Compare commits

..

2 Commits

Author SHA1 Message Date
pre-commit-ci[bot]
e372b2210b [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
2024-09-19 00:24:44 +00:00
root
79a2d55807 add gateway to GenAIExamples. 2024-09-19 00:23:09 +00:00
656 changed files with 15190 additions and 49680 deletions

12
.github/CODEOWNERS vendored Executable file → Normal file
View File

@@ -1,17 +1,13 @@
/AgentQnA/ kaokao.lv@intel.com
/AgentQnA/ xuhui.ren@intel.com
/AudioQnA/ sihan.chen@intel.com
/ChatQnA/ liang1.lv@intel.com
/CodeGen/ liang1.lv@intel.com
/CodeTrans/ sihan.chen@intel.com
/DocSum/ letong.han@intel.com
/DocIndexRetriever/ kaokao.lv@intel.com chendi.xue@intel.com
/InstructionTuning xinyu.ye@intel.com
/RerankFinetuning xinyu.ye@intel.com
/MultimodalQnA tiep.le@intel.com
/DocSum/ sihan.chen@intel.com
/DocIndexRetriever/ xuhui.ren@intel.com chendi.xue@intel.com
/FaqGen/ xinyao.wang@intel.com
/SearchQnA/ sihan.chen@intel.com
/SearchQnA/ letong.han@intel.com
/Translation/ liang1.lv@intel.com
/VisualQnA/ liang1.lv@intel.com
/ProductivitySuite/ hoong.tee.yeoh@intel.com
/VideoQnA huiling.bao@intel.com
/*/ liang1.lv@intel.com

View File

@@ -1,2 +0,0 @@
ModelIn
modelin

View File

@@ -12,10 +12,6 @@ on:
example:
required: true
type: string
services:
default: ""
required: false
type: string
tag:
default: "latest"
required: false
@@ -40,11 +36,6 @@ on:
default: "main"
required: false
type: string
inject_commit:
default: false
required: false
type: string
jobs:
####################################################################################################
# Image Build
@@ -55,34 +46,33 @@ jobs:
- name: Clean Up Working Directory
run: sudo rm -rf ${{github.workspace}}/*
- name: Get Checkout Ref
- name: Get checkout ref
run: |
if [ "${{ github.event_name }}" == "pull_request" ] || [ "${{ github.event_name }}" == "pull_request_target" ]; then
echo "CHECKOUT_REF=refs/pull/${{ github.event.number }}/merge" >> $GITHUB_ENV
else
echo "CHECKOUT_REF=${{ github.ref }}" >> $GITHUB_ENV
fi
echo "checkout ref ${{ env.CHECKOUT_REF }}"
- name: Checkout out GenAIExamples
- name: Checkout out Repo
uses: actions/checkout@v4
with:
ref: ${{ env.CHECKOUT_REF }}
fetch-depth: 0
- name: Clone Required Repo
- name: Clone required Repo
run: |
cd ${{ github.workspace }}/${{ inputs.example }}/docker_image_build
docker_compose_path=${{ github.workspace }}/${{ inputs.example }}/docker_image_build/build.yaml
if [[ $(grep -c "tei-gaudi:" ${docker_compose_path}) != 0 ]]; then
git clone https://github.com/huggingface/tei-gaudi.git
fi
if [[ $(grep -c "vllm:" ${docker_compose_path}) != 0 ]]; then
git clone https://github.com/vllm-project/vllm.git
cd vllm && git rev-parse HEAD && cd ../
fi
if [[ $(grep -c "vllm-hpu:" ${docker_compose_path}) != 0 ]]; then
git clone https://github.com/HabanaAI/vllm-fork.git
cd vllm-fork && git rev-parse HEAD && cd ../
fi
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps && git checkout ${{ inputs.opea_branch }} && git rev-parse HEAD && cd ../
cd GenAIComps && git checkout ${{ inputs.opea_branch }} && cd ../
- name: Build Image
if: ${{ fromJSON(inputs.build) }}
@@ -90,9 +80,7 @@ jobs:
with:
work_dir: ${{ github.workspace }}/${{ inputs.example }}/docker_image_build
docker_compose_path: ${{ github.workspace }}/${{ inputs.example }}/docker_image_build/build.yaml
service_list: ${{ inputs.services }}
registry: ${OPEA_IMAGE_REPO}opea
inject_commit: ${{ inputs.inject_commit }}
tag: ${{ inputs.tag }}
####################################################################################################
@@ -120,6 +108,7 @@ jobs:
example: ${{ inputs.example }}
hardware: ${{ inputs.node }}
tag: ${{ inputs.tag }}
context: "CD"
secrets: inherit
####################################################################################################

View File

@@ -20,6 +20,11 @@ on:
description: "Tag to apply to images, default is latest"
required: false
type: string
context:
default: "CI"
description: "CI or CD"
required: false
type: string
jobs:
manifest-test:
@@ -46,7 +51,7 @@ jobs:
- name: Set variables
run: |
echo "IMAGE_REPO=${OPEA_IMAGE_REPO}opea" >> $GITHUB_ENV
echo "IMAGE_REPO=$OPEA_IMAGE_REPO" >> $GITHUB_ENV
echo "IMAGE_TAG=${{ inputs.tag }}" >> $GITHUB_ENV
lower_example=$(echo "${{ inputs.example }}" | tr '[:upper:]' '[:lower:]')
echo "NAMESPACE=$lower_example-$(tr -dc a-z0-9 </dev/urandom | head -c 16)" >> $GITHUB_ENV
@@ -55,6 +60,7 @@ jobs:
echo "continue_test=true" >> $GITHUB_ENV
echo "should_cleanup=false" >> $GITHUB_ENV
echo "skip_validate=true" >> $GITHUB_ENV
echo "CONTEXT=${{ inputs.context }}" >> $GITHUB_ENV
echo "NAMESPACE=$NAMESPACE"
- name: Kubectl install
@@ -90,16 +96,10 @@ jobs:
echo "Validate ${{ inputs.example }} successful!"
else
echo "Validate ${{ inputs.example }} failure!!!"
echo "Check the logs in 'Dump logs when e2e test failed' step!!!"
exit 1
.github/workflows/scripts/k8s-utils.sh dump_all_pod_logs $NAMESPACE
fi
fi
- name: Dump logs when e2e test failed
if: failure()
run: |
.github/workflows/scripts/k8s-utils.sh dump_all_pod_logs $NAMESPACE
- name: Kubectl uninstall
if: always()
run: |

View File

@@ -118,9 +118,6 @@ jobs:
GOOGLE_CSE_ID: ${{ secrets.GOOGLE_CSE_ID }}
GOOGLE_API_KEY: ${{ secrets.GOOGLE_API_KEY }}
PINECONE_KEY: ${{ secrets.PINECONE_KEY }}
PINECONE_KEY_LANGCHAIN_TEST: ${{ secrets.PINECONE_KEY_LANGCHAIN_TEST }}
SDK_BASE_URL: ${{ secrets.SDK_BASE_URL }}
SERVING_TOKEN: ${{ secrets.SERVING_TOKEN }}
IMAGE_REPO: ${{ inputs.registry }}
IMAGE_TAG: ${{ inputs.tag }}
example: ${{ inputs.example }}
@@ -141,11 +138,7 @@ jobs:
flag=${flag#test_}
yaml_file=$(find . -type f -wholename "*${{ inputs.hardware }}/${flag}.yaml")
echo $yaml_file
container_list=$(cat $yaml_file | grep container_name | cut -d':' -f2)
for container_name in $container_list; do
cid=$(docker ps -aq --filter "name=$container_name")
if [[ ! -z "$cid" ]]; then docker stop $cid && docker rm $cid && sleep 1s; fi
done
docker compose -f $yaml_file stop && docker compose -f $yaml_file rm -f || true
docker system prune -f
docker rmi $(docker images --filter reference="*:5000/*/*" -q) || true

View File

@@ -1,35 +0,0 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
name: Check Online Document Building
permissions: {}
on:
pull_request:
branches: [main]
paths:
- "**.md"
- "**.rst"
jobs:
build:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v4
with:
path: GenAIExamples
- name: Checkout docs
uses: actions/checkout@v4
with:
repository: opea-project/docs
path: docs
- name: Build Online Document
shell: bash
run: |
echo "build online doc"
cd docs
bash scripts/build.sh

View File

@@ -11,23 +11,23 @@ on:
required: true
type: string
examples:
default: ""
description: 'List of examples to publish [AgentQnA,AudioQnA,ChatQnA,CodeGen,CodeTrans,DocIndexRetriever,DocSum,FaqGen,InstructionTuning,MultimodalQnA,ProductivitySuite,RerankFinetuning,SearchQnA,Translation,VideoQnA,VisualQnA]'
default: "Translation"
description: 'List of examples to publish [AudioQnA,ChatQnA,CodeGen,CodeTrans,DocSum,FaqGen,SearchQnA,Translation]'
required: false
type: string
images:
default: ""
description: 'List of images to publish [gmcmanager,gmcrouter]'
default: "gmcmanager,gmcrouter"
description: 'List of images to publish [gmcmanager,gmcrouter, ...]'
required: false
type: string
tag:
default: "rc"
description: "Tag to publish, like [1.0rc]"
default: "v0.9"
description: "Tag to publish"
required: true
type: string
publish_tags:
default: "latest,1.x"
description: "Tag list apply to publish images, like [latest,1.0]"
default: "latest,v0.9"
description: 'Tag list apply to publish images'
required: false
type: string

View File

@@ -11,13 +11,13 @@ on:
required: true
type: string
examples:
default: ""
description: 'List of examples to publish "AgentQnA,AudioQnA,ChatQnA,CodeGen,CodeTrans,DocIndexRetriever,DocSum,FaqGen,InstructionTuning,MultimodalQnA,ProductivitySuite,RerankFinetuning,SearchQnA,Translation,VideoQnA,VisualQnA"'
default: "ChatQnA"
description: 'List of examples to scan [AudioQnA,ChatQnA,CodeGen,CodeTrans,DocSum,FaqGen,SearchQnA,Translation]'
required: false
type: string
images:
default: ""
description: 'List of images to publish "gmcmanager,gmcrouter"'
default: "gmcmanager,gmcrouter"
description: 'List of images to scan [gmcmanager,gmcrouter, ...]'
required: false
type: string
tag:

View File

@@ -50,11 +50,6 @@ on:
description: 'OPEA branch for image build'
required: false
type: string
inject_commit:
default: true
description: "inject commit to docker images true or false"
required: false
type: string
permissions: read-all
jobs:
@@ -106,5 +101,4 @@ jobs:
test_k8s: ${{ fromJSON(inputs.test_k8s) }}
test_gmc: ${{ fromJSON(inputs.test_gmc) }}
opea_branch: ${{ inputs.opea_branch }}
inject_commit: ${{ inputs.inject_commit }}
secrets: inherit

View File

@@ -1,66 +0,0 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
name: Build specific images on manual event
on:
workflow_dispatch:
inputs:
nodes:
default: "gaudi,xeon"
description: "Hardware to run test"
required: true
type: string
example:
default: "ChatQnA"
description: 'Build images belong to which example?'
required: true
type: string
services:
default: "chatqna,chatqna-without-rerank"
description: 'Service list to build'
required: true
type: string
tag:
default: "latest"
description: "Tag to apply to images"
required: true
type: string
opea_branch:
default: "main"
description: 'OPEA branch for image build'
required: false
type: string
inject_commit:
default: true
description: "inject commit to docker images true or false"
required: false
type: string
jobs:
get-test-matrix:
runs-on: ubuntu-latest
outputs:
nodes: ${{ steps.get-matrix.outputs.nodes }}
steps:
- name: Create Matrix
id: get-matrix
run: |
nodes=($(echo ${{ inputs.nodes }} | tr ',' ' '))
nodes_json=$(printf '%s\n' "${nodes[@]}" | sort -u | jq -R '.' | jq -sc '.')
echo "nodes=$nodes_json" >> $GITHUB_OUTPUT
image-build:
needs: get-test-matrix
strategy:
matrix:
node: ${{ fromJson(needs.get-test-matrix.outputs.nodes) }}
fail-fast: false
uses: ./.github/workflows/_example-workflow.yml
with:
node: ${{ matrix.node }}
example: ${{ inputs.example }}
services: ${{ inputs.services }}
tag: ${{ inputs.tag }}
opea_branch: ${{ inputs.opea_branch }}
inject_commit: ${{ inputs.inject_commit }}
secrets: inherit

View File

@@ -1,70 +0,0 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
name: Nightly build/publish latest docker images
on:
schedule:
- cron: "30 13 * * *" # UTC time
workflow_dispatch:
env:
EXAMPLES: "AgentQnA,AudioQnA,ChatQnA,CodeGen,CodeTrans,DocIndexRetriever,DocSum,FaqGen,InstructionTuning,MultimodalQnA,ProductivitySuite,RerankFinetuning,SearchQnA,Translation,VideoQnA,VisualQnA"
TAG: "latest"
PUBLISH_TAGS: "latest"
jobs:
get-build-matrix:
runs-on: ubuntu-latest
outputs:
examples_json: ${{ steps.get-matrix.outputs.examples_json }}
EXAMPLES: ${{ steps.get-matrix.outputs.EXAMPLES }}
TAG: ${{ steps.get-matrix.outputs.TAG }}
PUBLISH_TAGS: ${{ steps.get-matrix.outputs.PUBLISH_TAGS }}
steps:
- name: Create Matrix
id: get-matrix
run: |
examples=($(echo ${EXAMPLES} | tr ',' ' '))
examples_json=$(printf '%s\n' "${examples[@]}" | sort -u | jq -R '.' | jq -sc '.')
echo "examples_json=$examples_json" >> $GITHUB_OUTPUT
echo "EXAMPLES=$EXAMPLES" >> $GITHUB_OUTPUT
echo "TAG=$TAG" >> $GITHUB_OUTPUT
echo "PUBLISH_TAGS=$PUBLISH_TAGS" >> $GITHUB_OUTPUT
build:
needs: get-build-matrix
strategy:
matrix:
example: ${{ fromJSON(needs.get-build-matrix.outputs.examples_json) }}
fail-fast: false
uses: ./.github/workflows/_example-workflow.yml
with:
node: gaudi
example: ${{ matrix.example }}
secrets: inherit
get-image-list:
needs: get-build-matrix
uses: ./.github/workflows/_get-image-list.yml
with:
examples: ${{ needs.get-build-matrix.outputs.EXAMPLES }}
publish:
needs: [get-build-matrix, get-image-list, build]
strategy:
matrix:
image: ${{ fromJSON(needs.get-image-list.outputs.matrix) }}
runs-on: "docker-build-gaudi"
steps:
- uses: docker/login-action@v3.2.0
with:
username: ${{ secrets.DOCKERHUB_USER }}
password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Image Publish
uses: opea-project/validation/actions/image-publish@main
with:
local_image_ref: ${OPEA_IMAGE_REPO}opea/${{ matrix.image }}:${{ needs.get-build-matrix.outputs.TAG }}
image_name: opea/${{ matrix.image }}
publish_tags: ${{ needs.get-build-matrix.outputs.PUBLISH_TAGS }}

50
.github/workflows/pr-bum_list_check.yml vendored Normal file
View File

@@ -0,0 +1,50 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
name: Check Requirements
on: [pull_request]
jobs:
check-requirements:
runs-on: ubuntu-latest
steps:
- name: Checkout PR branch
uses: actions/checkout@v4
- name: Save PR requirements
run: |
find . -name "requirements.txt" -exec cat {} \; | \
grep -v '^\s*#' | \
grep -v '^\s*$' | \
grep -v '^\s*-' | \
sed 's/^\s*//' | \
awk -F'[>=<]' '{print $1}' | \
sort -u > pr-requirements.txt
cat pr-requirements.txt
- name: Checkout main branch
uses: actions/checkout@v4
with:
ref: main
path: main-branch
- name: Save main branch requirements
run: |
find ./main-branch -name "requirements.txt" -exec cat {} \; | \
grep -v '^\s*#' | \
grep -v '^\s*$' | \
grep -v '^\s*-' | \
sed 's/^\s*//' | \
awk -F'[>=<]' '{print $1}' | \
sort -u > main-requirements.txt
cat main-requirements.txt
- name: Compare requirements
run: |
comm -23 pr-requirements.txt main-requirements.txt > added-packages.txt
if [ -s added-packages.txt ]; then
echo "New packages found in PR:" && cat added-packages.txt
else
echo "No new packages found😊."
fi

View File

@@ -12,7 +12,7 @@ on:
- "**/tests/test_gmc**"
- "!**.md"
- "!**.txt"
- "!**/kubernetes/**/manifest/**"
- "!**/kubernetes/**/manifests/**"
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}

View File

@@ -8,9 +8,7 @@ on:
branches: ["main", "*rc"]
types: [opened, reopened, ready_for_review, synchronize] # added `ready_for_review` since draft is skipped
paths:
- "**/Dockerfile**"
- "**.py"
- "**/kubernetes/**/manifest/**"
- "**/kubernetes/**/manifests/**"
- "**/tests/test_manifest**"
- "!**.md"
- "!**.txt"

View File

@@ -0,0 +1,54 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
name: Manifests Validate
on:
pull_request:
branches: [main]
types: [opened, reopened, ready_for_review, synchronize] # added `ready_for_review` since draft is skipped
paths:
- "**/kubernetes/manifests/**"
- .github/workflows/manifest-validate.yml
workflow_dispatch:
# If there is a new commit, the previous jobs will be canceled
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
env:
MANIFEST_DIR: "manifests"
jobs:
manifests-validate:
runs-on: ubuntu-latest
steps:
- name: Checkout out Repo
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: changed files
id: changed_files
run: |
set -xe
changed_folder=$(git diff --name-only ${{ github.event.pull_request.base.sha }} ${{ github.event.pull_request.head.sha }} | \
grep "kubernetes/manifests" | grep -vE '.github|README.md|*.txt|*.sh' | cut -d'/' -f1 | sort -u )
echo "changed_folder: $changed_folder"
if [ -z "$changed_folder" ]; then
echo "No changes in manifests folder"
echo "SKIP=true" >> $GITHUB_OUTPUT
exit 0
fi
echo "SKIP=false" >> $GITHUB_OUTPUT
for folder in $changed_folder; do
folder_str="$folder_str $folder/kubernetes/manifests/"
done
echo "folder_str=$folder_str"
echo "folder_str=$folder_str" >> $GITHUB_ENV
- uses: docker://ghcr.io/yannh/kubeconform:latest
if: steps.changed_files.outputs.SKIP == 'false'
with:
args: "-summary -output json ${{env.folder_str}}"

