mirror of
https://github.com/langgenius/dify.git
synced 2026-02-11 11:04:01 +00:00
Compare commits
10 Commits
test/tool-
...
1.12.1-ote
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
262b7d4d08 | ||
|
|
b5dbabf5d0 | ||
|
|
aa34ec0d25 | ||
|
|
ffa8aedc48 | ||
|
|
f78b0f1f36 | ||
|
|
1b3a21e6f8 | ||
|
|
11c74d741a | ||
|
|
ea9081f22d | ||
|
|
ac8e96bd9d | ||
|
|
91a6fe25d1 |
@@ -106,10 +106,10 @@ ignore = [
|
||||
"N803", # invalid-argument-name
|
||||
]
|
||||
"tests/*" = [
|
||||
"F811", # redefined-while-unused
|
||||
"T201", # allow print in tests,
|
||||
"S110", # allow ignoring exceptions in tests code (currently)
|
||||
|
||||
"F811", # redefined-while-unused
|
||||
"T201", # allow print in tests,
|
||||
"S110", # allow ignoring exceptions in tests code (currently)
|
||||
"PT019", # @patch-injected params look like unused fixtures
|
||||
]
|
||||
"controllers/console/explore/trial.py" = ["TID251"]
|
||||
"controllers/console/human_input_form.py" = ["TID251"]
|
||||
|
||||
@@ -122,7 +122,8 @@ These commands assume you start from the repository root.
|
||||
|
||||
```bash
|
||||
cd api
|
||||
uv run celery -A app.celery worker -P threads -c 2 --loglevel INFO -Q dataset,priority_dataset,priority_pipeline,pipeline,mail,ops_trace,app_deletion,plugin,workflow_storage,conversation,workflow,schedule_poller,schedule_executor,triggered_workflow_dispatcher,trigger_refresh_executor,retention
|
||||
# Note: enterprise_telemetry queue is only used in Enterprise Edition
|
||||
uv run celery -A app.celery worker -P threads -c 2 --loglevel INFO -Q dataset,priority_dataset,priority_pipeline,pipeline,mail,ops_trace,app_deletion,plugin,workflow_storage,conversation,workflow,schedule_poller,schedule_executor,triggered_workflow_dispatcher,trigger_refresh_executor,retention,enterprise_telemetry
|
||||
```
|
||||
|
||||
1. Optional: start Celery Beat (scheduled tasks, in a new terminal).
|
||||
|
||||
@@ -81,6 +81,7 @@ def initialize_extensions(app: DifyApp):
|
||||
ext_commands,
|
||||
ext_compress,
|
||||
ext_database,
|
||||
ext_enterprise_telemetry,
|
||||
ext_fastopenapi,
|
||||
ext_forward_refs,
|
||||
ext_hosting_provider,
|
||||
@@ -131,6 +132,7 @@ def initialize_extensions(app: DifyApp):
|
||||
ext_commands,
|
||||
ext_fastopenapi,
|
||||
ext_otel,
|
||||
ext_enterprise_telemetry,
|
||||
ext_request_logging,
|
||||
ext_session_factory,
|
||||
]
|
||||
|
||||
@@ -8,7 +8,7 @@ from pydantic_settings import BaseSettings, PydanticBaseSettingsSource, Settings
|
||||
from libs.file_utils import search_file_upwards
|
||||
|
||||
from .deploy import DeploymentConfig
|
||||
from .enterprise import EnterpriseFeatureConfig
|
||||
from .enterprise import EnterpriseFeatureConfig, EnterpriseTelemetryConfig
|
||||
from .extra import ExtraServiceConfig
|
||||
from .feature import FeatureConfig
|
||||
from .middleware import MiddlewareConfig
|
||||
@@ -73,6 +73,8 @@ class DifyConfig(
|
||||
# Enterprise feature configs
|
||||
# **Before using, please contact business@dify.ai by email to inquire about licensing matters.**
|
||||
EnterpriseFeatureConfig,
|
||||
# Enterprise telemetry configs
|
||||
EnterpriseTelemetryConfig,
|
||||
):
|
||||
model_config = SettingsConfigDict(
|
||||
# read from dotenv format config file
|
||||
|
||||
@@ -18,3 +18,50 @@ class EnterpriseFeatureConfig(BaseSettings):
|
||||
description="Allow customization of the enterprise logo.",
|
||||
default=False,
|
||||
)
|
||||
|
||||
|
||||
class EnterpriseTelemetryConfig(BaseSettings):
|
||||
"""
|
||||
Configuration for enterprise telemetry.
|
||||
"""
|
||||
|
||||
ENTERPRISE_TELEMETRY_ENABLED: bool = Field(
|
||||
description="Enable enterprise telemetry collection (also requires ENTERPRISE_ENABLED=true).",
|
||||
default=False,
|
||||
)
|
||||
|
||||
ENTERPRISE_OTLP_ENDPOINT: str = Field(
|
||||
description="Enterprise OTEL collector endpoint.",
|
||||
default="",
|
||||
)
|
||||
|
||||
ENTERPRISE_OTLP_HEADERS: str = Field(
|
||||
description="Auth headers for OTLP export (key=value,key2=value2).",
|
||||
default="",
|
||||
)
|
||||
|
||||
ENTERPRISE_OTLP_PROTOCOL: str = Field(
|
||||
description="OTLP protocol: 'http' or 'grpc' (default: http).",
|
||||
default="http",
|
||||
)
|
||||
|
||||
ENTERPRISE_OTLP_API_KEY: str = Field(
|
||||
description="Bearer token for enterprise OTLP export authentication. "
|
||||
"When set, gRPC exporters automatically use TLS (insecure=False).",
|
||||
default="",
|
||||
)
|
||||
|
||||
ENTERPRISE_INCLUDE_CONTENT: bool = Field(
|
||||
description="Include input/output content in traces (privacy toggle).",
|
||||
default=True,
|
||||
)
|
||||
|
||||
ENTERPRISE_SERVICE_NAME: str = Field(
|
||||
description="Service name for OTEL resource.",
|
||||
default="dify",
|
||||
)
|
||||
|
||||
ENTERPRISE_OTEL_SAMPLING_RATE: float = Field(
|
||||
description="Sampling rate for enterprise traces (0.0 to 1.0, default 1.0 = 100%).",
|
||||
default=1.0,
|
||||
)
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
from collections.abc import Sequence
|
||||
from typing import Any
|
||||
|
||||
from flask_restx import Resource
|
||||
from pydantic import BaseModel, Field
|
||||
@@ -11,12 +12,10 @@ from controllers.console.app.error import (
|
||||
ProviderQuotaExceededError,
|
||||
)
|
||||
from controllers.console.wraps import account_initialization_required, setup_required
|
||||
from core.app.app_config.entities import ModelConfig
|
||||
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
|
||||
from core.helper.code_executor.code_node_provider import CodeNodeProvider
|
||||
from core.helper.code_executor.javascript.javascript_code_provider import JavascriptCodeProvider
|
||||
from core.helper.code_executor.python3.python3_code_provider import Python3CodeProvider
|
||||
from core.llm_generator.entities import RuleCodeGeneratePayload, RuleGeneratePayload, RuleStructuredOutputPayload
|
||||
from core.llm_generator.llm_generator import LLMGenerator
|
||||
from core.model_runtime.errors.invoke import InvokeError
|
||||
from extensions.ext_database import db
|
||||
@@ -27,14 +26,32 @@ from services.workflow_service import WorkflowService
|
||||
DEFAULT_REF_TEMPLATE_SWAGGER_2_0 = "#/definitions/{model}"
|
||||
|
||||
|
||||
class RuleGeneratePayload(BaseModel):
|
||||
instruction: str = Field(..., description="Rule generation instruction")
|
||||
model_config_data: dict[str, Any] = Field(..., alias="model_config", description="Model configuration")
|
||||
no_variable: bool = Field(default=False, description="Whether to exclude variables")
|
||||
app_id: str | None = Field(default=None, description="App ID for prompt generation tracing")
|
||||
|
||||
|
||||
class RuleCodeGeneratePayload(RuleGeneratePayload):
|
||||
code_language: str = Field(default="javascript", description="Programming language for code generation")
|
||||
|
||||
|
||||
class RuleStructuredOutputPayload(BaseModel):
|
||||
instruction: str = Field(..., description="Structured output generation instruction")
|
||||
model_config_data: dict[str, Any] = Field(..., alias="model_config", description="Model configuration")
|
||||
app_id: str | None = Field(default=None, description="App ID for prompt generation tracing")
|
||||
|
||||
|
||||
class InstructionGeneratePayload(BaseModel):
|
||||
flow_id: str = Field(..., description="Workflow/Flow ID")
|
||||
node_id: str = Field(default="", description="Node ID for workflow context")
|
||||
current: str = Field(default="", description="Current instruction text")
|
||||
language: str = Field(default="javascript", description="Programming language (javascript/python)")
|
||||
instruction: str = Field(..., description="Instruction for generation")
|
||||
model_config_data: ModelConfig = Field(..., alias="model_config", description="Model configuration")
|
||||
model_config_data: dict[str, Any] = Field(..., alias="model_config", description="Model configuration")
|
||||
ideal_output: str = Field(default="", description="Expected ideal output")
|
||||
app_id: str | None = Field(default=None, description="App ID for prompt generation tracing")
|
||||
|
||||
|
||||
class InstructionTemplatePayload(BaseModel):
|
||||
@@ -50,7 +67,6 @@ reg(RuleCodeGeneratePayload)
|
||||
reg(RuleStructuredOutputPayload)
|
||||
reg(InstructionGeneratePayload)
|
||||
reg(InstructionTemplatePayload)
|
||||
reg(ModelConfig)
|
||||
|
||||
|
||||
@console_ns.route("/rule-generate")
|
||||
@@ -66,10 +82,17 @@ class RuleGenerateApi(Resource):
|
||||
@account_initialization_required
|
||||
def post(self):
|
||||
args = RuleGeneratePayload.model_validate(console_ns.payload)
|
||||
_, current_tenant_id = current_account_with_tenant()
|
||||
account, current_tenant_id = current_account_with_tenant()
|
||||
|
||||
try:
|
||||
rules = LLMGenerator.generate_rule_config(tenant_id=current_tenant_id, args=args)
|
||||
rules = LLMGenerator.generate_rule_config(
|
||||
tenant_id=current_tenant_id,
|
||||
instruction=args.instruction,
|
||||
model_config=args.model_config_data,
|
||||
no_variable=args.no_variable,
|
||||
user_id=account.id,
|
||||
app_id=args.app_id,
|
||||
)
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
except QuotaExceededError:
|
||||
@@ -95,12 +118,16 @@ class RuleCodeGenerateApi(Resource):
|
||||
@account_initialization_required
|
||||
def post(self):
|
||||
args = RuleCodeGeneratePayload.model_validate(console_ns.payload)
|
||||
_, current_tenant_id = current_account_with_tenant()
|
||||
account, current_tenant_id = current_account_with_tenant()
|
||||
|
||||
try:
|
||||
code_result = LLMGenerator.generate_code(
|
||||
tenant_id=current_tenant_id,
|
||||
args=args,
|
||||
instruction=args.instruction,
|
||||
model_config=args.model_config_data,
|
||||
code_language=args.code_language,
|
||||
user_id=account.id,
|
||||
app_id=args.app_id,
|
||||
)
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
@@ -127,12 +154,15 @@ class RuleStructuredOutputGenerateApi(Resource):
|
||||
@account_initialization_required
|
||||
def post(self):
|
||||
args = RuleStructuredOutputPayload.model_validate(console_ns.payload)
|
||||
_, current_tenant_id = current_account_with_tenant()
|
||||
account, current_tenant_id = current_account_with_tenant()
|
||||
|
||||
try:
|
||||
structured_output = LLMGenerator.generate_structured_output(
|
||||
tenant_id=current_tenant_id,
|
||||
args=args,
|
||||
instruction=args.instruction,
|
||||
model_config=args.model_config_data,
|
||||
user_id=account.id,
|
||||
app_id=args.app_id,
|
||||
)
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
@@ -159,14 +189,14 @@ class InstructionGenerateApi(Resource):
|
||||
@account_initialization_required
|
||||
def post(self):
|
||||
args = InstructionGeneratePayload.model_validate(console_ns.payload)
|
||||
_, current_tenant_id = current_account_with_tenant()
|
||||
account, current_tenant_id = current_account_with_tenant()
|
||||
app_id = args.app_id or args.flow_id
|
||||
providers: list[type[CodeNodeProvider]] = [Python3CodeProvider, JavascriptCodeProvider]
|
||||
code_provider: type[CodeNodeProvider] | None = next(
|
||||
(p for p in providers if p.is_accept_language(args.language)), None
|
||||
)
|
||||
code_template = code_provider.get_default_code() if code_provider else ""
|
||||
try:
|
||||
# Generate from nothing for a workflow node
|
||||
if (args.current in (code_template, "")) and args.node_id != "":
|
||||
app = db.session.query(App).where(App.id == args.flow_id).first()
|
||||
if not app:
|
||||
@@ -183,33 +213,33 @@ class InstructionGenerateApi(Resource):
|
||||
case "llm":
|
||||
return LLMGenerator.generate_rule_config(
|
||||
current_tenant_id,
|
||||
args=RuleGeneratePayload(
|
||||
instruction=args.instruction,
|
||||
model_config=args.model_config_data,
|
||||
no_variable=True,
|
||||
),
|
||||
instruction=args.instruction,
|
||||
model_config=args.model_config_data,
|
||||
no_variable=True,
|
||||
user_id=account.id,
|
||||
app_id=app_id,
|
||||
)
|
||||
case "agent":
|
||||
return LLMGenerator.generate_rule_config(
|
||||
current_tenant_id,
|
||||
args=RuleGeneratePayload(
|
||||
instruction=args.instruction,
|
||||
model_config=args.model_config_data,
|
||||
no_variable=True,
|
||||
),
|
||||
instruction=args.instruction,
|
||||
model_config=args.model_config_data,
|
||||
no_variable=True,
|
||||
user_id=account.id,
|
||||
app_id=app_id,
|
||||
)
|
||||
case "code":
|
||||
return LLMGenerator.generate_code(
|
||||
tenant_id=current_tenant_id,
|
||||
args=RuleCodeGeneratePayload(
|
||||
instruction=args.instruction,
|
||||
model_config=args.model_config_data,
|
||||
code_language=args.language,
|
||||
),
|
||||
instruction=args.instruction,
|
||||
model_config=args.model_config_data,
|
||||
code_language=args.language,
|
||||
user_id=account.id,
|
||||
app_id=app_id,
|
||||
)
|
||||
case _:
|
||||
return {"error": f"invalid node type: {node_type}"}
|
||||
if args.node_id == "" and args.current != "": # For legacy app without a workflow
|
||||
if args.node_id == "" and args.current != "":
|
||||
return LLMGenerator.instruction_modify_legacy(
|
||||
tenant_id=current_tenant_id,
|
||||
flow_id=args.flow_id,
|
||||
@@ -217,8 +247,10 @@ class InstructionGenerateApi(Resource):
|
||||
instruction=args.instruction,
|
||||
model_config=args.model_config_data,
|
||||
ideal_output=args.ideal_output,
|
||||
user_id=account.id,
|
||||
app_id=app_id,
|
||||
)
|
||||
if args.node_id != "" and args.current != "": # For workflow node
|
||||
if args.node_id != "" and args.current != "":
|
||||
return LLMGenerator.instruction_modify_workflow(
|
||||
tenant_id=current_tenant_id,
|
||||
flow_id=args.flow_id,
|
||||
@@ -228,6 +260,8 @@ class InstructionGenerateApi(Resource):
|
||||
model_config=args.model_config_data,
|
||||
ideal_output=args.ideal_output,
|
||||
workflow_service=WorkflowService(),
|
||||
user_id=account.id,
|
||||
app_id=app_id,
|
||||
)
|
||||
return {"error": "incompatible parameters"}, 400
|
||||
except ProviderTokenNotInitError as ex:
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
from typing import Any
|
||||
|
||||
from flask import request
|
||||
from flask_login import current_user
|
||||
from flask_restx import Resource, fields
|
||||
from pydantic import BaseModel, Field
|
||||
from werkzeug.exceptions import BadRequest
|
||||
@@ -77,7 +78,10 @@ class TraceAppConfigApi(Resource):
|
||||
|
||||
try:
|
||||
result = OpsService.create_tracing_app_config(
|
||||
app_id=app_id, tracing_provider=args.tracing_provider, tracing_config=args.tracing_config
|
||||
app_id=app_id,
|
||||
tracing_provider=args.tracing_provider,
|
||||
tracing_config=args.tracing_config,
|
||||
account_id=current_user.id,
|
||||
)
|
||||
if not result:
|
||||
raise TracingConfigIsExist()
|
||||
@@ -102,7 +106,10 @@ class TraceAppConfigApi(Resource):
|
||||
|
||||
try:
|
||||
result = OpsService.update_tracing_app_config(
|
||||
app_id=app_id, tracing_provider=args.tracing_provider, tracing_config=args.tracing_config
|
||||
app_id=app_id,
|
||||
tracing_provider=args.tracing_provider,
|
||||
tracing_config=args.tracing_config,
|
||||
account_id=current_user.id,
|
||||
)
|
||||
if not result:
|
||||
raise TracingConfigNotExist()
|
||||
@@ -124,7 +131,9 @@ class TraceAppConfigApi(Resource):
|
||||
args = TraceProviderQuery.model_validate(request.args.to_dict(flat=True)) # type: ignore
|
||||
|
||||
try:
|
||||
result = OpsService.delete_tracing_app_config(app_id=app_id, tracing_provider=args.tracing_provider)
|
||||
result = OpsService.delete_tracing_app_config(
|
||||
app_id=app_id, tracing_provider=args.tracing_provider, account_id=current_user.id
|
||||
)
|
||||
if not result:
|
||||
raise TracingConfigNotExist()
|
||||
return {"result": "success"}, 204
|
||||
|
||||
@@ -79,7 +79,7 @@ class BaseAgentRunner(AppRunner):
|
||||
self.model_instance = model_instance
|
||||
|
||||
# init callback
|
||||
self.agent_callback = DifyAgentCallbackHandler()
|
||||
self.agent_callback = DifyAgentCallbackHandler(tenant_id=tenant_id)
|
||||
# init dataset tools
|
||||
hit_callback = DatasetIndexToolCallbackHandler(
|
||||
queue_manager=queue_manager,
|
||||
|
||||
@@ -63,6 +63,8 @@ from core.base.tts import AppGeneratorTTSPublisher, AudioTrunk
|
||||
from core.model_runtime.entities.llm_entities import LLMUsage
|
||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||
from core.ops.ops_trace_manager import TraceQueueManager
|
||||
from core.telemetry import TelemetryContext, TelemetryEvent, TraceTaskName
|
||||
from core.telemetry import emit as telemetry_emit
|
||||
from core.workflow.enums import WorkflowExecutionStatus
|
||||
from core.workflow.nodes import NodeType
|
||||
from core.workflow.repositories.draft_variable_repository import DraftVariableSaverFactory
|
||||
@@ -564,7 +566,6 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
|
||||
**kwargs,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle stop events."""
|
||||
_ = trace_manager
|
||||
resolved_state = None
|
||||
if self._workflow_run_id:
|
||||
resolved_state = self._resolve_graph_runtime_state(graph_runtime_state)
|
||||
@@ -579,8 +580,7 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
|
||||
)
|
||||
|
||||
with self._database_session() as session:
|
||||
# Save message
|
||||
self._save_message(session=session, graph_runtime_state=resolved_state)
|
||||
self._save_message(session=session, graph_runtime_state=resolved_state, trace_manager=trace_manager)
|
||||
|
||||
yield workflow_finish_resp
|
||||
elif event.stopped_by in (
|
||||
@@ -589,8 +589,7 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
|
||||
):
|
||||
# When hitting input-moderation or annotation-reply, the workflow will not start
|
||||
with self._database_session() as session:
|
||||
# Save message
|
||||
self._save_message(session=session)
|
||||
self._save_message(session=session, trace_manager=trace_manager)
|
||||
|
||||
yield self._message_end_to_stream_response()
|
||||
|
||||
@@ -599,6 +598,7 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
|
||||
event: QueueAdvancedChatMessageEndEvent,
|
||||
*,
|
||||
graph_runtime_state: GraphRuntimeState | None = None,
|
||||
trace_manager: TraceQueueManager | None = None,
|
||||
**kwargs,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle advanced chat message end events."""
|
||||
@@ -616,7 +616,7 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
|
||||
|
||||
# Save message
|
||||
with self._database_session() as session:
|
||||
self._save_message(session=session, graph_runtime_state=resolved_state)
|
||||
self._save_message(session=session, graph_runtime_state=resolved_state, trace_manager=trace_manager)
|
||||
|
||||
yield self._message_end_to_stream_response()
|
||||
|
||||
@@ -770,7 +770,13 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
|
||||
if self._conversation_name_generate_thread:
|
||||
logger.debug("Conversation name generation running as daemon thread")
|
||||
|
||||
def _save_message(self, *, session: Session, graph_runtime_state: GraphRuntimeState | None = None):
|
||||
def _save_message(
|
||||
self,
|
||||
*,
|
||||
session: Session,
|
||||
graph_runtime_state: GraphRuntimeState | None = None,
|
||||
trace_manager: TraceQueueManager | None = None,
|
||||
):
|
||||
message = self._get_message(session=session)
|
||||
|
||||
# If there are assistant files, remove markdown image links from answer
|
||||
@@ -826,6 +832,22 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
|
||||
]
|
||||
session.add_all(message_files)
|
||||
|
||||
if trace_manager:
|
||||
telemetry_emit(
|
||||
TelemetryEvent(
|
||||
name=TraceTaskName.MESSAGE_TRACE,
|
||||
context=TelemetryContext(
|
||||
tenant_id=self._application_generate_entity.app_config.tenant_id,
|
||||
app_id=self._application_generate_entity.app_config.app_id,
|
||||
),
|
||||
payload={
|
||||
"conversation_id": str(message.conversation_id),
|
||||
"message_id": str(message.id),
|
||||
},
|
||||
),
|
||||
trace_manager=trace_manager,
|
||||
)
|
||||
|
||||
def _seed_graph_runtime_state_from_queue_manager(self) -> None:
|
||||
"""Bootstrap the cached runtime state from the queue manager when present."""
|
||||
candidate = self._base_task_pipeline.queue_manager.graph_runtime_state
|
||||
|
||||
@@ -147,9 +147,12 @@ class WorkflowAppGenerator(BaseAppGenerator):
|
||||
|
||||
inputs: Mapping[str, Any] = args["inputs"]
|
||||
|
||||
extras = {
|
||||
extras: dict[str, Any] = {
|
||||
**extract_external_trace_id_from_args(args),
|
||||
}
|
||||
parent_trace_context = args.get("_parent_trace_context")
|
||||
if parent_trace_context:
|
||||
extras["parent_trace_context"] = parent_trace_context
|
||||
workflow_run_id = str(uuid.uuid4())
|
||||
# FIXME (Yeuoly): we need to remove the SKIP_PREPARE_USER_INPUTS_KEY from the args
|
||||
# trigger shouldn't prepare user inputs
|
||||
|
||||
@@ -52,10 +52,11 @@ from core.model_runtime.entities.message_entities import (
|
||||
TextPromptMessageContent,
|
||||
)
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.ops.entities.trace_entity import TraceTaskName
|
||||
from core.ops.ops_trace_manager import TraceQueueManager, TraceTask
|
||||
from core.ops.ops_trace_manager import TraceQueueManager
|
||||
from core.prompt.utils.prompt_message_util import PromptMessageUtil
|
||||
from core.prompt.utils.prompt_template_parser import PromptTemplateParser
|
||||
from core.telemetry import TelemetryContext, TelemetryEvent, TraceTaskName
|
||||
from core.telemetry import emit as telemetry_emit
|
||||
from events.message_event import message_was_created
|
||||
from extensions.ext_database import db
|
||||
from libs.datetime_utils import naive_utc_now
|
||||
@@ -409,10 +410,19 @@ class EasyUIBasedGenerateTaskPipeline(BasedGenerateTaskPipeline):
|
||||
message.message_metadata = self._task_state.metadata.model_dump_json()
|
||||
|
||||
if trace_manager:
|
||||
trace_manager.add_trace_task(
|
||||
TraceTask(
|
||||
TraceTaskName.MESSAGE_TRACE, conversation_id=self._conversation_id, message_id=self._message_id
|
||||
)
|
||||
telemetry_emit(
|
||||
TelemetryEvent(
|
||||
name=TraceTaskName.MESSAGE_TRACE,
|
||||
context=TelemetryContext(
|
||||
tenant_id=self._application_generate_entity.app_config.tenant_id,
|
||||
app_id=self._application_generate_entity.app_config.app_id,
|
||||
),
|
||||
payload={
|
||||
"conversation_id": self._conversation_id,
|
||||
"message_id": self._message_id,
|
||||
},
|
||||
),
|
||||
trace_manager=trace_manager,
|
||||
)
|
||||
|
||||
message_was_created.send(
|
||||
|
||||
@@ -15,8 +15,7 @@ from datetime import datetime
|
||||
from typing import Any, Union
|
||||
|
||||
from core.app.entities.app_invoke_entities import AdvancedChatAppGenerateEntity, WorkflowAppGenerateEntity
|
||||
from core.ops.entities.trace_entity import TraceTaskName
|
||||
from core.ops.ops_trace_manager import TraceQueueManager, TraceTask
|
||||
from core.ops.ops_trace_manager import TraceQueueManager
|
||||
from core.workflow.constants import SYSTEM_VARIABLE_NODE_ID
|
||||
from core.workflow.entities import WorkflowExecution, WorkflowNodeExecution
|
||||
from core.workflow.enums import (
|
||||
@@ -373,6 +372,7 @@ class WorkflowPersistenceLayer(GraphEngineLayer):
|
||||
|
||||
self._workflow_node_execution_repository.save(domain_execution)
|
||||
self._workflow_node_execution_repository.save_execution_data(domain_execution)
|
||||
self._enqueue_node_trace_task(domain_execution)
|
||||
|
||||
def _fail_running_node_executions(self, *, error_message: str) -> None:
|
||||
now = naive_utc_now()
|
||||
@@ -390,17 +390,131 @@ class WorkflowPersistenceLayer(GraphEngineLayer):
|
||||
|
||||
conversation_id = self._system_variables().get(SystemVariableKey.CONVERSATION_ID.value)
|
||||
external_trace_id = None
|
||||
parent_trace_context = None
|
||||
if isinstance(self._application_generate_entity, (WorkflowAppGenerateEntity, AdvancedChatAppGenerateEntity)):
|
||||
external_trace_id = self._application_generate_entity.extras.get("external_trace_id")
|
||||
parent_trace_context = self._application_generate_entity.extras.get("parent_trace_context")
|
||||
|
||||
trace_task = TraceTask(
|
||||
TraceTaskName.WORKFLOW_TRACE,
|
||||
workflow_execution=execution,
|
||||
conversation_id=conversation_id,
|
||||
user_id=self._trace_manager.user_id,
|
||||
external_trace_id=external_trace_id,
|
||||
from core.telemetry import TelemetryContext, TelemetryEvent, TraceTaskName
|
||||
from core.telemetry import emit as telemetry_emit
|
||||
|
||||
telemetry_emit(
|
||||
TelemetryEvent(
|
||||
name=TraceTaskName.WORKFLOW_TRACE,
|
||||
context=TelemetryContext(
|
||||
tenant_id=self._application_generate_entity.app_config.tenant_id,
|
||||
user_id=self._trace_manager.user_id,
|
||||
app_id=self._application_generate_entity.app_config.app_id,
|
||||
),
|
||||
payload={
|
||||
"workflow_execution": execution,
|
||||
"conversation_id": conversation_id,
|
||||
"user_id": self._trace_manager.user_id,
|
||||
"external_trace_id": external_trace_id,
|
||||
"parent_trace_context": parent_trace_context,
|
||||
},
|
||||
),
|
||||
trace_manager=self._trace_manager,
|
||||
)
|
||||
|
||||
def _enqueue_node_trace_task(self, domain_execution: WorkflowNodeExecution) -> None:
|
||||
if not self._trace_manager:
|
||||
return
|
||||
|
||||
execution = self._get_workflow_execution()
|
||||
meta = domain_execution.metadata or {}
|
||||
|
||||
parent_trace_context = None
|
||||
if isinstance(self._application_generate_entity, (WorkflowAppGenerateEntity, AdvancedChatAppGenerateEntity)):
|
||||
parent_trace_context = self._application_generate_entity.extras.get("parent_trace_context")
|
||||
|
||||
node_data: dict[str, Any] = {
|
||||
"workflow_id": domain_execution.workflow_id,
|
||||
"workflow_execution_id": execution.id_,
|
||||
"tenant_id": self._application_generate_entity.app_config.tenant_id,
|
||||
"app_id": self._application_generate_entity.app_config.app_id,
|
||||
"node_execution_id": domain_execution.id,
|
||||
"node_id": domain_execution.node_id,
|
||||
"node_type": str(domain_execution.node_type.value),
|
||||
"title": domain_execution.title,
|
||||
"status": str(domain_execution.status.value),
|
||||
"error": domain_execution.error,
|
||||
"elapsed_time": domain_execution.elapsed_time,
|
||||
"index": domain_execution.index,
|
||||
"predecessor_node_id": domain_execution.predecessor_node_id,
|
||||
"created_at": domain_execution.created_at,
|
||||
"finished_at": domain_execution.finished_at,
|
||||
"total_tokens": meta.get(WorkflowNodeExecutionMetadataKey.TOTAL_TOKENS, 0),
|
||||
"prompt_tokens": meta.get(WorkflowNodeExecutionMetadataKey.PROMPT_TOKENS),
|
||||
"completion_tokens": meta.get(WorkflowNodeExecutionMetadataKey.COMPLETION_TOKENS),
|
||||
"total_price": meta.get(WorkflowNodeExecutionMetadataKey.TOTAL_PRICE, 0.0),
|
||||
"currency": meta.get(WorkflowNodeExecutionMetadataKey.CURRENCY),
|
||||
"tool_name": (meta.get(WorkflowNodeExecutionMetadataKey.TOOL_INFO) or {}).get("tool_name")
|
||||
if isinstance(meta.get(WorkflowNodeExecutionMetadataKey.TOOL_INFO), dict)
|
||||
else None,
|
||||
"iteration_id": meta.get(WorkflowNodeExecutionMetadataKey.ITERATION_ID),
|
||||
"iteration_index": meta.get(WorkflowNodeExecutionMetadataKey.ITERATION_INDEX),
|
||||
"loop_id": meta.get(WorkflowNodeExecutionMetadataKey.LOOP_ID),
|
||||
"loop_index": meta.get(WorkflowNodeExecutionMetadataKey.LOOP_INDEX),
|
||||
"parallel_id": meta.get(WorkflowNodeExecutionMetadataKey.PARALLEL_ID),
|
||||
"node_inputs": dict(domain_execution.inputs) if domain_execution.inputs else None,
|
||||
"node_outputs": dict(domain_execution.outputs) if domain_execution.outputs else None,
|
||||
"process_data": dict(domain_execution.process_data) if domain_execution.process_data else None,
|
||||
}
|
||||
node_data["invoke_from"] = self._application_generate_entity.invoke_from.value
|
||||
node_data["user_id"] = self._system_variables().get(SystemVariableKey.USER_ID.value)
|
||||
|
||||
if domain_execution.node_type.value == "knowledge-retrieval" and domain_execution.outputs:
|
||||
results = domain_execution.outputs.get("result") or []
|
||||
dataset_ids: list[str] = []
|
||||
dataset_names: list[str] = []
|
||||
for doc in results:
|
||||
if not isinstance(doc, dict):
|
||||
continue
|
||||
doc_meta = doc.get("metadata") or {}
|
||||
did = doc_meta.get("dataset_id")
|
||||
dname = doc_meta.get("dataset_name")
|
||||
if did and did not in dataset_ids:
|
||||
dataset_ids.append(did)
|
||||
if dname and dname not in dataset_names:
|
||||
dataset_names.append(dname)
|
||||
if dataset_ids:
|
||||
node_data["dataset_ids"] = dataset_ids
|
||||
if dataset_names:
|
||||
node_data["dataset_names"] = dataset_names
|
||||
|
||||
tool_info = meta.get(WorkflowNodeExecutionMetadataKey.TOOL_INFO)
|
||||
if isinstance(tool_info, dict):
|
||||
plugin_id = tool_info.get("plugin_unique_identifier")
|
||||
if plugin_id:
|
||||
node_data["plugin_name"] = plugin_id
|
||||
credential_id = tool_info.get("credential_id")
|
||||
if credential_id:
|
||||
node_data["credential_id"] = credential_id
|
||||
node_data["credential_provider_type"] = tool_info.get("provider_type")
|
||||
|
||||
conversation_id = self._system_variables().get(SystemVariableKey.CONVERSATION_ID.value)
|
||||
if conversation_id:
|
||||
node_data["conversation_id"] = conversation_id
|
||||
|
||||
if parent_trace_context:
|
||||
node_data["parent_trace_context"] = parent_trace_context
|
||||
|
||||
from core.telemetry import TelemetryContext, TelemetryEvent, TraceTaskName
|
||||
from core.telemetry import emit as telemetry_emit
|
||||
|
||||
telemetry_emit(
|
||||
TelemetryEvent(
|
||||
name=TraceTaskName.NODE_EXECUTION_TRACE,
|
||||
context=TelemetryContext(
|
||||
tenant_id=node_data.get("tenant_id"),
|
||||
user_id=node_data.get("user_id"),
|
||||
app_id=node_data.get("app_id"),
|
||||
),
|
||||
payload={"node_execution_data": node_data},
|
||||
),
|
||||
trace_manager=self._trace_manager,
|
||||
)
|
||||
self._trace_manager.add_trace_task(trace_task)
|
||||
|
||||
def _system_variables(self) -> Mapping[str, Any]:
|
||||
runtime_state = self.graph_runtime_state
|
||||
|
||||
@@ -4,8 +4,9 @@ from typing import Any, TextIO, Union
|
||||
from pydantic import BaseModel
|
||||
|
||||
from configs import dify_config
|
||||
from core.ops.entities.trace_entity import TraceTaskName
|
||||
from core.ops.ops_trace_manager import TraceQueueManager, TraceTask
|
||||
from core.ops.ops_trace_manager import TraceQueueManager
|
||||
from core.telemetry import TelemetryContext, TelemetryEvent, TraceTaskName
|
||||
from core.telemetry import emit as telemetry_emit
|
||||
from core.tools.entities.tool_entities import ToolInvokeMessage
|
||||
|
||||
_TEXT_COLOR_MAPPING = {
|
||||
@@ -36,13 +37,15 @@ class DifyAgentCallbackHandler(BaseModel):
|
||||
|
||||
color: str | None = ""
|
||||
current_loop: int = 1
|
||||
tenant_id: str | None = None
|
||||
|
||||
def __init__(self, color: str | None = None):
|
||||
def __init__(self, color: str | None = None, tenant_id: str | None = None):
|
||||
super().__init__()
|
||||
"""Initialize callback handler."""
