Adding files to deploy VisualQnA application on ROCm vLLM (#1751)
Signed-off-by: Artem Astafev <a.astafev@datamonsters.com>
This commit is contained in:
BIN
VisualQnA/assets/img/visualqna-ui-result-page.png
Normal file
BIN
VisualQnA/assets/img/visualqna-ui-result-page.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 395 KiB |
BIN
VisualQnA/assets/img/visualqna-ui-starting-page.png
Normal file
BIN
VisualQnA/assets/img/visualqna-ui-starting-page.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 248 KiB |
@@ -1,127 +1,358 @@
|
||||
# Build Mega Service of VisualQnA on AMD ROCm
|
||||
# Build and Deploy VisualQnA Application on AMD GPU (ROCm)
|
||||
|
||||
This document outlines the deployment process for a VisualQnA application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline on Intel Xeon server. The steps include Docker image creation, container deployment via Docker Compose, and service execution to integrate microservices such as `llm`. We will publish the Docker images to Docker Hub soon, it will simplify the deployment process for this service.
|
||||
## Build Docker Images
|
||||
|
||||
## 🚀 Build Docker Images
|
||||
### 1. Build Docker Image
|
||||
|
||||
First of all, you need to build Docker Images locally and install the python package of it.
|
||||
- #### Create application install directory and go to it:
|
||||
|
||||
### 1. Build LVM and NGINX Docker Images
|
||||
```bash
|
||||
mkdir ~/visualqna-install && cd visualqna-install
|
||||
```
|
||||
|
||||
- #### Clone the repository GenAIExamples (the default repository branch "main" is used here):
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIExamples.git
|
||||
```
|
||||
|
||||
If you need to use a specific branch/tag of the GenAIExamples repository, then (v1.3 replace with its own value):
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIExamples.git && cd GenAIExamples && git checkout v1.3
|
||||
```
|
||||
|
||||
We remind you that when using a specific version of the code, you need to use the README from this version:
|
||||
|
||||
- #### Go to build directory:
|
||||
|
||||
```bash
|
||||
cd ~/visualqna-install/GenAIExamples/VisualQnA/docker_image_build
|
||||
```
|
||||
|
||||
- Cleaning up the GenAIComps repository if it was previously cloned in this directory.
|
||||
This is necessary if the build was performed earlier and the GenAIComps folder exists and is not empty:
|
||||
|
||||
```bash
|
||||
echo Y | rm -R GenAIComps
|
||||
```
|
||||
|
||||
- #### Clone the repository GenAIComps (the default repository branch "main" is used here):
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
```
|
||||
|
||||
If you use a specific tag of the GenAIExamples repository,
|
||||
then you should also use the corresponding tag for GenAIComps. (v1.3 replace with its own value):
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout v1.3
|
||||
```
|
||||
|
||||
We remind you that when using a specific version of the code, you need to use the README from this version.
|
||||
|
||||
- #### Setting the list of images for the build (from the build file.yaml)
|
||||
|
||||
If you want to deploy a vLLM-based or TGI-based application, then the set of services is installed as follows:
|
||||
|
||||
#### vLLM-based application
|
||||
|
||||
```bash
|
||||
service_list="visualqna visualqna-ui nginx lvm vllm-rocm"
|
||||
```
|
||||
|
||||
#### TGI-based application
|
||||
|
||||
```bash
|
||||
service_list="visualqna visualqna-ui nginx lvm"
|
||||
```
|
||||
|
||||
- #### Optional. Pull TGI Docker Image (Do this if you want to use TGI)
|
||||
|
||||
```bash
|
||||
docker pull ghcr.io/huggingface/text-generation-inference:2.3.1-rocm
|
||||
```
|
||||
|
||||
- #### Build Docker Images
|
||||
|
||||
```bash
|
||||
docker compose -f build.yaml build ${service_list} --no-cache
|
||||
```
|
||||
|
||||
After the build, we check the list of images with the command:
|
||||
|
||||
```bash
|
||||
docker image ls
|
||||
```
|
||||
|
||||
The list of images should include:
|
||||
|
||||
##### vLLM-based application:
|
||||
|
||||
- opea/vllm-rocm:latest
|
||||
- opea/lvm:latest
|
||||
- opea/visualqna:latest
|
||||
- opea/visualqn-ui:latest
|
||||
- opea/nginx:latest
|
||||
|
||||
##### TGI-based application:
|
||||
|
||||
- ghcr.io/huggingface/text-generation-inference:2.4.1-rocm
|
||||
- opea/lvm:latest
|
||||
- opea/visualqna:latest
|
||||
- opea/visualqn-ui:latest
|
||||
- opea/nginx:latest
|
||||
|
||||
---
|
||||
|
||||
## Deploy VisualQnA Application
|
||||
|
||||
### Docker Compose Configuration for AMD GPUs
|
||||
|
||||
To enable GPU support for AMD GPUs, the following configuration is added to the Docker Compose file:
|
||||
|
||||
- compose_vllm.yaml - for vLLM-based application
|
||||
- compose.yaml - for TGI-based
|
||||
|
||||
```yaml
|
||||
shm_size: 1g
|
||||
devices:
|
||||
- /dev/kfd:/dev/kfd
|
||||
- /dev/dri/:/dev/dri/
|
||||
cap_add:
|
||||
- SYS_PTRACE
|
||||
group_add:
|
||||
- video
|
||||
security_opt:
|
||||
- seccomp:unconfined
|
||||
```
|
||||
|
||||
This configuration forwards all available GPUs to the container. To use a specific GPU, specify its `cardN` and `renderN` device IDs. For example:
|
||||
|
||||
```yaml
|
||||
shm_size: 1g
|
||||
devices:
|
||||
- /dev/kfd:/dev/kfd
|
||||
- /dev/dri/card0:/dev/dri/card0
|
||||
- /dev/dri/renderD128:/dev/dri/renderD128
|
||||
cap_add:
|
||||
- SYS_PTRACE
|
||||
group_add:
|
||||
- video
|
||||
security_opt:
|
||||
- seccomp:unconfined
|
||||
```
|
||||
|
||||
**How to Identify GPU Device IDs:**
|
||||
Use AMD GPU driver utilities to determine the correct `cardN` and `renderN` IDs for your GPU.