View File

@@ -50,40 +50,28 @@ jobs:
- name: Checkout Repo GenAIExamples
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Check the Validity of Hyperlinks
run: |
cd ${{github.workspace}}
fail="FALSE"
merged_commit=$(git log -1 --format='%H')
changed_files="$(git diff --name-status --diff-filter=ARM ${{ github.event.pull_request.base.sha }} ${merged_commit} | awk '/\.md$/ {print $NF}')"
if [ -n "$changed_files" ]; then
for changed_file in $changed_files; do
# echo $changed_file
url_lines=$(grep -H -Eo '\]\(http[s]?://[^)]+\)' "$changed_file" | grep -Ev 'GenAIExamples/blob/main') || true
if [ -n "$url_lines" ]; then
for url_line in $url_lines; do
# echo $url_line
url=$(echo "$url_line"|cut -d '(' -f2 | cut -d ')' -f1|sed 's/\.git$//')
path=$(echo "$url_line"|cut -d':' -f1 | cut -d'/' -f2-)
response=$(curl -L -s -o /dev/null -w "%{http_code}" "$url")|| true
if [ "$response" -ne 200 ]; then
echo "**********Validation failed, try again**********"
response_retry=$(curl -s -o /dev/null -w "%{http_code}" "$url")
if [ "$response_retry" -eq 200 ]; then
echo "*****Retry successfully*****"
else
echo "Invalid link from ${{github.workspace}}/$path: $url"
fail="TRUE"
fi
fi
done
url_lines=$(grep -Eo '\]\(http[s]?://[^)]+\)' --include='*.md' -r .)
if [ -n "$url_lines" ]; then
for url_line in $url_lines; do
url=$(echo "$url_line"|cut -d '(' -f2 | cut -d ')' -f1|sed 's/\.git$//')
path=$(echo "$url_line"|cut -d':' -f1 | cut -d'/' -f2-)
response=$(curl -L -s -o /dev/null -w "%{http_code}" "$url")
if [ "$response" -ne 200 ]; then
echo "**********Validation failed, try again**********"
response_retry=$(curl -s -o /dev/null -w "%{http_code}" "$url")
if [ "$response_retry" -eq 200 ]; then
echo "*****Retry successfully*****"
else
echo "Invalid link from ${{github.workspace}}/$path: $url"
fail="TRUE"
fi
fi
done
else
echo "No changed .md file."
fi
if [[ "$fail" == "TRUE" ]]; then
@@ -101,8 +89,6 @@ jobs:
- name: Checkout Repo GenAIExamples
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Checking Relative Path Validity
run: |
@@ -116,34 +102,33 @@ jobs:
branch="https://github.com/opea-project/GenAIExamples/blob/${{ github.event.pull_request.head.ref }}"
fi
link_head="https://github.com/opea-project/GenAIExamples/blob/main"
merged_commit=$(git log -1 --format='%H')
changed_files="$(git diff --name-status --diff-filter=ARM ${{ github.event.pull_request.base.sha }} ${merged_commit} | awk '/\.md$/ {print $NF}')"
png_lines=$(grep -Eo '\]\([^)]+\)' --include='*.md' -r .|grep -Ev 'http')
if [ -n "$png_lines" ]; then
for png_line in $png_lines; do
refer_path=$(echo "$png_line"|cut -d':' -f1 | cut -d'/' -f2-)
png_path=$(echo "$png_line"|cut -d '(' -f2 | cut -d ')' -f1)
if [[ "${png_path:0:1}" == "/" ]]; then
check_path=$png_path
elif [[ "$png_path" == *#* ]]; then
relative_path=$(echo "$png_path" | cut -d '#' -f1)
if [ -n "$relative_path" ]; then
check_path=$(dirname "$refer_path")/$relative_path
png_path=$(echo "$png_path" | awk -F'#' '{print "#" $2}')
else
check_path=$refer_path
fi
check_path=${{github.workspace}}$png_path
elif [[ "${png_path:0:1}" == "#" ]]; then
check_path=${{github.workspace}}/$refer_path$png_path
else
check_path=$(dirname "$refer_path")/$png_path
check_path=${{github.workspace}}/$(dirname "$refer_path")/$png_path
fi
if [ -e "$check_path" ]; then
real_path=$(realpath $check_path)
if [[ "$png_line" == *#* ]]; then
if [ -n "changed_files" ] && echo "$changed_files" | grep -q "^${refer_path}$"; then
url_dev=$branch$(echo "$real_path" | sed 's|.*/GenAIExamples||')$png_path
real_path=$(realpath $check_path)
if [ $? -ne 0 ]; then
echo "Path $png_path in file ${{github.workspace}}/$refer_path does not exist"
fail="TRUE"
else
url=$link_head$(echo "$real_path" | sed 's|.*/GenAIExamples||')
response=$(curl -I -L -s -o /dev/null -w "%{http_code}" "$url")
if [ "$response" -ne 200 ]; then
echo "**********Validation failed, try again**********"
response_retry=$(curl -s -o /dev/null -w "%{http_code}" "$url")
if [ "$response_retry" -eq 200 ]; then
echo "*****Retry successfully*****"
else
echo "Retry failed. Check branch ${{ github.event.pull_request.head.ref }}"
url_dev=$branch$(echo "$real_path" | sed 's|.*/GenAIExamples||')
response=$(curl -I -L -s -o /dev/null -w "%{http_code}" "$url_dev")
if [ "$response" -ne 200 ]; then
echo "**********Validation failed, try again**********"
@@ -151,17 +136,14 @@ jobs:
if [ "$response_retry" -eq 200 ]; then
echo "*****Retry successfully*****"
else
echo "Invalid path from ${{github.workspace}}/$refer_path: $png_path"
echo "Invalid link from $real_path: $url_dev"
fail="TRUE"
fi
else
echo "Validation succeed $png_line"
echo "Check branch ${{ github.event.pull_request.head.ref }} successfully."
fi
fi
fi
else
echo "${{github.workspace}}/$refer_path:$png_path does not exist"
fail="TRUE"
fi
done
fi

View File

@@ -9,6 +9,7 @@ on:
paths:
- "**.py"
- "**Dockerfile"
workflow_dispatch:
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}-on-push
@@ -23,10 +24,12 @@ jobs:
image-build:
needs: job1
strategy:
matrix: ${{ fromJSON(needs.job1.outputs.run_matrix) }}
matrix:
example: ${{ fromJSON(needs.job1.outputs.run_matrix).include.*.example }}
node: ["gaudi","xeon"]
fail-fast: false
uses: ./.github/workflows/_example-workflow.yml
with:
node: ${{ matrix.hardware }}
node: ${{ matrix.node }}
example: ${{ matrix.example }}
secrets: inherit

View File

@@ -9,15 +9,12 @@ set -e
changed_files=$changed_files
test_mode=$test_mode
run_matrix="{\"include\":["
hardware_list="xeon gaudi" # current support hardware list
examples=$(printf '%s\n' "${changed_files[@]}" | grep '/' | cut -d'/' -f1 | sort -u)
for example in ${examples}; do
cd $WORKSPACE/$example
if [[ ! $(find . -type f | grep ${test_mode}) ]]; then continue; fi
cd tests
ls -l
hardware_list=$(find . -type f -name "test_compose*_on_*.sh" | cut -d/ -f2 | cut -d. -f1 | awk -F'_on_' '{print $2}'| sort -u)
echo "Test supported hardware list = ${hardware_list}"
run_hardware=""
if [[ $(printf '%s\n' "${changed_files[@]}" | grep ${example} | cut -d'/' -f2 | grep -E '*.py|Dockerfile*|ui|docker_image_build' ) ]]; then

View File

@@ -18,6 +18,8 @@ repos:
SearchQnA/ui/svelte/tsconfig.json|
DocSum/ui/svelte/tsconfig.json
)$
- id: check-yaml
args: [--allow-multiple-documents]
- id: debug-statements
- id: requirements-txt-fixer
- id: trailing-whitespace
@@ -79,7 +81,7 @@ repos:
- id: isort
- repo: https://github.com/PyCQA/docformatter
rev: 06907d0
rev: v1.7.5
hooks:
- id: docformatter
args: [

View File

@@ -5,73 +5,6 @@
This example showcases a hierarchical multi-agent system for question-answering applications. The architecture diagram is shown below. The supervisor agent interfaces with the user and dispatch tasks to the worker agent and other tools to gather information and come up with answers. The worker agent uses the retrieval tool to generate answers to the queries posted by the supervisor agent. Other tools used by the supervisor agent may include APIs to interface knowledge graphs, SQL databases, external knowledge bases, etc.
![Architecture Overview](assets/agent_qna_arch.png)
The AgentQnA example is implemented using the component-level microservices defined in [GenAIComps](https://github.com/opea-project/GenAIComps). The flow chart below shows the information flow between different microservices for this example.
```mermaid
---
config:
flowchart:
nodeSpacing: 400
rankSpacing: 100
curve: linear
themeVariables:
fontSize: 50px
---
flowchart LR
%% Colors %%
classDef blue fill:#ADD8E6,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
classDef orange fill:#FBAA60,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
classDef orchid fill:#C26DBC,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
classDef invisible fill:transparent,stroke:transparent;
%% Subgraphs %%
subgraph DocIndexRetriever-MegaService["DocIndexRetriever MegaService "]
direction LR
EM([Embedding MicroService]):::blue
RET([Retrieval MicroService]):::blue
RER([Rerank MicroService]):::blue
end
subgraph UserInput[" User Input "]
direction LR
a([User Input Query]):::orchid
Ingest([Ingest data]):::orchid
end
AG_REACT([Agent MicroService - react]):::blue
AG_RAG([Agent MicroService - rag]):::blue
LLM_gen{{LLM Service <br>}}
DP([Data Preparation MicroService]):::blue
TEI_RER{{Reranking service<br>}}
TEI_EM{{Embedding service <br>}}
VDB{{Vector DB<br><br>}}
R_RET{{Retriever service <br>}}
%% Questions interaction
direction LR
a[User Input Query] --> AG_REACT
AG_REACT --> AG_RAG
AG_RAG --> DocIndexRetriever-MegaService
EM ==> RET
RET ==> RER
Ingest[Ingest data] --> DP
%% Embedding service flow
direction LR
AG_RAG <-.-> LLM_gen
AG_REACT <-.-> LLM_gen
EM <-.-> TEI_EM
RET <-.-> R_RET
RER <-.-> TEI_RER
direction TB
%% Vector DB interaction
R_RET <-.-> VDB
DP <-.-> VDB
```
### Why Agent for question answering?
1. Improve relevancy of retrieved context.
@@ -81,13 +14,17 @@ flowchart LR
3. Hierarchical agent can further improve performance.
Expert worker agents, such as retrieval agent, knowledge graph agent, SQL agent, etc., can provide high-quality output for different aspects of a complex query, and the supervisor agent can aggregate the information together to provide a comprehensive answer.
## Deployment with docker
### Roadmap
1. Build agent docker image
- v0.9: Worker agent uses open-source websearch tool (duckduckgo), agents use OpenAI GPT-4o-mini as llm backend.
- v1.0: Worker agent uses OPEA retrieval megaservice as tool.
- v1.0 or later: agents use open-source llm backend.
- v1.1 or later: add safeguards
Note: this is optional. The docker images will be automatically pulled when running the docker compose commands. This step is only needed if pulling images failed.
## Getting started
First, clone the opea GenAIComps repo.
1. Build agent docker image </br>
First, clone the opea GenAIComps repo
```
export WORKDIR=<your-work-directory>
@@ -102,63 +39,35 @@ flowchart LR
docker build -t opea/agent-langchain:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/agent/langchain/Dockerfile .
```
2. Set up environment for this example </br>
First, clone this repo.
```
cd $WORKDIR
git clone https://github.com/opea-project/GenAIExamples.git
```
Second, set up env vars.
```
export TOOLSET_PATH=$WORKDIR/GenAIExamples/AgentQnA/tools/
# for using open-source llms
export HUGGINGFACEHUB_API_TOKEN=<your-HF-token>
export HF_CACHE_DIR=<directory-where-llms-are-downloaded> #so that no need to redownload every time
# optional: OPANAI_API_KEY if you want to use OpenAI models
export OPENAI_API_KEY=<your-openai-key>
```
3. Deploy the retrieval tool (i.e., DocIndexRetriever mega-service)
First, launch the mega-service.
```
cd $WORKDIR/GenAIExamples/AgentQnA/retrieval_tool
bash launch_retrieval_tool.sh
```
Then, ingest data into the vector database. Here we provide an example. You can ingest your own data.
```
bash run_ingest_data.sh
```
4. Launch other tools. </br>
2. Launch tool services </br>
In this example, we will use some of the mock APIs provided in the Meta CRAG KDD Challenge to demonstrate the benefits of gaining additional context from mock knowledge graphs.
```
docker run -d -p=8080:8000 docker.io/aicrowd/kdd-cup-24-crag-mock-api:v0
```
5. Launch agent services</br>
We provide two options for `llm_engine` of the agents: 1. open-source LLMs, 2. OpenAI models via API calls.
To use open-source LLMs on Gaudi2, run commands below.
3. Set up environment for this example </br>
First, clone this repo
```
cd $WORKDIR/GenAIExamples/AgentQnA/docker_compose/intel/hpu/gaudi
bash launch_tgi_gaudi.sh
bash launch_agent_service_tgi_gaudi.sh
cd $WORKDIR
git clone https://github.com/opea-project/GenAIExamples.git
```
To use OpenAI models, run commands below.
Second, set up env vars
```
cd $WORKDIR/GenAIExamples/AgentQnA/docker_compose/intel/cpu/xeon
export TOOLSET_PATH=$WORKDIR/GenAIExamples/AgentQnA/tools/
# optional: OPANAI_API_KEY
export OPENAI_API_KEY=<your-openai-key>
```
4. Launch agent services</br>
The configurations of the supervisor agent and the worker agent are defined in the docker-compose yaml file. We currently use openAI GPT-4o-mini as LLM, and we plan to add support for llama3.1-70B-instruct (served by TGI-Gaudi) in a subsequent release.
To use openai llm, run command below.
```
cd docker_compose/intel/cpu/xeon
bash launch_agent_service_openai.sh
```
@@ -167,12 +76,10 @@ flowchart LR
First look at logs of the agent docker containers:
```
# worker agent
docker logs rag-agent-endpoint
docker logs docgrader-agent-endpoint
```
```
# supervisor agent
docker logs react-agent-endpoint
```
@@ -196,4 +103,4 @@ curl http://${ip_address}:9090/v1/chat/completions -X POST -H "Content-Type: app
## How to register your own tools with agent
You can take a look at the tools yaml and python files in this example. For more details, please refer to the "Provide your own tools" section in the instructions [here](https://github.com/opea-project/GenAIComps/tree/main/comps/agent/langchain/README.md).
You can take a look at the tools yaml and python files in this example. For more details, please refer to the "Provide your own tools" section in the instructions [here](https://github.com/opea-project/GenAIComps/tree/main/comps/agent/langchain#5-customize-agent-strategy).

View File

@@ -1,3 +0,0 @@
# Deployment on Xeon
We deploy the retrieval tool on Xeon. For LLMs, we support OpenAI models via API calls. For instructions on using open-source LLMs, please refer to the deployment guide [here](../../../../README.md).

View File

@@ -2,10 +2,11 @@
# SPDX-License-Identifier: Apache-2.0
services:
worker-rag-agent:
worker-docgrader-agent:
image: opea/agent-langchain:latest
container_name: rag-agent-endpoint
container_name: docgrader-agent-endpoint
volumes:
- ${WORKDIR}/GenAIComps/comps/agent/langchain/:/home/user/comps/agent/langchain/
- ${TOOLSET_PATH}:/home/user/tools/
ports:
- "9095:9095"
@@ -35,9 +36,8 @@ services:
supervisor-react-agent:
image: opea/agent-langchain:latest
container_name: react-agent-endpoint
depends_on:
- worker-rag-agent
volumes:
- ${WORKDIR}/GenAIComps/comps/agent/langchain/:/home/user/comps/agent/langchain/
- ${TOOLSET_PATH}:/home/user/tools/
ports:
- "9090:9090"

View File

@@ -7,7 +7,7 @@ export recursion_limit_worker=12
export recursion_limit_supervisor=10
export model="gpt-4o-mini-2024-07-18"
export temperature=0
export max_new_tokens=4096
export max_new_tokens=512
export OPENAI_API_KEY=${OPENAI_API_KEY}
export WORKER_AGENT_URL="http://${ip_address}:9095/v1/chat/completions"
export RETRIEVAL_TOOL_URL="http://${ip_address}:8889/v1/retrievaltool"

View File

@@ -2,9 +2,33 @@
# SPDX-License-Identifier: Apache-2.0
services:
worker-rag-agent:
tgi-server:
image: ghcr.io/huggingface/tgi-gaudi:2.0.4
container_name: tgi-server
ports:
- "8085:80"
volumes:
- ${HF_CACHE_DIR}:/data
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HF_HUB_DISABLE_PROGRESS_BARS: 1
HF_HUB_ENABLE_HF_TRANSFER: 0
HABANA_VISIBLE_DEVICES: all
OMPI_MCA_btl_vader_single_copy_mechanism: none
PT_HPU_ENABLE_LAZY_COLLECTIVES: true
runtime: habana
cap_add:
- SYS_NICE
ipc: host
command: --model-id ${LLM_MODEL_ID} --max-input-length 4096 --max-total-tokens 8192 --sharded true --num-shard ${NUM_SHARDS}
worker-docgrader-agent:
image: opea/agent-langchain:latest
container_name: rag-agent-endpoint
container_name: docgrader-agent-endpoint
depends_on:
- tgi-server
volumes:
# - ${WORKDIR}/GenAIExamples/AgentQnA/docker_image_build/GenAIComps/comps/agent/langchain/:/home/user/comps/agent/langchain/
- ${TOOLSET_PATH}:/home/user/tools/
@@ -13,7 +37,7 @@ services:
ipc: host
environment:
ip_address: ${ip_address}
strategy: rag_agent_llama
strategy: rag_agent
recursion_limit: ${recursion_limit_worker}
llm_engine: tgi
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
@@ -38,7 +62,8 @@ services:
image: opea/agent-langchain:latest
container_name: react-agent-endpoint
depends_on:
- worker-rag-agent
- tgi-server
- worker-docgrader-agent
volumes:
# - ${WORKDIR}/GenAIExamples/AgentQnA/docker_image_build/GenAIComps/comps/agent/langchain/:/home/user/comps/agent/langchain/
- ${TOOLSET_PATH}:/home/user/tools/
@@ -47,7 +72,7 @@ services:
ipc: host
environment:
ip_address: ${ip_address}
strategy: react_llama
strategy: react_langgraph
recursion_limit: ${recursion_limit_supervisor}
llm_engine: tgi
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}

View File

@@ -15,7 +15,7 @@ export LLM_MODEL_ID="meta-llama/Meta-Llama-3.1-70B-Instruct"
export NUM_SHARDS=4
export LLM_ENDPOINT_URL="http://${ip_address}:8085"
export temperature=0.01
export max_new_tokens=4096
export max_new_tokens=512
# agent related environment variables
export TOOLSET_PATH=$WORKDIR/GenAIExamples/AgentQnA/tools/
@@ -27,3 +27,17 @@ export RETRIEVAL_TOOL_URL="http://${ip_address}:8889/v1/retrievaltool"
export CRAG_SERVER=http://${ip_address}:8080
docker compose -f compose.yaml up -d
sleep 5s
echo "Waiting tgi gaudi ready"
n=0
until [[ "$n" -ge 100 ]] || [[ $ready == true ]]; do
docker logs tgi-server &> tgi-gaudi-service.log
n=$((n+1))
if grep -q Connected tgi-gaudi-service.log; then
break
fi
sleep 5s
done
sleep 5s
echo "Service started successfully"

View File

@@ -1,25 +0,0 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
# LLM related environment variables
export HF_CACHE_DIR=${HF_CACHE_DIR}
ls $HF_CACHE_DIR
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export LLM_MODEL_ID="meta-llama/Meta-Llama-3.1-70B-Instruct"
export NUM_SHARDS=4
docker compose -f tgi_gaudi.yaml up -d
sleep 5s
echo "Waiting tgi gaudi ready"
n=0
until [[ "$n" -ge 100 ]] || [[ $ready == true ]]; do
docker logs tgi-server &> tgi-gaudi-service.log
n=$((n+1))
if grep -q Connected tgi-gaudi-service.log; then
break
fi
sleep 5s
done
sleep 5s
echo "Service started successfully"

View File

@@ -1,30 +0,0 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
services:
tgi-server:
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
container_name: tgi-server
ports:
- "8085:80"
volumes:
- ${HF_CACHE_DIR}:/data
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HUGGING_FACE_HUB_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HF_HUB_DISABLE_PROGRESS_BARS: 1
HF_HUB_ENABLE_HF_TRANSFER: 0
HABANA_VISIBLE_DEVICES: all
OMPI_MCA_btl_vader_single_copy_mechanism: none
PT_HPU_ENABLE_LAZY_COLLECTIVES: true
ENABLE_HPU_GRAPH: true
LIMIT_HPU_GRAPH: true
USE_FLASH_ATTENTION: true
FLASH_ATTENTION_RECOMPUTE: true
runtime: habana
cap_add:
- SYS_NICE
ipc: host
command: --model-id ${LLM_MODEL_ID} --max-input-length 4096 --max-total-tokens 8192 --sharded true --num-shard ${NUM_SHARDS}

View File

@@ -17,12 +17,6 @@ if [ ! -d "$HF_CACHE_DIR" ]; then
fi
ls $HF_CACHE_DIR
function start_tgi(){
echo "Starting tgi-gaudi server"
cd $WORKDIR/GenAIExamples/AgentQnA/docker_compose/intel/hpu/gaudi
bash launch_tgi_gaudi.sh
}
function start_agent_and_api_server() {
echo "Starting CRAG server"
@@ -31,7 +25,6 @@ function start_agent_and_api_server() {
echo "Starting Agent services"
cd $WORKDIR/GenAIExamples/AgentQnA/docker_compose/intel/hpu/gaudi
bash launch_agent_service_tgi_gaudi.sh
sleep 10
}
function validate() {
@@ -50,22 +43,18 @@ function validate() {
function validate_agent_service() {
echo "----------------Test agent ----------------"
# local CONTENT=$(http_proxy="" curl http://${ip_address}:9095/v1/chat/completions -X POST -H "Content-Type: application/json" -d '{
# "query": "Tell me about Michael Jackson song thriller"
# }')
export agent_port="9095"
local CONTENT=$(python3 $WORKDIR/GenAIExamples/AgentQnA/tests/test.py)
local EXIT_CODE=$(validate "$CONTENT" "Thriller" "rag-agent-endpoint")
docker logs rag-agent-endpoint
local CONTENT=$(http_proxy="" curl http://${ip_address}:9095/v1/chat/completions -X POST -H "Content-Type: application/json" -d '{
"query": "Tell me about Michael Jackson song thriller"
}')
local EXIT_CODE=$(validate "$CONTENT" "Thriller" "react-agent-endpoint")
docker logs docgrader-agent-endpoint
if [ "$EXIT_CODE" == "1" ]; then
exit 1
fi
# local CONTENT=$(http_proxy="" curl http://${ip_address}:9090/v1/chat/completions -X POST -H "Content-Type: application/json" -d '{
# "query": "Tell me about Michael Jackson song thriller"
# }')
export agent_port="9090"
local CONTENT=$(python3 $WORKDIR/GenAIExamples/AgentQnA/tests/test.py)
local CONTENT=$(http_proxy="" curl http://${ip_address}:9090/v1/chat/completions -X POST -H "Content-Type: application/json" -d '{
"query": "Tell me about Michael Jackson song thriller"
}')
local EXIT_CODE=$(validate "$CONTENT" "Thriller" "react-agent-endpoint")
docker logs react-agent-endpoint
if [ "$EXIT_CODE" == "1" ]; then
@@ -75,10 +64,6 @@ function validate_agent_service() {
}
function main() {
echo "==================== Start TGI ===================="
start_tgi
echo "==================== TGI started ===================="
echo "==================== Start agent ===================="
start_agent_and_api_server
echo "==================== Agent started ===================="

