add gateway to GenAIExamples.

This commit is contained in:
root
2024-09-19 00:23:09 +00:00
parent 412a0b00c3
commit 79a2d55807
3 changed files with 77 additions and 1 deletions

View File

@@ -22,6 +22,7 @@ RUN pip install --no-cache-dir --upgrade pip && \
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt
COPY ./chatqna.py /home/user/chatqna.py
COPY ./gateway.py /home/user/gateway.py
ENV PYTHONPATH=$PYTHONPATH:/home/user/GenAIComps

View File

@@ -3,7 +3,8 @@
import os
from comps import ChatQnAGateway, MicroService, ServiceOrchestrator, ServiceType
from comps import MicroService, ServiceOrchestrator, ServiceType
from gateway import ChatQnAGateway
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))

74
ChatQnA/gateway.py Normal file
View File

@@ -0,0 +1,74 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
from fastapi import Request
from fastapi.responses import StreamingResponse
from comps.cores.mega.gateway import Gateway
from comps.cores.mega.constants import MegaServiceEndpoint
from comps.cores.proto.api_protocol import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseChoice,
ChatMessage,
UsageInfo,
)
from comps.cores.proto.docarray import (
LLMParams,
RerankerParms,
RetrieverParms
)
class ChatQnAGateway(Gateway):
def __init__(self, megaservice, host="0.0.0.0", port=8888):
super().__init__(
megaservice, host, port, str(MegaServiceEndpoint.CHAT_QNA), ChatCompletionRequest, ChatCompletionResponse
)
async def handle_request(self, request: Request):
data = await request.json()
stream_opt = data.get("stream", True)
chat_request = ChatCompletionRequest.parse_obj(data)
prompt = self._handle_message(chat_request.messages)
parameters = LLMParams(
max_new_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024,
top_k=chat_request.top_k if chat_request.top_k else 10,
top_p=chat_request.top_p if chat_request.top_p else 0.95,
temperature=chat_request.temperature if chat_request.temperature else 0.01,
repetition_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 1.03,
streaming=stream_opt,
chat_template=chat_request.chat_template if chat_request.chat_template else None,
)
retriever_parameters = RetrieverParms(
search_type=chat_request.search_type if chat_request.search_type else "similarity",
k=chat_request.k if chat_request.k else 4,
distance_threshold=chat_request.distance_threshold if chat_request.distance_threshold else None,
fetch_k=chat_request.fetch_k if chat_request.fetch_k else 20,
lambda_mult=chat_request.lambda_mult if chat_request.lambda_mult else 0.5,
score_threshold=chat_request.score_threshold if chat_request.score_threshold else 0.2,
)
reranker_parameters = RerankerParms(
top_n=chat_request.top_n if chat_request.top_n else 1,
)
result_dict, runtime_graph = await self.megaservice.schedule(
initial_inputs={"text": prompt},
llm_parameters=parameters,
retriever_parameters=retriever_parameters,
reranker_parameters=reranker_parameters,
)
for node, response in result_dict.items():
if isinstance(response, StreamingResponse):
return response
last_node = runtime_graph.all_leaves()[-1]
response = result_dict[last_node]["text"]
choices = []
usage = UsageInfo()
choices.append(
ChatCompletionResponseChoice(
index=0,
message=ChatMessage(role="assistant", content=response),
finish_reason="stop",
)
)
return ChatCompletionResponse(model="chatqna", choices=choices, usage=usage)