|
||||
|
||||
### Set deploy environment variables
|
||||
|
||||
#### Setting variables in the operating system environment:
|
||||
|
||||
##### Set variable HUGGINGFACEHUB_API_TOKEN:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
docker build --no-cache -t opea/lvm:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/lvms/src/Dockerfile .
|
||||
docker build --no-cache -t opea/nginx:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/third_parties/nginx/src/Dockerfile .
|
||||
### Replace the string 'your_huggingfacehub_token' with your HuggingFacehub repository access token.
|
||||
export HUGGINGFACEHUB_API_TOKEN='your_huggingfacehub_token'
|
||||
```
|
||||
|
||||
### 2. Build MegaService Docker Image
|
||||
#### Set variables value in set_env\*\*\*\*.sh file:
|
||||
|
||||
To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `visualqna.py` Python script. Build MegaService Docker image via below command:
|
||||
Go to Docker Compose directory:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIExamples.git
|
||||
cd GenAIExamples/VisualQnA
|
||||
docker build --no-cache -t opea/visualqna:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
|
||||
cd ~/visualqna-install/GenAIExamples/VisualQnA/docker_compose/amd/gpu/rocm
|
||||
```
|
||||
|
||||
### 3. Build UI Docker Image
|
||||
The example uses the Nano text editor. You can use any convenient text editor:
|
||||
|
||||
Build frontend Docker image via below command:
|
||||
#### If you use vLLM
|
||||
|
||||
```bash
|
||||
cd GenAIExamples/VisualQnA/ui
|
||||
docker build --no-cache -t opea/visualqna-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f docker/Dockerfile .
|
||||
nano set_env_vllm.sh
|
||||
```
|
||||
|
||||
### 4. Pull TGI AMD ROCm Image
|
||||
#### If you use TGI
|
||||
|
||||
```bash
|
||||
docker pull ghcr.io/huggingface/text-generation-inference:2.4.1-rocm
|
||||
nano set_env.sh
|
||||
```
|
||||
|
||||
Then run the command `docker images`, you will have the following 5 Docker Images:
|
||||
|
||||
1. `ghcr.io/huggingface/text-generation-inference:2.4.1-rocm`
|
||||
2. `opea/lvm:latest`
|
||||
3. `opea/visualqna:latest`
|
||||
4. `opea/visualqna-ui:latest`
|
||||
5. `opea/nginx`
|
||||
|
||||
## 🚀 Start Microservices
|
||||
|
||||
### Setup Environment Variables
|
||||
|
||||
Since the `compose.yaml` will consume some environment variables, you need to setup them in advance as below.
|
||||
|
||||
**Export the value of the public IP address of your ROCM server to the `host_ip` environment variable**
|
||||
|
||||
> Change the External_Public_IP below with the actual IPV4 value
|
||||
|
||||
```
|
||||
export host_ip="External_Public_IP"
|
||||
```
|
||||
|
||||
**Append the value of the public IP address to the no_proxy list**
|
||||
|
||||
```
|
||||
export your_no_proxy="${your_no_proxy},${host_ip}"
|
||||
```
|
||||
If you are in a proxy environment, also set the proxy-related environment variables:
|
||||
|
||||
```bash
|
||||
export HOST_IP=${your_host_ip}
|
||||
export VISUALQNA_TGI_SERVICE_PORT="8399"
|
||||
export VISUALQNA_HUGGINGFACEHUB_API_TOKEN={your_hugginface_api_token}
|
||||
export VISUALQNA_CARD_ID="card1"
|
||||
export VISUALQNA_RENDER_ID="renderD136"
|
||||
export LVM_MODEL_ID="Xkev/Llama-3.2V-11B-cot"
|
||||
export MODEL="llava-hf/llava-v1.6-mistral-7b-hf"
|
||||
export LVM_ENDPOINT="http://${HOST_IP}:8399"
|
||||
export LVM_SERVICE_PORT=9399
|
||||
export MEGA_SERVICE_HOST_IP=${HOST_IP}
|
||||
export LVM_SERVICE_HOST_IP=${HOST_IP}
|
||||
export BACKEND_SERVICE_ENDPOINT="http://${HOST_IP}:18003/v1/visualqna"
|
||||
export FRONTEND_SERVICE_IP=${HOST_IP}
|
||||
export FRONTEND_SERVICE_PORT=18001
|
||||
export BACKEND_SERVICE_NAME=visualqna
|
||||
export BACKEND_SERVICE_IP=${HOST_IP}
|
||||
export BACKEND_SERVICE_PORT=18002
|
||||
export NGINX_PORT=18003
|
||||
|
||||
export http_proxy="Your_HTTP_Proxy"
|
||||
export https_proxy="Your_HTTPs_Proxy"
|
||||
```
|
||||
|
||||
Note: Please replace with `host_ip` with you external IP address, do not use localhost.
