOST_IP}:${VLLM_SERVICE_PORT}/v1/chat/completions \
|
||||
-X POST \
|
||||
-d "$DATA" \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
Checking the response from the service. The response should be similar to JSON:
|
||||
|
||||
```json
|
||||
{
|
||||
"id": "chatcmpl-142f34ef35b64a8db3deedd170fed951",
|
||||
"object": "chat.completion",
|
||||
"created": 1742270316,
|
||||
"model": "Intel/neural-chat-7b-v3-3",
|
||||
"choices": [
|
||||
{
|
||||
"index": 0,
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": "",
|
||||
"tool_calls": []
|
||||
},
|
||||
"logprobs": null,
|
||||
"finish_reason": "length",
|
||||
"stop_reason": null
|
||||
}
|
||||
],
|
||||
"usage": { "prompt_tokens": 66, "total_tokens": 322, "completion_tokens": 256, "prompt_tokens_details": null },
|
||||
"prompt_logprobs": null
|
||||
}
|
||||
```
|
||||
|
||||
If the service response has a meaningful response in the value of the "choices.message.content" key,
|
||||
then we consider the vLLM service to be successfully launched
|
||||
|
||||
#### If you use TGI:
|
||||
|
||||
```bash
|
||||
DATA='{"inputs":"What is Deep Learning?",'\
|
||||
'"parameters":{"max_new_tokens":256,"do_sample": true}}'
|
||||
|
||||
curl http://${HOST_IP}:${TGI_SERVICE_PORT}/generate \
|
||||
-X POST \
|
||||
-d "$DATA" \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
Checking the response from the service. The response should be similar to JSON:
|
||||
|
||||
```json
|
||||
{
|
||||
"generated_text": " "
|
||||
}
|
||||
```
|
||||
|
||||
If the service response has a meaningful response in the value of the "generated_text" key,
|
||||
then we consider the TGI service to be successfully launched
|
||||
|
||||
### 2. Validate Agent Services
|
||||
|
||||
#### Validate Rag Agent Service
|
||||
|
||||
```bash
|
||||
export agent_port=${WORKER_RAG_AGENT_PORT}
|
||||
prompt="Tell me about Michael Jackson song Thriller"
|
||||
python3 ~/agentqna-install/GenAIExamples/AgentQnA/tests/test.py --prompt "$prompt" --agent_role "worker" --ext_port $agent_port
|
||||
```
|
||||
|
||||
The response must contain the meaningful text of the response to the request from the "prompt" variable
|
||||
|
||||
#### Validate Sql Agent Service
|
||||
|
||||
```bash
|
||||
export agent_port=${WORKER_SQL_AGENT_PORT}
|
||||
prompt="How many employees are there in the company?"
|
||||
python3 ~/agentqna-install/GenAIExamples/AgentQnA/tests/test.py --prompt "$prompt" --agent_role "worker" --ext_port $agent_port
|
||||
```
|
||||
|
||||
The answer should make sense - "8 employees in the company"
|
||||
|
||||
#### Validate React (Supervisor) Agent Service
|
||||
|
||||
```bash
|
||||
export agent_port=${SUPERVISOR_REACT_AGENT_PORT}
|
||||
python3 ~/agentqna-install/GenAIExamples/AgentQnA/tests/test.py --agent_role "supervisor" --ext_port $agent_port --stream
|
||||
```
|
||||
|
||||
The response should contain "Iron Maiden"
|
||||
|
||||
### 3. Stop application
|
||||
|
||||
#### If you use vLLM
|
||||
|
||||
```bash
|
||||
cd ~/agentqna-install/GenAIExamples/AgentQnA/docker_compose/amd/gpu/rocm
|
||||
bash stop_agent_service_vllm_rocm.sh
|
||||
```
|
||||
|
||||
#### If you use TGI
|
||||
|
||||
```bash
|
||||
cd ~/agentqna-install/GenAIExamples/AgentQnA/docker_compose/amd/gpu/rocm
|
||||
bash stop_agent_service_tgi_rocm.sh
|
||||
```
|
||||
|
||||
@@ -1,26 +1,24 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# Copyright (C) 2025 Advanced Micro Devices, Inc.
|
||||
|
||||
services:
|
||||
agent-tgi-server:
|
||||
image: ${AGENTQNA_TGI_IMAGE}
|
||||
container_name: agent-tgi-server
|
||||
tgi-service:
|
||||
image: ghcr.io/huggingface/text-generation-inference:3.0.0-rocm
|
||||
container_name: tgi-service
|
||||
ports:
|
||||
- "${AGENTQNA_TGI_SERVICE_PORT-8085}:80"
|
||||
- "${TGI_SERVICE_PORT-8085}:80"
|
||||
volumes:
|
||||
- /var/opea/agent-service/:/data
|
||||
- "${MODEL_CACHE:-./data}:/data"
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
TGI_LLM_ENDPOINT: "http://${HOST_IP}:${AGENTQNA_TGI_SERVICE_PORT}"
|
||||
TGI_LLM_ENDPOINT: "http://${ip_address}:${TGI_SERVICE_PORT}"
|
||||
HUGGING_FACE_HUB_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
shm_size: 1g
|
||||
shm_size: 32g
|
||||
devices:
|
||||
- /dev/kfd:/dev/kfd
|
||||
- /dev/dri/${AGENTQNA_CARD_ID}:/dev/dri/${AGENTQNA_CARD_ID}
|
||||
- /dev/dri/${AGENTQNA_RENDER_ID}:/dev/dri/${AGENTQNA_RENDER_ID}
|
||||
- /dev/dri:/dev/dri
|
||||
cap_add:
|
||||
- SYS_PTRACE
|
||||
group_add:
|
||||
@@ -34,14 +32,14 @@ services:
|
||||
image: opea/agent:latest
|
||||
container_name: rag-agent-endpoint
|
||||
volumes:
|
||||
# - ${WORKDIR}/GenAIExamples/AgentQnA/docker_image_build/GenAIComps/comps/agent/langchain/:/home/user/comps/agent/langchain/
|
||||
- ${TOOLSET_PATH}:/home/user/tools/
|
||||
- "${TOOLSET_PATH}:/home/user/tools/"
|
||||
ports:
|
||||
- "9095:9095"
|
||||
- "${WORKER_RAG_AGENT_PORT:-9095}:9095"
|
||||
ipc: host
|
||||
environment:
|
||||
ip_address: ${ip_address}
|
||||
strategy: rag_agent_llama
|
||||
with_memory: false
|
||||
recursion_limit: ${recursion_limit_worker}
|
||||
llm_engine: tgi
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
@@ -61,21 +59,49 @@ services:
|
||||
LANGCHAIN_PROJECT: "opea-worker-agent-service"
|
||||
port: 9095
|
||||
|
||||
worker-sql-agent:
|
||||
image: opea/agent:latest
|
||||
container_name: sql-agent-endpoint
|
||||
volumes:
|
||||
- "${WORKDIR}/tests/Chinook_Sqlite.sqlite:/home/user/chinook-db/Chinook_Sqlite.sqlite:rw"
|
||||
ports:
|
||||
- "${WORKER_SQL_AGENT_PORT:-9096}:9096"
|
||||
ipc: host
|
||||
environment:
|
||||
ip_address: ${ip_address}
|
||||
strategy: sql_agent_llama
|
||||
with_memory: false
|
||||
db_name: ${db_name}
|
||||
db_path: ${db_path}
|
||||
use_hints: false
|
||||
recursion_limit: ${recursion_limit_worker}
|
||||
llm_engine: vllm
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
llm_endpoint_url: ${LLM_ENDPOINT_URL}
|
||||
model: ${LLM_MODEL_ID}
|
||||
temperature: ${temperature}
|
||||
max_new_tokens: ${max_new_tokens}
|
||||
stream: false
|
||||
require_human_feedback: false
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
port: 9096
|
||||
|
||||
supervisor-react-agent:
|
||||
image: opea/agent:latest
|
||||
container_name: react-agent-endpoint
|
||||
depends_on:
|
||||
- agent-tgi-server
|
||||
- worker-rag-agent
|
||||
volumes:
|
||||
# - ${WORKDIR}/GenAIExamples/AgentQnA/docker_image_build/GenAIComps/comps/agent/langchain/:/home/user/comps/agent/langchain/
|
||||
- ${TOOLSET_PATH}:/home/user/tools/
|
||||
- "${TOOLSET_PATH}:/home/user/tools/"
|
||||
ports:
|
||||
- "${AGENTQNA_FRONTEND_PORT}:9090"
|
||||
- "${SUPERVISOR_REACT_AGENT_PORT:-9090}:9090"
|
||||
ipc: host
|
||||
environment:
|
||||
ip_address: ${ip_address}
|
||||
strategy: react_langgraph
|
||||
strategy: react_llama
|
||||
with_memory: true
|
||||
recursion_limit: ${recursion_limit_supervisor}
|
||||
llm_engine: tgi
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
@@ -83,7 +109,7 @@ services:
|
||||
model: ${LLM_MODEL_ID}
|
||||
temperature: ${temperature}
|
||||
max_new_tokens: ${max_new_tokens}
|
||||
stream: false
|
||||
stream: true
|
||||
tools: /home/user/tools/supervisor_agent_tools.yaml
|
||||
require_human_feedback: false
|
||||
no_proxy: ${no_proxy}
|
||||
@@ -92,6 +118,7 @@ services:
|
||||
LANGCHAIN_API_KEY: ${LANGCHAIN_API_KEY}
|
||||
LANGCHAIN_TRACING_V2: ${LANGCHAIN_TRACING_V2}
|
||||
LANGCHAIN_PROJECT: "opea-supervisor-agent-service"
|
||||
CRAG_SERVER: $CRAG_SERVER
|
||||
WORKER_AGENT_URL: $WORKER_AGENT_URL
|
||||
CRAG_SERVER: ${CRAG_SERVER}
|
||||
WORKER_AGENT_URL: ${WORKER_AGENT_URL}
|
||||
SQL_AGENT_URL: ${SQL_AGENT_URL}
|
||||
port: 9090
|
||||
|
||||
128
AgentQnA/docker_compose/amd/gpu/rocm/compose_vllm.yaml
Normal file
@@ -0,0 +1,128 @@
|
||||
# Copyright (C) 2025 Advanced Micro Devices, Inc.
|
||||
|
||||
services:
|
||||
vllm-service:
|
||||
image: ${REGISTRY:-opea}/vllm-rocm:${TAG:-latest}
|
||||
container_name: vllm-service
|
||||
ports:
|
||||
- "${VLLM_SERVICE_PORT:-8081}:8011"
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
WILM_USE_TRITON_FLASH_ATTENTION: 0
|
||||
PYTORCH_JIT: 0
|
||||
volumes:
|
||||
- "${MODEL_CACHE:-./data}:/data"
|
||||
shm_size: 20G
|
||||
devices:
|
||||
- /dev/kfd:/dev/kfd
|
||||
- /dev/dri/:/dev/dri/
|
||||
cap_add:
|
||||
- SYS_PTRACE
|
||||
group_add:
|
||||
- video
|
||||
security_opt:
|
||||
- seccomp:unconfined
|
||||
- apparmor=unconfined
|
||||
command: "--model ${VLLM_LLM_MODEL_ID} --swap-space 16 --disable-log-requests --dtype float16 --tensor-parallel-size 4 --host 0.0.0.0 --port 8011 --num-scheduler-steps 1 --distributed-executor-backend \"mp\""
|
||||
ipc: host
|
||||
|
||||
worker-rag-agent:
|
||||
image: opea/agent:latest
|
||||
container_name: rag-agent-endpoint
|
||||
volumes:
|
||||
- ${TOOLSET_PATH}:/home/user/tools/
|
||||
ports:
|
||||
- "${WORKER_RAG_AGENT_PORT:-9095}:9095"
|
||||
ipc: host
|
||||
environment:
|
||||
ip_address: ${ip_address}
|
||||
strategy: rag_agent_llama
|
||||
with_memory: false
|
||||
recursion_limit: ${recursion_limit_worker}
|
||||
llm_engine: vllm
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
llm_endpoint_url: ${LLM_ENDPOINT_URL}
|
||||
model: ${LLM_MODEL_ID}
|
||||
temperature: ${temperature}
|
||||
max_new_tokens: ${max_new_tokens}
|
||||
stream: false
|
||||
tools: /home/user/tools/worker_agent_tools.yaml
|
||||
require_human_feedback: false
|
||||
RETRIEVAL_TOOL_URL: ${RETRIEVAL_TOOL_URL}
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
LANGCHAIN_API_KEY: ${LANGCHAIN_API_KEY}
|
||||
LANGCHAIN_TRACING_V2: ${LANGCHAIN_TRACING_V2}
|
||||
LANGCHAIN_PROJECT: "opea-worker-agent-service"
|
||||
port: 9095
|
||||
|
||||
worker-sql-agent:
|
||||
image: opea/agent:latest
|
||||
container_name: sql-agent-endpoint
|
||||
volumes:
|
||||
- "${WORKDIR}/tests/Chinook_Sqlite.sqlite:/home/user/chinook-db/Chinook_Sqlite.sqlite:rw"
|
||||
ports:
|
||||
- "${WORKER_SQL_AGENT_PORT:-9096}:9096"
|
||||
ipc: host
|
||||
environment:
|
||||
ip_address: ${ip_address}
|
||||
strategy: sql_agent_llama
|
||||
with_memory: false
|
||||
db_name: ${db_name}
|
||||
db_path: ${db_path}
|
||||
use_hints: false
|
||||
recursion_limit: ${recursion_limit_worker}
|
||||
llm_engine: vllm
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
llm_endpoint_url: ${LLM_ENDPOINT_URL}
|
||||
model: ${LLM_MODEL_ID}
|
||||
temperature: ${temperature}
|
||||
max_new_tokens: ${max_new_tokens}
|
||||
stream: false
|
||||
require_human_feedback: false
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
port: 9096
|
||||
|
||||
supervisor-react-agent:
|
||||
image: opea/agent:latest
|
||||
container_name: react-agent-endpoint
|
||||
depends_on:
|
||||
- worker-rag-agent
|
||||
volumes:
|
||||
- ${TOOLSET_PATH}:/home/user/tools/
|
||||
ports:
|
||||
- "${SUPERVISOR_REACT_AGENT_PORT:-9090}:9090"
|
||||
ipc: host
|
||||
environment:
|
||||
ip_address: ${ip_address}
|
||||
strategy: react_llama
|
||||
with_memory: true
|
||||
recursion_limit: ${recursion_limit_supervisor}
|
||||
llm_engine: vllm
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
llm_endpoint_url: ${LLM_ENDPOINT_URL}
|
||||
model: ${LLM_MODEL_ID}
|
||||
temperature: ${temperature}
|
||||
max_new_tokens: ${max_new_tokens}
|
||||
stream: true
|
||||
tools: /home/user/tools/supervisor_agent_tools.yaml
|
||||
require_human_feedback: false
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
LANGCHAIN_API_KEY: ${LANGCHAIN_API_KEY}
|
||||
LANGCHAIN_TRACING_V2: ${LANGCHAIN_TRACING_V2}
|
||||
LANGCHAIN_PROJECT: "opea-supervisor-agent-service"
|
||||
CRAG_SERVER: ${CRAG_SERVER}
|
||||
WORKER_AGENT_URL: ${WORKER_AGENT_URL}
|
||||
SQL_AGENT_URL: ${SQL_AGENT_URL}
|
||||
port: 9090
|
||||
@@ -1,47 +1,87 @@
|
||||
# Copyright (C) 2024 Advanced Micro Devices, Inc.
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
WORKPATH=$(dirname "$PWD")/..
|
||||
export ip_address=${host_ip}
|
||||
export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
|
||||
export AGENTQNA_TGI_IMAGE=ghcr.io/huggingface/text-generation-inference:2.3.1-rocm
|
||||
export AGENTQNA_TGI_SERVICE_PORT="8085"
|
||||
# Before start script:
|
||||
# export host_ip="your_host_ip_or_host_name"
|
||||
# export HUGGINGFACEHUB_API_TOKEN="your_huggingface_api_token"
|
||||
# export LANGCHAIN_API_KEY="your_langchain_api_key"
|
||||
# export LANGCHAIN_TRACING_V2=""
|
||||
|
||||
# LLM related environment variables
|
||||
export AGENTQNA_CARD_ID="card1"
|
||||
export AGENTQNA_RENDER_ID="renderD136"
|
||||
export HF_CACHE_DIR=${HF_CACHE_DIR}
|
||||
ls $HF_CACHE_DIR
|
||||
export LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct"
|
||||
#export NUM_SHARDS=4
|
||||
export LLM_ENDPOINT_URL="http://${ip_address}:${AGENTQNA_TGI_SERVICE_PORT}"
|
||||
# Set server hostname or IP address
|
||||
export ip_address=${host_ip}
|
||||
|
||||
# Set services IP ports
|
||||
export TGI_SERVICE_PORT="18110"
|
||||
export WORKER_RAG_AGENT_PORT="18111"
|
||||
export WORKER_SQL_AGENT_PORT="18112"
|
||||
export SUPERVISOR_REACT_AGENT_PORT="18113"
|
||||
export CRAG_SERVER_PORT="18114"
|
||||
|
||||
export WORKPATH=$(dirname "$PWD")
|
||||
export WORKDIR=${WORKPATH}/../../../
|
||||
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
||||
export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
|
||||
export HF_CACHE_DIR="./data"
|
||||
export MODEL_CACHE="./data"
|
||||
export TOOLSET_PATH=${WORKPATH}/../../../tools/
|
||||
export recursion_limit_worker=12
|
||||
export LLM_ENDPOINT_URL=http://${ip_address}:${TGI_SERVICE_PORT}
|
||||
export temperature=0.01
|
||||
export max_new_tokens=512
|
||||
|
||||
# agent related environment variables
|
||||
export AGENTQNA_WORKER_AGENT_SERVICE_PORT="9095"
|
||||
export TOOLSET_PATH=/home/huggingface/datamonsters/amd-opea/GenAIExamples/AgentQnA/tools/
|
||||
echo "TOOLSET_PATH=${TOOLSET_PATH}"
|
||||
export RETRIEVAL_TOOL_URL="http://${ip_address}:8889/v1/retrievaltool"
|
||||
export LANGCHAIN_API_KEY=${LANGCHAIN_API_KEY}
|
||||
export LANGCHAIN_TRACING_V2=${LANGCHAIN_TRACING_V2}
|
||||
export db_name=Chinook
|
||||
export db_path="sqlite:////home/user/chinook-db/Chinook_Sqlite.sqlite"
|
||||
export recursion_limit_worker=12
|
||||
export recursion_limit_supervisor=10
|
||||
export WORKER_AGENT_URL="http://${ip_address}:${AGENTQNA_WORKER_AGENT_SERVICE_PORT}/v1/chat/completions"
|
||||
export RETRIEVAL_TOOL_URL="http://${ip_address}:8889/v1/retrievaltool"
|
||||
export CRAG_SERVER=http://${ip_address}:18881
|
||||
|
||||
export AGENTQNA_FRONTEND_PORT="9090"
|
||||
|
||||
#retrieval_tool
|
||||
export CRAG_SERVER=http://${ip_address}:${CRAG_SERVER_PORT}
|
||||
export WORKER_AGENT_URL="http://${ip_address}:${WORKER_RAG_AGENT_PORT}/v1/chat/completions"
|
||||
export SQL_AGENT_URL="http://${ip_address}:${WORKER_SQL_AGENT_PORT}/v1/chat/completions"
|
||||
export HF_CACHE_DIR=${HF_CACHE_DIR}
|
||||
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
||||
export no_proxy=${no_proxy}
|
||||
export http_proxy=${http_proxy}
|
||||
export https_proxy=${https_proxy}
|
||||
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
|
||||
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
|
||||
export TEI_EMBEDDING_ENDPOINT="http://${host_ip}:6006"
|
||||
export TEI_RERANKING_ENDPOINT="http://${host_ip}:8808"
|
||||
export REDIS_URL="redis://${host_ip}:26379"
|
||||
export REDIS_URL="redis://${host_ip}:6379"
|
||||
export INDEX_NAME="rag-redis"
|
||||
export RERANK_TYPE="tei"
|
||||
export MEGA_SERVICE_HOST_IP=${host_ip}
|
||||
export EMBEDDING_SERVICE_HOST_IP=${host_ip}
|
||||
export RETRIEVER_SERVICE_HOST_IP=${host_ip}
|
||||
export RERANK_SERVICE_HOST_IP=${host_ip}
|
||||
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:8889/v1/retrievaltool"
|
||||
export DATAPREP_SERVICE_ENDPOINT="http://${host_ip}:6007/v1/dataprep/ingest"
|
||||
export DATAPREP_GET_FILE_ENDPOINT="http://${host_ip}:6007/v1/dataprep/get"
|
||||
export DATAPREP_DELETE_FILE_ENDPOINT="http://${host_ip}:6007/v1/dataprep/delete"
|
||||
export DATAPREP_GET_FILE_ENDPOINT="http://${host_ip}:6008/v1/dataprep/get"
|
||||
export DATAPREP_DELETE_FILE_ENDPOINT="http://${host_ip}:6009/v1/dataprep/delete"
|
||||
|
||||
echo ${WORKER_RAG_AGENT_PORT} > ${WORKPATH}/WORKER_RAG_AGENT_PORT_tmp
|
||||
echo ${WORKER_SQL_AGENT_PORT} > ${WORKPATH}/WORKER_SQL_AGENT_PORT_tmp
|
||||
echo ${SUPERVISOR_REACT_AGENT_PORT} > ${WORKPATH}/SUPERVISOR_REACT_AGENT_PORT_tmp
|
||||
echo ${CRAG_SERVER_PORT} > ${WORKPATH}/CRAG_SERVER_PORT_tmp
|
||||
|
||||
echo "Downloading chinook data..."
|
||||
echo Y | rm -R chinook-database
|
||||
git clone https://github.com/lerocha/chinook-database.git
|
||||
echo Y | rm -R ../../../../../AgentQnA/tests/Chinook_Sqlite.sqlite
|
||||
cp chinook-database/ChinookDatabase/DataSources/Chinook_Sqlite.sqlite ../../../../../AgentQnA/tests
|
||||
|
||||
docker compose -f ../../../../../DocIndexRetriever/docker_compose/intel/cpu/xeon/compose.yaml up -d
|
||||
docker compose -f compose.yaml up -d
|
||||
|
||||
n=0
|
||||
until [[ "$n" -ge 100 ]]; do
|
||||
docker logs tgi-service > ${WORKPATH}/tgi_service_start.log
|
||||
if grep -q Connected ${WORKPATH}/tgi_service_start.log; then
|
||||
break
|
||||
fi
|
||||
sleep 10s
|
||||
n=$((n+1))
|
||||
done
|
||||
|
||||
echo "Starting CRAG server"
|
||||
docker run -d --runtime=runc --name=kdd-cup-24-crag-service -p=${CRAG_SERVER_PORT}:8000 docker.io/aicrowd/kdd-cup-24-crag-mock-api:v0
|
||||
|
||||
@@ -0,0 +1,88 @@
|
||||
# Copyright (C) 2024 Advanced Micro Devices, Inc.
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
# Before start script:
|
||||
# export host_ip="your_host_ip_or_host_name"
|
||||
# export HUGGINGFACEHUB_API_TOKEN="your_huggingface_api_token"
|
||||
# export LANGCHAIN_API_KEY="your_langchain_api_key"
|
||||
# export LANGCHAIN_TRACING_V2=""
|
||||
|
||||
# Set server hostname or IP address
|
||||
export ip_address=${host_ip}
|
||||
|
||||
# Set services IP ports
|
||||
export VLLM_SERVICE_PORT="18110"
|
||||
export WORKER_RAG_AGENT_PORT="18111"
|
||||
export WORKER_SQL_AGENT_PORT="18112"
|
||||
export SUPERVISOR_REACT_AGENT_PORT="18113"
|
||||
export CRAG_SERVER_PORT="18114"
|
||||
|
||||
export WORKPATH=$(dirname "$PWD")
|
||||
export WORKDIR=${WORKPATH}/../../../
|
||||
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
||||
export VLLM_LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
|
||||
export HF_CACHE_DIR="./data"
|
||||
export MODEL_CACHE="./data"
|
||||
export TOOLSET_PATH=${WORKPATH}/../../../tools/
|
||||
export recursion_limit_worker=12
|
||||
export LLM_ENDPOINT_URL=http://${ip_address}:${VLLM_SERVICE_PORT}
|
||||
export LLM_MODEL_ID=${VLLM_LLM_MODEL_ID}
|
||||
export temperature=0.01
|
||||
export max_new_tokens=512
|
||||
export RETRIEVAL_TOOL_URL="http://${ip_address}:8889/v1/retrievaltool"
|
||||
export LANGCHAIN_API_KEY=${LANGCHAIN_API_KEY}
|
||||
export LANGCHAIN_TRACING_V2=${LANGCHAIN_TRACING_V2}
|
||||
export db_name=Chinook
|
||||
export db_path="sqlite:////home/user/chinook-db/Chinook_Sqlite.sqlite"
|
||||
export recursion_limit_worker=12
|
||||
export recursion_limit_supervisor=10
|
||||
export CRAG_SERVER=http://${ip_address}:${CRAG_SERVER_PORT}
|
||||
export WORKER_AGENT_URL="http://${ip_address}:${WORKER_RAG_AGENT_PORT}/v1/chat/completions"
|
||||
export SQL_AGENT_URL="http://${ip_address}:${WORKER_SQL_AGENT_PORT}/v1/chat/completions"
|
||||
export HF_CACHE_DIR=${HF_CACHE_DIR}
|
||||
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
||||
export no_proxy=${no_proxy}
|
||||
export http_proxy=${http_proxy}
|
||||
export https_proxy=${https_proxy}
|
||||
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
|
||||
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
|
||||
export TEI_EMBEDDING_ENDPOINT="http://${host_ip}:6006"
|
||||
export TEI_RERANKING_ENDPOINT="http://${host_ip}:8808"
|
||||
export REDIS_URL="redis://${host_ip}:6379"
|
||||
export INDEX_NAME="rag-redis"
|
||||
export RERANK_TYPE="tei"
|
||||
export MEGA_SERVICE_HOST_IP=${host_ip}
|
||||
export EMBEDDING_SERVICE_HOST_IP=${host_ip}
|
||||
export RETRIEVER_SERVICE_HOST_IP=${host_ip}
|
||||
export RERANK_SERVICE_HOST_IP=${host_ip}
|
||||
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:8889/v1/retrievaltool"
|
||||
export DATAPREP_SERVICE_ENDPOINT="http://${host_ip}:6007/v1/dataprep/ingest"
|
||||
export DATAPREP_GET_FILE_ENDPOINT="http://${host_ip}:6008/v1/dataprep/get"
|
||||
export DATAPREP_DELETE_FILE_ENDPOINT="http://${host_ip}:6009/v1/dataprep/delete"
|
||||
|
||||
echo ${WORKER_RAG_AGENT_PORT} > ${WORKPATH}/WORKER_RAG_AGENT_PORT_tmp
|
||||
echo ${WORKER_SQL_AGENT_PORT} > ${WORKPATH}/WORKER_SQL_AGENT_PORT_tmp
|
||||
echo ${SUPERVISOR_REACT_AGENT_PORT} > ${WORKPATH}/SUPERVISOR_REACT_AGENT_PORT_tmp
|
||||
echo ${CRAG_SERVER_PORT} > ${WORKPATH}/CRAG_SERVER_PORT_tmp
|
||||
|
||||
echo "Downloading chinook data..."
|
||||
echo Y | rm -R chinook-database
|
||||
git clone https://github.com/lerocha/chinook-database.git
|
||||
echo Y | rm -R ../../../../../AgentQnA/tests/Chinook_Sqlite.sqlite
|
||||
cp chinook-database/ChinookDatabase/DataSources/Chinook_Sqlite.sqlite ../../../../../AgentQnA/tests
|
||||
|
||||
docker compose -f ../../../../../DocIndexRetriever/docker_compose/intel/cpu/xeon/compose.yaml up -d
|
||||
docker compose -f compose_vllm.yaml up -d
|
||||
|
||||
n=0
|
||||
until [[ "$n" -ge 500 ]]; do
|
||||
docker logs vllm-service >& "${WORKPATH}"/vllm-service_start.log
|
||||
if grep -q "Application startup complete" "${WORKPATH}"/vllm-service_start.log; then
|
||||
break
|
||||
fi
|
||||
sleep 20s
|
||||
n=$((n+1))
|
||||
done
|
||||
|
||||
echo "Starting CRAG server"
|
||||
docker run -d --runtime=runc --name=kdd-cup-24-crag-service -p=${CRAG_SERVER_PORT}:8000 docker.io/aicrowd/kdd-cup-24-crag-mock-api:v0
|
||||
@@ -6,7 +6,7 @@
|
||||
WORKPATH=$(dirname "$PWD")/..
|
||||
export ip_address=${host_ip}
|
||||
export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
|
||||
export AGENTQNA_TGI_IMAGE=ghcr.io/huggingface/text-generation-inference:2.3.1-rocm
|
||||
export AGENTQNA_TGI_IMAGE=ghcr.io/huggingface/text-generation-inference:2.4.1-rocm
|
||||
export AGENTQNA_TGI_SERVICE_PORT="19001"
|
||||
|
||||
# LLM related environment variables
|
||||
@@ -14,7 +14,7 @@ export AGENTQNA_CARD_ID="card1"
|
||||
export AGENTQNA_RENDER_ID="renderD136"
|
||||
export HF_CACHE_DIR=${HF_CACHE_DIR}
|
||||
ls $HF_CACHE_DIR
|
||||
export LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct"
|
||||
export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
|
||||
export NUM_SHARDS=4
|
||||
export LLM_ENDPOINT_URL="http://${ip_address}:${AGENTQNA_TGI_SERVICE_PORT}"
|
||||
export temperature=0.01
|
||||
@@ -44,3 +44,19 @@ export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:8889/v1/retrievaltool"
|
||||
export DATAPREP_SERVICE_ENDPOINT="http://${host_ip}:6007/v1/dataprep/ingest"
|
||||
export DATAPREP_GET_FILE_ENDPOINT="http://${host_ip}:6007/v1/dataprep/get"
|
||||
export DATAPREP_DELETE_FILE_ENDPOINT="http://${host_ip}:6007/v1/dataprep/delete"
|
||||
|
||||
echo "Removing chinook data..."
|
||||
echo Y | rm -R chinook-database
|
||||
if [ -d "chinook-database" ]; then
|
||||
rm -rf chinook-database
|
||||
fi
|
||||
echo "Chinook data removed!"
|
||||
|
||||
echo "Stopping CRAG server"
|
||||
docker rm kdd-cup-24-crag-service --force
|
||||
|
||||
echo "Stopping Agent services"
|
||||
docker compose -f compose.yaml down
|
||||
|
||||
echo "Stopping Retrieval services"
|
||||
docker compose -f ../../../../../DocIndexRetriever/docker_compose/intel/cpu/xeon/compose.yaml down
|
||||
@@ -0,0 +1,84 @@
|
||||
# Copyright (C) 2024 Advanced Micro Devices, Inc.
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
|
||||
# Before start script:
|
||||
# export host_ip="your_host_ip_or_host_name"
|
||||
# export HUGGINGFACEHUB_API_TOKEN="your_huggingface_api_token"
|
||||
# export LANGCHAIN_API_KEY="your_langchain_api_key"
|
||||
# export LANGCHAIN_TRACING_V2=""
|
||||
|
||||
# Set server hostname or IP address
|
||||
export ip_address=${host_ip}
|
||||
|
||||
# Set services IP ports
|
||||
export VLLM_SERVICE_PORT="18110"
|
||||
export WORKER_RAG_AGENT_PORT="18111"
|
||||
export WORKER_SQL_AGENT_PORT="18112"
|
||||
export SUPERVISOR_REACT_AGENT_PORT="18113"
|
||||
export CRAG_SERVER_PORT="18114"
|
||||
|
||||
export WORKPATH=$(dirname "$PWD")
|
||||
export WORKDIR=${WORKPATH}/../../../
|
||||
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
||||
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
||||
export VLLM_LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
|
||||
export HF_CACHE_DIR="./data"
|
||||
export MODEL_CACHE="./data"
|
||||
export TOOLSET_PATH=${WORKPATH}/../../../tools/
|
||||
export recursion_limit_worker=12
|
||||
export LLM_ENDPOINT_URL=http://${ip_address}:${VLLM_SERVICE_PORT}
|
||||
export LLM_MODEL_ID=${VLLM_LLM_MODEL_ID}
|
||||
export temperature=0.01
|
||||
export max_new_tokens=512
|
||||
export RETRIEVAL_TOOL_URL="http://${ip_address}:8889/v1/retrievaltool"
|
||||
export LANGCHAIN_API_KEY=${LANGCHAIN_API_KEY}
|
||||
export LANGCHAIN_TRACING_V2=${LANGCHAIN_TRACING_V2}
|
||||
export db_name=Chinook
|
||||
export db_path="sqlite:////home/user/chinook-db/Chinook_Sqlite.sqlite"
|
||||
export recursion_limit_worker=12
|
||||
export recursion_limit_supervisor=10
|
||||
export CRAG_SERVER=http://${ip_address}:${CRAG_SERVER_PORT}
|
||||
export WORKER_AGENT_URL="http://${ip_address}:${WORKER_RAG_AGENT_PORT}/v1/chat/completions"
|
||||
export SQL_AGENT_URL="http://${ip_address}:${WORKER_SQL_AGENT_PORT}/v1/chat/completions"
|
||||
export HF_CACHE_DIR=${HF_CACHE_DIR}
|
||||
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
||||
export no_proxy=${no_proxy}
|
||||
export http_proxy=${http_proxy}
|
||||
export https_proxy=${https_proxy}
|
||||
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
|
||||
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
|
||||
export TEI_EMBEDDING_ENDPOINT="http://${host_ip}:6006"
|
||||
export TEI_RERANKING_ENDPOINT="http://${host_ip}:8808"
|
||||
export REDIS_URL="redis://${host_ip}:6379"
|
||||
export INDEX_NAME="rag-redis"
|
||||
export RERANK_TYPE="tei"
|
||||
export MEGA_SERVICE_HOST_IP=${host_ip}
|
||||
export EMBEDDING_SERVICE_HOST_IP=${host_ip}
|
||||
export RETRIEVER_SERVICE_HOST_IP=${host_ip}
|
||||
export RERANK_SERVICE_HOST_IP=${host_ip}
|
||||
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:8889/v1/retrievaltool"
|
||||
export DATAPREP_SERVICE_ENDPOINT="http://${host_ip}:6007/v1/dataprep/ingest"
|
||||
export DATAPREP_GET_FILE_ENDPOINT="http://${host_ip}:6008/v1/dataprep/get"
|
||||
export DATAPREP_DELETE_FILE_ENDPOINT="http://${host_ip}:6009/v1/dataprep/delete"
|
||||
|
||||
echo ${WORKER_RAG_AGENT_PORT} > ${WORKPATH}/WORKER_RAG_AGENT_PORT_tmp
|
||||
echo ${WORKER_SQL_AGENT_PORT} > ${WORKPATH}/WORKER_SQL_AGENT_PORT_tmp
|
||||
echo ${SUPERVISOR_REACT_AGENT_PORT} > ${WORKPATH}/SUPERVISOR_REACT_AGENT_PORT_tmp
|
||||
echo ${CRAG_SERVER_PORT} > ${WORKPATH}/CRAG_SERVER_PORT_tmp
|
||||
|
||||
echo "Removing chinook data..."