|
||||
# use a specific color is not specified
|
||||
self.color = color or "green"
|
||||
self.current_loop = 1
|
||||
self.tenant_id = tenant_id
|
||||
|
||||
def on_tool_start(
|
||||
self,
|
||||
@@ -71,15 +74,23 @@ class DifyAgentCallbackHandler(BaseModel):
|
||||
print_text("\n")
|
||||
|
||||
if trace_manager:
|
||||
trace_manager.add_trace_task(
|
||||
TraceTask(
|
||||
TraceTaskName.TOOL_TRACE,
|
||||
message_id=message_id,
|
||||
tool_name=tool_name,
|
||||
tool_inputs=tool_inputs,
|
||||
tool_outputs=tool_outputs,
|
||||
timer=timer,
|
||||
)
|
||||
telemetry_emit(
|
||||
TelemetryEvent(
|
||||
name=TraceTaskName.TOOL_TRACE,
|
||||
context=TelemetryContext(
|
||||
tenant_id=self.tenant_id,
|
||||
app_id=trace_manager.app_id,
|
||||
user_id=trace_manager.user_id,
|
||||
),
|
||||
payload={
|
||||
"message_id": message_id,
|
||||
"tool_name": tool_name,
|
||||
"tool_inputs": tool_inputs,
|
||||
"tool_outputs": tool_outputs,
|
||||
"timer": timer,
|
||||
},
|
||||
),
|
||||
trace_manager=trace_manager,
|
||||
)
|
||||
|
||||
def on_tool_error(self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any):
|
||||
|
||||
@@ -6,8 +6,6 @@ from typing import Protocol, cast
|
||||
|
||||
import json_repair
|
||||
|
||||
from core.app.app_config.entities import ModelConfig
|
||||
from core.llm_generator.entities import RuleCodeGeneratePayload, RuleGeneratePayload, RuleStructuredOutputPayload
|
||||
from core.llm_generator.output_parser.rule_config_generator import RuleConfigGeneratorOutputParser
|
||||
from core.llm_generator.output_parser.suggested_questions_after_answer import SuggestedQuestionsAfterAnswerOutputParser
|
||||
from core.llm_generator.prompts import (
|
||||
@@ -27,10 +25,11 @@ from core.model_runtime.entities.llm_entities import LLMResult
|
||||
from core.model_runtime.entities.message_entities import PromptMessage, SystemPromptMessage, UserPromptMessage
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.model_runtime.errors.invoke import InvokeAuthorizationError, InvokeError
|
||||
from core.ops.entities.trace_entity import TraceTaskName
|
||||
from core.ops.ops_trace_manager import TraceQueueManager, TraceTask
|
||||
from core.ops.entities.trace_entity import OperationType
|
||||
from core.ops.utils import measure_time
|
||||
from core.prompt.utils.prompt_template_parser import PromptTemplateParser
|
||||
from core.telemetry import TelemetryContext, TelemetryEvent, TraceTaskName
|
||||
from core.telemetry import emit as telemetry_emit
|
||||
from core.workflow.entities.workflow_node_execution import WorkflowNodeExecutionMetadataKey
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_storage import storage
|
||||
@@ -73,8 +72,8 @@ class LLMGenerator:
|
||||
response: LLMResult = model_instance.invoke_llm(
|
||||
prompt_messages=list(prompts), model_parameters={"max_tokens": 500, "temperature": 1}, stream=False
|
||||
)
|
||||
answer = response.message.get_text_content()
|
||||
if answer == "":
|
||||
answer = cast(str, response.message.content)
|
||||
if answer is None:
|
||||
return ""
|
||||
try:
|
||||
result_dict = json.loads(answer)
|
||||
@@ -96,15 +95,17 @@ class LLMGenerator:
|
||||
name = name[:75] + "..."
|
||||
|
||||
# get tracing instance
|
||||
trace_manager = TraceQueueManager(app_id=app_id)
|
||||
trace_manager.add_trace_task(
|
||||
TraceTask(
|
||||
TraceTaskName.GENERATE_NAME_TRACE,
|
||||
conversation_id=conversation_id,
|
||||
generate_conversation_name=name,
|
||||
inputs=prompt,
|
||||
timer=timer,
|
||||
tenant_id=tenant_id,
|
||||
telemetry_emit(
|
||||
TelemetryEvent(
|
||||
name=TraceTaskName.GENERATE_NAME_TRACE,
|
||||
context=TelemetryContext(tenant_id=tenant_id, app_id=app_id),
|
||||
payload={
|
||||
"conversation_id": conversation_id,
|
||||
"generate_conversation_name": name,
|
||||
"inputs": prompt,
|
||||
"timer": timer,
|
||||
"tenant_id": tenant_id,
|
||||
},
|
||||
)
|
||||
)
|
||||
|
||||
@@ -153,19 +154,27 @@ class LLMGenerator:
|
||||
return questions
|
||||
|
||||
@classmethod
|
||||
def generate_rule_config(cls, tenant_id: str, args: RuleGeneratePayload):
|
||||
def generate_rule_config(
|
||||
cls,
|
||||
tenant_id: str,
|
||||
instruction: str,
|
||||
model_config: dict,
|
||||
no_variable: bool,
|
||||
user_id: str | None = None,
|
||||
app_id: str | None = None,
|
||||
):
|
||||
output_parser = RuleConfigGeneratorOutputParser()
|
||||
|
||||
error = ""
|
||||
error_step = ""
|
||||
rule_config = {"prompt": "", "variables": [], "opening_statement": "", "error": ""}
|
||||
model_parameters = args.model_config_data.completion_params
|
||||
if args.no_variable:
|
||||
model_parameters = model_config.get("completion_params", {})
|
||||
if no_variable:
|
||||
prompt_template = PromptTemplateParser(WORKFLOW_RULE_CONFIG_PROMPT_GENERATE_TEMPLATE)
|
||||
|
||||
prompt_generate = prompt_template.format(
|
||||
inputs={
|
||||
"TASK_DESCRIPTION": args.instruction,
|
||||
"TASK_DESCRIPTION": instruction,
|
||||
},
|
||||
remove_template_variables=False,
|
||||
)
|
||||
@@ -177,26 +186,45 @@ class LLMGenerator:
|
||||
model_instance = model_manager.get_model_instance(
|
||||
tenant_id=tenant_id,
|
||||
model_type=ModelType.LLM,
|
||||
provider=args.model_config_data.provider,
|
||||
model=args.model_config_data.name,
|
||||
provider=model_config.get("provider", ""),
|
||||
model=model_config.get("name", ""),
|
||||
)
|
||||
|
||||
try:
|
||||
response: LLMResult = model_instance.invoke_llm(
|
||||
prompt_messages=list(prompt_messages), model_parameters=model_parameters, stream=False
|
||||
)
|
||||
llm_result = None
|
||||
with measure_time() as timer:
|
||||
try:
|
||||
llm_result = model_instance.invoke_llm(
|
||||
prompt_messages=list(prompt_messages), model_parameters=model_parameters, stream=False
|
||||
)
|
||||
|
||||
rule_config["prompt"] = response.message.get_text_content()
|
||||
rule_config["prompt"] = cast(str, llm_result.message.content)
|
||||
|
||||
except InvokeError as e:
|
||||
error = str(e)
|
||||
error_step = "generate rule config"
|
||||
except Exception as e:
|
||||
logger.exception("Failed to generate rule config, model: %s", args.model_config_data.name)
|
||||
rule_config["error"] = str(e)
|
||||
except InvokeError as e:
|
||||
error = str(e)
|
||||
error_step = "generate rule config"
|
||||
except Exception as e:
|
||||
logger.exception("Failed to generate rule config, model: %s", model_config.get("name"))
|
||||
rule_config["error"] = str(e)
|
||||
error = str(e)
|
||||
|
||||
rule_config["error"] = f"Failed to {error_step}. Error: {error}" if error else ""
|
||||
|
||||
if user_id:
|
||||
prompt_value = rule_config.get("prompt", "")
|
||||
generated_output = str(prompt_value) if prompt_value else ""
|
||||
cls._emit_prompt_generation_trace(
|
||||
tenant_id=tenant_id,
|
||||
user_id=user_id,
|
||||
app_id=app_id,
|
||||
operation_type=OperationType.RULE_GENERATE,
|
||||
instruction=instruction,
|
||||
generated_output=generated_output,
|
||||
llm_result=llm_result,
|
||||
model_config=model_config,
|
||||
timer=timer,
|
||||
error=error or None,
|
||||
)
|
||||
|
||||
return rule_config
|
||||
|
||||
# get rule config prompt, parameter and statement
|
||||
@@ -211,7 +239,7 @@ class LLMGenerator:
|
||||
# format the prompt_generate_prompt
|
||||
prompt_generate_prompt = prompt_template.format(
|
||||
inputs={
|
||||
"TASK_DESCRIPTION": args.instruction,
|
||||
"TASK_DESCRIPTION": instruction,
|
||||
},
|
||||
remove_template_variables=False,
|
||||
)
|
||||
@@ -222,84 +250,125 @@ class LLMGenerator:
|
||||
model_instance = model_manager.get_model_instance(
|
||||
tenant_id=tenant_id,
|
||||
model_type=ModelType.LLM,
|
||||
provider=args.model_config_data.provider,
|
||||
model=args.model_config_data.name,
|
||||
provider=model_config.get("provider", ""),
|
||||
model=model_config.get("name", ""),
|
||||
)
|
||||
|
||||
try:
|
||||
llm_result = None
|
||||
with measure_time() as timer:
|
||||
try:
|
||||
# the first step to generate the task prompt
|
||||
prompt_content: LLMResult = model_instance.invoke_llm(
|
||||
prompt_messages=list(prompt_messages), model_parameters=model_parameters, stream=False
|
||||
try:
|
||||
# the first step to generate the task prompt
|
||||
prompt_content: LLMResult = model_instance.invoke_llm(
|
||||
prompt_messages=list(prompt_messages), model_parameters=model_parameters, stream=False
|
||||
)
|
||||
llm_result = prompt_content
|
||||
except InvokeError as e:
|
||||
error = str(e)
|
||||
error_step = "generate prefix prompt"
|
||||
rule_config["error"] = f"Failed to {error_step}. Error: {error}" if error else ""
|
||||
|
||||
if user_id:
|
||||
cls._emit_prompt_generation_trace(
|
||||
tenant_id=tenant_id,
|
||||
user_id=user_id,
|
||||
app_id=app_id,
|
||||
operation_type=OperationType.RULE_GENERATE,
|
||||
instruction=instruction,
|
||||
generated_output="",
|
||||
llm_result=llm_result,
|
||||
model_config=model_config,
|
||||
timer=timer,
|
||||
error=error,
|
||||
)
|
||||
|
||||
return rule_config
|
||||
|
||||
rule_config["prompt"] = cast(str, prompt_content.message.content)
|
||||
|
||||
if not isinstance(prompt_content.message.content, str):
|
||||
raise NotImplementedError("prompt content is not a string")
|
||||
parameter_generate_prompt = parameter_template.format(
|
||||
inputs={
|
||||
"INPUT_TEXT": prompt_content.message.content,
|
||||
},
|
||||
remove_template_variables=False,
|
||||
)
|
||||
except InvokeError as e:
|
||||
error = str(e)
|
||||
error_step = "generate prefix prompt"
|
||||
rule_config["error"] = f"Failed to {error_step}. Error: {error}" if error else ""
|
||||
parameter_messages = [UserPromptMessage(content=parameter_generate_prompt)]
|
||||
|
||||
return rule_config
|
||||
|
||||
rule_config["prompt"] = prompt_content.message.get_text_content()
|
||||
|
||||
parameter_generate_prompt = parameter_template.format(
|
||||
inputs={
|
||||
"INPUT_TEXT": prompt_content.message.get_text_content(),
|
||||
},
|
||||
remove_template_variables=False,
|
||||
)
|
||||
parameter_messages = [UserPromptMessage(content=parameter_generate_prompt)]
|
||||
|
||||
# the second step to generate the task_parameter and task_statement
|
||||
statement_generate_prompt = statement_template.format(
|
||||
inputs={
|
||||
"TASK_DESCRIPTION": args.instruction,
|
||||
"INPUT_TEXT": prompt_content.message.get_text_content(),
|
||||
},
|
||||
remove_template_variables=False,
|
||||
)
|
||||
statement_messages = [UserPromptMessage(content=statement_generate_prompt)]
|
||||
|
||||
try:
|
||||
parameter_content: LLMResult = model_instance.invoke_llm(
|
||||
prompt_messages=list(parameter_messages), model_parameters=model_parameters, stream=False
|
||||
# the second step to generate the task_parameter and task_statement
|
||||
statement_generate_prompt = statement_template.format(
|
||||
inputs={
|
||||
"TASK_DESCRIPTION": instruction,
|
||||
"INPUT_TEXT": prompt_content.message.content,
|
||||
},
|
||||
remove_template_variables=False,
|
||||
)
|
||||
rule_config["variables"] = re.findall(r'"\s*([^"]+)\s*"', parameter_content.message.get_text_content())
|
||||
except InvokeError as e:
|
||||
error = str(e)
|
||||
error_step = "generate variables"
|
||||
statement_messages = [UserPromptMessage(content=statement_generate_prompt)]
|
||||
|
||||
try:
|
||||
statement_content: LLMResult = model_instance.invoke_llm(
|
||||
prompt_messages=list(statement_messages), model_parameters=model_parameters, stream=False
|
||||
)
|
||||
rule_config["opening_statement"] = statement_content.message.get_text_content()
|
||||
except InvokeError as e:
|
||||
error = str(e)
|
||||
error_step = "generate conversation opener"
|
||||
try:
|
||||
parameter_content: LLMResult = model_instance.invoke_llm(
|
||||
prompt_messages=list(parameter_messages), model_parameters=model_parameters, stream=False
|
||||
)
|
||||
rule_config["variables"] = re.findall(
|
||||
r'"\s*([^"]+)\s*"', cast(str, parameter_content.message.content)
|
||||
)
|
||||
except InvokeError as e:
|
||||
error = str(e)
|
||||
error_step = "generate variables"
|
||||
|
||||
except Exception as e:
|
||||
logger.exception("Failed to generate rule config, model: %s", args.model_config_data.name)
|
||||
rule_config["error"] = str(e)
|
||||
try:
|
||||
statement_content: LLMResult = model_instance.invoke_llm(
|
||||
prompt_messages=list(statement_messages), model_parameters=model_parameters, stream=False
|
||||
)
|
||||
rule_config["opening_statement"] = cast(str, statement_content.message.content)
|
||||
except InvokeError as e:
|
||||
error = str(e)
|
||||
error_step = "generate conversation opener"
|
||||
|
||||
except Exception as e:
|
||||
logger.exception("Failed to generate rule config, model: %s", model_config.get("name"))
|
||||
rule_config["error"] = str(e)
|
||||
error = str(e)
|
||||
|
||||
rule_config["error"] = f"Failed to {error_step}. Error: {error}" if error else ""
|
||||
|
||||
if user_id:
|
||||
generated_output = rule_config.get("prompt", "")
|
||||
cls._emit_prompt_generation_trace(
|
||||
tenant_id=tenant_id,
|
||||
user_id=user_id,
|
||||
app_id=app_id,
|
||||
operation_type=OperationType.RULE_GENERATE,
|
||||
instruction=instruction,
|
||||
generated_output=str(generated_output) if generated_output else "",
|
||||
llm_result=llm_result,
|
||||
model_config=model_config,
|
||||
timer=timer,
|
||||
error=error or None,
|
||||
)
|
||||
|
||||
return rule_config
|
||||
|
||||
@classmethod
|
||||
def generate_code(
|
||||
cls,
|
||||
tenant_id: str,
|
||||
args: RuleCodeGeneratePayload,
|
||||
instruction: str,
|
||||
model_config: dict,
|
||||
code_language: str = "javascript",
|
||||
user_id: str | None = None,
|
||||
app_id: str | None = None,
|
||||
):
|
||||
if args.code_language == "python":
|
||||
if code_language == "python":
|
||||
prompt_template = PromptTemplateParser(PYTHON_CODE_GENERATOR_PROMPT_TEMPLATE)
|
||||
else:
|
||||
prompt_template = PromptTemplateParser(JAVASCRIPT_CODE_GENERATOR_PROMPT_TEMPLATE)
|
||||
|
||||
prompt = prompt_template.format(
|
||||
inputs={
|
||||
"INSTRUCTION": args.instruction,
|
||||
"CODE_LANGUAGE": args.code_language,
|
||||
"INSTRUCTION": instruction,
|
||||
"CODE_LANGUAGE": code_language,
|
||||
},
|
||||
remove_template_variables=False,
|
||||
)
|
||||
@@ -308,28 +377,49 @@ class LLMGenerator:
|
||||
model_instance = model_manager.get_model_instance(
|
||||
tenant_id=tenant_id,
|
||||
model_type=ModelType.LLM,
|
||||
provider=args.model_config_data.provider,
|
||||
model=args.model_config_data.name,
|
||||
provider=model_config.get("provider", ""),
|
||||
model=model_config.get("name", ""),
|
||||
)
|
||||
|
||||
prompt_messages = [UserPromptMessage(content=prompt)]
|
||||
model_parameters = args.model_config_data.completion_params
|
||||
try:
|
||||
response: LLMResult = model_instance.invoke_llm(
|
||||
prompt_messages=list(prompt_messages), model_parameters=model_parameters, stream=False
|
||||
model_parameters = model_config.get("completion_params", {})
|
||||
|
||||
llm_result = None
|
||||
error = None
|
||||
with measure_time() as timer:
|
||||
try:
|
||||
llm_result = model_instance.invoke_llm(
|
||||
prompt_messages=list(prompt_messages), model_parameters=model_parameters, stream=False
|
||||
)
|
||||
|
||||
generated_code = cast(str, llm_result.message.content)
|
||||
result = {"code": generated_code, "language": code_language, "error": ""}
|
||||
|
||||
except InvokeError as e:
|
||||
error = str(e)
|
||||
result = {"code": "", "language": code_language, "error": f"Failed to generate code. Error: {error}"}
|
||||
except Exception as e:
|
||||
logger.exception(
|
||||
"Failed to invoke LLM model, model: %s, language: %s", model_config.get("name"), code_language
|
||||
)
|
||||
error = str(e)
|
||||
result = {"code": "", "language": code_language, "error": f"An unexpected error occurred: {str(e)}"}
|
||||
|
||||
if user_id:
|
||||
cls._emit_prompt_generation_trace(
|
||||
tenant_id=tenant_id,
|
||||
user_id=user_id,
|
||||
app_id=app_id,
|
||||
operation_type=OperationType.CODE_GENERATE,
|
||||
instruction=instruction,
|
||||
generated_output=result.get("code", ""),
|
||||
llm_result=llm_result,
|
||||
model_config=model_config,
|
||||
timer=timer,
|
||||
error=error,
|
||||
)
|
||||
|
||||
generated_code = response.message.get_text_content()
|
||||
return {"code": generated_code, "language": args.code_language, "error": ""}
|
||||
|
||||
except InvokeError as e:
|
||||
error = str(e)
|
||||
return {"code": "", "language": args.code_language, "error": f"Failed to generate code. Error: {error}"}
|
||||
except Exception as e:
|
||||
logger.exception(
|
||||
"Failed to invoke LLM model, model: %s, language: %s", args.model_config_data.name, args.code_language
|
||||
)
|
||||
return {"code": "", "language": args.code_language, "error": f"An unexpected error occurred: {str(e)}"}
|
||||
return result
|
||||
|
||||
@classmethod
|
||||
def generate_qa_document(cls, tenant_id: str, query, document_language: str):
|
||||
@@ -355,49 +445,76 @@ class LLMGenerator:
|
||||
raise TypeError("Expected LLMResult when stream=False")
|
||||
response = result
|
||||
|
||||
answer = response.message.get_text_content()
|
||||
answer = cast(str, response.message.content)
|
||||
return answer.strip()
|
||||
|
||||
@classmethod
|
||||
def generate_structured_output(cls, tenant_id: str, args: RuleStructuredOutputPayload):
|
||||
def generate_structured_output(
|
||||
cls, tenant_id: str, instruction: str, model_config: dict, user_id: str | None = None, app_id: str | None = None
|
||||
):
|
||||
model_manager = ModelManager()
|
||||
model_instance = model_manager.get_model_instance(
|
||||
tenant_id=tenant_id,
|
||||
model_type=ModelType.LLM,
|
||||
provider=args.model_config_data.provider,
|
||||
model=args.model_config_data.name,
|
||||
provider=model_config.get("provider", ""),
|
||||
model=model_config.get("name", ""),
|
||||
)
|
||||
|
||||
prompt_messages = [
|
||||
SystemPromptMessage(content=SYSTEM_STRUCTURED_OUTPUT_GENERATE),
|
||||
UserPromptMessage(content=args.instruction),
|
||||
UserPromptMessage(content=instruction),
|
||||
]
|
||||
model_parameters = args.model_config_data.completion_params
|
||||
model_parameters = model_config.get("model_parameters", {})
|
||||
|
||||
try:
|
||||
response: LLMResult = model_instance.invoke_llm(
|
||||
prompt_messages=list(prompt_messages), model_parameters=model_parameters, stream=False
|
||||
llm_result = None
|
||||
error = None
|
||||
result = {"output": "", "error": ""}
|
||||
|
||||
with measure_time() as timer:
|
||||
try:
|
||||
llm_result = model_instance.invoke_llm(
|
||||
prompt_messages=list(prompt_messages), model_parameters=model_parameters, stream=False
|
||||
)
|
||||
|
||||
raw_content = llm_result.message.content
|
||||
|
||||
if not isinstance(raw_content, str):
|
||||
raise ValueError(f"LLM response content must be a string, got: {type(raw_content)}")
|
||||
|
||||
try:
|
||||
parsed_content = json.loads(raw_content)
|
||||
except json.JSONDecodeError:
|
||||
parsed_content = json_repair.loads(raw_content)
|
||||
|
||||
if not isinstance(parsed_content, dict | list):
|
||||
raise ValueError(f"Failed to parse structured output from llm: {raw_content}")
|
||||
|
||||
generated_json_schema = json.dumps(parsed_content, indent=2, ensure_ascii=False)
|
||||
result = {"output": generated_json_schema, "error": ""}
|
||||
|
||||
except InvokeError as e:
|
||||
error = str(e)
|
||||
result = {"output": "", "error": f"Failed to generate JSON Schema. Error: {error}"}
|
||||
except Exception as e:
|
||||
logger.exception("Failed to invoke LLM model, model: %s", model_config.get("name"))
|
||||
error = str(e)
|
||||
result = {"output": "", "error": f"An unexpected error occurred: {str(e)}"}
|
||||
|
||||
if user_id:
|
||||
cls._emit_prompt_generation_trace(
|
||||
tenant_id=tenant_id,
|
||||
user_id=user_id,
|
||||
app_id=app_id,
|
||||
operation_type=OperationType.STRUCTURED_OUTPUT,
|
||||
instruction=instruction,
|
||||
generated_output=result.get("output", ""),
|
||||
llm_result=llm_result,
|
||||
model_config=model_config,
|
||||
timer=timer,
|
||||
error=error,
|
||||
)
|
||||
|
||||
raw_content = response.message.get_text_content()
|
||||
|
||||
try:
|
||||
parsed_content = json.loads(raw_content)
|
||||
except json.JSONDecodeError:
|
||||
parsed_content = json_repair.loads(raw_content)
|
||||
|
||||
if not isinstance(parsed_content, dict | list):
|
||||
raise ValueError(f"Failed to parse structured output from llm: {raw_content}")
|
||||
|
||||
generated_json_schema = json.dumps(parsed_content, indent=2, ensure_ascii=False)
|
||||
return {"output": generated_json_schema, "error": ""}
|
||||
|
||||
except InvokeError as e:
|
||||
error = str(e)
|
||||
return {"output": "", "error": f"Failed to generate JSON Schema. Error: {error}"}
|
||||
except Exception as e:
|
||||
logger.exception("Failed to invoke LLM model, model: %s", args.model_config_data.name)
|
||||
return {"output": "", "error": f"An unexpected error occurred: {str(e)}"}
|
||||
return result
|
||||
|
||||
@staticmethod
|
||||
def instruction_modify_legacy(
|
||||
@@ -405,14 +522,16 @@ class LLMGenerator:
|
||||
flow_id: str,
|
||||
current: str,
|
||||
instruction: str,
|
||||
model_config: ModelConfig,
|
||||
model_config: dict,
|
||||
ideal_output: str | None,
|
||||
user_id: str | None = None,
|
||||
app_id: str | None = None,
|
||||
):
|
||||
last_run: Message | None = (
|
||||
db.session.query(Message).where(Message.app_id == flow_id).order_by(Message.created_at.desc()).first()
|
||||
)
|
||||
if not last_run:
|
||||
return LLMGenerator.__instruction_modify_common(
|
||||
result = LLMGenerator.__instruction_modify_common(
|
||||
tenant_id=tenant_id,
|
||||
model_config=model_config,
|
||||
last_run=None,
|
||||
@@ -421,22 +540,28 @@ class LLMGenerator:
|
||||
instruction=instruction,
|
||||
node_type="llm",
|
||||
ideal_output=ideal_output,
|
||||
user_id=user_id,
|
||||
app_id=app_id,
|
||||
)
|
||||
last_run_dict = {
|
||||
"query": last_run.query,
|
||||
"answer": last_run.answer,
|
||||
"error": last_run.error,
|
||||
}
|
||||
return LLMGenerator.__instruction_modify_common(
|
||||
tenant_id=tenant_id,
|
||||
model_config=model_config,
|
||||
last_run=last_run_dict,
|
||||
current=current,
|
||||
error_message=str(last_run.error),
|
||||
instruction=instruction,
|
||||
node_type="llm",
|
||||
ideal_output=ideal_output,
|
||||
)
|
||||
else:
|
||||
last_run_dict = {
|
||||
"query": last_run.query,
|
||||
"answer": last_run.answer,
|
||||
"error": last_run.error,
|
||||
}
|
||||
result = LLMGenerator.__instruction_modify_common(
|
||||
tenant_id=tenant_id,
|
||||
model_config=model_config,
|
||||
last_run=last_run_dict,
|
||||
current=current,
|
||||
error_message=str(last_run.error),
|
||||
instruction=instruction,
|
||||
node_type="llm",
|
||||
ideal_output=ideal_output,
|
||||
user_id=user_id,
|
||||
app_id=app_id,
|
||||
)
|
||||
return result
|
||||
|
||||
@staticmethod
|
||||
def instruction_modify_workflow(
|
||||
@@ -445,9 +570,11 @@ class LLMGenerator:
|
||||
node_id: str,
|
||||
current: str,
|
||||
instruction: str,
|
||||
model_config: ModelConfig,
|
||||
model_config: dict,
|
||||
ideal_output: str | None,
|
||||
workflow_service: WorkflowServiceInterface,
|
||||
user_id: str | None = None,
|
||||
app_id: str | None = None,
|
||||
):
|
||||
session = db.session()
|
||||
|
||||
@@ -478,6 +605,8 @@ class LLMGenerator:
|
||||
instruction=instruction,
|
||||
node_type=node_type,
|
||||
ideal_output=ideal_output,
|
||||
user_id=user_id,
|
||||
app_id=app_id,
|
||||
)
|
||||
|
||||
def agent_log_of(node_execution: WorkflowNodeExecutionModel) -> Sequence:
|
||||
@@ -511,18 +640,22 @@ class LLMGenerator:
|
||||
instruction=instruction,
|
||||
node_type=last_run.node_type,
|
||||
ideal_output=ideal_output,
|
||||
user_id=user_id,
|
||||
app_id=app_id,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def __instruction_modify_common(
|
||||
tenant_id: str,
|
||||
model_config: ModelConfig,
|
||||
model_config: dict,
|
||||
last_run: dict | None,
|
||||
current: str | None,
|
||||
error_message: str | None,
|
||||
instruction: str,
|
||||
node_type: str,
|
||||
ideal_output: str | None,
|
||||
user_id: str | None = None,
|
||||
app_id: str | None = None,
|
||||
):
|
||||
LAST_RUN = "{{#last_run#}}"
|
||||
CURRENT = "{{#current#}}"
|
||||
@@ -537,8 +670,8 @@ class LLMGenerator:
|
||||
model_instance = ModelManager().get_model_instance(
|
||||
tenant_id=tenant_id,
|
||||
model_type=ModelType.LLM,
|
||||
provider=model_config.provider,
|
||||
model=model_config.name,
|
||||
provider=model_config.get("provider", ""),
|
||||
model=model_config.get("name", ""),
|
||||
)
|
||||
match node_type:
|
||||
case "llm" | "agent":
|
||||
@@ -562,24 +695,122 @@ class LLMGenerator:
|
||||
]
|
||||
model_parameters = {"temperature": 0.4}
|
||||
|
||||
try:
|
||||
response: LLMResult = model_instance.invoke_llm(
|
||||
prompt_messages=list(prompt_messages), model_parameters=model_parameters, stream=False
|
||||
llm_result = None
|
||||
error = None
|
||||
result = {}
|
||||
|
||||
with measure_time() as timer:
|
||||
try:
|
||||
llm_result = model_instance.invoke_llm(
|
||||
prompt_messages=list(prompt_messages), model_parameters=model_parameters, stream=False
|
||||
)
|
||||
|
||||
generated_raw = llm_result.message.get_text_content()
|
||||
first_brace = generated_raw.find("{")