|
||||
Set the values of the variables:
|
||||
|
||||
Note: You can use set_env.sh file with bash command (. setset_env.sh) to set up needed variables.
|
||||
- **HOST_IP, HOST_IP_EXTERNAL** - These variables are used to configure the name/address of the service in the operating system environment for the application services to interact with each other and with the outside world.
|
||||
|
||||
### Start all the services Docker Containers
|
||||
If your server uses only an internal address and is not accessible from the Internet, then the values for these two variables will be the same and the value will be equal to the server's internal name/address.
|
||||
|
||||
> Before running the docker compose command, you need to be in the folder that has the docker compose yaml file
|
||||
If your server uses only an external, Internet-accessible address, then the values for these two variables will be the same and the value will be equal to the server's external name/address.
|
||||
|
||||
If your server is located on an internal network, has an internal address, but is accessible from the Internet via a proxy/firewall/load balancer, then the HOST_IP variable will have a value equal to the internal name/address of the server, and the EXTERNAL_HOST_IP variable will have a value equal to the external name/address of the proxy/firewall/load balancer behind which the server is located.
|
||||
|
||||
We set these values in the file set_env\*\*\*\*.sh
|
||||
|
||||
- **Variables with names like "**\*\*\*\*\*\*\_PORT"\*\* - These variables set the IP port numbers for establishing network connections to the application services.
|
||||
The values shown in the file set_env.sh or set_env_vllm they are the values used for the development and testing of the application, as well as configured for the environment in which the development is performed. These values must be configured in accordance with the rules of network access to your environment's server, and must not overlap with the IP ports of other applications that are already in use.
|
||||
|
||||
#### Required Models
|
||||
|
||||
By default, LVM models are set to a default value as listed below:
|
||||
|
||||
| Service | Model |
|
||||
| ------- | ------------------------ |
|
||||
| LVM | llava-hf/llava-1.5-7b-hf |
|
||||
| LVM | Xkev/Llama-3.2V-11B-cot |
|
||||
|
||||
Note:
|
||||
|
||||
For AMD ROCm System "Xkev/Llama-3.2V-11B-cot" is recommended to run on ghcr.io/huggingface/text-generation-inference:2.4.1-rocm
|
||||
|
||||
#### Set variables with script set_env\*\*\*\*.sh
|
||||
|
||||
#### If you use vLLM
|
||||
|
||||
```bash
|
||||
cd GenAIExamples/VisualQnA/docker_compose/amd/gpu/rocm
|
||||
. set_env_vllm.sh
|
||||
```
|
||||
|
||||
#### If you use TGI
|
||||
|
||||
```bash
|
||||
. set_env.sh
|
||||
```
|
||||
|
||||
### Start the services:
|
||||
|
||||
#### If you use vLLM
|
||||
|
||||
```bash
|
||||
docker compose -f compose_vllm.yaml up -d
|
||||
```
|
||||
|
||||
#### If you use TGI
|
||||
|
||||
```bash
|
||||
docker compose -f compose.yaml up -d
|
||||
```
|
||||
|
||||
### Validate Microservices
|
||||
All containers should be running and should not restart:
|
||||
|
||||
Follow the instructions to validate MicroServices.
|
||||
##### If you use vLLM:
|
||||
|
||||
> Note: If you see an "Internal Server Error" from the `curl` command, wait a few minutes for the microserver to be ready and then try again.
|
||||
- visualqna-vllm-service
|
||||
- lvm-server
|
||||
- visualqna-rocm-backend-server
|
||||
- visualqna-rocm-ui-server
|
||||
- visualqna-rocm-nginx-server
|
||||
|
||||
1. LLM Microservice
|
||||
##### If you use TGI:
|
||||
|
||||
```bash
|
||||
http_proxy="" curl http://${host_ip}:9399/v1/lvm -XPOST -d '{"image": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC", "prompt":"What is this?"}' -H 'Content-Type: application/json'
|
||||
```
|
||||
- visualqna-tgi-service
|
||||
- lvm-server
|
||||
- visualqna-rocm-backend-server
|
||||
- visualqna-rocm-ui-server
|
||||
- visualqna-rocm-nginx-server
|
||||
|
||||
2. MegaService
|
||||
---
|
||||
|
||||
## Validate the Services
|
||||
|
||||
### 1. Validate the vLLM/TGI Service
|
||||
|
||||
#### If you use vLLM:
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:8888/v1/visualqna -H "Content-Type: application/json" -d '{
|
||||
DATA='{"model": "Xkev/Llama-3.2V-11B-cot", '\
|
||||
'"messages": [{"role": "user", "content": "What is Deep Learning?"}], "max_tokens": 256}'
|
||||
|
||||
curl http://${HOST_IP}:${VISUALQNA_VLLM_SERVICE_PORT}/v1/chat/completions \
|
||||
-X POST \
|
||||
-d "$DATA" \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
Checking the response from the service. The response should be similar to JSON:
|
||||
|
||||
```json
|
||||
{
|
||||
"id": "chatcmpl-a3761920c4034131b3cab073b8e8b841",
|
||||
"object": "chat.completion",
|
||||
"created": 1742959065,
|
||||
"model": "Intel/neural-chat-7b-v3-3",
|
||||
"choices": [
|
||||
{
|
||||
"index": 0,