|
||||
echo Y | rm -R chinook-database
|
||||
if [ -d "chinook-database" ]; then
|
||||
rm -rf chinook-database
|
||||
fi
|
||||
echo "Chinook data removed!"
|
||||
|
||||
echo "Stopping CRAG server"
|
||||
docker rm kdd-cup-24-crag-service --force
|
||||
|
||||
echo "Stopping Agent services"
|
||||
docker compose -f compose_vllm.yaml down
|
||||
|
||||
echo "Stopping Retrieval services"
|
||||
docker compose -f ../../../../../DocIndexRetriever/docker_compose/intel/cpu/xeon/compose.yaml down
|
||||
@@ -1,123 +1,3 @@
|
||||
# Single node on-prem deployment with Docker Compose on Xeon Scalable processors
|
||||
|
||||
This example showcases a hierarchical multi-agent system for question-answering applications. We deploy the example on Xeon. For LLMs, we use OpenAI models via API calls. For instructions on using open-source LLMs, please refer to the deployment guide [here](../../../../README.md).
|
||||
|
||||
## Deployment with docker
|
||||
|
||||
1. First, clone this repo.
|
||||
```
|
||||
export WORKDIR=<your-work-directory>
|
||||
cd $WORKDIR
|
||||
git clone https://github.com/opea-project/GenAIExamples.git
|
||||
```
|
||||
2. Set up environment for this example </br>
|
||||
|
||||
```
|
||||
# Example: host_ip="192.168.1.1" or export host_ip="External_Public_IP"
|
||||
export host_ip=$(hostname -I | awk '{print $1}')
|
||||
# if you are in a proxy environment, also set the proxy-related environment variables
|
||||
export http_proxy="Your_HTTP_Proxy"
|
||||
export https_proxy="Your_HTTPs_Proxy"
|
||||
# Example: no_proxy="localhost, 127.0.0.1, 192.168.1.1"
|
||||
export no_proxy="Your_No_Proxy"
|
||||
|
||||
export TOOLSET_PATH=$WORKDIR/GenAIExamples/AgentQnA/tools/
|
||||
#OPANAI_API_KEY if you want to use OpenAI models
|
||||
export OPENAI_API_KEY=<your-openai-key>
|
||||
```
|
||||
|
||||
3. Deploy the retrieval tool (i.e., DocIndexRetriever mega-service)
|
||||
|
||||
First, launch the mega-service.
|
||||
|
||||
```
|
||||
cd $WORKDIR/GenAIExamples/AgentQnA/retrieval_tool
|
||||
bash launch_retrieval_tool.sh
|
||||
```
|
||||
|
||||
Then, ingest data into the vector database. Here we provide an example. You can ingest your own data.
|
||||
|
||||
```
|
||||
bash run_ingest_data.sh
|
||||
```
|
||||
|
||||
4. Prepare SQL database
|
||||
In this example, we will use the SQLite database provided in the [TAG-Bench](https://github.com/TAG-Research/TAG-Bench/tree/main). Run the commands below.
|
||||
|
||||
```
|
||||
# Download data
|
||||
cd $WORKDIR
|
||||
git clone https://github.com/TAG-Research/TAG-Bench.git
|
||||
cd TAG-Bench/setup
|
||||
chmod +x get_dbs.sh
|
||||
./get_dbs.sh
|
||||
```
|
||||
|
||||
5. Launch Tool service
|
||||
In this example, we will use some of the mock APIs provided in the Meta CRAG KDD Challenge to demonstrate the benefits of gaining additional context from mock knowledge graphs.
|
||||
```
|
||||
docker run -d -p=8080:8000 docker.io/aicrowd/kdd-cup-24-crag-mock-api:v0
|
||||
```
|
||||
6. Launch multi-agent system
|
||||
|
||||
The configurations of the supervisor agent and the worker agents are defined in the docker-compose yaml file. We currently use OpenAI GPT-4o-mini as LLM.
|
||||
|
||||
```
|
||||
cd $WORKDIR/GenAIExamples/AgentQnA/docker_compose/intel/cpu/xeon
|
||||
bash launch_agent_service_openai.sh
|
||||
```
|
||||
|
||||
7. [Optional] Build `Agent` docker image if pulling images failed.
|
||||
|
||||
```
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
docker build -t opea/agent:latest -f comps/agent/src/Dockerfile .
|
||||
```
|
||||
|
||||
## Validate services
|
||||
|
||||
First look at logs of the agent docker containers:
|
||||
|
||||
```
|
||||
# worker RAG agent
|
||||
docker logs rag-agent-endpoint
|
||||
|
||||
# worker SQL agent
|
||||
docker logs sql-agent-endpoint
|
||||
```
|
||||
|
||||
```
|
||||
# supervisor agent
|
||||
docker logs react-agent-endpoint
|
||||
```
|
||||
|
||||
You should see something like "HTTP server setup successful" if the docker containers are started successfully.</p>
|
||||
|
||||
Second, validate worker RAG agent:
|
||||
|
||||
```
|
||||
curl http://${host_ip}:9095/v1/chat/completions -X POST -H "Content-Type: application/json" -d '{
|
||||
"messages": "Michael Jackson song Thriller"
|
||||
}'
|
||||
```
|
||||
|
||||
Third, validate worker SQL agent:
|
||||
|
||||
```
|
||||
curl http://${host_ip}:9095/v1/chat/completions -X POST -H "Content-Type: application/json" -d '{
|
||||
"messages": "How many employees are in the company?"
|
||||
}'
|
||||
```
|
||||
|
||||
Finally, validate supervisor agent:
|
||||
|
||||
```
|
||||
curl http://${host_ip}:9090/v1/chat/completions -X POST -H "Content-Type: application/json" -d '{
|
||||
"messages": "How many albums does Iron Maiden have?"
|
||||
}'
|
||||
```
|
||||
|
||||
## How to register your own tools with agent
|
||||
|
||||
You can take a look at the tools yaml and python files in this example. For more details, please refer to the "Provide your own tools" section in the instructions [here](https://github.com/opea-project/GenAIComps/tree/main/comps/agent/src/README.md).
|
||||
This example showcases a hierarchical multi-agent system for question-answering applications. To deploy the example on Xeon, OpenAI LLM models via API calls are used. For instructions, refer to the deployment guide [here](../../../../README.md).
|
||||
|
||||
@@ -92,4 +92,23 @@ services:
|
||||
LANGCHAIN_PROJECT: "opea-supervisor-agent-service"
|
||||
CRAG_SERVER: $CRAG_SERVER
|
||||
WORKER_AGENT_URL: $WORKER_AGENT_URL
|
||||
SQL_AGENT_URL: $SQL_AGENT_URL
|
||||
port: 9090
|
||||
mock-api:
|
||||
image: docker.io/aicrowd/kdd-cup-24-crag-mock-api:v0
|
||||
container_name: mock-api
|
||||
ports:
|
||||
- "8080:8000"
|
||||
ipc: host
|
||||
agent-ui:
|
||||
image: opea/agent-ui
|
||||
container_name: agent-ui
|
||||
volumes:
|
||||
- ${WORKDIR}/GenAIExamples/AgentQnA/ui/svelte/.env:/home/user/svelte/.env # test db
|
||||
ports:
|
||||
- "5173:5173"
|
||||
ipc: host
|
||||
|
||||
networks:
|
||||
default:
|
||||
driver: bridge
|
||||
|
||||
@@ -1,22 +0,0 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
pushd "../../../../../" > /dev/null
|
||||
source .set_env.sh
|
||||
popd > /dev/null
|
||||
export TOOLSET_PATH=$WORKDIR/GenAIExamples/AgentQnA/tools/
|
||||
export ip_address=$(hostname -I | awk '{print $1}')
|
||||
export recursion_limit_worker=12
|
||||
export recursion_limit_supervisor=10
|
||||
export model="gpt-4o-mini-2024-07-18"
|
||||
export temperature=0
|
||||
export max_new_tokens=4096
|
||||
export OPENAI_API_KEY=${OPENAI_API_KEY}
|
||||
export WORKER_AGENT_URL="http://${ip_address}:9095/v1/chat/completions"
|
||||
export SQL_AGENT_URL="http://${ip_address}:9096/v1/chat/completions"
|
||||
export RETRIEVAL_TOOL_URL="http://${ip_address}:8889/v1/retrievaltool"
|
||||
export CRAG_SERVER=http://${ip_address}:8080
|
||||
export db_name=Chinook
|
||||
export db_path="sqlite:////home/user/chinook-db/Chinook_Sqlite.sqlite"
|
||||
|
||||
docker compose -f compose_openai.yaml up -d
|
||||
57
AgentQnA/docker_compose/intel/cpu/xeon/set_env.sh
Normal file
@@ -0,0 +1,57 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
pushd "../../../../../" > /dev/null
|
||||
source .set_env.sh
|
||||
popd > /dev/null
|
||||
|
||||
if [[ -z "${WORKDIR}" ]]; then
|
||||
echo "Please set WORKDIR environment variable"
|
||||
exit 0
|
||||
fi
|
||||
echo "WORKDIR=${WORKDIR}"
|
||||
export TOOLSET_PATH=$WORKDIR/GenAIExamples/AgentQnA/tools/
|
||||
export ip_address=$(hostname -I | awk '{print $1}')
|
||||
export recursion_limit_worker=12
|
||||
export recursion_limit_supervisor=10
|
||||
export model="gpt-4o-mini-2024-07-18"
|
||||
export temperature=0
|
||||
export max_new_tokens=4096
|
||||
export OPENAI_API_KEY=${OPENAI_API_KEY}
|
||||
export WORKER_AGENT_URL="http://${ip_address}:9095/v1/chat/completions"
|
||||
export SQL_AGENT_URL="http://${ip_address}:9096/v1/chat/completions"
|
||||
export RETRIEVAL_TOOL_URL="http://${ip_address}:8889/v1/retrievaltool"
|
||||
export CRAG_SERVER=http://${ip_address}:8080
|
||||
export db_name=Chinook
|
||||
export db_path="sqlite:////home/user/chinook-db/Chinook_Sqlite.sqlite"
|
||||
|
||||
if [ ! -f $WORKDIR/GenAIExamples/AgentQnA/tests/Chinook_Sqlite.sqlite ]; then
|
||||
echo "Download Chinook_Sqlite!"
|
||||
wget -O $WORKDIR/GenAIExamples/AgentQnA/tests/Chinook_Sqlite.sqlite https://github.com/lerocha/chinook-database/releases/download/v1.4.5/Chinook_Sqlite.sqlite
|
||||
fi
|
||||
|
||||
# retriever
|
||||
export host_ip=$(hostname -I | awk '{print $1}')
|
||||
export HF_CACHE_DIR=${HF_CACHE_DIR}
|
||||
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
||||
export no_proxy=${no_proxy}
|
||||
export http_proxy=${http_proxy}
|
||||
export https_proxy=${https_proxy}
|
||||
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
|
||||
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
|
||||
export TEI_EMBEDDING_ENDPOINT="http://${host_ip}:6006"
|
||||
export TEI_RERANKING_ENDPOINT="http://${host_ip}:8808"
|
||||
export REDIS_URL="redis://${host_ip}:6379"
|
||||
export INDEX_NAME="rag-redis"
|
||||
export RERANK_TYPE="tei"
|
||||
export MEGA_SERVICE_HOST_IP=${host_ip}
|
||||
export EMBEDDING_SERVICE_HOST_IP=${host_ip}
|
||||
export RETRIEVER_SERVICE_HOST_IP=${host_ip}
|
||||
export RERANK_SERVICE_HOST_IP=${host_ip}
|
||||
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:8889/v1/retrievaltool"
|
||||
export DATAPREP_SERVICE_ENDPOINT="http://${host_ip}:6007/v1/dataprep/ingest"
|
||||
export DATAPREP_GET_FILE_ENDPOINT="http://${host_ip}:6008/v1/dataprep/get"
|
||||
export DATAPREP_DELETE_FILE_ENDPOINT="http://${host_ip}:6009/v1/dataprep/delete"
|
||||
|
||||
|
||||
export no_proxy="$no_proxy,rag-agent-endpoint,sql-agent-endpoint,react-agent-endpoint,agent-ui"
|
||||
@@ -1,147 +1,3 @@
|
||||
# Single node on-prem deployment AgentQnA on Gaudi
|
||||
|
||||
This example showcases a hierarchical multi-agent system for question-answering applications. We deploy the example on Gaudi using open-source LLMs.
|
||||
For more details, please refer to the deployment guide [here](../../../../README.md).
|
||||
|
||||
## Deployment with docker
|
||||
|
||||
1. First, clone this repo.
|
||||
```
|
||||
export WORKDIR=<your-work-directory>
|
||||
cd $WORKDIR
|
||||
git clone https://github.com/opea-project/GenAIExamples.git
|
||||
```
|
||||
2. Set up environment for this example </br>
|
||||
|
||||
```
|
||||
# Example: host_ip="192.168.1.1" or export host_ip="External_Public_IP"
|
||||
export host_ip=$(hostname -I | awk '{print $1}')
|
||||
# if you are in a proxy environment, also set the proxy-related environment variables
|
||||
export http_proxy="Your_HTTP_Proxy"
|
||||
export https_proxy="Your_HTTPs_Proxy"
|
||||
# Example: no_proxy="localhost, 127.0.0.1, 192.168.1.1"
|
||||
export no_proxy="Your_No_Proxy"
|
||||
|
||||
export TOOLSET_PATH=$WORKDIR/GenAIExamples/AgentQnA/tools/
|
||||
# for using open-source llms
|
||||
export HUGGINGFACEHUB_API_TOKEN=<your-HF-token>
|
||||
# Example export HF_CACHE_DIR=$WORKDIR so that no need to redownload every time
|
||||
export HF_CACHE_DIR=<directory-where-llms-are-downloaded>
|
||||
|
||||
```
|
||||
|
||||
3. Deploy the retrieval tool (i.e., DocIndexRetriever mega-service)
|
||||
|
||||
First, launch the mega-service.
|
||||
|
||||
```
|
||||
cd $WORKDIR/GenAIExamples/AgentQnA/retrieval_tool
|
||||
bash launch_retrieval_tool.sh
|
||||
```
|
||||
|
||||
Then, ingest data into the vector database. Here we provide an example. You can ingest your own data.
|
||||
|
||||
```
|
||||
bash run_ingest_data.sh
|
||||
```
|
||||
|
||||
4. Prepare SQL database
|
||||
In this example, we will use the Chinook SQLite database. Run the commands below.
|
||||
|
||||
```
|
||||
# Download data
|
||||
cd $WORKDIR
|
||||
git clone https://github.com/lerocha/chinook-database.git
|
||||
cp chinook-database/ChinookDatabase/DataSources/Chinook_Sqlite.sqlite $WORKDIR/GenAIExamples/AgentQnA/tests/
|
||||
```
|
||||
|
||||
5. Launch Tool service
|
||||
In this example, we will use some of the mock APIs provided in the Meta CRAG KDD Challenge to demonstrate the benefits of gaining additional context from mock knowledge graphs.
|
||||
```
|
||||
docker run -d -p=8080:8000 docker.io/aicrowd/kdd-cup-24-crag-mock-api:v0
|
||||
```
|
||||
6. Launch multi-agent system
|
||||
|
||||
On Gaudi2 we will serve `meta-llama/Meta-Llama-3.1-70B-Instruct` using vllm.
|
||||
|
||||
First build vllm-gaudi docker image.
|
||||
|
||||
```bash
|
||||
cd $WORKDIR
|
||||
git clone https://github.com/vllm-project/vllm.git
|
||||
cd ./vllm
|
||||
git checkout v0.6.6
|
||||
docker build --no-cache -f Dockerfile.hpu -t opea/vllm-gaudi:latest --shm-size=128g . --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy
|
||||
```
|
||||
|
||||
Then launch vllm on Gaudi2 with the command below.
|
||||
|
||||
```bash
|
||||
vllm_port=8086
|
||||
model="meta-llama/Meta-Llama-3.1-70B-Instruct"
|
||||
docker run -d --runtime=habana --rm --name "vllm-gaudi-server" -e HABANA_VISIBLE_DEVICES=0,1,2,3 -p $vllm_port:8000 -v $vllm_volume:/data -e HF_TOKEN=$HF_TOKEN -e HUGGING_FACE_HUB_TOKEN=$HF_TOKEN -e HF_HOME=/data -e OMPI_MCA_btl_vader_single_copy_mechanism=none -e PT_HPU_ENABLE_LAZY_COLLECTIVES=true -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e no_proxy=$no_proxy -e VLLM_SKIP_WARMUP=true --cap-add=sys_nice --ipc=host opea/vllm-gaudi:latest --model ${model} --max-seq-len-to-capture 16384 --tensor-parallel-size 4
|
||||
```
|
||||
|
||||
Then launch Agent microservices.
|
||||
|
||||
```bash
|
||||
cd $WORKDIR/GenAIExamples/AgentQnA/docker_compose/intel/hpu/gaudi/
|
||||
bash launch_agent_service_gaudi.sh
|
||||
```
|
||||
|
||||
7. [Optional] Build `Agent` docker image if pulling images failed.
|
||||
|
||||
If docker image pulling failed in Step 6 above, build the agent docker image with the commands below. After image build, try Step 6 again.
|
||||
|
||||
```
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
docker build -t opea/agent:latest -f comps/agent/src/Dockerfile .
|
||||
```
|
||||
|
||||
## Validate services
|
||||
|
||||
First look at logs of the agent docker containers:
|
||||
|
||||
```
|
||||
# worker RAG agent
|
||||
docker logs rag-agent-endpoint
|
||||
|
||||
# worker SQL agent
|
||||
docker logs sql-agent-endpoint
|
||||
```
|
||||
|
||||
```
|
||||
# supervisor agent
|
||||
docker logs react-agent-endpoint
|
||||
```
|
||||
|
||||
You should see something like "HTTP server setup successful" if the docker containers are started successfully.</p>
|
||||
|
||||
Second, validate worker RAG agent:
|
||||
|
||||
```
|
||||
curl http://${host_ip}:9095/v1/chat/completions -X POST -H "Content-Type: application/json" -d '{
|
||||
"messages": "Michael Jackson song Thriller"
|
||||
}'
|
||||
```
|
||||
|
||||
Third, validate worker SQL agent:
|
||||
|
||||
```
|
||||
curl http://${host_ip}:9095/v1/chat/completions -X POST -H "Content-Type: application/json" -d '{
|
||||
"messages": "How many employees are in the company?"
|
||||
}'
|
||||
```
|
||||
|
||||
Finally, validate supervisor agent:
|
||||
|
||||
```
|
||||
curl http://${host_ip}:9090/v1/chat/completions -X POST -H "Content-Type: application/json" -d '{
|
||||
"messages": "How many albums does Iron Maiden have?"
|
||||
}'
|
||||
```
|
||||
|
||||
## How to register your own tools with agent
|
||||
|
||||
You can take a look at the tools yaml and python files in this example. For more details, please refer to the "Provide your own tools" section in the instructions [here](https://github.com/opea-project/GenAIComps/tree/main/comps/agent/src/README.md).
|
||||
This example showcases a hierarchical multi-agent system for question-answering applications. To deploy the example on Gaudi using open-source LLMs, refer to the deployment guide [here](../../../../README.md).
|
||||
|
||||
@@ -0,0 +1,93 @@
|
||||
# Copyright (C) 2025 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
services:
|
||||
tei-embedding-service:
|
||||
command: --model-id ${EMBEDDING_MODEL_ID} --auto-truncate --otlp-endpoint $OTEL_EXPORTER_OTLP_TRACES_ENDPOINT
|
||||
tei-reranking-service:
|
||||
command: --model-id ${RERANK_MODEL_ID} --auto-truncate --otlp-endpoint $OTEL_EXPORTER_OTLP_TRACES_ENDPOINT
|
||||
jaeger:
|
||||
image: jaegertracing/all-in-one:1.67.0
|
||||
container_name: jaeger
|
||||
ports:
|
||||
- "16686:16686"
|
||||
- "4317:4317"
|
||||
- "4318:4318"
|
||||
- "9411:9411"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
COLLECTOR_ZIPKIN_HOST_PORT: 9411
|
||||
restart: unless-stopped
|
||||
prometheus:
|
||||
image: prom/prometheus:v2.52.0
|
||||
container_name: prometheus
|
||||
user: root
|
||||
volumes:
|
||||
- ./prometheus.yaml:/etc/prometheus/prometheus.yaml
|
||||
- ./prometheus_data:/prometheus
|
||||
command:
|
||||
- '--config.file=/etc/prometheus/prometheus.yaml'
|
||||
ports:
|
||||
- '9091:9090'
|
||||
ipc: host
|
||||
restart: unless-stopped
|
||||
grafana:
|
||||
image: grafana/grafana:11.0.0
|
||||
container_name: grafana
|
||||
volumes:
|
||||
- ./grafana_data:/var/lib/grafana
|
||||
- ./grafana/dashboards:/var/lib/grafana/dashboards
|
||||
- ./grafana/provisioning:/etc/grafana/provisioning
|
||||
user: root
|
||||
environment:
|
||||
GF_SECURITY_ADMIN_PASSWORD: admin
|
||||
GF_RENDERING_CALLBACK_URL: http://grafana:3000/
|
||||
GF_LOG_FILTERS: rendering:debug
|
||||
depends_on:
|
||||
- prometheus
|
||||
ports:
|
||||
- '3000:3000'
|
||||
ipc: host
|
||||
restart: unless-stopped
|
||||
node-exporter:
|
||||
image: prom/node-exporter
|
||||
container_name: node-exporter
|
||||
volumes:
|
||||
- /proc:/host/proc:ro
|
||||
- /sys:/host/sys:ro
|
||||
- /:/rootfs:ro
|
||||
command:
|
||||
- '--path.procfs=/host/proc'
|
||||
- '--path.sysfs=/host/sys'
|
||||
- --collector.filesystem.ignored-mount-points
|
||||
- "^/(sys|proc|dev|host|etc|rootfs/var/lib/docker/containers|rootfs/var/lib/docker/overlay2|rootfs/run/docker/netns|rootfs/var/lib/docker/aufs)($$|/)"
|
||||
ports:
|
||||
- 9100:9100
|
||||
restart: always
|
||||
deploy:
|
||||
mode: global
|
||||
gaudi-exporter:
|
||||
image: vault.habana.ai/gaudi-metric-exporter/metric-exporter:1.19.2-32
|
||||
container_name: gaudi-exporter
|
||||
volumes:
|
||||
- /proc:/host/proc:ro
|
||||
- /sys:/host/sys:ro
|
||||
- /:/rootfs:ro
|
||||
- /dev:/dev
|
||||
ports:
|
||||
- 41612:41611
|
||||
restart: always
|
||||
deploy:
|
||||
mode: global
|
||||
worker-rag-agent:
|
||||
environment:
|
||||
- TELEMETRY_ENDPOINT=${TELEMETRY_ENDPOINT}
|
||||
worker-sql-agent:
|
||||
environment:
|
||||
- TELEMETRY_ENDPOINT=${TELEMETRY_ENDPOINT}
|
||||
supervisor-react-agent:
|
||||
environment:
|
||||
- TELEMETRY_ENDPOINT=${TELEMETRY_ENDPOINT}
|
||||
@@ -0,0 +1,9 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
services:
|
||||
supervisor-react-agent:
|
||||
environment:
|
||||
- tools=/home/user/tools/supervisor_agent_webtools.yaml
|
||||
- GOOGLE_CSE_ID=${GOOGLE_CSE_ID}
|
||||
- GOOGLE_API_KEY=${GOOGLE_API_KEY}
|
||||
@@ -97,3 +97,47 @@ services:
|
||||
WORKER_AGENT_URL: $WORKER_AGENT_URL
|
||||
SQL_AGENT_URL: $SQL_AGENT_URL
|
||||
port: 9090
|
||||
mock-api:
|
||||
image: docker.io/aicrowd/kdd-cup-24-crag-mock-api:v0
|
||||
container_name: mock-api
|
||||
ports:
|
||||
- "8080:8000"
|
||||
ipc: host
|
||||
agent-ui:
|
||||
image: opea/agent-ui
|
||||
container_name: agent-ui
|
||||
volumes:
|
||||
- ${WORKDIR}/GenAIExamples/AgentQnA/ui/svelte/.env:/home/user/svelte/.env
|
||||
environment:
|
||||
host_ip: ${host_ip}
|
||||
ports:
|
||||
- "5173:5173"
|
||||
ipc: host
|
||||
vllm-service:
|
||||
image: ${REGISTRY:-opea}/vllm-gaudi:${TAG:-latest}
|
||||
container_name: vllm-gaudi-server
|
||||
ports:
|
||||
- "8086:8000"
|
||||
volumes:
|
||||
- "./data:/data"
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
HABANA_VISIBLE_DEVICES: all
|
||||
OMPI_MCA_btl_vader_single_copy_mechanism: none
|
||||
LLM_MODEL_ID: ${LLM_MODEL_ID}
|
||||
VLLM_TORCH_PROFILER_DIR: "/mnt"
|
||||
VLLM_SKIP_WARMUP: true
|
||||
PT_HPU_ENABLE_LAZY_COLLECTIVES: true
|
||||
healthcheck:
|
||||
test: ["CMD-SHELL", "curl -f http://$host_ip:8086/health || exit 1"]
|
||||
interval: 10s
|
||||
timeout: 10s
|
||||
retries: 100
|
||||
runtime: habana
|
||||
cap_add:
|
||||
- SYS_NICE
|
||||
ipc: host
|
||||
command: --model $LLM_MODEL_ID --tensor-parallel-size 4 --host 0.0.0.0 --port 8000 --block-size 128 --max-num-seqs 256 --max-seq_len-to-capture 16384
|
||||
|
||||
@@ -0,0 +1,10 @@
|
||||
# Copyright (C) 2025 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
rm *.json
|
||||
wget https://raw.githubusercontent.com/opea-project/GenAIEval/refs/heads/main/evals/benchmark/grafana/chatqna_megaservice_grafana.json
|
||||
mv chatqna_megaservice_grafana.json agentqna_microervices_grafana.json
|
||||
wget https://raw.githubusercontent.com/opea-project/GenAIEval/refs/heads/main/evals/benchmark/grafana/vllm_grafana.json
|
||||
wget https://raw.githubusercontent.com/opea-project/GenAIEval/refs/heads/main/evals/benchmark/grafana/tgi_grafana.json
|
||||
wget https://raw.githubusercontent.com/opea-project/GenAIEval/refs/heads/main/evals/benchmark/grafana/node_grafana.json
|
||||
wget https://raw.githubusercontent.com/opea-project/GenAIEval/refs/heads/main/evals/benchmark/grafana/gaudi_grafana.json
|
||||
@@ -0,0 +1,14 @@
|
||||
# Copyright (C) 2025 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: 1
|
||||
|
||||
providers:
|
||||
- name: 'default'
|
||||
orgId: 1
|
||||
folder: ''
|
||||
type: file
|
||||
disableDeletion: false
|
||||
updateIntervalSeconds: 10 #how often Grafana will scan for changed dashboards
|
||||
options:
|
||||
path: /var/lib/grafana/dashboards
|
||||
@@ -0,0 +1,54 @@
|
||||
# Copyright (C) 2025 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
# config file version
|
||||
apiVersion: 1
|
||||
|
||||
# list of datasources that should be deleted from the database
|
||||
deleteDatasources:
|
||||
- name: Prometheus
|
||||
orgId: 1
|
||||
|
||||
# list of datasources to insert/update depending
|
||||
# what's available in the database
|
||||
datasources:
|
||||
# <string, required> name of the datasource. Required
|
||||
- name: Prometheus
|
||||
# <string, required> datasource type. Required
|
||||
type: prometheus
|
||||
# <string, required> access mode. direct or proxy. Required
|
||||
access: proxy
|
||||
# <int> org id. will default to orgId 1 if not specified
|
||||
orgId: 1
|
||||
# <string> url
|
||||
url: http://prometheus:9090
|
||||
# <string> database password, if used
|
||||
password:
|
||||
# <string> database user, if used
|
||||
user:
|
||||
# <string> database name, if used
|
||||
database:
|
||||
# <bool> enable/disable basic auth
|
||||
basicAuth: false
|
||||
# <string> basic auth username, if used
|
||||
basicAuthUser:
|
||||
# <string> basic auth password, if used
|
||||
basicAuthPassword:
|
||||
# <bool> enable/disable with credentials headers
|
||||
withCredentials:
|
||||
# <bool> mark as default datasource. Max one per org
|
||||
isDefault: true
|
||||
# <map> fields that will be converted to json and stored in json_data
|
||||
jsonData:
|
||||
httpMethod: GET
|
||||
graphiteVersion: "1.1"
|
||||
tlsAuth: false
|
||||
tlsAuthWithCACert: false
|
||||
# <string> json object of data that will be encrypted.
|
||||
secureJsonData:
|
||||
tlsCACert: "..."
|
||||
tlsClientCert: "..."
|
||||
tlsClientKey: "..."
|
||||
version: 1
|
||||
# <bool> allow users to edit datasources from the UI.
|
||||
editable: true
|
||||
@@ -1,36 +0,0 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
pushd "../../../../../" > /dev/null
|
||||
source .set_env.sh
|
||||
popd > /dev/null
|
||||
WORKPATH=$(dirname "$PWD")/..
|
||||
# export WORKDIR=$WORKPATH/../../
|
||||
echo "WORKDIR=${WORKDIR}"
|
||||
export ip_address=$(hostname -I | awk '{print $1}')
|
||||
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
||||
|
||||
# LLM related environment variables
|
||||
export HF_CACHE_DIR=${HF_CACHE_DIR}
|
||||
ls $HF_CACHE_DIR
|
||||
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
||||
export LLM_MODEL_ID="meta-llama/Llama-3.3-70B-Instruct" #"meta-llama/Meta-Llama-3.1-70B-Instruct"
|
||||
export NUM_SHARDS=4
|
||||
export LLM_ENDPOINT_URL="http://${ip_address}:8086"
|
||||
export temperature=0
|
||||
export max_new_tokens=4096
|
||||
|
||||
# agent related environment variables
|
||||
export TOOLSET_PATH=$WORKDIR/GenAIExamples/AgentQnA/tools/
|
||||
echo "TOOLSET_PATH=${TOOLSET_PATH}"
|
||||
export recursion_limit_worker=12
|
||||
export recursion_limit_supervisor=10
|
||||
export WORKER_AGENT_URL="http://${ip_address}:9095/v1/chat/completions"
|
||||
export SQL_AGENT_URL="http://${ip_address}:9096/v1/chat/completions"
|
||||
export RETRIEVAL_TOOL_URL="http://${ip_address}:8889/v1/retrievaltool"
|
||||
export CRAG_SERVER=http://${ip_address}:8080
|
||||
|
||||
export db_name=Chinook
|
||||
export db_path="sqlite:////home/user/chinook-db/Chinook_Sqlite.sqlite"
|
||||
|
||||
docker compose -f compose.yaml up -d
|
||||
@@ -1,25 +0,0 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
# LLM related environment variables
|
||||
export HF_CACHE_DIR=${HF_CACHE_DIR}
|
||||
ls $HF_CACHE_DIR
|
||||
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
||||
export LLM_MODEL_ID="meta-llama/Meta-Llama-3.1-70B-Instruct"
|
||||
export NUM_SHARDS=4
|
||||
|
||||
docker compose -f tgi_gaudi.yaml up -d
|
||||
|
||||
sleep 5s
|
||||
echo "Waiting tgi gaudi ready"
|
||||
n=0
|
||||
until [[ "$n" -ge 100 ]] || [[ $ready == true ]]; do
|
||||
docker logs tgi-server &> tgi-gaudi-service.log
|
||||
n=$((n+1))
|
||||
if grep -q Connected tgi-gaudi-service.log; then
|
||||
break
|
||||
fi
|
||||
sleep 5s
|
||||
done
|
||||
sleep 5s
|
||||
echo "Service started successfully"
|
||||
55
AgentQnA/docker_compose/intel/hpu/gaudi/prometheus.yaml
Normal file
@@ -0,0 +1,55 @@
|
||||
# Copyright (C) 2025 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
global:
|
||||
scrape_interval: 5s
|
||||
external_labels:
|
||||
monitor: "my-monitor"
|
||||
scrape_configs:
|
||||
- job_name: "prometheus"
|
||||
static_configs:
|
||||
- targets: ["prometheus:9090"]
|
||||
- job_name: "vllm"
|
||||
metrics_path: /metrics
|
||||
static_configs:
|
||||
- targets: ["vllm-gaudi-server:8000"]
|
||||
- job_name: "tgi"
|
||||
metrics_path: /metrics
|
||||
static_configs:
|
||||
- targets: ["tgi-gaudi-server:80"]
|
||||
- job_name: "tei-embedding"
|
||||
metrics_path: /metrics
|
||||
static_configs:
|
||||
- targets: ["tei-embedding-server:80"]
|
||||
- job_name: "tei-reranking"
|
||||
metrics_path: /metrics
|
||||
static_configs:
|
||||
- targets: ["tei-reranking-server:80"]
|
||||
- job_name: "retriever"
|
||||
metrics_path: /metrics
|
||||
static_configs:
|
||||
- targets: ["retriever:7000"]
|
||||
- job_name: "dataprep-redis-service"
|
||||
metrics_path: /metrics
|
||||
static_configs:
|
||||
- targets: ["dataprep-redis-service:5000"]
|
||||
- job_name: "prometheus-node-exporter"
|
||||
metrics_path: /metrics
|
||||
static_configs:
|
||||
- targets: ["node-exporter:9100"]
|
||||
- job_name: "prometheus-gaudi-exporter"
|
||||
metrics_path: /metrics
|
||||
static_configs:
|
||||
- targets: ["gaudi-exporter:41611"]
|
||||
- job_name: "supervisor-react-agent"
|
||||
metrics_path: /metrics
|
||||
static_configs:
|
||||
- targets: ["react-agent-endpoint:9090"]
|
||||
- job_name: "worker-rag-agent"
|
||||
metrics_path: /metrics
|
||||
static_configs:
|
||||
- targets: ["rag-agent-endpoint:9095"]
|
||||
- job_name: "worker-sql-agent"
|
||||
metrics_path: /metrics
|
||||
static_configs:
|
||||
- targets: ["sql-agent-endpoint:9096"]
|
||||
72
AgentQnA/docker_compose/intel/hpu/gaudi/set_env.sh
Normal file
@@ -0,0 +1,72 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
pushd "../../../../../" > /dev/null
|
||||
source .set_env.sh
|
||||
popd > /dev/null
|
||||
WORKPATH=$(dirname "$PWD")/..