|
||||
last_brace = generated_raw.rfind("}")
|
||||
if first_brace == -1 or last_brace == -1 or last_brace < first_brace:
|
||||
raise ValueError(f"Could not find a valid JSON object in response: {generated_raw}")
|
||||
json_str = generated_raw[first_brace : last_brace + 1]
|
||||
data = json_repair.loads(json_str)
|
||||
if not isinstance(data, dict):
|
||||
raise TypeError(f"Expected a JSON object, but got {type(data).__name__}")
|
||||
result = data
|
||||
except InvokeError as e:
|
||||
error = str(e)
|
||||
result = {"error": f"Failed to generate code. Error: {error}"}
|
||||
except Exception as e:
|
||||
logger.exception(
|
||||
"Failed to invoke LLM model, model: %s", json.dumps(model_config.get("name")), exc_info=True
|
||||
)
|
||||
error = str(e)
|
||||
result = {"error": f"An unexpected error occurred: {str(e)}"}
|
||||
|
||||
if user_id:
|
||||
generated_output = ""
|
||||
if isinstance(result, dict):
|
||||
for key in ["prompt", "code", "output", "modified"]:
|
||||
if result.get(key):
|
||||
generated_output = str(result[key])
|
||||
break
|
||||
|
||||
LLMGenerator._emit_prompt_generation_trace(
|
||||
tenant_id=tenant_id,
|
||||
user_id=user_id,
|
||||
app_id=app_id,
|
||||
operation_type=OperationType.INSTRUCTION_MODIFY,
|
||||
instruction=instruction,
|
||||
generated_output=generated_output,
|
||||
llm_result=llm_result,
|
||||
model_config=model_config,
|
||||
timer=timer,
|
||||
error=error,
|
||||
)
|
||||
|
||||
generated_raw = response.message.get_text_content()
|
||||
first_brace = generated_raw.find("{")
|
||||
last_brace = generated_raw.rfind("}")
|
||||
if first_brace == -1 or last_brace == -1 or last_brace < first_brace:
|
||||
raise ValueError(f"Could not find a valid JSON object in response: {generated_raw}")
|
||||
json_str = generated_raw[first_brace : last_brace + 1]
|
||||
data = json_repair.loads(json_str)
|
||||
if not isinstance(data, dict):
|
||||
raise TypeError(f"Expected a JSON object, but got {type(data).__name__}")
|
||||
return data
|
||||
except InvokeError as e:
|
||||
error = str(e)
|
||||
return {"error": f"Failed to generate code. Error: {error}"}
|
||||
except Exception as e:
|
||||
logger.exception("Failed to invoke LLM model, model: %s", json.dumps(model_config.name), exc_info=True)
|
||||
return {"error": f"An unexpected error occurred: {str(e)}"}
|
||||
return result
|
||||
|
||||
@classmethod
|
||||
def _emit_prompt_generation_trace(
|
||||
cls,
|
||||
tenant_id: str,
|
||||
user_id: str,
|
||||
app_id: str | None,
|
||||
operation_type: OperationType,
|
||||
instruction: str,
|
||||
generated_output: str,
|
||||
llm_result: LLMResult | None,
|
||||
model_config: dict | None = None,
|
||||
timer=None,
|
||||
error: str | None = None,
|
||||
):
|
||||
if llm_result:
|
||||
prompt_tokens = llm_result.usage.prompt_tokens
|
||||
completion_tokens = llm_result.usage.completion_tokens
|
||||
total_tokens = llm_result.usage.total_tokens
|
||||
model_name = llm_result.model
|
||||
# Extract provider from model_config if available, otherwise fall back to parsing model name
|
||||
if model_config and model_config.get("provider"):
|
||||
model_provider = model_config.get("provider", "")
|
||||
else:
|
||||
model_provider = model_name.split("/")[0] if "/" in model_name else ""
|
||||
latency = llm_result.usage.latency
|
||||
total_price = float(llm_result.usage.total_price) if llm_result.usage.total_price else None
|
||||
currency = llm_result.usage.currency
|
||||
else:
|
||||
prompt_tokens = 0
|
||||
completion_tokens = 0
|
||||
total_tokens = 0
|
||||
model_provider = model_config.get("provider", "") if model_config else ""
|
||||
model_name = model_config.get("name", "") if model_config else ""
|
||||
latency = 0.0
|
||||
if timer:
|
||||
start_time = timer.get("start")
|
||||
end_time = timer.get("end")
|
||||
if start_time and end_time:
|
||||
latency = (end_time - start_time).total_seconds()
|
||||
total_price = None
|
||||
currency = None
|
||||
|
||||
telemetry_emit(
|
||||
TelemetryEvent(
|
||||
name=TraceTaskName.PROMPT_GENERATION_TRACE,
|
||||
context=TelemetryContext(tenant_id=tenant_id, user_id=user_id, app_id=app_id),
|
||||
payload={
|
||||
"tenant_id": tenant_id,
|
||||
"user_id": user_id,
|
||||
"app_id": app_id,
|
||||
"operation_type": operation_type,
|
||||
"instruction": instruction,
|
||||
"generated_output": generated_output,
|
||||
"prompt_tokens": prompt_tokens,
|
||||
"completion_tokens": completion_tokens,
|
||||
"total_tokens": total_tokens,
|
||||
"model_provider": model_provider,
|
||||
"model_name": model_name,
|
||||
"latency": latency,
|
||||
"total_price": total_price,
|
||||
"currency": currency,
|
||||
"timer": timer,
|
||||
"error": error,
|
||||
},
|
||||
)
|
||||
)
|
||||
|
||||
@@ -15,16 +15,23 @@ class TraceContextFilter(logging.Filter):
|
||||
"""
|
||||
|
||||
def filter(self, record: logging.LogRecord) -> bool:
|
||||
# Get trace context from OpenTelemetry
|
||||
trace_id, span_id = self._get_otel_context()
|
||||
# Preserve explicit trace_id set by the caller (e.g. emit_metric_only_event)
|
||||
existing_trace_id = getattr(record, "trace_id", "")
|
||||
if not existing_trace_id:
|
||||
# Get trace context from OpenTelemetry
|
||||
trace_id, span_id = self._get_otel_context()
|
||||
|
||||
# Set trace_id (fallback to ContextVar if no OTEL context)
|
||||
if trace_id:
|
||||
record.trace_id = trace_id
|
||||
# Set trace_id (fallback to ContextVar if no OTEL context)
|
||||
if trace_id:
|
||||
record.trace_id = trace_id
|
||||
else:
|
||||
record.trace_id = get_trace_id()
|
||||
|
||||
record.span_id = span_id or ""
|
||||
else:
|
||||
record.trace_id = get_trace_id()
|
||||
|
||||
record.span_id = span_id or ""
|
||||
# Keep existing trace_id; only fill span_id if missing
|
||||
if not getattr(record, "span_id", ""):
|
||||
record.span_id = ""
|
||||
|
||||
# For backward compatibility, also set req_id
|
||||
record.req_id = get_request_id()
|
||||
@@ -55,9 +62,12 @@ class IdentityContextFilter(logging.Filter):
|
||||
|
||||
def filter(self, record: logging.LogRecord) -> bool:
|
||||
identity = self._extract_identity()
|
||||
record.tenant_id = identity.get("tenant_id", "")
|
||||
record.user_id = identity.get("user_id", "")
|
||||
record.user_type = identity.get("user_type", "")
|
||||
if not getattr(record, "tenant_id", ""):
|
||||
record.tenant_id = identity.get("tenant_id", "")
|
||||
if not getattr(record, "user_id", ""):
|
||||
record.user_id = identity.get("user_id", "")
|
||||
if not getattr(record, "user_type", ""):
|
||||
record.user_type = identity.get("user_type", "")
|
||||
return True
|
||||
|
||||
def _extract_identity(self) -> dict[str, str]:
|
||||
|
||||
@@ -5,9 +5,10 @@ from typing import Any
|
||||
from core.app.app_config.entities import AppConfig
|
||||
from core.moderation.base import ModerationAction, ModerationError
|
||||
from core.moderation.factory import ModerationFactory
|
||||
from core.ops.entities.trace_entity import TraceTaskName
|
||||
from core.ops.ops_trace_manager import TraceQueueManager, TraceTask
|
||||
from core.ops.ops_trace_manager import TraceQueueManager
|
||||
from core.ops.utils import measure_time
|
||||
from core.telemetry import TelemetryContext, TelemetryEvent, TraceTaskName
|
||||
from core.telemetry import emit as telemetry_emit
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -49,14 +50,18 @@ class InputModeration:
|
||||
moderation_result = moderation_factory.moderation_for_inputs(inputs, query)
|
||||
|
||||
if trace_manager:
|
||||
trace_manager.add_trace_task(
|
||||
TraceTask(
|
||||
TraceTaskName.MODERATION_TRACE,
|
||||
message_id=message_id,
|
||||
moderation_result=moderation_result,
|
||||
inputs=inputs,
|
||||
timer=timer,
|
||||
)
|
||||
telemetry_emit(
|
||||
TelemetryEvent(
|
||||
name=TraceTaskName.MODERATION_TRACE,
|
||||
context=TelemetryContext(tenant_id=tenant_id, app_id=app_id),
|
||||
payload={
|
||||
"message_id": message_id,
|
||||
"moderation_result": moderation_result,
|
||||
"inputs": inputs,
|
||||
"timer": timer,
|
||||
},
|
||||
),
|
||||
trace_manager=trace_manager,
|
||||
)
|
||||
|
||||
if not moderation_result.flagged:
|
||||
|
||||
@@ -9,8 +9,8 @@ from pydantic import BaseModel, ConfigDict, field_serializer, field_validator
|
||||
class BaseTraceInfo(BaseModel):
|
||||
message_id: str | None = None
|
||||
message_data: Any | None = None
|
||||
inputs: Union[str, dict[str, Any], list] | None = None
|
||||
outputs: Union[str, dict[str, Any], list] | None = None
|
||||
inputs: Union[str, dict[str, Any], list[Any]] | None = None
|
||||
outputs: Union[str, dict[str, Any], list[Any]] | None = None
|
||||
start_time: datetime | None = None
|
||||
end_time: datetime | None = None
|
||||
metadata: dict[str, Any]
|
||||
@@ -18,7 +18,7 @@ class BaseTraceInfo(BaseModel):
|
||||
|
||||
@field_validator("inputs", "outputs")
|
||||
@classmethod
|
||||
def ensure_type(cls, v):
|
||||
def ensure_type(cls, v: str | dict[str, Any] | list[Any] | None) -> str | dict[str, Any] | list[Any] | None:
|
||||
if v is None:
|
||||
return None
|
||||
if isinstance(v, str | dict | list):
|
||||
@@ -48,10 +48,14 @@ class WorkflowTraceInfo(BaseTraceInfo):
|
||||
workflow_run_version: str
|
||||
error: str | None = None
|
||||
total_tokens: int
|
||||
prompt_tokens: int | None = None
|
||||
completion_tokens: int | None = None
|
||||
file_list: list[str]
|
||||
query: str
|
||||
metadata: dict[str, Any]
|
||||
|
||||
invoked_by: str | None = None
|
||||
|
||||
|
||||
class MessageTraceInfo(BaseTraceInfo):
|
||||
conversation_model: str
|
||||
@@ -59,7 +63,7 @@ class MessageTraceInfo(BaseTraceInfo):
|
||||
answer_tokens: int
|
||||
total_tokens: int
|
||||
error: str | None = None
|
||||
file_list: Union[str, dict[str, Any], list] | None = None
|
||||
file_list: Union[str, dict[str, Any], list[Any]] | None = None
|
||||
message_file_data: Any | None = None
|
||||
conversation_mode: str
|
||||
gen_ai_server_time_to_first_token: float | None = None
|
||||
@@ -106,7 +110,7 @@ class ToolTraceInfo(BaseTraceInfo):
|
||||
tool_config: dict[str, Any]
|
||||
time_cost: Union[int, float]
|
||||
tool_parameters: dict[str, Any]
|
||||
file_url: Union[str, None, list] = None
|
||||
file_url: Union[str, None, list[str]] = None
|
||||
|
||||
|
||||
class GenerateNameTraceInfo(BaseTraceInfo):
|
||||
@@ -114,6 +118,79 @@ class GenerateNameTraceInfo(BaseTraceInfo):
|
||||
tenant_id: str
|
||||
|
||||
|
||||
class PromptGenerationTraceInfo(BaseTraceInfo):
|
||||
"""Trace information for prompt generation operations (rule-generate, code-generate, etc.)."""
|
||||
|
||||
tenant_id: str
|
||||
user_id: str
|
||||
app_id: str | None = None
|
||||
|
||||
operation_type: str
|
||||
instruction: str
|
||||
|
||||
prompt_tokens: int
|
||||
completion_tokens: int
|
||||
total_tokens: int
|
||||
|
||||
model_provider: str
|
||||
model_name: str
|
||||
|
||||
latency: float
|
||||
|
||||
total_price: float | None = None
|
||||
currency: str | None = None
|
||||
|
||||
error: str | None = None
|
||||
|
||||
model_config = ConfigDict(protected_namespaces=())
|
||||
|
||||
|
||||
class WorkflowNodeTraceInfo(BaseTraceInfo):
|
||||
workflow_id: str
|
||||
workflow_run_id: str
|
||||
tenant_id: str
|
||||
node_execution_id: str
|
||||
node_id: str
|
||||
node_type: str
|
||||
title: str
|
||||
|
||||
status: str
|
||||
error: str | None = None
|
||||
elapsed_time: float
|
||||
|
||||
index: int
|
||||
predecessor_node_id: str | None = None
|
||||
|
||||
total_tokens: int = 0
|
||||
total_price: float = 0.0
|
||||
currency: str | None = None
|
||||
|
||||
model_provider: str | None = None
|
||||
model_name: str | None = None
|
||||
prompt_tokens: int | None = None
|
||||
completion_tokens: int | None = None
|
||||
|
||||
tool_name: str | None = None
|
||||
|
||||
iteration_id: str | None = None
|
||||
iteration_index: int | None = None
|
||||
loop_id: str | None = None
|
||||
loop_index: int | None = None
|
||||
parallel_id: str | None = None
|
||||
|
||||
node_inputs: Mapping[str, Any] | None = None
|
||||
node_outputs: Mapping[str, Any] | None = None
|
||||
process_data: Mapping[str, Any] | None = None
|
||||
|
||||
invoked_by: str | None = None
|
||||
|
||||
model_config = ConfigDict(protected_namespaces=())
|
||||
|
||||
|
||||
class DraftNodeExecutionTrace(WorkflowNodeTraceInfo):
|
||||
pass
|
||||
|
||||
|
||||
class TaskData(BaseModel):
|
||||
app_id: str
|
||||
trace_info_type: str
|
||||
@@ -128,16 +205,38 @@ trace_info_info_map = {
|
||||
"DatasetRetrievalTraceInfo": DatasetRetrievalTraceInfo,
|
||||
"ToolTraceInfo": ToolTraceInfo,
|
||||
"GenerateNameTraceInfo": GenerateNameTraceInfo,
|
||||
"PromptGenerationTraceInfo": PromptGenerationTraceInfo,
|
||||
"WorkflowNodeTraceInfo": WorkflowNodeTraceInfo,
|
||||
"DraftNodeExecutionTrace": DraftNodeExecutionTrace,
|
||||
}
|
||||
|
||||
|
||||
class OperationType(StrEnum):
|
||||
"""Operation type for token metric labels.
|
||||
|
||||
Used as a metric attribute on ``dify.tokens.input`` / ``dify.tokens.output``
|
||||
counters so consumers can break down token usage by operation.
|
||||
"""
|
||||
|
||||
WORKFLOW = "workflow"
|
||||
NODE_EXECUTION = "node_execution"
|
||||
MESSAGE = "message"
|
||||
RULE_GENERATE = "rule_generate"
|
||||
CODE_GENERATE = "code_generate"
|
||||
STRUCTURED_OUTPUT = "structured_output"
|
||||
INSTRUCTION_MODIFY = "instruction_modify"
|
||||
|
||||
|
||||
class TraceTaskName(StrEnum):
|
||||
CONVERSATION_TRACE = "conversation"
|
||||
WORKFLOW_TRACE = "workflow"
|
||||
DRAFT_NODE_EXECUTION_TRACE = "draft_node_execution"
|
||||
MESSAGE_TRACE = "message"
|
||||
MODERATION_TRACE = "moderation"
|
||||
SUGGESTED_QUESTION_TRACE = "suggested_question"
|
||||
DATASET_RETRIEVAL_TRACE = "dataset_retrieval"
|
||||
TOOL_TRACE = "tool"
|
||||
GENERATE_NAME_TRACE = "generate_conversation_name"
|
||||
PROMPT_GENERATION_TRACE = "prompt_generation"
|
||||
DATASOURCE_TRACE = "datasource"
|
||||
NODE_EXECUTION_TRACE = "node_execution"
|
||||
|
||||
@@ -3,6 +3,7 @@ import os
|
||||
from datetime import datetime, timedelta
|
||||
|
||||
from langfuse import Langfuse
|
||||
from sqlalchemy import select
|
||||
from sqlalchemy.orm import sessionmaker
|
||||
|
||||
from core.ops.base_trace_instance import BaseTraceInstance
|
||||
@@ -30,7 +31,7 @@ from core.ops.utils import filter_none_values
|
||||
from core.repositories import DifyCoreRepositoryFactory
|
||||
from core.workflow.enums import NodeType
|
||||
from extensions.ext_database import db
|
||||
from models import EndUser, WorkflowNodeExecutionTriggeredFrom
|
||||
from models import EndUser, Message, WorkflowNodeExecutionTriggeredFrom
|
||||
from models.enums import MessageStatus
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -71,7 +72,50 @@ class LangFuseDataTrace(BaseTraceInstance):
|
||||
metadata = trace_info.metadata
|
||||
metadata["workflow_app_log_id"] = trace_info.workflow_app_log_id
|
||||
|
||||
if trace_info.message_id:
|
||||
# Check for parent_trace_context to detect nested workflow
|
||||
parent_trace_context = trace_info.metadata.get("parent_trace_context")
|
||||
|
||||
if parent_trace_context:
|
||||
# Nested workflow: create span under outer trace
|
||||
outer_trace_id = parent_trace_context.get("trace_id")
|
||||
parent_node_execution_id = parent_trace_context.get("parent_node_execution_id")
|
||||
parent_conversation_id = parent_trace_context.get("parent_conversation_id")
|
||||
parent_workflow_run_id = parent_trace_context.get("parent_workflow_run_id")
|
||||
|
||||
# Resolve outer trace_id: try message_id lookup first, fallback to workflow_run_id
|
||||
if parent_conversation_id:
|
||||
session_factory = sessionmaker(bind=db.engine)
|
||||
with session_factory() as session:
|
||||
message_data_stmt = select(Message.id).where(
|
||||
Message.conversation_id == parent_conversation_id,
|
||||
Message.workflow_run_id == parent_workflow_run_id,
|
||||
)
|
||||
resolved_message_id = session.scalar(message_data_stmt)
|
||||
if resolved_message_id:
|
||||
outer_trace_id = resolved_message_id
|
||||
else:
|
||||
outer_trace_id = parent_workflow_run_id
|
||||
else:
|
||||
outer_trace_id = parent_workflow_run_id
|
||||
|
||||
# Create inner workflow span under outer trace
|
||||
workflow_span_data = LangfuseSpan(
|
||||
id=trace_info.workflow_run_id,
|
||||
name=TraceTaskName.WORKFLOW_TRACE,
|
||||
input=dict(trace_info.workflow_run_inputs),
|
||||
output=dict(trace_info.workflow_run_outputs),
|
||||
trace_id=outer_trace_id,
|
||||
parent_observation_id=parent_node_execution_id,
|
||||
start_time=trace_info.start_time,
|
||||
end_time=trace_info.end_time,
|
||||
metadata=metadata,
|
||||
level=LevelEnum.DEFAULT if trace_info.error == "" else LevelEnum.ERROR,
|
||||
status_message=trace_info.error or "",
|
||||
)
|
||||
self.add_span(langfuse_span_data=workflow_span_data)
|
||||
# Use outer_trace_id for all node spans/generations
|
||||
trace_id = outer_trace_id
|
||||
elif trace_info.message_id:
|
||||
trace_id = trace_info.trace_id or trace_info.message_id
|
||||
name = TraceTaskName.MESSAGE_TRACE
|
||||
trace_data = LangfuseTrace(
|
||||
@@ -174,6 +218,11 @@ class LangFuseDataTrace(BaseTraceInstance):
|
||||
}
|
||||
)
|
||||
|
||||
# Determine parent_observation_id for nested workflows
|
||||
node_parent_observation_id = None
|
||||
if parent_trace_context or trace_info.message_id:
|
||||
node_parent_observation_id = trace_info.workflow_run_id
|
||||
|
||||
# add generation span
|
||||
if process_data and process_data.get("model_mode") == "chat":
|
||||
total_token = metadata.get("total_tokens", 0)
|
||||
@@ -206,7 +255,7 @@ class LangFuseDataTrace(BaseTraceInstance):
|
||||
metadata=metadata,
|
||||
level=(LevelEnum.DEFAULT if status == "succeeded" else LevelEnum.ERROR),
|
||||
status_message=trace_info.error or "",
|
||||
parent_observation_id=trace_info.workflow_run_id if trace_info.message_id else None,
|
||||
parent_observation_id=node_parent_observation_id,
|
||||
usage=generation_usage,
|
||||
)
|
||||
|
||||
@@ -225,7 +274,7 @@ class LangFuseDataTrace(BaseTraceInstance):
|
||||
metadata=metadata,
|
||||
level=(LevelEnum.DEFAULT if status == "succeeded" else LevelEnum.ERROR),
|
||||
status_message=trace_info.error or "",
|
||||
parent_observation_id=trace_info.workflow_run_id if trace_info.message_id else None,
|
||||
parent_observation_id=node_parent_observation_id,
|
||||
)
|
||||
|
||||
self.add_span(langfuse_span_data=span_data)
|
||||
|
||||
@@ -6,6 +6,7 @@ from typing import cast
|
||||
|
||||
from langsmith import Client
|
||||
from langsmith.schemas import RunBase
|
||||
from sqlalchemy import select
|
||||
from sqlalchemy.orm import sessionmaker
|
||||
|
||||
from core.ops.base_trace_instance import BaseTraceInstance
|
||||
@@ -30,7 +31,7 @@ from core.ops.utils import filter_none_values, generate_dotted_order
|
||||
from core.repositories import DifyCoreRepositoryFactory
|
||||
from core.workflow.enums import NodeType, WorkflowNodeExecutionMetadataKey
|
||||
from extensions.ext_database import db
|
||||
from models import EndUser, MessageFile, WorkflowNodeExecutionTriggeredFrom
|
||||
from models import EndUser, Message, MessageFile, WorkflowNodeExecutionTriggeredFrom
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -64,7 +65,35 @@ class LangSmithDataTrace(BaseTraceInstance):
|
||||
self.generate_name_trace(trace_info)
|
||||
|
||||
def workflow_trace(self, trace_info: WorkflowTraceInfo):
|
||||
trace_id = trace_info.trace_id or trace_info.message_id or trace_info.workflow_run_id
|
||||
# Check for parent_trace_context for cross-workflow linking
|
||||
parent_trace_context = trace_info.metadata.get("parent_trace_context")
|
||||
|
||||
if parent_trace_context:
|
||||
# Inner workflow: resolve outer trace_id and link to parent node
|
||||
outer_trace_id = parent_trace_context.get("parent_workflow_run_id")
|
||||
|
||||
# Try to resolve message_id from conversation_id if available
|
||||
if parent_trace_context.get("parent_conversation_id"):
|
||||
try:
|
||||
session_factory = sessionmaker(bind=db.engine)
|
||||
with session_factory() as session:
|
||||
message_data_stmt = select(Message.id).where(
|
||||
Message.conversation_id == parent_trace_context["parent_conversation_id"],
|
||||
Message.workflow_run_id == parent_trace_context["parent_workflow_run_id"],
|
||||
)
|
||||
resolved_message_id = session.scalar(message_data_stmt)
|
||||
if resolved_message_id:
|
||||
outer_trace_id = resolved_message_id
|
||||
except Exception as e:
|
||||
logger.debug("Failed to resolve message_id from conversation_id: %s", str(e))
|
||||
|
||||
trace_id = outer_trace_id
|
||||
parent_run_id = parent_trace_context.get("parent_node_execution_id")
|
||||
else:
|
||||
# Outer workflow: existing behavior
|
||||
trace_id = trace_info.trace_id or trace_info.message_id or trace_info.workflow_run_id
|
||||
parent_run_id = trace_info.message_id or None
|
||||
|
||||
if trace_info.start_time is None:
|
||||
trace_info.start_time = datetime.now()
|
||||
message_dotted_order = (
|
||||
@@ -78,7 +107,8 @@ class LangSmithDataTrace(BaseTraceInstance):
|
||||
metadata = trace_info.metadata
|
||||
metadata["workflow_app_log_id"] = trace_info.workflow_app_log_id
|
||||
|
||||
if trace_info.message_id:
|
||||
# Only create message_run for outer workflows (no parent_trace_context)
|
||||
if trace_info.message_id and not parent_trace_context:
|
||||
message_run = LangSmithRunModel(
|
||||
id=trace_info.message_id,
|
||||
name=TraceTaskName.MESSAGE_TRACE,
|
||||
@@ -121,9 +151,9 @@ class LangSmithDataTrace(BaseTraceInstance):
|
||||
},
|
||||
error=trace_info.error,
|
||||
tags=["workflow"],
|
||||
parent_run_id=trace_info.message_id or None,
|
||||
parent_run_id=parent_run_id,
|
||||
trace_id=trace_id,
|
||||
dotted_order=workflow_dotted_order,
|
||||
dotted_order=None if parent_trace_context else workflow_dotted_order,
|
||||
serialized=None,
|
||||
events=[],
|
||||
session_id=None,
|
||||
|
||||
@@ -21,19 +21,25 @@ from core.ops.entities.config_entity import (
|
||||
)
|
||||
from core.ops.entities.trace_entity import (
|
||||
DatasetRetrievalTraceInfo,
|
||||
DraftNodeExecutionTrace,
|
||||
GenerateNameTraceInfo,
|
||||
MessageTraceInfo,
|
||||
ModerationTraceInfo,
|
||||
PromptGenerationTraceInfo,
|
||||
SuggestedQuestionTraceInfo,
|
||||
TaskData,
|
||||
ToolTraceInfo,
|
||||
TraceTaskName,
|
||||
WorkflowNodeTraceInfo,
|
||||
WorkflowTraceInfo,
|
||||
)
|
||||
from core.ops.utils import get_message_data
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_storage import storage
|
||||
from models.account import Tenant
|
||||
from models.dataset import Dataset
|
||||
from models.model import App, AppModelConfig, Conversation, Message, MessageFile, TraceAppConfig
|
||||
from models.tools import ApiToolProvider, BuiltinToolProvider, MCPToolProvider, WorkflowToolProvider
|
||||
from models.workflow import WorkflowAppLog
|
||||
from tasks.ops_trace_task import process_trace_tasks
|
||||
|
||||
@@ -43,6 +49,44 @@ if TYPE_CHECKING:
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _lookup_app_and_workspace_names(app_id: str | None, tenant_id: str | None) -> tuple[str, str]:
|
||||
"""Return (app_name, workspace_name) for the given IDs. Falls back to empty strings."""
|
||||
app_name = ""
|
||||
workspace_name = ""
|
||||
if not app_id and not tenant_id:
|
||||
return app_name, workspace_name
|
||||
with Session(db.engine) as session:
|
||||
if app_id:
|
||||
name = session.scalar(select(App.name).where(App.id == app_id))
|
||||
if name:
|
||||
app_name = name
|
||||
if tenant_id:
|
||||
name = session.scalar(select(Tenant.name).where(Tenant.id == tenant_id))
|
||||
if name:
|
||||
workspace_name = name
|
||||
return app_name, workspace_name
|
||||
|
||||
|
||||
_PROVIDER_TYPE_TO_MODEL: dict[str, type] = {
|
||||
"builtin": BuiltinToolProvider,
|
||||
"plugin": BuiltinToolProvider,
|
||||
"api": ApiToolProvider,
|
||||
"workflow": WorkflowToolProvider,
|
||||
"mcp": MCPToolProvider,
|
||||
}
|
||||
|
||||
|
||||
def _lookup_credential_name(credential_id: str | None, provider_type: str | None) -> str:
|
||||
if not credential_id:
|
||||
return ""
|
||||
model_cls = _PROVIDER_TYPE_TO_MODEL.get(provider_type or "")
|
||||
if not model_cls:
|
||||
return ""
|
||||
with Session(db.engine) as session:
|
||||
name = session.scalar(select(model_cls.name).where(model_cls.id == credential_id))
|
||||
return str(name) if name else ""
|
||||
|
||||
|
||||
class OpsTraceProviderConfigMap(collections.UserDict[str, dict[str, Any]]):
|
||||
def __getitem__(self, provider: str) -> dict[str, Any]:
|
||||
match provider:
|
||||
@@ -317,6 +361,10 @@ class OpsTraceManager:
|
||||
if app_id is None:
|
||||
return None
|
||||
|
||||
# Handle storage_id format (tenant-{uuid}) - not a real app_id
|
||||
if isinstance(app_id, str) and app_id.startswith("tenant-"):
|
||||
return None
|
||||
|
||||
app: App | None = db.session.query(App).where(App.id == app_id).first()
|
||||
|
||||
if app is None:
|
||||
@@ -479,6 +527,56 @@ class TraceTask:
|
||||
cls._workflow_run_repo = DifyAPIRepositoryFactory.create_api_workflow_run_repository(session_maker)
|
||||
return cls._workflow_run_repo
|
||||
|
||||
@classmethod
|
||||
def _get_user_id_from_metadata(cls, metadata: dict[str, Any]) -> str:
|
||||
"""Extract user ID from metadata, prioritizing end_user over account.