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": " Deep Learning refers to a modern approach of Artificial Intelligence that aims to replicate the way human brains process information by teaching computers to learn from data without extensive programming",
|
||||
"tool_calls": []
|
||||
},
|
||||
"logprobs": null,
|
||||
"finish_reason": "length",
|
||||
"stop_reason": null
|
||||
}
|
||||
],
|
||||
"usage": { "prompt_tokens": 15, "total_tokens": 47, "completion_tokens": 32, "prompt_tokens_details": null },
|
||||
"prompt_logprobs": null
|
||||
}
|
||||
```
|
||||
|
||||
If the service response has a meaningful response in the value of the "choices.message.content" key,
|
||||
then we consider the vLLM service to be successfully launched
|
||||
|
||||
#### If you use TGI:
|
||||
|
||||
```bash
|
||||
DATA='{"inputs":"What is Deep Learning?",'\
|
||||
'"parameters":{"max_new_tokens":256,"do_sample": true}}'
|
||||
|
||||
curl http://${HOST_IP}:${VISUALQNA_TGI_SERVICE_PORT}/generate \
|
||||
-X POST \
|
||||
-d "$DATA" \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
Checking the response from the service. The response should be similar to JSON:
|
||||
|
||||
```json
|
||||
{
|
||||
"generated_text": "\n\nDeep Learning is a subset of machine learning, which focuses on developing methods inspired by the functioning of the human brain; more specifically, the way it processes and acquires various types of knowledge and information. To enable deep learning, the networks are composed of multiple processing layers that form a hierarchy, with each layer learning more complex and abstraction levels of data representation.\n\nThe principle of Deep Learning is to emulate the structure of neurons in the human brain to construct artificial neural networks capable to accomplish complicated pattern recognition tasks more effectively and accurately. Therefore, these neural networks contain a series of hierarchical components, where units in earlier layers receive simple inputs and are activated by these inputs. The activation of the units in later layers are the results of multiple nonlinear transformations generated from reconstructing and integrating the information in previous layers. In other words, by combining various pieces of information at each layer, a Deep Learning network can extract the input features that best represent the structure of data, providing their outputs at the last layer or final level of abstraction.\n\nThe main idea of using these 'deep' networks in contrast to regular algorithms is that they are capable of representing hierarchical relationships that exist within the data and learn these representations by"
|
||||
}
|
||||
```
|
||||
|
||||
If the service response has a meaningful response in the value of the "generated_text" key,
|
||||
then we consider the TGI service to be successfully launched
|
||||
|
||||
### 2. Validate the LVM Service
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:${VISUALQNA_LVM_PORT}/v1/lvm \
|
||||
-X POST \
|
||||
-H 'Content-Type: application/json' \
|
||||
-d '{"image": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC", "prompt":"What is this?"}'
|
||||
```
|
||||
|
||||
Checking the response from the service. The response should be similar to JSON:
|
||||
|
||||
```textmate
|
||||
{"downstream_black_list":[],"id":"53fae0310461ce3e7cde5b0930bd3b92","text":"<SUMMARY> I will analyze the image to determine its color and then provide a structured response using the specified format. </SUMMARY>\n\n<CAPTION> The image is a solid block of color. It appears to be a bright, vibrant hue. </CAPTION>\n\n<REASONING> To determine the color, I will observe the image's hue and saturation. The image is a uniform yellow color, which is a bright and noticeable shade. </REASONING>\n\n<CONCLUSION> The image is a bright yellow color. </CONCLUSION>"}
|
||||
```
|
||||
|
||||
If the service response has a meaningful response in the value of the "choices.text" key,
|
||||
then we consider the vLLM service to be successfully launched
|
||||
|
||||
### 3. Validate the MegaService
|
||||
|
||||
```bash
|
||||
DATA='{
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
@@ -141,16 +372,48 @@ curl http://${host_ip}:8888/v1/visualqna -H "Content-Type: application/json" -d
|
||||
],
|
||||
"max_tokens": 300
|
||||
}'
|
||||
|
||||
curl http://${HOST_IP}:${VISUALQNA_BACKEND_SERVICE_PORT}/v1/visualqna \
|
||||
-H "Content-Type: application/json" \
|
||||
-d "$DATA"
|
||||
```
|
||||
|
||||
## 🚀 Launch the UI
|
||||
Checking the response from the service. The response should be similar to text:
|
||||
|
||||
To access the frontend, open the following URL in your browser: http://{host_ip}:5173. By default, the UI runs on port 5173 internally. If you prefer to use a different host port to access the frontend, you can modify the port mapping in the `compose.yaml` file as shown below:
|
||||
|
||||
```yaml
|
||||
visualqna-gaudi-ui-server:
|
||||
image: opea/visualqna-ui:latest
|
||||
...