|
||||
# export WORKDIR=$WORKPATH/../../
|
||||
if [[ -z "${WORKDIR}" ]]; then
|
||||
echo "Please set WORKDIR environment variable"
|
||||
exit 0
|
||||
fi
|
||||
echo "WORKDIR=${WORKDIR}"
|
||||
export ip_address=$(hostname -I | awk '{print $1}')
|
||||
|
||||
# LLM related environment variables
|
||||
export HF_CACHE_DIR=${HF_CACHE_DIR}
|
||||
ls $HF_CACHE_DIR
|
||||
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
||||
export HF_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
||||
export LLM_MODEL_ID="meta-llama/Llama-3.3-70B-Instruct"
|
||||
export NUM_SHARDS=4
|
||||
export LLM_ENDPOINT_URL="http://${ip_address}:8086"
|
||||
export temperature=0
|
||||
export max_new_tokens=4096
|
||||
|
||||
# agent related environment variables
|
||||
export TOOLSET_PATH=$WORKDIR/GenAIExamples/AgentQnA/tools/
|
||||
echo "TOOLSET_PATH=${TOOLSET_PATH}"
|
||||
export recursion_limit_worker=12
|
||||
export recursion_limit_supervisor=10
|
||||
export WORKER_AGENT_URL="http://${ip_address}:9095/v1/chat/completions"
|
||||
export SQL_AGENT_URL="http://${ip_address}:9096/v1/chat/completions"
|
||||
export RETRIEVAL_TOOL_URL="http://${ip_address}:8889/v1/retrievaltool"
|
||||
export CRAG_SERVER=http://${ip_address}:8080
|
||||
|
||||
export db_name=Chinook
|
||||
export db_path="sqlite:////home/user/chinook-db/Chinook_Sqlite.sqlite"
|
||||
if [ ! -f $WORKDIR/GenAIExamples/AgentQnA/tests/Chinook_Sqlite.sqlite ]; then
|
||||
echo "Download Chinook_Sqlite!"
|
||||
wget -O $WORKDIR/GenAIExamples/AgentQnA/tests/Chinook_Sqlite.sqlite https://github.com/lerocha/chinook-database/releases/download/v1.4.5/Chinook_Sqlite.sqlite
|
||||
fi
|
||||
|
||||
# configure agent ui
|
||||
echo "AGENT_URL = 'http://$ip_address:9090/v1/chat/completions'" | tee ${WORKDIR}/GenAIExamples/AgentQnA/ui/svelte/.env
|
||||
|
||||
# retriever
|
||||
export host_ip=$(hostname -I | awk '{print $1}')
|
||||
export no_proxy=${no_proxy}
|
||||
export http_proxy=${http_proxy}
|
||||
export https_proxy=${https_proxy}
|
||||
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
|
||||
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
|
||||
export TEI_EMBEDDING_ENDPOINT="http://${host_ip}:6006"
|
||||
export TEI_RERANKING_ENDPOINT="http://${host_ip}:8808"
|
||||
export REDIS_URL="redis://${host_ip}:6379"
|
||||
export INDEX_NAME="rag-redis"
|
||||
export RERANK_TYPE="tei"
|
||||
export MEGA_SERVICE_HOST_IP=${host_ip}
|
||||
export EMBEDDING_SERVICE_HOST_IP=${host_ip}
|
||||
export RETRIEVER_SERVICE_HOST_IP=${host_ip}
|
||||
export RERANK_SERVICE_HOST_IP=${host_ip}
|
||||
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:8889/v1/retrievaltool"
|
||||
export DATAPREP_SERVICE_ENDPOINT="http://${host_ip}:6007/v1/dataprep/ingest"
|
||||
export DATAPREP_GET_FILE_ENDPOINT="http://${host_ip}:6008/v1/dataprep/get"
|
||||
export DATAPREP_DELETE_FILE_ENDPOINT="http://${host_ip}:6009/v1/dataprep/delete"
|
||||
# Set OpenTelemetry Tracing Endpoint
|
||||
export JAEGER_IP=$(ip route get 8.8.8.8 | grep -oP 'src \K[^ ]+')
|
||||
export OTEL_EXPORTER_OTLP_TRACES_ENDPOINT=grpc://$JAEGER_IP:4317
|
||||
export TELEMETRY_ENDPOINT=http://$JAEGER_IP:4318/v1/traces
|
||||
|
||||
export no_proxy="$no_proxy,rag-agent-endpoint,sql-agent-endpoint,react-agent-endpoint,agent-ui,vllm-gaudi-server,jaeger,grafana,prometheus,node-exporter,gaudi-exporter,127.0.0.1,localhost,0.0.0.0,$host_ip,,$JAEGER_IP"
|
||||
@@ -3,7 +3,7 @@
|
||||
|
||||
services:
|
||||
tgi-server:
|
||||
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
|
||||
image: ghcr.io/huggingface/tgi-gaudi:2.3.1
|
||||
container_name: tgi-server
|
||||
ports:
|
||||
- "8085:80"
|
||||
|
||||
@@ -17,3 +17,12 @@ services:
|
||||
dockerfile: ./docker/Dockerfile
|
||||
extends: agent
|
||||
image: ${REGISTRY:-opea}/agent-ui:${TAG:-latest}
|
||||
vllm-rocm:
|
||||
build:
|
||||
args:
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
no_proxy: ${no_proxy}
|
||||
context: GenAIComps
|
||||
dockerfile: comps/third_parties/vllm/src/Dockerfile.amd_gpu
|
||||
image: ${REGISTRY:-opea}/vllm-rocm:${TAG:-latest}
|
||||
|
||||
@@ -20,23 +20,30 @@ function stop_agent_and_api_server() {
|
||||
|
||||
function stop_retrieval_tool() {
|
||||
echo "Stopping Retrieval tool"
|
||||
docker compose -f $WORKDIR/GenAIExamples/AgentQnA/retrieval_tool/docker/docker-compose-retrieval-tool.yaml down
|
||||
local RETRIEVAL_TOOL_PATH=$WORKPATH/../DocIndexRetriever
|
||||
cd $RETRIEVAL_TOOL_PATH/docker_compose/intel/cpu/xeon/
|
||||
container_list=$(cat compose.yaml | grep container_name | cut -d':' -f2)
|
||||
for container_name in $container_list; do
|
||||
cid=$(docker ps -aq --filter "name=$container_name")
|
||||
echo "Stopping container $container_name"
|
||||
if [[ ! -z "$cid" ]]; then docker rm $cid -f && sleep 1s; fi
|
||||
done
|
||||
}
|
||||
|
||||
echo "=================== #1 Building docker images===================="
|
||||
bash 1_build_images.sh
|
||||
bash step1_build_images.sh
|
||||
echo "=================== #1 Building docker images completed===================="
|
||||
|
||||
echo "=================== #2 Start retrieval tool===================="
|
||||
bash 2_start_retrieval_tool.sh
|
||||
bash step2_start_retrieval_tool.sh
|
||||
echo "=================== #2 Retrieval tool started===================="
|
||||
|
||||
echo "=================== #3 Ingest data and validate retrieval===================="
|
||||
bash 3_ingest_data_and_validate_retrieval.sh
|
||||
bash step3_ingest_data_and_validate_retrieval.sh
|
||||
echo "=================== #3 Data ingestion and validation completed===================="
|
||||
|
||||
echo "=================== #4 Start agent and API server===================="
|
||||
bash 4_launch_and_validate_agent_openai.sh
|
||||
bash step4_launch_and_validate_agent_openai.sh
|
||||
echo "=================== #4 Agent test passed ===================="
|
||||
|
||||
echo "=================== #5 Stop agent and API server===================="
|
||||
|
||||
@@ -22,7 +22,7 @@ function build_docker_images_for_retrieval_tool(){
|
||||
echo "Build all the images with --no-cache..."
|
||||
service_list="doc-index-retriever dataprep embedding retriever reranking"
|
||||
docker compose -f build.yaml build ${service_list} --no-cache
|
||||
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
|
||||
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.6
|
||||
|
||||
docker images && sleep 1s
|
||||
}
|
||||
@@ -42,7 +42,8 @@ function build_vllm_docker_image() {
|
||||
git clone https://github.com/HabanaAI/vllm-fork.git
|
||||
fi
|
||||
cd ./vllm-fork
|
||||
git checkout v0.6.4.post2+Gaudi-1.19.0
|
||||
VLLM_VER=$(git describe --tags "$(git rev-list --tags --max-count=1)")
|
||||
git checkout ${VLLM_VER} &> /dev/null
|
||||
docker build --no-cache -f Dockerfile.hpu -t opea/vllm-gaudi:ci --shm-size=128g . --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "opea/vllm-gaudi:ci failed"
|
||||
|
||||
64
AgentQnA/tests/step1_build_images_rocm_vllm.sh
Normal file
@@ -0,0 +1,64 @@
|
||||
#!/bin/bash
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
set -e
|
||||
export WORKPATH=$(dirname "$PWD")
|
||||
export WORKDIR=${WORKPATH}/../../
|
||||
echo "WORKDIR=${WORKDIR}"
|
||||
export ip_address=$(hostname -I | awk '{print $1}')
|
||||
|
||||
|
||||
function get_genai_comps() {
|
||||
if [ ! -d "GenAIComps" ] ; then
|
||||
git clone --depth 1 --branch ${opea_branch:-"main"} https://github.com/opea-project/GenAIComps.git
|
||||
fi
|
||||
}
|
||||
|
||||
|
||||
function build_docker_images_for_retrieval_tool(){
|
||||
cd $WORKPATH/../DocIndexRetriever/docker_image_build/
|
||||
get_genai_comps
|
||||
echo "Build all the images with --no-cache..."
|
||||
service_list="doc-index-retriever dataprep embedding retriever reranking"
|
||||
docker compose -f build.yaml build ${service_list} --no-cache
|
||||
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
|
||||
|
||||
docker images && sleep 3s
|
||||
}
|
||||
|
||||
function build_agent_docker_image() {
|
||||
cd $WORKPATH/docker_image_build/
|
||||
get_genai_comps
|
||||
echo "Build agent image with --no-cache..."
|
||||
docker compose -f build.yaml build --no-cache
|
||||
|
||||
docker images && sleep 3s
|
||||
}
|
||||
|
||||
#function build_vllm_docker_image() {
|
||||
# echo "Building the vllm docker image"
|
||||
# cd $WORKPATH/
|
||||
# docker build --no-cache -t opea/llm-vllm-rocm:ci -f Dockerfile-vllm-rocm .
|
||||
#
|
||||
# docker images && sleep 3s
|
||||
#}
|
||||
|
||||
|
||||
function main() {
|
||||
echo "==================== Build docker images for retrieval tool ===================="
|
||||
build_docker_images_for_retrieval_tool
|
||||
echo "==================== Build docker images for retrieval tool completed ===================="
|
||||
|
||||
echo "==================== Build agent docker image ===================="
|
||||
build_agent_docker_image
|
||||
echo "==================== Build agent docker image completed ===================="
|
||||
|
||||
# echo "==================== Build vllm docker image ===================="
|
||||
# build_vllm_docker_image
|
||||
# echo "==================== Build vllm docker image completed ===================="
|
||||
|
||||
docker image ls | grep vllm
|
||||
}
|
||||
|
||||
main
|
||||
@@ -9,7 +9,7 @@ echo "WORKDIR=${WORKDIR}"
|
||||
export ip_address=$(hostname -I | awk '{print $1}')
|
||||
export host_ip=${ip_address}
|
||||
|
||||
export HF_CACHE_DIR=$WORKDIR/hf_cache
|
||||
export HF_CACHE_DIR=${model_cache:-"$WORKDIR/hf_cache"}
|
||||
if [ ! -d "$HF_CACHE_DIR" ]; then
|
||||
echo "Creating HF_CACHE directory"
|
||||
mkdir -p "$HF_CACHE_DIR"
|
||||
|
||||
49
AgentQnA/tests/step2_start_retrieval_tool_rocm_vllm.sh
Normal file
@@ -0,0 +1,49 @@
|
||||
#!/bin/bash
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
set -e
|
||||
WORKPATH=$(dirname "$PWD")
|
||||
export WORKDIR=$WORKPATH/../
|
||||
echo "WORKDIR=${WORKDIR}"
|
||||
export ip_address=$(hostname -I | awk '{print $1}')
|
||||
export host_ip=${ip_address}
|
||||
|
||||
export HF_CACHE_DIR=$WORKPATH/hf_cache
|
||||
if [ ! -d "$HF_CACHE_DIR" ]; then
|
||||
echo "Creating HF_CACHE directory"
|
||||
mkdir -p "$HF_CACHE_DIR"
|
||||
fi
|
||||
|
||||
function start_retrieval_tool() {
|
||||
echo "Starting Retrieval tool"
|
||||
cd $WORKPATH/../DocIndexRetriever/docker_compose/intel/cpu/xeon
|
||||
host_ip=$(hostname -I | awk '{print $1}')
|
||||
export HF_CACHE_DIR=${HF_CACHE_DIR}
|
||||
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
||||
export no_proxy=${no_proxy}
|
||||
export http_proxy=${http_proxy}
|
||||
export https_proxy=${https_proxy}
|
||||
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
|
||||
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
|
||||
export TEI_EMBEDDING_ENDPOINT="http://${host_ip}:6006"
|
||||
export TEI_RERANKING_ENDPOINT="http://${host_ip}:8808"
|
||||
export REDIS_URL="redis://${host_ip}:6379"
|
||||
export INDEX_NAME="rag-redis"
|
||||
export RERANK_TYPE="tei"
|
||||
export MEGA_SERVICE_HOST_IP=${host_ip}
|
||||
export EMBEDDING_SERVICE_HOST_IP=${host_ip}
|
||||
export RETRIEVER_SERVICE_HOST_IP=${host_ip}
|
||||
export RERANK_SERVICE_HOST_IP=${host_ip}
|
||||
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:8889/v1/retrievaltool"
|
||||
export DATAPREP_SERVICE_ENDPOINT="http://${host_ip}:6007/v1/dataprep/ingest"
|
||||
export DATAPREP_GET_FILE_ENDPOINT="http://${host_ip}:6008/v1/dataprep/get"
|
||||
export DATAPREP_DELETE_FILE_ENDPOINT="http://${host_ip}:6009/v1/dataprep/delete"
|
||||
|
||||
docker compose -f compose.yaml up -d
|
||||
}
|
||||
|
||||
echo "==================== Start retrieval tool ===================="
|
||||
start_retrieval_tool
|
||||
sleep 20 # needed for downloading the models
|
||||
echo "==================== Retrieval tool started ===================="
|
||||
@@ -0,0 +1,68 @@
|
||||
#!/bin/bash
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
set -e
|
||||
|
||||
WORKPATH=$(dirname "$PWD")
|
||||
export WORKDIR=$WORKPATH/../../
|
||||
echo "WORKDIR=${WORKDIR}"
|
||||
export ip_address=$(hostname -I | awk '{print $1}')
|
||||
export host_ip=$ip_address
|
||||
echo "ip_address=${ip_address}"
|
||||
|
||||
|
||||
function validate() {
|
||||
local CONTENT="$1"
|
||||
local EXPECTED_RESULT="$2"
|
||||
local SERVICE_NAME="$3"
|
||||
|
||||
if echo "$CONTENT" | grep -q "$EXPECTED_RESULT"; then
|
||||
echo "[ $SERVICE_NAME ] Content is as expected: $CONTENT"
|
||||
echo 0
|
||||
else
|
||||
echo "[ $SERVICE_NAME ] Content does not match the expected result: $CONTENT"
|
||||
echo 1
|
||||
fi
|
||||
}
|
||||
|
||||
function ingest_data_and_validate() {
|
||||
echo "Ingesting data"
|
||||
cd $WORKPATH/retrieval_tool/
|
||||
echo $PWD
|
||||
local CONTENT=$(bash run_ingest_data.sh)
|
||||
local EXIT_CODE=$(validate "$CONTENT" "Data preparation succeeded" "dataprep-redis-server")
|
||||
echo "$EXIT_CODE"
|
||||
local EXIT_CODE="${EXIT_CODE:0-1}"
|
||||
echo "return value is $EXIT_CODE"
|
||||
if [ "$EXIT_CODE" == "1" ]; then
|
||||
docker logs dataprep-redis-server
|
||||
return 1
|
||||
fi
|
||||
}
|
||||
|
||||
function validate_retrieval_tool() {
|
||||
echo "----------------Test retrieval tool ----------------"
|
||||
local CONTENT=$(http_proxy="" curl http://${ip_address}:8889/v1/retrievaltool -X POST -H "Content-Type: application/json" -d '{
|
||||
"text": "Who sang Thriller"
|
||||
}')
|
||||
local EXIT_CODE=$(validate "$CONTENT" "Thriller" "retrieval-tool")
|
||||
|
||||
if [ "$EXIT_CODE" == "1" ]; then
|
||||
docker logs retrievaltool-xeon-backend-server
|
||||
exit 1
|
||||
fi
|
||||
}
|
||||
|
||||
function main(){
|
||||
|
||||
echo "==================== Ingest data ===================="
|
||||
ingest_data_and_validate
|
||||
echo "==================== Data ingestion completed ===================="
|
||||
|
||||
echo "==================== Validate retrieval tool ===================="
|
||||
validate_retrieval_tool
|
||||
echo "==================== Retrieval tool validated ===================="
|
||||
}
|
||||
|
||||
main
|
||||
@@ -13,7 +13,7 @@ export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
||||
HF_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
||||
model="meta-llama/Llama-3.3-70B-Instruct" #"meta-llama/Meta-Llama-3.1-70B-Instruct"
|
||||
|
||||
export HF_CACHE_DIR=/data2/huggingface
|
||||
export HF_CACHE_DIR=${model_cache:-"/data2/huggingface"}
|
||||
if [ ! -d "$HF_CACHE_DIR" ]; then
|
||||
HF_CACHE_DIR=$WORKDIR/hf_cache
|
||||
mkdir -p "$HF_CACHE_DIR"
|
||||
@@ -27,18 +27,20 @@ vllm_volume=${HF_CACHE_DIR}
|
||||
function start_tgi(){
|
||||
echo "Starting tgi-gaudi server"
|
||||
cd $WORKDIR/GenAIExamples/AgentQnA/docker_compose/intel/hpu/gaudi
|
||||
bash launch_tgi_gaudi.sh
|
||||
source set_env.sh
|
||||
docker compose -f $WORKDIR/GenAIExamples/DocIndexRetriever/docker_compose/intel/cpu/xeon/compose.yaml -f compose.yaml tgi_gaudi.yaml -f compose.telemetry.yaml up -d
|
||||
|
||||
}
|
||||
|
||||
function start_vllm_service_70B() {
|
||||
function start_all_services() {
|
||||
|
||||
echo "token is ${HF_TOKEN}"
|
||||
|
||||
echo "start vllm gaudi service"
|
||||
echo "**************model is $model**************"
|
||||
vllm_image=opea/vllm-gaudi:ci
|
||||
docker run -d --runtime=habana --rm --name "vllm-gaudi-server" -e HABANA_VISIBLE_DEVICES=0,1,2,3 -p $vllm_port:8000 -v $vllm_volume:/data -e HF_TOKEN=$HF_TOKEN -e HUGGING_FACE_HUB_TOKEN=$HF_TOKEN -e HF_HOME=/data -e OMPI_MCA_btl_vader_single_copy_mechanism=none -e PT_HPU_ENABLE_LAZY_COLLECTIVES=true -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e no_proxy=$no_proxy -e VLLM_SKIP_WARMUP=true --cap-add=sys_nice --ipc=host $vllm_image --model ${model} --max-seq-len-to-capture 16384 --tensor-parallel-size 4
|
||||
cd $WORKDIR/GenAIExamples/AgentQnA/docker_compose/intel/hpu/gaudi
|
||||
source set_env.sh
|
||||
docker compose -f $WORKDIR/GenAIExamples/DocIndexRetriever/docker_compose/intel/cpu/xeon/compose.yaml -f compose.yaml -f compose.telemetry.yaml up -d
|
||||
sleep 5s
|
||||
echo "Waiting vllm gaudi ready"
|
||||
n=0
|
||||
@@ -67,15 +69,6 @@ function download_chinook_data(){
|
||||
cp chinook-database/ChinookDatabase/DataSources/Chinook_Sqlite.sqlite $WORKDIR/GenAIExamples/AgentQnA/tests/
|
||||
}
|
||||
|
||||
function start_agent_and_api_server() {
|
||||
echo "Starting CRAG server"
|
||||
docker run -d --runtime=runc --name=kdd-cup-24-crag-service -p=8080:8000 docker.io/aicrowd/kdd-cup-24-crag-mock-api:v0
|
||||
|
||||
echo "Starting Agent services"
|
||||
cd $WORKDIR/GenAIExamples/AgentQnA/docker_compose/intel/hpu/gaudi
|
||||
bash launch_agent_service_gaudi.sh
|
||||
sleep 2m
|
||||
}
|
||||
|
||||
function validate() {
|
||||
local CONTENT="$1"
|
||||
@@ -95,8 +88,9 @@ function validate_agent_service() {
|
||||
# # test worker rag agent
|
||||
echo "======================Testing worker rag agent======================"
|
||||
export agent_port="9095"
|
||||
export agent_ip="127.0.0.1"
|
||||
prompt="Tell me about Michael Jackson song Thriller"
|
||||
local CONTENT=$(python3 $WORKDIR/GenAIExamples/AgentQnA/tests/test.py --prompt "$prompt" --agent_role "worker" --ext_port $agent_port)
|
||||
local CONTENT=$(python3 $WORKDIR/GenAIExamples/AgentQnA/tests/test.py --prompt "$prompt" --agent_role "worker" --ip_addr $agent_ip --ext_port $agent_port)
|
||||
# echo $CONTENT
|
||||
local EXIT_CODE=$(validate "$CONTENT" "Thriller" "rag-agent-endpoint")
|
||||
echo $EXIT_CODE
|
||||
@@ -110,7 +104,7 @@ function validate_agent_service() {
|
||||
echo "======================Testing worker sql agent======================"
|
||||
export agent_port="9096"
|
||||
prompt="How many employees are there in the company?"
|
||||
local CONTENT=$(python3 $WORKDIR/GenAIExamples/AgentQnA/tests/test.py --prompt "$prompt" --agent_role "worker" --ext_port $agent_port)
|
||||
local CONTENT=$(python3 $WORKDIR/GenAIExamples/AgentQnA/tests/test.py --prompt "$prompt" --agent_role "worker" --ip_addr $agent_ip --ext_port $agent_port)
|
||||
local EXIT_CODE=$(validate "$CONTENT" "8" "sql-agent-endpoint")
|
||||
echo $CONTENT
|
||||
# echo $EXIT_CODE
|
||||
@@ -123,7 +117,7 @@ function validate_agent_service() {
|
||||
# test supervisor react agent
|
||||
echo "======================Testing supervisor react agent======================"
|
||||
export agent_port="9090"
|
||||
local CONTENT=$(python3 $WORKDIR/GenAIExamples/AgentQnA/tests/test.py --agent_role "supervisor" --ext_port $agent_port --stream)
|
||||
local CONTENT=$(python3 $WORKDIR/GenAIExamples/AgentQnA/tests/test.py --agent_role "supervisor" --ip_addr $agent_ip --ext_port $agent_port --stream)
|
||||
local EXIT_CODE=$(validate "$CONTENT" "Iron" "react-agent-endpoint")
|
||||
# echo $CONTENT
|
||||
echo $EXIT_CODE
|
||||
@@ -144,18 +138,68 @@ function remove_chinook_data(){
|
||||
echo "Chinook data removed!"
|
||||
}
|
||||
|
||||
export host_ip=$ip_address
|
||||
echo "ip_address=${ip_address}"
|
||||
|
||||
|
||||
function validate() {
|
||||
local CONTENT="$1"
|
||||
local EXPECTED_RESULT="$2"
|
||||
local SERVICE_NAME="$3"
|
||||
|
||||
if echo "$CONTENT" | grep -q "$EXPECTED_RESULT"; then
|
||||
echo "[ $SERVICE_NAME ] Content is as expected: $CONTENT"
|
||||
echo 0
|
||||
else
|
||||
echo "[ $SERVICE_NAME ] Content does not match the expected result: $CONTENT"
|
||||
echo 1
|
||||
fi
|
||||
}
|
||||
|
||||
function ingest_data_and_validate() {
|
||||
echo "Ingesting data"
|
||||
cd $WORKDIR/GenAIExamples/AgentQnA/retrieval_tool/
|
||||
echo $PWD
|
||||
local CONTENT=$(bash run_ingest_data.sh)
|
||||
local EXIT_CODE=$(validate "$CONTENT" "Data preparation succeeded" "dataprep-redis-server")
|
||||
echo "$EXIT_CODE"
|
||||
local EXIT_CODE="${EXIT_CODE:0-1}"
|
||||
echo "return value is $EXIT_CODE"
|
||||
if [ "$EXIT_CODE" == "1" ]; then
|
||||
docker logs dataprep-redis-server
|
||||
return 1
|
||||
fi
|
||||
}
|
||||
|
||||
function validate_retrieval_tool() {
|
||||
echo "----------------Test retrieval tool ----------------"
|
||||
local CONTENT=$(http_proxy="" curl http://${ip_address}:8889/v1/retrievaltool -X POST -H "Content-Type: application/json" -d '{
|
||||
"text": "Who sang Thriller"
|
||||
}')
|
||||
local EXIT_CODE=$(validate "$CONTENT" "Thriller" "retrieval-tool")
|
||||
|
||||
if [ "$EXIT_CODE" == "1" ]; then
|
||||
docker logs retrievaltool-xeon-backend-server
|
||||
exit 1
|
||||
fi
|
||||
}
|
||||
|
||||
function main() {
|
||||
echo "==================== Prepare data ===================="
|
||||
download_chinook_data
|
||||
echo "==================== Data prepare done ===================="
|
||||
|
||||
echo "==================== Start VLLM service ===================="
|
||||
start_vllm_service_70B
|
||||
echo "==================== VLLM service started ===================="
|
||||
echo "==================== Start all services ===================="
|
||||
start_all_services
|
||||
echo "==================== all services started ===================="
|
||||
|
||||
echo "==================== Start agent ===================="
|
||||
start_agent_and_api_server
|
||||
echo "==================== Agent started ===================="
|
||||
echo "==================== Ingest data ===================="
|
||||
ingest_data_and_validate
|
||||
echo "==================== Data ingestion completed ===================="
|
||||
|
||||
echo "==================== Validate retrieval tool ===================="
|
||||
validate_retrieval_tool
|
||||
echo "==================== Retrieval tool validated ===================="
|
||||
|
||||
echo "==================== Validate agent service ===================="
|
||||
validate_agent_service
|
||||
|
||||
@@ -11,13 +11,22 @@ echo "WORKDIR=${WORKDIR}"
|
||||
export ip_address=$(hostname -I | awk '{print $1}')
|
||||
export TOOLSET_PATH=$WORKDIR/GenAIExamples/AgentQnA/tools/
|
||||
|
||||
|
||||
function download_chinook_data(){
|
||||
echo "Downloading chinook data..."
|
||||
cd $WORKDIR
|
||||
git clone https://github.com/lerocha/chinook-database.git
|
||||
cp chinook-database/ChinookDatabase/DataSources/Chinook_Sqlite.sqlite $WORKDIR/GenAIExamples/AgentQnA/tests/
|
||||
}
|
||||
|
||||
function start_agent_and_api_server() {
|
||||
echo "Starting CRAG server"
|
||||
docker run -d --runtime=runc --name=kdd-cup-24-crag-service -p=8080:8000 docker.io/aicrowd/kdd-cup-24-crag-mock-api:v0
|
||||
|
||||
echo "Starting Agent services"
|
||||
cd $WORKDIR/GenAIExamples/AgentQnA/docker_compose/intel/cpu/xeon
|
||||
cd $WORKDIR/GenAIExamples/AgentQnA/docker_compose/intel/cpu/xeon/
|
||||
bash launch_agent_service_openai.sh
|
||||
sleep 2m
|
||||
}
|
||||
|
||||
function validate() {
|
||||
@@ -35,19 +44,64 @@ function validate() {
|
||||
}
|
||||
|
||||
function validate_agent_service() {
|
||||
echo "----------------Test agent ----------------"
|
||||
local CONTENT=$(http_proxy="" curl http://${ip_address}:9090/v1/chat/completions -X POST -H "Content-Type: application/json" -d '{
|
||||
"query": "Tell me about Michael Jackson song thriller"
|
||||
}')
|
||||
local EXIT_CODE=$(validate "$CONTENT" "Thriller" "react-agent-endpoint")
|
||||
docker logs react-agent-endpoint
|
||||
# # test worker rag agent
|
||||
echo "======================Testing worker rag agent======================"
|
||||
export agent_port="9095"
|
||||
prompt="Tell me about Michael Jackson song Thriller"
|
||||
local CONTENT=$(python3 $WORKDIR/GenAIExamples/AgentQnA/tests/test.py --prompt "$prompt" --agent_role "worker" --ext_port $agent_port)
|
||||
# echo $CONTENT
|
||||
local EXIT_CODE=$(validate "$CONTENT" "Thriller" "rag-agent-endpoint")
|
||||
echo $EXIT_CODE
|
||||
local EXIT_CODE="${EXIT_CODE:0-1}"
|
||||
if [ "$EXIT_CODE" == "1" ]; then
|
||||
docker logs rag-agent-endpoint
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# # test worker sql agent
|
||||
echo "======================Testing worker sql agent======================"
|
||||
export agent_port="9096"
|
||||
prompt="How many employees are there in the company?"
|
||||
local CONTENT=$(python3 $WORKDIR/GenAIExamples/AgentQnA/tests/test.py --prompt "$prompt" --agent_role "worker" --ext_port $agent_port)
|
||||
local EXIT_CODE=$(validate "$CONTENT" "8" "sql-agent-endpoint")
|
||||
echo $CONTENT
|
||||
# echo $EXIT_CODE
|
||||
local EXIT_CODE="${EXIT_CODE:0-1}"
|
||||
if [ "$EXIT_CODE" == "1" ]; then
|
||||
docker logs sql-agent-endpoint
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# test supervisor react agent
|
||||
echo "======================Testing supervisor react agent======================"
|
||||
export agent_port="9090"
|
||||
local CONTENT=$(python3 $WORKDIR/GenAIExamples/AgentQnA/tests/test.py --agent_role "supervisor" --ext_port $agent_port --stream)
|
||||
local EXIT_CODE=$(validate "$CONTENT" "Iron" "react-agent-endpoint")
|
||||
# echo $CONTENT
|
||||
echo $EXIT_CODE
|
||||
local EXIT_CODE="${EXIT_CODE:0-1}"
|
||||
if [ "$EXIT_CODE" == "1" ]; then
|
||||
docker logs react-agent-endpoint
|
||||
exit 1
|
||||
fi
|
||||
|
||||
}
|
||||
|
||||
function remove_chinook_data(){
|
||||
echo "Removing chinook data..."
|
||||
cd $WORKDIR
|
||||
if [ -d "chinook-database" ]; then
|
||||
rm -rf chinook-database
|
||||
fi
|
||||
echo "Chinook data removed!"
