From 79a2d55807c57d57e8460e931d51aafc3c39e0cd Mon Sep 17 00:00:00 2001 From: root Date: Thu, 19 Sep 2024 00:23:09 +0000 Subject: [PATCH] add gateway to GenAIExamples. --- ChatQnA/Dockerfile | 1 + ChatQnA/chatqna.py | 3 +- ChatQnA/gateway.py | 74 ++++++++++++++++++++++++++++++++++++++++++++++ 3 files changed, 77 insertions(+), 1 deletion(-) create mode 100644 ChatQnA/gateway.py diff --git a/ChatQnA/Dockerfile b/ChatQnA/Dockerfile index 4ece0783a..1a8729a6e 100644 --- a/ChatQnA/Dockerfile +++ b/ChatQnA/Dockerfile @@ -22,6 +22,7 @@ RUN pip install --no-cache-dir --upgrade pip && \ pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt COPY ./chatqna.py /home/user/chatqna.py +COPY ./gateway.py /home/user/gateway.py ENV PYTHONPATH=$PYTHONPATH:/home/user/GenAIComps diff --git a/ChatQnA/chatqna.py b/ChatQnA/chatqna.py index 09062b5d2..0989c523f 100644 --- a/ChatQnA/chatqna.py +++ b/ChatQnA/chatqna.py @@ -3,7 +3,8 @@ import os -from comps import ChatQnAGateway, MicroService, ServiceOrchestrator, ServiceType +from comps import MicroService, ServiceOrchestrator, ServiceType +from gateway import ChatQnAGateway MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0") MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888)) diff --git a/ChatQnA/gateway.py b/ChatQnA/gateway.py new file mode 100644 index 000000000..611ae548d --- /dev/null +++ b/ChatQnA/gateway.py @@ -0,0 +1,74 @@ +# Copyright (C) 2024 Intel Corporation +# SPDX-License-Identifier: Apache-2.0 + +from fastapi import Request +from fastapi.responses import StreamingResponse + +from comps.cores.mega.gateway import Gateway +from comps.cores.mega.constants import MegaServiceEndpoint +from comps.cores.proto.api_protocol import ( + ChatCompletionRequest, + ChatCompletionResponse, + ChatCompletionResponseChoice, + ChatMessage, + UsageInfo, +) +from comps.cores.proto.docarray import ( + LLMParams, + RerankerParms, + RetrieverParms +) + + +class ChatQnAGateway(Gateway): + def __init__(self, megaservice, host="0.0.0.0", port=8888): + super().__init__( + megaservice, host, port, str(MegaServiceEndpoint.CHAT_QNA), ChatCompletionRequest, ChatCompletionResponse + ) + + async def handle_request(self, request: Request): + data = await request.json() + stream_opt = data.get("stream", True) + chat_request = ChatCompletionRequest.parse_obj(data) + prompt = self._handle_message(chat_request.messages) + parameters = LLMParams( + max_new_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024, + top_k=chat_request.top_k if chat_request.top_k else 10, + top_p=chat_request.top_p if chat_request.top_p else 0.95, + temperature=chat_request.temperature if chat_request.temperature else 0.01, + repetition_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 1.03, + streaming=stream_opt, + chat_template=chat_request.chat_template if chat_request.chat_template else None, + ) + retriever_parameters = RetrieverParms( + search_type=chat_request.search_type if chat_request.search_type else "similarity", + k=chat_request.k if chat_request.k else 4, + distance_threshold=chat_request.distance_threshold if chat_request.distance_threshold else None, + fetch_k=chat_request.fetch_k if chat_request.fetch_k else 20, + lambda_mult=chat_request.lambda_mult if chat_request.lambda_mult else 0.5, + score_threshold=chat_request.score_threshold if chat_request.score_threshold else 0.2, + ) + reranker_parameters = RerankerParms( + top_n=chat_request.top_n if chat_request.top_n else 1, + ) + result_dict, runtime_graph = await self.megaservice.schedule( + initial_inputs={"text": prompt}, + llm_parameters=parameters, + retriever_parameters=retriever_parameters, + reranker_parameters=reranker_parameters, + ) + for node, response in result_dict.items(): + if isinstance(response, StreamingResponse): + return response + last_node = runtime_graph.all_leaves()[-1] + response = result_dict[last_node]["text"] + choices = [] + usage = UsageInfo() + choices.append( + ChatCompletionResponseChoice( + index=0, + message=ChatMessage(role="assistant", content=response), + finish_reason="stop", + ) + ) + return ChatCompletionResponse(model="chatqna", choices=choices, usage=usage)