View File

@@ -1,25 +0,0 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import os
import requests
def generate_answer_agent_api(url, prompt):
proxies = {"http": ""}
payload = {
"query": prompt,
}
response = requests.post(url, json=payload, proxies=proxies)
answer = response.json()["text"]
return answer
if __name__ == "__main__":
ip_address = os.getenv("ip_address", "localhost")
agent_port = os.getenv("agent_port", "9095")
url = f"http://{ip_address}:{agent_port}/v1/chat/completions"
prompt = "Tell me about Michael Jackson song thriller"
answer = generate_answer_agent_api(url, prompt)
print(answer)

View File

@@ -19,6 +19,7 @@ function stop_crag() {
function stop_agent_docker() {
cd $WORKPATH/docker_compose/intel/hpu/gaudi/
# docker compose -f compose.yaml down
container_list=$(cat compose.yaml | grep container_name | cut -d':' -f2)
for container_name in $container_list; do
cid=$(docker ps -aq --filter "name=$container_name")
@@ -27,21 +28,11 @@ function stop_agent_docker() {
done
}
function stop_tgi(){
cd $WORKPATH/docker_compose/intel/hpu/gaudi/
container_list=$(cat tgi_gaudi.yaml | grep container_name | cut -d':' -f2)
for container_name in $container_list; do
cid=$(docker ps -aq --filter "name=$container_name")
echo "Stopping container $container_name"
if [[ ! -z "$cid" ]]; then docker rm $cid -f && sleep 1s; fi
done
}
function stop_retrieval_tool() {
echo "Stopping Retrieval tool"
local RETRIEVAL_TOOL_PATH=$WORKPATH/../DocIndexRetriever
cd $RETRIEVAL_TOOL_PATH/docker_compose/intel/cpu/xeon/
# docker compose -f compose.yaml down
container_list=$(cat compose.yaml | grep container_name | cut -d':' -f2)
for container_name in $container_list; do
cid=$(docker ps -aq --filter "name=$container_name")
@@ -52,26 +43,25 @@ function stop_retrieval_tool() {
echo "workpath: $WORKPATH"
echo "=================== Stop containers ===================="
stop_crag
stop_tgi
stop_agent_docker
stop_retrieval_tool
cd $WORKPATH/tests
echo "=================== #1 Building docker images===================="
bash step1_build_images.sh
bash 1_build_images.sh
echo "=================== #1 Building docker images completed===================="
echo "=================== #2 Start retrieval tool===================="
bash step2_start_retrieval_tool.sh
bash 2_start_retrieval_tool.sh
echo "=================== #2 Retrieval tool started===================="
echo "=================== #3 Ingest data and validate retrieval===================="
bash step3_ingest_data_and_validate_retrieval.sh
bash 3_ingest_data_and_validate_retrieval.sh
echo "=================== #3 Data ingestion and validation completed===================="
echo "=================== #4 Start agent and API server===================="
bash step4_launch_and_validate_agent_tgi.sh
bash 4_launch_and_validate_agent_tgi.sh
echo "=================== #4 Agent test passed ===================="
echo "=================== #5 Stop agent and API server===================="
@@ -80,6 +70,4 @@ stop_agent_docker
stop_retrieval_tool
echo "=================== #5 Agent and API server stopped===================="
echo y | docker system prune
echo "ALL DONE!"

View File

@@ -25,7 +25,7 @@ get_billboard_rank_date:
args_schema:
rank:
type: int
description: the rank of interest, for example 1 for top 1
description: song name
date:
type: str
description: date

View File

@@ -12,31 +12,16 @@ def search_knowledge_base(query: str) -> str:
print(url)
proxies = {"http": ""}
payload = {
"messages": query,
"text": query,
}
response = requests.post(url, json=payload, proxies=proxies)
print(response)
if "documents" in response.json():
docs = response.json()["documents"]
context = ""
for i, doc in enumerate(docs):
if i == 0:
context = doc
else:
context += "\n" + doc
# print(context)
return context
elif "text" in response.json():
return response.json()["text"]
elif "reranked_docs" in response.json():
docs = response.json()["reranked_docs"]
context = ""
for i, doc in enumerate(docs):
if i == 0:
context = doc["text"]
else:
context += "\n" + doc["text"]
# print(context)
return context
else:
return "Error parsing response from the knowledge base."
docs = response.json()["documents"]
context = ""
for i, doc in enumerate(docs):
if i == 0:
context = doc
else:
context += "\n" + doc
print(context)
return context

View File

@@ -1,32 +0,0 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
FROM python:3.11-slim
RUN apt-get update -y && apt-get install -y --no-install-recommends --fix-missing \
libgl1-mesa-glx \
libjemalloc-dev \
git
RUN useradd -m -s /bin/bash user && \
mkdir -p /home/user && \
chown -R user /home/user/
WORKDIR /home/user/
RUN git clone https://github.com/opea-project/GenAIComps.git
WORKDIR /home/user/GenAIComps
RUN pip install --no-cache-dir --upgrade pip && \
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt
COPY ./audioqna_multilang.py /home/user/audioqna_multilang.py
ENV PYTHONPATH=$PYTHONPATH:/home/user/GenAIComps
USER user
WORKDIR /home/user
ENTRYPOINT ["python", "audioqna_multilang.py"]

View File

@@ -2,63 +2,6 @@
AudioQnA is an example that demonstrates the integration of Generative AI (GenAI) models for performing question-answering (QnA) on audio files, with the added functionality of Text-to-Speech (TTS) for generating spoken responses. The example showcases how to convert audio input to text using Automatic Speech Recognition (ASR), generate answers to user queries using a language model, and then convert those answers back to speech using Text-to-Speech (TTS).
The AudioQnA example is implemented using the component-level microservices defined in [GenAIComps](https://github.com/opea-project/GenAIComps). The flow chart below shows the information flow between different microservices for this example.
```mermaid
---
config:
flowchart:
nodeSpacing: 400
rankSpacing: 100
curve: linear
themeVariables:
fontSize: 50px
---
flowchart LR
%% Colors %%
classDef blue fill:#ADD8E6,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
classDef orange fill:#FBAA60,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
classDef orchid fill:#C26DBC,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
classDef invisible fill:transparent,stroke:transparent;
style AudioQnA-MegaService stroke:#000000
%% Subgraphs %%
subgraph AudioQnA-MegaService["AudioQnA MegaService "]
direction LR
ASR([ASR MicroService]):::blue
LLM([LLM MicroService]):::blue
TTS([TTS MicroService]):::blue
end
subgraph UserInterface[" User Interface "]
direction LR
a([User Input Query]):::orchid
UI([UI server<br>]):::orchid
end
WSP_SRV{{whisper service<br>}}
SPC_SRV{{speecht5 service <br>}}
LLM_gen{{LLM Service <br>}}
GW([AudioQnA GateWay<br>]):::orange
%% Questions interaction
direction LR
a[User Audio Query] --> UI
UI --> GW
GW <==> AudioQnA-MegaService
ASR ==> LLM
LLM ==> TTS
%% Embedding service flow
direction LR
ASR <-.-> WSP_SRV
LLM <-.-> LLM_gen
TTS <-.-> SPC_SRV
```
## Deploy AudioQnA Service
The AudioQnA service can be deployed on either Intel Gaudi2 or Intel Xeon Scalable Processor.

View File

@@ -1,98 +0,0 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import asyncio
import base64
import os
from comps import AudioQnAGateway, MicroService, ServiceOrchestrator, ServiceType
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
WHISPER_SERVER_HOST_IP = os.getenv("WHISPER_SERVER_HOST_IP", "0.0.0.0")
WHISPER_SERVER_PORT = int(os.getenv("WHISPER_SERVER_PORT", 7066))
GPT_SOVITS_SERVER_HOST_IP = os.getenv("GPT_SOVITS_SERVER_HOST_IP", "0.0.0.0")
GPT_SOVITS_SERVER_PORT = int(os.getenv("GPT_SOVITS_SERVER_PORT", 9088))
LLM_SERVER_HOST_IP = os.getenv("LLM_SERVER_HOST_IP", "0.0.0.0")
LLM_SERVER_PORT = int(os.getenv("LLM_SERVER_PORT", 8888))
def align_inputs(self, inputs, cur_node, runtime_graph, llm_parameters_dict, **kwargs):
print(inputs)
if self.services[cur_node].service_type == ServiceType.ASR:
# {'byte_str': 'UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA'}
inputs["audio"] = inputs["byte_str"]
del inputs["byte_str"]
elif self.services[cur_node].service_type == ServiceType.LLM:
# convert TGI/vLLM to unified OpenAI /v1/chat/completions format
next_inputs = {}
next_inputs["model"] = "tgi" # specifically clarify the fake model to make the format unified
next_inputs["messages"] = [{"role": "user", "content": inputs["asr_result"]}]
next_inputs["max_tokens"] = llm_parameters_dict["max_tokens"]
next_inputs["top_p"] = llm_parameters_dict["top_p"]
next_inputs["stream"] = inputs["streaming"] # False as default
next_inputs["frequency_penalty"] = inputs["frequency_penalty"]
# next_inputs["presence_penalty"] = inputs["presence_penalty"]
# next_inputs["repetition_penalty"] = inputs["repetition_penalty"]
next_inputs["temperature"] = inputs["temperature"]
inputs = next_inputs
elif self.services[cur_node].service_type == ServiceType.TTS:
next_inputs = {}
next_inputs["text"] = inputs["choices"][0]["message"]["content"]
next_inputs["text_language"] = kwargs["tts_text_language"] if "tts_text_language" in kwargs else "zh"
inputs = next_inputs
return inputs
def align_outputs(self, data, cur_node, inputs, runtime_graph, llm_parameters_dict, **kwargs):
if self.services[cur_node].service_type == ServiceType.TTS:
audio_base64 = base64.b64encode(data).decode("utf-8")
return {"byte_str": audio_base64}
return data
class AudioQnAService:
def __init__(self, host="0.0.0.0", port=8000):
self.host = host
self.port = port
ServiceOrchestrator.align_inputs = align_inputs
ServiceOrchestrator.align_outputs = align_outputs
self.megaservice = ServiceOrchestrator()
def add_remote_service(self):
asr = MicroService(
name="asr",
host=WHISPER_SERVER_HOST_IP,
port=WHISPER_SERVER_PORT,
# endpoint="/v1/audio/transcriptions",
endpoint="/v1/asr",
use_remote_service=True,
service_type=ServiceType.ASR,
)
llm = MicroService(
name="llm",
host=LLM_SERVER_HOST_IP,
port=LLM_SERVER_PORT,
endpoint="/v1/chat/completions",
use_remote_service=True,
service_type=ServiceType.LLM,
)
tts = MicroService(
name="tts",
host=GPT_SOVITS_SERVER_HOST_IP,
port=GPT_SOVITS_SERVER_PORT,
# endpoint="/v1/audio/speech",
endpoint="/",
use_remote_service=True,
service_type=ServiceType.TTS,
)
self.megaservice.add(asr).add(llm).add(tts)
self.megaservice.flow_to(asr, llm)
self.megaservice.flow_to(llm, tts)
self.gateway = AudioQnAGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
if __name__ == "__main__":
audioqna = AudioQnAService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
audioqna.add_remote_service()

View File

@@ -1,51 +0,0 @@
# AudioQnA Accuracy
AudioQnA is an example that demonstrates the integration of Generative AI (GenAI) models for performing question-answering (QnA) on audio scene, which contains Automatic Speech Recognition (ASR) and Text-to-Speech (TTS). The following is the piepline for evaluating the ASR accuracy.
## Dataset
We evaluate the ASR accuracy on the test set of librispeech [dataset](https://huggingface.co/datasets/andreagasparini/librispeech_test_only), which contains 2620 records of audio and texts.
## Metrics
We evaluate the WER (Word Error Rate) metric of the ASR microservice.
## Evaluation
### Launch ASR microservice
Launch the ASR microserice with the following commands. For more details please refer to [doc](https://github.com/opea-project/GenAIComps/tree/main/comps/asr/whisper/README.md).
```bash
git clone https://github.com/opea-project/GenAIComps
cd GenAIComps
docker build -t opea/whisper:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/asr/whisper/Dockerfile .
# change the name of model by editing model_name_or_path you want to evaluate
docker run -p 7066:7066 --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy opea/whisper:latest --model_name_or_path "openai/whisper-tiny"
```
### Evaluate
Install dependencies:
```
pip install -r requirements.txt
```
Evaluate the performance with the LLM:
```py
# validate the offline model
# python offline_eval.py
# validate the online asr microservice accuracy
python online_eval.py
```
### Performance Result
Here is the tested result for your reference
|| WER |
| --- | ---- |
|whisper-large-v2| 2.87|
|whisper-large| 2.7 |
|whisper-medium| 3.45 |

View File

@@ -1,35 +0,0 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import torch
from datasets import load_dataset
from evaluate import load
from transformers import WhisperForConditionalGeneration, WhisperProcessor
device = "cuda" if torch.cuda.is_available() else "cpu"
MODEL_NAME = "openai/whisper-large-v2"
librispeech_test_clean = load_dataset(
"andreagasparini/librispeech_test_only", "clean", split="test", trust_remote_code=True
)
processor = WhisperProcessor.from_pretrained(MODEL_NAME)
model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME).to(device)
def map_to_pred(batch):
audio = batch["audio"]
input_features = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features
batch["reference"] = processor.tokenizer._normalize(batch["text"])
with torch.no_grad():
predicted_ids = model.generate(input_features.to(device))[0]
transcription = processor.decode(predicted_ids)
batch["prediction"] = processor.tokenizer._normalize(transcription)
return batch
result = librispeech_test_clean.map(map_to_pred)
wer = load("wer")
print(100 * wer.compute(references=result["reference"], predictions=result["prediction"]))

View File

@@ -1,56 +0,0 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import base64
import json
import requests
import torch
from datasets import load_dataset
from evaluate import load
from pydub import AudioSegment
from transformers import WhisperForConditionalGeneration, WhisperProcessor
MODEL_NAME = "openai/whisper-large-v2"
processor = WhisperProcessor.from_pretrained(MODEL_NAME)
librispeech_test_clean = load_dataset(
"andreagasparini/librispeech_test_only", "clean", split="test", trust_remote_code=True
)
def map_to_pred(batch):
batch["reference"] = processor.tokenizer._normalize(batch["text"])
file_path = batch["file"]
# process the file_path
pidx = file_path.rfind("/")
sidx = file_path.rfind(".")
file_path_prefix = file_path[: pidx + 1]
file_path_suffix = file_path[sidx:]
file_path_mid = file_path[pidx + 1 : sidx]
splits = file_path_mid.split("-")
file_path_mid = f"LibriSpeech/test-clean/{splits[0]}/{splits[1]}/{file_path_mid}"
file_path = file_path_prefix + file_path_mid + file_path_suffix
audio = AudioSegment.from_file(file_path)
audio.export("tmp.wav")
with open("tmp.wav", "rb") as f:
test_audio_base64_str = base64.b64encode(f.read()).decode("utf-8")
inputs = {"audio": test_audio_base64_str}
endpoint = "http://localhost:7066/v1/asr"
response = requests.post(url=endpoint, data=json.dumps(inputs), proxies={"http": None})
result_str = response.json()["asr_result"]
batch["prediction"] = processor.tokenizer._normalize(result_str)
return batch
result = librispeech_test_clean.map(map_to_pred)
wer = load("wer")
print(100 * wer.compute(references=result["reference"], predictions=result["prediction"]))

View File

@@ -1,8 +0,0 @@
datasets
evaluate
jiwer
librosa
pydub
soundfile
torch
transformers

View File

@@ -1,5 +0,0 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
python online_eval.py

View File

@@ -108,7 +108,7 @@ curl http://${host_ip}:3006/generate \
# llm microservice
curl http://${host_ip}:3007/v1/chat/completions\
-X POST \
-d '{"query":"What is Deep Learning?","max_tokens":17,"top_k":10,"top_p":0.95,"typical_p":0.95,"temperature":0.01,"repetition_penalty":1.03,"streaming":false}' \
-d '{"query":"What is Deep Learning?","max_new_tokens":17,"top_k":10,"top_p":0.95,"typical_p":0.95,"temperature":0.01,"repetition_penalty":1.03,"streaming":false}' \
-H 'Content-Type: application/json'
# speecht5 service
@@ -127,13 +127,9 @@ curl http://${host_ip}:3002/v1/audio/speech \
## 🚀 Test MegaService
Test the AudioQnA megaservice by recording a .wav file, encoding the file into the base64 format, and then sending the
base64 string to the megaservice endpoint. The megaservice will return a spoken response as a base64 string. To listen
to the response, decode the base64 string and save it as a .wav file.
```bash
curl http://${host_ip}:3008/v1/audioqna \
-X POST \
-d '{"audio": "UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA", "max_tokens":64}' \
-H 'Content-Type: application/json' | sed 's/^"//;s/"$//' | base64 -d > output.wav
-H 'Content-Type: application/json'
```

View File

@@ -41,7 +41,7 @@ services:
environment:
TTS_ENDPOINT: ${TTS_ENDPOINT}
tgi-service:
image: ghcr.io/huggingface/text-generation-inference:2.4.0-intel-cpu
image: ghcr.io/huggingface/text-generation-inference:sha-e4201f4-intel-cpu
container_name: tgi-service
ports:
- "3006:80"

View File

@@ -1,64 +0,0 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
services:
whisper-service:
image: ${REGISTRY:-opea}/whisper:${TAG:-latest}
container_name: whisper-service
ports:
- "7066:7066"
ipc: host
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
restart: unless-stopped
command: --language "zh"
gpt-sovits-service:
image: ${REGISTRY:-opea}/gpt-sovits:${TAG:-latest}
container_name: gpt-sovits-service
ports:
- "9880:9880"
ipc: host
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
restart: unless-stopped
tgi-service:
image: ghcr.io/huggingface/text-generation-inference:2.4.0-intel-cpu
container_name: tgi-service
ports:
- "3006:80"
volumes:
- "./data:/data"
shm_size: 1g
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
command: --model-id ${LLM_MODEL_ID} --cuda-graphs 0
audioqna-xeon-backend-server:
image: ${REGISTRY:-opea}/audioqna-multilang:${TAG:-latest}
container_name: audioqna-xeon-backend-server
ports:
- "3008:8888"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- MEGA_SERVICE_HOST_IP=${MEGA_SERVICE_HOST_IP}
- LLM_SERVER_HOST_IP=${LLM_SERVER_HOST_IP}
- LLM_SERVER_PORT=${LLM_SERVER_PORT}
- LLM_MODEL_ID=${LLM_MODEL_ID}
- WHISPER_SERVER_HOST_IP=${WHISPER_SERVER_HOST_IP}
- WHISPER_SERVER_PORT=${WHISPER_SERVER_PORT}
- GPT_SOVITS_SERVER_HOST_IP=${GPT_SOVITS_SERVER_HOST_IP}
- GPT_SOVITS_SERVER_PORT=${GPT_SOVITS_SERVER_PORT}
ipc: host
restart: always
networks:
default:
driver: bridge