|
||||
|
||||
Returns the actual user ID (end_user or account) who invoked the workflow,
|
||||
regardless of invoke_from context.
|
||||
"""
|
||||
# Priority 1: End user (external users via API/WebApp)
|
||||
if user_id := metadata.get("from_end_user_id"):
|
||||
return f"end_user:{user_id}"
|
||||
|
||||
# Priority 2: Account user (internal users via console/debugger)
|
||||
if user_id := metadata.get("from_account_id"):
|
||||
return f"account:{user_id}"
|
||||
|
||||
# Priority 3: User (internal users via console/debugger)
|
||||
if user_id := metadata.get("user_id"):
|
||||
return f"user:{user_id}"
|
||||
|
||||
return "anonymous"
|
||||
|
||||
@classmethod
|
||||
def _calculate_workflow_token_split(cls, workflow_run_id: str, tenant_id: str) -> tuple[int, int]:
|
||||
from core.workflow.enums import WorkflowNodeExecutionMetadataKey
|
||||
from models.workflow import WorkflowNodeExecutionModel
|
||||
|
||||
with Session(db.engine) as session:
|
||||
node_executions = session.scalars(
|
||||
select(WorkflowNodeExecutionModel).where(
|
||||
WorkflowNodeExecutionModel.tenant_id == tenant_id,
|
||||
WorkflowNodeExecutionModel.workflow_run_id == workflow_run_id,
|
||||
)
|
||||
).all()
|
||||
|
||||
total_prompt = 0
|
||||
total_completion = 0
|
||||
|
||||
for node_exec in node_executions:
|
||||
metadata = node_exec.execution_metadata_dict
|
||||
|
||||
prompt = metadata.get(WorkflowNodeExecutionMetadataKey.PROMPT_TOKENS)
|
||||
if prompt is not None:
|
||||
total_prompt += prompt
|
||||
|
||||
completion = metadata.get(WorkflowNodeExecutionMetadataKey.COMPLETION_TOKENS)
|
||||
if completion is not None:
|
||||
total_completion += completion
|
||||
|
||||
return (total_prompt, total_completion)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
trace_type: Any,
|
||||
@@ -499,6 +597,8 @@ class TraceTask:
|
||||
self.app_id = None
|
||||
self.trace_id = None
|
||||
self.kwargs = kwargs
|
||||
if user_id is not None and "user_id" not in self.kwargs:
|
||||
self.kwargs["user_id"] = user_id
|
||||
external_trace_id = kwargs.get("external_trace_id")
|
||||
if external_trace_id:
|
||||
self.trace_id = external_trace_id
|
||||
@@ -512,7 +612,7 @@ class TraceTask:
|
||||
TraceTaskName.WORKFLOW_TRACE: lambda: self.workflow_trace(
|
||||
workflow_run_id=self.workflow_run_id, conversation_id=self.conversation_id, user_id=self.user_id
|
||||
),
|
||||
TraceTaskName.MESSAGE_TRACE: lambda: self.message_trace(message_id=self.message_id),
|
||||
TraceTaskName.MESSAGE_TRACE: lambda: self.message_trace(message_id=self.message_id, **self.kwargs),
|
||||
TraceTaskName.MODERATION_TRACE: lambda: self.moderation_trace(
|
||||
message_id=self.message_id, timer=self.timer, **self.kwargs
|
||||
),
|
||||
@@ -528,6 +628,9 @@ class TraceTask:
|
||||
TraceTaskName.GENERATE_NAME_TRACE: lambda: self.generate_name_trace(
|
||||
conversation_id=self.conversation_id, timer=self.timer, **self.kwargs
|
||||
),
|
||||
TraceTaskName.PROMPT_GENERATION_TRACE: lambda: self.prompt_generation_trace(**self.kwargs),
|
||||
TraceTaskName.NODE_EXECUTION_TRACE: lambda: self.node_execution_trace(**self.kwargs),
|
||||
TraceTaskName.DRAFT_NODE_EXECUTION_TRACE: lambda: self.draft_node_execution_trace(**self.kwargs),
|
||||
}
|
||||
|
||||
return preprocess_map.get(self.trace_type, lambda: None)()
|
||||
@@ -563,6 +666,10 @@ class TraceTask:
|
||||
|
||||
total_tokens = workflow_run.total_tokens
|
||||
|
||||
prompt_tokens, completion_tokens = self._calculate_workflow_token_split(
|
||||
workflow_run_id=workflow_run_id, tenant_id=tenant_id
|
||||
)
|
||||
|
||||
file_list = workflow_run_inputs.get("sys.file") or []
|
||||
query = workflow_run_inputs.get("query") or workflow_run_inputs.get("sys.query") or ""
|
||||
|
||||
@@ -583,7 +690,9 @@ class TraceTask:
|
||||
)
|
||||
message_id = session.scalar(message_data_stmt)
|
||||
|
||||
metadata = {
|
||||
app_name, workspace_name = _lookup_app_and_workspace_names(workflow_run.app_id, tenant_id)
|
||||
|
||||
metadata: dict[str, Any] = {
|
||||
"workflow_id": workflow_id,
|
||||
"conversation_id": conversation_id,
|
||||
"workflow_run_id": workflow_run_id,
|
||||
@@ -596,8 +705,14 @@ class TraceTask:
|
||||
"triggered_from": workflow_run.triggered_from,
|
||||
"user_id": user_id,
|
||||
"app_id": workflow_run.app_id,
|
||||
"app_name": app_name,
|
||||
"workspace_name": workspace_name,
|
||||
}
|
||||
|
||||
parent_trace_context = self.kwargs.get("parent_trace_context")
|
||||
if parent_trace_context:
|
||||
metadata["parent_trace_context"] = parent_trace_context
|
||||
|
||||
workflow_trace_info = WorkflowTraceInfo(
|
||||
trace_id=self.trace_id,
|
||||
workflow_data=workflow_run.to_dict(),
|
||||
@@ -612,6 +727,8 @@ class TraceTask:
|
||||
workflow_run_version=workflow_run_version,
|
||||
error=error,
|
||||
total_tokens=total_tokens,
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
file_list=file_list,
|
||||
query=query,
|
||||
metadata=metadata,
|
||||
@@ -619,10 +736,11 @@ class TraceTask:
|
||||
message_id=message_id,
|
||||
start_time=workflow_run.created_at,
|
||||
end_time=workflow_run.finished_at,
|
||||
invoked_by=self._get_user_id_from_metadata(metadata),
|
||||
)
|
||||
return workflow_trace_info
|
||||
|
||||
def message_trace(self, message_id: str | None):
|
||||
def message_trace(self, message_id: str | None, **kwargs):
|
||||
if not message_id:
|
||||
return {}
|
||||
message_data = get_message_data(message_id)
|
||||
@@ -645,6 +763,14 @@ class TraceTask:
|
||||
|
||||
streaming_metrics = self._extract_streaming_metrics(message_data)
|
||||
|
||||
tenant_id = ""
|
||||
with Session(db.engine) as session:
|
||||
tid = session.scalar(select(App.tenant_id).where(App.id == message_data.app_id))
|
||||
if tid:
|
||||
tenant_id = str(tid)
|
||||
|
||||
app_name, workspace_name = _lookup_app_and_workspace_names(message_data.app_id, tenant_id)
|
||||
|
||||
metadata = {
|
||||
"conversation_id": message_data.conversation_id,
|
||||
"ls_provider": message_data.model_provider,
|
||||
@@ -656,7 +782,14 @@ class TraceTask:
|
||||
"workflow_run_id": message_data.workflow_run_id,
|
||||
"from_source": message_data.from_source,
|
||||
"message_id": message_id,
|
||||
"tenant_id": tenant_id,
|
||||
"app_id": message_data.app_id,
|
||||
"user_id": message_data.from_end_user_id or message_data.from_account_id,
|
||||
"app_name": app_name,
|
||||
"workspace_name": workspace_name,
|
||||
}
|
||||
if node_execution_id := kwargs.get("node_execution_id"):
|
||||
metadata["node_execution_id"] = node_execution_id
|
||||
|
||||
message_tokens = message_data.message_tokens
|
||||
|
||||
@@ -698,6 +831,8 @@ class TraceTask:
|
||||
"preset_response": moderation_result.preset_response,
|
||||
"query": moderation_result.query,
|
||||
}
|
||||
if node_execution_id := kwargs.get("node_execution_id"):
|
||||
metadata["node_execution_id"] = node_execution_id
|
||||
|
||||
# get workflow_app_log_id
|
||||
workflow_app_log_id = None
|
||||
@@ -739,6 +874,8 @@ class TraceTask:
|
||||
"workflow_run_id": message_data.workflow_run_id,
|
||||
"from_source": message_data.from_source,
|
||||
}
|
||||
if node_execution_id := kwargs.get("node_execution_id"):
|
||||
metadata["node_execution_id"] = node_execution_id
|
||||
|
||||
# get workflow_app_log_id
|
||||
workflow_app_log_id = None
|
||||
@@ -778,6 +915,36 @@ class TraceTask:
|
||||
if not message_data:
|
||||
return {}
|
||||
|
||||
tenant_id = ""
|
||||
with Session(db.engine) as session:
|
||||
tid = session.scalar(select(App.tenant_id).where(App.id == message_data.app_id))
|
||||
if tid:
|
||||
tenant_id = str(tid)
|
||||
|
||||
app_name, workspace_name = _lookup_app_and_workspace_names(message_data.app_id, tenant_id)
|
||||
|
||||
doc_list = [doc.model_dump() for doc in documents] if documents else []
|
||||
dataset_ids: set[str] = set()
|
||||
for doc in doc_list:
|
||||
doc_meta = doc.get("metadata") or {}
|
||||
did = doc_meta.get("dataset_id")
|
||||
if did:
|
||||
dataset_ids.add(did)
|
||||
|
||||
embedding_models: dict[str, dict[str, str]] = {}
|
||||
if dataset_ids:
|
||||
with Session(db.engine) as session:
|
||||
rows = session.execute(
|
||||
select(Dataset.id, Dataset.embedding_model, Dataset.embedding_model_provider).where(
|
||||
Dataset.id.in_(list(dataset_ids))
|
||||
)
|
||||
).all()
|
||||
for row in rows:
|
||||
embedding_models[str(row[0])] = {
|
||||
"embedding_model": row[1] or "",
|
||||
"embedding_model_provider": row[2] or "",
|
||||
}
|
||||
|
||||
metadata = {
|
||||
"message_id": message_id,
|
||||
"ls_provider": message_data.model_provider,
|
||||
@@ -788,13 +955,21 @@ class TraceTask:
|
||||
"agent_based": message_data.agent_based,
|
||||
"workflow_run_id": message_data.workflow_run_id,
|
||||
"from_source": message_data.from_source,
|
||||
"tenant_id": tenant_id,
|
||||
"app_id": message_data.app_id,
|
||||
"user_id": message_data.from_end_user_id or message_data.from_account_id,
|
||||
"app_name": app_name,
|
||||
"workspace_name": workspace_name,
|
||||
"embedding_models": embedding_models,
|
||||
}
|
||||
if node_execution_id := kwargs.get("node_execution_id"):
|
||||
metadata["node_execution_id"] = node_execution_id
|
||||
|
||||
dataset_retrieval_trace_info = DatasetRetrievalTraceInfo(
|
||||
trace_id=self.trace_id,
|
||||
message_id=message_id,
|
||||
inputs=message_data.query or message_data.inputs,
|
||||
documents=[doc.model_dump() for doc in documents] if documents else [],
|
||||
documents=doc_list,
|
||||
start_time=timer.get("start"),
|
||||
end_time=timer.get("end"),
|
||||
metadata=metadata,
|
||||
@@ -837,6 +1012,10 @@ class TraceTask:
|
||||
"error": error,
|
||||
"tool_parameters": tool_parameters,
|
||||
}
|
||||
if message_data.workflow_run_id:
|
||||
metadata["workflow_run_id"] = message_data.workflow_run_id
|
||||
if node_execution_id := kwargs.get("node_execution_id"):
|
||||
metadata["node_execution_id"] = node_execution_id
|
||||
|
||||
file_url = ""
|
||||
message_file_data = db.session.query(MessageFile).filter_by(message_id=message_id).first()
|
||||
@@ -891,6 +1070,8 @@ class TraceTask:
|
||||
"conversation_id": conversation_id,
|
||||
"tenant_id": tenant_id,
|
||||
}
|
||||
if node_execution_id := kwargs.get("node_execution_id"):
|
||||
metadata["node_execution_id"] = node_execution_id
|
||||
|
||||
generate_name_trace_info = GenerateNameTraceInfo(
|
||||
trace_id=self.trace_id,
|
||||
@@ -905,6 +1086,158 @@ class TraceTask:
|
||||
|
||||
return generate_name_trace_info
|
||||
|
||||
def prompt_generation_trace(self, **kwargs) -> PromptGenerationTraceInfo | dict:
|
||||
tenant_id = kwargs.get("tenant_id", "")
|
||||
user_id = kwargs.get("user_id", "")
|
||||
app_id = kwargs.get("app_id")
|
||||
operation_type = kwargs.get("operation_type", "")
|
||||
instruction = kwargs.get("instruction", "")
|
||||
generated_output = kwargs.get("generated_output", "")
|
||||
|
||||
prompt_tokens = kwargs.get("prompt_tokens", 0)
|
||||
completion_tokens = kwargs.get("completion_tokens", 0)
|
||||
total_tokens = kwargs.get("total_tokens", 0)
|
||||
|
||||
model_provider = kwargs.get("model_provider", "")
|
||||
model_name = kwargs.get("model_name", "")
|
||||
|
||||
latency = kwargs.get("latency", 0.0)
|
||||
|
||||
timer = kwargs.get("timer")
|
||||
start_time = timer.get("start") if timer else None
|
||||
end_time = timer.get("end") if timer else None
|
||||
|
||||
total_price = kwargs.get("total_price")
|
||||
currency = kwargs.get("currency")
|
||||
|
||||
error = kwargs.get("error")
|
||||
|
||||
app_name = None
|
||||
workspace_name = None
|
||||
if app_id:
|
||||
app_name, workspace_name = _lookup_app_and_workspace_names(app_id, tenant_id)
|
||||
|
||||
metadata = {
|
||||
"tenant_id": tenant_id,
|
||||
"user_id": user_id,
|
||||
"app_id": app_id or "",
|
||||
"app_name": app_name,
|
||||
"workspace_name": workspace_name,
|
||||
"operation_type": operation_type,
|
||||
"model_provider": model_provider,
|
||||
"model_name": model_name,
|
||||
}
|
||||
if node_execution_id := kwargs.get("node_execution_id"):
|
||||
metadata["node_execution_id"] = node_execution_id
|
||||
|
||||
return PromptGenerationTraceInfo(
|
||||
trace_id=self.trace_id,
|
||||
inputs=instruction,
|
||||
outputs=generated_output,
|
||||
start_time=start_time,
|
||||
end_time=end_time,
|
||||
metadata=metadata,
|
||||
tenant_id=tenant_id,
|
||||
user_id=user_id,
|
||||
app_id=app_id,
|
||||
operation_type=operation_type,
|
||||
instruction=instruction,
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=total_tokens,
|
||||
model_provider=model_provider,
|
||||
model_name=model_name,
|
||||
latency=latency,
|
||||
total_price=total_price,
|
||||
currency=currency,
|
||||
error=error,
|
||||
)
|
||||
|
||||
def node_execution_trace(self, **kwargs) -> WorkflowNodeTraceInfo | dict:
|
||||
node_data: dict = kwargs.get("node_execution_data", {})
|
||||
if not node_data:
|
||||
return {}
|
||||
|
||||
app_name, workspace_name = _lookup_app_and_workspace_names(node_data.get("app_id"), node_data.get("tenant_id"))
|
||||
|
||||
credential_name = _lookup_credential_name(
|
||||
node_data.get("credential_id"), node_data.get("credential_provider_type")
|
||||
)
|
||||
|
||||
metadata: dict[str, Any] = {
|
||||
"tenant_id": node_data.get("tenant_id"),
|
||||
"app_id": node_data.get("app_id"),
|
||||
"app_name": app_name,
|
||||
"workspace_name": workspace_name,
|
||||
"user_id": node_data.get("user_id"),
|
||||
"dataset_ids": node_data.get("dataset_ids"),
|
||||
"dataset_names": node_data.get("dataset_names"),
|
||||
"plugin_name": node_data.get("plugin_name"),
|
||||
"credential_name": credential_name,
|
||||
}
|
||||
|
||||
parent_trace_context = node_data.get("parent_trace_context")
|
||||
if parent_trace_context:
|
||||
metadata["parent_trace_context"] = parent_trace_context
|
||||
|
||||
message_id: str | None = None
|
||||
conversation_id = node_data.get("conversation_id")
|
||||
workflow_execution_id = node_data.get("workflow_execution_id")
|
||||
if conversation_id and workflow_execution_id and not parent_trace_context:
|
||||
with Session(db.engine) as session:
|
||||
msg_id = session.scalar(
|
||||
select(Message.id).where(
|
||||
Message.conversation_id == conversation_id,
|
||||
Message.workflow_run_id == workflow_execution_id,
|
||||
)
|
||||
)
|
||||
if msg_id:
|
||||
message_id = str(msg_id)
|
||||
metadata["message_id"] = message_id
|
||||
|
||||
return WorkflowNodeTraceInfo(
|
||||
trace_id=self.trace_id,
|
||||
message_id=message_id,
|
||||
start_time=node_data.get("created_at"),
|
||||
end_time=node_data.get("finished_at"),
|
||||
metadata=metadata,
|
||||
workflow_id=node_data.get("workflow_id", ""),
|
||||
workflow_run_id=node_data.get("workflow_execution_id", ""),
|
||||
tenant_id=node_data.get("tenant_id", ""),
|
||||
node_execution_id=node_data.get("node_execution_id", ""),
|
||||
node_id=node_data.get("node_id", ""),
|
||||
node_type=node_data.get("node_type", ""),
|
||||
title=node_data.get("title", ""),
|
||||
status=node_data.get("status", ""),
|
||||
error=node_data.get("error"),
|
||||
elapsed_time=node_data.get("elapsed_time", 0.0),
|
||||
index=node_data.get("index", 0),
|
||||
predecessor_node_id=node_data.get("predecessor_node_id"),
|
||||
total_tokens=node_data.get("total_tokens", 0),
|
||||
total_price=node_data.get("total_price", 0.0),
|
||||
currency=node_data.get("currency"),
|
||||
model_provider=node_data.get("model_provider"),
|
||||
model_name=node_data.get("model_name"),
|
||||
prompt_tokens=node_data.get("prompt_tokens"),
|
||||
completion_tokens=node_data.get("completion_tokens"),
|
||||
tool_name=node_data.get("tool_name"),
|
||||
iteration_id=node_data.get("iteration_id"),
|
||||
iteration_index=node_data.get("iteration_index"),
|
||||
loop_id=node_data.get("loop_id"),
|
||||
loop_index=node_data.get("loop_index"),
|
||||
parallel_id=node_data.get("parallel_id"),
|
||||
node_inputs=node_data.get("node_inputs"),
|
||||
node_outputs=node_data.get("node_outputs"),
|
||||
process_data=node_data.get("process_data"),
|
||||
invoked_by=self._get_user_id_from_metadata(metadata),
|
||||
)
|
||||
|
||||
def draft_node_execution_trace(self, **kwargs) -> DraftNodeExecutionTrace | dict:
|
||||
node_trace = self.node_execution_trace(**kwargs)
|
||||
if not node_trace or not isinstance(node_trace, WorkflowNodeTraceInfo):
|
||||
return node_trace
|
||||
return DraftNodeExecutionTrace(**node_trace.model_dump())
|
||||
|
||||
def _extract_streaming_metrics(self, message_data) -> dict:
|
||||
if not message_data.message_metadata:
|
||||
return {}
|
||||
@@ -938,13 +1271,17 @@ class TraceQueueManager:
|
||||
self.user_id = user_id
|
||||
self.trace_instance = OpsTraceManager.get_ops_trace_instance(app_id)
|
||||
self.flask_app = current_app._get_current_object() # type: ignore
|
||||
|
||||
from core.telemetry import is_enterprise_telemetry_enabled
|
||||
|
||||
self._enterprise_telemetry_enabled = is_enterprise_telemetry_enabled()
|
||||
if trace_manager_timer is None:
|
||||
self.start_timer()
|
||||
|
||||
def add_trace_task(self, trace_task: TraceTask):
|
||||
global trace_manager_timer, trace_manager_queue
|
||||
try:
|
||||
if self.trace_instance:
|
||||
if self._enterprise_telemetry_enabled or self.trace_instance:
|
||||
trace_task.app_id = self.app_id
|
||||
trace_manager_queue.put(trace_task)
|
||||
except Exception:
|
||||
@@ -980,20 +1317,27 @@ class TraceQueueManager:
|
||||
def send_to_celery(self, tasks: list[TraceTask]):
|
||||
with self.flask_app.app_context():
|
||||
for task in tasks:
|
||||
if task.app_id is None:
|
||||
continue
|
||||
storage_id = task.app_id
|
||||
if storage_id is None:
|
||||
tenant_id = task.kwargs.get("tenant_id")
|
||||
if tenant_id:
|
||||
storage_id = f"tenant-{tenant_id}"
|
||||
else:
|
||||
logger.warning("Skipping trace without app_id or tenant_id, trace_type: %s", task.trace_type)
|
||||
continue
|
||||
|
||||
file_id = uuid4().hex
|
||||
trace_info = task.execute()
|
||||
|
||||
task_data = TaskData(
|
||||
app_id=task.app_id,
|
||||
app_id=storage_id,
|
||||
trace_info_type=type(trace_info).__name__,
|
||||
trace_info=trace_info.model_dump() if trace_info else None,
|
||||
)
|
||||
file_path = f"{OPS_FILE_PATH}{task.app_id}/{file_id}.json"
|
||||
file_path = f"{OPS_FILE_PATH}{storage_id}/{file_id}.json"
|
||||
storage.save(file_path, task_data.model_dump_json().encode("utf-8"))
|
||||
file_info = {
|
||||
"file_id": file_id,
|
||||
"app_id": task.app_id,
|
||||
"app_id": storage_id,
|
||||
}
|
||||
process_trace_tasks.delay(file_info) # type: ignore
|
||||
|
||||
@@ -27,8 +27,7 @@ from core.model_runtime.entities.llm_entities import LLMResult, LLMUsage
|
||||
from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageRole, PromptMessageTool
|
||||
from core.model_runtime.entities.model_entities import ModelFeature, ModelType
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.ops.entities.trace_entity import TraceTaskName
|
||||
from core.ops.ops_trace_manager import TraceQueueManager, TraceTask
|
||||
from core.ops.ops_trace_manager import TraceQueueManager
|
||||
from core.ops.utils import measure_time
|
||||
from core.prompt.advanced_prompt_transform import AdvancedPromptTransform
|
||||
from core.prompt.entities.advanced_prompt_entities import ChatModelMessage, CompletionModelPromptTemplate
|
||||
@@ -56,6 +55,8 @@ from core.rag.retrieval.template_prompts import (
|
||||
METADATA_FILTER_USER_PROMPT_2,
|
||||
METADATA_FILTER_USER_PROMPT_3,
|
||||
)
|
||||
from core.telemetry import TelemetryContext, TelemetryEvent, TraceTaskName
|
||||
from core.telemetry import emit as telemetry_emit
|
||||
from core.tools.signature import sign_upload_file
|
||||
from core.tools.utils.dataset_retriever.dataset_retriever_base_tool import DatasetRetrieverBaseTool
|
||||
from extensions.ext_database import db
|
||||
@@ -728,10 +729,21 @@ class DatasetRetrieval:
|
||||
self.application_generate_entity.trace_manager if self.application_generate_entity else None
|
||||
)
|
||||
if trace_manager:
|
||||
trace_manager.add_trace_task(
|
||||
TraceTask(
|
||||
TraceTaskName.DATASET_RETRIEVAL_TRACE, message_id=message_id, documents=documents, timer=timer
|
||||
)
|
||||
app_config = self.application_generate_entity.app_config if self.application_generate_entity else None
|
||||
telemetry_emit(
|
||||
TelemetryEvent(
|
||||
name=TraceTaskName.DATASET_RETRIEVAL_TRACE,
|
||||
context=TelemetryContext(
|
||||
tenant_id=app_config.tenant_id if app_config else None,
|
||||
app_id=app_config.app_id if app_config else None,
|
||||
),
|
||||
payload={
|
||||
"message_id": message_id,
|
||||
"documents": documents,
|
||||
"timer": timer,
|
||||
},
|
||||
),
|
||||
trace_manager=trace_manager,
|
||||
)
|
||||
|
||||
def _on_query(
|
||||
|
||||
60
api/core/telemetry/__init__.py
Normal file
60
api/core/telemetry/__init__.py
Normal file
@@ -0,0 +1,60 @@
|
||||
"""Community telemetry helpers.
|
||||
|
||||
Provides ``emit()`` which enqueues trace events into the CE trace pipeline
|
||||
(``TraceQueueManager`` → ``ops_trace`` Celery queue → Langfuse / LangSmith / etc.).
|
||||
|
||||
Enterprise-only traces (node execution, draft node execution, prompt generation)
|
||||
are silently dropped when enterprise telemetry is disabled.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from core.ops.entities.trace_entity import TraceTaskName
|
||||
from core.telemetry.events import TelemetryContext, TelemetryEvent
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from core.ops.ops_trace_manager import TraceQueueManager
|
||||
|
||||
_ENTERPRISE_ONLY_TRACES: frozenset[TraceTaskName] = frozenset(
|
||||
{
|
||||
TraceTaskName.DRAFT_NODE_EXECUTION_TRACE,
|
||||
TraceTaskName.NODE_EXECUTION_TRACE,
|
||||
TraceTaskName.PROMPT_GENERATION_TRACE,
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
def _is_enterprise_telemetry_enabled() -> bool:
|
||||
try:
|
||||
from enterprise.telemetry.exporter import is_enterprise_telemetry_enabled
|
||||
|
||||
return is_enterprise_telemetry_enabled()
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
|
||||
def emit(event: TelemetryEvent, trace_manager: TraceQueueManager | None = None) -> None:
|
||||
from core.ops.ops_trace_manager import TraceQueueManager as LocalTraceQueueManager
|
||||
from core.ops.ops_trace_manager import TraceTask
|
||||
|
||||
if event.name in _ENTERPRISE_ONLY_TRACES and not _is_enterprise_telemetry_enabled():
|
||||
return
|
||||
|
||||
queue_manager = trace_manager or LocalTraceQueueManager(
|
||||
app_id=event.context.app_id,
|
||||
user_id=event.context.user_id,
|
||||
)
|
||||
queue_manager.add_trace_task(TraceTask(event.name, **event.payload))
|
||||
|
||||
|
||||
is_enterprise_telemetry_enabled = _is_enterprise_telemetry_enabled
|
||||
|
||||
__all__ = [
|
||||
"TelemetryContext",
|
||||
"TelemetryEvent",
|
||||
"TraceTaskName",
|
||||
"emit",
|
||||
"is_enterprise_telemetry_enabled",
|
||||
]
|
||||
21
api/core/telemetry/events.py
Normal file
21
api/core/telemetry/events.py
Normal file
@@ -0,0 +1,21 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from core.ops.entities.trace_entity import TraceTaskName
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class TelemetryContext:
|
||||
tenant_id: str | None = None
|
||||
user_id: str | None = None
|
||||
app_id: str | None = None
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class TelemetryEvent:
|
||||
name: TraceTaskName
|
||||
context: TelemetryContext
|
||||
payload: dict[str, Any]
|
||||
@@ -50,6 +50,7 @@ class WorkflowTool(Tool):
|
||||
self.workflow_call_depth = workflow_call_depth
|
||||
self.label = label
|
||||
self._latest_usage = LLMUsage.empty_usage()
|
||||
self.parent_trace_context: dict[str, str] | None = None
|
||||
|
||||
super().__init__(entity=entity, runtime=runtime)
|
||||
|
||||
@@ -90,11 +91,15 @@ class WorkflowTool(Tool):
|
||||
|
||||
self._latest_usage = LLMUsage.empty_usage()
|
||||
|
||||
args: dict[str, Any] = {"inputs": tool_parameters, "files": files}
|
||||
if self.parent_trace_context:
|
||||
args["_parent_trace_context"] = self.parent_trace_context
|
||||
|
||||
result = generator.generate(
|
||||
app_model=app,
|
||||
workflow=workflow,
|
||||
user=user,
|
||||
args={"inputs": tool_parameters, "files": files},
|
||||
args=args,
|
||||
invoke_from=self.runtime.invoke_from,
|
||||
streaming=False,
|
||||
call_depth=self.workflow_call_depth + 1,
|
||||
|
||||
@@ -232,6 +232,8 @@ class WorkflowNodeExecutionMetadataKey(StrEnum):
|
||||
"""
|
||||
|
||||
TOTAL_TOKENS = "total_tokens"
|
||||
PROMPT_TOKENS = "prompt_tokens"
|
||||
COMPLETION_TOKENS = "completion_tokens"
|
||||
TOTAL_PRICE = "total_price"
|
||||
CURRENCY = "currency"
|
||||
TOOL_INFO = "tool_info"
|
||||
|
||||
@@ -322,6 +322,8 @@ class LLMNode(Node[LLMNodeData]):
|
||||
outputs=outputs,
|
||||
metadata={
|
||||
WorkflowNodeExecutionMetadataKey.TOTAL_TOKENS: usage.total_tokens,
|
||||
WorkflowNodeExecutionMetadataKey.PROMPT_TOKENS: usage.prompt_tokens,
|
||||
WorkflowNodeExecutionMetadataKey.COMPLETION_TOKENS: usage.completion_tokens,
|
||||
WorkflowNodeExecutionMetadataKey.TOTAL_PRICE: usage.total_price,
|
||||
WorkflowNodeExecutionMetadataKey.CURRENCY: usage.currency,
|
||||
},
|
||||
|
||||
@@ -61,6 +61,7 @@ class ToolNode(Node[ToolNodeData]):
|
||||
"provider_type": self.node_data.provider_type.value,
|
||||
"provider_id": self.node_data.provider_id,
|
||||
"plugin_unique_identifier": self.node_data.plugin_unique_identifier,
|
||||
"credential_id": self.node_data.credential_id,
|
||||
}
|
||||
|
||||
# get tool runtime
|
||||
@@ -105,6 +106,20 @@ class ToolNode(Node[ToolNodeData]):
|
||||
# get conversation id
|
||||
conversation_id = self.graph_runtime_state.variable_pool.get(["sys", SystemVariableKey.CONVERSATION_ID])
|
||||
|
||||
from core.tools.workflow_as_tool.tool import WorkflowTool
|
||||
|
||||
if isinstance(tool_runtime, WorkflowTool):
|
||||
workflow_run_id_var = self.graph_runtime_state.variable_pool.get(
|
||||
["sys", SystemVariableKey.WORKFLOW_EXECUTION_ID]
|
||||
)
|
||||
tool_runtime.parent_trace_context = {
|
||||
"trace_id": str(workflow_run_id_var.text) if workflow_run_id_var else "",
|
||||
"parent_node_execution_id": self.execution_id,
|
||||
"parent_workflow_run_id": str(workflow_run_id_var.text) if workflow_run_id_var else "",
|
||||
"parent_app_id": self.app_id,
|
||||
"parent_conversation_id": conversation_id.text if conversation_id else None,
|
||||
}
|
||||
|
||||
try:
|
||||
message_stream = ToolEngine.generic_invoke(
|
||||
tool=tool_runtime,
|
||||
@@ -431,6 +446,8 @@ class ToolNode(Node[ToolNodeData]):
|
||||
}
|
||||
if isinstance(usage.total_tokens, int) and usage.total_tokens > 0:
|
||||
metadata[WorkflowNodeExecutionMetadataKey.TOTAL_TOKENS] = usage.total_tokens
|
||||
metadata[WorkflowNodeExecutionMetadataKey.PROMPT_TOKENS] = usage.prompt_tokens
|
||||
metadata[WorkflowNodeExecutionMetadataKey.COMPLETION_TOKENS] = usage.completion_tokens
|
||||
metadata[WorkflowNodeExecutionMetadataKey.TOTAL_PRICE] = usage.total_price
|
||||
metadata[WorkflowNodeExecutionMetadataKey.CURRENCY] = usage.currency
|
||||
|
||||
|
||||
0
api/enterprise/__init__.py
Normal file
0
api/enterprise/__init__.py
Normal file
911
api/enterprise/telemetry/DATA_DICTIONARY.md
Normal file
911
api/enterprise/telemetry/DATA_DICTIONARY.md
Normal file
@@ -0,0 +1,911 @@
|
||||
# Dify Enterprise Telemetry Data Dictionary
|
||||
|
||||
This document provides a comprehensive reference for all telemetry signals emitted by the Dify Enterprise OpenTelemetry (OTEL) exporter. It is intended for platform engineers and data scientists integrating Dify with observability stacks like Prometheus, Grafana, Jaeger, or Honeycomb.