|
||||
ports:
|
||||
- "80:5173"
|
||||
```textmate
|
||||
{"id":"chatcmpl-ML6oimVzQFmk5dgsAFDSKo","object":"chat.completion","created":1743668853,"model":"visualqna","choices":[{"index":0,"message":{"role":"assistant","content":"<SUMMARY> I will analyze the image to identify key elements and provide a structured response. The focus will be on identifying the main subject of the image. </SUMMARY>\n\n<CAPTION> The image shows a street scene with a prominent red and white \"STOP\" sign in the foreground. In the background, there is a Chinese-style archway with red pillars and decorative elements. The archway is labeled with Chinese characters. </CAPTION>\n\n<REASONING> To determine the main subject of the image, I will focus on the most visually striking and central elements. The \"STOP\" sign is clearly visible and stands out due to its color and position. The archway, while significant, is in the background and does not dominate the image as much as the \"STOP\" sign does. </REASONING>\n\n<CONCLUSION> Stop sign. </CONCLUSION>"},"finish_reason":"stop","metadata":null}],"usage":{"prompt_tokens":0,"total_tokens":0,"completion_tokens":0}}
|
||||
```
|
||||
|
||||
If the output lines in the "choices.text" keys contain words (tokens) containing meaning, then the service is considered launched successfully.
|
||||
|
||||
### 4. Validate the Frontend (UI)
|
||||
|
||||
To access the UI, use the URL - http://${EXTERNAL_HOST_IP}:${FRONTEND_SERVICE_PORT}
|
||||
A page should open when you click through to this address:
|
||||
|
||||

|
||||
|
||||
If a page of this type has opened, then we believe that the service is running and responding,
|
||||
and we can proceed to functional UI testing.
|
||||
|
||||
To check that service is working push on one of the example pictures and whait for the answer:
|
||||
|
||||

|
||||
|
||||
If the result shown on the page is correct, then we consider the verification of the UI service to be successful.
|
||||
|
||||
### 5. Stop application
|
||||
|
||||
#### If you use vLLM
|
||||
|
||||
```bash
|
||||
cd ~/visualqnaa-install/GenAIExamples/VisualQnA/docker_compose/amd/gpu/rocm
|
||||
docker compose -f compose_vllm.yaml down
|
||||
```
|
||||
|
||||
#### If you use TGI
|
||||
|
||||
```bash
|
||||
cd ~/visualqna-install/GenAIExamples/VisualQnA/docker_compose/amd/gpu/rocm
|
||||
docker compose -f compose.yaml down
|
||||
```
|
||||
|
||||
@@ -15,7 +15,7 @@ services:
|
||||
HUGGINGFACEHUB_API_TOKEN: ${VISUALQNA_HUGGINGFACEHUB_API_TOKEN}
|
||||
HUGGING_FACE_HUB_TOKEN: ${VISUALQNA_HUGGINGFACEHUB_API_TOKEN}
|
||||
volumes:
|
||||
- "/var/opea/visualqna-service/data:/data"
|
||||
- "${MODEL_CACHE:-./data}:/data"
|
||||
shm_size: 64g
|
||||
devices:
|
||||
- /dev/kfd:/dev/kfd
|
||||
|
||||
105
VisualQnA/docker_compose/amd/gpu/rocm/compose_vllm.yaml
Normal file
105
VisualQnA/docker_compose/amd/gpu/rocm/compose_vllm.yaml
Normal file
@@ -0,0 +1,105 @@
|
||||
# Copyright (C) 2024 Advanced Micro Devices, Inc.
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
services:
|
||||
visualqna-vllm-service:
|
||||
image: ${REGISTRY:-opea}/vllm-rocm:${TAG:-latest}
|
||||
container_name: visualqna-vllm-service
|
||||
ports:
|
||||
- "${VISUALQNA_VLLM_SERVICE_PORT:-8081}:8011"
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${VISUALQNA_HUGGINGFACEHUB_API_TOKEN}
|
||||
HF_TOKEN: ${VISUALQNA_HUGGINGFACEHUB_API_TOKEN}
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
WILM_USE_TRITON_FLASH_ATTENTION: 0
|
||||
PYTORCH_JIT: 0
|
||||
volumes:
|
||||
- "${MODEL_CACHE:-./data}:/data"
|
||||
shm_size: 20G
|
||||
devices:
|
||||
- /dev/kfd:/dev/kfd
|
||||
- /dev/dri/:/dev/dri/
|
||||
cap_add:
|
||||
- SYS_PTRACE
|
||||
group_add:
|
||||
- video
|
||||
security_opt:
|
||||
- seccomp:unconfined
|
||||
- apparmor=unconfined
|
||||
command: "--model ${VISUALQNA_LVM_MODEL_ID} --swap-space 16 --disable-log-requests --dtype float16 --tensor-parallel-size 1 --host 0.0.0.0 --port 8011 --num-scheduler-steps 1 --distributed-executor-backend \"mp\""
|
||||
ipc: host
|
||||
lvm:
|
||||
image: ${REGISTRY:-opea}/lvm:${TAG:-latest}
|
||||
container_name: lvm-server
|
||||
depends_on:
|
||||
- visualqna-vllm-service
|
||||
ports:
|
||||
- "9399:9399"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
LVM_COMPONENT_NAME: "OPEA_VLLM_LVM"
|
||||
LVM_ENDPOINT: ${LVM_ENDPOINT}
|
||||
LLM_MODEL_ID: ${VISUALQNA_LVM_MODEL_ID}
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