|
||||
}
|
||||
|
||||
|
||||
function main() {
|
||||
echo "==================== Prepare data ===================="
|
||||
download_chinook_data
|
||||
echo "==================== Data prepare done ===================="
|
||||
|
||||
echo "==================== Start agent ===================="
|
||||
start_agent_and_api_server
|
||||
echo "==================== Agent started ===================="
|
||||
@@ -57,4 +111,9 @@ function main() {
|
||||
echo "==================== Agent service validated ===================="
|
||||
}
|
||||
|
||||
|
||||
remove_chinook_data
|
||||
|
||||
main
|
||||
|
||||
remove_chinook_data
|
||||
|
||||
120
AgentQnA/tests/step4_launch_and_validate_agent_rocm_vllm.sh
Normal file
@@ -0,0 +1,120 @@
|
||||
#!/bin/bash
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
set -e
|
||||
|
||||
WORKPATH=$(dirname "$PWD")
|
||||
export LOG_PATH=${WORKPATH}
|
||||
export WORKDIR=$WORKPATH/../../
|
||||
echo "WORKDIR=${WORKDIR}"
|
||||
export ip_address=$(hostname -I | awk '{print $1}')
|
||||
export host_ip=${ip_address}
|
||||
export TOOLSET_PATH=$WORKPATH/tools/
|
||||
|
||||
export HF_CACHE_DIR=$WORKPATH/data2/huggingface
|
||||
if [ ! -d "$HF_CACHE_DIR" ]; then
|
||||
HF_CACHE_DIR=$WORKDIR/hf_cache
|
||||
mkdir -p "$HF_CACHE_DIR"
|
||||
fi
|
||||
|
||||
function download_chinook_data(){
|
||||
echo "Downloading chinook data..."
|
||||
cd $WORKDIR
|
||||
git clone https://github.com/lerocha/chinook-database.git
|
||||
cp chinook-database/ChinookDatabase/DataSources/Chinook_Sqlite.sqlite ${WORKPATH}/tests/
|
||||
}
|
||||
|
||||
function start_agent_and_api_server() {
|
||||
echo "Starting Agent services"
|
||||
cd $WORKDIR/GenAIExamples/AgentQnA/docker_compose/amd/gpu/rocm
|
||||
bash launch_agent_service_vllm_rocm.sh
|
||||
}
|
||||
|
||||
function validate() {
|
||||
local CONTENT="$1"
|
||||
local EXPECTED_RESULT="$2"
|
||||
local SERVICE_NAME="$3"
|
||||
|
||||
if echo "$CONTENT" | grep -q "$EXPECTED_RESULT"; then
|
||||
echo "[ $SERVICE_NAME ] Content is as expected: $CONTENT"
|
||||
echo 0
|
||||
else
|
||||
echo "[ $SERVICE_NAME ] Content does not match the expected result: $CONTENT"
|
||||
echo 1
|
||||
fi
|
||||
}
|
||||
|
||||
function validate_agent_service() {
|
||||
# # test worker rag agent
|
||||
echo "======================Testing worker rag agent======================"
|
||||
export agent_port=$(cat ${WORKPATH}/docker_compose/amd/gpu/WORKER_RAG_AGENT_PORT_tmp)
|
||||
prompt="Tell me about Michael Jackson song Thriller"
|
||||
local CONTENT=$(python3 $WORKDIR/GenAIExamples/AgentQnA/tests/test.py --prompt "$prompt" --agent_role "worker" --ext_port $agent_port)
|
||||
# echo $CONTENT
|
||||
local EXIT_CODE=$(validate "$CONTENT" "Thriller" "rag-agent-endpoint")
|
||||
echo $EXIT_CODE
|
||||
local EXIT_CODE="${EXIT_CODE:0-1}"
|
||||
if [ "$EXIT_CODE" == "1" ]; then
|
||||
docker logs rag-agent-endpoint
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# test worker sql agent
|
||||
echo "======================Testing worker sql agent======================"
|
||||
export agent_port=$(cat ${WORKPATH}/docker_compose/amd/gpu/WORKER_SQL_AGENT_PORT_tmp)
|
||||
prompt="How many employees are there in the company?"
|
||||
local CONTENT=$(python3 $WORKDIR/GenAIExamples/AgentQnA/tests/test.py --prompt "$prompt" --agent_role "worker" --ext_port $agent_port)
|
||||
local EXIT_CODE=$(validate "$CONTENT" "8" "sql-agent-endpoint")
|
||||
echo $CONTENT
|
||||
# echo $EXIT_CODE
|
||||
local EXIT_CODE="${EXIT_CODE:0-1}"
|
||||
if [ "$EXIT_CODE" == "1" ]; then
|
||||
docker logs sql-agent-endpoint
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# test supervisor react agent
|
||||
echo "======================Testing supervisor react agent======================"
|
||||
export agent_port=$(cat ${WORKPATH}/docker_compose/amd/gpu/SUPERVISOR_REACT_AGENT_PORT_tmp)
|
||||
local CONTENT=$(python3 $WORKDIR/GenAIExamples/AgentQnA/tests/test.py --agent_role "supervisor" --ext_port $agent_port --stream)
|
||||
local EXIT_CODE=$(validate "$CONTENT" "Iron" "react-agent-endpoint")
|
||||
# echo $CONTENT
|
||||
echo $EXIT_CODE
|
||||
local EXIT_CODE="${EXIT_CODE:0-1}"
|
||||
if [ "$EXIT_CODE" == "1" ]; then
|
||||
docker logs react-agent-endpoint
|
||||
exit 1
|
||||
fi
|
||||
|
||||
}
|
||||
|
||||
function remove_chinook_data(){
|
||||
echo "Removing chinook data..."
|
||||
cd $WORKDIR
|
||||
if [ -d "chinook-database" ]; then
|
||||
rm -rf chinook-database
|
||||
fi
|
||||
echo "Chinook data removed!"
|
||||
}
|
||||
|
||||
function main() {
|
||||
echo "==================== Prepare data ===================="
|
||||
download_chinook_data
|
||||
echo "==================== Data prepare done ===================="
|
||||
|
||||
echo "==================== Start agent ===================="
|
||||
start_agent_and_api_server
|
||||
echo "==================== Agent started ===================="
|
||||
|
||||
echo "==================== Validate agent service ===================="
|
||||
validate_agent_service
|
||||
echo "==================== Agent service validated ===================="
|
||||
}
|
||||
|
||||
|
||||
remove_chinook_data
|
||||
|
||||
main
|
||||
|
||||
remove_chinook_data
|
||||
@@ -2,26 +2,30 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
set -ex
|
||||
set -e
|
||||
|
||||
WORKPATH=$(dirname "$PWD")
|
||||
export LOG_PATH=${WORKPATH}
|
||||
export WORKDIR=$WORKPATH/../../
|
||||
echo "WORKDIR=${WORKDIR}"
|
||||
export ip_address=$(hostname -I | awk '{print $1}')
|
||||
export TOOLSET_PATH=$WORKDIR/GenAIExamples/AgentQnA/tools/
|
||||
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
||||
export host_ip=${ip_address}
|
||||
export TOOLSET_PATH=$WORKPATH/tools/
|
||||
|
||||
export HF_CACHE_DIR=$WORKDIR/hf_cache
|
||||
export HF_CACHE_DIR=$WORKPATH/data2/huggingface
|
||||
if [ ! -d "$HF_CACHE_DIR" ]; then
|
||||
HF_CACHE_DIR=$WORKDIR/hf_cache
|
||||
mkdir -p "$HF_CACHE_DIR"
|
||||
fi
|
||||
ls $HF_CACHE_DIR
|
||||
|
||||
function download_chinook_data(){
|
||||
echo "Downloading chinook data..."
|
||||
cd $WORKDIR
|
||||
git clone https://github.com/lerocha/chinook-database.git
|
||||
cp chinook-database/ChinookDatabase/DataSources/Chinook_Sqlite.sqlite ${WORKPATH}/tests/
|
||||
}
|
||||
|
||||
function start_agent_and_api_server() {
|
||||
echo "Starting CRAG server"
|
||||
docker run -d --runtime=runc --name=kdd-cup-24-crag-service -p=8080:8000 docker.io/aicrowd/kdd-cup-24-crag-mock-api:v0
|
||||
|
||||
echo "Starting Agent services"
|
||||
cd $WORKDIR/GenAIExamples/AgentQnA/docker_compose/amd/gpu/rocm
|
||||
bash launch_agent_service_tgi_rocm.sh
|
||||
@@ -42,28 +46,63 @@ function validate() {
|
||||
}
|
||||
|
||||
function validate_agent_service() {
|
||||
echo "----------------Test agent ----------------"
|
||||
local CONTENT=$(http_proxy="" curl http://${ip_address}:9095/v1/chat/completions -X POST -H "Content-Type: application/json" -d '{
|
||||
"query": "Tell me about Michael Jackson song thriller"
|
||||
}')
|
||||
local EXIT_CODE=$(validate "$CONTENT" "Thriller" "react-agent-endpoint")
|
||||
docker logs rag-agent-endpoint
|
||||
# # test worker rag agent
|
||||
echo "======================Testing worker rag agent======================"
|
||||
export agent_port=$(cat ${WORKPATH}/docker_compose/amd/gpu/WORKER_RAG_AGENT_PORT_tmp)
|
||||
prompt="Tell me about Michael Jackson song Thriller"
|
||||
local CONTENT=$(python3 $WORKDIR/GenAIExamples/AgentQnA/tests/test.py --prompt "$prompt" --agent_role "worker" --ext_port $agent_port)
|
||||
# echo $CONTENT
|
||||
local EXIT_CODE=$(validate "$CONTENT" "Thriller" "rag-agent-endpoint")
|
||||
echo $EXIT_CODE
|
||||
local EXIT_CODE="${EXIT_CODE:0-1}"
|
||||
if [ "$EXIT_CODE" == "1" ]; then
|
||||
docker logs rag-agent-endpoint
|
||||
exit 1
|
||||
fi
|
||||
|
||||
local CONTENT=$(http_proxy="" curl http://${ip_address}:9090/v1/chat/completions -X POST -H "Content-Type: application/json" -d '{
|
||||
"query": "Tell me about Michael Jackson song thriller"
|
||||
}')
|
||||
local EXIT_CODE=$(validate "$CONTENT" "Thriller" "react-agent-endpoint")
|
||||
docker logs react-agent-endpoint
|
||||
# test worker sql agent
|
||||
echo "======================Testing worker sql agent======================"
|
||||
export agent_port=$(cat ${WORKPATH}/docker_compose/amd/gpu/WORKER_SQL_AGENT_PORT_tmp)
|
||||
prompt="How many employees are there in the company?"
|
||||
local CONTENT=$(python3 $WORKDIR/GenAIExamples/AgentQnA/tests/test.py --prompt "$prompt" --agent_role "worker" --ext_port $agent_port)
|
||||
local EXIT_CODE=$(validate "$CONTENT" "8" "sql-agent-endpoint")
|
||||
echo $CONTENT
|
||||
# echo $EXIT_CODE
|
||||
local EXIT_CODE="${EXIT_CODE:0-1}"
|
||||
if [ "$EXIT_CODE" == "1" ]; then
|
||||
docker logs sql-agent-endpoint
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# test supervisor react agent
|
||||
echo "======================Testing supervisor react agent======================"
|
||||
export agent_port=$(cat ${WORKPATH}/docker_compose/amd/gpu/SUPERVISOR_REACT_AGENT_PORT_tmp)
|
||||
local CONTENT=$(python3 $WORKDIR/GenAIExamples/AgentQnA/tests/test.py --agent_role "supervisor" --ext_port $agent_port --stream)
|
||||
local EXIT_CODE=$(validate "$CONTENT" "Iron" "react-agent-endpoint")
|
||||
# echo $CONTENT
|
||||
echo $EXIT_CODE
|
||||
local EXIT_CODE="${EXIT_CODE:0-1}"
|
||||
if [ "$EXIT_CODE" == "1" ]; then
|
||||
docker logs react-agent-endpoint
|
||||
exit 1
|
||||
fi
|
||||
|
||||
}
|
||||
|
||||
function remove_chinook_data(){
|
||||
echo "Removing chinook data..."
|
||||
cd $WORKDIR
|
||||
if [ -d "chinook-database" ]; then
|
||||
rm -rf chinook-database
|
||||
fi
|
||||
echo "Chinook data removed!"
|
||||
}
|
||||
|
||||
function main() {
|
||||
echo "==================== Prepare data ===================="
|
||||
download_chinook_data
|
||||
echo "==================== Data prepare done ===================="
|
||||
|
||||
echo "==================== Start agent ===================="
|
||||
start_agent_and_api_server
|
||||
echo "==================== Agent started ===================="
|
||||
@@ -73,4 +112,9 @@ function main() {
|
||||
echo "==================== Agent service validated ===================="
|
||||
}
|
||||
|
||||
|
||||
remove_chinook_data
|
||||
|
||||
main
|
||||
|
||||
remove_chinook_data
|
||||
|
||||
@@ -9,6 +9,22 @@ echo "WORKDIR=${WORKDIR}"
|
||||
export ip_address=$(hostname -I | awk '{print $1}')
|
||||
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
||||
export TOOLSET_PATH=$WORKDIR/GenAIExamples/AgentQnA/tools/
|
||||
export no_proxy="$no_proxy,rag-agent-endpoint,sql-agent-endpoint,react-agent-endpoint,agent-ui,vllm-gaudi-server,jaeger,grafana,prometheus,127.0.0.1,localhost,0.0.0.0,$ip_address"
|
||||
|
||||
|
||||
function get_genai_comps() {
|
||||
if [ ! -d "GenAIComps" ] ; then
|
||||
git clone --depth 1 --branch ${opea_branch:-"main"} https://github.com/opea-project/GenAIComps.git
|
||||
fi
|
||||
}
|
||||
|
||||
|
||||
function build_agent_docker_image() {
|
||||
cd $WORKDIR/GenAIExamples/AgentQnA/docker_image_build/
|
||||
get_genai_comps
|
||||
echo "Build agent image with --no-cache..."
|
||||
docker compose -f build.yaml build --no-cache
|
||||
}
|
||||
|
||||
function stop_crag() {
|
||||
cid=$(docker ps -aq --filter "name=kdd-cup-24-crag-service")
|
||||
@@ -18,12 +34,7 @@ function stop_crag() {
|
||||
|
||||
function stop_agent_docker() {
|
||||
cd $WORKPATH/docker_compose/intel/hpu/gaudi/
|
||||
container_list=$(cat compose.yaml | grep container_name | cut -d':' -f2)
|
||||
for container_name in $container_list; do
|
||||
cid=$(docker ps -aq --filter "name=$container_name")
|
||||
echo "Stopping container $container_name"
|
||||
if [[ ! -z "$cid" ]]; then docker rm $cid -f && sleep 1s; fi
|
||||
done
|
||||
docker compose -f $WORKDIR/GenAIExamples/DocIndexRetriever/docker_compose/intel/cpu/xeon/compose.yaml -f compose.yaml down
|
||||
}
|
||||
|
||||
function stop_llm(){
|
||||
@@ -59,33 +70,21 @@ function stop_retrieval_tool() {
|
||||
echo "workpath: $WORKPATH"
|
||||
echo "=================== Stop containers ===================="
|
||||
stop_crag
|
||||
stop_llm
|
||||
stop_agent_docker
|
||||
stop_retrieval_tool
|
||||
|
||||
cd $WORKPATH/tests
|
||||
|
||||
echo "=================== #1 Building docker images===================="
|
||||
bash step1_build_images.sh
|
||||
build_agent_docker_image
|
||||
echo "=================== #1 Building docker images completed===================="
|
||||
|
||||
echo "=================== #2 Start retrieval tool===================="
|
||||
bash step2_start_retrieval_tool.sh
|
||||
echo "=================== #2 Retrieval tool started===================="
|
||||
|
||||
echo "=================== #3 Ingest data and validate retrieval===================="
|
||||
bash step3_ingest_data_and_validate_retrieval.sh
|
||||
echo "=================== #3 Data ingestion and validation completed===================="
|
||||
|
||||
echo "=================== #4 Start agent and API server===================="
|
||||
bash step4_launch_and_validate_agent_gaudi.sh
|
||||
echo "=================== #4 Agent test passed ===================="
|
||||
echo "=================== #4 Start agent, API server, retrieval, and ingest data===================="
|
||||
bash $WORKPATH/tests/step4_launch_and_validate_agent_gaudi.sh
|
||||
echo "=================== #4 Agent, retrieval test passed ===================="
|
||||
|
||||
echo "=================== #5 Stop agent and API server===================="
|
||||
stop_crag
|
||||
stop_agent_docker
|
||||
stop_retrieval_tool
|
||||
stop_llm
|
||||
echo "=================== #5 Agent and API server stopped===================="
|
||||
|
||||
echo y | docker system prune
|
||||
|
||||
@@ -5,11 +5,13 @@
|
||||
set -xe
|
||||
|
||||
WORKPATH=$(dirname "$PWD")
|
||||
ls $WORKPATH
|
||||
export WORKDIR=$WORKPATH/../../
|
||||
echo "WORKDIR=${WORKDIR}"
|
||||
export ip_address=$(hostname -I | awk '{print $1}')
|
||||
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
||||
export TOOLSET_PATH=$WORKDIR/GenAIExamples/AgentQnA/tools/
|
||||
export TOOLSET_PATH=$WORKPATH/tools/
|
||||
export MODEL_CACHE="./data"
|
||||
|
||||
function stop_crag() {
|
||||
cid=$(docker ps -aq --filter "name=kdd-cup-24-crag-service")
|
||||
@@ -19,13 +21,7 @@ function stop_crag() {
|
||||
|
||||
function stop_agent_docker() {
|
||||
cd $WORKPATH/docker_compose/amd/gpu/rocm
|
||||
# docker compose -f compose.yaml down
|
||||
container_list=$(cat compose.yaml | grep container_name | cut -d':' -f2)
|
||||
for container_name in $container_list; do
|
||||
cid=$(docker ps -aq --filter "name=$container_name")
|
||||
echo "Stopping container $container_name"
|
||||
if [[ ! -z "$cid" ]]; then docker rm $cid -f && sleep 1s; fi
|
||||
done
|
||||
bash stop_agent_service_tgi_rocm.sh
|
||||
}
|
||||
|
||||
function stop_retrieval_tool() {
|
||||
|
||||
66
AgentQnA/tests/test_compose_vllm_on_rocm.sh
Normal file
@@ -0,0 +1,66 @@
|
||||
#!/bin/bash
|
||||
# Copyright (C) 2024 Advanced Micro Devices, Inc.
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
set -e
|
||||
|
||||
WORKPATH=$(dirname "$PWD")
|
||||
export LOG_PATH=${WORKPATH}
|
||||
export WORKDIR=${WORKPATH}/../../
|
||||
echo "WORKDIR=${WORKDIR}"
|
||||
export ip_address=$(hostname -I | awk '{print $1}')
|
||||
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
||||
export TOOLSET_PATH=$WORKPATH/tools/
|
||||
export MODEL_CACHE="./data"
|
||||
|
||||
function stop_crag() {
|
||||
cid=$(docker ps -aq --filter "name=kdd-cup-24-crag-service")
|
||||
echo "Stopping container kdd-cup-24-crag-service with cid $cid"
|
||||
if [[ ! -z "$cid" ]]; then docker rm $cid -f && sleep 1s; fi
|
||||
}
|
||||
|
||||
function stop_agent_docker() {
|
||||
cd $WORKPATH/docker_compose/amd/gpu/rocm
|
||||
bash stop_agent_service_vllm_rocm.sh
|
||||
}
|
||||
|
||||
function stop_retrieval_tool() {
|
||||
echo "Stopping Retrieval tool"
|
||||
local RETRIEVAL_TOOL_PATH=$WORKDIR/GenAIExamples/DocIndexRetriever
|
||||
cd $RETRIEVAL_TOOL_PATH/docker_compose/intel/cpu/xeon/
|
||||
docker compose -f compose.yaml down
|
||||
}
|
||||
|
||||
echo "workpath: $WORKPATH"
|
||||
echo "=================== Stop containers ===================="
|
||||
stop_crag
|
||||
stop_agent_docker
|
||||
stop_retrieval_tool
|
||||
|
||||
cd $WORKPATH/tests
|
||||
|
||||
echo "=================== #1 Building docker images===================="
|
||||
bash step1_build_images_rocm_vllm.sh
|
||||
echo "=================== #1 Building docker images completed===================="
|
||||
|
||||
echo "=================== #2 Start retrieval tool===================="
|
||||
bash step2_start_retrieval_tool_rocm_vllm.sh
|
||||
echo "=================== #2 Retrieval tool started===================="
|
||||
|
||||
echo "=================== #3 Ingest data and validate retrieval===================="
|
||||
bash step3_ingest_data_and_validate_retrieval_rocm_vllm.sh
|
||||
echo "=================== #3 Data ingestion and validation completed===================="
|
||||
|
||||
echo "=================== #4 Start agent and API server===================="
|
||||
bash step4_launch_and_validate_agent_rocm_vllm.sh
|
||||
echo "=================== #4 Agent test passed ===================="
|
||||
|
||||
echo "=================== #5 Stop agent and API server===================="
|
||||
stop_crag
|
||||
stop_agent_docker
|
||||
stop_retrieval_tool
|
||||
echo "=================== #5 Agent and API server stopped===================="
|
||||
|
||||
echo y | docker system prune
|
||||
|
||||
echo "ALL DONE!!"
|
||||
77
AgentQnA/tools/supervisor_agent_webtools.yaml
Normal file
@@ -0,0 +1,77 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
search_web_base:
|
||||
description: Search a web base for a given query. Returns text related to the query.
|
||||
callable_api: tools.py:search_web_base
|
||||
args_schema:
|
||||
query:
|
||||
type: str
|
||||
description: query
|
||||
return_output: retrieved_data
|
||||
|
||||
search_knowledge_base:
|
||||
description: Search a knowledge base for a given query. Returns text related to the query.
|
||||
callable_api: tools.py:search_knowledge_base
|
||||
args_schema:
|
||||
query:
|
||||
type: str
|
||||
description: query
|
||||
return_output: retrieved_data
|
||||
|
||||
search_artist_database:
|
||||
description: Search a SQL database on artists and their music with a natural language query. Returns text related to the query.
|
||||
callable_api: tools.py:search_sql_database
|
||||
args_schema:
|
||||
query:
|
||||
type: str
|
||||
description: natural language query
|
||||
return_output: retrieved_data
|
||||
|
||||
get_artist_birth_place:
|
||||
description: Get the birth place of an artist.
|
||||
callable_api: tools.py:get_artist_birth_place
|
||||
args_schema:
|
||||
artist_name:
|
||||
type: str
|
||||
description: artist name
|
||||
return_output: birth_place
|
||||
|
||||
get_billboard_rank_date:
|
||||
description: Get Billboard ranking for a specific rank and date.
|
||||
callable_api: tools.py:get_billboard_rank_date
|
||||
args_schema:
|
||||
rank:
|
||||
type: int
|
||||
description: the rank of interest, for example 1 for top 1
|
||||
date:
|
||||
type: str
|
||||
description: date
|
||||
return_output: billboard_info
|
||||
|
||||
get_song_release_date:
|
||||
description: Get the release date of a song.
|
||||
callable_api: tools.py:get_song_release_date
|
||||
args_schema:
|
||||
song_name:
|
||||
type: str
|
||||
description: song name
|
||||
return_output: release_date
|
||||
|
||||
get_members:
|
||||
description: Get the member list of a band.
|
||||
callable_api: tools.py:get_members
|
||||
args_schema:
|
||||
band_name:
|
||||
type: str
|
||||
description: band name
|
||||
return_output: members
|
||||
|
||||
get_grammy_best_artist_by_year:
|
||||
description: Get the Grammy Best New Artist for a specific year.
|
||||
callable_api: tools.py:get_grammy_best_artist_by_year
|
||||
args_schema:
|
||||
year:
|
||||
type: int
|
||||
description: year
|
||||
return_output: grammy_best_new_artist
|
||||
@@ -4,9 +4,30 @@
|
||||
import os
|
||||
|
||||
import requests
|
||||
from comps.cores.telemetry.opea_telemetry import opea_telemetry, tracer
|
||||
from tools.pycragapi import CRAG
|
||||
|
||||
|
||||
@opea_telemetry
|
||||
def search_web_base(query: str) -> str:
|
||||
import os
|
||||
|
||||
from langchain_core.tools import Tool
|
||||
from langchain_google_community import GoogleSearchAPIWrapper
|
||||
|
||||
search = GoogleSearchAPIWrapper()
|
||||
|
||||
tool = Tool(
|
||||
name="google_search",
|
||||
description="Search Google for recent results.",
|
||||
func=search.run,
|
||||
)
|
||||
|
||||
response = tool.run(query)
|
||||
return response
|
||||
|
||||
|
||||
@opea_telemetry
|
||||
def search_knowledge_base(query: str) -> str:
|
||||
"""Search a knowledge base about music and singers for a given query.
|
||||
|
||||
@@ -22,6 +43,7 @@ def search_knowledge_base(query: str) -> str:
|
||||
return response.json()["text"]
|
||||
|
||||
|
||||
@opea_telemetry
|
||||
def search_sql_database(query: str) -> str:
|
||||
"""Search a SQL database on artists and their music with a natural language query.
|
||||
|
||||
@@ -37,6 +59,7 @@ def search_sql_database(query: str) -> str:
|
||||
return response.json()["text"]
|
||||
|
||||
|
||||
@opea_telemetry
|
||||
def get_grammy_best_artist_by_year(year: int) -> dict:
|
||||
"""Get the Grammy Best New Artist for a specific year."""
|
||||
api = CRAG()
|
||||
@@ -44,18 +67,21 @@ def get_grammy_best_artist_by_year(year: int) -> dict:
|
||||
return api.music_grammy_get_best_artist_by_year(year)
|
||||
|
||||
|
||||
@opea_telemetry
|
||||
def get_members(band_name: str) -> dict:
|
||||
"""Get the member list of a band."""
|
||||
api = CRAG()
|
||||
return api.music_get_members(band_name)
|
||||
|
||||
|
||||
@opea_telemetry
|
||||
def get_artist_birth_place(artist_name: str) -> dict:
|
||||
"""Get the birthplace of an artist."""
|
||||
api = CRAG()
|
||||
return api.music_get_artist_birth_place(artist_name)
|
||||
|
||||
|
||||
@opea_telemetry
|
||||
def get_billboard_rank_date(rank: int, date: str = None) -> dict:
|
||||
"""Get Billboard ranking for a specific rank and date."""
|
||||
api = CRAG()
|
||||
@@ -63,6 +89,7 @@ def get_billboard_rank_date(rank: int, date: str = None) -> dict:
|
||||
return api.music_get_billboard_rank_date(rank, date)
|
||||
|
||||
|
||||
@opea_telemetry
|
||||
def get_song_release_date(song_name: str) -> dict:
|
||||
"""Get the release date of a song."""
|
||||
api = CRAG()
|
||||
|
||||
@@ -0,0 +1,77 @@
|
||||
From 799dcc304b3aecf2e2969df47c8dcac16d2267b0 Mon Sep 17 00:00:00 2001
|
||||
From: lkk12014402 <kaokao.lv@intel.com>
|
||||
Date: Fri, 4 Apr 2025 07:40:30 +0000
|
||||
Subject: [PATCH] deal opea agent tool content.
|
||||
|
||||
---
|
||||
backend/open_webui/utils/middleware.py | 54 ++++++++++++++++++++++++++
|
||||
1 file changed, 54 insertions(+)
|
||||
|
||||
diff --git a/backend/open_webui/utils/middleware.py b/backend/open_webui/utils/middleware.py
|
||||
index 289d887df..afa0edf1e 100644
|
||||
--- a/backend/open_webui/utils/middleware.py
|
||||
+++ b/backend/open_webui/utils/middleware.py
|
||||
@@ -1486,6 +1486,60 @@ async def process_chat_response(
|
||||
try:
|
||||
data = json.loads(data)
|
||||
|
||||
+ tool_content_block = []
|
||||
+ if data.get("tool_name"):
|
||||
+ sources.append(
|
||||
+ {
|
||||
+ "source": {
|
||||
+ "name": f"TOOL:{data.get('tool_name')}"},
|
||||
+ "document": [data.get("tool_content")],
|
||||
+ "metadata": [{
|
||||
+ "source": f"TOOL:{data.get('tool_name')}"}],
|
||||
+ }
|
||||
+ )
|
||||
+ events.append({"sources": sources})
|
||||
+
|
||||
+ await event_emitter(
|
||||
+ {
|
||||
+ "type": "chat:completion",
|
||||
+ "data": {"sources": sources},
|
||||
+ }
|
||||
+ )
|
||||
+ tool_content_block = [
|
||||
+ {
|
||||
+ "type": "tool_calls",
|
||||
+ "content": [
|
||||
+ {"id": data.get('tool_name'), "function": {"name": data.get('tool_name')}}
|
||||
+ ]
|
||||
+ }
|
||||
+ ]
|
||||
+
|
||||
+ await event_emitter(
|
||||
+ {
|
||||
+ "type": "chat:completion",
|
||||
+ "data": {
|
||||
+ "content": serialize_content_blocks(tool_content_block),
|
||||
+ },
|
||||
+ }
|
||||
+ )
|
||||
+
|
||||
+ tool_content_block = [
|
||||
+ {
|
||||
+ "type": "tool_calls",
|
||||
+ "content": [
|
||||
+ {"id": data.get('tool_name'), "function": {"name": data.get('tool_name')}}
|
||||
+ ],
|
||||
+ "results": [
|
||||
+ {"tool_call_id": data.get('tool_name'), "content": data.get("tool_content")}
|
||||
+ ]
|
||||
+ },
|
||||
+ {
|
||||
+ "type": "text",
|
||||
+ "content": "",
|
||||
+ }
|
||||
+ ]
|
||||
+ content_blocks.extend(tool_content_block)
|
||||
+
|
||||
data, _ = await process_filter_functions(
|
||||
request=request,
|
||||
filter_functions=filter_functions,
|
||||
--
|
||||
2.34.1
|
||||
|
||||
@@ -1,10 +0,0 @@
|
||||
[*]
|
||||
indent_style = tab
|
||||
|
||||
[package.json]
|
||||
indent_style = space
|
||||
indent_size = 2
|
||||
|
||||
[*.md]
|
||||
indent_style = space
|
||||
indent_size = 2
|
||||
@@ -1 +0,0 @@
|
||||
AGENT_URL = '/v1/chat/completions'
|
||||
@@ -1,13 +0,0 @@
|
||||
.DS_Store
|
||||
node_modules
|
||||
/build
|
||||
/.svelte-kit
|
||||
/package
|
||||
.env
|
||||
.env.*
|
||||
!.env.example
|
||||
|
||||
# Ignore files for PNPM, NPM and YARN
|
||||
pnpm-lock.yaml
|
||||
package-lock.json
|
||||
yarn.lock
|
||||
@@ -1,20 +0,0 @@
|
||||
module.exports = {
|
||||
root: true,
|
||||
parser: "@typescript-eslint/parser",
|
||||
extends: ["eslint:recommended", "plugin:@typescript-eslint/recommended", "prettier"],
|
||||
plugins: ["svelte3", "@typescript-eslint", "neverthrow"],
|
||||
ignorePatterns: ["*.cjs"],
|
||||
overrides: [{ files: ["*.svelte"], processor: "svelte3/svelte3" }],
|
||||
settings: {
|
||||
"svelte3/typescript": () => require("typescript"),
|
||||
},
|
||||
parserOptions: {
|
||||
sourceType: "module",
|
||||
ecmaVersion: 2020,
|
||||
},
|
||||
env: {
|
||||
browser: true,
|
||||
es2017: true,
|
||||
node: true,
|
||||
},
|
||||
};
|
||||
@@ -1,13 +0,0 @@
|
||||
.DS_Store
|
||||
node_modules
|
||||
/build
|
||||
/.svelte-kit
|
||||
/package
|
||||
.env
|
||||
.env.*
|
||||
!.env.example
|
||||
|
||||
# Ignore files for PNPM, NPM and YARN
|
||||
pnpm-lock.yaml
|
||||
package-lock.json
|
||||
yarn.lock
|
||||
@@ -1,13 +0,0 @@
|
||||
{
|
||||
"pluginSearchDirs": [
|
||||
"."
|
||||
],
|
||||
"overrides": [
|
||||
{
|
||||
"files": "*.svelte",
|
||||
"options": {
|
||||
"parser": "svelte"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
@@ -1,60 +0,0 @@
|
||||
# AgentQnA
|
||||
|
||||
## 📸 Project Screenshots
|
||||
|
||||

|
||||

|
||||
|
||||
## 🧐 Features
|
||||
|
||||
Here're some of the project's features:
|
||||
|
||||
- Create Agent:Provide more precise answers based on user queries, showcase the high-quality output process of complex queries across different dimensions, and consolidate information to present comprehensive answers.
|
||||
|
||||
## 🛠️ Get it Running
|
||||
|
||||
1. Clone the repo.
|
||||
|
||||
2. cd command to the current folder.
|
||||
|
||||
```
|
||||
cd AgentQnA/ui/svelte
|
||||
```
|
||||
|
||||
3. Modify the required .env variables.
|
||||
|
||||
```
|
||||
AGENT_URL = ''
|
||||
```
|
||||
|
||||
4. **For Local Development:**
|
||||
|
||||
- Install the dependencies:
|
||||
|
||||
```
|
||||
npm install
|
||||
```
|
||||
|
||||
- Start the development server:
|
||||
|
||||
```
|
||||
npm run dev
|
||||
```
|
||||
|
||||
- The application will be available at `http://localhost:5173`.
|
||||
|
||||
5. **For Docker Setup:**
|
||||
|
||||
- Build the Docker image:
|
||||
|
||||
```
|
||||
docker build -t opea:agent-ui .
|
||||
```
|
||||
|
||||
- Run the Docker container:
|
||||
|
||||
```
|
||||
docker run -d -p 5173:5173 --name agent-ui opea:agent-ui
|
||||
```
|
||||
|
||||
- The application will be available at `http://localhost:5173`.