|
||||
|
||||
## 1. Overview
|
||||
|
||||
Dify Enterprise uses a "slim span + rich companion log" architecture to provide high-fidelity observability without overwhelming trace storage.
|
||||
|
||||
- **Traces (Spans)**: Capture the structure, identity, and timing of high-level operations (Workflows and Nodes).
|
||||
- **Structured Logs**: Provide deep context (inputs, outputs, metadata) for every event, correlated to spans via `trace_id` and `span_id`.
|
||||
- **Metrics**: Provide 100% accurate counters and histograms for usage, performance, and error tracking.
|
||||
|
||||
### Signal Architecture
|
||||
|
||||
```mermaid
|
||||
graph TD
|
||||
A[Workflow Run] -->|Span| B(dify.workflow.run)
|
||||
A -->|Log| C(dify.workflow.run detail)
|
||||
B ---|trace_id| C
|
||||
|
||||
D[Node Execution] -->|Span| E(dify.node.execution)
|
||||
D -->|Log| F(dify.node.execution detail)
|
||||
E ---|span_id| F
|
||||
|
||||
G[Message/Tool/etc] -->|Log| H(dify.* event)
|
||||
G -->|Metric| I(dify.* counter/histogram)
|
||||
```
|
||||
|
||||
## 2. Configuration
|
||||
|
||||
The Enterprise OTEL exporter is configured via environment variables.
|
||||
|
||||
| Variable | Description | Default |
|
||||
|----------|-------------|---------|
|
||||
| `ENTERPRISE_ENABLED` | Master switch for all enterprise features. | `false` |
|
||||
| `ENTERPRISE_TELEMETRY_ENABLED` | Master switch for enterprise telemetry. | `false` |
|
||||
| `ENTERPRISE_OTLP_ENDPOINT` | OTLP collector endpoint (e.g., `http://otel-collector:4318`). | - |
|
||||
| `ENTERPRISE_OTLP_HEADERS` | Custom headers for OTLP requests (e.g., `x-scope-orgid=tenant1`). | - |
|
||||
| `ENTERPRISE_OTLP_PROTOCOL` | OTLP transport protocol (`http` or `grpc`). | `http` |
|
||||
| `ENTERPRISE_OTLP_API_KEY` | Bearer token for authentication. | - |
|
||||
| `ENTERPRISE_INCLUDE_CONTENT` | Whether to include sensitive content (inputs/outputs) in logs. | `true` |
|
||||
| `ENTERPRISE_SERVICE_NAME` | Service name reported to OTEL. | `dify` |
|
||||
| `ENTERPRISE_OTEL_SAMPLING_RATE` | Sampling rate for traces (0.0 to 1.0). Metrics are always 100%. | `1.0` |
|
||||
|
||||
## 3. Resource Attributes
|
||||
|
||||
These attributes are attached to every signal (Span, Metric, Log) emitted by the exporter.
|
||||
|
||||
| Attribute | Description | Example |
|
||||
|-----------|-------------|---------|
|
||||
| `service.name` | The name of the service. | `dify` |
|
||||
| `host.name` | The hostname of the container/machine. | `dify-api-7f8b` |
|
||||
|
||||
## 4. Traces (Spans)
|
||||
|
||||
Dify emits spans for long-running or structural operations.
|
||||
|
||||
### 4.1 `dify.workflow.run`
|
||||
|
||||
Represents the full execution of a workflow.
|
||||
|
||||
| Attribute | Type | Description |
|
||||
|-----------|------|-------------|
|
||||
| `dify.trace_id` | string | The business trace ID (Workflow Run ID). |
|
||||
| `dify.tenant_id` | string | Tenant identifier. |
|
||||
| `dify.app_id` | string | Application identifier. |
|
||||
| `dify.workflow.id` | string | Workflow definition ID. |
|
||||
| `dify.workflow.run_id` | string | Unique ID for this specific run. |
|
||||
| `dify.workflow.status` | string | Final status (`succeeded`, `failed`, `stopped`, etc.). |
|
||||
| `dify.workflow.error` | string | Error message if the run failed. |
|
||||
| `dify.workflow.elapsed_time` | float | Total execution time in seconds. |
|
||||
| `dify.invoke_from` | string | Source of the trigger (`api`, `webapp`, `debug`). |
|
||||
| `dify.conversation.id` | string | Conversation ID (if applicable). |
|
||||
| `dify.message.id` | string | Message ID (if applicable). |
|
||||
| `dify.invoked_by` | string | User ID who triggered the run. |
|
||||
| `dify.parent.trace_id` | string | (Optional) Trace ID of the parent workflow. |
|
||||
| `dify.parent.workflow.run_id` | string | (Optional) Run ID of the parent workflow. |
|
||||
| `dify.parent.node.execution_id` | string | (Optional) Execution ID of the parent node. |
|
||||
| `dify.parent.app.id` | string | (Optional) App ID of the parent workflow. |
|
||||
|
||||
### 4.2 `dify.node.execution`
|
||||
|
||||
Represents the execution of a single node within a workflow.
|
||||
|
||||
| Attribute | Type | Description |
|
||||
|-----------|------|-------------|
|
||||
| `dify.trace_id` | string | The business trace ID. |
|
||||
| `dify.tenant_id` | string | Tenant identifier. |
|
||||
| `dify.app_id` | string | Application identifier. |
|
||||
| `dify.workflow.id` | string | Workflow definition ID. |
|
||||
| `dify.workflow.run_id` | string | Workflow Run ID this node belongs to. |
|
||||
| `dify.message.id` | string | Message ID (if applicable). |
|
||||
| `dify.conversation.id` | string | Conversation ID (if applicable). |
|
||||
| `dify.node.execution_id` | string | Unique ID for this node execution. |
|
||||
| `dify.node.id` | string | Node ID in the workflow graph. |
|
||||
| `dify.node.type` | string | Type of node (`llm`, `knowledge-retrieval`, `tool`, etc.). |
|
||||
| `dify.node.title` | string | Display title of the node. |
|
||||
| `dify.node.status` | string | Execution status (`succeeded`, `failed`). |
|
||||
| `dify.node.error` | string | Error message if the node failed. |
|
||||
| `dify.node.elapsed_time` | float | Execution time in seconds. |
|
||||
| `dify.node.index` | int | Execution order index. |
|
||||
| `dify.node.predecessor_node_id` | string | ID of the node that triggered this one. |
|
||||
| `dify.node.iteration_id` | string | (Optional) ID of the iteration this node belongs to. |
|
||||
| `dify.node.loop_id` | string | (Optional) ID of the loop this node belongs to. |
|
||||
| `dify.node.parallel_id` | string | (Optional) ID of the parallel branch. |
|
||||
| `dify.node.invoked_by` | string | User ID who triggered the execution. |
|
||||
|
||||
### 4.3 `dify.node.execution.draft`
|
||||
|
||||
Identical to `dify.node.execution`, but emitted during "Preview" or "Debug" runs of a single node.
|
||||
|
||||
## 5. Correlation Model
|
||||
|
||||
Dify uses deterministic ID generation to ensure signals are correlated across different services and asynchronous tasks.
|
||||
|
||||
### ID Generation Rules
|
||||
- `trace_id`: Derived from the correlation ID (workflow_run_id or node_execution_id for drafts) using `int(UUID(correlation_id))`
|
||||
- `span_id`: Derived from the source ID using `SHA256(source_id)[:8]`
|
||||
|
||||
### Scenario A: Simple Workflow
|
||||
A single workflow run with multiple nodes. All spans and logs share the same `trace_id` (derived from `workflow_run_id`).
|
||||
|
||||
```
|
||||
trace_id = UUID(workflow_run_id)
|
||||
├── [root span] dify.workflow.run (span_id = hash(workflow_run_id))
|
||||
│ ├── [child] dify.node.execution - "Start" (span_id = hash(node_exec_id_1))
|
||||
│ ├── [child] dify.node.execution - "LLM" (span_id = hash(node_exec_id_2))
|
||||
│ └── [child] dify.node.execution - "End" (span_id = hash(node_exec_id_3))
|
||||
```
|
||||
|
||||
### Scenario B: Nested Sub-Workflow
|
||||
A workflow calling another workflow via a Tool or Sub-workflow node. The child workflow's spans are linked to the parent via `parent_span_id`. Both workflows share the same trace_id.
|
||||
|
||||
```
|
||||
trace_id = UUID(outer_workflow_run_id) ← shared across both workflows
|
||||
├── [root] dify.workflow.run (outer) (span_id = hash(outer_workflow_run_id))
|
||||
│ ├── dify.node.execution - "Start Node"
|
||||
│ ├── dify.node.execution - "Tool Node" (triggers sub-workflow)
|
||||
│ │ └── [child] dify.workflow.run (inner) (span_id = hash(inner_workflow_run_id))
|
||||
│ │ ├── dify.node.execution - "Inner Start"
|
||||
│ │ └── dify.node.execution - "Inner End"
|
||||
│ └── dify.node.execution - "End Node"
|
||||
```
|
||||
|
||||
**Key attributes for nested workflows:**
|
||||
- Inner workflow's `dify.parent.trace_id` = outer `workflow_run_id`
|
||||
- Inner workflow's `dify.parent.node.execution_id` = tool node's `execution_id`
|
||||
- Inner workflow's `dify.parent.workflow.run_id` = outer `workflow_run_id`
|
||||
- Inner workflow's `dify.parent.app.id` = outer `app_id`
|
||||
|
||||
### Scenario C: Draft Node Execution
|
||||
A single node run in isolation (debugger/preview mode). It creates its own trace where the node span is the root.
|
||||
|
||||
```
|
||||
trace_id = UUID(node_execution_id) ← own trace, NOT part of any workflow
|
||||
└── dify.node.execution.draft (span_id = hash(node_execution_id))
|
||||
```
|
||||
|
||||
**Key difference:** Draft executions use `node_execution_id` as the correlation_id, so they are NOT children of any workflow trace.
|
||||
|
||||
## 6. Counters
|
||||
|
||||
All counters are cumulative and emitted at 100% accuracy.
|
||||
|
||||
### 6.1 Token Counters
|
||||
|
||||
⚠️ **Warning on Double-Counting**: `dify.tokens.total` at the workflow level includes all tokens from its nodes. To get the true total usage for a tenant, you **MUST** filter by `operation_type`.
|
||||
|
||||
| Metric | Unit | Description |
|
||||
|--------|------|-------------|
|
||||
| `dify.tokens.total` | `{token}` | Total tokens consumed. |
|
||||
| `dify.tokens.input` | `{token}` | Input (prompt) tokens. |
|
||||
| `dify.tokens.output` | `{token}` | Output (completion) tokens. |
|
||||
|
||||
**Labels for Token Counters:**
|
||||
- `tenant_id`: Tenant identifier.
|
||||
- `app_id`: Application identifier.
|
||||
- `operation_type`: `workflow`, `node_execution`, `message`, `rule_generate`, `code_generate`, `structured_output`, `instruction_modify`.
|
||||
- `model_provider`: LLM provider (e.g., `openai`).
|
||||
- `model_name`: LLM model (e.g., `gpt-4`).
|
||||
- `node_type`: Workflow node type (if `operation_type=node_execution`).
|
||||
|
||||
**PromQL Example (Total Input Tokens per Tenant):**
|
||||
```promql
|
||||
sum(dify_tokens_input_total{tenant_id="my-tenant", operation_type="workflow"})
|
||||
```
|
||||
|
||||
### 6.2 Request Counters
|
||||
|
||||
| Metric | Unit | Description |
|
||||
|--------|------|-------------|
|
||||
| `dify.requests.total` | `{request}` | Total number of operations. |
|
||||
|
||||
**Labels vary by `type`:**
|
||||
|
||||
| `type` | Additional Labels |
|
||||
|--------|-------------------|
|
||||
| `workflow` | `tenant_id`, `app_id`, `status`, `invoke_from` |
|
||||
| `node` | `tenant_id`, `app_id`, `node_type`, `model_provider`, `status` |
|
||||
| `draft_node` | `tenant_id`, `app_id`, `node_type`, `model_provider`, `status` |
|
||||
| `message` | `tenant_id`, `app_id`, `model_provider`, `model_name`, `status`, `invoke_from` |
|
||||
| `tool` | `tenant_id`, `app_id`, `tool_name` |
|
||||
| `moderation` | `tenant_id`, `app_id` |
|
||||
| `suggested_question` | `tenant_id`, `app_id` |
|
||||
| `dataset_retrieval` | `tenant_id`, `app_id` |
|
||||
| `generate_name` | `tenant_id`, `app_id` |
|
||||
| `prompt_generation` | `tenant_id`, `app_id`, `operation_type`, `model_provider`, `model_name`, `status` |
|
||||
|
||||
### 6.3 Error Counters
|
||||
|
||||
| Metric | Unit | Description |
|
||||
|--------|------|-------------|
|
||||
| `dify.errors.total` | `{error}` | Total number of failed operations. |
|
||||
|
||||
**Labels vary by `type`:**
|
||||
|
||||
| `type` | Additional Labels |
|
||||
|--------|-------------------|
|
||||
| `workflow` | `tenant_id`, `app_id` |
|
||||
| `node` | `tenant_id`, `app_id`, `node_type`, `model_provider` |
|
||||
| `draft_node` | `tenant_id`, `app_id`, `node_type`, `model_provider` |
|
||||
| `message` | `tenant_id`, `app_id`, `model_provider`, `model_name` |
|
||||
| `tool` | `tenant_id`, `app_id`, `tool_name` |
|
||||
| `prompt_generation` | `tenant_id`, `app_id`, `operation_type`, `model_provider`, `model_name` |
|
||||
|
||||
### 6.4 Other Counters
|
||||
|
||||
| Metric | Unit | Labels |
|
||||
|--------|------|--------|
|
||||
| `dify.feedback.total` | `{feedback}` | `tenant_id`, `app_id`, `rating` |
|
||||
| `dify.dataset.retrievals.total` | `{retrieval}` | `tenant_id`, `app_id`, `dataset_id` |
|
||||
| `dify.app.created.total` | `{app}` | `tenant_id`, `app_id`, `mode` |
|
||||
| `dify.app.updated.total` | `{app}` | `tenant_id`, `app_id` |
|
||||
| `dify.app.deleted.total` | `{app}` | `tenant_id`, `app_id` |
|
||||
|
||||
## 7. Histograms
|
||||
|
||||
Histograms measure the distribution of durations and latencies.
|
||||
|
||||
| Metric | Unit | Labels |
|
||||
|--------|------|--------|
|
||||
| `dify.workflow.duration` | `s` | `tenant_id`, `app_id`, `status` |
|
||||
| `dify.node.duration` | `s` | `tenant_id`, `app_id`, `node_type`, `model_provider`, `plugin_name` (if tool/knowledge) |
|
||||
| `dify.message.duration` | `s` | `tenant_id`, `app_id`, `model_provider`, `model_name` |
|
||||
| `dify.message.time_to_first_token` | `s` | `tenant_id`, `app_id`, `model_provider`, `model_name` |
|
||||
| `dify.tool.duration` | `s` | `tenant_id`, `app_id`, `tool_name` |
|
||||
| `dify.prompt_generation.duration` | `s` | `tenant_id`, `app_id`, `operation_type`, `model_provider`, `model_name` |
|
||||
|
||||
**PromQL Example (P95 Node Duration by Type):**
|
||||
```promql
|
||||
histogram_quantile(0.95, sum by (le, node_type) (rate(dify_node_duration_bucket[5m])))
|
||||
```
|
||||
|
||||
## 8. Structured Logs
|
||||
|
||||
Dify emits 13 types of structured logs. Logs are categorized as "Span Companion" (accompanying a span) or "Standalone" (metric-only events).
|
||||
|
||||
### 8.1 Span Companion Logs
|
||||
|
||||
These logs contain the full payload for spans, providing rich detail beyond what is captured in the span attributes.
|
||||
|
||||
#### 8.1.1 `dify.workflow.run` Companion Log
|
||||
|
||||
**Signal Type:** `span_detail`
|
||||
|
||||
This log accompanies the `dify.workflow.run` span and includes ALL span attributes PLUS additional detail attributes.
|
||||
|
||||
**Additional Attributes (beyond span attributes):**
|
||||
|
||||
| Additional Attribute | Type | Always Present | Description |
|
||||
|---------------------|------|----------------|-------------|
|
||||
| `dify.user.id` | string | No | User identifier (when available) |
|
||||
| `gen_ai.usage.total_tokens` | int | No | Total tokens consumed by this workflow (sum of all nodes) |
|
||||
| `dify.workflow.version` | string | Yes | Workflow version identifier |
|
||||
| `dify.workflow.inputs` | string/JSON | Yes | Workflow input parameters (content-gated) |
|
||||
| `dify.workflow.outputs` | string/JSON | Yes | Workflow output results (content-gated) |
|
||||
| `dify.workflow.query` | string | No | User query text (content-gated, for chat workflows) |
|
||||
|
||||
**Common Log Attributes:**
|
||||
- `dify.event.name`: `"dify.workflow.run"`
|
||||
- `dify.event.signal`: `"span_detail"`
|
||||
- `trace_id`: Correlated OTEL trace ID (32-char hex)
|
||||
- `span_id`: Correlated OTEL span ID (16-char hex)
|
||||
- `tenant_id`: Tenant identifier
|
||||
- `user_id`: User identifier (when available)
|
||||
|
||||
#### 8.1.2 `dify.node.execution` and `dify.node.execution.draft` Companion Logs
|
||||
|
||||
**Signal Type:** `span_detail`
|
||||
|
||||
These logs accompany node execution spans and include ALL span attributes PLUS additional detail attributes.
|
||||
|
||||
**Additional Attributes (beyond span attributes):**
|
||||
|
||||
| Additional Attribute | Type | Always Present | Description |
|
||||
|---------------------|------|----------------|-------------|
|
||||
| `dify.user.id` | string | No | User identifier (when available) |
|
||||
| `gen_ai.provider.name` | string | No | LLM provider name (for LLM nodes only) |
|
||||
| `gen_ai.request.model` | string | No | LLM model name (for LLM nodes only) |
|
||||
| `gen_ai.usage.input_tokens` | int | No | Input tokens for this node (for LLM nodes only) |
|
||||
| `gen_ai.usage.output_tokens` | int | No | Output tokens for this node (for LLM nodes only) |
|
||||
| `gen_ai.usage.total_tokens` | int | No | Total tokens for this node (for LLM nodes only) |
|
||||
| `dify.node.total_price` | float | No | Cost in currency units (for LLM nodes only) |
|
||||
| `dify.node.currency` | string | No | Currency code (for LLM nodes only) |
|
||||
| `dify.node.plugin_name` | string | No | Plugin name (for tool/knowledge-retrieval nodes only) |
|
||||
| `dify.node.plugin_id` | string | No | Plugin identifier (for tool/knowledge-retrieval nodes only) |
|
||||
| `dify.dataset.id` | string | No | Dataset identifier (for knowledge-retrieval nodes only) |
|
||||
| `dify.dataset.name` | string | No | Dataset name (for knowledge-retrieval nodes only) |
|
||||
| `dify.node.inputs` | string/JSON | Yes | Node input data (content-gated) |
|
||||
| `dify.node.outputs` | string/JSON | Yes | Node output data (content-gated) |
|
||||
| `dify.node.process_data` | string/JSON | No | Internal processing data (content-gated) |
|
||||
|
||||
**Common Log Attributes:**
|
||||
- `dify.event.name`: `"dify.node.execution"` or `"dify.node.execution.draft"`
|
||||
- `dify.event.signal`: `"span_detail"`
|
||||
- `trace_id`: Correlated OTEL trace ID (32-char hex)
|
||||
- `span_id`: Correlated OTEL span ID (16-char hex)
|
||||
- `tenant_id`: Tenant identifier
|
||||
- `user_id`: User identifier (when available)
|
||||
|
||||
### 8.2 Standalone Logs
|
||||
|
||||
These logs represent events that do not have a structural span. They are emitted as `metric_only` signals.
|
||||
|
||||
#### 8.2.1 `dify.message.run`
|
||||
|
||||
**Signal Type:** `metric_only`
|
||||
|
||||
Emitted for each message execution (LLM interaction).
|
||||
|
||||
**Attributes:**
|
||||
- `dify.event.name`: `"dify.message.run"`
|
||||
- `dify.event.signal`: `"metric_only"`
|
||||
- `trace_id`: OTEL trace ID (32-char hex)
|
||||
- `span_id`: OTEL span ID (16-char hex)
|
||||
- `tenant_id`: Tenant identifier
|
||||
- `user_id`: User identifier (when available)
|
||||
- `dify.app_id`: Application identifier
|
||||
- `dify.message.id`: Message identifier
|
||||
- `dify.conversation.id`: Conversation identifier (when available)
|
||||
- `dify.workflow.run_id`: Workflow run identifier (when part of workflow)
|
||||
- `dify.invoke_from`: Source of invocation (`"service-api"`, `"web-app"`, `"debugger"`, `"explore"`)
|
||||
- `gen_ai.provider.name`: LLM provider name
|
||||
- `gen_ai.request.model`: LLM model name
|
||||
- `gen_ai.usage.input_tokens`: Input tokens consumed
|
||||
- `gen_ai.usage.output_tokens`: Output tokens generated
|
||||
- `gen_ai.usage.total_tokens`: Total tokens consumed
|
||||
- `dify.message.status`: Execution status (`"succeeded"`, `"failed"`)
|
||||
- `dify.message.error`: Error message (when status is `"failed"`)
|
||||
- `dify.message.duration`: Execution duration in seconds
|
||||
- `dify.message.time_to_first_token`: Time to first token in seconds
|
||||
- `dify.message.inputs`: Message inputs (content-gated)
|
||||
- `dify.message.outputs`: Message outputs (content-gated)
|
||||
|
||||
**Example:**
|
||||
```json
|
||||
{
|
||||
"trace_id": "a1b2c3d4e5f6g7h8i9j0k1l2m3n4o5p6",
|
||||
"span_id": "a1b2c3d4e5f6g7h8",
|
||||
"attributes": {
|
||||
"dify.event.name": "dify.message.run",
|
||||
"dify.event.signal": "metric_only",
|
||||
"tenant_id": "550e8400-e29b-41d4-a716-446655440000",
|
||||
"user_id": "660e8400-e29b-41d4-a716-446655440001",
|
||||
"dify.app_id": "770e8400-e29b-41d4-a716-446655440002",
|
||||
"dify.message.id": "880e8400-e29b-41d4-a716-446655440003",
|
||||
"dify.conversation.id": "990e8400-e29b-41d4-a716-446655440004",
|
||||
"dify.invoke_from": "web-app",
|
||||
"gen_ai.provider.name": "openai",
|
||||
"gen_ai.request.model": "gpt-4",
|
||||
"gen_ai.usage.input_tokens": 120,
|
||||
"gen_ai.usage.output_tokens": 85,
|
||||
"gen_ai.usage.total_tokens": 205,
|
||||
"dify.message.status": "succeeded",
|
||||
"dify.message.duration": 2.45,
|
||||
"dify.message.time_to_first_token": 0.32,
|
||||
"dify.message.inputs": "{\"query\": \"What is the weather?\"}",
|
||||
"dify.message.outputs": "{\"answer\": \"The weather is sunny.\"}"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
#### 8.2.2 `dify.tool.execution`
|
||||
|
||||
**Signal Type:** `metric_only`
|
||||
|
||||
Emitted for each tool invocation.
|
||||
|
||||
**Attributes:**
|
||||
- `dify.event.name`: `"dify.tool.execution"`
|
||||
- `dify.event.signal`: `"metric_only"`
|
||||
- `trace_id`: OTEL trace ID
|
||||
- `span_id`: OTEL span ID
|
||||
- `tenant_id`: Tenant identifier
|
||||
- `dify.app_id`: Application identifier
|
||||
- `dify.message.id`: Message identifier
|
||||
- `dify.tool.name`: Tool name
|
||||
- `dify.tool.duration`: Execution duration in seconds
|
||||
- `dify.tool.status`: Execution status (`"succeeded"`, `"failed"`)
|
||||
- `dify.tool.error`: Error message (when failed)
|
||||
- `dify.tool.inputs`: Tool inputs (content-gated)
|
||||
- `dify.tool.outputs`: Tool outputs (content-gated)
|
||||
- `dify.tool.parameters`: Tool parameters (content-gated)
|
||||
- `dify.tool.config`: Tool configuration (content-gated)
|
||||
|
||||
**Example:**
|
||||
```json
|
||||
{
|
||||
"trace_id": "b2c3d4e5f6g7h8i9j0k1l2m3n4o5p6q7",
|
||||
"span_id": "b2c3d4e5f6g7h8i9",
|
||||
"attributes": {
|
||||
"dify.event.name": "dify.tool.execution",
|
||||
"dify.event.signal": "metric_only",
|
||||
"tenant_id": "550e8400-e29b-41d4-a716-446655440000",
|
||||
"dify.app_id": "770e8400-e29b-41d4-a716-446655440002",
|
||||
"dify.message.id": "880e8400-e29b-41d4-a716-446655440003",
|
||||
"dify.tool.name": "weather_api",
|
||||
"dify.tool.duration": 0.85,
|
||||
"dify.tool.status": "succeeded",
|
||||
"dify.tool.inputs": "{\"location\": \"San Francisco\"}",
|
||||
"dify.tool.outputs": "{\"temperature\": 72, \"condition\": \"sunny\"}",
|
||||
"dify.tool.parameters": "{\"api_key\": \"***\"}",
|
||||
"dify.tool.config": "{\"timeout\": 30}"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
#### 8.2.3 `dify.moderation.check`
|
||||
|
||||
**Signal Type:** `metric_only`
|
||||
|
||||
Emitted for content moderation checks.
|
||||
|
||||
**Attributes:**
|
||||
- `dify.event.name`: `"dify.moderation.check"`
|
||||
- `dify.event.signal`: `"metric_only"`
|
||||
- `trace_id`: OTEL trace ID
|
||||
- `span_id`: OTEL span ID
|
||||
- `tenant_id`: Tenant identifier
|
||||
- `dify.app_id`: Application identifier
|
||||
- `dify.message.id`: Message identifier
|
||||
- `dify.moderation.type`: Moderation type (`"input"`, `"output"`)
|
||||
- `dify.moderation.action`: Action taken (`"pass"`, `"block"`, `"flag"`)
|
||||
- `dify.moderation.flagged`: Whether content was flagged (boolean)
|
||||
- `dify.moderation.categories`: Flagged categories (JSON array)
|
||||
- `dify.moderation.query`: Content being moderated (content-gated)
|
||||
|
||||
**Example:**
|
||||
```json
|
||||
{
|
||||
"trace_id": "c3d4e5f6g7h8i9j0k1l2m3n4o5p6q7r8",
|
||||
"span_id": "c3d4e5f6g7h8i9j0",
|
||||
"attributes": {
|
||||
"dify.event.name": "dify.moderation.check",
|
||||
"dify.event.signal": "metric_only",
|
||||
"tenant_id": "550e8400-e29b-41d4-a716-446655440000",
|
||||
"dify.app_id": "770e8400-e29b-41d4-a716-446655440002",
|
||||
"dify.message.id": "880e8400-e29b-41d4-a716-446655440003",
|
||||
"dify.moderation.type": "input",
|
||||
"dify.moderation.action": "pass",
|
||||
"dify.moderation.flagged": false,
|
||||
"dify.moderation.categories": "[]",
|
||||
"dify.moderation.query": "What is the weather?"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
#### 8.2.4 `dify.suggested_question.generation`
|
||||
|
||||
**Signal Type:** `metric_only`
|
||||
|
||||
Emitted when suggested questions are generated.
|
||||
|
||||
**Attributes:**
|
||||
- `dify.event.name`: `"dify.suggested_question.generation"`
|
||||
- `dify.event.signal`: `"metric_only"`
|
||||
- `trace_id`: OTEL trace ID
|
||||
- `span_id`: OTEL span ID
|
||||
- `tenant_id`: Tenant identifier
|
||||
- `dify.app_id`: Application identifier
|
||||
- `dify.message.id`: Message identifier
|
||||
- `dify.suggested_question.count`: Number of questions generated
|
||||
- `dify.suggested_question.duration`: Generation duration in seconds
|
||||
- `dify.suggested_question.status`: Generation status (`"succeeded"`, `"failed"`)
|
||||
- `dify.suggested_question.error`: Error message (when failed)
|
||||
- `dify.suggested_question.questions`: Generated questions (content-gated, JSON array)
|
||||
|
||||
**Example:**
|
||||
```json
|
||||
{
|
||||
"trace_id": "d4e5f6g7h8i9j0k1l2m3n4o5p6q7r8s9",
|
||||
"span_id": "d4e5f6g7h8i9j0k1",
|
||||
"attributes": {
|
||||
"dify.event.name": "dify.suggested_question.generation",
|
||||
"dify.event.signal": "metric_only",
|
||||
"tenant_id": "550e8400-e29b-41d4-a716-446655440000",
|
||||
"dify.app_id": "770e8400-e29b-41d4-a716-446655440002",
|
||||
"dify.message.id": "880e8400-e29b-41d4-a716-446655440003",
|
||||
"dify.suggested_question.count": 3,
|
||||
"dify.suggested_question.duration": 1.2,
|
||||
"dify.suggested_question.status": "succeeded",
|
||||
"dify.suggested_question.questions": "[\"What about tomorrow?\", \"How about next week?\", \"Is it raining?\"]"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
#### 8.2.5 `dify.dataset.retrieval`
|
||||
|
||||
**Signal Type:** `metric_only`
|
||||
|
||||
Emitted for knowledge base retrieval operations.