restart: unless-stopped
|
||||
visualqna-rocm-backend-server:
|
||||
image: ${REGISTRY:-opea}/visualqna:${TAG:-latest}
|
||||
container_name: visualqna-rocm-backend-server
|
||||
depends_on:
|
||||
- visualqna-vllm-service
|
||||
- lvm
|
||||
ports:
|
||||
- "${BACKEND_SERVICE_PORT:-8888}:8888"
|
||||
environment:
|
||||
- no_proxy=${no_proxy}
|
||||
- https_proxy=${https_proxy}
|
||||
- http_proxy=${http_proxy}
|
||||
- MEGA_SERVICE_HOST_IP=${MEGA_SERVICE_HOST_IP}
|
||||
- LVM_SERVICE_HOST_IP=${LVM_SERVICE_HOST_IP}
|
||||
ipc: host
|
||||
restart: always
|
||||
visualqna-rocm-ui-server:
|
||||
image: ${REGISTRY:-opea}/visualqna-ui:${TAG:-latest}
|
||||
container_name: visualqna-rocm-ui-server
|
||||
depends_on:
|
||||
- visualqna-rocm-backend-server
|
||||
ports:
|
||||
- "${FRONTEND_SERVICE_PORT:-5173}:5173"
|
||||
environment:
|
||||
- no_proxy=${no_proxy}
|
||||
- https_proxy=${https_proxy}
|
||||
- http_proxy=${http_proxy}
|
||||
- BACKEND_BASE_URL=${BACKEND_SERVICE_ENDPOINT}
|
||||
ipc: host
|
||||
restart: always
|
||||
visualqna-nginx-server:
|
||||
image: ${REGISTRY:-opea}/nginx:${TAG:-latest}
|
||||
container_name: visualqna-rocm-nginx-server
|
||||
depends_on:
|
||||
- visualqna-rocm-backend-server
|
||||
- visualqna-rocm-ui-server
|
||||
ports:
|
||||
- "${NGINX_PORT:-80}:80"
|
||||
environment:
|
||||
- no_proxy=${no_proxy}
|
||||
- https_proxy=${https_proxy}
|
||||
- http_proxy=${http_proxy}
|
||||
- FRONTEND_SERVICE_IP=${HOST_IP}
|
||||
- FRONTEND_SERVICE_PORT=${FRONTEND_SERVICE_PORT}
|
||||
- BACKEND_SERVICE_NAME=${BACKEND_SERVICE_NAME}
|
||||
- BACKEND_SERVICE_IP=${HOST_IP}
|
||||
- BACKEND_SERVICE_PORT=${BACKEND_SERVICE_PORT}
|
||||
ipc: host
|
||||
restart: always
|
||||
|
||||
networks:
|
||||
default:
|
||||
driver: bridge
|
||||
@@ -3,7 +3,8 @@
|
||||
# Copyright (C) 2024 Advanced Micro Devices, Inc
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
export HOST_IP=${Your_host_ip_address}
|
||||
export HOST_IP=${host_ip}
|
||||
export EXTERNAL_HOST_IP=${host_ip}
|
||||
export VISUALQNA_TGI_SERVICE_PORT="8399"
|
||||
export VISUALQNA_HUGGINGFACEHUB_API_TOKEN=${Your_HUGGINGFACEHUB_API_TOKEN}
|
||||
export VISUALQNA_CARD_ID="card1"
|
||||
|
||||
23
VisualQnA/docker_compose/amd/gpu/rocm/set_env_vllm.sh
Normal file
23
VisualQnA/docker_compose/amd/gpu/rocm/set_env_vllm.sh
Normal file
@@ -0,0 +1,23 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# Copyright (C) 2024 Advanced Micro Devices, Inc
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
export HOST_IP=${host_ip}
|
||||
export EXTERNAL_HOST_IP=${host_ip}
|
||||
export VISUALQNA_VLLM_SERVICE_PORT="8081"
|
||||
export VISUALQNA_HUGGINGFACEHUB_API_TOKEN=${Your_HUGGINGFACEHUB_API_TOKEN}
|
||||
export VISUALQNA_CARD_ID="card1"
|
||||
export VISUALQNA_RENDER_ID="renderD136"
|
||||
export VISUALQNA_LVM_MODEL_ID="Xkev/Llama-3.2V-11B-cot"
|
||||
export LVM_ENDPOINT="http://${HOST_IP}:${VISUALQNA_VLLM_SERVICE_PORT}"
|
||||
export LVM_SERVICE_PORT=9399
|
||||
export MEGA_SERVICE_HOST_IP=${HOST_IP}
|
||||
export LVM_SERVICE_HOST_IP=${HOST_IP}
|
||||
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:${BACKEND_SERVICE_PORT}/v1/visualqna"
|
||||
export FRONTEND_SERVICE_IP=${HOST_IP}
|
||||
export FRONTEND_SERVICE_PORT=18001
|
||||
export BACKEND_SERVICE_NAME=visualqna
|
||||
export BACKEND_SERVICE_IP=${HOST_IP}
|
||||
export BACKEND_SERVICE_PORT=18002
|
||||
export NGINX_PORT=18003
|
||||
@@ -29,3 +29,8 @@ services:
|
||||
dockerfile: comps/third_parties/nginx/src/Dockerfile
|
||||
extends: visualqna
|
||||
image: ${REGISTRY:-opea}/nginx:${TAG:-latest}
|
||||
vllm-rocm:
|
||||
build:
|
||||
context: GenAIComps
|
||||
dockerfile: comps/third_parties/vllm/src/Dockerfile.amd_gpu
|
||||
image: ${REGISTRY:-opea}/vllm-rocm:${TAG:-latest}
|
||||
|
||||
@@ -33,6 +33,7 @@ export BACKEND_SERVICE_IP=${HOST_IP}
|
||||
export BACKEND_SERVICE_PORT=8888
|
||||
export NGINX_PORT=18003
|
||||
export PATH="~/miniconda3/bin:$PATH"
|
||||
export MODEL_CACHE=${model_cache:-"/var/opea/multimodalqna-service/data"}
|
||||
|
||||
function build_docker_images() {
|
||||
opea_branch=${opea_branch:-"main"}
|
||||
@@ -63,11 +64,11 @@ function start_services() {
|
||||
sed -i "s/backend_address/$ip_address/g" $WORKPATH/ui/svelte/.env
|
||||
|
||||
# Start Docker Containers
|
||||
docker compose up -d > ${LOG_PATH}/start_services_with_compose.log
|
||||
docker compose -f compose.yaml up -d > ${LOG_PATH}/start_services_with_compose.log