|
||||
@@ -1,60 +0,0 @@
|
||||
{
|
||||
"name": "agent-example",
|
||||
"version": "0.0.1",
|
||||
"private": true,
|
||||
"scripts": {
|
||||
"dev": "vite dev --host 0.0.0.0",
|
||||
"build": "vite build",
|
||||
"preview": "vite preview",
|
||||
"check": "svelte-kit sync && svelte-check --tsconfig ./tsconfig.json",
|
||||
"check:watch": "svelte-kit sync && svelte-check --tsconfig ./tsconfig.json --watch",
|
||||
"lint": "prettier --check . && eslint .",
|
||||
"format": "prettier --write ."
|
||||
},
|
||||
"devDependencies": {
|
||||
"@fortawesome/free-solid-svg-icons": "6.2.0",
|
||||
"@sveltejs/adapter-auto": "1.0.0-next.75",
|
||||
"@sveltejs/kit": "^1.20.1",
|
||||
"@tailwindcss/typography": "0.5.7",
|
||||
"@types/debug": "4.1.7",
|
||||
"@typescript-eslint/eslint-plugin": "^5.27.0",
|
||||
"@typescript-eslint/parser": "^5.27.0",
|
||||
"autoprefixer": "^10.4.7",
|
||||
"daisyui": "^2.52.0",
|
||||
"debug": "4.3.4",
|
||||
"eslint": "^8.16.0",
|
||||
"eslint-config-prettier": "^8.3.0",
|
||||
"eslint-plugin-neverthrow": "1.1.4",
|
||||
"eslint-plugin-svelte3": "^4.0.0",
|
||||
"neverthrow": "5.0.0",
|
||||
"pocketbase": "0.7.0",
|
||||
"postcss": "^8.4.23",
|
||||
"postcss-load-config": "^4.0.1",
|
||||
"postcss-preset-env": "^8.3.2",
|
||||
"prettier": "^2.8.8",
|
||||
"prettier-plugin-svelte": "^2.7.0",
|
||||
"prettier-plugin-tailwindcss": "^0.3.0",
|
||||
"svelte": "^3.59.1",
|
||||
"svelte-check": "^2.7.1",
|
||||
"svelte-fa": "3.0.3",
|
||||
"svelte-preprocess": "^4.10.7",
|
||||
"tailwindcss": "^3.1.5",
|
||||
"ts-pattern": "4.0.5",
|
||||
"tslib": "^2.3.1",
|
||||
"typescript": "^4.7.4",
|
||||
"vite": "^4.3.9"
|
||||
},
|
||||
"type": "module",
|
||||
"dependencies": {
|
||||
"@heroicons/vue": "^2.1.5",
|
||||
"echarts": "^5.4.2",
|
||||
"flowbite-svelte": "^0.38.5",
|
||||
"flowbite-svelte-icons": "^0.3.6",
|
||||
"fuse.js": "^6.6.2",
|
||||
"marked": "^15.0.0",
|
||||
"ramda": "^0.29.0",
|
||||
"sjcl": "^1.0.8",
|
||||
"sse.js": "^0.6.1",
|
||||
"svelte-notifications": "^0.9.98"
|
||||
}
|
||||
}
|
||||
@@ -1,13 +0,0 @@
|
||||
const tailwindcss = require("tailwindcss");
|
||||
const autoprefixer = require("autoprefixer");
|
||||
|
||||
const config = {
|
||||
plugins: [
|
||||
//Some plugins, like tailwindcss/nesting, need to run before Tailwind,
|
||||
tailwindcss(),
|
||||
//But others, like autoprefixer, need to run after,
|
||||
autoprefixer,
|
||||
],
|
||||
};
|
||||
|
||||
module.exports = config;
|
||||
50
AgentQnA/ui/svelte/src/app.d.ts
vendored
@@ -1,50 +0,0 @@
|
||||
// Copyright (C) 2025 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
// See: https://kit.svelte.dev/docs/types#app
|
||||
// import { Result} from "neverthrow";
|
||||
|
||||
declare namespace App {
|
||||
interface Locals {
|
||||
user?: User;
|
||||
}
|
||||
// interface PageData { }
|
||||
// interface PageError {}
|
||||
// interface Platform {}
|
||||
}
|
||||
|
||||
interface User {
|
||||
id?: string;
|
||||
email: string;
|
||||
password?: string;
|
||||
token?: string;
|
||||
[key: string]: any;
|
||||
}
|
||||
|
||||
type AuthResponse = Result<User>;
|
||||
|
||||
interface AuthAdapter {
|
||||
login(props: { email: string; password: string }): Promise<AuthResponse>;
|
||||
signup(props: { email: string; password: string; password_confirm: string }): Promise<AuthResponse>;
|
||||
validate_session(props: { token: string }): Promise<AuthResponse>;
|
||||
logout(props: { token: string; email: string }): Promise<Result<void>>;
|
||||
forgotPassword(props: { email: string; password: string }): Promise<Result<void>>;
|
||||
}
|
||||
|
||||
interface ChatAdapter {
|
||||
modelList(props: {}): Promise<Result<void>>;
|
||||
txt2img(props: {}): Promise<Result<void>>;
|
||||
}
|
||||
|
||||
interface ChatMessage {
|
||||
role: string;
|
||||
content: string;
|
||||
}
|
||||
|
||||
interface ChatMessageType {
|
||||
model: string;
|
||||
knowledge: string;
|
||||
temperature: string;
|
||||
max_new_tokens: string;
|
||||
topk: string;
|
||||
}
|
||||
@@ -1,17 +0,0 @@
|
||||
<!--
|
||||
Copyright (C) 2025 Intel Corporation
|
||||
SPDX-License-Identifier: Apache-2.0
|
||||
-->
|
||||
|
||||
<!doctype html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
<meta charset="utf-8" />
|
||||
<link rel="icon" href="%sveltekit.assets%/favicon.png" />
|
||||
<meta name="viewport" content="width=device-width" />
|
||||
%sveltekit.head%
|
||||
</head>
|
||||
<body>
|
||||
<div>%sveltekit.body%</div>
|
||||
</body>
|
||||
</html>
|
||||
@@ -1,82 +0,0 @@
|
||||
/* Write your global styles here, in PostCSS syntax */
|
||||
@tailwind base;
|
||||
@tailwind components;
|
||||
@tailwind utilities;
|
||||
|
||||
.btn {
|
||||
@apply flex-nowrap;
|
||||
}
|
||||
a.btn {
|
||||
@apply no-underline;
|
||||
}
|
||||
.input {
|
||||
@apply text-base;
|
||||
}
|
||||
|
||||
.bg-dark-blue {
|
||||
background-color: #004a86;
|
||||
}
|
||||
|
||||
.bg-light-blue {
|
||||
background-color: #0068b5;
|
||||
}
|
||||
|
||||
.bg-turquoise {
|
||||
background-color: #00a3f6;
|
||||
}
|
||||
|
||||
.bg-header {
|
||||
background-color: #ffffff;
|
||||
}
|
||||
|
||||
.bg-button {
|
||||
background-color: #0068b5;
|
||||
}
|
||||
|
||||
.bg-title {
|
||||
background-color: #f7f7f7;
|
||||
}
|
||||
|
||||
.text-header {
|
||||
color: #0068b5;
|
||||
}
|
||||
|
||||
.text-button {
|
||||
color: #0071c5;
|
||||
}
|
||||
|
||||
.text-title-color {
|
||||
color: rgb(38,38,38);
|
||||
}
|
||||
|
||||
.font-intel {
|
||||
font-family: "intel-clear","tahoma",Helvetica,"helvetica",Arial,sans-serif;
|
||||
}
|
||||
|
||||
.font-title-intel {
|
||||
font-family: "intel-one","intel-clear",Helvetica,Arial,sans-serif;
|
||||
}
|
||||
|
||||
.bg-footer {
|
||||
background-color: #e7e7e7;
|
||||
}
|
||||
|
||||
.bg-light-green {
|
||||
background-color: #d7f3a1;
|
||||
}
|
||||
|
||||
.bg-purple {
|
||||
background-color: #653171;
|
||||
}
|
||||
|
||||
.bg-dark-blue {
|
||||
background-color: #224678;
|
||||
}
|
||||
|
||||
.border-input-color {
|
||||
border-color: #605e5c;
|
||||
}
|
||||
|
||||
.w-12\/12 {
|
||||
width: 100%
|
||||
}
|
||||
@@ -1,25 +0,0 @@
|
||||
<!--
|
||||
Copyright (C) 2025 Intel Corporation
|
||||
SPDX-License-Identifier: Apache-2.0
|
||||
-->
|
||||
|
||||
<svg
|
||||
t="1731984271860"
|
||||
class="w-8 h-8"
|
||||
viewBox="0 0 1024 1024"
|
||||
version="1.1"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
p-id="11418"
|
||||
width="200"
|
||||
height="200"
|
||||
><path
|
||||
d="M0 0m170.666667 0l682.666666 0q170.666667 0 170.666667 170.666667l0 682.666666q0 170.666667-170.666667 170.666667l-682.666666 0q-170.666667 0-170.666667-170.666667l0-682.666666q0-170.666667 170.666667-170.666667Z"
|
||||
fill="#1890FF"
|
||||
fill-opacity=".1"
|
||||
p-id="11419"
|
||||
/><path
|
||||
d="M404.352 552.661333a63.018667 63.018667 0 1 0 0-125.994666 63.018667 63.018667 0 0 0 0 125.994666z m0 213.333334a63.018667 63.018667 0 1 0 0-125.994667 63.018667 63.018667 0 0 0 0 125.994667z m-213.333333-426.666667a63.018667 63.018667 0 1 0 0-125.994667 63.018667 63.018667 0 0 0 0 125.994667z m669.653333-10.88H376.362667a35.669333 35.669333 0 0 1-35.114667-36.096c0-19.882667 15.786667-36.096 35.114667-36.096h484.394666c19.370667 0 35.157333 16.213333 35.157334 36.096a35.669333 35.669333 0 0 1-35.242667 36.096z m16.384 213.034667h-260.821333c-10.410667 0-18.901333-16.213333-18.901334-36.096 0-19.925333 8.490667-36.138667 18.901334-36.138667h260.864c10.410667 0 18.901333 16.213333 18.901333 36.138667-0.042667 19.882667-8.490667 36.096-18.944 36.096z m0 212.992h-260.821333c-10.410667 0-18.901333-16.213333-18.901334-36.096 0-19.925333 8.490667-36.096 18.901334-36.096h260.864c10.410667 0 18.901333 16.213333 18.901333 36.096-0.042667 19.882667-8.490667 36.096-18.944 36.096z"
|
||||
fill="#1890FF"
|
||||
p-id="11420"
|
||||
/></svg
|
||||
>
|
||||
|
Before Width: | Height: | Size: 1.5 KiB |
@@ -1,9 +0,0 @@
|
||||
<!--
|
||||
Copyright (C) 2025 Intel Corporation
|
||||
SPDX-License-Identifier: Apache-2.0
|
||||
-->
|
||||
|
||||
<svg class="w-3.5 h-3.5 me-2.5" aria-hidden="true" xmlns="http://www.w3.org/2000/svg" fill="currentColor" viewBox="0 0 20 20">
|
||||
<path d="M14.707 7.793a1 1 0 0 0-1.414 0L11 10.086V1.5a1 1 0 0 0-2 0v8.586L6.707 7.793a1 1 0 1 0-1.414 1.414l4 4a1 1 0 0 0 1.416 0l4-4a1 1 0 0 0-.002-1.414Z"/>
|
||||
<path d="M18 12h-2.55l-2.975 2.975a3.5 3.5 0 0 1-4.95 0L4.55 12H2a2 2 0 0 0-2 2v4a2 2 0 0 0 2 2h16a2 2 0 0 0 2-2v-4a2 2 0 0 0-2-2Zm-3 5a1 1 0 1 1 0-2 1 1 0 0 1 0 2Z"/>
|
||||
</svg>
|
||||
|
Before Width: | Height: | Size: 559 B |
@@ -1,16 +0,0 @@
|
||||
<!--
|
||||
Copyright (C) 2025 Intel Corporation
|
||||
SPDX-License-Identifier: Apache-2.0
|
||||
-->
|
||||
|
||||
<svg
|
||||
class="me-2 h-3 w-3"
|
||||
aria-hidden="true"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
fill="currentColor"
|
||||
viewBox="0 0 20 14"
|
||||
>
|
||||
<path
|
||||
d="M10 0C4.612 0 0 5.336 0 7c0 1.742 3.546 7 10 7 6.454 0 10-5.258 10-7 0-1.664-4.612-7-10-7Zm0 10a3 3 0 1 1 0-6 3 3 0 0 1 0 6Z"
|
||||
/>
|
||||
</svg>
|
||||
|
Before Width: | Height: | Size: 413 B |
@@ -1,97 +0,0 @@
|
||||
<!--
|
||||
Copyright (C) 2025 Intel Corporation
|
||||
SPDX-License-Identifier: Apache-2.0
|
||||
-->
|
||||
|
||||
<!-- <svg class="h-11 w-11 flex-none overflow-visible" fill="none"
|
||||
><defs
|
||||
><filter
|
||||
id="step-icon-2"
|
||||
x="-3"
|
||||
y="-1"
|
||||
width="50"
|
||||
height="50"
|
||||
filterUnits="userSpaceOnUse"
|
||||
color-interpolation-filters="sRGB"
|
||||
><feFlood flood-opacity="0" result="BackgroundImageFix" /><feColorMatrix
|
||||
in="SourceAlpha"
|
||||
values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"
|
||||
result="hardAlpha"
|
||||
/><feOffset dy="2" /><feGaussianBlur stdDeviation="2.5" /><feComposite
|
||||
in2="hardAlpha"
|
||||
operator="out"
|
||||
/><feColorMatrix
|
||||
values="0 0 0 0 0.054902 0 0 0 0 0.647059 0 0 0 0 0.913725 0 0 0 0.12 0"
|
||||
/><feBlend
|
||||
in2="BackgroundImageFix"
|
||||
result="effect1_dropShadow_804_95228"
|
||||
/><feBlend
|
||||
in="SourceGraphic"
|
||||
in2="effect1_dropShadow_804_95228"
|
||||
result="shape"
|
||||
/></filter
|
||||
></defs
|
||||
><g filter="url(#step-icon-2)"
|
||||
><path
|
||||
d="M2.75 10A7.25 7.25 0 0 1 10 2.75h24A7.25 7.25 0 0 1 41.25 10v24A7.25 7.25 0 0 1 34 41.25H10A7.25 7.25 0 0 1 2.75 34V10Z"
|
||||
fill="#EEF2FF"
|
||||
/><path
|
||||
d="M2.75 10A7.25 7.25 0 0 1 10 2.75h24A7.25 7.25 0 0 1 41.25 10v24A7.25 7.25 0 0 1 34 41.25H10A7.25 7.25 0 0 1 2.75 34V10Z"
|
||||
stroke="#6366F1"
|
||||
stroke-width="1.5"
|
||||
stroke-linecap="round"
|
||||
stroke-linejoin="round"
|
||||
/></g
|
||||
><path
|
||||
fill-rule="evenodd"
|
||||
clip-rule="evenodd"
|
||||
d="M23 35.25c.69 0 1.25-.56 1.25-1.25A3.75 3.75 0 0 1 28 30.25a1.25 1.25 0 1 0 0-2.5A3.75 3.75 0 0 1 24.25 24a1.25 1.25 0 1 0-2.5 0A3.75 3.75 0 0 1 18 27.75a1.25 1.25 0 0 0 0 2.5A3.75 3.75 0 0 1 21.75 34c0 .69.56 1.25 1.25 1.25Z"
|
||||
fill="#fff"
|
||||
/><path
|
||||
d="M28 27a.75.75 0 0 0 0 1.5V27Zm-4.5 7a.5.5 0 0 1-.5.5V36a2 2 0 0 0 2-2h-1.5Zm5-5a.5.5 0 0 1-.5.5V31a2 2 0 0 0 2-2h-1.5Zm-.5-.5a.5.5 0 0 1 .5.5H30a2 2 0 0 0-2-2v1.5Zm-5-5a.5.5 0 0 1 .5.5H25a2 2 0 0 0-2-2v1.5Zm-.5.5a.5.5 0 0 1 .5-.5V22a2 2 0 0 0-2 2h1.5Zm-5 5a.5.5 0 0 1 .5-.5V27a2 2 0 0 0-2 2h1.5Zm.5.5a.5.5 0 0 1-.5-.5H16a2 2 0 0 0 2 2v-1.5Zm5 5a.5.5 0 0 1-.5-.5H21a2 2 0 0 0 2 2v-1.5ZM18 31a3 3 0 0 1 3 3h1.5a4.5 4.5 0 0 0-4.5-4.5V31Zm3-7a3 3 0 0 1-3 3v1.5a4.5 4.5 0 0 0 4.5-4.5H21Zm7 3a3 3 0 0 1-3-3h-1.5a4.5 4.5 0 0 0 4.5 4.5V27Zm-3 7a3 3 0 0 1 3-3v-1.5a4.5 4.5 0 0 0-4.5 4.5H25Z"
|
||||
fill="#6366F1"
|
||||
/><path
|
||||
fill-rule="evenodd"
|
||||
clip-rule="evenodd"
|
||||
d="M13 27.25c.69 0 1.25-.56 1.25-1.25 0-.966.784-1.75 1.75-1.75a1.25 1.25 0 1 0 0-2.5A1.75 1.75 0 0 1 14.25 20a1.25 1.25 0 1 0-2.5 0A1.75 1.75 0 0 1 10 21.75a1.25 1.25 0 0 0 0 2.5c.966 0 1.75.784 1.75 1.75 0 .69.56 1.25 1.25 1.25Z"
|
||||
fill="#fff"
|
||||
/><path
|
||||
d="M16 21a.75.75 0 0 0 0 1.5V21Zm-2.5 5a.5.5 0 0 1-.5.5V28a2 2 0 0 0 2-2h-1.5Zm3-3a.5.5 0 0 1-.5.5V25a2 2 0 0 0 2-2h-1.5Zm-.5-.5a.5.5 0 0 1 .5.5H18a2 2 0 0 0-2-2v1.5Zm-3-3a.5.5 0 0 1 .5.5H15a2 2 0 0 0-2-2v1.5Zm-.5.5a.5.5 0 0 1 .5-.5V18a2 2 0 0 0-2 2h1.5Zm-3 3a.5.5 0 0 1 .5-.5V21a2 2 0 0 0-2 2h1.5Zm.5.5a.5.5 0 0 1-.5-.5H8a2 2 0 0 0 2 2v-1.5Zm3 3a.5.5 0 0 1-.5-.5H11a2 2 0 0 0 2 2v-1.5ZM10 25a1 1 0 0 1 1 1h1.5a2.5 2.5 0 0 0-2.5-2.5V25Zm1-5a1 1 0 0 1-1 1v1.5a2.5 2.5 0 0 0 2.5-2.5H11Zm5 1a1 1 0 0 1-1-1h-1.5a2.5 2.5 0 0 0 2.5 2.5V21Zm-1 5a1 1 0 0 1 1-1v-1.5a2.5 2.5 0 0 0-2.5 2.5H15Z"
|
||||
fill="#6366F1"
|
||||
/><path
|
||||
opacity=".4"
|
||||
d="M29.75 35.25h2.5a3 3 0 0 0 3-3v-20.5a3 3 0 0 0-3-3h-20.5a3 3 0 0 0-3 3v5.5M12.75 14.25h18.5"
|
||||
stroke="#6366F1"
|
||||
stroke-width="1.5"
|
||||
stroke-linecap="round"
|
||||
stroke-linejoin="round"
|
||||
/></svg
|
||||
> -->
|
||||
|
||||
<svg
|
||||
t="1731984480564"
|
||||
class="h-10 w-10"
|
||||
viewBox="0 0 1114 1024"
|
||||
version="1.1"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
p-id="29550"
|
||||
width="200"
|
||||
height="200"
|
||||
><path
|
||||
d="M1081.916235 788.781176H909.312v172.634353a24.696471 24.696471 0 0 1-49.332706 0V788.781176H687.314824a24.696471 24.696471 0 0 1 0-49.362823H859.949176V566.814118a24.696471 24.696471 0 0 1 49.332706 0v172.634353h172.664471a24.696471 24.696471 0 0 1 0 49.362823z"
|
||||
fill="#0972E7"
|
||||
p-id="29551"
|
||||
/><path
|
||||
d="M174.772706 143.028706h509.831529c43.550118 0 78.516706 35.689412 78.516706 80.173176v280.576c0 44.453647-34.966588 80.173176-78.516706 80.173177H174.772706c-43.550118 0-78.516706-35.719529-78.516706-80.173177V223.171765c0-43.851294 34.966588-80.173176 78.516706-80.173177z"
|
||||
fill="#CAE4FF"
|
||||
p-id="29552"
|
||||
/><path
|
||||
d="M335.600941 910.637176H104.899765c-24.545882 0-43.550118-20.028235-43.550118-45.086117V107.098353c0-25.057882 19.636706-45.086118 44.182588-45.086118h742.912c23.913412 0 44.182588 20.028235 44.182589 44.453647V282.503529c0 16.896 13.492706 31.322353 30.659764 31.322353a30.72 30.72 0 0 0 30.689883-31.322353V106.465882C953.976471 47.585882 906.721882 0 849.046588 0H104.899765C47.224471 0 0 48.218353 0 107.098353v758.452706c0 58.88 46.622118 107.098353 104.297412 107.098353h230.671059c16.564706 0 30.659765-13.793882 30.659764-31.322353a30.027294 30.027294 0 0 0-30.057411-30.689883z"
|
||||
fill="#0972E7"
|
||||
p-id="29553"
|
||||
/><path
|
||||
d="M709.180235 219.196235c0-16.896-13.492706-31.322353-30.659764-31.322353H171.760941c-16.564706 0-30.659765 13.793882-30.659765 31.322353 0 16.926118 13.492706 31.322353 30.659765 31.322353h506.75953a30.72 30.72 0 0 0 30.659764-31.322353zM171.760941 436.525176c-16.564706 0-30.659765 13.793882-30.659765 31.322353 0 16.896 13.492706 31.322353 30.659765 31.322353h344.786824c16.564706 0 30.689882-13.793882 30.689882-31.322353 0-16.926118-13.522824-31.322353-30.689882-31.322353H171.760941z"
|
||||
fill="#0972E7"
|
||||
p-id="29554"
|
||||
/></svg
|
||||
>
|
||||
@@ -1,8 +0,0 @@
|
||||
<!--
|
||||
Copyright (C) 2025 Intel Corporation
|
||||
SPDX-License-Identifier: Apache-2.0
|
||||
-->
|
||||
|
||||
<svg class="h-5 w-5 flex-shrink-0 text-[#1d4dd5]" viewBox="0 0 20 20" fill="currentColor" aria-hidden="true" data-slot="icon">
|
||||
<path fill-rule="evenodd" d="M15.621 4.379a3 3 0 0 0-4.242 0l-7 7a3 3 0 0 0 4.241 4.243h.001l.497-.5a.75.75 0 0 1 1.064 1.057l-.498.501-.002.002a4.5 4.5 0 0 1-6.364-6.364l7-7a4.5 4.5 0 0 1 6.368 6.36l-3.455 3.553A2.625 2.625 0 1 1 9.52 9.52l3.45-3.451a.75.75 0 1 1 1.061 1.06l-3.45 3.451a1.125 1.125 0 0 0 1.587 1.595l3.454-3.553a3 3 0 0 0 0-4.242Z" clip-rule="evenodd"></path>
|
||||
</svg>
|
||||
|
Before Width: | Height: | Size: 601 B |
@@ -1,13 +0,0 @@
|
||||
<!--
|
||||
Copyright (C) 2025 Intel Corporation
|
||||
SPDX-License-Identifier: Apache-2.0
|
||||
-->
|
||||
|
||||
<svg
|
||||
class="pointer-events-none absolute left-0 ml-4 hidden h-4 w-4 fill-current text-gray-500 group-hover:text-gray-400 sm:block"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
viewBox="0 0 20 20"
|
||||
><path
|
||||
d="M12.9 14.32a8 8 0 1 1 1.41-1.41l5.35 5.33-1.42 1.42-5.33-5.34zM8 14A6 6 0 1 0 8 2a6 6 0 0 0 0 12z"
|
||||
/></svg
|
||||
>
|
||||
|
Before Width: | Height: | Size: 413 B |
@@ -1,17 +0,0 @@
|
||||
<!--
|
||||
Copyright (C) 2025 Intel Corporation
|
||||
SPDX-License-Identifier: Apache-2.0
|
||||
-->
|
||||
|
||||
<svg
|
||||
fill="none"
|
||||
class="relative h-5 w-5"
|
||||
stroke-linecap="round"
|
||||
stroke-linejoin="round"
|
||||
stroke-width="2"
|
||||
stroke="currentColor"
|
||||
viewBox="0 0 24 24"
|
||||
><path
|
||||
d="M10 14l2-2m0 0l2-2m-2 2l-2-2m2 2l2 2m7-2a9 9 0 11-18 0 9 9 0 0118 0z"
|
||||
/></svg
|
||||
>
|
||||
|
Before Width: | Height: | Size: 369 B |
@@ -1,20 +0,0 @@
|
||||
<!--
|
||||
Copyright (C) 2025 Intel Corporation
|
||||
SPDX-License-Identifier: Apache-2.0
|
||||
-->
|
||||
|
||||
<svg
|
||||
t="1731987484014"
|
||||
class="w-5 h-5"
|
||||
viewBox="0 0 1267 1024"
|
||||
version="1.1"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
p-id="49311"
|
||||
width="200"
|
||||
height="200"
|
||||
><path
|
||||
d="M56.880762 910.214095H1194.666667a57.051429 57.051429 0 0 1 56.880762 56.905143A57.051429 57.051429 0 0 1 1194.666667 1024H56.880762A57.051429 57.051429 0 0 1 0 967.119238a57.051429 57.051429 0 0 1 56.880762-56.905143z m1024-56.880762H170.666667a114.102857 114.102857 0 0 1-113.785905-113.785904V113.785905A114.102857 114.102857 0 0 1 170.666667 0h910.214095A114.102857 114.102857 0 0 1 1194.666667 113.785905l-0.560762 625.761524C1194.105905 802.133333 1143.466667 853.333333 1080.880762 853.333333zM495.006476 227.328a198.948571 198.948571 0 0 0-63.219809 59.977143c-43.227429 63.707429-45.519238 150.747429-3.974096 215.600762 63.146667 99.547429 187.733333 120.027429 277.040762 63.146666l88.185905 88.161524a42.910476 42.910476 0 0 0 60.294095 0 42.910476 42.910476 0 0 0 0-60.294095l-88.746666-88.185905c49.493333-77.360762 40.399238-180.906667-26.745905-248.027428a198.92419 198.92419 0 0 0-242.834286-30.378667z m216.112762 170.910476a113.785905 113.785905 0 1 1-227.571809 0 113.785905 113.785905 0 0 1 227.571809 0z"
|
||||
fill="#0377FF"
|
||||
p-id="49312"
|
||||
/></svg
|
||||
>
|
||||
|
Before Width: | Height: | Size: 1.3 KiB |
@@ -1,22 +0,0 @@
|
||||
<!--
|
||||
Copyright (C) 2025 Intel Corporation
|
||||
SPDX-License-Identifier: Apache-2.0
|
||||
-->
|
||||
|
||||
<svg
|
||||
t="1730766012593"
|
||||
viewBox="0 0 1024 1024"
|
||||
version="1.1"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
p-id="11065"
|
||||
class="w-4 h-4"
|
||||
><path
|
||||
d="M996.693333 494.933333l-341.333333-126.293333-126.293333-341.333333c-3.413333-13.653333-27.306667-13.653333-30.72 0l-126.293334 341.333333-341.333333 126.293333c-6.826667 3.413333-10.24 10.24-10.24 17.066667s3.413333 13.653333 10.24 17.066667l341.333333 126.293333 126.293334 341.333333c3.413333 6.826667 10.24 10.24 17.066666 10.24s13.653333-3.413333 17.066667-10.24l126.293333-341.333333 341.333334-126.293333c6.826667-3.413333 10.24-10.24 10.24-17.066667s-6.826667-13.653333-13.653334-17.066667z m-314.026666 34.133334h-153.6V682.666667c0 10.24-6.826667 17.066667-17.066667 17.066666s-17.066667-6.826667-17.066667-17.066666v-153.6H341.333333c-10.24 0-17.066667-6.826667-17.066666-17.066667s6.826667-17.066667 17.066666-17.066667h153.6V341.333333c0-10.24 6.826667-17.066667 17.066667-17.066666s17.066667 6.826667 17.066667 17.066666v153.6H682.666667c10.24 0 17.066667 6.826667 17.066666 17.066667s-6.826667 17.066667-17.066666 17.066667z"
|
||||
fill="#ffffff"
|
||||
p-id="11066"
|
||||
/><path
|
||||
d="M293.546667 703.146667l-136.533334 136.533333c-6.826667 6.826667-6.826667 17.066667 0 23.893333 3.413333 3.413333 6.826667 3.413333 13.653334 3.413334s10.24 0 13.653333-3.413334l136.533333-136.533333c6.826667-6.826667 6.826667-17.066667 0-23.893333s-20.48-6.826667-27.306666 0zM716.8 324.266667c3.413333 0 10.24 0 13.653333-3.413334l136.533334-136.533333c6.826667-6.826667 6.826667-17.066667 0-23.893333s-17.066667-6.826667-23.893334 0l-136.533333 136.533333c-6.826667 6.826667-6.826667 17.066667 0 23.893333 0 0 6.826667 3.413333 10.24 3.413334zM293.546667 317.44c3.413333 3.413333 10.24 6.826667 13.653333 6.826667s10.24 0 13.653333-3.413334c6.826667-6.826667 6.826667-17.066667 0-23.893333l-136.533333-136.533333c-6.826667-6.826667-17.066667-6.826667-23.893333 0s-6.826667 17.066667 0 23.893333l133.12 133.12zM730.453333 703.146667c-6.826667-6.826667-17.066667-6.826667-23.893333 0s-6.826667 17.066667 0 23.893333l136.533333 136.533333c3.413333 3.413333 6.826667 3.413333 13.653334 3.413334s10.24 0 13.653333-3.413334c6.826667-6.826667 6.826667-17.066667 0-23.893333l-139.946667-136.533333z"
|
||||
fill="#ffffff"
|
||||
p-id="11067"
|
||||
/></svg
|
||||
>
|
||||
|
Before Width: | Height: | Size: 2.3 KiB |
@@ -1,44 +0,0 @@
|
||||
<!--
|
||||
Copyright (C) 2025 Intel Corporation
|
||||
SPDX-License-Identifier: Apache-2.0
|
||||
-->
|
||||
|
||||
<svg
|
||||
t="1731984744752"
|
||||
class="w-12 h-12"
|
||||
viewBox="0 0 1024 1024"
|
||||
version="1.1"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
p-id="31753"
|
||||
width="200"
|
||||
height="200"
|
||||
><path
|
||||
d="M244.224 370.78016h526.336c48.64 0 87.552 39.424 87.552 87.552v292.352c0 48.64-39.424 87.552-87.552 87.552H244.224c-48.64 0-87.552-39.424-87.552-87.552v-292.352c-0.512-48.128 38.912-87.552 87.552-87.552z"
|
||||
fill="#CAE4FF"
|
||||
p-id="31754"
|
||||
/><path
|
||||
d="M760.832 983.30624H245.76c-114.176 0-206.848-92.672-206.848-206.848v-357.888c0-114.176 92.672-206.336 206.848-206.848h515.072c114.176 0 206.336 92.672 206.848 206.848v357.888c0 114.176-92.672 206.848-206.848 206.848zM245.76 270.09024c-81.92 0-148.48 66.56-148.48 148.48v357.888c0 81.92 66.56 148.48 148.48 148.48h515.072c81.92 0 148.48-66.56 148.48-148.48v-357.888c0-81.92-66.56-148.48-148.48-148.48H245.76z"
|
||||
fill="#0972E7"
|
||||
p-id="31755"
|
||||
/><path
|
||||
d="M303.616 748.29824c0.512 14.848-11.264 27.648-26.112 28.16-14.848 0.512-27.648-11.264-28.16-26.112v-291.328c0.512-14.848 13.312-26.624 28.16-26.112 14.336 0.512 25.6 11.776 26.112 26.112v289.28z"
|
||||
fill="#0972E7"
|
||||
p-id="31756"
|
||||
/><path
|
||||
d="M742.912 758.53824c0 13.824-11.264 25.088-25.088 25.088H274.432c-13.824 0.512-25.6-9.728-26.112-23.552-0.512-13.824 9.728-25.6 23.552-26.112h446.464c13.312 0 24.576 11.264 24.576 24.576z m-261.12-224.768c-9.728-10.24-26.112-10.24-36.352-0.512l-78.848 79.36c-10.24 10.24-10.24 26.624 0 36.864 9.728 10.24 26.112 10.24 36.352 0.512l79.36-78.848c9.728-10.752 9.728-27.136-0.512-37.376z"
|
||||
fill="#0972E7"
|
||||
p-id="31757"
|
||||
/><path
|
||||
d="M564.736 648.97024c10.24-9.728 10.24-26.112 0-36.352l-79.36-78.848c-10.24-10.24-26.624-10.24-36.864 0-10.24 9.728-10.24 26.112 0 36.352l78.848 78.848c10.752 10.24 27.136 10.24 37.376 0z"
|
||||
fill="#0972E7"
|
||||
p-id="31758"
|
||||
/><path
|
||||
d="M649.216 533.77024c-9.728-10.24-26.112-10.24-36.352-0.512l-79.36 78.848c-10.24 10.24-10.24 26.624 0 36.864 9.728 10.24 26.112 10.24 36.352 0.512l79.36-78.848c9.728-10.24 9.728-26.624 0-36.864z"
|
||||
fill="#0972E7"
|
||||
p-id="31759"
|
||||
/><path
|
||||
d="M714.24 468.74624c-9.728-10.24-26.112-10.24-36.352-0.512l-79.36 78.848c-10.24 10.24-10.24 26.624 0 36.864 9.728 10.24 26.112 10.24 36.352 0.512l79.36-78.848c10.24-10.24 10.24-27.136 0-36.864zM97.792 404.74624H39.936c0-51.2-0.512-120.832-0.512-120.832 0-112.128 91.136-203.264 203.264-203.264h136.704c123.392 0 194.56 66.56 194.56 182.784h-57.856c0-83.968-44.544-124.928-136.192-124.928H242.688c-80.384 0-145.408 65.024-145.408 145.408 0 0 0.512 69.632 0.512 120.832z"