View File

@@ -79,8 +79,6 @@ export LLM_SERVICE_PORT=3007
## 🚀 Start the MegaService
> **_NOTE:_** Users will need at least three Gaudi cards for AudioQnA.
```bash
cd GenAIExamples/AudioQnA/docker_compose/intel/hpu/gaudi/
docker compose up -d
@@ -110,7 +108,7 @@ curl http://${host_ip}:3006/generate \
# llm microservice
curl http://${host_ip}:3007/v1/chat/completions\
-X POST \
-d '{"query":"What is Deep Learning?","max_tokens":17,"top_k":10,"top_p":0.95,"typical_p":0.95,"temperature":0.01,"repetition_penalty":1.03,"streaming":false}' \
-d '{"query":"What is Deep Learning?","max_new_tokens":17,"top_k":10,"top_p":0.95,"typical_p":0.95,"temperature":0.01,"repetition_penalty":1.03,"streaming":false}' \
-H 'Content-Type: application/json'
# speecht5 service
@@ -129,13 +127,9 @@ curl http://${host_ip}:3002/v1/audio/speech \
## 🚀 Test MegaService
Test the AudioQnA megaservice by recording a .wav file, encoding the file into the base64 format, and then sending the
base64 string to the megaservice endpoint. The megaservice will return a spoken response as a base64 string. To listen
to the response, decode the base64 string and save it as a .wav file.
```bash
curl http://${host_ip}:3008/v1/audioqna \
-X POST \
-d '{"audio": "UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA", "max_tokens":64}' \
-H 'Content-Type: application/json' | sed 's/^"//;s/"$//' | base64 -d > output.wav
-H 'Content-Type: application/json'
```

View File

@@ -51,7 +51,7 @@ services:
environment:
TTS_ENDPOINT: ${TTS_ENDPOINT}
tgi-service:
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.1
container_name: tgi-gaudi-server
ports:
- "3006:80"
@@ -61,15 +61,11 @@ services:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HUGGING_FACE_HUB_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HF_HUB_DISABLE_PROGRESS_BARS: 1
HF_HUB_ENABLE_HF_TRANSFER: 0
HABANA_VISIBLE_DEVICES: all
OMPI_MCA_btl_vader_single_copy_mechanism: none
ENABLE_HPU_GRAPH: true
LIMIT_HPU_GRAPH: true
USE_FLASH_ATTENTION: true
FLASH_ATTENTION_RECOMPUTE: true
runtime: habana
cap_add:
- SYS_NICE

View File

@@ -53,9 +53,3 @@ services:
dockerfile: comps/tts/speecht5/Dockerfile
extends: audioqna
image: ${REGISTRY:-opea}/tts:${TAG:-latest}
gpt-sovits:
build:
context: GenAIComps
dockerfile: comps/tts/gpt-sovits/Dockerfile
extends: audioqna
image: ${REGISTRY:-opea}/gpt-sovits:${TAG:-latest}

View File

@@ -7,14 +7,14 @@
## Deploy On Xeon
```
cd GenAIExamples/AudioQnA/kubernetes/intel/cpu/xeon/manifest
cd GenAIExamples/AudioQnA/kubernetes/intel/cpu/xeon/manifests
export HUGGINGFACEHUB_API_TOKEN="YourOwnToken"
sed -i "s/insert-your-huggingface-token-here/${HUGGINGFACEHUB_API_TOKEN}/g" audioqna.yaml
kubectl apply -f audioqna.yaml
```
## Deploy On Gaudi
```
cd GenAIExamples/AudioQnA/kubernetes/intel/hpu/gaudi/manifest
cd GenAIExamples/AudioQnA/kubernetes/intel/hpu/gaudi/manifests
export HUGGINGFACEHUB_API_TOKEN="YourOwnToken"
sed -i "s/insert-your-huggingface-token-here/${HUGGINGFACEHUB_API_TOKEN}/g" audioqna.yaml
kubectl apply -f audioqna.yaml

View File

@@ -4,7 +4,7 @@ This document outlines the deployment process for a AudioQnA application utilizi
The AudioQnA Service leverages a Kubernetes operator called genai-microservices-connector(GMC). GMC supports connecting microservices to create pipelines based on the specification in the pipeline yaml file in addition to allowing the user to dynamically control which model is used in a service such as an LLM or embedder. The underlying pipeline language also supports using external services that may be running in public or private cloud elsewhere.
Install GMC in your Kubernetes cluster, if you have not already done so, by following the steps in Section "Getting Started" at [GMC Install](https://github.com/opea-project/GenAIInfra/tree/main/microservices-connector/README.md). Soon as we publish images to Docker Hub, at which point no builds will be required, simplifying install.
Install GMC in your Kubernetes cluster, if you have not already done so, by following the steps in Section "Getting Started" at [GMC Install](https://github.com/opea-project/GenAIInfra/tree/main/microservices-connector). Soon as we publish images to Docker Hub, at which point no builds will be required, simplifying install.
The AudioQnA application is defined as a Custom Resource (CR) file that the above GMC operator acts upon. It first checks if the microservices listed in the CR yaml file are running, if not starts them and then proceeds to connect them. When the AudioQnA pipeline is ready, the service endpoint details are returned, letting you use the application. Should you use "kubectl get pods" commands you will see all the component microservices, in particular `asr`, `tts`, and `llm`.
@@ -25,7 +25,7 @@ The AudioQnA uses the below prebuilt images if you choose a Xeon deployment
Should you desire to use the Gaudi accelerator, two alternate images are used for the embedding and llm services.
For Gaudi:
- tgi-service: ghcr.io/huggingface/tgi-gaudi:2.0.5
- tgi-service: ghcr.io/huggingface/tgi-gaudi:1.2.1
- whisper-gaudi: opea/whisper-gaudi:latest
- speecht5-gaudi: opea/speecht5-gaudi:latest

View File

@@ -247,7 +247,7 @@ spec:
- envFrom:
- configMapRef:
name: audio-qna-config
image: "ghcr.io/huggingface/text-generation-inference:2.4.0-intel-cpu"
image: ghcr.io/huggingface/text-generation-inference:2.2.0
name: llm-dependency-deploy-demo
securityContext:
capabilities:

View File

@@ -271,7 +271,7 @@ spec:
- envFrom:
- configMapRef:
name: audio-qna-config
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.1
name: llm-dependency-deploy-demo
securityContext:
capabilities:
@@ -303,14 +303,6 @@ spec:
value: none
- name: PT_HPU_ENABLE_LAZY_COLLECTIVES
value: 'true'
- name: ENABLE_HPU_GRAPH
value: 'true'
- name: LIMIT_HPU_GRAPH
value: 'true'
- name: USE_FLASH_ATTENTION
value: 'true'
- name: FLASH_ATTENTION_RECOMPUTE
value: 'true'
- name: runtime
value: habana
- name: HABANA_VISIBLE_DEVICES
@@ -323,7 +315,7 @@ spec:
volumes:
- name: model-volume
hostPath:
path: /mnt/models
path: /home/sdp/cesg
type: Directory
- name: shm
emptyDir:

View File

@@ -22,7 +22,7 @@ function build_docker_images() {
service_list="audioqna whisper-gaudi asr llm-tgi speecht5-gaudi tts"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.1
docker images && sleep 1s
}

View File

@@ -22,7 +22,7 @@ function build_docker_images() {
service_list="audioqna whisper asr llm-tgi speecht5 tts"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.1
docker images && sleep 1s
}

View File

@@ -34,7 +34,7 @@ function validate_audioqa() {
export CLIENT_POD=$(kubectl get pod -n $APP_NAMESPACE -l app=client-test -o jsonpath={.items..metadata.name})
echo "$CLIENT_POD"
accessUrl=$(kubectl get gmc -n $APP_NAMESPACE -o jsonpath="{.items[?(@.metadata.name=='audioqa')].status.accessUrl}")
byte_str=$(kubectl exec "$CLIENT_POD" -n $APP_NAMESPACE -- curl $accessUrl -s -X POST -d '{"byte_str": "UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA", "parameters":{"max_tokens":64, "do_sample": true, "streaming":false}}' -H 'Content-Type: application/json' | jq .byte_str)
byte_str=$(kubectl exec "$CLIENT_POD" -n $APP_NAMESPACE -- curl $accessUrl -s -X POST -d '{"byte_str": "UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA", "parameters":{"max_new_tokens":64, "do_sample": true, "streaming":false}}' -H 'Content-Type: application/json' | jq .byte_str)
echo "$byte_str" > $LOG_PATH/curl_audioqa.log
if [ -z "$byte_str" ]; then
echo "audioqa failed, please check the logs in ${LOG_PATH}!"

View File

@@ -34,7 +34,7 @@ function validate_audioqa() {
export CLIENT_POD=$(kubectl get pod -n $APP_NAMESPACE -l app=client-test -o jsonpath={.items..metadata.name})
echo "$CLIENT_POD"
accessUrl=$(kubectl get gmc -n $APP_NAMESPACE -o jsonpath="{.items[?(@.metadata.name=='audioqa')].status.accessUrl}")
byte_str=$(kubectl exec "$CLIENT_POD" -n $APP_NAMESPACE -- curl $accessUrl -s -X POST -d '{"byte_str": "UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA", "parameters":{"max_tokens":64, "do_sample": true, "streaming":false}}' -H 'Content-Type: application/json' | jq .byte_str)
byte_str=$(kubectl exec "$CLIENT_POD" -n $APP_NAMESPACE -- curl $accessUrl -s -X POST -d '{"byte_str": "UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA", "parameters":{"max_new_tokens":64, "do_sample": true, "streaming":false}}' -H 'Content-Type: application/json' | jq .byte_str)
echo "$byte_str" > $LOG_PATH/curl_audioqa.log
if [ -z "$byte_str" ]; then
echo "audioqa failed, please check the logs in ${LOG_PATH}!"

View File

@@ -1,8 +0,0 @@
*.safetensors
*.bin
*.model
*.log
docker_compose/intel/cpu/xeon/data
docker_compose/intel/hpu/gaudi/data
inputs/
outputs/

View File

@@ -1,105 +0,0 @@
# AvatarChatbot Application
The AvatarChatbot service can be effortlessly deployed on either Intel Gaudi2 or Intel XEON Scalable Processors.
## AI Avatar Workflow
The AI Avatar example is implemented using both megaservices and the component-level microservices defined in [GenAIComps](https://github.com/opea-project/GenAIComps). The flow chart below shows the information flow between different megaservices and microservices for this example.
```mermaid
---
config:
flowchart:
nodeSpacing: 100
rankSpacing: 100
curve: linear
themeVariables:
fontSize: 42px
---
flowchart LR
classDef blue fill:#ADD8E6,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
classDef thistle fill:#D8BFD8,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
classDef orange fill:#FBAA60,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
classDef orchid fill:#C26DBC,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
classDef invisible fill:transparent,stroke:transparent;
style AvatarChatbot-Megaservice stroke:#000000
subgraph AvatarChatbot-Megaservice["AvatarChatbot Megaservice"]
direction LR
ASR([ASR Microservice]):::blue
LLM([LLM Microservice]):::blue
TTS([TTS Microservice]):::blue
animation([Animation Microservice]):::blue
end
subgraph UserInterface["User Interface"]
direction LR
invis1[ ]:::invisible
USER1([User Audio Query]):::orchid
USER2([User Image/Video Query]):::orchid
UI([UI server<br>]):::orchid
end
GW([AvatarChatbot GateWay<br>]):::orange
subgraph .
direction LR
X([OPEA Microservice]):::blue
Y{{Open Source Service}}:::thistle
Z([OPEA Gateway]):::orange
Z1([UI]):::orchid
end
WHISPER{{Whisper service}}:::thistle
TGI{{LLM service}}:::thistle
T5{{Speecht5 service}}:::thistle
WAV2LIP{{Wav2Lip service}}:::thistle
%% Connections %%
direction LR
USER1 -->|1| UI
UI -->|2| GW
GW <==>|3| AvatarChatbot-Megaservice
ASR ==>|4| LLM ==>|5| TTS ==>|6| animation
direction TB
ASR <-.->|3'| WHISPER
LLM <-.->|4'| TGI
TTS <-.->|5'| T5
animation <-.->|6'| WAV2LIP
USER2 -->|1| UI
UI <-.->|6'| WAV2LIP
```
## Deploy AvatarChatbot Service
The AvatarChatbot service can be deployed on either Intel Gaudi2 AI Accelerator or Intel Xeon Scalable Processor.
### Deploy AvatarChatbot on Gaudi
Refer to the [Gaudi Guide](./docker_compose/intel/hpu/gaudi/README.md) for instructions on deploying AvatarChatbot on Gaudi, and on setting up an UI for the application.
### Deploy AvatarChatbot on Xeon
Refer to the [Xeon Guide](./docker_compose/intel/cpu/xeon/README.md) for instructions on deploying AvatarChatbot on Xeon.
## Supported Models
### ASR
The default model is [openai/whisper-small](https://huggingface.co/openai/whisper-small). It also supports all models in the Whisper family, such as `openai/whisper-large-v3`, `openai/whisper-medium`, `openai/whisper-base`, `openai/whisper-tiny`, etc.
To replace the model, please edit the `compose.yaml` and add the `command` line to pass the name of the model you want to use:
```yaml
services:
whisper-service:
...
command: --model_name_or_path openai/whisper-tiny
```
### TTS
The default model is [microsoft/SpeechT5](https://huggingface.co/microsoft/speecht5_tts). We currently do not support replacing the model. More models under the commercial license will be added in the future.
### Animation
The default model is [Rudrabha/Wav2Lip](https://github.com/Rudrabha/Wav2Lip) and [TencentARC/GFPGAN](https://github.com/TencentARC/GFPGAN). We currently do not support replacing the model. More models under the commercial license such as [OpenTalker/SadTalker](https://github.com/OpenTalker/SadTalker) will be added in the future.

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

Binary file not shown.

Before

Width:  |  Height:  |  Size: 595 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 148 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 158 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.5 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 992 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.7 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.6 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 169 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 121 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 47 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 22 KiB

View File

@@ -1,93 +0,0 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import asyncio
import os
import sys
from comps import AvatarChatbotGateway, MicroService, ServiceOrchestrator, ServiceType
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
ASR_SERVICE_HOST_IP = os.getenv("ASR_SERVICE_HOST_IP", "0.0.0.0")
ASR_SERVICE_PORT = int(os.getenv("ASR_SERVICE_PORT", 9099))
LLM_SERVICE_HOST_IP = os.getenv("LLM_SERVICE_HOST_IP", "0.0.0.0")
LLM_SERVICE_PORT = int(os.getenv("LLM_SERVICE_PORT", 9000))
TTS_SERVICE_HOST_IP = os.getenv("TTS_SERVICE_HOST_IP", "0.0.0.0")
TTS_SERVICE_PORT = int(os.getenv("TTS_SERVICE_PORT", 9088))
ANIMATION_SERVICE_HOST_IP = os.getenv("ANIMATION_SERVICE_HOST_IP", "0.0.0.0")
ANIMATION_SERVICE_PORT = int(os.getenv("ANIMATION_SERVICE_PORT", 9066))
def check_env_vars(env_var_list):
for var in env_var_list:
if os.getenv(var) is None:
print(f"Error: The environment variable '{var}' is not set.")
sys.exit(1) # Exit the program with a non-zero status code
print("All environment variables are set.")
class AvatarChatbotService:
def __init__(self, host="0.0.0.0", port=8000):
self.host = host
self.port = port
self.megaservice = ServiceOrchestrator()
def add_remote_service(self):
asr = MicroService(
name="asr",
host=ASR_SERVICE_HOST_IP,
port=ASR_SERVICE_PORT,
endpoint="/v1/audio/transcriptions",
use_remote_service=True,
service_type=ServiceType.ASR,
)
llm = MicroService(
name="llm",
host=LLM_SERVICE_HOST_IP,
port=LLM_SERVICE_PORT,
endpoint="/v1/chat/completions",
use_remote_service=True,
service_type=ServiceType.LLM,
)
tts = MicroService(
name="tts",
host=TTS_SERVICE_HOST_IP,
port=TTS_SERVICE_PORT,
endpoint="/v1/audio/speech",
use_remote_service=True,
service_type=ServiceType.TTS,
)
animation = MicroService(
name="animation",
host=ANIMATION_SERVICE_HOST_IP,
port=ANIMATION_SERVICE_PORT,
endpoint="/v1/animation",
use_remote_service=True,
service_type=ServiceType.ANIMATION,
)
self.megaservice.add(asr).add(llm).add(tts).add(animation)
self.megaservice.flow_to(asr, llm)
self.megaservice.flow_to(llm, tts)
self.megaservice.flow_to(tts, animation)
self.gateway = AvatarChatbotGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
if __name__ == "__main__":
check_env_vars(
[
"MEGA_SERVICE_HOST_IP",
"MEGA_SERVICE_PORT",
"ASR_SERVICE_HOST_IP",
"ASR_SERVICE_PORT",
"LLM_SERVICE_HOST_IP",
"LLM_SERVICE_PORT",
"TTS_SERVICE_HOST_IP",
"TTS_SERVICE_PORT",
"ANIMATION_SERVICE_HOST_IP",
"ANIMATION_SERVICE_PORT",
]
)
avatarchatbot = AvatarChatbotService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
avatarchatbot.add_remote_service()

View File

@@ -1,210 +0,0 @@
# Build Mega Service of AvatarChatbot on Xeon
This document outlines the deployment process for a AvatarChatbot application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline on Intel Xeon server.
## 🚀 Build Docker images
### 1. Source Code install GenAIComps
```bash
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
```
### 2. Build ASR Image
```bash
docker build -t opea/whisper:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/asr/whisper/dependency/Dockerfile .
docker build -t opea/asr:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/asr/whisper/Dockerfile .
```
### 3. Build LLM Image
```bash
docker build --no-cache -t opea/llm-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/tgi/Dockerfile .
```
### 4. Build TTS Image
```bash
docker build -t opea/speecht5:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/tts/speecht5/dependency/Dockerfile .
docker build -t opea/tts:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/tts/speecht5/Dockerfile .
```
### 5. Build Animation Image
```bash
docker build -t opea/wav2lip:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/animation/wav2lip/dependency/Dockerfile .
docker build -t opea/animation:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/animation/wav2lip/Dockerfile .
```
### 6. Build MegaService Docker Image
To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `audioqna.py` Python script. Build the MegaService Docker image using the command below:
```bash
git clone https://github.com/opea-project/GenAIExamples.git
cd GenAIExamples/AvatarChatbot/
docker build --no-cache -t opea/avatarchatbot:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
```
Then run the command `docker images`, you will have following images ready:
1. `opea/whisper:latest`
2. `opea/asr:latest`
3. `opea/llm-tgi:latest`
4. `opea/speecht5:latest`
5. `opea/tts:latest`
6. `opea/wav2lip:latest`
7. `opea/animation:latest`
8. `opea/avatarchatbot:latest`
## 🚀 Set the environment variables
Before starting the services with `docker compose`, you have to recheck the following environment variables.
```bash
export HUGGINGFACEHUB_API_TOKEN=<your_hf_token>
export host_ip=$(hostname -I | awk '{print $1}')
export TGI_LLM_ENDPOINT=http://$host_ip:3006
export LLM_MODEL_ID=Intel/neural-chat-7b-v3-3
export ASR_ENDPOINT=http://$host_ip:7066
export TTS_ENDPOINT=http://$host_ip:7055
export WAV2LIP_ENDPOINT=http://$host_ip:7860
export MEGA_SERVICE_HOST_IP=${host_ip}
export ASR_SERVICE_HOST_IP=${host_ip}
export TTS_SERVICE_HOST_IP=${host_ip}
export LLM_SERVICE_HOST_IP=${host_ip}
export ANIMATION_SERVICE_HOST_IP=${host_ip}
export MEGA_SERVICE_PORT=8888
export ASR_SERVICE_PORT=3001
export TTS_SERVICE_PORT=3002
export LLM_SERVICE_PORT=3007
export ANIMATION_SERVICE_PORT=3008
```
- Xeon CPU
```bash
export DEVICE="cpu"
export WAV2LIP_PORT=7860
export INFERENCE_MODE='wav2lip_only'
export CHECKPOINT_PATH='/usr/local/lib/python3.11/site-packages/Wav2Lip/checkpoints/wav2lip_gan.pth'
export FACE="assets/img/avatar1.jpg"
# export AUDIO='assets/audio/eg3_ref.wav' # audio file path is optional, will use base64str in the post request as input if is 'None'
export AUDIO='None'
export FACESIZE=96
export OUTFILE="/outputs/result.mp4"
export GFPGAN_MODEL_VERSION=1.4 # latest version, can roll back to v1.3 if needed
export UPSCALE_FACTOR=1
export FPS=10
```
## 🚀 Start the MegaService
```bash
cd GenAIExamples/AvatarChatbot/docker_compose/intel/cpu/xeon/
docker compose -f compose.yaml up -d
```
## 🚀 Test MicroServices
```bash
# whisper service
curl http://${host_ip}:7066/v1/asr \
-X POST \
-d '{"audio": "UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA"}' \
-H 'Content-Type: application/json'
# asr microservice
curl http://${host_ip}:3001/v1/audio/transcriptions \
-X POST \
-d '{"byte_str": "UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA"}' \
-H 'Content-Type: application/json'
# tgi service
curl http://${host_ip}:3006/generate \
-X POST \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}' \
-H 'Content-Type: application/json'
# llm microservice
curl http://${host_ip}:3007/v1/chat/completions\
-X POST \
-d '{"query":"What is Deep Learning?","max_tokens":17,"top_k":10,"top_p":0.95,"typical_p":0.95,"temperature":0.01,"repetition_penalty":1.03,"streaming":false}' \
-H 'Content-Type: application/json'
# speecht5 service
curl http://${host_ip}:7055/v1/tts \
-X POST \
-d '{"text": "Who are you?"}' \
-H 'Content-Type: application/json'
# tts microservice
curl http://${host_ip}:3002/v1/audio/speech \
-X POST \
-d '{"text": "Who are you?"}' \
-H 'Content-Type: application/json'
# wav2lip service
cd ../../../..
curl http://${host_ip}:7860/v1/wav2lip \
-X POST \
-d @assets/audio/sample_minecraft.json \
-H 'Content-Type: application/json'
# animation microservice
curl http://${host_ip}:3008/v1/animation \
-X POST \
-d @assets/audio/sample_question.json \
-H "Content-Type: application/json"
```
## 🚀 Test MegaService
```bash
curl http://${host_ip}:3009/v1/avatarchatbot \
-X POST \
-d @assets/audio/sample_whoareyou.json \
-H 'Content-Type: application/json'
```
If the megaservice is running properly, you should see the following output:
```bash
"/outputs/result.mp4"
```
The output file will be saved in the current working directory, as `${PWD}` is mapped to `/outputs` inside the wav2lip-service Docker container.
## Gradio UI
```bash
cd $WORKPATH/GenAIExamples/AvatarChatbot
python3 ui/gradio/app_gradio_demo_avatarchatbot.py
```
The UI can be viewed at http://${host_ip}:7861
<img src="../../../../assets/img/UI.png" alt="UI Example" width="60%">
In the current version v1.0, you need to set the avatar figure image/video and the DL model choice in the environment variables before starting AvatarChatbot backend service and running the UI. Please just customize the audio question in the UI.
\*\* We will enable change of avatar figure between runs in v2.0
## Troubleshooting
```bash
cd GenAIExamples/AvatarChatbot/tests
export IMAGE_REPO="opea"
export IMAGE_TAG="latest"
export HUGGINGFACEHUB_API_TOKEN=<your_hf_token>
test_avatarchatbot_on_xeon.sh
```