|
||||
|
||||
**Attributes:**
|
||||
- `dify.event.name`: `"dify.dataset.retrieval"`
|
||||
- `dify.event.signal`: `"metric_only"`
|
||||
- `trace_id`: OTEL trace ID
|
||||
- `span_id`: OTEL span ID
|
||||
- `tenant_id`: Tenant identifier
|
||||
- `dify.app_id`: Application identifier
|
||||
- `dify.message.id`: Message identifier
|
||||
- `dify.dataset.id`: Dataset identifier
|
||||
- `dify.dataset.name`: Dataset name
|
||||
- `dify.retrieval.query`: Search query (content-gated)
|
||||
- `dify.retrieval.document_count`: Number of documents retrieved
|
||||
- `dify.retrieval.duration`: Retrieval duration in seconds
|
||||
- `dify.retrieval.status`: Retrieval status (`"succeeded"`, `"failed"`)
|
||||
- `dify.retrieval.error`: Error message (when failed)
|
||||
- `dify.dataset.documents`: Retrieved documents (content-gated, JSON array)
|
||||
|
||||
**Example:**
|
||||
```json
|
||||
{
|
||||
"trace_id": "e5f6g7h8i9j0k1l2m3n4o5p6q7r8s9t0",
|
||||
"span_id": "e5f6g7h8i9j0k1l2",
|
||||
"attributes": {
|
||||
"dify.event.name": "dify.dataset.retrieval",
|
||||
"dify.event.signal": "metric_only",
|
||||
"tenant_id": "550e8400-e29b-41d4-a716-446655440000",
|
||||
"dify.app_id": "770e8400-e29b-41d4-a716-446655440002",
|
||||
"dify.message.id": "880e8400-e29b-41d4-a716-446655440003",
|
||||
"dify.dataset.id": "aa0e8400-e29b-41d4-a716-446655440005",
|
||||
"dify.dataset.name": "Product Documentation",
|
||||
"dify.retrieval.query": "installation guide",
|
||||
"dify.retrieval.document_count": 5,
|
||||
"dify.retrieval.duration": 0.45,
|
||||
"dify.retrieval.status": "succeeded",
|
||||
"dify.dataset.documents": "[{\"id\": \"doc1\", \"score\": 0.95}, {\"id\": \"doc2\", \"score\": 0.87}]"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
#### 8.2.6 `dify.generate_name.execution`
|
||||
|
||||
**Signal Type:** `metric_only`
|
||||
|
||||
Emitted when conversation names are auto-generated.
|
||||
|
||||
**Attributes:**
|
||||
- `dify.event.name`: `"dify.generate_name.execution"`
|
||||
- `dify.event.signal`: `"metric_only"`
|
||||
- `trace_id`: OTEL trace ID
|
||||
- `span_id`: OTEL span ID
|
||||
- `tenant_id`: Tenant identifier
|
||||
- `dify.app_id`: Application identifier
|
||||
- `dify.conversation.id`: Conversation identifier
|
||||
- `dify.generate_name.duration`: Generation duration in seconds
|
||||
- `dify.generate_name.status`: Generation status (`"succeeded"`, `"failed"`)
|
||||
- `dify.generate_name.error`: Error message (when failed)
|
||||
- `dify.generate_name.inputs`: Generation inputs (content-gated)
|
||||
- `dify.generate_name.outputs`: Generated name (content-gated)
|
||||
|
||||
**Example:**
|
||||
```json
|
||||
{
|
||||
"trace_id": "f6g7h8i9j0k1l2m3n4o5p6q7r8s9t0u1",
|
||||
"span_id": "f6g7h8i9j0k1l2m3",
|
||||
"attributes": {
|
||||
"dify.event.name": "dify.generate_name.execution",
|
||||
"dify.event.signal": "metric_only",
|
||||
"tenant_id": "550e8400-e29b-41d4-a716-446655440000",
|
||||
"dify.app_id": "770e8400-e29b-41d4-a716-446655440002",
|
||||
"dify.conversation.id": "990e8400-e29b-41d4-a716-446655440004",
|
||||
"dify.generate_name.duration": 0.75,
|
||||
"dify.generate_name.status": "succeeded",
|
||||
"dify.generate_name.inputs": "{\"first_message\": \"What is the weather?\"}",
|
||||
"dify.generate_name.outputs": "Weather Inquiry"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
#### 8.2.7 `dify.prompt_generation.execution`
|
||||
|
||||
**Signal Type:** `metric_only`
|
||||
|
||||
Emitted for prompt engineering operations.
|
||||
|
||||
**Attributes:**
|
||||
- `dify.event.name`: `"dify.prompt_generation.execution"`
|
||||
- `dify.event.signal`: `"metric_only"`
|
||||
- `trace_id`: OTEL trace ID
|
||||
- `span_id`: OTEL span ID
|
||||
- `tenant_id`: Tenant identifier
|
||||
- `dify.app_id`: Application identifier
|
||||
- `dify.prompt_generation.operation_type`: Operation type (`"rule_generate"`, `"code_generate"`, `"structured_output"`, `"instruction_modify"`)
|
||||
- `gen_ai.provider.name`: LLM provider name
|
||||
- `gen_ai.request.model`: LLM model name
|
||||
- `gen_ai.usage.input_tokens`: Input tokens consumed
|
||||
- `gen_ai.usage.output_tokens`: Output tokens generated
|
||||
- `gen_ai.usage.total_tokens`: Total tokens consumed
|
||||
- `dify.prompt_generation.duration`: Generation duration in seconds
|
||||
- `dify.prompt_generation.status`: Generation status (`"succeeded"`, `"failed"`)
|
||||
- `dify.prompt_generation.error`: Error message (when failed)
|
||||
- `dify.prompt_generation.instruction`: Prompt instruction (content-gated)
|
||||
- `dify.prompt_generation.output`: Generated output (content-gated)
|
||||
|
||||
**Example:**
|
||||
```json
|
||||
{
|
||||
"trace_id": "g7h8i9j0k1l2m3n4o5p6q7r8s9t0u1v2",
|
||||
"span_id": "g7h8i9j0k1l2m3n4",
|
||||
"attributes": {
|
||||
"dify.event.name": "dify.prompt_generation.execution",
|
||||
"dify.event.signal": "metric_only",
|
||||
"tenant_id": "550e8400-e29b-41d4-a716-446655440000",
|
||||
"dify.app_id": "770e8400-e29b-41d4-a716-446655440002",
|
||||
"dify.prompt_generation.operation_type": "rule_generate",
|
||||
"gen_ai.provider.name": "openai",
|
||||
"gen_ai.request.model": "gpt-4",
|
||||
"gen_ai.usage.input_tokens": 50,
|
||||
"gen_ai.usage.output_tokens": 30,
|
||||
"gen_ai.usage.total_tokens": 80,
|
||||
"dify.prompt_generation.duration": 1.1,
|
||||
"dify.prompt_generation.status": "succeeded",
|
||||
"dify.prompt_generation.instruction": "Generate validation rules",
|
||||
"dify.prompt_generation.output": "{\"rules\": [\"check_length\", \"validate_format\"]}"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
#### 8.2.8 `dify.app.created`
|
||||
|
||||
**Signal Type:** `metric_only`
|
||||
|
||||
Emitted when an application is created.
|
||||
|
||||
**Attributes:**
|
||||
- `dify.event.name`: `"dify.app.created"`
|
||||
- `dify.event.signal`: `"metric_only"`
|
||||
- `tenant_id`: Tenant identifier
|
||||
- `dify.app_id`: Application identifier
|
||||
- `dify.app.mode`: Application mode (`"chat"`, `"completion"`, `"agent-chat"`, `"workflow"`)
|
||||
- `dify.app.created_at`: Creation timestamp (ISO 8601)
|
||||
|
||||
**Example:**
|
||||
```json
|
||||
{
|
||||
"attributes": {
|
||||
"dify.event.name": "dify.app.created",
|
||||
"dify.event.signal": "metric_only",
|
||||
"tenant_id": "550e8400-e29b-41d4-a716-446655440000",
|
||||
"dify.app_id": "770e8400-e29b-41d4-a716-446655440002",
|
||||
"dify.app.mode": "workflow",
|
||||
"dify.app.created_at": "2026-02-10T19:30:00Z"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
#### 8.2.9 `dify.app.updated`
|
||||
|
||||
**Signal Type:** `metric_only`
|
||||
|
||||
Emitted when an application is updated.
|
||||
|
||||
**Attributes:**
|
||||
- `dify.event.name`: `"dify.app.updated"`
|
||||
- `dify.event.signal`: `"metric_only"`
|
||||
- `tenant_id`: Tenant identifier
|
||||
- `dify.app_id`: Application identifier
|
||||
- `dify.app.updated_at`: Update timestamp (ISO 8601)
|
||||
|
||||
**Example:**
|
||||
```json
|
||||
{
|
||||
"attributes": {
|
||||
"dify.event.name": "dify.app.updated",
|
||||
"dify.event.signal": "metric_only",
|
||||
"tenant_id": "550e8400-e29b-41d4-a716-446655440000",
|
||||
"dify.app_id": "770e8400-e29b-41d4-a716-446655440002",
|
||||
"dify.app.updated_at": "2026-02-10T20:15:00Z"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
#### 8.2.10 `dify.app.deleted`
|
||||
|
||||
**Signal Type:** `metric_only`
|
||||
|
||||
Emitted when an application is deleted.
|
||||
|
||||
**Attributes:**
|
||||
- `dify.event.name`: `"dify.app.deleted"`
|
||||
- `dify.event.signal`: `"metric_only"`
|
||||
- `tenant_id`: Tenant identifier
|
||||
- `dify.app_id`: Application identifier
|
||||
- `dify.app.deleted_at`: Deletion timestamp (ISO 8601)
|
||||
|
||||
**Example:**
|
||||
```json
|
||||
{
|
||||
"attributes": {
|
||||
"dify.event.name": "dify.app.deleted",
|
||||
"dify.event.signal": "metric_only",
|
||||
"tenant_id": "550e8400-e29b-41d4-a716-446655440000",
|
||||
"dify.app_id": "770e8400-e29b-41d4-a716-446655440002",
|
||||
"dify.app.deleted_at": "2026-02-10T21:00:00Z"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
#### 8.2.11 `dify.feedback.created`
|
||||
|
||||
**Signal Type:** `metric_only`
|
||||
|
||||
Emitted when user feedback is submitted.
|
||||
|
||||
**Attributes:**
|
||||
- `dify.event.name`: `"dify.feedback.created"`
|
||||
- `dify.event.signal`: `"metric_only"`
|
||||
- `trace_id`: OTEL trace ID
|
||||
- `span_id`: OTEL span ID
|
||||
- `tenant_id`: Tenant identifier
|
||||
- `dify.app_id`: Application identifier
|
||||
- `dify.message.id`: Message identifier
|
||||
- `dify.feedback.rating`: Rating (`"like"`, `"dislike"`, `null`)
|
||||
- `dify.feedback.content`: Feedback text (content-gated, omitted when gating enabled)
|
||||
- `dify.feedback.created_at`: Feedback timestamp (ISO 8601)
|
||||
|
||||
**Example:**
|
||||
```json
|
||||
{
|
||||
"trace_id": "h8i9j0k1l2m3n4o5p6q7r8s9t0u1v2w3",
|
||||
"span_id": "h8i9j0k1l2m3n4o5",
|
||||
"attributes": {
|
||||
"dify.event.name": "dify.feedback.created",
|
||||
"dify.event.signal": "metric_only",
|
||||
"tenant_id": "550e8400-e29b-41d4-a716-446655440000",
|
||||
"dify.app_id": "770e8400-e29b-41d4-a716-446655440002",
|
||||
"dify.message.id": "880e8400-e29b-41d4-a716-446655440003",
|
||||
"dify.feedback.rating": "like",
|
||||
"dify.feedback.content": "Very helpful response!",
|
||||
"dify.feedback.created_at": "2026-02-10T19:45:00Z"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
#### 8.2.12 `dify.telemetry.rehydration_failed`
|
||||
|
||||
**Signal Type:** `metric_only` (Diagnostic)
|
||||
|
||||
Emitted when telemetry payload rehydration fails. This is a diagnostic event for monitoring telemetry system health.
|
||||
|
||||
**Attributes:**
|
||||
- `dify.event.name`: `"dify.telemetry.rehydration_failed"`
|
||||
- `dify.event.signal`: `"metric_only"`
|
||||
- `tenant_id`: Tenant identifier
|
||||
- `dify.telemetry.error`: Error message
|
||||
- `dify.telemetry.payload_type`: Type of payload that failed (`"workflow"`, `"node"`, `"message"`, etc.)
|
||||
- `dify.telemetry.correlation_id`: Correlation ID of the failed payload
|
||||
|
||||
**Example:**
|
||||
```json
|
||||
{
|
||||
"attributes": {
|
||||
"dify.event.name": "dify.telemetry.rehydration_failed",
|
||||
"dify.event.signal": "metric_only",
|
||||
"tenant_id": "550e8400-e29b-41d4-a716-446655440000",
|
||||
"dify.telemetry.error": "Workflow run not found in database",
|
||||
"dify.telemetry.payload_type": "workflow",
|
||||
"dify.telemetry.correlation_id": "bb0e8400-e29b-41d4-a716-446655440006"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## 9. Content Attributes
|
||||
|
||||
When `ENTERPRISE_INCLUDE_CONTENT` is set to `false`, the following attributes are replaced with a reference string (e.g., `ref:workflow_run_id=...`) to prevent sensitive data leakage to the OTEL collector.
|
||||
|
||||
| Attribute | Signal |
|
||||
|-----------|--------|
|
||||
| `dify.workflow.inputs` | `dify.workflow.run` |
|
||||
| `dify.workflow.outputs` | `dify.workflow.run` |
|
||||
| `dify.workflow.query` | `dify.workflow.run` |
|
||||
| `dify.node.inputs` | `dify.node.execution` |
|
||||
| `dify.node.outputs` | `dify.node.execution` |
|
||||
| `dify.node.process_data` | `dify.node.execution` |
|
||||
| `dify.message.inputs` | `dify.message.run` |
|
||||
| `dify.message.outputs` | `dify.message.run` |
|
||||
| `dify.tool.inputs` | `dify.tool.execution` |
|
||||
| `dify.tool.outputs` | `dify.tool.execution` |
|
||||
| `dify.tool.parameters` | `dify.tool.execution` |
|
||||
| `dify.tool.config` | `dify.tool.execution` |
|
||||
| `dify.moderation.query` | `dify.moderation.check` |
|
||||
| `dify.suggested_question.questions` | `dify.suggested_question.generation` |
|
||||
| `dify.retrieval.query` | `dify.dataset.retrieval` |
|
||||
| `dify.dataset.documents` | `dify.dataset.retrieval` |
|
||||
| `dify.generate_name.inputs` | `dify.generate_name.execution` |
|
||||
| `dify.generate_name.outputs` | `dify.generate_name.execution` |
|
||||
| `dify.prompt_generation.instruction` | `dify.prompt_generation.execution` |
|
||||
| `dify.prompt_generation.output` | `dify.prompt_generation.execution` |
|
||||
| `dify.feedback.content` | `dify.feedback.created` |
|
||||
|
||||
### Content Gating Behavior
|
||||
|
||||
When `ENTERPRISE_INCLUDE_CONTENT=true` (default), content attributes contain the actual data:
|
||||
|
||||
```json
|
||||
{
|
||||
"dify.workflow.inputs": "{\"query\": \"What is the weather?\", \"location\": \"San Francisco\"}",
|
||||
"dify.workflow.outputs": "{\"answer\": \"The weather in San Francisco is sunny, 72°F.\"}",
|
||||
"dify.workflow.query": "What is the weather?"
|
||||
}
|
||||
```
|
||||
|
||||
When `ENTERPRISE_INCLUDE_CONTENT=false`, content attributes are replaced with reference strings:
|
||||
|
||||
```json
|
||||
{
|
||||
"dify.workflow.inputs": "ref:workflow_run_id=550e8400-e29b-41d4-a716-446655440000",
|
||||
"dify.workflow.outputs": "ref:workflow_run_id=550e8400-e29b-41d4-a716-446655440000",
|
||||
"dify.workflow.query": "ref:workflow_run_id=550e8400-e29b-41d4-a716-446655440000"
|
||||
}
|
||||
```
|
||||
|
||||
### Reference String Format
|
||||
|
||||
Reference strings follow the pattern `ref:{id_type}={uuid}`, where:
|
||||
|
||||
- `{id_type}` identifies the entity type
|
||||
- `{uuid}` is the entity's unique identifier
|
||||
|
||||
**Examples:**
|
||||
|
||||
```
|
||||
ref:workflow_run_id=550e8400-e29b-41d4-a716-446655440000
|
||||
ref:node_execution_id=660e8400-e29b-41d4-a716-446655440001
|
||||
ref:message_id=770e8400-e29b-41d4-a716-446655440002
|
||||
ref:conversation_id=880e8400-e29b-41d4-a716-446655440003
|
||||
ref:trace_id=990e8400-e29b-41d4-a716-446655440004
|
||||
```
|
||||
|
||||
**Usage:** To retrieve the actual content, query your Dify database using the provided UUID. For example, `ref:workflow_run_id=550e8400-e29b-41d4-a716-446655440000` means you can fetch the workflow run record from the `workflow_runs` table using that ID.
|
||||
|
||||
**Special Case:** The `dify.feedback.content` attribute is **omitted entirely** (not replaced with a reference string) when content gating is enabled, as feedback text is not stored with a retrievable ID.
|
||||
|
||||
## 10. Appendix
|
||||
|
||||
### Operation Types (`operation_type`)
|
||||
- `workflow`
|
||||
- `node_execution`
|
||||
- `message`
|
||||
- `rule_generate`
|
||||
- `code_generate`
|
||||
- `structured_output`
|
||||
- `instruction_modify`
|
||||
|
||||
### Node Types (`node_type`)
|
||||
- `start`, `end`, `answer`, `llm`, `knowledge-retrieval`, `knowledge-index`, `if-else`, `code`, `template-transform`, `question-classifier`, `http-request`, `tool`, `datasource`, `variable-aggregator`, `loop`, `iteration`, `parameter-extractor`, `assigner`, `document-extractor`, `list-operator`, `agent`, `trigger-webhook`, `trigger-schedule`, `trigger-plugin`, `human-input`.
|
||||
|
||||
### Workflow Statuses
|
||||
- `running`, `succeeded`, `failed`, `stopped`, `partial-succeeded`, `paused`.
|
||||
|
||||
### Null Value Behavior
|
||||
|
||||
The handling of null/missing values differs between spans (traces) and structured logs:
|
||||
|
||||
**In Spans (Traces):**
|
||||
Attributes with `None`/`null` values are **omitted** from the exported span data. This follows OpenTelemetry conventions for efficient trace storage.
|
||||
|
||||
Example - a workflow span without optional parent attributes:
|
||||
```python
|
||||
# These attributes are NOT included in the span:
|
||||
# - dify.parent.trace_id (null)
|
||||
# - dify.parent.workflow.run_id (null)
|
||||
# - dify.parent.node.execution_id (null)
|
||||
# - dify.parent.app.id (null)
|
||||
```
|
||||
|
||||
**In Structured Logs:**
|
||||
Attributes with `null` values appear as `null` in the JSON payload.
|
||||
|
||||
Example:
|
||||
```json
|
||||
{
|
||||
"attributes": {
|
||||
"dify.workflow.error": null,
|
||||
"dify.conversation.id": null
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
**Conditional Attributes:**
|
||||
Many attributes are only present under specific conditions:
|
||||
|
||||
- **LLM-related attributes** (`gen_ai.provider.name`, `gen_ai.usage.total_tokens`, etc.) only appear for LLM nodes
|
||||
- **Plugin attributes** (`dify.node.plugin_name`, `dify.node.plugin_id`) only appear for tool/knowledge-retrieval nodes
|
||||
- **Dataset attributes** (`dify.dataset.id`, `dify.dataset.name`) only appear for knowledge-retrieval nodes
|
||||
- **Error attributes** (`dify.workflow.error`, `dify.node.error`) only appear when status is `"failed"`
|
||||
- **Parent attributes** (`dify.parent.*`) only appear for nested/sub-workflow executions
|
||||
|
||||
**Content-Gated Attributes:**
|
||||
When `ENTERPRISE_INCLUDE_CONTENT=false`, content attributes are replaced with reference strings (not set to `null`). See Section 9 for details.
|
||||
0
api/enterprise/telemetry/__init__.py
Normal file
0
api/enterprise/telemetry/__init__.py
Normal file
83
api/enterprise/telemetry/contracts.py
Normal file
83
api/enterprise/telemetry/contracts.py
Normal file
@@ -0,0 +1,83 @@
|
||||
"""Telemetry gateway contracts and data structures.
|
||||
|
||||
This module defines the envelope format for telemetry events and the routing
|
||||
configuration that determines how each event type is processed.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from enum import StrEnum
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, field_validator
|
||||
|
||||
|
||||
class TelemetryCase(StrEnum):
|
||||
"""Enumeration of all known telemetry event cases."""
|
||||
|
||||
WORKFLOW_RUN = "workflow_run"
|
||||
NODE_EXECUTION = "node_execution"
|
||||
DRAFT_NODE_EXECUTION = "draft_node_execution"
|
||||
MESSAGE_RUN = "message_run"
|
||||
TOOL_EXECUTION = "tool_execution"
|
||||
MODERATION_CHECK = "moderation_check"
|
||||
SUGGESTED_QUESTION = "suggested_question"
|
||||
DATASET_RETRIEVAL = "dataset_retrieval"
|
||||
GENERATE_NAME = "generate_name"
|
||||
PROMPT_GENERATION = "prompt_generation"
|
||||
APP_CREATED = "app_created"
|
||||
APP_UPDATED = "app_updated"
|
||||
APP_DELETED = "app_deleted"
|
||||
FEEDBACK_CREATED = "feedback_created"
|
||||
|
||||
|
||||
class SignalType(StrEnum):
|
||||
"""Signal routing type for telemetry cases."""
|
||||
|
||||
TRACE = "trace"
|
||||
METRIC_LOG = "metric_log"
|
||||
|
||||
|
||||
class CaseRoute(BaseModel):
|
||||
"""Routing configuration for a telemetry case.
|
||||
|
||||
Attributes:
|
||||
signal_type: The type of signal (trace or metric_log).
|
||||
ce_eligible: Whether this case is eligible for community edition tracing.
|
||||
"""
|
||||
|
||||
signal_type: SignalType
|
||||
ce_eligible: bool
|
||||
|
||||
|
||||
class TelemetryEnvelope(BaseModel):
|
||||
"""Envelope for telemetry events.
|
||||
|
||||
Attributes:
|
||||
case: The telemetry case type.
|
||||
tenant_id: The tenant identifier.
|
||||
event_id: Unique event identifier for deduplication.
|
||||
payload: The main event payload.
|
||||
payload_fallback: Fallback payload (max 64KB).
|
||||
metadata: Optional metadata dictionary.
|
||||
"""
|
||||
|
||||
case: TelemetryCase
|
||||
tenant_id: str
|
||||
event_id: str
|
||||
payload: dict[str, Any]
|
||||
payload_fallback: bytes | None = None
|
||||
metadata: dict[str, Any] | None = None
|
||||
|
||||
@field_validator("payload_fallback")
|
||||
@classmethod
|
||||
def validate_payload_fallback_size(cls, v: bytes | None) -> bytes | None:
|
||||
"""Validate that payload_fallback does not exceed 64KB."""
|
||||
if v is not None and len(v) > 65536: # 64 * 1024
|
||||
raise ValueError("payload_fallback must not exceed 64KB")
|
||||
return v
|
||||
|
||||
class Config:
|
||||
"""Pydantic configuration."""
|
||||
|
||||
use_enum_values = False
|
||||
77
api/enterprise/telemetry/draft_trace.py
Normal file
77
api/enterprise/telemetry/draft_trace.py
Normal file
@@ -0,0 +1,77 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from collections.abc import Mapping
|
||||
from typing import Any
|
||||
|
||||
from core.telemetry import TelemetryContext, TelemetryEvent, TraceTaskName
|
||||
from core.telemetry import emit as telemetry_emit
|
||||
from core.workflow.enums import WorkflowNodeExecutionMetadataKey
|
||||
from models.workflow import WorkflowNodeExecutionModel
|
||||
|
||||
|
||||
def enqueue_draft_node_execution_trace(
|
||||
*,
|
||||
execution: WorkflowNodeExecutionModel,
|
||||
outputs: Mapping[str, Any] | None,
|
||||
workflow_execution_id: str | None,
|
||||
user_id: str,
|
||||
) -> None:
|
||||
node_data = _build_node_execution_data(
|
||||
execution=execution,
|
||||
outputs=outputs,
|
||||
workflow_execution_id=workflow_execution_id,
|
||||
)
|
||||
telemetry_emit(
|
||||
TelemetryEvent(
|
||||
name=TraceTaskName.DRAFT_NODE_EXECUTION_TRACE,
|
||||
context=TelemetryContext(
|
||||
tenant_id=execution.tenant_id,
|
||||
user_id=user_id,
|
||||
app_id=execution.app_id,
|
||||
),
|
||||
payload={"node_execution_data": node_data},
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def _build_node_execution_data(
|
||||
*,
|
||||
execution: WorkflowNodeExecutionModel,
|
||||
outputs: Mapping[str, Any] | None,
|
||||
workflow_execution_id: str | None,
|
||||
) -> dict[str, Any]:
|
||||
metadata = execution.execution_metadata_dict
|
||||
node_outputs = outputs if outputs is not None else execution.outputs_dict
|
||||
execution_id = workflow_execution_id or execution.workflow_run_id or execution.id
|
||||
|
||||
return {
|
||||
"workflow_id": execution.workflow_id,
|
||||
"workflow_execution_id": execution_id,
|
||||
"tenant_id": execution.tenant_id,
|
||||
"app_id": execution.app_id,
|
||||
"node_execution_id": execution.id,
|
||||
"node_id": execution.node_id,
|
||||
"node_type": execution.node_type,
|
||||
"title": execution.title,
|
||||
"status": execution.status,
|
||||
"error": execution.error,
|
||||
"elapsed_time": execution.elapsed_time,
|
||||
"index": execution.index,
|
||||
"predecessor_node_id": execution.predecessor_node_id,
|
||||
"created_at": execution.created_at,
|
||||
"finished_at": execution.finished_at,
|
||||
"total_tokens": metadata.get(WorkflowNodeExecutionMetadataKey.TOTAL_TOKENS, 0),
|
||||
"total_price": metadata.get(WorkflowNodeExecutionMetadataKey.TOTAL_PRICE, 0.0),
|
||||
"currency": metadata.get(WorkflowNodeExecutionMetadataKey.CURRENCY),
|
||||
"tool_name": (metadata.get(WorkflowNodeExecutionMetadataKey.TOOL_INFO) or {}).get("tool_name")
|
||||
if isinstance(metadata.get(WorkflowNodeExecutionMetadataKey.TOOL_INFO), dict)
|
||||
else None,
|
||||
"iteration_id": metadata.get(WorkflowNodeExecutionMetadataKey.ITERATION_ID),
|
||||
"iteration_index": metadata.get(WorkflowNodeExecutionMetadataKey.ITERATION_INDEX),
|
||||
"loop_id": metadata.get(WorkflowNodeExecutionMetadataKey.LOOP_ID),
|
||||
"loop_index": metadata.get(WorkflowNodeExecutionMetadataKey.LOOP_INDEX),
|
||||
"parallel_id": metadata.get(WorkflowNodeExecutionMetadataKey.PARALLEL_ID),
|
||||
"node_inputs": execution.inputs_dict,
|
||||
"node_outputs": node_outputs,
|
||||
"process_data": execution.process_data_dict,
|
||||
}
|
||||
904
api/enterprise/telemetry/enterprise_trace.py
Normal file
904
api/enterprise/telemetry/enterprise_trace.py
Normal file
@@ -0,0 +1,904 @@
|
||||
"""Enterprise trace handler — duck-typed, NOT a BaseTraceInstance subclass.
|
||||
|
||||
Invoked directly in the Celery task, not through OpsTraceManager dispatch.
|
||||
Only requires a matching ``trace(trace_info)`` method signature.
|
||||
|
||||
Signal strategy:
|
||||
- **Traces (spans)**: workflow run, node execution, draft node execution only.
|
||||
- **Metrics + structured logs**: all other event types.
|
||||
|
||||
Token metric labels (unified structure):
|
||||
All token metrics (dify.tokens.input, dify.tokens.output, dify.tokens.total) use the
|
||||
same label set for consistent filtering and aggregation:
|
||||
- tenant_id: Tenant identifier
|
||||
- app_id: Application identifier
|
||||
- operation_type: Source of token usage (workflow | node_execution | message | rule_generate | etc.)
|
||||
- model_provider: LLM provider name (empty string if not applicable)
|
||||
- model_name: LLM model name (empty string if not applicable)
|
||||
- node_type: Workflow node type (empty string if not node_execution)
|
||||
|
||||
This unified structure allows filtering by operation_type to separate:
|
||||
- Workflow-level aggregates (operation_type=workflow)
|
||||
- Individual node executions (operation_type=node_execution)
|
||||
- Direct message calls (operation_type=message)
|
||||
- Prompt generation operations (operation_type=rule_generate, code_generate, etc.)
|
||||
|
||||
Without this, tokens are double-counted when querying totals (workflow totals include
|
||||
node totals, since workflow.total_tokens is the sum of all node tokens).
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
import logging
|
||||
from typing import Any, cast
|
||||
|
||||
from opentelemetry.util.types import AttributeValue
|
||||
|
||||
from core.ops.entities.trace_entity import (
|
||||
BaseTraceInfo,
|
||||
DatasetRetrievalTraceInfo,
|
||||
DraftNodeExecutionTrace,
|
||||
GenerateNameTraceInfo,
|
||||
MessageTraceInfo,
|
||||
ModerationTraceInfo,
|
||||
OperationType,
|
||||
PromptGenerationTraceInfo,
|
||||
SuggestedQuestionTraceInfo,
|
||||
ToolTraceInfo,
|
||||
WorkflowNodeTraceInfo,
|
||||
WorkflowTraceInfo,
|
||||
)
|
||||
from enterprise.telemetry.entities import (
|
||||
EnterpriseTelemetryCounter,
|
||||
EnterpriseTelemetryEvent,
|
||||
EnterpriseTelemetryHistogram,
|
||||
EnterpriseTelemetrySpan,
|
||||
TokenMetricLabels,
|
||||
)
|
||||
from enterprise.telemetry.telemetry_log import emit_metric_only_event, emit_telemetry_log
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class EnterpriseOtelTrace:
|
||||
"""Duck-typed enterprise trace handler.
|
||||
|
||||
``*_trace`` methods emit spans (workflow/node only) or structured logs
|
||||
(all other events), plus metrics at 100 % accuracy.