|
||||
fill="#0972E7"
|
||||
p-id="31760"
|
||||
/></svg
|
||||
>
|
||||
|
Before Width: | Height: | Size: 2.6 KiB |
@@ -1,24 +0,0 @@
|
||||
<!--
|
||||
Copyright (C) 2025 Intel Corporation
|
||||
SPDX-License-Identifier: Apache-2.0
|
||||
-->
|
||||
|
||||
<svg
|
||||
t="1731987065328"
|
||||
class="w-5 h-5"
|
||||
viewBox="0 0 1024 1024"
|
||||
version="1.1"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
p-id="35111"
|
||||
width="200"
|
||||
height="200"
|
||||
><path
|
||||
d="M740.565333 112c63.146667 0 114.304 51.2 114.304 114.304v457.130667H169.130667V226.304c0-63.146667 51.2-114.304 114.304-114.304h457.130666z m-219.434666 326.826667H331.434667c-32 0-48 16.042667-48 48.042666l0.213333 6.186667c2.005333 27.861333 17.92 41.813333 47.786667 41.813333h189.696c32 0 48-16 48-48l-0.213334-6.186666c-1.962667-27.904-17.92-41.813333-47.786666-41.813334z m171.434666-212.522667H331.434667c-32 0-48 16-48 48l0.213333 6.186667c2.005333 27.861333 17.92 41.813333 47.786667 41.813333h361.130666c32 0 48-16 48-48l-0.213333-6.186667c-2.005333-27.904-17.92-41.813333-47.786667-41.813333z"
|
||||
fill="#93C0FB"
|
||||
p-id="35112"
|
||||
/><path
|
||||
d="M154.752 422.101333l343.68 196.096a28.586667 28.586667 0 0 0 28.330667 0l342.485333-196.010666a28.586667 28.586667 0 0 1 42.752 24.789333v350.72c0 63.146667-51.2 114.304-114.304 114.304H226.261333c-63.104 0-114.261333-51.2-114.261333-114.304v-350.805333a28.586667 28.586667 0 0 1 42.752-24.789334z"
|
||||
fill="#4B96F9"
|
||||
p-id="35113"
|
||||
/></svg
|
||||
>
|
||||
|
Before Width: | Height: | Size: 1.2 KiB |
@@ -1,60 +0,0 @@
|
||||
<!--
|
||||
Copyright (C) 2025 Intel Corporation
|
||||
SPDX-License-Identifier: Apache-2.0
|
||||
-->
|
||||
|
||||
<svg
|
||||
t="1731987759041"
|
||||
class="w-7 h-7"
|
||||
viewBox="0 0 1230 1024"
|
||||
version="1.1"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
p-id="50480"
|
||||
width="200"
|
||||
height="200"
|
||||
><path
|
||||
d="M455.756297 168.055915a69.477515 69.477515 0 0 1-1.687986 16.069629c-2.768298 18.837927-9.385204 26.062508-9.385204 31.058948s5.536595 6.076751 10.465515 6.07675c30.991428 0 98.51088-32.679414 196.414084-32.679414 28.695767 0 112.554925 3.848609 112.554926 32.139259C764.117632 276.154556 533.403666 351.101147 533.403666 351.101147a0.540156 0.540156 0 0 0 0.540156 0.540156h15.461954c40.511671-2.228142 140.643017-39.36384 321.662667-39.36384 118.024001 0 291.819069 21.606224 291.819069 62.590531 0 23.901886-56.783859 73.731241-116.94369 121.535013-51.7199 40.849268-122.885402 77.51233-122.885402 118.024001 0 27.007781 30.856389 31.599103 59.012001 31.599103 55.703547 0 139.02255-19.378083 193.645786-19.378083 23.766847 0 54.623236 3.848609 54.623236 27.007781 0 37.743373-262.042991 370.344191-652.710536 370.344191-44.090202 0-102.021891-6.751945-102.021891-49.896875s55.163392-108.031122 103.169721-145.301859c38.080971-29.303442 67.519451-38.216009 67.519452-43.752605 0-3.308453-11.07319-3.916128-14.921799-3.916128-32.00422 0-110.866939 16.137149-183.720427 60.767507-55.703547 34.367401-71.165502 48.208888-121.535013 73.73124-31.396545 15.529474-63.94092 37.135698-110.326783 37.135699-62.320454 0-93.784518-37.743373-93.784518-93.716999 0-63.738362 60.767506-81.495978 60.767506-143.006198C183.180272 657.571937 47.263616 698.556244 47.263616 629.821443c0-29.911117 27.007781-65.966504 33.759726-74.811552 114.242912-152.458921 226.190162-143.613873 253.805618-157.995517 31.464064-16.069629-2.768298-25.522353-25.387314-25.522352-20.998549 0-45.778188 8.304893-67.519452 17.21746-9.385204 3.848609-22.078861 16.069629-40.51167 16.069629-14.921799 0-19.378083-14.989318-19.378083-29.978636C180.95213 282.231307 374.057761 143.681393 434.757748 143.681393c15.461954 0 20.998549 8.845048 20.998549 24.374522z"
|
||||
fill="#E1EBFF"
|
||||
p-id="50481"
|
||||
/><path
|
||||
d="M898.751418 191.350125H341.513385A24.712119 24.712119 0 0 0 316.666227 216.062244v671.886061a24.712119 24.712119 0 0 0 24.847158 24.374522h557.238033a25.049716 25.049716 0 0 0 24.847158-24.374522V216.062244a24.712119 24.712119 0 0 0-24.847158-24.374521"
|
||||
fill="#335DFF"
|
||||
p-id="50482"
|
||||
/><path
|
||||
d="M847.436635 853.783463h-458.457075a25.049716 25.049716 0 0 1-24.847159-24.374522V279.463009a24.6446 24.6446 0 0 1 24.847159-24.374522h458.457075a25.049716 25.049716 0 0 1 24.847158 24.374522v549.945932a24.712119 24.712119 0 0 1-24.847158 24.374522z"
|
||||
fill="#FFFFFF"
|
||||
p-id="50483"
|
||||
/><path
|
||||
d="M58.471845 792.273243H41.389424v-17.21746a8.507451 8.507451 0 0 0-8.304893-8.304893 8.439931 8.439931 0 0 0-8.237373 8.304893v17.21746H8.304893a8.304893 8.304893 0 1 0 0 16.609785h17.082421v17.21746A8.507451 8.507451 0 0 0 33.759726 834.40538a8.57497 8.57497 0 0 0 8.237373-8.304892v-17.21746h17.082421a8.304893 8.304893 0 1 0-0.607675-16.609785z"
|
||||
fill="#D2DFFF"
|
||||
p-id="50484"
|
||||
/><path
|
||||
d="M809.355664 225.717526h-371.356983a16.204668 16.204668 0 0 1-16.542265-16.069629v-39.903996a16.204668 16.204668 0 0 1 16.542265-16.137149h371.356983a16.204668 16.204668 0 0 1 16.609785 16.069629v40.511671a16.137149 16.137149 0 0 1-16.609785 15.529474z"
|
||||
fill="#8FAFFF"
|
||||
p-id="50485"
|
||||
/><path
|
||||
d="M677.490175 181.357246H570.471845A16.542266 16.542266 0 0 1 553.659502 165.287617v-55.973625a16.137149 16.137149 0 0 1 16.542265-16.06963h107.018331a16.542266 16.542266 0 0 1 16.609785 16.06963v56.513781a16.474746 16.474746 0 0 1-16.339708 15.529473z"
|
||||
fill="#8FAFFF"
|
||||
p-id="50486"
|
||||
/><path
|
||||
d="M459.13227 688.02321h280.205723a16.272188 16.272188 0 0 1 16.542265 16.609785v8.912567a16.272188 16.272188 0 0 1-16.542265 16.609785H459.13227a16.272188 16.272188 0 0 1-16.542266-16.002109v-9.520243A17.014902 17.014902 0 0 1 459.13227 688.02321z m0-111.947251h224.569695a16.272188 16.272188 0 0 1 16.542266 16.609785v8.845049a16.272188 16.272188 0 0 1-16.542266 16.677304H459.13227a16.272188 16.272188 0 0 1-16.542266-16.069629 1.890545 1.890545 0 0 1 0-0.607675v-8.845049A16.609785 16.609785 0 0 1 459.13227 576.075959z m0-112.014769h224.569695a16.272188 16.272188 0 0 1 16.542266 16.609785v8.912567a16.272188 16.272188 0 0 1-16.677305 16.812344H459.13227a16.204668 16.204668 0 0 1-16.542266-16.00211 1.890545 1.890545 0 0 1 0-0.607676v-9.115125A16.677304 16.677304 0 0 1 459.13227 464.06119z m0-111.947251h280.205723a16.272188 16.272188 0 0 1 16.879863 16.609785v8.912568a16.272188 16.272188 0 0 1-16.542266 16.609785H459.13227A16.339707 16.339707 0 0 1 442.454965 378.108928v-9.452723A16.609785 16.609785 0 0 1 459.13227 352.113939zM247.526309 0.810233l-10.465515 18.905447a39.093762 39.093762 0 0 1-14.921799 14.921799l-18.230252 10.533034a2.160622 2.160622 0 0 0 0 3.375973l18.230252 10.465515A39.296321 39.296321 0 0 1 237.060794 74.271397l10.465515 18.837926a2.025584 2.025584 0 0 0 3.308453 0L261.300277 74.271397a38.823685 38.823685 0 0 1 14.921799-14.989319l18.230252-10.465515a2.160622 2.160622 0 0 0 0-3.375972l-18.230252-10.533035a38.621126 38.621126 0 0 1-14.921799-15.191876L250.834762 0.810233c-0.540156-0.810233-2.228142-0.810233-3.308453 0zM1057.624687 183.585388a22.754055 22.754055 0 1 1-22.011341 22.686536 21.606224 21.606224 0 0 1 22.011341-22.686536z m0-11.07319a33.759726 33.759726 0 0 0-33.084531 33.759726 33.152051 33.152051 0 1 0 66.236581 0 33.354609 33.354609 0 0 0-33.15205-33.759726z"
|
||||
fill="#D2DFFF"
|
||||
p-id="50487"
|
||||
/><path
|
||||
d="M642.785177 138.144798a22.821575 22.821575 0 0 1-22.686535 22.686535 22.281419 22.281419 0 0 1-22.551497-22.213899 1.147831 1.147831 0 0 1 0-0.472636 22.821575 22.821575 0 0 1 22.619016-22.754056 22.416458 22.416458 0 0 1 22.686536 22.2139z m68.059607 445.628379A178.791507 178.791507 0 1 0 762.969801 456.971647a179.66926 179.66926 0 0 0-52.125017 126.869049z"
|
||||
fill="#FFFFFF"
|
||||
p-id="50488"
|
||||
/><path
|
||||
d="M889.298694 436.91837a145.706976 145.706976 0 0 0-145.504417 145.909535v1.012791a145.571937 145.571937 0 1 0 291.076355 0.742714v-0.742714a146.787287 146.787287 0 0 0-145.571938-146.989845z"
|
||||
fill="#2ED073"
|
||||
p-id="50489"
|
||||
/><path
|
||||
d="M856.230925 638.373959m5.681472-5.681472l95.534667-95.534667q5.681472-5.681472 11.362944 0l0 0q5.681472 5.681472 0 11.362943l-95.534667 95.534668q-5.681472 5.681472-11.362944 0l0 0q-5.681472-5.681472 0-11.362944Z"
|
||||
fill="#FFFFFF"
|
||||
p-id="50490"
|
||||
/><path
|
||||
d="M804.217647 586.365756m5.681472-5.681472l0 0q5.681472-5.681472 11.362944 0l51.944886 51.944887q5.681472 5.681472 0 11.362944l0 0q-5.681472 5.681472-11.362944 0l-51.944886-51.944887q-5.681472-5.681472 0-11.362944Z"
|
||||
fill="#FFFFFF"
|
||||
p-id="50491"
|
||||
/></svg
|
||||
>
|
||||
|
Before Width: | Height: | Size: 6.6 KiB |
@@ -1,8 +0,0 @@
|
||||
<!--
|
||||
Copyright (C) 2025 Intel Corporation
|
||||
SPDX-License-Identifier: Apache-2.0
|
||||
-->
|
||||
|
||||
<svg class="w-2.5 h-2.5 text-blue-800 dark:text-blue-300" aria-hidden="true" xmlns="http://www.w3.org/2000/svg" fill="currentColor" viewBox="0 0 20 20">
|
||||
<path d="M20 4a2 2 0 0 0-2-2h-2V1a1 1 0 0 0-2 0v1h-3V1a1 1 0 0 0-2 0v1H6V1a1 1 0 0 0-2 0v1H2a2 2 0 0 0-2 2v2h20V4ZM0 18a2 2 0 0 0 2 2h16a2 2 0 0 0 2-2V8H0v10Zm5-8h10a1 1 0 0 1 0 2H5a1 1 0 0 1 0-2Z"/>
|
||||
</svg>
|
||||
|
Before Width: | Height: | Size: 451 B |
@@ -1,36 +0,0 @@
|
||||
<!--
|
||||
Copyright (C) 2025 Intel Corporation
|
||||
SPDX-License-Identifier: Apache-2.0
|
||||
-->
|
||||
|
||||
<svg
|
||||
t="1731987374334"
|
||||
class="w-4 h-4"
|
||||
viewBox="0 0 1024 1024"
|
||||
version="1.1"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
p-id="47097"
|
||||
width="200"
|
||||
height="200"
|
||||
><path
|
||||
d="M210.488889 246.670222m35.043555 0l349.923556 0q35.043556 0 35.043556 35.043556l0 0.056889q0 35.043556-35.043556 35.043555l-349.923556 0q-35.043556 0-35.043555-35.043555l0-0.056889q0-35.043556 35.043555-35.043556Z"
|
||||
fill="#89BAF7"
|
||||
p-id="47098"
|
||||
/><path
|
||||
d="M210.488889 471.210667m35.043555 0l349.923556 0q35.043556 0 35.043556 35.043555l0 0.056889q0 35.043556-35.043556 35.043556l-349.923556 0q-35.043556 0-35.043555-35.043556l0-0.056889q0-35.043556 35.043555-35.043555Z"
|
||||
fill="#89BAF7"
|
||||
p-id="47099"
|
||||
/><path
|
||||
d="M210.488889 695.296m35.043555 0l140.344889 0q35.043556 0 35.043556 35.043556l0 0.056888q0 35.043556-35.043556 35.043556l-140.344889 0q-35.043556 0-35.043555-35.043556l0-0.056888q0-35.043556 35.043555-35.043556Z"
|
||||
fill="#89BAF7"
|
||||
p-id="47100"
|
||||
/><path
|
||||
d="M436.565333 982.186667h-261.176889a175.559111 175.559111 0 0 1-175.331555-175.388445v-631.466666a175.559111 175.559111 0 0 1 175.331555-175.388445h490.951112a175.559111 175.559111 0 0 1 175.331555 175.388445v278.016a35.100444 35.100444 0 1 1-70.144 0v-278.016a105.358222 105.358222 0 0 0-105.187555-105.244445h-490.951112a105.358222 105.358222 0 0 0-105.187555 105.244445v631.466666a105.358222 105.358222 0 0 0 105.187555 105.244445h261.176889a35.100444 35.100444 0 0 1 0 70.144z"
|
||||
fill="#0A71EF"
|
||||
p-id="47101"
|
||||
/><path
|
||||
d="M1008.184889 628.167111l-5.688889-11.889778-2.104889-2.616889a19.683556 19.683556 0 0 0-24.519111-2.616888h-0.910222l-97.28 97.336888-49.265778-49.265777 101.489778-101.717334-1.080889-1.422222a18.090667 18.090667 0 0 0-4.039111-18.944 16.668444 16.668444 0 0 0-5.688889-3.868444l-10.695111-4.721778a192.056889 192.056889 0 0 0-258.958222 235.292444l-105.927112 105.927111a87.608889 87.608889 0 0 0 0 123.619556 87.608889 87.608889 0 0 0 123.448889 0l105.927111-106.097778a188.757333 188.757333 0 0 0 59.278223 9.500445 192.056889 192.056889 0 0 0 176.355555-268.288z m-176.355556 215.836445a137.728 137.728 0 0 1-55.409777-11.377778l-16.327112-6.997334-130.446222 130.446223a35.669333 35.669333 0 0 1-49.265778 0 34.702222 34.702222 0 0 1 0-49.265778l130.446223-130.446222-6.997334-16.497778a136.192 136.192 0 0 1-11.377777-55.239111 139.719111 139.719111 0 0 1 139.548444-139.548445 111.502222 111.502222 0 0 1 15.303111 0.853334l-79.985778 79.985777a20.650667 20.650667 0 0 0-3.356444 21.219556l-0.512 1.251556 101.489778 101.546666a19.569778 19.569778 0 0 0 24.746666 0.341334l81.009778-81.009778a151.210667 151.210667 0 0 1 0.853333 15.416889 139.719111 139.719111 0 0 1-139.605333 139.320889z"
|
||||
fill="#FD7733"
|
||||
p-id="47102"
|
||||
/></svg
|
||||
>
|
||||
|
Before Width: | Height: | Size: 2.7 KiB |
@@ -1,28 +0,0 @@
|
||||
<!--
|
||||
Copyright (C) 2025 Intel Corporation
|
||||
SPDX-License-Identifier: Apache-2.0
|
||||
-->
|
||||
|
||||
<svg
|
||||
t="1699532005309"
|
||||
class="icon"
|
||||
viewBox="0 0 1024 1024"
|
||||
version="1.1"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
p-id="31791"
|
||||
width="1rem"
|
||||
height="1rem"
|
||||
><path
|
||||
d="M505.088 513.1264m-450.816 0a450.816 450.816 0 1 0 901.632 0 450.816 450.816 0 1 0-901.632 0Z"
|
||||
fill="#e02424"
|
||||
p-id="31792"
|
||||
data-spm-anchor-id="a313x.search_index.0.i28.33343a81AAN1qI"
|
||||
class="selected"
|
||||
/><path
|
||||
d="M356.6592 575.0784c0-54.5792 0.3584-109.1584-0.2048-163.6864-0.1536-15.872 5.5296-24.2176 20.992-29.5424 58.88-20.2752 93.7472-63.1296 110.848-121.9072 5.9392-20.4288 11.4176-41.216 19.7632-60.672 13.4656-31.5904 38.2464-42.7008 72.6528-35.328 26.5216 5.6832 43.3152 28.3648 43.5712 60.16 0.3584 40.4992 0.0512 80.9984 0.1536 121.4976 0.0512 22.2208 3.9424 26.7264 26.5728 26.9824 45.568 0.512 91.1872 1.536 136.704-0.256 40.5504-1.5872 69.9392 24.832 59.7504 69.9904-12.2368 54.0672-27.648 107.4688-42.7008 160.8704-9.2672 32.9216-20.1728 65.4336-30.8736 97.9456-14.1312 43.008-40.448 62.0544-84.8896 62.0544H390.2976c-32.1024 0-33.6384-1.536-33.6384-32.8704v-155.2384zM307.8656 573.9008c0 52.8896 0.1024 105.7792-0.0512 158.6688-0.1024 26.0096-4.9152 30.6176-30.3616 30.6688-7.3216 0-14.6432 0.0512-21.9648 0-29.8496-0.1536-44.032-14.08-44.2368-44.6976-0.3072-55.1424-0.1024-110.2848-0.1024-165.4272 0-40.4992-0.1536-81.0496 0.0512-121.5488 0.2048-32.2048 15.7696-47.616 47.5136-47.7184 49.1008-0.2048 49.152-0.2048 49.152 48.2304 0.0512 47.2576 0.0512 94.5152 0 141.824z"
|
||||
fill="#ffffff"
|
||||
p-id="31793"
|
||||
data-spm-anchor-id="a313x.search_index.0.i26.33343a81AAN1qI"
|
||||
class=""
|
||||
/></svg
|
||||
>
|
||||
|
Before Width: | Height: | Size: 1.6 KiB |
@@ -1,24 +0,0 @@
|
||||
<!--
|
||||
Copyright (C) 2025 Intel Corporation
|
||||
SPDX-License-Identifier: Apache-2.0
|
||||
-->
|
||||
|
||||
<svg
|
||||
t="1699531880178"
|
||||
class="icon"
|
||||
viewBox="0 0 1024 1024"
|
||||
version="1.1"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
p-id="26552"
|
||||
width="1rem"
|
||||
height="1rem"
|
||||
><path
|
||||
d="M505.088 513.1264m-450.816 0a450.816 450.816 0 1 0 901.632 0 450.816 450.816 0 1 0-901.632 0Z"
|
||||
fill="#FFBC42"
|
||||
p-id="26553"
|
||||
/><path
|
||||
d="M356.6592 575.0784c0-54.5792 0.3584-109.1584-0.2048-163.6864-0.1536-15.872 5.5296-24.2176 20.992-29.5424 58.88-20.2752 93.7472-63.1296 110.848-121.9072 5.9392-20.4288 11.4176-41.216 19.7632-60.672 13.4656-31.5904 38.2464-42.7008 72.6528-35.328 26.5216 5.6832 43.3152 28.3648 43.5712 60.16 0.3584 40.4992 0.0512 80.9984 0.1536 121.4976 0.0512 22.2208 3.9424 26.7264 26.5728 26.9824 45.568 0.512 91.1872 1.536 136.704-0.256 40.5504-1.5872 69.9392 24.832 59.7504 69.9904-12.2368 54.0672-27.648 107.4688-42.7008 160.8704-9.2672 32.9216-20.1728 65.4336-30.8736 97.9456-14.1312 43.008-40.448 62.0544-84.8896 62.0544H390.2976c-32.1024 0-33.6384-1.536-33.6384-32.8704v-155.2384zM307.8656 573.9008c0 52.8896 0.1024 105.7792-0.0512 158.6688-0.1024 26.0096-4.9152 30.6176-30.3616 30.6688-7.3216 0-14.6432 0.0512-21.9648 0-29.8496-0.1536-44.032-14.08-44.2368-44.6976-0.3072-55.1424-0.1024-110.2848-0.1024-165.4272 0-40.4992-0.1536-81.0496 0.0512-121.5488 0.2048-32.2048 15.7696-47.616 47.5136-47.7184 49.1008-0.2048 49.152-0.2048 49.152 48.2304 0.0512 47.2576 0.0512 94.5152 0 141.824z"
|
||||
fill="#FFFFFF"
|
||||
p-id="26554"
|
||||
/></svg
|
||||
>
|
||||
|
Before Width: | Height: | Size: 1.5 KiB |
@@ -1,28 +0,0 @@
|
||||
<!--
|
||||
Copyright (C) 2025 Intel Corporation
|
||||
SPDX-License-Identifier: Apache-2.0
|
||||
-->
|
||||
|
||||
<svg
|
||||
t="1697617760586"
|
||||
class="h-10 w-10"
|
||||
viewBox="0 0 1024 1024"
|
||||
version="1.1"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
p-id="5216"
|
||||
width="200"
|
||||
height="200"
|
||||
><path
|
||||
d="M826.9 461.6h-723v391.5c0 21.7 17.7 39.4 39.4 39.4h677c4.1-6.4 6.6-14.1 6.6-22.3V461.6zM826.9 422.3v-64.7c0-22.9-18.6-41.6-41.6-41.6H340l-32.7-61.2c-7.2-13.5-21.3-22-36.7-22H134.9c-12.4 0-23.4 5.5-31 14.2v175.2l723 0.1z"
|
||||
fill="#FFD524"
|
||||
p-id="5217"
|
||||
/><path
|
||||
d="M687 252.6h11.4c10.8 0 19.6-8.8 19.6-19.6s-8.8-19.6-19.6-19.6H687c-10.8 0-19.6 8.8-19.6 19.6s8.8 19.6 19.6 19.6zM753.3 252.6h18c10.8 0 19.6-8.8 19.6-19.6s-8.8-19.6-19.6-19.6h-18c-10.8 0-19.6 8.8-19.6 19.6s8.7 19.6 19.6 19.6z"
|
||||
fill="#6B400D"
|
||||
p-id="5218"
|
||||
/><path
|
||||
d="M881.6 213.3h-44.9c-10.8 0-19.6 8.8-19.6 19.6s8.8 19.6 19.6 19.6h44.9c21.7 0 39.4 17.7 39.4 39.4v130.3H103.8V173.9c0-21.7 17.7-39.4 39.4-39.4h193c14.6 0 27.9 8 34.7 20.8l46.5 86.9c3.4 6.4 10.1 10.4 17.3 10.4h84.5c10.8 0 19.6-8.8 19.6-19.6s-8.8-19.6-19.6-19.6h-72.7l-40.9-76.5c-13.7-25.7-40.3-41.6-69.4-41.6H143.3c-43.4 0-78.7 35.3-78.7 78.7v679.3c0 43.4 35.3 78.7 78.7 78.7h738.3c43.4 0 78.7-35.3 78.7-78.7V292c0-43.4-35.3-78.7-78.7-78.7z m39.5 639.8c0 21.7-17.7 39.4-39.4 39.4H143.4c-21.7 0-39.4-17.7-39.4-39.4V461.6h817.2v391.5z"
|
||||
fill="#6B400D"
|
||||
p-id="5219"
|
||||
/></svg
|
||||
>
|
||||
|
Before Width: | Height: | Size: 1.3 KiB |
@@ -1,38 +0,0 @@
|
||||
<!--
|
||||
Copyright (C) 2025 Intel Corporation
|
||||
SPDX-License-Identifier: Apache-2.0
|
||||
-->
|
||||
|
||||
<svg
|
||||
class="h-10 w-10"
|
||||
viewBox="0 0 1024 1024"
|
||||
version="1.1"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
width="200"
|
||||
height="200"
|
||||
><path
|
||||
d="M192.028 0.008c-47.06 0-85.34 38.282-85.34 85.342V853.34c0 11.782 9.53 21.312 21.342 21.312h106.654V0.008H192.028z"
|
||||
fill="#656D78"
|
||||
/><path
|
||||
d="M192.028 789.34c-35.374 0-63.998 28.656-63.998 64s28.624 63.996 63.998 63.996H896V789.34H192.028z"
|
||||
fill="#E6E9ED"
|
||||
/><path
|
||||
d="M917.312 21.352c0-11.782-9.562-21.344-21.312-21.344H234.684v810.644H896c11.75 0 21.312-9.532 21.312-21.312V21.352z"
|
||||
fill="#5D9CEC"
|
||||
/><path
|
||||
d="M384.026 874.652H213.34c-11.75 0-21.312-9.532-21.312-21.312s9.562-21.344 21.312-21.344h170.686c11.782 0 21.312 9.562 21.312 21.344s-9.532 21.312-21.312 21.312zM725.316 831.996c-11.75 0-21.312 9.562-21.312 21.344s9.562 21.312 21.312 21.312H896v-42.656h-170.684z"
|
||||
fill="#CCD1D9"
|
||||
/><path d="M320.026 149.35h490.662v255.996H320.026z" fill="#E6E9ED" /><path
|
||||
d="M128.03 170.678c11.782 0 21.312-9.546 21.312-21.328s-9.532-21.344-21.312-21.344H106.686v42.672h21.344zM128.03 298.676c11.782 0 21.312-9.546 21.312-21.328 0-11.78-9.532-21.342-21.312-21.342H106.686v42.67h21.344zM128.03 426.672c11.782 0 21.312-9.546 21.312-21.328 0-11.78-9.532-21.342-21.312-21.342H106.686v42.67h21.344zM128.03 554.656c11.782 0 21.312-9.532 21.312-21.312S139.81 512 128.03 512H106.686v42.656h21.344zM128.03 682.656c11.782 0 21.312-9.532 21.312-21.312S139.81 640 128.03 640H106.686v42.656h21.344zM725.316 298.676h-319.98c-11.75 0-21.312-9.546-21.312-21.328 0-11.78 9.562-21.342 21.312-21.342h319.98c11.812 0 21.376 9.562 21.376 21.342s-9.564 21.328-21.376 21.328z"
|
||||
fill="#434A54"
|
||||
/><path
|
||||
d="M917.312 917.336c0-11.782-9.562-21.344-21.312-21.344H234.684v42.656H896c11.75 0 21.312-9.53 21.312-21.312z"
|
||||
fill="#5D9CEC"
|
||||
/><path
|
||||
d="M234.684 895.992H192.028c-23.53 0-42.686-19.152-42.686-42.652 0-23.532 19.156-42.688 42.686-42.688h42.656v-42.656H192.028c-47.06 0-85.34 38.282-85.34 85.344 0 47.028 38.28 85.308 85.34 85.308h42.656v-42.656z"
|
||||
fill="#656D78"
|
||||
/><path
|
||||
d="M362.682 853.34H213.34v149.308c0 6.876 3.312 13.312 8.876 17.312s12.718 5.094 19.218 2.938l57.25-19.094 57.25 19.094c2.218 0.718 4.468 1.094 6.75 1.094 4.406 0 8.782-1.376 12.468-4.032 5.562-4 8.876-10.438 8.876-17.312V853.34h-21.346z"
|
||||
fill="#ED5564"
|
||||
/></svg
|
||||
>
|
||||
|
Before Width: | Height: | Size: 2.3 KiB |
@@ -1,32 +0,0 @@
|
||||
<!--
|
||||
Copyright (C) 2025 Intel Corporation
|
||||
SPDX-License-Identifier: Apache-2.0
|
||||
-->
|
||||
|
||||
<svg
|
||||
t="1699516160889"
|
||||
class="icon"
|
||||
viewBox="0 0 1024 1024"
|
||||
version="1.1"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
p-id="1937"
|
||||
width="14"
|
||||
height="14"
|
||||
><path
|
||||
d="M226.94 618.816L191.296 751.88l-130.278 2.756C22.084 682.422 0 599.8 0 512c0-84.902 20.648-164.966 57.248-235.464h0.028L173.26 297.8l50.808 115.288c-10.634 31.002-16.43 64.282-16.43 98.912 0.004 37.584 6.812 73.594 19.302 106.816z"
|
||||
fill="#FBBB00"
|
||||
p-id="1938"
|
||||
/><path
|
||||
d="M1015.054 416.352C1020.934 447.324 1024 479.31 1024 512c0 36.656-3.854 72.412-11.196 106.902-24.924 117.366-90.05 219.85-180.268 292.374l-0.028-0.028-146.088-7.454-20.676-129.07c59.864-35.108 106.648-90.05 131.292-155.822h-273.78V416.352h491.798z"
|
||||
fill="#518EF8"
|
||||
p-id="1939"
|
||||
/><path
|
||||
d="M832.506 911.248l0.028 0.028C744.792 981.802 633.332 1024 512 1024c-194.982 0-364.504-108.982-450.982-269.362l165.922-135.82c43.238 115.396 154.556 197.542 285.06 197.542 56.094 0 108.646-15.164 153.74-41.636l166.766 136.524z"
|
||||
fill="#28B446"
|
||||
p-id="1940"
|
||||
/><path
|
||||
d="M838.808 117.872l-165.866 135.792C626.272 224.492 571.104 207.64 512 207.64c-133.458 0-246.858 85.914-287.93 205.448l-166.794-136.552h-0.028C142.46 112.246 314.12 0 512 0c124.23 0 238.136 44.252 326.808 117.872z"
|
||||
fill="#F14336"
|
||||
p-id="1941"
|
||||
/></svg
|
||||
>
|
||||
|
Before Width: | Height: | Size: 1.3 KiB |
@@ -1,41 +0,0 @@
|
||||
<!--
|
||||
Copyright (C) 2025 Intel Corporation
|
||||
SPDX-License-Identifier: Apache-2.0
|
||||
-->
|
||||
|
||||
<svg
|
||||
t="1689149335476"
|
||||
class="icon"
|
||||
viewBox="0 0 1024 1024"
|
||||
version="1.1"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
p-id="1964"
|
||||
width="32"
|
||||
height="32"
|
||||
data-spm-anchor-id="a313x.7781069.0.i17"
|
||||
><path
|
||||
d="M949.333333 96v704H614.4l-21.333333 25.6v2.133333L512 906.666667l-78.933333-78.933334-2.133334-2.133333-21.333333-25.6H74.666667v-704h874.666666M960 21.333333H64C27.733333 21.333333 0 49.066667 0 85.333333v725.333334c0 36.266667 27.733333 64 64 64h311.466667v2.133333l121.6 121.6c4.266667 4.266667 10.666667 6.4 14.933333 6.4s10.666667-2.133333 14.933333-6.4l121.6-121.6V874.666667H960c36.266667 0 64-27.733333 64-64V85.333333c0-36.266667-27.733333-64-64-64z"
|
||||
fill="#0071c5"
|
||||
p-id="1965"
|
||||
data-spm-anchor-id="a313x.7781069.0.i8"
|
||||
class=""
|
||||
/><path
|
||||
d="M512 601.6c-21.333333 0-38.4-17.066667-38.4-36.266667v-27.733333c0-21.333333 17.066667-36.266667 36.266667-36.266667 21.333333 0 36.266667 17.066667 36.266666 36.266667v27.733333c4.266667 19.2-12.8 36.266667-34.133333 36.266667z"
|
||||
fill="#0071c5"
|
||||
p-id="1966"
|
||||
data-spm-anchor-id="a313x.7781069.0.i9"
|
||||