View File

@@ -1,138 +0,0 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
services:
whisper-service:
image: ${REGISTRY:-opea}/whisper:${TAG:-latest}
container_name: whisper-service
ports:
- "7066:7066"
ipc: host
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
restart: unless-stopped
asr:
image: ${REGISTRY:-opea}/asr:${TAG:-latest}
container_name: asr-service
ports:
- "3001:9099"
ipc: host
environment:
ASR_ENDPOINT: ${ASR_ENDPOINT}
speecht5-service:
image: ${REGISTRY:-opea}/speecht5:${TAG:-latest}
container_name: speecht5-service
ports:
- "7055:7055"
ipc: host
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
restart: unless-stopped
tts:
image: ${REGISTRY:-opea}/tts:${TAG:-latest}
container_name: tts-service
ports:
- "3002:9088"
ipc: host
environment:
TTS_ENDPOINT: ${TTS_ENDPOINT}
tgi-service:
image: ghcr.io/huggingface/text-generation-inference:2.4.0-intel-cpu
container_name: tgi-service
ports:
- "3006:80"
volumes:
- "./data:/data"
shm_size: 1g
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
command: --model-id ${LLM_MODEL_ID} --cuda-graphs 0
llm:
image: ${REGISTRY:-opea}/llm-tgi:${TAG:-latest}
container_name: llm-tgi-server
depends_on:
- tgi-service
ports:
- "3007:9000"
ipc: host
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
TGI_LLM_ENDPOINT: ${TGI_LLM_ENDPOINT}
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
restart: unless-stopped
wav2lip-service:
image: ${REGISTRY:-opea}/wav2lip:${TAG:-latest}
container_name: wav2lip-service
ports:
- "7860:7860"
ipc: host
volumes:
- ${PWD}:/outputs
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
DEVICE: ${DEVICE}
INFERENCE_MODE: ${INFERENCE_MODE}
CHECKPOINT_PATH: ${CHECKPOINT_PATH}
FACE: ${FACE}
AUDIO: ${AUDIO}
FACESIZE: ${FACESIZE}
OUTFILE: ${OUTFILE}
GFPGAN_MODEL_VERSION: ${GFPGAN_MODEL_VERSION}
UPSCALE_FACTOR: ${UPSCALE_FACTOR}
FPS: ${FPS}
WAV2LIP_PORT: ${WAV2LIP_PORT}
restart: unless-stopped
animation:
image: ${REGISTRY:-opea}/animation:${TAG:-latest}
container_name: animation-server
ports:
- "3008:9066"
ipc: host
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
WAV2LIP_ENDPOINT: ${WAV2LIP_ENDPOINT}
restart: unless-stopped
avatarchatbot-xeon-backend-server:
image: ${REGISTRY:-opea}/avatarchatbot:${TAG:-latest}
container_name: avatarchatbot-xeon-backend-server
depends_on:
- asr
- llm
- tts
- animation
ports:
- "3009:8888"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- MEGA_SERVICE_HOST_IP=${MEGA_SERVICE_HOST_IP}
- MEGA_SERVICE_PORT=${MEGA_SERVICE_PORT}
- ASR_SERVICE_HOST_IP=${ASR_SERVICE_HOST_IP}
- ASR_SERVICE_PORT=${ASR_SERVICE_PORT}
- LLM_SERVICE_HOST_IP=${LLM_SERVICE_HOST_IP}
- LLM_SERVICE_PORT=${LLM_SERVICE_PORT}
- TTS_SERVICE_HOST_IP=${TTS_SERVICE_HOST_IP}
- TTS_SERVICE_PORT=${TTS_SERVICE_PORT}
- ANIMATION_SERVICE_HOST_IP=${ANIMATION_SERVICE_HOST_IP}
- ANIMATION_SERVICE_PORT=${ANIMATION_SERVICE_PORT}
ipc: host
restart: always
networks:
default:
driver: bridge

View File

@@ -1,220 +0,0 @@
# Build Mega Service of AvatarChatbot on Gaudi
This document outlines the deployment process for a AvatarChatbot application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline on Intel Gaudi server.
## 🚀 Build Docker images
### 1. Source Code install GenAIComps
```bash
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
```
### 2. Build ASR Image
```bash
docker build -t opea/whisper-gaudi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/asr/whisper/dependency/Dockerfile.intel_hpu .
docker build -t opea/asr:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/asr/whisper/Dockerfile .
```
### 3. Build LLM Image
```bash
docker build --no-cache -t opea/llm-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/tgi/Dockerfile .
```
### 4. Build TTS Image
```bash
docker build -t opea/speecht5-gaudi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/tts/speecht5/dependency/Dockerfile.intel_hpu .
docker build -t opea/tts:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/tts/speecht5/Dockerfile .
```
### 5. Build Animation Image
```bash
docker build -t opea/wav2lip-gaudi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/animation/wav2lip/dependency/Dockerfile.intel_hpu .
docker build -t opea/animation:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/animation/wav2lip/Dockerfile .
```
### 6. Build MegaService Docker Image
To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `audioqna.py` Python script. Build the MegaService Docker image using the command below:
```bash
git clone https://github.com/opea-project/GenAIExamples.git
cd GenAIExamples/AvatarChatbot/
docker build --no-cache -t opea/avatarchatbot:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
```
Then run the command `docker images`, you will have following images ready:
1. `opea/whisper-gaudi:latest`
2. `opea/asr:latest`
3. `opea/llm-tgi:latest`
4. `opea/speecht5-gaudi:latest`
5. `opea/tts:latest`
6. `opea/wav2lip-gaudi:latest`
7. `opea/animation:latest`
8. `opea/avatarchatbot:latest`
## 🚀 Set the environment variables
Before starting the services with `docker compose`, you have to recheck the following environment variables.
```bash
export HUGGINGFACEHUB_API_TOKEN=<your_hf_token>
export host_ip=$(hostname -I | awk '{print $1}')
export TGI_LLM_ENDPOINT=http://$host_ip:3006
export LLM_MODEL_ID=Intel/neural-chat-7b-v3-3
export ASR_ENDPOINT=http://$host_ip:7066
export TTS_ENDPOINT=http://$host_ip:7055
export WAV2LIP_ENDPOINT=http://$host_ip:7860
export MEGA_SERVICE_HOST_IP=${host_ip}
export ASR_SERVICE_HOST_IP=${host_ip}
export TTS_SERVICE_HOST_IP=${host_ip}
export LLM_SERVICE_HOST_IP=${host_ip}
export ANIMATION_SERVICE_HOST_IP=${host_ip}
export MEGA_SERVICE_PORT=8888
export ASR_SERVICE_PORT=3001
export TTS_SERVICE_PORT=3002
export LLM_SERVICE_PORT=3007
export ANIMATION_SERVICE_PORT=3008
```
- Gaudi2 HPU
```bash
export DEVICE="hpu"
export WAV2LIP_PORT=7860
export INFERENCE_MODE='wav2lip_only'
export CHECKPOINT_PATH='/usr/local/lib/python3.10/dist-packages/Wav2Lip/checkpoints/wav2lip_gan.pth'
export FACE="assets/img/avatar1.jpg"
# export AUDIO='assets/audio/eg3_ref.wav' # audio file path is optional, will use base64str in the post request as input if is 'None'
export AUDIO='None'
export FACESIZE=96
export OUTFILE="/outputs/result.mp4"
export GFPGAN_MODEL_VERSION=1.4 # latest version, can roll back to v1.3 if needed
export UPSCALE_FACTOR=1
export FPS=10
```
## 🚀 Start the MegaService
```bash
cd GenAIExamples/AvatarChatbot/docker_compose/intel/hpu/gaudi/
docker compose -f compose.yaml up -d
```
## 🚀 Test MicroServices
```bash
# whisper service
curl http://${host_ip}:7066/v1/asr \
-X POST \
-d '{"audio": "UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA"}' \
-H 'Content-Type: application/json'
# asr microservice
curl http://${host_ip}:3001/v1/audio/transcriptions \
-X POST \
-d '{"byte_str": "UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA"}' \
-H 'Content-Type: application/json'
# tgi service
curl http://${host_ip}:3006/generate \
-X POST \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}' \
-H 'Content-Type: application/json'
# llm microservice
curl http://${host_ip}:3007/v1/chat/completions\
-X POST \
-d '{"query":"What is Deep Learning?","max_tokens":17,"top_k":10,"top_p":0.95,"typical_p":0.95,"temperature":0.01,"repetition_penalty":1.03,"streaming":false}' \
-H 'Content-Type: application/json'
# speecht5 service
curl http://${host_ip}:7055/v1/tts \
-X POST \
-d '{"text": "Who are you?"}' \
-H 'Content-Type: application/json'
# tts microservice
curl http://${host_ip}:3002/v1/audio/speech \
-X POST \
-d '{"text": "Who are you?"}' \
-H 'Content-Type: application/json'
# wav2lip service
cd ../../../..
curl http://${host_ip}:7860/v1/wav2lip \
-X POST \
-d @assets/audio/sample_minecraft.json \
-H 'Content-Type: application/json'
# animation microservice
curl http://${host_ip}:3008/v1/animation \
-X POST \
-d @assets/audio/sample_question.json \
-H "Content-Type: application/json"
```
## 🚀 Test MegaService
```bash
curl http://${host_ip}:3009/v1/avatarchatbot \
-X POST \
-d @assets/audio/sample_whoareyou.json \
-H 'Content-Type: application/json'
```
If the megaservice is running properly, you should see the following output:
```bash
"/outputs/result.mp4"
```
The output file will be saved in the current working directory, as `${PWD}` is mapped to `/outputs` inside the wav2lip-service Docker container.
## Gradio UI
```bash
sudo apt update
sudo apt install -y yasm pkg-config libx264-dev nasm
cd $WORKPATH
git clone https://github.com/FFmpeg/FFmpeg.git
cd FFmpeg
sudo ./configure --enable-gpl --enable-libx264 && sudo make -j$(nproc-1) && sudo make install && hash -r
pip install gradio==4.38.1 soundfile
```
```bash
cd $WORKPATH/GenAIExamples/AvatarChatbot
python3 ui/gradio/app_gradio_demo_avatarchatbot.py
```
The UI can be viewed at http://${host_ip}:7861
<img src="../../../../assets/img/UI.png" alt="UI Example" width="60%">
In the current version v1.0, you need to set the avatar figure image/video and the DL model choice in the environment variables before starting AvatarChatbot backend service and running the UI. Please just customize the audio question in the UI.
\*\* We will enable change of avatar figure between runs in v2.0
## Troubleshooting
```bash
cd GenAIExamples/AvatarChatbot/tests
export IMAGE_REPO="opea"
export IMAGE_TAG="latest"
export HUGGINGFACEHUB_API_TOKEN=<your_hf_token>
test_avatarchatbot_on_gaudi.sh
```

View File

@@ -1,171 +0,0 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
version: "3.8"
services:
whisper-service:
image: ${REGISTRY:-opea}/whisper-gaudi:${TAG:-latest}
container_name: whisper-service
ports:
- "7066:7066"
ipc: host
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HABANA_VISIBLE_MODULES: all
OMPI_MCA_btl_vader_single_copy_mechanism: none
runtime: habana
cap_add:
- SYS_NICE
restart: unless-stopped
asr:
image: ${REGISTRY:-opea}/asr:${TAG:-latest}
container_name: asr-service
ports:
- "3001:9099"
ipc: host
environment:
ASR_ENDPOINT: ${ASR_ENDPOINT}
speecht5-service:
image: ${REGISTRY:-opea}/speecht5-gaudi:${TAG:-latest}
container_name: speecht5-service
ports:
- "7055:7055"
ipc: host
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HABANA_VISIBLE_MODULES: all
OMPI_MCA_btl_vader_single_copy_mechanism: none
runtime: habana
cap_add:
- SYS_NICE
restart: unless-stopped
tts:
image: ${REGISTRY:-opea}/tts:${TAG:-latest}
container_name: tts-service
ports:
- "3002:9088"
ipc: host
environment:
TTS_ENDPOINT: ${TTS_ENDPOINT}
tgi-service:
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
container_name: tgi-gaudi-server
ports:
- "3006:80"
volumes:
- "./data:/data"
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HUGGING_FACE_HUB_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HF_HUB_DISABLE_PROGRESS_BARS: 1
HF_HUB_ENABLE_HF_TRANSFER: 0
HABANA_VISIBLE_MODULES: all
OMPI_MCA_btl_vader_single_copy_mechanism: none
ENABLE_HPU_GRAPH: true
LIMIT_HPU_GRAPH: true
USE_FLASH_ATTENTION: true
FLASH_ATTENTION_RECOMPUTE: true
runtime: habana
cap_add:
- SYS_NICE
ipc: host
command: --model-id ${LLM_MODEL_ID} --max-input-length 128 --max-total-tokens 256
llm:
image: ${REGISTRY:-opea}/llm-tgi:${TAG:-latest}
container_name: llm-tgi-gaudi-server
depends_on:
- tgi-service
ports:
- "3007:9000"
ipc: host
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
TGI_LLM_ENDPOINT: ${TGI_LLM_ENDPOINT}
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
restart: unless-stopped
wav2lip-service:
image: ${REGISTRY:-opea}/wav2lip-gaudi:${TAG:-latest}
container_name: wav2lip-service
ports:
- "7860:7860"
ipc: host
volumes:
- ${PWD}:/outputs
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HABANA_VISIBLE_MODULES: all
OMPI_MCA_btl_vader_single_copy_mechanism: none
DEVICE: ${DEVICE}
INFERENCE_MODE: ${INFERENCE_MODE}
CHECKPOINT_PATH: ${CHECKPOINT_PATH}
FACE: ${FACE}
AUDIO: ${AUDIO}
FACESIZE: ${FACESIZE}
OUTFILE: ${OUTFILE}
GFPGAN_MODEL_VERSION: ${GFPGAN_MODEL_VERSION}
UPSCALE_FACTOR: ${UPSCALE_FACTOR}
FPS: ${FPS}
WAV2LIP_PORT: ${WAV2LIP_PORT}
runtime: habana
cap_add:
- SYS_NICE
restart: unless-stopped
animation:
image: ${REGISTRY:-opea}/animation:${TAG:-latest}
container_name: animation-gaudi-server
ports:
- "3008:9066"
ipc: host
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HABANA_VISIBLE_MODULES: all
OMPI_MCA_btl_vader_single_copy_mechanism: none
WAV2LIP_ENDPOINT: ${WAV2LIP_ENDPOINT}
runtime: habana
cap_add:
- SYS_NICE
restart: unless-stopped
avatarchatbot-gaudi-backend-server:
image: ${REGISTRY:-opea}/avatarchatbot:${TAG:-latest}
container_name: avatarchatbot-gaudi-backend-server
depends_on:
- asr
- llm
- tts
- animation
ports:
- "3009:8888"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- MEGA_SERVICE_HOST_IP=${MEGA_SERVICE_HOST_IP}
- MEGA_SERVICE_PORT=${MEGA_SERVICE_PORT}
- ASR_SERVICE_HOST_IP=${ASR_SERVICE_HOST_IP}
- ASR_SERVICE_PORT=${ASR_SERVICE_PORT}
- LLM_SERVICE_HOST_IP=${LLM_SERVICE_HOST_IP}
- LLM_SERVICE_PORT=${LLM_SERVICE_PORT}
- TTS_SERVICE_HOST_IP=${TTS_SERVICE_HOST_IP}
- TTS_SERVICE_PORT=${TTS_SERVICE_PORT}
- ANIMATION_SERVICE_HOST_IP=${ANIMATION_SERVICE_HOST_IP}
- ANIMATION_SERVICE_PORT=${ANIMATION_SERVICE_PORT}
ipc: host
restart: always
networks:
default:
driver: bridge

View File

@@ -1,73 +0,0 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
services:
avatarchatbot:
build:
args:
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
no_proxy: ${no_proxy}
context: ../
dockerfile: ./Dockerfile
image: ${REGISTRY:-opea}/avatarchatbot:${TAG:-latest}
whisper-gaudi:
build:
context: GenAIComps
dockerfile: comps/asr/whisper/dependency/Dockerfile.intel_hpu
extends: avatarchatbot
image: ${REGISTRY:-opea}/whisper-gaudi:${TAG:-latest}
whisper:
build:
context: GenAIComps
dockerfile: comps/asr/whisper/dependency/Dockerfile
extends: avatarchatbot
image: ${REGISTRY:-opea}/whisper:${TAG:-latest}
asr:
build:
context: GenAIComps
dockerfile: comps/asr/whisper/Dockerfile
extends: avatarchatbot
image: ${REGISTRY:-opea}/asr:${TAG:-latest}
llm-tgi:
build:
context: GenAIComps
dockerfile: comps/llms/text-generation/tgi/Dockerfile
extends: avatarchatbot
image: ${REGISTRY:-opea}/llm-tgi:${TAG:-latest}
speecht5-gaudi:
build:
context: GenAIComps
dockerfile: comps/tts/speecht5/dependency/Dockerfile.intel_hpu
extends: avatarchatbot
image: ${REGISTRY:-opea}/speecht5-gaudi:${TAG:-latest}
speecht5:
build:
context: GenAIComps
dockerfile: comps/tts/speecht5/dependency/Dockerfile
extends: avatarchatbot
image: ${REGISTRY:-opea}/speecht5:${TAG:-latest}
tts:
build:
context: GenAIComps
dockerfile: comps/tts/speecht5/Dockerfile
extends: avatarchatbot
image: ${REGISTRY:-opea}/tts:${TAG:-latest}
wav2lip-gaudi:
build:
context: GenAIComps
dockerfile: comps/animation/wav2lip/dependency/Dockerfile.intel_hpu
extends: avatarchatbot
image: ${REGISTRY:-opea}/wav2lip-gaudi:${TAG:-latest}
wav2lip:
build:
context: GenAIComps
dockerfile: comps/animation/wav2lip/dependency/Dockerfile
extends: avatarchatbot
image: ${REGISTRY:-opea}/wav2lip:${TAG:-latest}
animation:
build:
context: GenAIComps
dockerfile: comps/animation/wav2lip/Dockerfile
extends: avatarchatbot
image: ${REGISTRY:-opea}/animation:${TAG:-latest}