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
from extensions.ext_enterprise_telemetry import get_enterprise_exporter
|
||||
|
||||
exporter = get_enterprise_exporter()
|
||||
if exporter is None:
|
||||
raise RuntimeError("EnterpriseOtelTrace instantiated but exporter is not initialized")
|
||||
self._exporter = exporter
|
||||
|
||||
def trace(self, trace_info: BaseTraceInfo) -> None:
|
||||
if isinstance(trace_info, WorkflowTraceInfo):
|
||||
self._workflow_trace(trace_info)
|
||||
elif isinstance(trace_info, MessageTraceInfo):
|
||||
self._message_trace(trace_info)
|
||||
elif isinstance(trace_info, ToolTraceInfo):
|
||||
self._tool_trace(trace_info)
|
||||
elif isinstance(trace_info, DraftNodeExecutionTrace):
|
||||
self._draft_node_execution_trace(trace_info)
|
||||
elif isinstance(trace_info, WorkflowNodeTraceInfo):
|
||||
self._node_execution_trace(trace_info)
|
||||
elif isinstance(trace_info, ModerationTraceInfo):
|
||||
self._moderation_trace(trace_info)
|
||||
elif isinstance(trace_info, SuggestedQuestionTraceInfo):
|
||||
self._suggested_question_trace(trace_info)
|
||||
elif isinstance(trace_info, DatasetRetrievalTraceInfo):
|
||||
self._dataset_retrieval_trace(trace_info)
|
||||
elif isinstance(trace_info, GenerateNameTraceInfo):
|
||||
self._generate_name_trace(trace_info)
|
||||
elif isinstance(trace_info, PromptGenerationTraceInfo):
|
||||
self._prompt_generation_trace(trace_info)
|
||||
|
||||
def _common_attrs(self, trace_info: BaseTraceInfo) -> dict[str, Any]:
|
||||
metadata = self._metadata(trace_info)
|
||||
tenant_id, app_id, user_id = self._context_ids(trace_info, metadata)
|
||||
return {
|
||||
"dify.trace_id": trace_info.trace_id,
|
||||
"dify.tenant_id": tenant_id,
|
||||
"dify.app_id": app_id,
|
||||
"dify.app.name": metadata.get("app_name"),
|
||||
"dify.workspace.name": metadata.get("workspace_name"),
|
||||
"gen_ai.user.id": user_id,
|
||||
"dify.message.id": trace_info.message_id,
|
||||
}
|
||||
|
||||
def _metadata(self, trace_info: BaseTraceInfo) -> dict[str, Any]:
|
||||
return trace_info.metadata
|
||||
|
||||
def _context_ids(
|
||||
self,
|
||||
trace_info: BaseTraceInfo,
|
||||
metadata: dict[str, Any],
|
||||
) -> tuple[str | None, str | None, str | None]:
|
||||
tenant_id = getattr(trace_info, "tenant_id", None) or metadata.get("tenant_id")
|
||||
app_id = getattr(trace_info, "app_id", None) or metadata.get("app_id")
|
||||
user_id = getattr(trace_info, "user_id", None) or metadata.get("user_id")
|
||||
return tenant_id, app_id, user_id
|
||||
|
||||
def _labels(self, **values: AttributeValue) -> dict[str, AttributeValue]:
|
||||
return dict(values)
|
||||
|
||||
def _safe_payload_value(self, value: Any) -> str | dict[str, Any] | list[object] | None:
|
||||
if isinstance(value, str):
|
||||
return value
|
||||
if isinstance(value, dict):
|
||||
return cast(dict[str, Any], value)
|
||||
if isinstance(value, list):
|
||||
items: list[object] = []
|
||||
for item in cast(list[object], value):
|
||||
items.append(item)
|
||||
return items
|
||||
return None
|
||||
|
||||
def _content_or_ref(self, value: Any, ref: str) -> Any:
|
||||
if self._exporter.include_content:
|
||||
return self._maybe_json(value)
|
||||
return ref
|
||||
|
||||
def _maybe_json(self, value: Any) -> str | None:
|
||||
if value is None:
|
||||
return None
|
||||
if isinstance(value, str):
|
||||
return value
|
||||
try:
|
||||
return json.dumps(value, default=str)
|
||||
except (TypeError, ValueError):
|
||||
return str(value)
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
# SPAN-emitting handlers (workflow, node execution, draft node)
|
||||
# ------------------------------------------------------------------
|
||||
|
||||
def _workflow_trace(self, info: WorkflowTraceInfo) -> None:
|
||||
metadata = self._metadata(info)
|
||||
tenant_id, app_id, user_id = self._context_ids(info, metadata)
|
||||
# -- Slim span attrs: identity + structure + status + timing only --
|
||||
span_attrs: dict[str, Any] = {
|
||||
"dify.trace_id": info.trace_id,
|
||||
"dify.tenant_id": tenant_id,
|
||||
"dify.app_id": app_id,
|
||||
"dify.workflow.id": info.workflow_id,
|
||||
"dify.workflow.run_id": info.workflow_run_id,
|
||||
"dify.workflow.status": info.workflow_run_status,
|
||||
"dify.workflow.error": info.error,
|
||||
"dify.workflow.elapsed_time": info.workflow_run_elapsed_time,
|
||||
"dify.invoke_from": metadata.get("triggered_from"),
|
||||
"dify.conversation.id": info.conversation_id,
|
||||
"dify.message.id": info.message_id,
|
||||
"dify.invoked_by": info.invoked_by,
|
||||
}
|
||||
|
||||
trace_correlation_override: str | None = None
|
||||
parent_span_id_source: str | None = None
|
||||
|
||||
parent_ctx = metadata.get("parent_trace_context")
|
||||
if isinstance(parent_ctx, dict):
|
||||
parent_ctx_dict = cast(dict[str, Any], parent_ctx)
|
||||
span_attrs["dify.parent.trace_id"] = parent_ctx_dict.get("trace_id")
|
||||
span_attrs["dify.parent.node.execution_id"] = parent_ctx_dict.get("parent_node_execution_id")
|
||||
span_attrs["dify.parent.workflow.run_id"] = parent_ctx_dict.get("parent_workflow_run_id")
|
||||
span_attrs["dify.parent.app.id"] = parent_ctx_dict.get("parent_app_id")
|
||||
|
||||
trace_override_value = parent_ctx_dict.get("parent_workflow_run_id")
|
||||
if isinstance(trace_override_value, str):
|
||||
trace_correlation_override = trace_override_value
|
||||
parent_span_value = parent_ctx_dict.get("parent_node_execution_id")
|
||||
if isinstance(parent_span_value, str):
|
||||
parent_span_id_source = parent_span_value
|
||||
|
||||
self._exporter.export_span(
|
||||
EnterpriseTelemetrySpan.WORKFLOW_RUN,
|
||||
span_attrs,
|
||||
correlation_id=info.workflow_run_id,
|
||||
span_id_source=info.workflow_run_id,
|
||||
start_time=info.start_time,
|
||||
end_time=info.end_time,
|
||||
trace_correlation_override=trace_correlation_override,
|
||||
parent_span_id_source=parent_span_id_source,
|
||||
)
|
||||
|
||||
# -- Companion log: ALL attrs (span + detail) for full picture --
|
||||
log_attrs: dict[str, Any] = {**span_attrs}
|
||||
log_attrs.update(
|
||||
{
|
||||
"dify.app.name": metadata.get("app_name"),
|
||||
"dify.workspace.name": metadata.get("workspace_name"),
|
||||
"gen_ai.user.id": user_id,
|
||||
"gen_ai.usage.total_tokens": info.total_tokens,
|
||||
"dify.workflow.version": info.workflow_run_version,
|
||||
}
|
||||
)
|
||||
|
||||
ref = f"ref:workflow_run_id={info.workflow_run_id}"
|
||||
log_attrs["dify.workflow.inputs"] = self._content_or_ref(info.workflow_run_inputs, ref)
|
||||
log_attrs["dify.workflow.outputs"] = self._content_or_ref(info.workflow_run_outputs, ref)
|
||||
log_attrs["dify.workflow.query"] = self._content_or_ref(info.query, ref)
|
||||
|
||||
emit_telemetry_log(
|
||||
event_name=EnterpriseTelemetryEvent.WORKFLOW_RUN,
|
||||
attributes=log_attrs,
|
||||
signal="span_detail",
|
||||
trace_id_source=info.workflow_run_id,
|
||||
span_id_source=info.workflow_run_id,
|
||||
tenant_id=tenant_id,
|
||||
user_id=user_id,
|
||||
)
|
||||
|
||||
# -- Metrics --
|
||||
labels = self._labels(
|
||||
tenant_id=tenant_id or "",
|
||||
app_id=app_id or "",
|
||||
)
|
||||
token_labels = TokenMetricLabels(
|
||||
tenant_id=tenant_id or "",
|
||||
app_id=app_id or "",
|
||||
operation_type=OperationType.WORKFLOW,
|
||||
model_provider="",
|
||||
model_name="",
|
||||
node_type="",
|
||||
).to_dict()
|
||||
self._exporter.increment_counter(EnterpriseTelemetryCounter.TOKENS, info.total_tokens, token_labels)
|
||||
if info.prompt_tokens is not None and info.prompt_tokens > 0:
|
||||
self._exporter.increment_counter(EnterpriseTelemetryCounter.INPUT_TOKENS, info.prompt_tokens, token_labels)
|
||||
if info.completion_tokens is not None and info.completion_tokens > 0:
|
||||
self._exporter.increment_counter(
|
||||
EnterpriseTelemetryCounter.OUTPUT_TOKENS, info.completion_tokens, token_labels
|
||||
)
|
||||
invoke_from = metadata.get("triggered_from", "")
|
||||
self._exporter.increment_counter(
|
||||
EnterpriseTelemetryCounter.REQUESTS,
|
||||
1,
|
||||
self._labels(
|
||||
**labels,
|
||||
type="workflow",
|
||||
status=info.workflow_run_status,
|
||||
invoke_from=invoke_from,
|
||||
),
|
||||
)
|
||||
self._exporter.record_histogram(
|
||||
EnterpriseTelemetryHistogram.WORKFLOW_DURATION,
|
||||
float(info.workflow_run_elapsed_time),
|
||||
self._labels(
|
||||
**labels,
|
||||
status=info.workflow_run_status,
|
||||
),
|
||||
)
|
||||
|
||||
if info.error:
|
||||
self._exporter.increment_counter(
|
||||
EnterpriseTelemetryCounter.ERRORS,
|
||||
1,
|
||||
self._labels(
|
||||
**labels,
|
||||
type="workflow",
|
||||
),
|
||||
)
|
||||
|
||||
def _node_execution_trace(self, info: WorkflowNodeTraceInfo) -> None:
|
||||
self._emit_node_execution_trace(info, EnterpriseTelemetrySpan.NODE_EXECUTION, "node")
|
||||
|
||||
def _draft_node_execution_trace(self, info: DraftNodeExecutionTrace) -> None:
|
||||
self._emit_node_execution_trace(
|
||||
info,
|
||||
EnterpriseTelemetrySpan.DRAFT_NODE_EXECUTION,
|
||||
"draft_node",
|
||||
correlation_id_override=info.node_execution_id,
|
||||
trace_correlation_override_param=info.workflow_run_id,
|
||||
)
|
||||
|
||||
def _emit_node_execution_trace(
|
||||
self,
|
||||
info: WorkflowNodeTraceInfo,
|
||||
span_name: EnterpriseTelemetrySpan,
|
||||
request_type: str,
|
||||
correlation_id_override: str | None = None,
|
||||
trace_correlation_override_param: str | None = None,
|
||||
) -> None:
|
||||
metadata = self._metadata(info)
|
||||
tenant_id, app_id, user_id = self._context_ids(info, metadata)
|
||||
# -- Slim span attrs: identity + structure + status + timing --
|
||||
span_attrs: dict[str, Any] = {
|
||||
"dify.trace_id": info.trace_id,
|
||||
"dify.tenant_id": tenant_id,
|
||||
"dify.app_id": app_id,
|
||||
"dify.workflow.id": info.workflow_id,
|
||||
"dify.workflow.run_id": info.workflow_run_id,
|
||||
"dify.message.id": info.message_id,
|
||||
"dify.conversation.id": metadata.get("conversation_id"),
|
||||
"dify.node.execution_id": info.node_execution_id,
|
||||
"dify.node.id": info.node_id,
|
||||
"dify.node.type": info.node_type,
|
||||
"dify.node.title": info.title,
|
||||
"dify.node.status": info.status,
|
||||
"dify.node.error": info.error,
|
||||
"dify.node.elapsed_time": info.elapsed_time,
|
||||
"dify.node.index": info.index,
|
||||
"dify.node.predecessor_node_id": info.predecessor_node_id,
|
||||
"dify.node.iteration_id": info.iteration_id,
|
||||
"dify.node.loop_id": info.loop_id,
|
||||
"dify.node.parallel_id": info.parallel_id,
|
||||
"dify.node.invoked_by": info.invoked_by,
|
||||
}
|
||||
|
||||
trace_correlation_override = trace_correlation_override_param
|
||||
parent_ctx = metadata.get("parent_trace_context")
|
||||
if isinstance(parent_ctx, dict):
|
||||
parent_ctx_dict = cast(dict[str, Any], parent_ctx)
|
||||
override_value = parent_ctx_dict.get("parent_workflow_run_id")
|
||||
if isinstance(override_value, str):
|
||||
trace_correlation_override = override_value
|
||||
|
||||
effective_correlation_id = correlation_id_override or info.workflow_run_id
|
||||
self._exporter.export_span(
|
||||
span_name,
|
||||
span_attrs,
|
||||
correlation_id=effective_correlation_id,
|
||||
span_id_source=info.node_execution_id,
|
||||
start_time=info.start_time,
|
||||
end_time=info.end_time,
|
||||
trace_correlation_override=trace_correlation_override,
|
||||
)
|
||||
|
||||
# -- Companion log: ALL attrs (span + detail) --
|
||||
log_attrs: dict[str, Any] = {**span_attrs}
|
||||
log_attrs.update(
|
||||
{
|
||||
"dify.app.name": metadata.get("app_name"),
|
||||
"dify.workspace.name": metadata.get("workspace_name"),
|
||||
"dify.invoke_from": metadata.get("invoke_from"),
|
||||
"gen_ai.user.id": user_id,
|
||||
"gen_ai.usage.total_tokens": info.total_tokens,
|
||||
"dify.node.total_price": info.total_price,
|
||||
"dify.node.currency": info.currency,
|
||||
"gen_ai.provider.name": info.model_provider,
|
||||
"gen_ai.request.model": info.model_name,
|
||||
"gen_ai.tool.name": info.tool_name,
|
||||
"dify.node.iteration_index": info.iteration_index,
|
||||
"dify.node.loop_index": info.loop_index,
|
||||
"dify.plugin.name": metadata.get("plugin_name"),
|
||||
"dify.credential.name": metadata.get("credential_name"),
|
||||
"dify.credential.id": metadata.get("credential_id"),
|
||||
"dify.dataset.ids": self._maybe_json(metadata.get("dataset_ids")),
|
||||
"dify.dataset.names": self._maybe_json(metadata.get("dataset_names")),
|
||||
}
|
||||
)
|
||||
|
||||
ref = f"ref:node_execution_id={info.node_execution_id}"
|
||||
log_attrs["dify.node.inputs"] = self._content_or_ref(info.node_inputs, ref)
|
||||
log_attrs["dify.node.outputs"] = self._content_or_ref(info.node_outputs, ref)
|
||||
log_attrs["dify.node.process_data"] = self._content_or_ref(info.process_data, ref)
|
||||
|
||||
emit_telemetry_log(
|
||||
event_name=span_name.value,
|
||||
attributes=log_attrs,
|
||||
signal="span_detail",
|
||||
trace_id_source=info.workflow_run_id,
|
||||
span_id_source=info.node_execution_id,
|
||||
tenant_id=tenant_id,
|
||||
user_id=user_id,
|
||||
)
|
||||
|
||||
# -- Metrics --
|
||||
labels = self._labels(
|
||||
tenant_id=tenant_id or "",
|
||||
app_id=app_id or "",
|
||||
node_type=info.node_type,
|
||||
model_provider=info.model_provider or "",
|
||||
)
|
||||
if info.total_tokens:
|
||||
token_labels = TokenMetricLabels(
|
||||
tenant_id=tenant_id or "",
|
||||
app_id=app_id or "",
|
||||
operation_type=OperationType.NODE_EXECUTION,
|
||||
model_provider=info.model_provider or "",
|
||||
model_name=info.model_name or "",
|
||||
node_type=info.node_type,
|
||||
).to_dict()
|
||||
self._exporter.increment_counter(EnterpriseTelemetryCounter.TOKENS, info.total_tokens, token_labels)
|
||||
if info.prompt_tokens is not None and info.prompt_tokens > 0:
|
||||
self._exporter.increment_counter(
|
||||
EnterpriseTelemetryCounter.INPUT_TOKENS, info.prompt_tokens, token_labels
|
||||
)
|
||||
if info.completion_tokens is not None and info.completion_tokens > 0:
|
||||
self._exporter.increment_counter(
|
||||
EnterpriseTelemetryCounter.OUTPUT_TOKENS, info.completion_tokens, token_labels
|
||||
)
|
||||
self._exporter.increment_counter(
|
||||
EnterpriseTelemetryCounter.REQUESTS,
|
||||
1,
|
||||
self._labels(
|
||||
**labels,
|
||||
type=request_type,
|
||||
status=info.status,
|
||||
),
|
||||
)
|
||||
duration_labels = dict(labels)
|
||||
plugin_name = metadata.get("plugin_name")
|
||||
if plugin_name and info.node_type in {"tool", "knowledge-retrieval"}:
|
||||
duration_labels["plugin_name"] = plugin_name
|
||||
self._exporter.record_histogram(EnterpriseTelemetryHistogram.NODE_DURATION, info.elapsed_time, duration_labels)
|
||||
|
||||
if info.error:
|
||||
self._exporter.increment_counter(
|
||||
EnterpriseTelemetryCounter.ERRORS,
|
||||
1,
|
||||
self._labels(
|
||||
**labels,
|
||||
type=request_type,
|
||||
),
|
||||
)
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
# METRIC-ONLY handlers (structured log + counters/histograms)
|
||||
# ------------------------------------------------------------------
|
||||
|
||||
def _message_trace(self, info: MessageTraceInfo) -> None:
|
||||
metadata = self._metadata(info)
|
||||
tenant_id, app_id, user_id = self._context_ids(info, metadata)
|
||||
attrs = self._common_attrs(info)
|
||||
attrs.update(
|
||||
{
|
||||
"dify.invoke_from": metadata.get("from_source"),
|
||||
"dify.conversation.id": metadata.get("conversation_id"),
|
||||
"dify.conversation.mode": info.conversation_mode,
|
||||
"gen_ai.provider.name": metadata.get("ls_provider"),
|
||||
"gen_ai.request.model": metadata.get("ls_model_name"),
|
||||
"gen_ai.usage.input_tokens": info.message_tokens,
|
||||
"gen_ai.usage.output_tokens": info.answer_tokens,
|
||||
"gen_ai.usage.total_tokens": info.total_tokens,
|
||||
"dify.message.status": metadata.get("status"),
|
||||
"dify.message.error": info.error,
|
||||
"dify.message.from_source": metadata.get("from_source"),
|
||||
"dify.message.from_end_user_id": metadata.get("from_end_user_id"),
|
||||
"dify.message.from_account_id": metadata.get("from_account_id"),
|
||||
"dify.streaming": info.is_streaming_request,
|
||||
"dify.message.time_to_first_token": info.gen_ai_server_time_to_first_token,
|
||||
"dify.message.streaming_duration": info.llm_streaming_time_to_generate,
|
||||
"dify.workflow.run_id": metadata.get("workflow_run_id"),
|
||||
}
|
||||
)
|
||||
node_execution_id = metadata.get("node_execution_id")
|
||||
if node_execution_id:
|
||||
attrs["dify.node.execution_id"] = node_execution_id
|
||||
|
||||
ref = f"ref:message_id={info.message_id}"
|
||||
inputs = self._safe_payload_value(info.inputs)
|
||||
outputs = self._safe_payload_value(info.outputs)
|
||||
attrs["dify.message.inputs"] = self._content_or_ref(inputs, ref)
|
||||
attrs["dify.message.outputs"] = self._content_or_ref(outputs, ref)
|
||||
|
||||
emit_metric_only_event(
|
||||
event_name=EnterpriseTelemetryEvent.MESSAGE_RUN,
|
||||
attributes=attrs,
|
||||
trace_id_source=metadata.get("workflow_run_id") or str(info.message_id) if info.message_id else None,
|
||||
span_id_source=node_execution_id,
|
||||
tenant_id=tenant_id,
|
||||
user_id=user_id,
|
||||
)
|
||||
|
||||
labels = self._labels(
|
||||
tenant_id=tenant_id or "",
|
||||
app_id=app_id or "",
|
||||
model_provider=metadata.get("ls_provider", ""),
|
||||
model_name=metadata.get("ls_model_name", ""),
|
||||
)
|
||||
token_labels = TokenMetricLabels(
|
||||
tenant_id=tenant_id or "",
|
||||
app_id=app_id or "",
|
||||
operation_type=OperationType.MESSAGE,
|
||||
model_provider=metadata.get("ls_provider", ""),
|
||||
model_name=metadata.get("ls_model_name", ""),
|
||||
node_type="",
|
||||
).to_dict()
|
||||
self._exporter.increment_counter(EnterpriseTelemetryCounter.TOKENS, info.total_tokens, token_labels)
|
||||
if info.message_tokens > 0:
|
||||
self._exporter.increment_counter(EnterpriseTelemetryCounter.INPUT_TOKENS, info.message_tokens, token_labels)
|
||||
if info.answer_tokens > 0:
|
||||
self._exporter.increment_counter(EnterpriseTelemetryCounter.OUTPUT_TOKENS, info.answer_tokens, token_labels)
|
||||
invoke_from = metadata.get("from_source", "")
|
||||
self._exporter.increment_counter(
|
||||
EnterpriseTelemetryCounter.REQUESTS,
|
||||
1,
|
||||
self._labels(
|
||||
**labels,
|
||||
type="message",
|
||||
status=metadata.get("status", ""),
|
||||
invoke_from=invoke_from,
|
||||
),
|
||||
)
|
||||
|
||||
if info.start_time and info.end_time:
|
||||
duration = (info.end_time - info.start_time).total_seconds()
|
||||
self._exporter.record_histogram(EnterpriseTelemetryHistogram.MESSAGE_DURATION, duration, labels)
|
||||
|
||||
if info.gen_ai_server_time_to_first_token is not None:
|
||||
self._exporter.record_histogram(
|
||||
EnterpriseTelemetryHistogram.MESSAGE_TTFT, info.gen_ai_server_time_to_first_token, labels
|
||||
)
|
||||
|
||||
if info.error:
|
||||
self._exporter.increment_counter(
|
||||
EnterpriseTelemetryCounter.ERRORS,
|
||||
1,
|
||||
self._labels(
|
||||
**labels,
|
||||
type="message",
|
||||
),
|
||||
)
|
||||
|
||||
def _tool_trace(self, info: ToolTraceInfo) -> None:
|
||||
metadata = self._metadata(info)
|
||||
tenant_id, app_id, user_id = self._context_ids(info, metadata)
|
||||
attrs = self._common_attrs(info)
|
||||
attrs.update(
|
||||
{
|
||||
"gen_ai.tool.name": info.tool_name,
|
||||
"dify.tool.time_cost": info.time_cost,
|
||||
"dify.tool.error": info.error,
|
||||
"dify.workflow.run_id": metadata.get("workflow_run_id"),
|
||||
}
|
||||
)
|
||||
node_execution_id = metadata.get("node_execution_id")
|
||||
if node_execution_id:
|
||||
attrs["dify.node.execution_id"] = node_execution_id
|
||||
|
||||
ref = f"ref:message_id={info.message_id}"
|
||||
attrs["dify.tool.inputs"] = self._content_or_ref(info.tool_inputs, ref)
|
||||
attrs["dify.tool.outputs"] = self._content_or_ref(info.tool_outputs, ref)
|
||||
attrs["dify.tool.parameters"] = self._content_or_ref(info.tool_parameters, ref)
|
||||
attrs["dify.tool.config"] = self._content_or_ref(info.tool_config, ref)
|
||||
|
||||
emit_metric_only_event(
|
||||
event_name=EnterpriseTelemetryEvent.TOOL_EXECUTION,
|
||||
attributes=attrs,
|
||||
span_id_source=node_execution_id,
|
||||
tenant_id=tenant_id,
|
||||
user_id=user_id,
|
||||
)
|
||||
|
||||
labels = self._labels(
|
||||
tenant_id=tenant_id or "",
|
||||
app_id=app_id or "",
|
||||
tool_name=info.tool_name,
|
||||
)
|
||||
self._exporter.increment_counter(
|
||||
EnterpriseTelemetryCounter.REQUESTS,
|
||||
1,
|
||||
self._labels(
|
||||
**labels,
|
||||
type="tool",
|
||||
),
|
||||
)
|
||||
self._exporter.record_histogram(EnterpriseTelemetryHistogram.TOOL_DURATION, float(info.time_cost), labels)
|
||||
|
||||
if info.error:
|
||||
self._exporter.increment_counter(
|
||||
EnterpriseTelemetryCounter.ERRORS,
|
||||
1,
|
||||
self._labels(
|
||||
**labels,
|
||||
type="tool",
|
||||
),
|
||||
)
|
||||
|
||||
def _moderation_trace(self, info: ModerationTraceInfo) -> None:
|
||||
metadata = self._metadata(info)
|
||||
tenant_id, app_id, user_id = self._context_ids(info, metadata)
|
||||
attrs = self._common_attrs(info)
|
||||
attrs.update(
|
||||
{
|
||||
"dify.moderation.flagged": info.flagged,
|
||||
"dify.moderation.action": info.action,
|
||||
"dify.moderation.preset_response": info.preset_response,
|
||||
"dify.workflow.run_id": metadata.get("workflow_run_id"),
|
||||
}
|
||||
)
|
||||
node_execution_id = metadata.get("node_execution_id")
|
||||
if node_execution_id:
|
||||
attrs["dify.node.execution_id"] = node_execution_id
|
||||
|
||||
attrs["dify.moderation.query"] = self._content_or_ref(
|
||||
info.query,
|
||||
f"ref:message_id={info.message_id}",
|
||||
)
|
||||
|
||||
emit_metric_only_event(
|
||||
event_name=EnterpriseTelemetryEvent.MODERATION_CHECK,
|
||||
attributes=attrs,
|
||||
span_id_source=node_execution_id,
|
||||
tenant_id=tenant_id,
|
||||
user_id=user_id,
|
||||
)
|
||||
|
||||
labels = self._labels(
|
||||
tenant_id=tenant_id or "",
|
||||
app_id=app_id or "",
|
||||
)
|
||||
self._exporter.increment_counter(
|
||||
EnterpriseTelemetryCounter.REQUESTS,
|
||||
1,
|
||||
self._labels(
|
||||
**labels,
|
||||
type="moderation",
|
||||
),
|
||||
)
|
||||
|
||||
def _suggested_question_trace(self, info: SuggestedQuestionTraceInfo) -> None:
|
||||
metadata = self._metadata(info)
|
||||
tenant_id, app_id, user_id = self._context_ids(info, metadata)
|
||||
attrs = self._common_attrs(info)
|
||||
attrs.update(
|
||||
{
|
||||
"gen_ai.usage.total_tokens": info.total_tokens,
|
||||
"dify.suggested_question.status": info.status,
|
||||
"dify.suggested_question.error": info.error,
|
||||
"gen_ai.provider.name": info.model_provider,
|
||||
"gen_ai.request.model": info.model_id,
|
||||
"dify.suggested_question.count": len(info.suggested_question),
|
||||
"dify.workflow.run_id": metadata.get("workflow_run_id"),
|
||||
}
|
||||
)
|
||||
node_execution_id = metadata.get("node_execution_id")
|
||||
if node_execution_id:
|
||||
attrs["dify.node.execution_id"] = node_execution_id
|
||||
|
||||
attrs["dify.suggested_question.questions"] = self._content_or_ref(
|
||||
info.suggested_question,
|
||||
f"ref:message_id={info.message_id}",
|
||||
)
|
||||
|
||||
emit_metric_only_event(
|
||||
event_name=EnterpriseTelemetryEvent.SUGGESTED_QUESTION_GENERATION,
|
||||
attributes=attrs,
|
||||
span_id_source=node_execution_id,
|
||||
tenant_id=tenant_id,
|
||||
user_id=user_id,
|
||||
)
|
||||
|
||||
labels = self._labels(
|
||||
tenant_id=tenant_id or "",
|
||||
app_id=app_id or "",
|
||||
)
|
||||
self._exporter.increment_counter(
|
||||
EnterpriseTelemetryCounter.REQUESTS,
|
||||
1,
|
||||
self._labels(
|
||||
**labels,
|
||||
type="suggested_question",
|
||||
),
|
||||
)
|
||||
|
||||
def _dataset_retrieval_trace(self, info: DatasetRetrievalTraceInfo) -> None:
|
||||
metadata = self._metadata(info)
|
||||
tenant_id, app_id, user_id = self._context_ids(info, metadata)
|
||||
attrs = self._common_attrs(info)
|
||||
attrs["dify.dataset.error"] = info.error
|
||||
attrs["dify.workflow.run_id"] = metadata.get("workflow_run_id")
|
||||
node_execution_id = metadata.get("node_execution_id")
|
||||
if node_execution_id:
|
||||
attrs["dify.node.execution_id"] = node_execution_id
|
||||
|
||||
docs: list[dict[str, Any]] = []
|
||||
documents_any: Any = info.documents
|
||||
documents_list: list[Any] = cast(list[Any], documents_any) if isinstance(documents_any, list) else []
|
||||
for entry in documents_list:
|
||||
if isinstance(entry, dict):
|
||||
entry_dict: dict[str, Any] = cast(dict[str, Any], entry)
|
||||
docs.append(entry_dict)
|
||||
dataset_ids: list[str] = []
|
||||
dataset_names: list[str] = []
|
||||
structured_docs: list[dict[str, Any]] = []
|
||||
for doc in docs:
|
||||
meta_raw = doc.get("metadata")
|
||||
meta: dict[str, Any] = cast(dict[str, Any], meta_raw) if isinstance(meta_raw, dict) else {}
|
||||
did = meta.get("dataset_id")
|
||||
dname = meta.get("dataset_name")
|
||||
if did and did not in dataset_ids:
|
||||
dataset_ids.append(did)
|
||||
if dname and dname not in dataset_names:
|
||||
dataset_names.append(dname)
|
||||
structured_docs.append(
|
||||
{
|
||||
"dataset_id": did,
|
||||
"document_id": meta.get("document_id"),
|
||||
"segment_id": meta.get("segment_id"),
|
||||
"score": meta.get("score"),
|
||||
}
|
||||
)
|
||||
|
||||
attrs["dify.dataset.ids"] = self._maybe_json(dataset_ids)
|
||||
attrs["dify.dataset.names"] = self._maybe_json(dataset_names)
|
||||
attrs["dify.retrieval.document_count"] = len(docs)
|
||||
|
||||
embedding_models_raw: Any = metadata.get("embedding_models")
|
||||
embedding_models: dict[str, Any] = (
|
||||
cast(dict[str, Any], embedding_models_raw) if isinstance(embedding_models_raw, dict) else {}
|
||||
)
|
||||
if embedding_models:
|
||||
providers: list[str] = []
|
||||
models: list[str] = []
|
||||
for ds_info in embedding_models.values():
|
||||
if isinstance(ds_info, dict):
|
||||
ds_info_dict: dict[str, Any] = cast(dict[str, Any], ds_info)
|
||||
p = ds_info_dict.get("embedding_model_provider", "")
|
||||
m = ds_info_dict.get("embedding_model", "")
|
||||
if p and p not in providers:
|
||||
providers.append(p)
|
||||
if m and m not in models:
|
||||
models.append(m)
|
||||
attrs["dify.dataset.embedding_providers"] = self._maybe_json(providers)
|
||||
attrs["dify.dataset.embedding_models"] = self._maybe_json(models)
|
||||
|
||||
ref = f"ref:message_id={info.message_id}"
|
||||
retrieval_inputs = self._safe_payload_value(info.inputs)
|
||||
attrs["dify.retrieval.query"] = self._content_or_ref(retrieval_inputs, ref)
|
||||
attrs["dify.dataset.documents"] = self._content_or_ref(structured_docs, ref)
|
||||
|
||||
emit_metric_only_event(
|
||||
event_name=EnterpriseTelemetryEvent.DATASET_RETRIEVAL,
|
||||
attributes=attrs,
|
||||
trace_id_source=metadata.get("workflow_run_id") or str(info.message_id) if info.message_id else None,
|
||||
span_id_source=node_execution_id or (str(info.message_id) if info.message_id else None),
|
||||
tenant_id=tenant_id,
|
||||
user_id=user_id,
|
||||
)
|
||||
|
||||
labels = self._labels(
|
||||
tenant_id=tenant_id or "",
|
||||
app_id=app_id or "",
|
||||
)
|
||||
self._exporter.increment_counter(
|
||||
EnterpriseTelemetryCounter.REQUESTS,
|
||||
1,
|
||||
self._labels(
|
||||
**labels,
|
||||
type="dataset_retrieval",
|
||||
),
|
||||
)
|
||||
|
||||
for did in dataset_ids:
|
||||
self._exporter.increment_counter(
|
||||
EnterpriseTelemetryCounter.DATASET_RETRIEVALS,
|
||||
1,
|
||||
self._labels(
|
||||
**labels,
|
||||
dataset_id=did,
|
||||
),
|
||||
)
|
||||
|
||||
def _generate_name_trace(self, info: GenerateNameTraceInfo) -> None:
|
||||
metadata = self._metadata(info)
|
||||
tenant_id, app_id, user_id = self._context_ids(info, metadata)
|
||||
attrs = self._common_attrs(info)
|
||||
attrs["dify.conversation.id"] = info.conversation_id
|
||||
node_execution_id = metadata.get("node_execution_id")
|
||||
if node_execution_id:
|
||||
attrs["dify.node.execution_id"] = node_execution_id
|
||||
|
||||
ref = f"ref:conversation_id={info.conversation_id}"
|
||||
inputs = self._safe_payload_value(info.inputs)
|
||||
outputs = self._safe_payload_value(info.outputs)
|
||||
attrs["dify.generate_name.inputs"] = self._content_or_ref(inputs, ref)
|
||||
attrs["dify.generate_name.outputs"] = self._content_or_ref(outputs, ref)
|
||||
|
||||
emit_metric_only_event(
|
||||
event_name=EnterpriseTelemetryEvent.GENERATE_NAME_EXECUTION,
|
||||
attributes=attrs,
|
||||
span_id_source=node_execution_id,
|
||||
tenant_id=tenant_id,
|
||||
user_id=user_id,
|
||||
)
|
||||
|
||||
labels = self._labels(
|
||||
tenant_id=tenant_id or "",
|
||||
app_id=app_id or "",
|
||||
)
|
||||
self._exporter.increment_counter(
|
||||
EnterpriseTelemetryCounter.REQUESTS,
|
||||
1,
|
||||
self._labels(
|
||||
**labels,
|
||||
type="generate_name",
|
||||
),
|
||||
)
|
||||
|
||||
def _prompt_generation_trace(self, info: PromptGenerationTraceInfo) -> None:
|
||||
metadata = self._metadata(info)
|
||||
tenant_id, app_id, user_id = self._context_ids(info, metadata)
|
||||
attrs = {
|
||||
"dify.trace_id": info.trace_id,
|
||||
"dify.tenant_id": tenant_id,
|
||||
"dify.user.id": user_id,
|
||||
"dify.app.id": app_id or "",
|
||||
"dify.app.name": metadata.get("app_name"),
|
||||
"dify.workspace.name": metadata.get("workspace_name"),
|
||||
"dify.operation.type": info.operation_type,
|
||||
"gen_ai.provider.name": info.model_provider,
|
||||
"gen_ai.request.model": info.model_name,
|
||||
"gen_ai.usage.input_tokens": info.prompt_tokens,
|
||||
"gen_ai.usage.output_tokens": info.completion_tokens,
|
||||
"gen_ai.usage.total_tokens": info.total_tokens,
|
||||
"dify.prompt_generation.latency": info.latency,
|
||||
"dify.prompt_generation.error": info.error,
|
||||
}
|
||||
node_execution_id = metadata.get("node_execution_id")
|
||||
if node_execution_id:
|
||||
attrs["dify.node.execution_id"] = node_execution_id
|
||||
|
||||
if info.total_price is not None:
|
||||
attrs["dify.prompt_generation.total_price"] = info.total_price
|
||||
attrs["dify.prompt_generation.currency"] = info.currency
|
||||
|
||||
ref = f"ref:trace_id={info.trace_id}"
|
||||
outputs = self._safe_payload_value(info.outputs)
|
||||
attrs["dify.prompt_generation.instruction"] = self._content_or_ref(info.instruction, ref)
|
||||
attrs["dify.prompt_generation.output"] = self._content_or_ref(outputs, ref)
|
||||
|
||||
emit_metric_only_event(
|
||||
event_name=EnterpriseTelemetryEvent.PROMPT_GENERATION_EXECUTION,
|
||||
attributes=attrs,
|
||||
span_id_source=node_execution_id,
|
||||
tenant_id=tenant_id,
|
||||
user_id=user_id,
|
||||
)
|
||||
|
||||
token_labels = TokenMetricLabels(
|
||||
tenant_id=tenant_id or "",
|
||||
app_id=app_id or "",
|
||||
operation_type=info.operation_type,
|
||||
model_provider=info.model_provider,
|
||||
model_name=info.model_name,
|
||||
node_type="",
|
||||
).to_dict()
|
||||
|
||||
labels = self._labels(
|
||||
tenant_id=tenant_id or "",
|
||||
app_id=app_id or "",
|
||||
operation_type=info.operation_type,
|
||||
model_provider=info.model_provider,
|
||||
model_name=info.model_name,
|
||||
)
|
||||
|
||||
self._exporter.increment_counter(EnterpriseTelemetryCounter.TOKENS, info.total_tokens, token_labels)
|
||||
if info.prompt_tokens > 0:
|
||||
self._exporter.increment_counter(EnterpriseTelemetryCounter.INPUT_TOKENS, info.prompt_tokens, token_labels)
|
||||
if info.completion_tokens > 0:
|
||||
self._exporter.increment_counter(
|
||||
EnterpriseTelemetryCounter.OUTPUT_TOKENS, info.completion_tokens, token_labels
|
||||
)
|
||||
|
||||
status = "failed" if info.error else "success"
|
||||
self._exporter.increment_counter(
|
||||
EnterpriseTelemetryCounter.REQUESTS,
|
||||
1,
|
||||
self._labels(
|
||||
**labels,
|
||||
type="prompt_generation",
|
||||
status=status,
|
||||
),
|
||||
)
|
||||
|
||||
self._exporter.record_histogram(
|
||||
EnterpriseTelemetryHistogram.PROMPT_GENERATION_DURATION,
|
||||
info.latency,
|
||||
labels,
|
||||
)
|
||||
|
||||
if info.error:
|
||||
self._exporter.increment_counter(
|
||||
EnterpriseTelemetryCounter.ERRORS,
|
||||
1,
|
||||
self._labels(
|
||||
**labels,
|
||||
type="prompt_generation",
|
||||
),
|
||||
)
|
||||
121
api/enterprise/telemetry/entities/__init__.py
Normal file
121
api/enterprise/telemetry/entities/__init__.py
Normal file
@@ -0,0 +1,121 @@
|
||||
from enum import StrEnum
|
||||
from typing import cast
|
||||
|
||||
from opentelemetry.util.types import AttributeValue
|
||||
from pydantic import BaseModel, ConfigDict
|
||||
|
||||
|
||||
class EnterpriseTelemetrySpan(StrEnum):
|
||||
WORKFLOW_RUN = "dify.workflow.run"
|
||||
NODE_EXECUTION = "dify.node.execution"
|
||||
DRAFT_NODE_EXECUTION = "dify.node.execution.draft"
|
||||
|
||||
|
||||
class EnterpriseTelemetryEvent(StrEnum):
|
||||
"""Event names for enterprise telemetry logs."""