|
||||
|
||||
n=0
|
||||
until [[ "$n" -ge 100 ]]; do
|
||||
docker logs visualqna-tgi-service > ${LOG_PATH}/lvm_tgi_service_start.log
|
||||
docker logs visualqna-tgi-service >& ${LOG_PATH}/lvm_tgi_service_start.log
|
||||
if grep -q Connected ${LOG_PATH}/lvm_tgi_service_start.log; then
|
||||
break
|
||||
fi
|
||||
|
||||
224
VisualQnA/tests/test_compose_vllm_on_rocm.sh
Normal file
224
VisualQnA/tests/test_compose_vllm_on_rocm.sh
Normal file
@@ -0,0 +1,224 @@
|
||||
#!/bin/bash
|
||||
# Copyright (C) 2024 Advanced Micro Devices, Inc.
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
set -x
|
||||
IMAGE_REPO=${IMAGE_REPO:-"opea"}
|
||||
IMAGE_TAG=${IMAGE_TAG:-"latest"}
|
||||
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
|
||||
echo "TAG=IMAGE_TAG=${IMAGE_TAG}"
|
||||
|
||||
WORKPATH=$(dirname "$PWD")
|
||||
LOG_PATH="$WORKPATH/tests"
|
||||
ip_address=$(hostname -I | awk '{print $1}')
|
||||
|
||||
export REGISTRY=${IMAGE_REPO}
|
||||
export TAG=${IMAGE_TAG}
|
||||
export HOST_IP=${ip_address}
|
||||
export VISUALQNA_VLLM_SERVICE_PORT="8081"
|
||||
export VISUALQNA_HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
||||
export VISUALQNA_CARD_ID="card1"
|
||||
export VISUALQNA_RENDER_ID="renderD136"
|
||||
export VISUALQNA_LVM_MODEL_ID="Xkev/Llama-3.2V-11B-cot"
|
||||
export MODEL="llava-hf/llava-v1.6-mistral-7b-hf"
|
||||
export LVM_ENDPOINT="http://${HOST_IP}:${VISUALQNA_VLLM_SERVICE_PORT}"
|
||||
export LVM_SERVICE_PORT=9399
|
||||
export MEGA_SERVICE_HOST_IP=${HOST_IP}
|
||||
export LVM_SERVICE_HOST_IP=${HOST_IP}
|
||||
export BACKEND_SERVICE_ENDPOINT="http://${HOST_IP}:${BACKEND_SERVICE_PORT}/v1/visualqna"
|
||||
export FRONTEND_SERVICE_IP=${HOST_IP}
|
||||
export FRONTEND_SERVICE_PORT=5173
|
||||
export BACKEND_SERVICE_NAME=visualqna
|
||||
export BACKEND_SERVICE_IP=${HOST_IP}
|
||||
export BACKEND_SERVICE_PORT=8888
|
||||
export NGINX_PORT=18003
|
||||
export PATH="~/miniconda3/bin:$PATH"
|
||||
export MODEL_CACHE=${model_cache:-"/var/opea/multimodalqna-service/data"}
|
||||
|
||||
function build_docker_images() {
|
||||
opea_branch=${opea_branch:-"main"}
|
||||
# If the opea_branch isn't main, replace the git clone branch in Dockerfile.
|
||||
if [[ "${opea_branch}" != "main" ]]; then
|
||||
cd $WORKPATH
|
||||
OLD_STRING="RUN git clone --depth 1 https://github.com/opea-project/GenAIComps.git"
|
||||
NEW_STRING="RUN git clone --depth 1 --branch ${opea_branch} https://github.com/opea-project/GenAIComps.git"
|
||||
find . -type f -name "Dockerfile*" | while read -r file; do
|
||||
echo "Processing file: $file"
|
||||
sed -i "s|$OLD_STRING|$NEW_STRING|g" "$file"
|
||||
done
|
||||
fi
|
||||
|
||||
cd $WORKPATH/docker_image_build
|
||||
git clone --depth 1 --branch ${opea_branch} https://github.com/opea-project/GenAIComps.git
|
||||
|
||||
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
|
||||
docker compose -f build.yaml build --no-cache > ${LOG_PATH}/docker_image_build.log
|
||||
|
||||
docker images && sleep 1s
|
||||
}
|
||||
|
||||
function start_services() {
|
||||
cd $WORKPATH/docker_compose/amd/gpu/rocm
|
||||
|
||||
sed -i "s/backend_address/$ip_address/g" $WORKPATH/ui/svelte/.env
|
||||
|
||||
# Start Docker Containers
|
||||
docker compose -f compose_vllm.yaml up -d > ${LOG_PATH}/start_services_with_compose.log
|
||||
|
||||
n=0
|
||||
until [[ "$n" -ge 100 ]]; do
|
||||
docker logs visualqna-vllm-service >& ${LOG_PATH}/visualqna-vllm-service_start.log
|
||||
if grep -q "Application startup complete" $LOG_PATH/visualqna-vllm-service_start.log; then
|
||||
break
|
||||
fi
|
||||
sleep 10s
|
||||
n=$((n+1))
|
||||
done
|
||||
}
|
||||
|
||||
function validate_services() {
|
||||
local URL="$1"
|
||||
local EXPECTED_RESULT="$2"
|
||||
local SERVICE_NAME="$3"
|
||||
local DOCKER_NAME="$4"
|
||||
local INPUT_DATA="$5"
|
||||
|
||||
local HTTP_STATUS=$(curl -s -o /dev/null -w "%{http_code}" -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL")
|
||||
if [ "$HTTP_STATUS" -eq 200 ]; then
|
||||
echo "[ $SERVICE_NAME ] HTTP status is 200. Checking content..."