View File

@@ -1,147 +0,0 @@
#!/bin/bash
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
set -e
IMAGE_REPO=${IMAGE_REPO:-"opea"}
IMAGE_TAG=${IMAGE_TAG:-"latest"}
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
echo "TAG=IMAGE_TAG=${IMAGE_TAG}"
export REGISTRY=${IMAGE_REPO}
export TAG=${IMAGE_TAG}
WORKPATH=$(dirname "$PWD")
LOG_PATH="$WORKPATH/tests"
if ls $LOG_PATH/*.log 1> /dev/null 2>&1; then
rm $LOG_PATH/*.log
echo "Log files removed."
else
echo "No log files to remove."
fi
ip_address=$(hostname -I | awk '{print $1}')
function build_docker_images() {
cd $WORKPATH/docker_image_build
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
service_list="avatarchatbot whisper-gaudi asr llm-tgi speecht5-gaudi tts wav2lip-gaudi animation"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker images && sleep 1s
}
function start_services() {
cd $WORKPATH/docker_compose/intel/hpu/gaudi
export HUGGINGFACEHUB_API_TOKEN=$HUGGINGFACEHUB_API_TOKEN
export host_ip=$(hostname -I | awk '{print $1}')
export TGI_LLM_ENDPOINT=http://$host_ip:3006
export LLM_MODEL_ID=Intel/neural-chat-7b-v3-3
export ASR_ENDPOINT=http://$host_ip:7066
export TTS_ENDPOINT=http://$host_ip:7055
export WAV2LIP_ENDPOINT=http://$host_ip:7860
export MEGA_SERVICE_HOST_IP=${host_ip}
export ASR_SERVICE_HOST_IP=${host_ip}
export TTS_SERVICE_HOST_IP=${host_ip}
export LLM_SERVICE_HOST_IP=${host_ip}
export ANIMATION_SERVICE_HOST_IP=${host_ip}
export MEGA_SERVICE_PORT=8888
export ASR_SERVICE_PORT=3001
export TTS_SERVICE_PORT=3002
export LLM_SERVICE_PORT=3007
export ANIMATION_SERVICE_PORT=3008
export DEVICE="hpu"
export WAV2LIP_PORT=7860
export INFERENCE_MODE='wav2lip+gfpgan'
export CHECKPOINT_PATH='/usr/local/lib/python3.10/dist-packages/Wav2Lip/checkpoints/wav2lip_gan.pth'
export FACE="assets/img/avatar1.jpg"
# export AUDIO='assets/audio/eg3_ref.wav' # audio file path is optional, will use base64str in the post request as input if is 'None'
export AUDIO='None'
export FACESIZE=96
export OUTFILE="/outputs/result.mp4"
export GFPGAN_MODEL_VERSION=1.4 # latest version, can roll back to v1.3 if needed
export UPSCALE_FACTOR=1
export FPS=10
# Start Docker Containers
docker compose up -d
n=0
until [[ "$n" -ge 100 ]]; do
docker logs tgi-gaudi-server > $LOG_PATH/tgi_service_start.log
if grep -q Connected $LOG_PATH/tgi_service_start.log; then
break
fi
sleep 5s
n=$((n+1))
done
# sleep 5m
echo "All services are up and running"
sleep 5s
}
function validate_megaservice() {
cd $WORKPATH
result=$(http_proxy="" curl http://${ip_address}:3009/v1/avatarchatbot -X POST -d @assets/audio/sample_whoareyou.json -H 'Content-Type: application/json')
echo "result is === $result"
if [[ $result == *"mp4"* ]]; then
echo "Result correct."
else
docker logs whisper-service > $LOG_PATH/whisper-service.log
docker logs asr-service > $LOG_PATH/asr-service.log
docker logs speecht5-service > $LOG_PATH/speecht5-service.log
docker logs tts-service > $LOG_PATH/tts-service.log
docker logs tgi-gaudi-server > $LOG_PATH/tgi-gaudi-server.log
docker logs llm-tgi-gaudi-server > $LOG_PATH/llm-tgi-gaudi-server.log
docker logs wav2lip-service > $LOG_PATH/wav2lip-service.log
docker logs animation-gaudi-server > $LOG_PATH/animation-gaudi-server.log
echo "Result wrong."
exit 1
fi
}
#function validate_frontend() {
#}
function stop_docker() {
cd $WORKPATH/docker_compose/intel/hpu/gaudi
docker compose down
}
function main() {
stop_docker
echo y | docker builder prune --all
echo y | docker image prune
if [[ "$IMAGE_REPO" == "opea" ]]; then build_docker_images; fi
start_services
# validate_microservices
validate_megaservice
# validate_frontend
stop_docker
echo y | docker builder prune --all
echo y | docker image prune
}
main

View File

@@ -1,142 +0,0 @@
#!/bin/bash
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
set -e
IMAGE_REPO=${IMAGE_REPO:-"opea"}
IMAGE_TAG=${IMAGE_TAG:-"latest"}
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
echo "TAG=IMAGE_TAG=${IMAGE_TAG}"
export REGISTRY=${IMAGE_REPO}
export TAG=${IMAGE_TAG}
WORKPATH=$(dirname "$PWD")
LOG_PATH="$WORKPATH/tests"
if ls $LOG_PATH/*.log 1> /dev/null 2>&1; then
rm $LOG_PATH/*.log
echo "Log files removed."
else
echo "No log files to remove."
fi
ip_address=$(hostname -I | awk '{print $1}')
function build_docker_images() {
cd $WORKPATH/docker_image_build
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
service_list="avatarchatbot whisper asr llm-tgi speecht5 tts wav2lip animation"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker images && sleep 1s
}
function start_services() {
cd $WORKPATH/docker_compose/intel/cpu/xeon
export HUGGINGFACEHUB_API_TOKEN=$HUGGINGFACEHUB_API_TOKEN
export host_ip=$(hostname -I | awk '{print $1}')
export TGI_LLM_ENDPOINT=http://$host_ip:3006
export LLM_MODEL_ID=Intel/neural-chat-7b-v3-3
export ASR_ENDPOINT=http://$host_ip:7066
export TTS_ENDPOINT=http://$host_ip:7055
export WAV2LIP_ENDPOINT=http://$host_ip:7860
export MEGA_SERVICE_HOST_IP=${host_ip}
export ASR_SERVICE_HOST_IP=${host_ip}
export TTS_SERVICE_HOST_IP=${host_ip}
export LLM_SERVICE_HOST_IP=${host_ip}
export ANIMATION_SERVICE_HOST_IP=${host_ip}
export MEGA_SERVICE_PORT=8888
export ASR_SERVICE_PORT=3001
export TTS_SERVICE_PORT=3002
export LLM_SERVICE_PORT=3007
export ANIMATION_SERVICE_PORT=3008
export DEVICE="cpu"
export WAV2LIP_PORT=7860
export INFERENCE_MODE='wav2lip+gfpgan'
export CHECKPOINT_PATH='/usr/local/lib/python3.11/site-packages/Wav2Lip/checkpoints/wav2lip_gan.pth'
export FACE="assets/img/avatar5.png"
# export AUDIO='assets/audio/eg3_ref.wav' # audio file path is optional, will use base64str in the post request as input if is 'None'
export AUDIO='None'
export FACESIZE=96
export OUTFILE="/outputs/result.mp4"
export GFPGAN_MODEL_VERSION=1.4 # latest version, can roll back to v1.3 if needed
export UPSCALE_FACTOR=1
export FPS=10
# Start Docker Containers
docker compose up -d
n=0
until [[ "$n" -ge 100 ]]; do
docker logs tgi-service > $LOG_PATH/tgi_service_start.log
if grep -q Connected $LOG_PATH/tgi_service_start.log; then
break
fi
sleep 5s
n=$((n+1))
done
echo "All services are up and running"
sleep 5s
}
function validate_megaservice() {
cd $WORKPATH
result=$(http_proxy="" curl http://${ip_address}:3009/v1/avatarchatbot -X POST -d @assets/audio/sample_whoareyou.json -H 'Content-Type: application/json')
echo "result is === $result"
if [[ $result == *"mp4"* ]]; then
echo "Result correct."
else
docker logs whisper-service > $LOG_PATH/whisper-service.log
docker logs asr-service > $LOG_PATH/asr-service.log
docker logs speecht5-service > $LOG_PATH/speecht5-service.log
docker logs tts-service > $LOG_PATH/tts-service.log
docker logs tgi-service > $LOG_PATH/tgi-service.log
docker logs llm-tgi-server > $LOG_PATH/llm-tgi-server.log
docker logs wav2lip-service > $LOG_PATH/wav2lip-service.log
docker logs animation-server > $LOG_PATH/animation-server.log
echo "Result wrong."
exit 1
fi
}
#function validate_frontend() {
#}
function stop_docker() {
cd $WORKPATH/docker_compose/intel/cpu/xeon
docker compose down
}
function main() {
stop_docker
if [[ "$IMAGE_REPO" == "opea" ]]; then build_docker_images; fi
start_services
# validate_microservices
validate_megaservice
# validate_frontend
stop_docker
echo y | docker builder prune --all
echo y | docker image prune
}
main

View File

@@ -1,349 +0,0 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import asyncio
import base64
import io
import os
import shutil
import subprocess
import time
import aiohttp
import docker
import ffmpeg
import gradio as gr
import numpy as np
import soundfile as sf
from PIL import Image
# %% Docker Management
def update_env_var_in_container(container_name, env_var, new_value):
return
# %% AudioQnA functions
def preprocess_audio(audio):
"""The audio data is a 16-bit integer array with values ranging from -32768 to 32767 and the shape of the audio data array is (samples,)"""
sr, y = audio
# Convert to normalized float32 audio
y = y.astype(np.float32)
y /= np.max(np.abs(y))
# Save to memory
buf = io.BytesIO()
sf.write(buf, y, sr, format="WAV")
buf.seek(0) # Reset the buffer position to the beginning
# Encode the WAV file to base64 string
base64_bytes = base64.b64encode(buf.read())
base64_string = base64_bytes.decode("utf-8")
return base64_string
def base64_to_int16(base64_string):
wav_bytes = base64.b64decode(base64_string)
buf = io.BytesIO(wav_bytes)
y, sr = sf.read(buf, dtype="int16")
return sr, y
async def transcribe(audio_input, face_input, model_choice):
"""Input: mic audio; Output: ai audio, text, text"""
global ai_chatbot_url, chat_history, count
chat_history = ""
# Preprocess the audio
base64bytestr = preprocess_audio(audio_input)
# Send the audio to the AvatarChatbot backend server endpoint
initial_inputs = {"audio": base64bytestr, "max_tokens": 64}
# TO-DO: update wav2lip-service with the chosen face_input
# update_env_var_in_container("wav2lip-service", "DEVICE", "new_device_value")
async with aiohttp.ClientSession() as session:
async with session.post(ai_chatbot_url, json=initial_inputs) as response:
# Check the response status code
if response.status == 200:
# response_json = await response.json()
# # Decode the base64 string
# sampling_rate, audio_int16 = base64_to_int16(response_json["byte_str"])
# chat_history += f"User: {response_json['query']}\n\n"
# chat_ai = response_json["text"]
# hitted_ends = [",", ".", "?", "!", "。", ";"]
# last_punc_idx = max([chat_ai.rfind(punc) for punc in hitted_ends])
# if last_punc_idx != -1:
# chat_ai = chat_ai[: last_punc_idx + 1]
# chat_history += f"AI: {chat_ai}"
# chat_history = chat_history.replace("OPEX", "OPEA")
# return (sampling_rate, audio_int16) # handle the response
result = await response.text()
return "docker_compose/intel/hpu/gaudi/result.mp4"
else:
return {"error": "Failed to transcribe audio", "status_code": response.status_code}
def resize_image(image_pil, size=(720, 720)):
"""Resize the image to the specified size."""
return image_pil.resize(size, Image.LANCZOS)
def resize_video(video_path, save_path, size=(720, 1280)):
"""Resize the video to the specified size, and save to the save path."""
ffmpeg.input(video_path).output(save_path, vf=f"scale={size[0]}:{size[1]}").overwrite_output().run()
# %% AI Avatar demo function
async def aiavatar_demo(audio_input, face_input, model_choice):
"""Input: mic/preloaded audio, avatar file path;
Output: ai video"""
# Wait for response from AvatarChatbot backend
output_video = await transcribe(audio_input, face_input, model_choice) # output video path
if isinstance(output_video, dict): # in case of an error
return None, None
else:
return output_video
# %% Main
if __name__ == "__main__":
# HOST_IP = os.getenv("host_ip")
HOST_IP = subprocess.check_output("hostname -I | awk '{print $1}'", shell=True).decode("utf-8").strip()
# Fetch the AudioQnA backend server
ai_chatbot_url = f"http://{HOST_IP}:3009/v1/avatarchatbot"
# Collect chat history to print in the interface
chat_history = ""
# Prepare 3 image paths and 3 video paths
# image_pils = [
# Image.open(os.path.join("assets/img/woman1.png")),
# Image.open(os.path.join("assets/img/man1.png")),
# Image.open(os.path.join("assets/img/woman2.png")),
# ]
# video_paths = [
# os.path.join("assets/video/man1.mp4"),
# os.path.join("assets/video/woman2.mp4"),
# os.path.join("assets/video/man4.mp4"),
# ]
def image_to_base64(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
# Convert your images to Base64
xeon_base64 = image_to_base64("assets/img/xeon.jpg")
gaudi_base64 = image_to_base64("assets/img/gaudi.png")
# List of prerecorded WAV files containing audio questions
# audio_filepaths = [
# "assets/audio/intel2.wav",
# "assets/audio/intel4.wav",
# ]
# audio_questions = [
# "1. What's the objective of the Open Platform for Enterprise AI? How is it helpful to enterprises building AI solutions?",
# "2. What kinds of Intel AI tools are available to accelerate AI workloads?",
# ]
# Demo frontend
demo = gr.Blocks()
with demo:
# Define processing functions
count = 0
# Make necessary folders:
if not os.path.exists("inputs"):
os.makedirs("inputs")
if not os.path.exists("outputs"):
os.makedirs("outputs")
def initial_process(audio_input, face_input, model_choice):
global count
start_time = time.time()
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
video_file = loop.run_until_complete(aiavatar_demo(audio_input, face_input, model_choice))
count += 1
end_time = time.time()
return video_file, f"The entire application took {(end_time - start_time):.1f} seconds"
# def update_selected_image_state(image_index):
# image_index = int(image_index)
# selected_image_state.value = image_index
# # change image_input here
# if image_index < len(image_pils):
# return f"inputs/face_{image_index}.png"
# else:
# return f"inputs/video_{image_index - len(image_pils)}.mp4"
# def update_audio_input(audio_choice):
# if audio_choice:
# audio_index = int(audio_choice.split(".")[0]) - 1
# audio_filepath_gradio = f"inputs/audio_{audio_index:d}.wav"
# shutil.copyfile(audio_filepaths[audio_index], audio_filepath_gradio)
# return audio_filepath_gradio
# UI Components
# Title & Introduction
gr.Markdown("<h1 style='font-size: 36px;'>A PyTorch and OPEA based AI Avatar Audio Chatbot</h1>")
with gr.Row():
with gr.Column(scale=8):
gr.Markdown(
"""
<p style='font-size: 24px;'>Welcome to our AI Avatar Audio Chatbot! This application leverages PyTorch and <strong>OPEA (Open Platform for Enterprise AI) v0.8</strong> to provide you with a human-like conversational experience. It's run on Intel® Gaudi® AI Accelerator and Intel® Xeon® Processor, with hardware and software optimizations.<br>
Please feel free to interact with the AI avatar by choosing your own avatar and talking into the mic.</p>
"""
)
with gr.Column(scale=1):
# with gr.Row():
# gr.Markdown(f"""
# <img src='data:image/png;base64,{opea_qr_base64}' alt='OPEA QR Code' style='width: 150px; height: auto;'>
# """, label="OPEA QR Code")
# gr.Markdown(f"""
# <img src='data:image/png;base64,{opea_gh_qr_base64}' alt='OPEA GitHub QR Code' style='width: 150px; height: auto;'>
# """, label="OPEA GitHub QR Code")
with gr.Row():
gr.Markdown(
f"""
<img src='data:image/png;base64,{gaudi_base64}' alt='Intel®Gaudi' style='width: 120px; height: auto;'>""",
label="Intel®Gaudi",
)
gr.Markdown(
f"""
<img src='data:image/png;base64,{xeon_base64}' alt='Intel®Xeon' style='width: 120px; height: auto;'>""",
label="Intel®Xeon",
)
gr.Markdown("<hr>") # Divider
# Inputs
# Image gallery
selected_image_state = gr.State(value=-1)
image_clicks = []
image_click_buttons = []
video_clicks = []
video_click_buttons = []
with gr.Row():
with gr.Column(scale=1):
audio_input = gr.Audio(
sources=["upload", "microphone"], format="wav", label="🎤 or 📤 for your Input audio!"
)
# audio_choice = gr.Dropdown(
# choices=audio_questions,
# label="Choose an audio question",
# value=None, # default value
# )
# Update audio_input when a selection is made from the dropdown
# audio_choice.change(fn=update_audio_input, inputs=audio_choice, outputs=audio_input)
face_input = gr.File(
file_count="single",
file_types=["image", "video"],
label="Choose an avatar or 📤 an image or video!",
)
model_choice = gr.Dropdown(
choices=["wav2lip", "wav2lip+GAN", "wav2lip+GFPGAN"],
label="Choose a DL model",
)
# with gr.Column(scale=2):
# # Display 3 images and buttons
# with gr.Row():
# for i, image_pil in enumerate(image_pils):
# image_pil = resize_image(image_pil)
# save_path = f"inputs/face_{int(i)}.png"
# image_pil.save(save_path, "PNG")
# image_clicks.append(gr.Image(type="filepath", value=save_path, label=f"Avatar {int(i)+1}"))
# with gr.Row():
# for i in range(len(image_pils)):
# image_click_buttons.append(gr.Button(f"Use Image {i+1}"))
# # Display 3 videos and buttons
# with gr.Row():
# for i, video_path in enumerate(video_paths):
# save_path = f"inputs/video_{int(i)}.mp4"
# resize_video(video_path, save_path)
# video_clicks.append(gr.Video(value=save_path, label=f"Video {int(i)+1}"))
# with gr.Row():
# for i in range(len(video_paths)):
# video_click_buttons.append(gr.Button(f"Use Video {int(i)+1}"))
submit_button = gr.Button("Submit")
# Outputs
gr.Markdown("<hr>") # Divider
with gr.Row():
with gr.Column():
video_output = gr.Video(label="Your AI Avatar video: ", format="mp4", width=1280, height=720)
video_time_text = gr.Textbox(label="Video processing time", value="0.0 seconds")
# Technical details
gr.Markdown("<hr>") # Divider
with gr.Row():
gr.Markdown(
"""
<p style='font-size: 24px;'>OPEA megaservice deployed: <br>
<ul style='font-size: 24px;'>
<li><strong>AvatarChatbot</strong></li>
</ul></p>
<p style='font-size: 24px;'>OPEA microservices deployed:
<ul style='font-size: 24px;'>
<li><strong>ASR</strong> (service: opea/whisper-gaudi, model: openai/whisper-small)</li>
<li><strong>LLM 'text-generation'</strong> (service: opea/llm-tgi, model: Intel/neural-chat-7b-v3-3)</li>
<li><strong>TTS</strong> (service: opea/speecht5-gaudi, model: microsoft/speecht5_tts)</li>
<li><strong>Animation</strong> (service: opea/animation, model: wav2lip+gfpgan)</li>
</ul></p>
"""
)
with gr.Row():
gr.Image("assets/img/flowchart.png", label="Megaservice Flowchart")
with gr.Row():
gr.Markdown(
"""
<p style='font-size: 24px;'>The AI Avatar Audio Chatbot is powered by the following Intel® AI software:<br>
<ul style='font-size: 24px;'>
<li><strong>Intel Gaudi Software v1.17.0</strong></li>
<li><strong>PyTorch v2.3.1 (Eager mode + torch.compile) </strong></li>
<li><strong>HPU Graph</strong></li>
<li><strong>Intel Neural Compressor (INC)</strong></li>
</ul></p>
"""
)
# Disclaimer
gr.Markdown("<hr>") # Divider
gr.Markdown("<h2 style='font-size: 24px;'>Notices & Disclaimers</h1>")
gr.Markdown(
"""
<p style='font-size: 20px;'>Intel is committed to respecting human rights and avoiding complicity in human rights abuses. See Intel's Global Human Rights Principles. Intel's products and software are intended only to be used in applications that do not cause or contribute to a violation of an internationally recognized human right.<br></p>
<p style='font-size: 20px;'>© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.<br></p>
<p style='font-size: 20px;'>You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.<br></p>
"""
)
# State transitions
# for i in range(len(image_pils)):
# image_click_buttons[i].click(
# update_selected_image_state, inputs=[gr.Number(value=i, visible=False)], outputs=[face_input]
# )
# for i in range(len(video_paths)):
# video_click_buttons[i].click(
# update_selected_image_state,
# inputs=[gr.Number(value=i + len(image_pils), visible=False)],
# outputs=[face_input],
# )
submit_button.click(
initial_process,
inputs=[audio_input, face_input, model_choice],
outputs=[
video_output,
video_time_text,
],
)
demo.queue().launch(server_name="0.0.0.0", server_port=7861)

View File

@@ -19,10 +19,10 @@ RUN git clone https://github.com/opea-project/GenAIComps.git
WORKDIR /home/user/GenAIComps
RUN pip install --no-cache-dir --upgrade pip && \
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt && \
pip install --no-cache-dir langchain_core
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt
COPY ./chatqna.py /home/user/chatqna.py
COPY ./gateway.py /home/user/gateway.py
ENV PYTHONPATH=$PYTHONPATH:/home/user/GenAIComps

View File

@@ -19,10 +19,9 @@ RUN git clone https://github.com/opea-project/GenAIComps.git
WORKDIR /home/user/GenAIComps
RUN pip install --no-cache-dir --upgrade pip && \
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt && \
pip install --no-cache-dir langchain_core
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt
COPY ./chatqna.py /home/user/chatqna.py
COPY ./chatqna_guardrails.py /home/user/chatqna_guardrails.py
ENV PYTHONPATH=$PYTHONPATH:/home/user/GenAIComps
@@ -32,4 +31,4 @@ WORKDIR /home/user
RUN echo 'ulimit -S -n 999999' >> ~/.bashrc
ENTRYPOINT ["python", "chatqna.py", "--with-guardrails"]
ENTRYPOINT ["python", "chatqna_guardrails.py"]

View File

@@ -1,12 +1,15 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
FROM python:3.11-slim
RUN apt-get update -y && apt-get install -y --no-install-recommends --fix-missing \
git \
libgl1-mesa-glx \
libjemalloc-dev
libjemalloc-dev \
vim \
git
RUN useradd -m -s /bin/bash user && \
mkdir -p /home/user && \
@@ -20,7 +23,7 @@ RUN pip install --no-cache-dir --upgrade pip && \
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt && \
pip install --no-cache-dir langchain_core
COPY ./graphrag.py /home/user/graphrag.py
COPY ./chatqna_no_wrapper.py /home/user/chatqna_no_wrapper.py
ENV PYTHONPATH=$PYTHONPATH:/home/user/GenAIComps
@@ -28,6 +31,4 @@ USER user
WORKDIR /home/user
RUN echo 'ulimit -S -n 999999' >> ~/.bashrc
ENTRYPOINT ["python", "graphrag.py"]
ENTRYPOINT ["python", "chatqna_no_wrapper.py"]