class=""
|
||||
/><path
|
||||
d="M512 742.4c-23.466667 0-42.666667-19.2-42.666667-42.666667s19.2-42.666667 42.666667-42.666666 42.666667 19.2 42.666667 42.666666-19.2 42.666667-42.666667 42.666667z"
|
||||
fill="#0071c5"
|
||||
p-id="1967"
|
||||
data-spm-anchor-id="a313x.7781069.0.i7"
|
||||
class="selected"
|
||||
/><path
|
||||
d="M512 576c-21.333333 0-38.4-17.066667-38.4-38.4s17.066667-38.4 38.4-38.4c68.266667 0 121.6-55.466667 121.6-123.733333S580.266667 256 512 256c-64 0-119.466667 51.2-121.6 115.2-2.133333 21.333333-19.2 36.266667-38.4 34.133333-21.333333-2.133333-36.266667-19.2-34.133333-38.4 6.4-104.533333 91.733333-185.6 196.266666-185.6 108.8 0 196.266667 87.466667 196.266667 196.266667S620.8 576 512 576z"
|
||||
fill="#0071c5"
|
||||
p-id="1968"
|
||||
data-spm-anchor-id="a313x.7781069.0.i10"
|
||||
class="selected"
|
||||
/></svg
|
||||
>
|
||||
|
Before Width: | Height: | Size: 1.9 KiB |
@@ -1,6 +0,0 @@
|
||||
<!--
|
||||
Copyright (C) 2025 Intel Corporation
|
||||
SPDX-License-Identifier: Apache-2.0
|
||||
-->
|
||||
|
||||
<svg t="1689232479587" class="icon" viewBox="0 0 1024 1024" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="20682" width="32" height="32"><path d="M512 512m-384 0a384 384 0 1 0 768 0 384 384 0 1 0-768 0Z" fill="#2196F3" p-id="20683"></path><path d="M465.28 613.333333c0-134.4 109.013333-138.453333 109.013333-217.386666a58.88 58.88 0 0 0-61.013333-64 59.093333 59.093333 0 0 0-64 59.946666h-81.066667c0-21.333333 10.24-128 144.64-128 142.08 0 142.08 108.586667 142.08 128 0 106.666667-114.346667 119.04-114.346666 220.373334z m-5.546667 103.68a42.666667 42.666667 0 0 1 45.653334-43.946666 42.666667 42.666667 0 0 1 45.866666 43.946666 42.666667 42.666667 0 0 1-45.866666 42.666667 42.666667 42.666667 0 0 1-45.653334-42.666667z" fill="#FFFFFF" p-id="20684"></path></svg>
|
||||
|
Before Width: | Height: | Size: 866 B |
@@ -1,92 +0,0 @@
|
||||
<!--
|
||||
Copyright (C) 2025 Intel Corporation
|
||||
SPDX-License-Identifier: Apache-2.0
|
||||
-->
|
||||
|
||||
<svg
|
||||
t="1710303075816"
|
||||
class="icon"
|
||||
viewBox="0 0 1024 1024"
|
||||
version="1.1"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
p-id="32606"
|
||||
width="6rem"
|
||||
height="6rem"
|
||||
><path
|
||||
d="M241.0496 404.48a31.470933 31.470933 0 0 1-31.1296-28.2624 31.061333 31.061333 0 1 1 33.5872 28.2624z m0-54.613333H238.933333A23.415467 23.415467 0 0 0 217.7024 375.466667a23.7568 23.7568 0 0 0 25.3952 21.2992 23.415467 23.415467 0 0 0-2.048-46.6944z m572.6208 331.3664a22.254933 22.254933 0 0 1-21.777067-19.933867 21.504 21.504 0 0 1 20.0704-23.7568 22.596267 22.596267 0 0 1 15.9744 4.9152 21.162667 21.162667 0 0 1 7.7824 15.1552 21.504 21.504 0 0 1-20.0704 23.7568z m0-36.4544H812.373333a14.882133 14.882133 0 0 0-13.1072 15.5648 14.609067 14.609067 0 0 0 15.5648 13.1072 14.882133 14.882133 0 0 0 13.1072-15.5648 14.609067 14.609067 0 0 0-14.267733-12.970667z m-493.568-375.466667a16.1792 16.1792 0 0 1-11.0592-4.096 17.8176 17.8176 0 0 1-6.144-11.8784 17.271467 17.271467 0 0 1 34.133333-3.2768 16.452267 16.452267 0 0 1-4.096 12.6976 16.1792 16.1792 0 0 1-11.8784 6.144 1.501867 1.501867 0 0 1-0.955733 0.4096z m0-27.306667h-0.8192A9.284267 9.284267 0 0 0 310.6816 252.586667a10.103467 10.103467 0 0 0 3.345067 6.826666 8.8064 8.8064 0 0 0 6.826666 2.048 10.103467 10.103467 0 0 0 6.826667-3.2768 8.8064 8.8064 0 0 0 2.048-6.826666 9.352533 9.352533 0 0 0-9.6256-9.079467z"
|
||||
fill="#82A0F6"
|
||||
p-id="32607"
|
||||
/><path
|
||||
d="M254.1568 719.0528h-32.3584a3.6864 3.6864 0 1 1 0-7.3728h32.3584a3.6864 3.6864 0 0 1 0 7.3728z"
|
||||
fill="#2B77EF"
|
||||
p-id="32608"
|
||||
/><path
|
||||
d="M237.7728 735.0272a3.6864 3.6864 0 0 1-3.6864-3.6864v-32.3584a3.6864 3.6864 0 1 1 7.3728 0v32.3584c0.4096 2.048-1.2288 3.6864-3.6864 3.6864z"
|
||||
fill="#2B77EF"
|
||||
p-id="32609"
|
||||
/><path
|
||||
d="M800.9728 430.6944h-32.3584a3.6864 3.6864 0 1 1 0-7.3728h32.3584a3.6864 3.6864 0 1 1 0 7.3728z"
|
||||
fill="#82A0F6"
|
||||
p-id="32610"
|
||||
/><path
|
||||
d="M785.066667 446.6688a3.6864 3.6864 0 0 1-3.6864-3.6864v-32.3584a3.6864 3.6864 0 0 1 7.3728 0v32.3584a3.6864 3.6864 0 0 1-3.6864 3.6864z"
|
||||
fill="#82A0F6"
|
||||
p-id="32611"
|
||||
/><path
|
||||
d="M531.8656 645.7344h-315.392a31.9488 31.9488 0 0 1 0-63.8976h315.392a31.9488 31.9488 0 1 1 0 63.8976z"
|
||||
fill="#E3EEFF"
|
||||
p-id="32612"
|
||||
/><path
|
||||
d="M533.0944 759.6032h-4.5056a56.9344 56.9344 0 0 1 0-113.8688h4.5056v-63.8976H237.7728v63.8976h107.3152a56.9344 56.9344 0 1 1 0 113.8688H237.7728v63.8976H532.48v-63.8976z"
|
||||
fill="#E3EEFF"
|
||||
p-id="32613"
|
||||
/><path
|
||||
d="M550.7072 484.693333a21.640533 21.640533 0 0 0-20.8896-21.2992h-211.626667a21.2992 21.2992 0 0 0 0 42.5984h86.016a38.0928 38.0928 0 1 1 0 76.1856H332.8v43.008h197.0176v-43.008h-3.2768a38.0928 38.0928 0 1 1 0-76.1856h3.2768A21.640533 21.640533 0 0 0 550.7072 484.693333zM669.013333 759.6032H216.4736a31.9488 31.9488 0 1 0 0 63.8976H669.013333z m11.8784 0h27.306667v63.8976h-27.306667z m59.8016 0h17.066667v63.8976h-17.6128z m67.1744 0h-40.5504v63.8976h40.5504a31.9488 31.9488 0 0 0 0-63.8976z"
|
||||
fill="#E3EEFF"
|
||||
p-id="32614"
|
||||
/><path
|
||||
d="M803.4304 273.408a3.6864 3.6864 0 0 1-3.6864-3.6864V245.76l-16.7936 16.7936a3.754667 3.754667 0 0 1-5.3248-5.3248l16.7936-16.7936h-24.1664a3.6864 3.6864 0 1 1 0-7.3728h23.7568l-16.7936-16.7936a3.754667 3.754667 0 0 1 5.3248-5.3248l16.7936 16.7936v-23.552a3.6864 3.6864 0 0 1 7.3728 0v23.7568l16.7936-16.7936a3.754667 3.754667 0 0 1 5.3248 5.3248L812.373333 233.2672h23.7568a3.6864 3.6864 0 0 1 0 7.3728H812.373333l16.7936 16.7936a3.754667 3.754667 0 0 1-5.3248 5.3248L806.7072 245.76v23.7568a3.140267 3.140267 0 0 1-3.2768 3.8912z"
|
||||
fill="#82A0F6"
|
||||
p-id="32615"
|
||||
/><path
|
||||
d="M669.013333 735.8464c0 20.0704-13.653333 36.4544-30.72 36.4544 16.7936 0 30.72 16.384 30.72 36.4544 0-20.0704 13.653333-36.4544 30.72-36.4544-17.066667 0-30.72-16.384-30.72-36.4544z"
|
||||
fill="#76A6EF"
|
||||
p-id="32616"
|
||||
/><path
|
||||
d="M644.5056 269.312a22.254933 22.254933 0 0 1-13.653333-4.9152 20.48 20.48 0 0 1-7.3728-14.7456 21.572267 21.572267 0 0 1 4.573866-15.5648 20.48 20.48 0 0 1 14.7456-7.3728 21.572267 21.572267 0 0 1 15.5648 4.9152 20.48 20.48 0 0 1 7.3728 14.7456 21.572267 21.572267 0 0 1-4.9152 15.5648 20.48 20.48 0 0 1-14.7456 7.3728z m0-35.2256h-1.2288a13.653333 13.653333 0 0 0-7.7824 24.1664 15.018667 15.018667 0 0 0 9.8304 3.2768 13.653333 13.653333 0 0 0 7.7824-24.1664 12.424533 12.424533 0 0 0-8.6016-3.2768z"
|
||||
fill="#82A0F6"
|
||||
p-id="32617"
|
||||
/><path
|
||||
d="M740.7616 442.9824H612.5568A12.970667 12.970667 0 0 1 599.4496 430.08V301.2608a12.970667 12.970667 0 0 0-13.1072-13.1072H437.6576a12.970667 12.970667 0 0 0-13.1072 13.1072v128.2048a12.970667 12.970667 0 0 1-13.1072 13.1072H282.8288a12.970667 12.970667 0 0 0-13.1072 13.1072v148.2752a12.970667 12.970667 0 0 0 13.1072 13.1072h128.2048a12.970667 12.970667 0 0 1 13.1072 13.1072v128.2048a12.970667 12.970667 0 0 0 13.1072 13.038933h148.6848a12.970667 12.970667 0 0 0 13.1072-13.1072V630.5792a12.970667 12.970667 0 0 1 13.1072-13.1072h128.2048a12.970667 12.970667 0 0 0 13.1072-13.1072V456.0896a12.356267 12.356267 0 0 0-12.6976-13.1072z"
|
||||
fill="#C7DDFF"
|
||||
p-id="32618"
|
||||
/><path
|
||||
d="M399.9744 452.8128h18.432c15.9744 0 29.0816-11.0592 29.0816-24.9856v-137.216h-22.9376v147.456z m2.048 158.1056h18.432c15.9744 0 29.0816 11.0592 29.0816 24.9856v136.533333h-22.9376v-146.773333z"
|
||||
fill="#FFFFFF"
|
||||
p-id="32619"
|
||||
/><path
|
||||
d="M740.7616 442.9824H612.5568A12.970667 12.970667 0 0 1 599.4496 430.08V301.2608a12.970667 12.970667 0 0 0-13.1072-13.1072H437.6576a12.970667 12.970667 0 0 0-13.1072 13.1072v2.4576h134.7584a12.970667 12.970667 0 0 1 13.1072 13.1072v128.2048a12.970667 12.970667 0 0 0 13.1072 13.1072h128.2048a12.970667 12.970667 0 0 1 13.1072 12.9024v146.0224h13.1072a12.970667 12.970667 0 0 0 13.1072-13.1072V456.0896a11.810133 11.810133 0 0 0-12.288-13.1072z"
|
||||
fill="#76A6EF"
|
||||
p-id="32620"
|
||||
/><path
|
||||
d="M295.1168 447.0784v166.2976h-12.6976L269.7216 600.746667V459.776l12.6976-12.6976z"
|
||||
fill="#FFFFFF"
|
||||
p-id="32621"
|
||||
/><path
|
||||
d="M269.7216 536.3712a6.280533 6.280533 0 0 1-6.144-6.144v-19.2512a6.144 6.144 0 1 1 12.288 0v19.2512a6.280533 6.280533 0 0 1-6.144 6.144z m0-47.104a6.280533 6.280533 0 0 1-6.144-6.144v-27.306667A19.2512 19.2512 0 0 1 282.8288 436.906667h128.2048a7.168 7.168 0 0 0 6.826667-6.826667V352.0512a6.144 6.144 0 1 1 12.288 0V430.08a19.2512 19.2512 0 0 1-19.2512 19.2512H282.8288a7.168 7.168 0 0 0-6.826667 6.826667v27.306666a6.280533 6.280533 0 0 1-6.280533 5.802667z"
|
||||
fill="#2B77EF"
|
||||
p-id="32622"
|
||||
/><path
|
||||
d="M585.9328 778.24H437.6576a19.2512 19.2512 0 0 1-19.2512-19.2512V630.5792a7.168 7.168 0 0 0-6.826667-6.826667H282.8288a19.2512 19.2512 0 0 1-19.2512-19.2512v-45.056a6.144 6.144 0 0 1 12.288 0v45.056a7.168 7.168 0 0 0 6.826667 6.826667h128.341333A19.2512 19.2512 0 0 1 430.08 630.5792v128.2048a7.168 7.168 0 0 0 6.826667 6.826667h149.026133a7.168 7.168 0 0 0 6.826667-6.826667V630.5792a19.2512 19.2512 0 0 1 19.2512-19.2512h128.2048a7.168 7.168 0 0 0 6.826666-6.826667V456.0896a7.168 7.168 0 0 0-6.826666-6.826667H612.1472A19.2512 19.2512 0 0 1 592.896 430.08V301.2608a7.168 7.168 0 0 0-6.826667-6.826667H437.6576a7.168 7.168 0 0 0-6.826667 6.826667v23.3472a6.144 6.144 0 1 1-12.288 0v-23.3472a19.2512 19.2512 0 0 1 19.2512-19.2512h148.138667a19.2512 19.2512 0 0 1 19.2512 19.2512v128.2048a7.168 7.168 0 0 0 6.826667 6.826667h128.2048a19.2512 19.2512 0 0 1 19.2512 19.2512v148.411733a19.2512 19.2512 0 0 1-19.2512 19.2512H612.1472a7.168 7.168 0 0 0-6.826667 6.826667v128.2048a19.456 19.456 0 0 1-19.387733 20.002133z"
|
||||
fill="#2B77EF"
|
||||
p-id="32623"
|
||||
/><path
|
||||
d="M556.4416 540.4672H474.9312a6.826667 6.826667 0 0 1 0-13.653333h81.5104a6.826667 6.826667 0 0 1 0 13.653333z"
|
||||
fill="#F68282"
|
||||
p-id="32624"
|
||||
/><path
|
||||
d="M508.928 574.0544V492.9536a6.826667 6.826667 0 0 1 13.653333 0v81.5104a7.168 7.168 0 0 1-6.826666 6.826667 7.509333 7.509333 0 0 1-6.826667-7.236267z"
|
||||
fill="#F68282"
|
||||
p-id="32625"
|
||||
/></svg
|
||||
>
|
||||
|
Before Width: | Height: | Size: 7.7 KiB |
@@ -1,229 +0,0 @@
|
||||
<!--
|
||||
Copyright (C) 2025 Intel Corporation
|
||||
SPDX-License-Identifier: Apache-2.0
|
||||
-->
|
||||
|
||||
<svg
|
||||
t="1710303147323"
|
||||
class="icon"
|
||||
viewBox="0 0 1024 1024"
|
||||
version="1.1"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
p-id="33782"
|
||||
width="5rem"
|
||||
height="5rem"
|
||||
><path
|
||||
d="M617.813333 701.44C597.333333 659.911111 554.666667 631.466667 505.173333 631.466667c-66.56 0-120.604444 51.2-125.155555 116.622222-48.924444 13.653333-84.195556 56.32-84.195556 106.951111 0 59.733333 49.493333 108.088889 111.502222 111.502222h209.351112c69.404444 0 125.724444-59.164444 125.724444-132.551111 0-70.542222-55.182222-128-124.586667-132.551111z"
|
||||
fill="#4598F0"
|
||||
p-id="33783"
|
||||
/><path
|
||||
d="M529.066667 797.013333h59.164444c2.275556 0 3.413333-2.275556 3.413333-4.551111v-14.222222c0-2.275556-1.137778-4.551111-3.413333-4.551111H518.257778c-3.413333 0-4.551111 4.551111-2.275556 7.395555l10.808889 15.36c0 0.568889 1.137778 0.568889 2.275556 0.568889z m61.44 9.671111H529.066667c-2.275556 0-6.257778-1.137778-7.395556-4.551111l-23.893333-30.72c-2.275556-2.275556-4.551111-3.413333-8.533334-3.413333h-44.373333c-6.257778 0-10.808889 5.688889-10.808889 11.946667v116.622222c0 7.395556 4.551111 11.946667 10.808889 11.946667h145.635556c6.257778 0 10.808889-5.688889 10.808889-11.946667V819.2c0-7.964444-5.12-12.515556-10.808889-12.515556z m-50.631111 65.422223c0 3.413333-2.275556 5.688889-6.257778 5.688889h-73.955556c-3.413333 0-6.257778-2.275556-6.257778-5.688889s2.275556-5.688889 6.257778-5.688889h75.662222c2.275556 0 4.551111 2.275556 4.551112 5.688889z m31.288888 0c0 3.413333-2.275556 5.688889-6.257777 5.688889h-4.551111c-3.413333 0-6.257778-2.275556-6.257778-5.688889s2.275556-5.688889 6.257778-5.688889h4.551111c3.982222 0 6.257778 2.275556 6.257777 5.688889z"
|
||||
fill="#FFFFFF"
|
||||
p-id="33784"
|
||||
/><path
|
||||
d="M694.044444 466.488889h73.955556c12.515556 0 22.755556 10.24 22.755556 22.755555v73.955556c0 12.515556-10.24 22.755556-22.755556 22.755556h-73.955556c-12.515556 0-22.755556-10.24-22.755555-22.755556V489.244444c0-12.515556 10.24-22.755556 22.755555-22.755555z"
|
||||
fill="#4598F0"
|
||||
p-id="33785"
|
||||
/><path
|
||||
d="M704.853333 553.528889c1.137778 0 2.275556-1.137778 2.275556-2.275556v-48.355555c0-1.137778-1.137778-2.275556-2.275556-2.275556s-2.275556 1.137778-2.275555 2.275556v48.355555c0 1.137778 1.137778 2.275556 2.275555 2.275556"
|
||||
fill="#FFFFFF"
|
||||
p-id="33786"
|
||||
/><path
|
||||
d="M754.915556 553.528889c1.137778 0 2.275556-1.137778 2.275555-2.275556v-48.355555c0-1.137778-1.137778-2.275556-2.275555-2.275556s-2.275556 1.137778-2.275556 2.275556v48.355555c0 1.137778 1.137778 2.275556 2.275556 2.275556"
|
||||
fill="#FFFFFF"
|
||||
p-id="33787"
|
||||
/><path
|
||||
d="M757.191111 502.897778c0-1.137778-1.137778-2.275556-2.275555-2.275556h-50.062223c-1.137778 0-2.275556 1.137778-2.275555 2.275556s1.137778 2.275556 2.275555 2.275555h50.062223c1.137778 0 2.275556-1.137778 2.275555-2.275555"
|
||||
fill="#FFFFFF"
|
||||
p-id="33788"
|
||||
/><path
|
||||
d="M746.382222 551.253333c0-1.137778-1.137778-2.275556-2.275555-2.275555H705.422222c-1.137778 0-2.275556 1.137778-2.275555 2.275555s1.137778 2.275556 2.275555 2.275556h38.684445c1.137778 0 2.275556-1.137778 2.275555-2.275556"
|
||||
fill="#FFFFFF"
|
||||
p-id="33789"
|
||||
/><path
|
||||
d="M725.902222 522.24c-1.137778-0.568889-2.275556-0.568889-3.413333 0.568889l-19.342222 27.306667c-0.568889 1.137778-0.568889 2.275556 0.568889 3.413333 1.137778 0.568889 2.275556 0.568889 3.413333-0.568889l19.342222-27.306667c0.568889-1.137778 0.568889-2.844444-0.568889-3.413333"
|
||||
fill="#FFFFFF"
|
||||
p-id="33790"
|
||||
/><path
|
||||
d="M723.057778 522.24c1.137778-0.568889 2.275556-0.568889 3.413333 0.568889l19.342222 27.306667c0.568889 1.137778 0.568889 2.275556-0.568889 3.413333-1.137778 0.568889-2.275556 0.568889-3.413333-0.568889l-19.342222-27.306667c-0.568889-1.137778-0.568889-2.844444 0.568889-3.413333"
|
||||
fill="#FFFFFF"
|
||||
p-id="33791"
|
||||
/><path
|
||||
d="M738.986667 529.635556c1.137778-0.568889 2.275556-0.568889 3.413333 0.568888l14.222222 19.911112c0.568889 1.137778 0.568889 2.275556-0.568889 3.413333-1.137778 0.568889-2.275556 0.568889-3.413333-0.568889l-14.222222-19.911111c-0.568889-1.706667-0.568889-2.844444 0.568889-3.413333"
|
||||
fill="#FFFFFF"
|
||||
p-id="33792"
|
||||
/><path
|
||||
d="M861.866667 676.977778h74.524444c12.515556 0 22.755556 10.24 22.755556 22.755555v73.955556c0 12.515556-10.24 22.755556-22.755556 22.755555h-74.524444c-12.515556 0-22.755556-10.24-22.755556-22.755555v-73.955556c0-12.515556 10.24-22.755556 22.755556-22.755555z"
|
||||
fill="#4598F0"
|
||||
p-id="33793"
|
||||
/><path
|
||||
d="M888.604444 718.506667v38.115555c0 5.688889-4.551111 10.24-10.24 10.24s-10.24-4.551111-10.24-10.24 4.551111-10.24 10.24-10.24c1.137778 0 2.275556 1.137778 2.275556 2.275556s-1.137778 2.275556-2.275556 2.275555c-2.844444 0-5.688889 2.275556-5.688888 5.688889s2.275556 5.688889 5.688888 5.688889c2.844444 0 5.688889-2.275556 5.688889-5.688889v-38.115555c0-0.568889 0-1.137778 0.568889-1.706667 0.568889-0.568889 1.137778-0.568889 1.706667-0.568889 1.137778 0 2.275556 1.137778 2.275555 2.275556"
|
||||
fill="#FFFFFF"
|
||||
p-id="33794"
|
||||
/><path
|
||||
d="M926.72 714.524444v38.115556c0 5.688889-4.551111 10.24-10.24 10.24s-10.24-4.551111-10.24-10.24 4.551111-10.24 10.24-10.24c1.137778 0 2.275556 1.137778 2.275556 2.275556s-1.137778 2.275556-2.275556 2.275555c-2.844444 0-5.688889 2.275556-5.688889 5.688889s2.275556 5.688889 5.688889 5.688889c2.844444 0 5.688889-2.275556 5.688889-5.688889v-38.115556c0-0.568889 0-1.137778 0.568889-1.706666 0.568889-0.568889 1.137778-0.568889 1.706666-0.568889h0.568889c1.137778 0 1.706667 1.137778 1.706667 2.275555"
|
||||
fill="#FFFFFF"
|
||||
p-id="33795"
|
||||
/><path
|
||||
d="M926.72 713.955556c0-1.137778-1.137778-2.275556-2.844444-2.275556l-38.115556 4.551111c-1.137778 0-2.275556 1.137778-2.275556 2.844445 0 1.137778 1.137778 2.275556 2.844445 2.275555l38.115555-4.551111c1.706667-0.568889 2.844444-1.706667 2.275556-2.844444"
|
||||
fill="#FFFFFF"
|
||||
p-id="33796"
|
||||
/><path
|
||||
d="M880.64 748.657778c0 1.137778-1.137778 2.275556-2.275556 2.275555s-2.275556-1.137778-2.275555-2.275555 1.137778-2.275556 2.275555-2.275556 2.275556 1.137778 2.275556 2.275556M918.755556 744.106667c0 1.137778-1.137778 2.275556-2.275556 2.275555s-2.275556-1.137778-2.275556-2.275555 1.137778-2.275556 2.275556-2.275556 2.275556 1.137778 2.275556 2.275556"
|
||||
fill="#FFFFFF"
|
||||
p-id="33797"
|
||||
/><path
|
||||
d="M22.755556 483.555556h73.955555c12.515556 0 22.755556 10.24 22.755556 22.755555v73.955556c0 12.515556-10.24 22.755556-22.755556 22.755555H22.755556c-12.515556 0-22.755556-10.24-22.755556-22.755555V506.311111c0-12.515556 10.24-22.755556 22.755556-22.755555z"
|
||||
fill="#4598F0"
|
||||
p-id="33798"
|
||||
/><path
|
||||
d="M50.062222 557.511111c-0.568889 1.137778-1.706667 1.706667-2.844444 1.137778-1.137778-0.568889-1.706667-1.706667-1.137778-2.844445 4.551111-11.377778 5.12-23.893333 2.275556-36.408888-0.568889-1.137778 0.568889-2.844444 1.706666-2.844445 1.137778-0.568889 2.275556 0.568889 2.844445 1.706667 2.844444 13.084444 2.275556 26.737778-2.844445 39.253333z"
|
||||
fill="#FFFFFF"
|
||||
p-id="33799"
|
||||
/><path
|
||||
d="M69.404444 548.408889c1.137778 0 2.275556 1.137778 2.275556 2.275555s-1.137778 2.275556-2.275556 2.275556c-3.413333 0-6.826667 0.568889-10.808888 1.706667l-10.24 3.413333c-1.137778 0.568889-2.275556 0-2.844445-1.137778-0.568889-1.137778 0-2.844444 1.137778-3.413333 3.413333-1.706667 7.395556-2.844444 10.808889-3.982222 4.551111 0 8.533333-0.568889 11.946666-1.137778z"
|
||||
fill="#FFFFFF"
|
||||
p-id="33800"
|
||||
/><path
|
||||
d="M57.457778 539.875556c-0.568889-1.137778-0.568889-2.844444 0.568889-3.413334 1.137778-0.568889 2.275556-0.568889 3.413333 0.568889 2.844444 4.551111 6.257778 8.533333 10.24 11.946667 1.137778 1.137778 1.137778 2.275556 0 3.413333-0.568889 1.137778-2.275556 1.137778-3.413333 0-3.982222-3.413333-7.964444-7.395556-10.808889-12.515555zM36.977778 566.044444z m0 0c-0.568889 0.568889-0.568889 1.706667 0 2.275556 1.137778 1.137778 1.137778 2.275556 0 3.413333s-2.275556 1.137778-3.413334 0c-2.275556-2.275556-2.844444-6.257778-0.568888-9.102222l0.568888-0.568889c1.706667-1.706667 3.982222-2.844444 6.257778-3.982222l6.826667-3.413333c1.137778-0.568889 2.275556 0 2.844444 1.137777s0 2.844444-1.137777 3.413334c-2.275556 1.137778-3.982222 2.275556-6.257778 3.413333-1.137778 0.568889-2.844444 1.706667-5.12 3.413333 0.568889 0 0.568889 0 0 0 0.568889 0 0.568889 0 0 0z m0 0c0.568889 0 0.568889 0 0 0z m-2.275556-3.982222z"
|
||||
fill="#FFFFFF"
|
||||
p-id="33801"
|
||||
/><path
|
||||
d="M39.253333 568.32c2.844444-3.982222 5.12-7.964444 6.257778-12.515556 0.568889-1.137778 1.706667-1.706667 2.844445-1.137777 1.137778 0.568889 1.706667 1.706667 1.137777 2.844444-1.706667 4.551111-3.982222 9.102222-6.826666 13.084445v-0.568889 0.568889s0 0.568889-0.568889 0.568888c-2.275556 2.844444-6.257778 2.844444-8.533334 0.568889-1.137778-1.137778-1.137778-2.275556 0-3.413333 1.137778-1.137778 2.275556-1.137778 3.413334 0 0.568889 0.568889 1.706667 0.568889 2.275555 0z m0.568889 0z m3.413334 2.275556v-0.568889c0.568889 0.568889 0 0.568889 0 0.568889z m0 0.568888z m0 0l-1.706667-1.706666 1.706667 1.706666z m0-0.568888zM84.764444 556.942222c1.137778-1.137778 2.275556-1.137778 3.413334 0 1.137778 1.137778 1.137778 2.275556 0 3.413334-1.706667 2.275556-5.12 2.844444-7.395556 1.137777-4.551111-2.275556-8.533333-5.12-12.515555-8.533333-1.137778-1.137778-1.137778-2.275556 0-3.413333 0.568889-1.137778 2.275556-1.137778 3.413333 0 3.413333 2.844444 7.395556 5.688889 11.377778 7.964444 0 0 1.137778 0 1.706666-0.568889z"
|
||||
fill="#FFFFFF"
|
||||
p-id="33802"
|
||||
/><path
|
||||
d="M69.973333 553.528889c-1.137778 0-2.275556-1.137778-2.275555-2.275556s1.137778-2.275556 2.275555-2.275555c5.12-0.568889 10.24 0 14.791111 1.137778 1.137778 0 2.275556 0.568889 2.844445 1.706666 2.275556 2.275556 2.844444 6.257778 0.568889 9.102222-1.137778 1.137778-2.275556 1.137778-3.413334 0-1.137778-1.137778-1.137778-2.275556 0-3.413333 0.568889-0.568889 0.568889-1.706667 0-2.275555l-0.568888-0.568889c-5.12-1.137778-9.671111-1.706667-14.222223-1.137778z"
|
||||
fill="#FFFFFF"
|
||||
p-id="33803"
|
||||
/><path
|
||||
d="M460.8 409.6h73.955556c12.515556 0 22.755556 10.24 22.755555 22.755556v73.955555c0 12.515556-10.24 22.755556-22.755555 22.755556H460.8c-12.515556 0-22.755556-10.24-22.755556-22.755556V432.355556c0-12.515556 10.24-22.755556 22.755556-22.755556z"
|
||||
fill="#4598F0"
|
||||
p-id="33804"
|
||||
/><path
|
||||
d="M498.346667 454.542222c1.137778 0 2.275556-1.137778 2.275555-2.275555v-3.413334c0-1.137778-1.137778-2.275556-2.275555-2.275555s-2.275556 1.137778-2.275556 2.275555v3.413334c0 1.137778 1.137778 2.275556 2.275556 2.275555M498.346667 465.351111c1.137778 0 2.275556-1.137778 2.275555-2.275555v-3.413334c0-1.137778-1.137778-2.275556-2.275555-2.275555s-2.275556 1.137778-2.275556 2.275555v3.413334c0 1.137778 1.137778 2.275556 2.275556 2.275555M498.346667 476.728889c1.137778 0 2.275556-1.137778 2.275555-2.275556v-3.413333c0-1.137778-1.137778-2.275556-2.275555-2.275556s-2.275556 1.137778-2.275556 2.275556v3.413333c0 1.137778 1.137778 2.275556 2.275556 2.275556M508.017778 485.831111H489.244444c-1.137778 0-2.275556-1.137778-2.275555-2.275555s1.137778-2.275556 2.275555-2.275556h18.773334c1.137778 0 2.275556 1.137778 2.275555 2.275556s-1.137778 2.275556-2.275555 2.275555"
|
||||
fill="#FFFFFF"
|
||||
p-id="33805"
|
||||
/><path
|
||||
d="M510.293333 483.555556v2.844444c0 3.413333-1.137778 6.257778-3.413333 7.964444-2.275556 2.275556-5.12 3.413333-8.533333 3.413334-6.826667 0-11.946667-5.12-11.946667-11.377778V483.555556v-0.568889c0.568889-0.568889 1.137778-1.137778 2.275556-1.137778s2.275556 1.137778 2.275555 2.275555v2.844445c0 3.982222 3.413333 6.826667 7.395556 6.826667 3.982222 0 7.395556-2.844444 7.395555-6.826667V483.555556c0-1.137778 1.137778-2.275556 2.275556-2.275556s1.706667 0.568889 2.275555 1.137778v1.137778c0-0.568889 0-0.568889 0 0"
|
||||
fill="#FFFFFF"
|
||||
p-id="33806"
|
||||
/><path
|
||||
d="M490.951111 483.555556c0 1.137778-1.137778 2.275556-2.275555 2.275555s-2.275556-1.137778-2.275556-2.275555v-0.568889c0.568889-0.568889 1.137778-1.137778 2.275556-1.137778 1.706667-1.137778 2.275556 0 2.275555 1.706667"
|
||||
fill="#FFFFFF"
|
||||
p-id="33807"
|
||||
/><path
|
||||
d="M510.293333 483.555556c0 1.137778-1.137778 2.275556-2.275555 2.275555s-2.275556-1.137778-2.275556-2.275555 1.137778-2.275556 2.275556-2.275556 1.706667 0.568889 2.275555 1.137778v1.137778c0-0.568889 0-0.568889 0 0"
|
||||
fill="#FFFFFF"
|
||||
p-id="33808"
|
||||
/><path
|
||||
d="M341.333333 136.533333h73.955556c12.515556 0 22.755556 10.24 22.755555 22.755556v73.955555c0 12.515556-10.24 22.755556-22.755555 22.755556H341.333333c-12.515556 0-22.755556-10.24-22.755555-22.755556V159.288889c0-12.515556 10.24-22.755556 22.755555-22.755556z"