|
||||
|
||||
local CONTENT=$(curl -s -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL" | tee ${LOG_PATH}/${SERVICE_NAME}.log)
|
||||
|
||||
if echo "$CONTENT" | grep -q "$EXPECTED_RESULT"; then
|
||||
echo "[ $SERVICE_NAME ] Content is as expected."
|
||||
else
|
||||
echo "[ $SERVICE_NAME ] Content does not match the expected result: $CONTENT"
|
||||
docker logs ${DOCKER_NAME} >> ${LOG_PATH}/${SERVICE_NAME}.log
|
||||
exit 1
|
||||
fi
|
||||
else
|
||||
echo "[ $SERVICE_NAME ] HTTP status is not 200. Received status was $HTTP_STATUS"
|
||||
docker logs ${DOCKER_NAME} >> ${LOG_PATH}/${SERVICE_NAME}.log
|
||||
exit 1
|
||||
fi
|
||||
sleep 1s
|
||||
}
|
||||
|
||||
function validate_microservices() {
|
||||
# Check if the microservices are running correctly.
|
||||
|
||||
# lvm microservice
|
||||
validate_services \
|
||||
"${ip_address}:9399/v1/lvm" \
|
||||
"The image" \
|
||||
"lvm" \
|
||||
"visualqna-vllm-service" \
|
||||
'{"image": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC", "prompt":"What is this?"}'
|
||||
}
|
||||
|
||||
function validate_megaservice() {
|
||||
# Curl the Mega Service
|
||||
validate_services \
|
||||
"${ip_address}:8888/v1/visualqna" \
|
||||
"The image" \
|
||||
"visualqna-rocm-backend-server" \
|
||||
"visualqna-rocm-backend-server" \
|
||||
'{
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "What'\''s in this image?"
|
||||
},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": "https://www.ilankelman.org/stopsigns/australia.jpg"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
],
|
||||
"max_tokens": 300
|
||||
}'
|
||||
|
||||
# test the megeservice via nginx
|
||||
validate_services \
|
||||
"${ip_address}:${NGINX_PORT}/v1/visualqna" \
|
||||
"The image" \
|
||||
"visualqna-rocm-nginx-server" \
|
||||
"visualqna-rocm-nginx-server" \
|
||||
'{
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "What'\''s in this image?"
|
||||
},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": "https://www.ilankelman.org/stopsigns/australia.jpg"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
],
|
||||
"max_tokens": 300
|
||||
}'
|
||||
}
|
||||
|
||||
function validate_frontend() {
|
||||
cd $WORKPATH/ui/svelte
|
||||
local conda_env_name="OPEA_e2e"
|
||||
export PATH=${HOME}/miniforge3/bin/:$PATH
|
||||
if conda info --envs | grep -q "$conda_env_name"; then
|
||||
echo "$conda_env_name exist!"
|
||||
else
|
||||
conda create -n ${conda_env_name} python=3.12 -y
|
||||
fi
|
||||
source activate ${conda_env_name}
|
||||
|
||||
sed -i "s/localhost/$ip_address/g" playwright.config.ts
|
||||
|
||||
conda install -c conda-forge nodejs -y
|
||||
npm install && npm ci && npx playwright install --with-deps
|
||||
node -v && npm -v && pip list
|
||||
|
||||
exit_status=0
|
||||
npx playwright test || exit_status=$?
|
||||
|
||||
if [ $exit_status -ne 0 ]; then
|
||||
echo "[TEST INFO]: ---------frontend test failed---------"
|
||||
exit $exit_status
|
||||
else
|
||||
echo "[TEST INFO]: ---------frontend test passed---------"
|
||||
fi
|
||||
}
|
||||
|
||||
function stop_docker() {
|
||||
cd $WORKPATH/docker_compose/amd/gpu/rocm/
|
||||
docker compose stop && docker compose rm -f
|
||||
}
|
||||
|
||||
function main() {
|
||||
|
||||
stop_docker
|
||||
|
||||
if [[ "$IMAGE_REPO" == "opea" ]]; then build_docker_images; fi
|
||||
start_services
|
||||
|
||||
validate_microservices
|
||||
validate_megaservice
|
||||
#validate_frontend
|
||||
|
||||
stop_docker
|
||||
echo y | docker system prune
|
||||
|
||||
}
|
||||
|
||||
main
|
||||
Reference in New Issue
Block a user