View File

@@ -17,12 +17,13 @@ RUN useradd -m -s /bin/bash user && \
WORKDIR /home/user/
RUN git clone https://github.com/opea-project/GenAIComps.git
WORKDIR /home/user/GenAIComps
RUN pip install --no-cache-dir --upgrade pip && \
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt && \
pip install --no-cache-dir langchain_core
COPY ./avatarchatbot.py /home/user/avatarchatbot.py
COPY ./chatqna_no_wrapper.py /home/user/chatqna_no_wrapper.py
ENV PYTHONPATH=$PYTHONPATH:/home/user/GenAIComps
@@ -30,4 +31,4 @@ USER user
WORKDIR /home/user
ENTRYPOINT ["python", "avatarchatbot.py"]
ENTRYPOINT ["python", "chatqna_no_wrapper.py", "--without-rerank"]

View File

@@ -6,9 +6,9 @@
FROM python:3.11-slim
RUN apt-get update -y && apt-get install -y --no-install-recommends --fix-missing \
git \
libgl1-mesa-glx \
libjemalloc-dev
libjemalloc-dev \
git
RUN useradd -m -s /bin/bash user && \
mkdir -p /home/user && \
@@ -19,10 +19,9 @@ RUN git clone https://github.com/opea-project/GenAIComps.git
WORKDIR /home/user/GenAIComps
RUN pip install --no-cache-dir --upgrade pip && \
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt && \
pip install --no-cache-dir langchain_core
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt
COPY ./chatqna.py /home/user/chatqna.py
COPY ./chatqna_without_rerank.py /home/user/chatqna_without_rerank.py
ENV PYTHONPATH=$PYTHONPATH:/home/user/GenAIComps
@@ -32,4 +31,4 @@ WORKDIR /home/user
RUN echo 'ulimit -S -n 999999' >> ~/.bashrc
ENTRYPOINT ["python", "chatqna.py", "--without-rerank"]
ENTRYPOINT ["python", "chatqna_without_rerank.py"]