|
||||
fill="#4598F0"
|
||||
p-id="33809"
|
||||
/><path
|
||||
d="M349.866667 197.404444c0-1.137778 1.137778-2.275556 2.275555-2.275555h49.493334c1.137778 0 2.275556 1.137778 2.275555 2.275555s-1.137778 2.275556-2.275555 2.275556h-49.493334c-1.137778 0-2.275556-1.137778-2.275555-2.275556"
|
||||
fill="#FFFFFF"
|
||||
p-id="33810"
|
||||
/><path
|
||||
d="M349.866667 219.022222c0-1.137778 1.137778-2.275556 2.275555-2.275555h49.493334c1.137778 0 2.275556 1.137778 2.275555 2.275555s-1.137778 2.275556-2.275555 2.275556h-49.493334c-1.137778 0-2.275556-1.137778-2.275555-2.275556"
|
||||
fill="#FFFFFF"
|
||||
p-id="33811"
|
||||
/><path
|
||||
d="M387.413333 175.786667c0-1.137778-1.137778-2.275556-2.275555-2.275556h-22.755556c-1.137778 0-2.275556 1.137778-2.275555 2.275556s1.137778 2.275556 2.275555 2.275555h22.755556c1.137778 0.568889 2.275556-0.568889 2.275555-2.275555M354.986667 175.786667c0-1.137778-1.137778-2.275556-2.275556-2.275556s-2.275556 1.137778-2.275555 2.275556 1.137778 2.275556 2.275555 2.275555c1.137778 0.568889 2.275556-0.568889 2.275556-2.275555"
|
||||
fill="#FFFFFF"
|
||||
p-id="33812"
|
||||
/><path
|
||||
d="M153.6 676.977778h73.955556c12.515556 0 22.755556 10.24 22.755555 22.755555v73.955556c0 12.515556-10.24 22.755556-22.755555 22.755555H153.6c-12.515556 0-22.755556-10.24-22.755556-22.755555v-73.955556c0-12.515556 10.24-22.755556 22.755556-22.755555z"
|
||||
fill="#4598F0"
|
||||
p-id="33813"
|
||||
/><path
|
||||
d="M178.062222 714.524444v50.062223c0 1.137778-1.137778 2.275556-2.275555 2.275555s-2.275556-1.137778-2.275556-2.275555v-50.062223c0-1.137778 1.137778-2.275556 2.275556-2.275555 0.568889 0 1.137778 0 1.706666 0.568889 0.568889 0 0.568889 0.568889 0.568889 1.706666"
|
||||
fill="#FFFFFF"
|
||||
p-id="33814"
|
||||
/><path
|
||||
d="M209.351111 729.884444c0 9.671111-7.964444 18.204444-18.204444 18.204445-3.413333 0-6.257778-1.137778-9.102223-2.275556-0.568889-0.568889-1.137778-1.137778-1.137777-1.706666 0-1.137778 1.137778-2.275556 2.275555-2.275556h1.137778c1.706667 1.137778 4.551111 1.706667 6.826667 1.706667 7.395556 0 13.084444-5.688889 13.084444-13.084445 0-7.395556-5.688889-13.084444-13.084444-13.084444s-13.084444 5.688889-13.084445 13.084444v11.946667c-2.844444-3.413333-4.551111-7.395556-4.551111-11.946667s1.706667-9.102222 4.551111-11.946666c3.413333-3.413333 7.964444-5.688889 13.084445-5.688889 10.24-1.137778 18.204444 7.395556 18.204444 17.066666"
|
||||
fill="#FFFFFF"
|
||||
p-id="33815"
|
||||
/><path
|
||||
d="M185.457778 743.537778c0 1.137778-1.137778 2.275556-2.275556 2.275555H182.044444c-0.568889-0.568889-1.137778-1.137778-1.137777-1.706666 0-1.137778 1.137778-2.275556 2.275555-2.275556h1.137778c1.137778 0 1.137778 0.568889 1.137778 1.706667"
|
||||
fill="#FFFFFF"
|
||||
p-id="33816"
|
||||
/><path
|
||||
d="M238.933333 375.466667h73.955556c12.515556 0 22.755556 10.24 22.755555 22.755555v73.955556c0 12.515556-10.24 22.755556-22.755555 22.755555H238.933333c-12.515556 0-22.755556-10.24-22.755555-22.755555V398.222222c0-12.515556 10.24-22.755556 22.755555-22.755555z"
|
||||
fill="#4598F0"
|
||||
p-id="33817"
|
||||
/><path
|
||||
d="M250.311111 417.564444c-1.137778 0.568889-2.844444-0.568889-2.844444-1.706666-0.568889-1.137778 0.568889-2.275556 1.706666-2.844445 1.137778-0.568889 2.844444 0.568889 2.844445 1.706667 0.568889 1.706667-0.568889 2.844444-1.706667 2.844444"
|
||||
fill="#FFFFFF"
|
||||
p-id="33818"
|
||||
/><path
|
||||
d="M286.72 463.644444c1.137778 0.568889 2.844444-0.568889 2.844444-1.706666l12.515556-45.511111c0.568889-1.137778-0.568889-2.275556-1.706667-2.844445-1.137778-0.568889-2.844444 0.568889-2.844444 1.706667l-12.515556 45.511111c-0.568889 1.137778 0.568889 2.275556 1.706667 2.844444"
|
||||
fill="#FFFFFF"
|
||||
p-id="33819"
|
||||
/><path
|
||||
d="M261.688889 463.644444c1.137778 0.568889 2.844444-0.568889 2.844444-1.706666l12.515556-45.511111c0.568889-1.137778-0.568889-2.275556-1.706667-2.844445-1.137778-0.568889-2.844444 0.568889-2.844444 1.706667l-12.515556 45.511111c-0.568889 1.137778 0.568889 2.275556 1.706667 2.844444"
|
||||
fill="#FFFFFF"
|
||||
p-id="33820"
|
||||
/><path
|
||||
d="M287.857778 463.644444c-1.137778 0.568889-2.844444-0.568889-2.844445-1.706666l-12.515555-45.511111c-0.568889-1.137778 0.568889-2.275556 1.706666-2.844445 1.137778-0.568889 2.844444 0.568889 2.844445 1.706667l12.515555 45.511111c0.568889 1.137778-0.568889 2.275556-1.706666 2.844444"
|
||||
fill="#FFFFFF"
|
||||
p-id="33821"
|
||||
/><path
|
||||
d="M262.826667 463.644444c-1.137778 0.568889-2.844444-0.568889-2.844445-1.706666l-10.24-36.977778c-0.568889-1.137778 0.568889-2.275556 1.706667-2.844444 1.137778-0.568889 2.844444 0.568889 2.844444 1.706666l10.24 36.977778c0.568889 1.137778-0.568889 2.275556-1.706666 2.844444"
|
||||
fill="#FFFFFF"
|
||||
p-id="33822"
|
||||
/><path
|
||||
d="M739.555556 45.511111h73.955555c12.515556 0 22.755556 10.24 22.755556 22.755556v73.955555c0 12.515556-10.24 22.755556-22.755556 22.755556h-73.955555c-12.515556 0-22.755556-10.24-22.755556-22.755556V68.266667c0-12.515556 10.24-22.755556 22.755556-22.755556z"
|
||||
fill="#4598F0"
|
||||
p-id="33823"
|
||||
/><path
|
||||
d="M754.346667 131.413333c-1.137778-1.137778-1.137778-2.275556 0-3.413333l44.373333-43.804444c1.137778-1.137778 2.275556-1.137778 3.413333 0 1.137778 1.137778 1.137778 2.275556 0 3.413333l-44.373333 43.804444c-0.568889 0.568889-2.275556 0.568889-3.413333 0"
|
||||
fill="#FFFFFF"
|
||||
p-id="33824"
|
||||
/><path
|
||||
d="M802.133333 131.413333c1.137778-1.137778 1.137778-2.275556 0-3.413333l-22.186666-22.186667c-1.137778-1.137778-2.275556-1.137778-3.413334 0-1.137778 1.137778-1.137778 2.275556 0 3.413334l22.186667 22.186666c1.137778 0.568889 2.844444 0.568889 3.413333 0"
|
||||
fill="#FFFFFF"
|
||||
p-id="33825"
|
||||
/><path
|
||||
d="M774.257778 102.968889c1.137778-1.137778 1.137778-2.275556 0-3.413333l-15.928889-15.928889c-1.137778-1.137778-2.275556-1.137778-3.413333 0-1.137778 1.137778-1.137778 2.275556 0 3.413333l15.928888 15.928889c0.568889 1.137778 2.275556 1.137778 3.413334 0"
|
||||
fill="#FFFFFF"
|
||||
p-id="33826"
|
||||
/><path
|
||||
d="M927.288889 375.466667h73.955555c12.515556 0 22.755556 10.24 22.755556 22.755555v73.955556c0 12.515556-10.24 22.755556-22.755556 22.755555h-73.955555c-12.515556 0-22.755556-10.24-22.755556-22.755555V398.222222c0-12.515556 10.24-22.755556 22.755556-22.755555z"
|
||||
fill="#4598F0"
|
||||
p-id="33827"
|
||||
/><path
|
||||
d="M943.786667 409.6h41.528889c1.137778 0 2.275556 1.137778 2.275555 2.275556s-1.137778 2.275556-2.275555 2.275555h-41.528889c-1.137778 0-2.275556-1.137778-2.275556-2.275555s1.137778-2.275556 2.275556-2.275556z"
|
||||
fill="#FFFFFF"
|
||||
fill-opacity=".8"
|
||||
p-id="33828"
|
||||
/><path
|
||||
d="M946.631111 411.875556v49.493333c0 1.137778-1.137778 2.275556-2.275555 2.275555s-2.275556-1.137778-2.275556-2.275555v-49.493333c0-1.137778 1.137778-2.275556 2.275556-2.275556s2.275556 1.137778 2.275555 2.275556zM987.591111 411.875556v34.133333c0 1.137778-1.137778 2.275556-2.275555 2.275555s-2.275556-1.137778-2.275556-2.275555v-34.133333c0-1.137778 1.137778-2.275556 2.275556-2.275556s2.275556 1.137778 2.275555 2.275556z"
|
||||
fill="#FFFFFF"
|
||||
fill-opacity=".8"
|
||||
p-id="33829"
|
||||
/><path
|
||||
d="M943.786667 459.662222h15.36c1.137778 0 2.275556 1.137778 2.275555 2.275556s-1.137778 2.275556-2.275555 2.275555h-15.36c-1.137778 0-2.275556-1.137778-2.275556-2.275555s1.137778-2.275556 2.275556-2.275556zM955.733333 421.546667h15.36c1.137778 0 2.275556 1.137778 2.275556 2.275555s-1.137778 2.275556-2.275556 2.275556H955.733333c-1.137778 0-2.275556-1.137778-2.275555-2.275556s1.137778-2.275556 2.275555-2.275555zM955.733333 431.786667h15.36c1.137778 0 2.275556 1.137778 2.275556 2.275555s-1.137778 2.275556-2.275556 2.275556H955.733333c-1.137778 0-2.275556-1.137778-2.275555-2.275556s1.137778-2.275556 2.275555-2.275555zM968.248889 460.231111l15.36-15.36c1.137778-1.137778 2.275556-1.137778 3.413333 0 1.137778 1.137778 1.137778 2.275556 0 3.413333l-15.36 15.36c-1.137778 1.137778-2.275556 1.137778-3.413333 0-1.137778-1.137778-1.137778-2.844444 0-3.413333z"
|
||||
fill="#FFFFFF"
|
||||
fill-opacity=".8"
|
||||
p-id="33830"
|
||||
/><path
|
||||
d="M969.386667 443.733333h15.36c1.137778 0 2.275556 1.137778 2.275555 2.275556s-1.137778 2.275556-2.275555 2.275555h-15.36c-1.137778 0-2.275556-1.137778-2.275556-2.275555s1.137778-2.275556 2.275556-2.275556z"
|
||||
fill="#FFFFFF"
|
||||
fill-opacity=".8"
|
||||
p-id="33831"
|
||||
/><path
|
||||
d="M972.231111 446.008889v15.36c0 1.137778-1.137778 2.275556-2.275555 2.275555s-2.275556-1.137778-2.275556-2.275555v-15.36c0-1.137778 1.137778-2.275556 2.275556-2.275556s2.275556 1.137778 2.275555 2.275556z"
|
||||
fill="#FFFFFF"
|
||||
fill-opacity=".8"
|
||||
p-id="33832"
|
||||
/><path
|
||||
d="M585.955556 216.177778h73.955555c12.515556 0 22.755556 10.24 22.755556 22.755555v73.955556c0 12.515556-10.24 22.755556-22.755556 22.755555h-73.955555c-12.515556 0-22.755556-10.24-22.755556-22.755555V238.933333c0-12.515556 10.24-22.755556 22.755556-22.755555z"
|
||||
fill="#4598F0"
|
||||
p-id="33833"
|
||||
/><path
|
||||
d="M593.351111 267.946667V284.444444c0 4.551111 3.982222 8.533333 8.533333 8.533334h26.737778c4.551111 0 8.533333-3.982222 8.533334-8.533334v-16.497777c0-4.551111-3.982222-8.533333-8.533334-8.533334h-26.737778c-4.551111 0-8.533333 3.982222-8.533333 8.533334zM652.515556 267.946667c2.275556-1.706667 4.551111-1.137778 4.551111 2.275555v11.946667c0 3.413333-2.275556 3.982222-4.551111 2.275555l-6.257778-4.551111c-2.275556-1.706667-2.275556-5.12 0-6.826666l6.257778-5.12z"
|
||||
fill="#4598F0"
|
||||
p-id="33834"
|
||||
/></svg
|
||||
>
|
||||
|
Before Width: | Height: | Size: 21 KiB |
@@ -1,25 +0,0 @@
|
||||
<!--
|
||||
Copyright (C) 2025 Intel Corporation
|
||||
SPDX-License-Identifier: Apache-2.0
|
||||
-->
|
||||
|
||||
<script lang="ts">
|
||||
export let overrideClasses = '';
|
||||
|
||||
const classes = overrideClasses ? overrideClasses : 'w-4 h-4 text-gray-500';
|
||||
</script>
|
||||
|
||||
<svg
|
||||
class={classes}
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
fill="none"
|
||||
viewBox="0 0 24 24"
|
||||
stroke-width="1.5"
|
||||
stroke="currentColor"
|
||||
>
|
||||
<path
|
||||
stroke-linecap="round"
|
||||
stroke-linejoin="round"
|
||||
d="M16.023 9.348h4.992v-.001M2.985 19.644v-4.992m0 0h4.992m-4.993 0l3.181 3.183a8.25 8.25 0 0013.803-3.7M4.031 9.865a8.25 8.25 0 0113.803-3.7l3.181 3.182m0-4.991v4.99"
|
||||
/>
|
||||
</svg>
|
||||
@@ -1,33 +0,0 @@
|
||||
<!--
|
||||
Copyright (C) 2025 Intel Corporation
|
||||
SPDX-License-Identifier: Apache-2.0
|
||||
-->
|
||||
|
||||
<svg
|
||||
width="45"
|
||||
height="45"
|
||||
viewBox="0 0 48 48"
|
||||
fill="none"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
>
|
||||
<g clip-path="url(#clip0_16_93)">
|
||||
<rect x="0.5" y="0.238312" width="47" height="47" fill="#0068B5" />
|
||||
<path
|
||||
d="M39.51 0.238312H8.49C4.0955 0.238312 0.5 3.83381 0.5 8.22831V39.2483C0.5 43.6428 4.0955 47.2383 8.49 47.2383H39.51C43.9045 47.2383 47.5 43.6428 47.5 39.2483V8.22831C47.5 3.83381 43.9045 0.238312 39.51 0.238312ZM44.915 39.2483C44.915 42.2328 42.4945 44.6533 39.51 44.6533H8.49C5.5055 44.6533 3.085 42.2328 3.085 39.2483V8.22831C3.085 5.24381 5.5055 2.82331 8.49 2.82331H39.51C42.4945 2.82331 44.915 5.24381 44.915 8.22831V39.2483Z"
|
||||
fill="#0068B5"
|
||||
/>
|
||||
<path
|
||||
d="M9.52393 21.3178H11.7094L11.7094 29.3548H9.52393V21.3178ZM20.3574 22.2108C20.1694 21.9523 19.8874 21.7408 19.4879 21.5763C19.1119 21.4118 18.6889 21.3178 18.2424 21.3178C17.2084 21.3178 16.3389 21.7643 15.6574 22.6338V21.4823H13.7304V29.3078H15.7984V25.7593C15.7984 24.8898 15.8454 24.2788 15.9629 23.9498C16.0569 23.6208 16.2684 23.3623 16.5504 23.1743C16.8324 22.9863 17.1614 22.8688 17.5139 22.8688C17.7959 22.8688 18.0309 22.9393 18.2424 23.0803C18.4304 23.2213 18.5949 23.4093 18.6654 23.6678C18.7594 23.9263 18.8064 24.4668 18.8064 25.3128V29.3078H20.8744V24.4433C20.8744 23.8323 20.8274 23.3858 20.7569 23.0568C20.6864 22.7513 20.5689 22.4693 20.3574 22.2108ZM25.7389 27.8038C25.5979 27.8038 25.4804 27.7803 25.3864 27.7098C25.2924 27.6393 25.2219 27.5453 25.1984 27.4513C25.1749 27.3573 25.1514 26.9813 25.1514 26.3233V23.1508H26.5614V21.5058H25.1514V18.7563L23.0834 19.9548V21.5058V23.1508V26.5583C23.0834 27.2868 23.1069 27.7803 23.1539 28.0153C23.2009 28.3443 23.2949 28.6263 23.4359 28.8143C23.5769 29.0023 23.7884 29.1668 24.0939 29.3078C24.3994 29.4253 24.7284 29.4958 25.1044 29.4958C25.7154 29.4958 26.2559 29.4018 26.7494 29.1903L26.5614 27.5923C26.2089 27.7333 25.9269 27.8038 25.7389 27.8038ZM33.7524 22.4928C33.0709 21.7173 32.1544 21.3413 31.0029 21.3413C29.9689 21.3413 29.0994 21.7173 28.4414 22.4458C27.7599 23.1743 27.4309 24.1848 27.4309 25.5008C27.4309 26.5818 27.6894 27.4748 28.2064 28.2033C28.8644 29.0963 29.8749 29.5428 31.2379 29.5428C32.1074 29.5428 32.8124 29.3548 33.3764 28.9553C33.9404 28.5558 34.3634 27.9918 34.6219 27.2163L32.5539 26.8638C32.4364 27.2633 32.2719 27.5453 32.0604 27.7098C31.8489 27.8743 31.5669 27.9683 31.2379 27.9683C30.7679 27.9683 30.3684 27.8038 30.0394 27.4513C29.7104 27.0988 29.5459 26.6288 29.5459 26.0178H34.7394C34.7394 24.4433 34.4339 23.2448 33.7524 22.4928ZM29.5694 24.7488C29.5694 24.1848 29.7104 23.7383 29.9924 23.4093C30.2979 23.0803 30.6504 22.9158 31.1204 22.9158C31.5434 22.9158 31.8959 23.0803 32.2014 23.3858C32.5069 23.6913 32.6479 24.1613 32.6714 24.7488H29.5694ZM36.4079 18.5448H38.4759V29.3548H36.4079V18.5448Z"
|
||||
fill="white"
|
||||
/>
|
||||
<path
|
||||
d="M9.52393 18.5448H11.7094L11.7094 20.5654H9.52393V18.5448ZM39.2058 53.1889C59.7131 70.5741 37.9465 53.1367 37.547 52.9722C60.5267 71.228 41.5876 53.1889 41.1411 53.1889C40.1071 53.1889 54.2638 57.2959 53.5823 58.1654L44.3775 54.0099L42.8 56.0803L44.9335 56.0763L43.617 55.1029L49.2888 57.4321C49.2888 56.5626 69.0838 68.5409 41.665 52.9722C67.9574 69.2353 48.7539 58.3534 49.0359 58.1654C49.3179 57.9774 72.2331 77.3305 48.0529 59.0448C73.8431 77.373 40.6532 52.2185 40.8647 52.3595C64.5928 69.3279 66.2469 69.734 44.0477 53.3531C68.4587 70.8049 45.1808 54.42 45.1808 55.266L49.6436 57.6191L50.8176 56.2254L46.645 54.7317C46.645 54.1207 47.0599 55.184 46.9894 54.855C46.9189 54.5495 63.0924 72.6928 39.2058 53.1889ZM45.3834 56.0442C45.2424 56.0442 60.49 64.1373 43.0764 53.1889C59.6606 67.1938 58.0346 62.1756 40.8647 50.7007C58.8678 64.6804 43.7296 53.3942 43.7296 52.7362L43.617 55.1029L43.3529 52.3595L44.7353 53.7418L43.0764 53.1889L44.244 54.855L46.1176 55.6771L42.8 57.336L45.5647 53.1889L41.9705 49.5948L46.1176 55.1029L46.3941 55.6771C46.3941 56.4056 44.3403 54.3363 44.3873 54.5713C65.2775 66.4664 68.0297 70.4029 45.348 56.6803C69.965 73.7705 43.9793 55.5361 44.2848 55.6771C44.5903 55.7946 60.4832 66.2088 41.9705 53.7418C42.5815 53.7418 44.8545 53.1837 45.348 52.9722L43.7511 52.3595C43.3986 52.5005 45.5714 56.0442 45.3834 56.0442ZM44.0342 56.5108C43.3527 55.7353 45.3338 56.783 44.1823 56.783C43.1483 56.783 44.9043 55.6048 44.2463 56.3333C43.5648 57.0618 43.7511 51.0435 43.7511 52.3595C43.7511 53.4405 43.6653 53.0133 44.1823 53.7418C44.8403 54.6348 41.7134 54.2598 43.0764 54.2598C43.9459 54.2598 43.4702 56.9103 44.0342 56.5108C44.5982 56.1113 44.1288 57.5428 44.3873 56.7673L43.7511 56.2254C55.3795 71.8986 44.3938 54.9384 44.1823 55.1029C43.9708 55.2674 44.0801 54.2598 43.7511 54.2598C56.2643 69.3767 58.4567 71.4935 44.1823 55.1029C57.894 68.7712 44.3873 57.3783 44.3873 56.7673L44.1823 56.945C44.1823 55.3705 44.7157 57.2628 44.0342 56.5108ZM44.3873 54.5713C44.3873 54.0073 43.7522 56.8398 44.0342 56.5108C44.3397 56.1818 43.495 56.2254 43.965 56.2254C44.388 56.2254 55.4258 75.7185 43.7511 56.2254C44.0566 56.5309 44.1588 56.1955 44.1823 56.783L44.3873 54.5713Z"
|
||||
fill="#00C7FD"
|
||||
/>
|
||||
</g>
|
||||
<defs>
|
||||
<clipPath id="clip0_16_93">
|
||||
<rect x="0.5" y="0.238312" width="47" height="47" fill="white" />
|
||||
</clipPath>
|
||||
</defs>
|
||||
</svg>
|
||||
|
Before Width: | Height: | Size: 5.1 KiB |
@@ -1,25 +0,0 @@
|
||||
<!--
|
||||
Copyright (C) 2025 Intel Corporation
|
||||
SPDX-License-Identifier: Apache-2.0
|
||||
-->
|
||||
|
||||
<script lang="ts">
|
||||
export let overrideClasses = '';
|
||||
|
||||
const classes = overrideClasses ? overrideClasses : `w-6 h-6`;
|
||||
</script>
|
||||
|
||||
<svg
|
||||
class={classes}
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
fill="none"
|
||||
viewBox="0 0 24 24"
|
||||
stroke-width="1.5"
|
||||
stroke="currentColor"
|
||||
>
|
||||
<path
|
||||
stroke-linecap="round"
|
||||
stroke-linejoin="round"
|
||||
d="M2.25 12.76c0 1.6 1.123 2.994 2.707 3.227 1.087.16 2.185.283 3.293.369V21l4.076-4.076a1.526 1.526 0 011.037-.443 48.282 48.282 0 005.68-.494c1.584-.233 2.707-1.626 2.707-3.228V6.741c0-1.602-1.123-2.995-2.707-3.228A48.394 48.394 0 0012 3c-2.392 0-4.744.175-7.043.513C3.373 3.746 2.25 5.14 2.25 6.741v6.018z"
|
||||
/>
|
||||
</svg>
|
||||
@@ -1,6 +0,0 @@
|
||||
<!--
|
||||
Copyright (C) 2025 Intel Corporation
|
||||
SPDX-License-Identifier: Apache-2.0
|
||||
-->
|
||||
|
||||
<svg class="w-6 h-6" viewBox="0 0 1024 1024" version="1.1" xmlns="http://www.w3.org/2000/svg" fill="#797a9f"><path d="M512 64c259.2 0 469.333333 200.576 469.333333 448s-210.133333 448-469.333333 448a484.48 484.48 0 0 1-232.725333-58.88l-116.394667 50.645333a42.666667 42.666667 0 0 1-58.517333-49.002666l29.76-125.013334C76.629333 703.402667 42.666667 611.477333 42.666667 512 42.666667 264.576 252.8 64 512 64z m0 64C287.488 128 106.666667 300.586667 106.666667 512c0 79.573333 25.557333 155.434667 72.554666 219.285333l5.525334 7.317334 18.709333 24.192-26.965333 113.237333 105.984-46.08 27.477333 15.018667C370.858667 878.229333 439.978667 896 512 896c224.512 0 405.333333-172.586667 405.333333-384S736.512 128 512 128z m-157.696 341.333333a42.666667 42.666667 0 1 1 0 85.333334 42.666667 42.666667 0 0 1 0-85.333334z m159.018667 0a42.666667 42.666667 0 1 1 0 85.333334 42.666667 42.666667 0 0 1 0-85.333334z m158.997333 0a42.666667 42.666667 0 1 1 0 85.333334 42.666667 42.666667 0 0 1 0-85.333334z"></path></svg>
|
||||
|
Before Width: | Height: | Size: 1.1 KiB |
@@ -1,25 +0,0 @@
|
||||
<!--
|
||||
Copyright (C) 2025 Intel Corporation
|
||||
SPDX-License-Identifier: Apache-2.0
|
||||
-->
|
||||
|
||||
<script lang="ts">
|
||||
export let overrideClasses = '';
|
||||
|
||||
const classes = overrideClasses ? overrideClasses : `w-6 h-6`;
|
||||
</script>
|
||||
|
||||
<svg
|
||||
class={classes}
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
fill="none"
|
||||
viewBox="0 0 24 24"
|
||||
stroke-width="1.5"
|
||||
stroke="currentColor"
|
||||
>
|
||||
<path
|
||||
stroke-linecap="round"
|
||||
stroke-linejoin="round"
|
||||
d="M4.5 12.75l6 6 9-13.5"
|
||||
/>
|
||||
</svg>
|
||||
@@ -1,12 +0,0 @@
|
||||
<svg height="64" viewBox="0 0 56 64" width="56" xmlns="http://www.w3.org/2000/svg">
|
||||
<path clip-rule="evenodd"
|
||||
d="m5.106 0c-2.802 0-5.073 2.272-5.073 5.074v53.841c0 2.803 2.271 5.074 5.073 5.074h45.774c2.801 0 5.074-2.271 5.074-5.074v-38.605l-18.903-20.31h-31.945z"
|
||||
fill="#45b058" fill-rule="evenodd" />
|
||||
<path
|
||||
d="m20.306 43.197c.126.144.198.324.198.522 0 .378-.306.72-.703.72-.18 0-.378-.072-.504-.234-.702-.846-1.891-1.387-3.007-1.387-2.629 0-4.627 2.017-4.627 4.88 0 2.845 1.999 4.879 4.627 4.879 1.134 0 2.25-.486 3.007-1.369.125-.144.324-.233.504-.233.415 0 .703.359.703.738 0 .18-.072.36-.198.504-.937.972-2.215 1.693-4.015 1.693-3.457 0-6.176-2.521-6.176-6.212s2.719-6.212 6.176-6.212c1.8.001 3.096.721 4.015 1.711zm6.802 10.714c-1.782 0-3.187-.594-4.213-1.495-.162-.144-.234-.342-.234-.54 0-.361.27-.757.702-.757.144 0 .306.036.432.144.828.739 1.98 1.314 3.367 1.314 2.143 0 2.827-1.152 2.827-2.071 0-3.097-7.112-1.386-7.112-5.672 0-1.98 1.764-3.331 4.123-3.331 1.548 0 2.881.467 3.853 1.278.162.144.252.342.252.54 0 .36-.306.72-.703.72-.144 0-.306-.054-.432-.162-.882-.72-1.98-1.044-3.079-1.044-1.44 0-2.467.774-2.467 1.909 0 2.701 7.112 1.152 7.112 5.636.001 1.748-1.187 3.531-4.428 3.531zm16.994-11.254-4.159 10.335c-.198.486-.685.81-1.188.81h-.036c-.522 0-1.008-.324-1.207-.81l-4.142-10.335c-.036-.09-.054-.18-.054-.288 0-.36.323-.793.81-.793.306 0 .594.18.72.486l3.889 9.992 3.889-9.992c.108-.288.396-.486.72-.486.468 0 .81.378.81.793.001.09-.017.198-.052.288z"
|
||||
fill="#fff" />
|
||||
<g clip-rule="evenodd" fill-rule="evenodd">
|
||||
<path d="m56.001 20.357v1h-12.8s-6.312-1.26-6.128-6.707c0 0 .208 5.707 6.003 5.707z" fill="#349c42" />
|
||||
<path d="m37.098.006v14.561c0 1.656 1.104 5.791 6.104 5.791h12.8l-18.904-20.352z" fill="#fff" opacity=".5" />
|
||||
</g>
|
||||
</svg>
|
||||
|
Before Width: | Height: | Size: 1.8 KiB |
@@ -1,28 +0,0 @@
|
||||
<!--
|
||||
Copyright (C) 2025 Intel Corporation
|
||||
SPDX-License-Identifier: Apache-2.0
|
||||
-->
|
||||
|
||||
<svg
|
||||
t="1699532005309"
|
||||
class="icon rotate-180"
|
||||
viewBox="0 0 1024 1024"
|
||||
version="1.1"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
p-id="31791"
|
||||
width="1rem"
|
||||
height="1rem"
|
||||
><path
|
||||
d="M505.088 513.1264m-450.816 0a450.816 450.816 0 1 0 901.632 0 450.816 450.816 0 1 0-901.632 0Z"
|
||||
fill="#b8b8b8"
|
||||
p-id="31792"
|
||||
data-spm-anchor-id="a313x.search_index.0.i28.33343a81AAN1qI"
|
||||
class="selected"
|
||||
/><path
|
||||
d="M356.6592 575.0784c0-54.5792 0.3584-109.1584-0.2048-163.6864-0.1536-15.872 5.5296-24.2176 20.992-29.5424 58.88-20.2752 93.7472-63.1296 110.848-121.9072 5.9392-20.4288 11.4176-41.216 19.7632-60.672 13.4656-31.5904 38.2464-42.7008 72.6528-35.328 26.5216 5.6832 43.3152 28.3648 43.5712 60.16 0.3584 40.4992 0.0512 80.9984 0.1536 121.4976 0.0512 22.2208 3.9424 26.7264 26.5728 26.9824 45.568 0.512 91.1872 1.536 136.704-0.256 40.5504-1.5872 69.9392 24.832 59.7504 69.9904-12.2368 54.0672-27.648 107.4688-42.7008 160.8704-9.2672 32.9216-20.1728 65.4336-30.8736 97.9456-14.1312 43.008-40.448 62.0544-84.8896 62.0544H390.2976c-32.1024 0-33.6384-1.536-33.6384-32.8704v-155.2384zM307.8656 573.9008c0 52.8896 0.1024 105.7792-0.0512 158.6688-0.1024 26.0096-4.9152 30.6176-30.3616 30.6688-7.3216 0-14.6432 0.0512-21.9648 0-29.8496-0.1536-44.032-14.08-44.2368-44.6976-0.3072-55.1424-0.1024-110.2848-0.1024-165.4272 0-40.4992-0.1536-81.0496 0.0512-121.5488 0.2048-32.2048 15.7696-47.616 47.5136-47.7184 49.1008-0.2048 49.152-0.2048 49.152 48.2304 0.0512 47.2576 0.0512 94.5152 0 141.824z"
|
||||
fill="#ffffff"
|
||||
p-id="31793"
|
||||
data-spm-anchor-id="a313x.search_index.0.i26.33343a81AAN1qI"
|
||||
class=""
|
||||
/></svg
|
||||
>
|
||||
|
Before Width: | Height: | Size: 1.6 KiB |
@@ -1,16 +0,0 @@
|
||||
<!--
|
||||
Copyright (C) 2025 Intel Corporation
|
||||
SPDX-License-Identifier: Apache-2.0
|
||||
-->
|
||||
|
||||
<svg
|
||||
class="icon"
|
||||
viewBox="0 0 1024 1024"
|
||||
version="1.1"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
height="1em"
|
||||
><path
|
||||
d="M576 64c0-35.4-28.6-64-64-64s-64 28.6-64 64v485.4l-146.8-146.8c-25-25-65.6-25-90.6 0s-25 65.6 0 90.6l256 256c25 25 65.6 25 90.6 0l256-256c25-25 25-65.6 0-90.6s-65.6-25-90.6 0L576 549.4V64zM128 704c-70.6 0-128 57.4-128 128v64c0 70.6 57.4 128 128 128h768c70.6 0 128-57.4 128-128v-64c0-70.6-57.4-128-128-128H693l-90.6 90.6c-50 50-131 50-181 0L331 704H128z m736 112a48 48 0 1 1 0 96 48 48 0 1 1 0-96z"
|
||||
fill="white"
|
||||
/></svg
|
||||
>
|
||||
|
Before Width: | Height: | Size: 633 B |