View File

@@ -16,8 +16,6 @@ Quick Start Deployment Steps:
2. Run Docker Compose.
3. Consume the ChatQnA Service.
Note: If you do not have docker installed you can run this script to install docker : `bash docker_compose/install_docker.sh`
### Quick Start: 1.Setup Environment Variable
To set up environment variables for deploying ChatQnA services, follow these steps:
@@ -55,7 +53,6 @@ To set up environment variables for deploying ChatQnA services, follow these ste
### Quick Start: 2.Run Docker Compose
Select the compose.yaml file that matches your hardware.
CPU example:
```bash
@@ -72,13 +69,9 @@ docker pull opea/chatqna:latest
docker pull opea/chatqna-ui:latest
```
In following cases, you could build docker image from source by yourself.
If you want to build docker by yourself, please refer to `built from source`: [Guide](docker_compose/intel/cpu/xeon/README.md).
- Failed to download the docker image.
- If you want to use a specific version of Docker image.
Please refer to the 'Build Docker Images' in [Guide](docker_compose/intel/cpu/xeon/README.md).
> Note: The optional docker image **opea/chatqna-without-rerank:latest** has not been published yet, users need to build this docker image from source.
### QuickStart: 3.Consume the ChatQnA Service
@@ -206,6 +199,8 @@ cd GenAIExamples/ChatQnA/docker_compose/intel/hpu/gaudi/
docker compose up -d
```
> Notice: Currently only the **Habana Driver 1.16.x** is supported for Gaudi.
Refer to the [Gaudi Guide](./docker_compose/intel/hpu/gaudi/README.md) to build docker images from source.
### Deploy ChatQnA on Xeon
@@ -240,7 +235,7 @@ Refer to the [Kubernetes Guide](./kubernetes/intel/README.md) for instructions o
Install Helm (version >= 3.15) first. Refer to the [Helm Installation Guide](https://helm.sh/docs/intro/install/) for more information.
Refer to the [ChatQnA helm chart](https://github.com/opea-project/GenAIInfra/tree/main/helm-charts/chatqna/README.md) for instructions on deploying ChatQnA into Kubernetes on Xeon & Gaudi.
Refer to the [ChatQnA helm chart](https://github.com/opea-project/GenAIInfra/tree/main/helm-charts/chatqna) for instructions on deploying ChatQnA into Kubernetes on Xeon & Gaudi.
### Deploy ChatQnA on AI PC
@@ -250,9 +245,7 @@ Refer to the [AI PC Guide](./docker_compose/intel/cpu/aipc/README.md) for instru
Refer to the [Intel Technology enabling for Openshift readme](https://github.com/intel/intel-technology-enabling-for-openshift/blob/main/workloads/opea/chatqna/README.md) for instructions to deploy ChatQnA prototype on RHOCP with [Red Hat OpenShift AI (RHOAI)](https://www.redhat.com/en/technologies/cloud-computing/openshift/openshift-ai).
## Consume ChatQnA Service with RAG
### Check Service Status
## Consume ChatQnA Service
Before consuming ChatQnA Service, make sure the TGI/vLLM service is ready (which takes up to 2 minutes to start).
@@ -267,23 +260,6 @@ Consume ChatQnA service until you get the TGI response like below.
2024-09-03T02:47:53.402023Z INFO text_generation_router::server: router/src/server.rs:2311: Connected
```
### Upload RAG Files (Optional)
To chat with retrieved information, you need to upload a file using `Dataprep` service.
Here is an example of `Nike 2023` pdf.
```bash
# download pdf file
wget https://raw.githubusercontent.com/opea-project/GenAIComps/main/comps/retrievers/redis/data/nke-10k-2023.pdf
# upload pdf file with dataprep
curl -X POST "http://${host_ip}:6007/v1/dataprep" \
-H "Content-Type: multipart/form-data" \
-F "files=@./nke-10k-2023.pdf"
```
### Consume Chat Service
Two ways of consuming ChatQnA Service:
1. Use cURL command on terminal
@@ -306,7 +282,7 @@ Two ways of consuming ChatQnA Service:
## Troubleshooting
1. If you get errors like "Access Denied", [validate micro service](https://github.com/opea-project/GenAIExamples/tree/main/ChatQnA/docker_compose/intel/cpu/xeon/README.md#validate-microservices) first. A simple example:
1. If you get errors like "Access Denied", [validate micro service](https://github.com/opea-project/GenAIExamples/tree/main/ChatQnA/docker_compose/intel/cpu/xeon#validate-microservices) first. A simple example:
```bash
http_proxy="" curl ${host_ip}:6006/embed -X POST -d '{"inputs":"What is Deep Learning?"}' -H 'Content-Type: application/json'

View File

@@ -29,8 +29,6 @@ Results will be displayed in the terminal and saved as CSV file named `1_stats.c
## Getting Started
We recommend using Kubernetes to deploy the ChatQnA service, as it offers benefits such as load balancing and improved scalability. However, you can also deploy the service using Docker if that better suits your needs. Below is a description of Kubernetes deployment and benchmarking. For instructions on deploying and benchmarking with Docker, please refer to [this section](#benchmark-with-docker).
### Prerequisites
- Install Kubernetes by following [this guide](https://github.com/opea-project/docs/blob/main/guide/installation/k8s_install/k8s_install_kubespray.md).
@@ -69,7 +67,7 @@ We have created the [BKC manifest](https://github.com/opea-project/GenAIExamples
```bash
# on k8s-master node
git clone https://github.com/opea-project/GenAIExamples.git
cd GenAIExamples/ChatQnA/benchmark/performance
cd GenAIExamples/ChatQnA/benchmark
# replace the image tag from latest to v0.9 since we want to test with v0.9 release
IMAGE_TAG=v0.9
@@ -88,9 +86,22 @@ find . -name '*.yaml' -type f -exec sed -i "s#\$(EMBEDDING_MODEL_ID)#${EMBEDDING
find . -name '*.yaml' -type f -exec sed -i "s#\$(RERANK_MODEL_ID)#${RERANK_MODEL_ID}#g" {} \;
```
### Benchmark tool preparation
The test uses the [benchmark tool](https://github.com/opea-project/GenAIEval/tree/main/evals/benchmark) to do performance test. We need to set up benchmark tool at the master node of Kubernetes which is k8s-master.
```bash
# on k8s-master node
git clone https://github.com/opea-project/GenAIEval.git
cd GenAIEval
python3 -m venv stress_venv
source stress_venv/bin/activate
pip install -r requirements.txt
```
### Test Configurations
By default, the workload and benchmark configuration is as below:
Workload configuration:
| Key | Value |
| -------- | ------- |
@@ -133,11 +144,11 @@ kubectl label nodes k8s-worker1 node-type=chatqna-opea
##### 2. Install ChatQnA
Go to [BKC manifest](./tuned/with_rerank/single_gaudi) and apply to K8s.
Go to [BKC manifest](https://github.com/opea-project/GenAIExamples/tree/main/ChatQnA/benchmark/tuned/with_rerank/single_gaudi) and apply to K8s.
```bash
# on k8s-master node
cd GenAIExamples/ChatQnA/benchmark/performance/tuned/with_rerank/single_gaudi
cd GenAIExamples/ChatQnA/benchmark/tuned/with_rerank/single_gaudi
kubectl apply -f .
```
@@ -176,21 +187,21 @@ curl -X POST "http://${cluster_ip}:6007/v1/dataprep" \
###### 3.2 Run Benchmark Test
Before the benchmark, we can configure the number of test queries and test output directory by:
We copy the configuration file [benchmark.yaml](./benchmark.yaml) to `GenAIEval/evals/benchmark/benchmark.yaml` and config `test_suite_config.user_queries` and `test_suite_config.test_output_dir`.
```bash
export USER_QUERIES="[640, 640, 640, 640]"
export USER_QUERIES="[4, 8, 16, 640]"
export TEST_OUTPUT_DIR="/home/sdp/benchmark_output/node_1"
envsubst < ./benchmark.yaml > GenAIEval/evals/benchmark/benchmark.yaml
```
And then run the benchmark by:
And then run the benchmark tool by:
```bash
bash benchmark.sh -n 1
cd GenAIEval/evals/benchmark
python benchmark.py
```
The argument `-n` refers to the number of test nodes. Note that necessary dependencies will be automatically installed when running benchmark for the first time.
##### 4. Data collection
All the test results will come to this folder `/home/sdp/benchmark_output/node_1` configured by the environment variable `TEST_OUTPUT_DIR` in previous steps.
@@ -199,7 +210,7 @@ All the test results will come to this folder `/home/sdp/benchmark_output/node_1
```bash
# on k8s-master node
cd GenAIExamples/ChatQnA/benchmark/performance/tuned/with_rerank/single_gaudi
cd GenAIExamples/ChatQnA/benchmark/tuned/with_rerank/single_gaudi
kubectl delete -f .
kubectl label nodes k8s-worker1 node-type-
```
@@ -216,31 +227,31 @@ kubectl label nodes k8s-worker1 k8s-worker2 node-type=chatqna-opea
##### 2. Install ChatQnA
Go to [BKC manifest](./tuned/with_rerank/two_gaudi) and apply to K8s.
Go to [BKC manifest](https://github.com/opea-project/GenAIExamples/tree/main/ChatQnA/benchmark/tuned/with_rerank/two_gaudi) and apply to K8s.
```bash
# on k8s-master node
cd GenAIExamples/ChatQnA/benchmark/performance/tuned/with_rerank/two_gaudi
cd GenAIExamples/ChatQnA/benchmark/tuned/with_rerank/two_gaudi
kubectl apply -f .
```
##### 3. Run tests
Before the benchmark, we can configure the number of test queries and test output directory by:
We copy the configuration file [benchmark.yaml](./benchmark.yaml) to `GenAIEval/evals/benchmark/benchmark.yaml` and config `test_suite_config.user_queries` and `test_suite_config.test_output_dir`.
```bash
export USER_QUERIES="[1280, 1280, 1280, 1280]"
export USER_QUERIES="[4, 8, 16, 1280]"
export TEST_OUTPUT_DIR="/home/sdp/benchmark_output/node_2"
envsubst < ./benchmark.yaml > GenAIEval/evals/benchmark/benchmark.yaml
```
And then run the benchmark by:
And then run the benchmark tool by:
```bash
bash benchmark.sh -n 2
cd GenAIEval/evals/benchmark
python benchmark.py
```
The argument `-n` refers to the number of test nodes. Note that necessary dependencies will be automatically installed when running benchmark for the first time.
##### 4. Data collection
All the test results will come to this folder `/home/sdp/benchmark_output/node_2` configured by the environment variable `TEST_OUTPUT_DIR` in previous steps.
@@ -265,31 +276,31 @@ kubectl label nodes k8s-master k8s-worker1 k8s-worker2 k8s-worker3 node-type=cha
##### 2. Install ChatQnA
Go to [BKC manifest](./tuned/with_rerank/four_gaudi) and apply to K8s.
Go to [BKC manifest](https://github.com/opea-project/GenAIExamples/tree/main/ChatQnA/benchmark/tuned/with_rerank/four_gaudi) and apply to K8s.
```bash
# on k8s-master node
cd GenAIExamples/ChatQnA/benchmark/performance/tuned/with_rerank/four_gaudi
cd GenAIExamples/ChatQnA/benchmark/tuned/with_rerank/four_gaudi
kubectl apply -f .
```
##### 3. Run tests
Before the benchmark, we can configure the number of test queries and test output directory by:
We copy the configuration file [benchmark.yaml](./benchmark.yaml) to `GenAIEval/evals/benchmark/benchmark.yaml` and config `test_suite_config.user_queries` and `test_suite_config.test_output_dir`.
```bash
export USER_QUERIES="[2560, 2560, 2560, 2560]"
export USER_QUERIES="[4, 8, 16, 2560]"
export TEST_OUTPUT_DIR="/home/sdp/benchmark_output/node_4"
envsubst < ./benchmark.yaml > GenAIEval/evals/benchmark/benchmark.yaml
```
And then run the benchmark by:
And then run the benchmark tool by:
```bash
bash benchmark.sh -n 4
cd GenAIEval/evals/benchmark
python benchmark.py
```
The argument `-n` refers to the number of test nodes. Note that necessary dependencies will be automatically installed when running benchmark for the first time.
##### 4. Data collection
All the test results will come to this folder `/home/sdp/benchmark_output/node_4` configured by the environment variable `TEST_OUTPUT_DIR` in previous steps.
@@ -298,81 +309,11 @@ All the test results will come to this folder `/home/sdp/benchmark_output/node_4
```bash
# on k8s-master node
cd GenAIExamples/ChatQnA/benchmark/performance/tuned/with_rerank/single_gaudi
cd GenAIExamples/ChatQnA/benchmark/tuned/with_rerank/single_gaudi
kubectl delete -f .
kubectl label nodes k8s-master k8s-worker1 k8s-worker2 k8s-worker3 node-type-
```
## Benchmark with Docker
#### 6. Results
### Deploy ChatQnA service with Docker
In order to set up the environment correctly, you'll need to configure essential environment variables and, if applicable, proxy-related variables.
```bash
# Example: host_ip="192.168.1.1"
export host_ip="External_Public_IP"
# Example: no_proxy="localhost, 127.0.0.1, 192.168.1.1"
export no_proxy="Your_No_Proxy"
export http_proxy="Your_HTTP_Proxy"
export https_proxy="Your_HTTPs_Proxy"
export HUGGINGFACEHUB_API_TOKEN="Your_Huggingface_API_Token"
```
#### Deploy ChatQnA on Gaudi
```bash
cd GenAIExamples/ChatQnA/docker_compose/intel/hpu/gaudi/
docker compose up -d
```
Refer to the [Gaudi Guide](../../docker_compose/intel/hpu/gaudi/README.md) to build docker images from source.
#### Deploy ChatQnA on Xeon
```bash
cd GenAIExamples/ChatQnA/docker_compose/intel/cpu/xeon/
docker compose up -d
```
Refer to the [Xeon Guide](../../docker_compose/intel/cpu/xeon/README.md) for more instructions on building docker images from source.
#### Deploy ChatQnA on NVIDIA GPU
```bash
cd GenAIExamples/ChatQnA/docker_compose/nvidia/gpu/
docker compose up -d
```
Refer to the [NVIDIA GPU Guide](../../docker_compose/nvidia/gpu/README.md) for more instructions on building docker images from source.
### Run tests
Before the benchmark, we can configure the number of test queries and test output directory by:
```bash
export USER_QUERIES="[640, 640, 640, 640]"
export TEST_OUTPUT_DIR="/home/sdp/benchmark_output/docker"
```
And then run the benchmark by:
```bash
bash benchmark.sh -d docker -i <service-ip> -p <service-port>
```
The argument `-i` and `-p` refer to the deployed ChatQnA service IP and port, respectively. Note that necessary dependencies will be automatically installed when running benchmark for the first time.
### Data collection
All the test results will come to this folder `/home/sdp/benchmark_output/docker` configured by the environment variable `TEST_OUTPUT_DIR` in previous steps.
### Clean up
Take gaudi as example, use the below command to clean up system.
```bash
cd GenAIExamples/docker_compose/intel/hpu/gaudi
docker compose stop && docker compose rm -f
echo y | docker system prune
```
Check OOB performance data [here](/opea_release_data.md#chatqna), tuned performance data will be released soon.

View File

@@ -1,170 +0,0 @@
# ChatQnA Accuracy
ChatQnA is a Retrieval-Augmented Generation (RAG) pipeline, which can enhance generative models through external information retrieval.
For evaluating the accuracy, we use 2 latest published datasets and 10+ metrics which are popular and comprehensive:
- Dataset
- [MultiHop](https://arxiv.org/pdf/2401.15391) (English dataset)
- [CRUD](https://arxiv.org/abs/2401.17043) (Chinese dataset)
- metrics (measure accuracy of both the context retrieval and response generation)
- evaluation for retrieval/reranking
- MRR@10
- MAP@10
- Hits@10
- Hits@4
- LLM-as-a-Judge
- evaluation for the generated response from the end-to-end pipeline
- BLEU
- ROGUE(L)
- LLM-as-a-Judge
## Prerequisite
### Environment
```bash
git clone https://github.com/opea-project/GenAIEval
cd GenAIEval
pip install -r requirements.txt
pip install -e .
```
## MultiHop (English dataset)
[MultiHop-RAG](https://arxiv.org/pdf/2401.15391): a QA dataset to evaluate retrieval and reasoning across documents with metadata in the RAG pipelines. It contains 2556 queries, with evidence for each query distributed across 2 to 4 documents. The queries also involve document metadata, reflecting complex scenarios commonly found in real-world RAG applications.
### Launch Service of RAG System
Please refer to this [guide](https://github.com/opea-project/GenAIExamples/blob/main/ChatQnA/README.md) to launch the service of `ChatQnA`.
### Launch Service of LLM-as-a-Judge
To setup a LLM model, we can use [tgi-gaudi](https://github.com/huggingface/tgi-gaudi) to launch a service. For example, the follow command is to setup the [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) model on 2 Gaudi2 cards:
```
# please set your llm_port and hf_token
docker run -p {your_llm_port}:80 --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e PT_HPU_ENABLE_LAZY_COLLECTIVES=true -e OMPI_MCA_btl_vader_single_copy_mechanism=none -e HF_TOKEN={your_hf_token} --cap-add=sys_nice --ipc=host ghcr.io/huggingface/tgi-gaudi:2.0.1 --model-id mistralai/Mixtral-8x7B-Instruct-v0.1 --max-input-tokens 2048 --max-total-tokens 4096 --sharded true --num-shard 2
# for better performance, set `PREFILL_BATCH_BUCKET_SIZE`, `BATCH_BUCKET_SIZE`, `max-batch-total-tokens`, `max-batch-prefill-tokens`
docker run -p {your_llm_port}:80 --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e PT_HPU_ENABLE_LAZY_COLLECTIVES=true -e OMPI_MCA_btl_vader_single_copy_mechanism=none -e HF_TOKEN={your_hf_token} -e PREFILL_BATCH_BUCKET_SIZE=1 -e BATCH_BUCKET_SIZE=8 --cap-add=sys_nice --ipc=host ghcr.io/huggingface/tgi-gaudi:2.0.5 --model-id mistralai/Mixtral-8x7B-Instruct-v0.1 --max-input-tokens 2048 --max-total-tokens 4096 --sharded true --num-shard 2 --max-batch-total-tokens 65536 --max-batch-prefill-tokens 2048
```
### Prepare Dataset
We use the evaluation dataset from [MultiHop-RAG](https://github.com/yixuantt/MultiHop-RAG) repo, use the below command to prepare the dataset.
```bash
git clone https://github.com/yixuantt/MultiHop-RAG.git
```
### Evaluation
Use below command to run the evaluation, please note that for the first run, argument `--ingest_docs` should be added in the command to ingest the documents into the vector database, while for the subsequent run, this argument should be omitted. Set `--retrieval_metrics` to get retrieval related metrics (MRR@10/MAP@10/Hits@10/Hits@4). Set `--ragas_metrics` and `--llm_endpoint` to get end-to-end rag pipeline metrics (faithfulness/answer_relevancy/...), which are judged by LLMs. We set `--limits` is 100 as default, which means only 100 examples are evaluated by llm-as-judge as it is very time consuming.
If you are using docker compose to deploy `ChatQnA` system, you can simply run the evaluation as following:
```bash
python eval_multihop.py --docs_path MultiHop-RAG/dataset/corpus.json --dataset_path MultiHop-RAG/dataset/MultiHopRAG.json --ingest_docs --retrieval_metrics --ragas_metrics --llm_endpoint http://{llm_as_judge_ip}:{llm_as_judge_port}/generate
```
If you are using Kubernetes manifest/helm to deploy `ChatQnA` system, you must specify more arguments as following:
```bash
python eval_multihop.py --docs_path MultiHop-RAG/dataset/corpus.json --dataset_path MultiHop-RAG/dataset/MultiHopRAG.json --ingest_docs --retrieval_metrics --ragas_metrics --llm_endpoint http://{llm_as_judge_ip}:{llm_as_judge_port}/generate --database_endpoint http://{your_dataprep_ip}:{your_dataprep_port}/v1/dataprep --embedding_endpoint http://{your_embedding_ip}:{your_embedding_port}/v1/embeddings --tei_embedding_endpoint http://{your_tei_embedding_ip}:{your_tei_embedding_port} --retrieval_endpoint http://{your_retrieval_ip}:{your_retrieval_port}/v1/retrieval --service_url http://{your_chatqna_ip}:{your_chatqna_port}/v1/chatqna
```
The default values for arguments are:
|Argument|Default value|
|--------|-------------|
|service_url|http://localhost:8888/v1/chatqna|
|database_endpoint|http://localhost:6007/v1/dataprep|
|embedding_endpoint|http://localhost:6000/v1/embeddings|
|tei_embedding_endpoint|http://localhost:8090|
|retrieval_endpoint|http://localhost:7000/v1/retrieval|
|reranking_endpoint|http://localhost:8000/v1/reranking|
|output_dir|./output|
|temperature|0.1|
|max_new_tokens|1280|
|chunk_size|256|
|chunk_overlap|100|
|search_type|similarity|
|retrival_k|10|
|fetch_k|20|
|lambda_mult|0.5|
|dataset_path|None|
|docs_path|None|
|limits|100|
You can check arguments details use below command:
```bash
python eval_multihop.py --help
```
## CRUD (Chinese dataset)
[CRUD-RAG](https://arxiv.org/abs/2401.17043) is a Chinese benchmark for RAG (Retrieval-Augmented Generation) system. This example utilize CRUD-RAG for evaluating the RAG system.
### Prepare Dataset
We use the evaluation dataset from [CRUD-RAG](https://github.com/IAAR-Shanghai/CRUD_RAG) repo, use the below command to prepare the dataset.
```bash
git clone https://github.com/IAAR-Shanghai/CRUD_RAG
mkdir data/
cp CRUD_RAG/data/crud_split/split_merged.json data/
cp -r CRUD_RAG/data/80000_docs/ data/
python process_crud_dataset.py
```
### Launch Service of RAG System
Please refer to this [guide](https://github.com/opea-project/GenAIExamples/blob/main/ChatQnA/README.md) to launch the service of `ChatQnA` system. For Chinese dataset, you should replace the English emebdding and llm model with Chinese, for example, `EMBEDDING_MODEL_ID="BAAI/bge-base-zh-v1.5"` and `LLM_MODEL_ID=Qwen/Qwen2-7B-Instruct`.
### Evaluation
Use below command to run the evaluation, please note that for the first run, argument `--ingest_docs` should be added in the command to ingest the documents into the vector database, while for the subsequent run, this argument should be omitted.
If you are using docker compose to deploy `ChatQnA` system, you can simply run the evaluation as following:
```bash
python eval_crud.py --dataset_path ./data/split_merged.json --docs_path ./data/80000_docs --ingest_docs
# if you want to get ragas metrics
python eval_crud.py --dataset_path ./data/split_merged.json --docs_path ./data/80000_docs --contain_original_data --llm_endpoint "http://{llm_as_judge_ip}:{llm_as_judge_port}" --ragas_metrics
```
If you are using Kubernetes manifest/helm to deploy `ChatQnA` system, you must specify more arguments as following:
```bash
python eval_crud.py --dataset_path ./data/split_merged.json --docs_path ./data/80000_docs --ingest_docs --database_endpoint http://{your_dataprep_ip}:{your_dataprep_port}/v1/dataprep --embedding_endpoint http://{your_embedding_ip}:{your_embedding_port}/v1/embeddings --retrieval_endpoint http://{your_retrieval_ip}:{your_retrieval_port}/v1/retrieval --service_url http://{your_chatqna_ip}:{your_chatqna_port}/v1/chatqna
```
The default values for arguments are:
|Argument|Default value|
|--------|-------------|
|service_url|http://localhost:8888/v1/chatqna|
|database_endpoint|http://localhost:6007/v1/dataprep|
|embedding_endpoint|http://localhost:6000/v1/embeddings|
|retrieval_endpoint|http://localhost:7000/v1/retrieval|
|reranking_endpoint|http://localhost:8000/v1/reranking|
|output_dir|./output|
|temperature|0.1|
|max_new_tokens|1280|
|chunk_size|256|
|chunk_overlap|100|
|dataset_path|./data/split_merged.json|
|docs_path|./data/80000_docs|
|tasks|["question_answering"]|
You can check arguments details use below command:
```bash
python eval_crud.py --help
```
## Acknowledgements
This example is mostly adapted from [MultiHop-RAG](https://github.com/yixuantt/MultiHop-RAG) and [CRUD-RAG](https://github.com/IAAR-Shanghai/CRUD_RAG) repo, we thank the authors for their great work!

View File

@@ -1,210 +0,0 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import argparse
import json
import os
from evals.evaluation.rag_eval import Evaluator
from evals.evaluation.rag_eval.template import CRUDTemplate
from evals.metrics.ragas import RagasMetric
from tqdm import tqdm
class CRUD_Evaluator(Evaluator):
def get_ground_truth_text(self, data: dict):
if self.task == "summarization":
ground_truth_text = data["summary"]
elif self.task == "question_answering":
ground_truth_text = data["answers"]
elif self.task == "continuation":
ground_truth_text = data["continuing"]
elif self.task == "hallucinated_modified":
ground_truth_text = data["hallucinatedMod"]
else:
raise NotImplementedError(
f"Unknown task {self.task}, only support "
"summarization, question_answering, continuation and hallucinated_modified."
)
return ground_truth_text
def get_query(self, data: dict):
if self.task == "summarization":
query = data["text"]
elif self.task == "question_answering":
query = data["questions"]
elif self.task == "continuation":
query = data["beginning"]
elif self.task == "hallucinated_modified":
query = data["newsBeginning"]
else:
raise NotImplementedError(
f"Unknown task {self.task}, only support "
"summarization, question_answering, continuation and hallucinated_modified."
)
return query
def get_document(self, data: dict):
if self.task == "summarization":
document = data["text"]
elif self.task == "question_answering":
document = data["news1"]
elif self.task == "continuation":
document = data["beginning"]
elif self.task == "hallucinated_modified":
document = data["newsBeginning"]
else:
raise NotImplementedError(
f"Unknown task {self.task}, only support "
"summarization, question_answering, continuation and hallucinated_modified."
)
return document
def get_template(self):
if self.task == "summarization":
template = CRUDTemplate.get_summarization_template()
elif self.task == "question_answering":
template = CRUDTemplate.get_question_answering_template()
elif self.task == "continuation":
template = CRUDTemplate.get_continuation_template()
else:
raise NotImplementedError(
f"Unknown task {self.task}, only support "
"summarization, question_answering, continuation and hallucinated_modified."
)
return template
def post_process(self, result):
return result.split("<response>")[-1].split("</response>")[0].strip()
def get_ragas_metrics(self, results, arguments):
from langchain_huggingface import HuggingFaceEndpointEmbeddings
embeddings = HuggingFaceEndpointEmbeddings(model=arguments.tei_embedding_endpoint)
metric = RagasMetric(
threshold=0.5,
model=arguments.llm_endpoint,
embeddings=embeddings,
metrics=["faithfulness", "answer_relevancy"],
)
all_answer_relevancy = 0
all_faithfulness = 0
ragas_inputs = {
"question": [],
"answer": [],
"ground_truth": [],
"contexts": [],
}
valid_results = self.remove_invalid(results["results"])
for data in tqdm(valid_results):
data = data["original_data"]
query = self.get_query(data)
generated_text = data["generated_text"]
ground_truth = data["ground_truth_text"]
retrieved_documents = data["retrieved_documents"]
ragas_inputs["question"].append(query)
ragas_inputs["answer"].append(generated_text)
ragas_inputs["ground_truth"].append(ground_truth)
ragas_inputs["contexts"].append(retrieved_documents[:3])
ragas_metrics = metric.measure(ragas_inputs)
return ragas_metrics
def args_parser():
parser = argparse.ArgumentParser()
parser.add_argument(
"--service_url", type=str, default="http://localhost:8888/v1/chatqna", help="Service URL address."
)
parser.add_argument("--output_dir", type=str, default="./output", help="Directory to save evaluation results.")
parser.add_argument(
"--temperature", type=float, default=0.1, help="Controls the randomness of the model's text generation"
)
parser.add_argument(
"--max_new_tokens", type=int, default=1280, help="Maximum number of new tokens to be generated by the model"
)
parser.add_argument(
"--chunk_size", type=int, default=256, help="the maximum number of characters that a chunk can contain"
)
parser.add_argument(
"--chunk_overlap",
type=int,
default=100,
help="the number of characters that should overlap between two adjacent chunks",
)
parser.add_argument("--dataset_path", default="../data/split_merged.json", help="Path to the dataset")
parser.add_argument("--docs_path", default="../data/80000_docs", help="Path to the retrieval documents")
# Retriever related options
parser.add_argument("--tasks", default=["question_answering"], nargs="+", help="Task to perform")
parser.add_argument("--ingest_docs", action="store_true", help="Whether to ingest documents to vector database")
parser.add_argument(
"--database_endpoint", type=str, default="http://localhost:6007/v1/dataprep", help="Service URL address."
)
parser.add_argument(
"--embedding_endpoint", type=str, default="http://localhost:6000/v1/embeddings", help="Service URL address."
)
parser.add_argument(
"--retrieval_endpoint", type=str, default="http://localhost:7000/v1/retrieval", help="Service URL address."
)
parser.add_argument(
"--tei_embedding_endpoint",
type=str,
default="http://localhost:8090",
help="Service URL address of tei embedding.",
)
parser.add_argument("--ragas_metrics", action="store_true", help="Whether to compute ragas metrics.")
parser.add_argument("--llm_endpoint", type=str, default=None, help="Service URL address.")
parser.add_argument(
"--show_progress_bar", action="store", default=True, type=bool, help="Whether to show a progress bar"
)
parser.add_argument("--contain_original_data", action="store_true", help="Whether to contain original data")
args = parser.parse_args()
return args
def main():
args = args_parser()
if os.path.isfile(args.dataset_path):
with open(args.dataset_path) as f:
all_datasets = json.load(f)
else:
raise FileNotFoundError(f"Evaluation dataset file {args.dataset_path} not exist.")
os.makedirs(args.output_dir, exist_ok=True)
for task in args.tasks:
if task == "question_answering":
dataset = all_datasets["questanswer_1doc"]
elif task == "summarization":
dataset = all_datasets["event_summary"]
else:
raise NotImplementedError(
f"Unknown task {task}, only support "
"summarization, question_answering, continuation and hallucinated_modified."
)
output_save_path = os.path.join(args.output_dir, f"{task}.json")
evaluator = CRUD_Evaluator(dataset=dataset, output_path=output_save_path, task=task)
if args.ingest_docs:
CRUD_Evaluator.ingest_docs(args.docs_path, args.database_endpoint, args.chunk_size, args.chunk_overlap)
results = evaluator.evaluate(
args, show_progress_bar=args.show_progress_bar, contain_original_data=args.contain_original_data
)
print(results["overall"])
if args.ragas_metrics:
ragas_metrics = evaluator.get_ragas_metrics(results, args)
print(ragas_metrics)
print(f"Evaluation results of task {task} saved to {output_save_path}.")
if __name__ == "__main__":
main()

View File

@@ -1,279 +0,0 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import argparse
import json
import os
import requests
from evals.evaluation.rag_eval import Evaluator
from evals.metrics.ragas import RagasMetric
from evals.metrics.retrieval import RetrievalBaseMetric
from tqdm import tqdm
class MultiHop_Evaluator(Evaluator):
def get_ground_truth_text(self, data: dict):
return data["answer"]
def get_query(self, data: dict):
return data["query"]
def get_template(self):
return None
def get_reranked_documents(self, query, docs, arguments):
data = {
"initial_query": query,
"retrieved_docs": [{"text": doc} for doc in docs],
"top_n": 10,
}
headers = {"Content-Type": "application/json"}
response = requests.post(arguments.reranking_endpoint, data=json.dumps(data), headers=headers)
if response.ok:
reranked_documents = response.json()["documents"]
return reranked_documents
else:
print(f"Request for retrieval failed due to {response.text}.")
return []
def get_retrieved_documents(self, query, arguments):
data = {"inputs": query}
headers = {"Content-Type": "application/json"}
response = requests.post(arguments.tei_embedding_endpoint + "/embed", data=json.dumps(data), headers=headers)
if response.ok:
embedding = response.json()[0]
else:
print(f"Request for embedding failed due to {response.text}.")
return []
data = {
"text": query,
"embedding": embedding,
"search_type": arguments.search_type,
"k": arguments.retrival_k,
"fetch_k": arguments.fetch_k,
"lambda_mult": arguments.lambda_mult,
}
response = requests.post(arguments.retrieval_endpoint, data=json.dumps(data), headers=headers)
if response.ok:
retrieved_documents = response.json()["retrieved_docs"]
return [doc["text"] for doc in retrieved_documents]
else:
print(f"Request for retrieval failed due to {response.text}.")
return []
def get_retrieval_metrics(self, all_queries, arguments):
print("start to retrieve...")
metric = RetrievalBaseMetric()
hits_at_10 = 0
hits_at_4 = 0
map_at_10 = 0
mrr_at_10 = 0
total = 0
for data in tqdm(all_queries):
if data["question_type"] == "null_query":
continue
query = data["query"]
retrieved_documents = self.get_retrieved_documents(query, arguments)
if arguments.rerank:
retrieved_documents = self.get_reranked_documents(query, retrieved_documents, arguments)
golden_context = [each["fact"] for each in data["evidence_list"]]
test_case = {
"input": query,
"golden_context": golden_context,
"retrieval_context": retrieved_documents,
}
results = metric.measure(test_case)
hits_at_10 += results["Hits@10"]
hits_at_4 += results["Hits@4"]
map_at_10 += results["MAP@10"]
mrr_at_10 += results["MRR@10"]
total += 1
# Calculate average metrics over all queries
hits_at_10 = hits_at_10 / total
hits_at_4 = hits_at_4 / total
map_at_10 = map_at_10 / total
mrr_at_10 = mrr_at_10 / total
return {
"Hits@10": hits_at_10,
"Hits@4": hits_at_4,
"MAP@10": map_at_10,
"MRR@10": mrr_at_10,
}
def evaluate(self, all_queries, arguments):
results = []
accuracy = 0
index = 0
for data in tqdm(all_queries):
if data["question_type"] == "null_query":
continue
generated_text = self.send_request(data, arguments)
data["generated_text"] = generated_text
# same method with paper: https://github.com/yixuantt/MultiHop-RAG/issues/8
if data["answer"] in generated_text:
accuracy += 1
result = {"id": index, **self.scoring(data)}
results.append(result)
index += 1
valid_results = self.remove_invalid(results)
try:
overall = self.compute_overall(valid_results) if len(valid_results) > 0 else {}
except Exception as e:
print(repr(e))
overall = dict()
overall.update({"accuracy": accuracy / len(results)})
return overall
def get_ragas_metrics(self, all_queries, arguments):
from langchain_huggingface import HuggingFaceEndpointEmbeddings
embeddings = HuggingFaceEndpointEmbeddings(model=arguments.tei_embedding_endpoint)
metric = RagasMetric(threshold=0.5, model=arguments.llm_endpoint, embeddings=embeddings)
all_answer_relevancy = 0
all_faithfulness = 0
ragas_inputs = {
"question": [],
"answer": [],
"ground_truth": [],
"contexts": [],
}
for data in tqdm(all_queries):
if data["question_type"] == "null_query":
continue
retrieved_documents = self.get_retrieved_documents(data["query"], arguments)
generated_text = self.send_request(data, arguments)
data["generated_text"] = generated_text
ragas_inputs["question"].append(data["query"])
ragas_inputs["answer"].append(generated_text)
ragas_inputs["ground_truth"].append(data["answer"])
ragas_inputs["contexts"].append(retrieved_documents[:3])
if len(ragas_inputs["question"]) >= arguments.limits:
break
ragas_metrics = metric.measure(ragas_inputs)
return ragas_metrics
def args_parser():
parser = argparse.ArgumentParser()
parser.add_argument(
"--service_url", type=str, default="http://localhost:8888/v1/chatqna", help="Service URL address."
)
parser.add_argument("--output_dir", type=str, default="./output", help="Directory to save evaluation results.")
parser.add_argument(
"--temperature", type=float, default=0.1, help="Controls the randomness of the model's text generation"
)
parser.add_argument(
"--max_new_tokens", type=int, default=1280, help="Maximum number of new tokens to be generated by the model"
)
parser.add_argument(
"--chunk_size", type=int, default=256, help="the maximum number of characters that a chunk can contain"
)
parser.add_argument(
"--chunk_overlap",
type=int,
default=100,
help="the number of characters that should overlap between two adjacent chunks",
)
parser.add_argument("--search_type", type=str, default="similarity", help="similarity type")
parser.add_argument("--retrival_k", type=int, default=10, help="Number of Documents to return.")
parser.add_argument(
"--fetch_k", type=int, default=20, help="Number of Documents to fetch to pass to MMR algorithm."
)
parser.add_argument(
"--lambda_mult",
type=float,
default=0.5,
help="Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.",
)
parser.add_argument("--dataset_path", default=None, help="Path to the dataset")
parser.add_argument("--docs_path", default=None, help="Path to the retrieval documents")
# Retriever related options
parser.add_argument("--ingest_docs", action="store_true", help="Whether to ingest documents to vector database")
parser.add_argument("--retrieval_metrics", action="store_true", help="Whether to compute retrieval metrics.")
parser.add_argument("--ragas_metrics", action="store_true", help="Whether to compute ragas metrics.")
parser.add_argument("--limits", type=int, default=100, help="Number of examples to be evaluated by llm-as-judge")
parser.add_argument(
"--database_endpoint", type=str, default="http://localhost:6007/v1/dataprep", help="Service URL address."
)
parser.add_argument(
"--embedding_endpoint", type=str, default="http://localhost:6000/v1/embeddings", help="Service URL address."
)
parser.add_argument(
"--tei_embedding_endpoint",
type=str,
default="http://localhost:8090",
help="Service URL address of tei embedding.",
)
parser.add_argument(
"--retrieval_endpoint", type=str, default="http://localhost:7000/v1/retrieval", help="Service URL address."
)
parser.add_argument("--rerank", action="store_true", help="Whether to use rerank microservice.")
parser.add_argument(
"--reranking_endpoint", type=str, default="http://localhost:8000/v1/reranking", help="Service URL address."
)
parser.add_argument("--llm_endpoint", type=str, default=None, help="Service URL address.")
parser.add_argument(
"--show_progress_bar", action="store", default=True, type=bool, help="Whether to show a progress bar"
)
parser.add_argument("--contain_original_data", action="store_true", help="Whether to contain original data")
args = parser.parse_args()
return args
def main():
args = args_parser()
evaluator = MultiHop_Evaluator()
with open(args.docs_path, "r") as file:
doc_data = json.load(file)
documents = []
for doc in doc_data:
metadata = {"title": doc["title"], "published_at": doc["published_at"], "source": doc["source"]}
documents.append(doc["body"])
# save docs to a tmp file
tmp_corpus_file = "tmp_corpus.txt"
with open(tmp_corpus_file, "w") as f:
for doc in documents:
f.write(doc + "\n")
if args.ingest_docs:
evaluator.ingest_docs(tmp_corpus_file, args.database_endpoint, args.chunk_size, args.chunk_overlap)
with open(args.dataset_path, "r") as file:
all_queries = json.load(file)
# get retrieval quality
if args.retrieval_metrics:
retrieval_metrics = evaluator.get_retrieval_metrics(all_queries, args)
print(retrieval_metrics)
# get rag quality
if args.ragas_metrics:
ragas_metrics = evaluator.get_ragas_metrics(all_queries, args)
print(ragas_metrics)
if __name__ == "__main__":
main()

Some files were not shown because too many files have changed in this diff Show More