|
||||
|
||||
APP_CREATED = "dify.app.created"
|
||||
APP_UPDATED = "dify.app.updated"
|
||||
APP_DELETED = "dify.app.deleted"
|
||||
FEEDBACK_CREATED = "dify.feedback.created"
|
||||
WORKFLOW_RUN = "dify.workflow.run"
|
||||
MESSAGE_RUN = "dify.message.run"
|
||||
TOOL_EXECUTION = "dify.tool.execution"
|
||||
MODERATION_CHECK = "dify.moderation.check"
|
||||
SUGGESTED_QUESTION_GENERATION = "dify.suggested_question.generation"
|
||||
DATASET_RETRIEVAL = "dify.dataset.retrieval"
|
||||
GENERATE_NAME_EXECUTION = "dify.generate_name.execution"
|
||||
PROMPT_GENERATION_EXECUTION = "dify.prompt_generation.execution"
|
||||
REHYDRATION_FAILED = "dify.telemetry.rehydration_failed"
|
||||
|
||||
|
||||
class EnterpriseTelemetryCounter(StrEnum):
|
||||
TOKENS = "tokens"
|
||||
INPUT_TOKENS = "input_tokens"
|
||||
OUTPUT_TOKENS = "output_tokens"
|
||||
REQUESTS = "requests"
|
||||
ERRORS = "errors"
|
||||
FEEDBACK = "feedback"
|
||||
DATASET_RETRIEVALS = "dataset_retrievals"
|
||||
APP_CREATED = "app_created"
|
||||
APP_UPDATED = "app_updated"
|
||||
APP_DELETED = "app_deleted"
|
||||
|
||||
|
||||
class EnterpriseTelemetryHistogram(StrEnum):
|
||||
WORKFLOW_DURATION = "workflow_duration"
|
||||
NODE_DURATION = "node_duration"
|
||||
MESSAGE_DURATION = "message_duration"
|
||||
MESSAGE_TTFT = "message_ttft"
|
||||
TOOL_DURATION = "tool_duration"
|
||||
PROMPT_GENERATION_DURATION = "prompt_generation_duration"
|
||||
|
||||
|
||||
class TokenMetricLabels(BaseModel):
|
||||
"""Unified label structure for all dify.token.* metrics.
|
||||
|
||||
All token counters (dify.tokens.input, dify.tokens.output, dify.tokens.total) MUST
|
||||
use this exact label set to ensure consistent filtering and aggregation across
|
||||
different operation types.
|
||||
|
||||
Attributes:
|
||||
tenant_id: Tenant identifier.
|
||||
app_id: Application identifier.
|
||||
operation_type: Source of token usage (workflow | node_execution | message |
|
||||
rule_generate | code_generate | structured_output | instruction_modify).
|
||||
model_provider: LLM provider name. Empty string if not applicable (e.g., workflow-level).
|
||||
model_name: LLM model name. Empty string if not applicable (e.g., workflow-level).
|
||||
node_type: Workflow node type. Empty string unless operation_type=node_execution.
|
||||
|
||||
Usage:
|
||||
labels = TokenMetricLabels(
|
||||
tenant_id="tenant-123",
|
||||
app_id="app-456",
|
||||
operation_type=OperationType.WORKFLOW,
|
||||
model_provider="",
|
||||
model_name="",
|
||||
node_type="",
|
||||
)
|
||||
exporter.increment_counter(
|
||||
EnterpriseTelemetryCounter.INPUT_TOKENS,
|
||||
100,
|
||||
labels.to_dict()
|
||||
)
|
||||
|
||||
Design rationale:
|
||||
Without this unified structure, tokens get double-counted when querying totals
|
||||
because workflow.total_tokens is already the sum of all node tokens. The
|
||||
operation_type label allows filtering to separate workflow-level aggregates from
|
||||
node-level detail, while keeping the same label cardinality for consistent queries.
|
||||
"""
|
||||
|
||||
tenant_id: str
|
||||
app_id: str
|
||||
operation_type: str
|
||||
model_provider: str
|
||||
model_name: str
|
||||
node_type: str
|
||||
|
||||
model_config = ConfigDict(extra="forbid", frozen=True)
|
||||
|
||||
def to_dict(self) -> dict[str, AttributeValue]:
|
||||
return cast(
|
||||
dict[str, AttributeValue],
|
||||
{
|
||||
"tenant_id": self.tenant_id,
|
||||
"app_id": self.app_id,
|
||||
"operation_type": self.operation_type,
|
||||
"model_provider": self.model_provider,
|
||||
"model_name": self.model_name,
|
||||
"node_type": self.node_type,
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
__all__ = [
|
||||
"EnterpriseTelemetryCounter",
|
||||
"EnterpriseTelemetryEvent",
|
||||
"EnterpriseTelemetryHistogram",
|
||||
"EnterpriseTelemetrySpan",
|
||||
"TokenMetricLabels",
|
||||
]
|
||||
130
api/enterprise/telemetry/event_handlers.py
Normal file
130
api/enterprise/telemetry/event_handlers.py
Normal file
@@ -0,0 +1,130 @@
|
||||
"""Blinker signal handlers for enterprise telemetry.
|
||||
|
||||
Registered at import time via ``@signal.connect`` decorators.
|
||||
Import must happen during ``ext_enterprise_telemetry.init_app()`` to ensure handlers fire.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
import uuid
|
||||
|
||||
from events.app_event import app_was_created, app_was_deleted, app_was_updated
|
||||
from events.feedback_event import feedback_was_created
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
__all__ = [
|
||||
"_handle_app_created",
|
||||
"_handle_app_deleted",
|
||||
"_handle_app_updated",
|
||||
"_handle_feedback_created",
|
||||
]
|
||||
|
||||
|
||||
@app_was_created.connect
|
||||
def _handle_app_created(sender: object, **kwargs: object) -> None:
|
||||
from enterprise.telemetry.contracts import TelemetryCase, TelemetryEnvelope
|
||||
from extensions.ext_enterprise_telemetry import get_enterprise_exporter
|
||||
from tasks.enterprise_telemetry_task import process_enterprise_telemetry
|
||||
|
||||
exporter = get_enterprise_exporter()
|
||||
if not exporter:
|
||||
return
|
||||
|
||||
tenant_id = str(getattr(sender, "tenant_id", "") or "")
|
||||
payload = {
|
||||
"app_id": getattr(sender, "id", None),
|
||||
"mode": getattr(sender, "mode", None),
|
||||
}
|
||||
|
||||
envelope = TelemetryEnvelope(
|
||||
case=TelemetryCase.APP_CREATED,
|
||||
tenant_id=tenant_id,
|
||||
event_id=str(uuid.uuid4()),
|
||||
payload=payload,
|
||||
)
|
||||
|
||||
process_enterprise_telemetry.delay(envelope.model_dump_json())
|
||||
|
||||
|
||||
@app_was_deleted.connect
|
||||
def _handle_app_deleted(sender: object, **kwargs: object) -> None:
|
||||
from enterprise.telemetry.contracts import TelemetryCase, TelemetryEnvelope
|
||||
from extensions.ext_enterprise_telemetry import get_enterprise_exporter
|
||||
from tasks.enterprise_telemetry_task import process_enterprise_telemetry
|
||||
|
||||
exporter = get_enterprise_exporter()
|
||||
if not exporter:
|
||||
return
|
||||
|
||||
tenant_id = str(getattr(sender, "tenant_id", "") or "")
|
||||
payload = {
|
||||
"app_id": getattr(sender, "id", None),
|
||||
}
|
||||
|
||||
envelope = TelemetryEnvelope(
|
||||
case=TelemetryCase.APP_DELETED,
|
||||
tenant_id=tenant_id,
|
||||
event_id=str(uuid.uuid4()),
|
||||
payload=payload,
|
||||
)
|
||||
|
||||
process_enterprise_telemetry.delay(envelope.model_dump_json())
|
||||
|
||||
|
||||
@app_was_updated.connect
|
||||
def _handle_app_updated(sender: object, **kwargs: object) -> None:
|
||||
from enterprise.telemetry.contracts import TelemetryCase, TelemetryEnvelope
|
||||
from extensions.ext_enterprise_telemetry import get_enterprise_exporter
|
||||
from tasks.enterprise_telemetry_task import process_enterprise_telemetry
|
||||
|
||||
exporter = get_enterprise_exporter()
|
||||
if not exporter:
|
||||
return
|
||||
|
||||
tenant_id = str(getattr(sender, "tenant_id", "") or "")
|
||||
payload = {
|
||||
"app_id": getattr(sender, "id", None),
|
||||
}
|
||||
|
||||
envelope = TelemetryEnvelope(
|
||||
case=TelemetryCase.APP_UPDATED,
|
||||
tenant_id=tenant_id,
|
||||
event_id=str(uuid.uuid4()),
|
||||
payload=payload,
|
||||
)
|
||||
|
||||
process_enterprise_telemetry.delay(envelope.model_dump_json())
|
||||
|
||||
|
||||
@feedback_was_created.connect
|
||||
def _handle_feedback_created(sender: object, **kwargs: object) -> None:
|
||||
from enterprise.telemetry.contracts import TelemetryCase, TelemetryEnvelope
|
||||
from extensions.ext_enterprise_telemetry import get_enterprise_exporter
|
||||
from tasks.enterprise_telemetry_task import process_enterprise_telemetry
|
||||
|
||||
exporter = get_enterprise_exporter()
|
||||
if not exporter:
|
||||
return
|
||||
|
||||
tenant_id = str(kwargs.get("tenant_id", "") or "")
|
||||
payload = {
|
||||
"message_id": getattr(sender, "message_id", None),
|
||||
"app_id": getattr(sender, "app_id", None),
|
||||
"conversation_id": getattr(sender, "conversation_id", None),
|
||||
"from_end_user_id": getattr(sender, "from_end_user_id", None),
|
||||
"from_account_id": getattr(sender, "from_account_id", None),
|
||||
"rating": getattr(sender, "rating", None),
|
||||
"from_source": getattr(sender, "from_source", None),
|
||||
"content": getattr(sender, "content", None),
|
||||
}
|
||||
|
||||
envelope = TelemetryEnvelope(
|
||||
case=TelemetryCase.FEEDBACK_CREATED,
|
||||
tenant_id=tenant_id,
|
||||
event_id=str(uuid.uuid4()),
|
||||
payload=payload,
|
||||
)
|
||||
|
||||
process_enterprise_telemetry.delay(envelope.model_dump_json())
|
||||
266
api/enterprise/telemetry/exporter.py
Normal file
266
api/enterprise/telemetry/exporter.py
Normal file
@@ -0,0 +1,266 @@
|
||||
"""Enterprise OTEL exporter — shared by EnterpriseOtelTrace, event handlers, and direct instrumentation.
|
||||
|
||||
Uses dedicated TracerProvider and MeterProvider instances (configurable sampling,
|
||||
independent from ext_otel.py infrastructure).
|
||||
|
||||
Initialized once during Flask extension init (single-threaded via ext_enterprise_telemetry.py).
|
||||
Accessed via ``ext_enterprise_telemetry.get_enterprise_exporter()`` from any thread/process.
|
||||
"""
|
||||
|
||||
import logging
|
||||
import socket
|
||||
import uuid
|
||||
from datetime import datetime
|
||||
from typing import Any, cast
|
||||
|
||||
from opentelemetry import trace
|
||||
from opentelemetry.context import Context
|
||||
from opentelemetry.exporter.otlp.proto.grpc.metric_exporter import OTLPMetricExporter as GRPCMetricExporter
|
||||
from opentelemetry.exporter.otlp.proto.grpc.trace_exporter import OTLPSpanExporter as GRPCSpanExporter
|
||||
from opentelemetry.exporter.otlp.proto.http.metric_exporter import OTLPMetricExporter as HTTPMetricExporter
|
||||
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter as HTTPSpanExporter
|
||||
from opentelemetry.sdk.metrics import MeterProvider
|
||||
from opentelemetry.sdk.metrics.export import PeriodicExportingMetricReader
|
||||
from opentelemetry.sdk.resources import Resource
|
||||
from opentelemetry.sdk.trace import TracerProvider
|
||||
from opentelemetry.sdk.trace.export import BatchSpanProcessor
|
||||
from opentelemetry.sdk.trace.sampling import ParentBasedTraceIdRatio
|
||||
from opentelemetry.semconv.resource import ResourceAttributes
|
||||
from opentelemetry.trace import SpanContext, TraceFlags
|
||||
from opentelemetry.util.types import Attributes, AttributeValue
|
||||
|
||||
from configs import dify_config
|
||||
from enterprise.telemetry.entities import EnterpriseTelemetryCounter, EnterpriseTelemetryHistogram
|
||||
from enterprise.telemetry.id_generator import (
|
||||
CorrelationIdGenerator,
|
||||
compute_deterministic_span_id,
|
||||
set_correlation_id,
|
||||
set_span_id_source,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def is_enterprise_telemetry_enabled() -> bool:
|
||||
return bool(dify_config.ENTERPRISE_ENABLED and dify_config.ENTERPRISE_TELEMETRY_ENABLED)
|
||||
|
||||
|
||||
def _parse_otlp_headers(raw: str) -> dict[str, str]:
|
||||
"""Parse ``key=value,key2=value2`` into a dict."""
|
||||
if not raw:
|
||||
return {}
|
||||
headers: dict[str, str] = {}
|
||||
for pair in raw.split(","):
|
||||
if "=" not in pair:
|
||||
continue
|
||||
k, v = pair.split("=", 1)
|
||||
headers[k.strip()] = v.strip()
|
||||
return headers
|
||||
|
||||
|
||||
def _datetime_to_ns(dt: datetime) -> int:
|
||||
"""Convert a datetime to nanoseconds since epoch (OTEL convention)."""
|
||||
return int(dt.timestamp() * 1_000_000_000)
|
||||
|
||||
|
||||
class _ExporterFactory:
|
||||
def __init__(self, protocol: str, endpoint: str, headers: dict[str, str], insecure: bool):
|
||||
self._protocol = protocol
|
||||
self._endpoint = endpoint
|
||||
self._headers = headers
|
||||
self._grpc_headers = tuple(headers.items()) if headers else None
|
||||
self._http_headers = headers or None
|
||||
self._insecure = insecure
|
||||
|
||||
def create_trace_exporter(self) -> HTTPSpanExporter | GRPCSpanExporter:
|
||||
if self._protocol == "grpc":
|
||||
return GRPCSpanExporter(
|
||||
endpoint=self._endpoint or None,
|
||||
headers=self._grpc_headers,
|
||||
insecure=self._insecure,
|
||||
)
|
||||
trace_endpoint = f"{self._endpoint}/v1/traces" if self._endpoint else ""
|
||||
return HTTPSpanExporter(endpoint=trace_endpoint or None, headers=self._http_headers)
|
||||
|
||||
def create_metric_exporter(self) -> HTTPMetricExporter | GRPCMetricExporter:
|
||||
if self._protocol == "grpc":
|
||||
return GRPCMetricExporter(
|
||||
endpoint=self._endpoint or None,
|
||||
headers=self._grpc_headers,
|
||||
insecure=self._insecure,
|
||||
)
|
||||
metric_endpoint = f"{self._endpoint}/v1/metrics" if self._endpoint else ""
|
||||
return HTTPMetricExporter(endpoint=metric_endpoint or None, headers=self._http_headers)
|
||||
|
||||
|
||||
class EnterpriseExporter:
|
||||
"""Shared OTEL exporter for all enterprise telemetry.
|
||||
|
||||
``export_span`` creates spans with optional real timestamps, deterministic
|
||||
span/trace IDs, and cross-workflow parent linking.
|
||||
``increment_counter`` / ``record_histogram`` emit OTEL metrics at 100% accuracy.
|
||||
"""
|
||||
|
||||
def __init__(self, config: object) -> None:
|
||||
endpoint: str = getattr(config, "ENTERPRISE_OTLP_ENDPOINT", "")
|
||||
headers_raw: str = getattr(config, "ENTERPRISE_OTLP_HEADERS", "")
|
||||
protocol: str = (getattr(config, "ENTERPRISE_OTLP_PROTOCOL", "http") or "http").lower()
|
||||
service_name: str = getattr(config, "ENTERPRISE_SERVICE_NAME", "dify")
|
||||
sampling_rate: float = getattr(config, "ENTERPRISE_OTEL_SAMPLING_RATE", 1.0)
|
||||
self.include_content: bool = getattr(config, "ENTERPRISE_INCLUDE_CONTENT", True)
|
||||
api_key: str = getattr(config, "ENTERPRISE_OTLP_API_KEY", "")
|
||||
# Auto-detect TLS: when bearer token is configured, use secure channel
|
||||
insecure: bool = not bool(api_key)
|
||||
|
||||
resource = Resource(
|
||||
attributes={
|
||||
ResourceAttributes.SERVICE_NAME: service_name,
|
||||
ResourceAttributes.HOST_NAME: socket.gethostname(),
|
||||
}
|
||||
)
|
||||
sampler = ParentBasedTraceIdRatio(sampling_rate)
|
||||
id_generator = CorrelationIdGenerator()
|
||||
self._tracer_provider = TracerProvider(resource=resource, sampler=sampler, id_generator=id_generator)
|
||||
|
||||
headers = _parse_otlp_headers(headers_raw)
|
||||
if api_key:
|
||||
if "authorization" in headers:
|
||||
logger.warning(
|
||||
"ENTERPRISE_OTLP_API_KEY is set but ENTERPRISE_OTLP_HEADERS also contains "
|
||||
"'authorization'; the API key will take precedence."
|
||||
)
|
||||
headers["authorization"] = f"Bearer {api_key}"
|
||||
factory = _ExporterFactory(protocol, endpoint, headers, insecure=insecure)
|
||||
|
||||
trace_exporter = factory.create_trace_exporter()
|
||||
self._tracer_provider.add_span_processor(BatchSpanProcessor(trace_exporter))
|
||||
self._tracer = self._tracer_provider.get_tracer("dify.enterprise")
|
||||
|
||||
metric_exporter = factory.create_metric_exporter()
|
||||
self._meter_provider = MeterProvider(
|
||||
resource=resource,
|
||||
metric_readers=[PeriodicExportingMetricReader(metric_exporter)],
|
||||
)
|
||||
meter = self._meter_provider.get_meter("dify.enterprise")
|
||||
self._counters = {
|
||||
EnterpriseTelemetryCounter.TOKENS: meter.create_counter("dify.tokens.total", unit="{token}"),
|
||||
EnterpriseTelemetryCounter.INPUT_TOKENS: meter.create_counter("dify.tokens.input", unit="{token}"),
|
||||
EnterpriseTelemetryCounter.OUTPUT_TOKENS: meter.create_counter("dify.tokens.output", unit="{token}"),
|
||||
EnterpriseTelemetryCounter.REQUESTS: meter.create_counter("dify.requests.total", unit="{request}"),
|
||||
EnterpriseTelemetryCounter.ERRORS: meter.create_counter("dify.errors.total", unit="{error}"),
|
||||
EnterpriseTelemetryCounter.FEEDBACK: meter.create_counter("dify.feedback.total", unit="{feedback}"),
|
||||
EnterpriseTelemetryCounter.DATASET_RETRIEVALS: meter.create_counter(
|
||||
"dify.dataset.retrievals.total", unit="{retrieval}"
|
||||
),
|
||||
EnterpriseTelemetryCounter.APP_CREATED: meter.create_counter("dify.app.created.total", unit="{app}"),
|
||||
EnterpriseTelemetryCounter.APP_UPDATED: meter.create_counter("dify.app.updated.total", unit="{app}"),
|
||||
EnterpriseTelemetryCounter.APP_DELETED: meter.create_counter("dify.app.deleted.total", unit="{app}"),
|
||||
}
|
||||
self._histograms = {
|
||||
EnterpriseTelemetryHistogram.WORKFLOW_DURATION: meter.create_histogram("dify.workflow.duration", unit="s"),
|
||||
EnterpriseTelemetryHistogram.NODE_DURATION: meter.create_histogram("dify.node.duration", unit="s"),
|
||||
EnterpriseTelemetryHistogram.MESSAGE_DURATION: meter.create_histogram("dify.message.duration", unit="s"),
|
||||
EnterpriseTelemetryHistogram.MESSAGE_TTFT: meter.create_histogram(
|
||||
"dify.message.time_to_first_token", unit="s"
|
||||
),
|
||||
EnterpriseTelemetryHistogram.TOOL_DURATION: meter.create_histogram("dify.tool.duration", unit="s"),
|
||||
EnterpriseTelemetryHistogram.PROMPT_GENERATION_DURATION: meter.create_histogram(
|
||||
"dify.prompt_generation.duration", unit="s"
|
||||
),
|
||||
}
|
||||
|
||||
def export_span(
|
||||
self,
|
||||
name: str,
|
||||
attributes: dict[str, Any],
|
||||
correlation_id: str | None = None,
|
||||
span_id_source: str | None = None,
|
||||
start_time: datetime | None = None,
|
||||
end_time: datetime | None = None,
|
||||
trace_correlation_override: str | None = None,
|
||||
parent_span_id_source: str | None = None,
|
||||
) -> None:
|
||||
"""Export an OTEL span with optional deterministic IDs and real timestamps.
|
||||
|
||||
Args:
|
||||
name: Span operation name.
|
||||
attributes: Span attributes dict.
|
||||
correlation_id: Source for trace_id derivation (groups spans in one trace).
|
||||
span_id_source: Source for deterministic span_id (e.g. workflow_run_id or node_execution_id).
|
||||
start_time: Real span start time. When None, uses current time.
|
||||
end_time: Real span end time. When None, span ends immediately.
|
||||
trace_correlation_override: Override trace_id source (for cross-workflow linking).
|
||||
When set, trace_id is derived from this instead of ``correlation_id``.
|
||||
parent_span_id_source: Override parent span_id source (for cross-workflow linking).
|
||||
When set, parent span_id is derived from this value. When None and
|
||||
``correlation_id`` is set, parent is the workflow root span.
|
||||
"""
|
||||
effective_trace_correlation = trace_correlation_override or correlation_id
|
||||
set_correlation_id(effective_trace_correlation)
|
||||
set_span_id_source(span_id_source)
|
||||
|
||||
try:
|
||||
parent_context: Context | None = None
|
||||
# A span is the "root" of its correlation group when span_id_source == correlation_id
|
||||
# (i.e. a workflow root span). All other spans are children.
|
||||
if parent_span_id_source:
|
||||
# Cross-workflow linking: parent is an explicit span (e.g. tool node in outer workflow)
|
||||
parent_span_id = compute_deterministic_span_id(parent_span_id_source)
|
||||
parent_trace_id = int(uuid.UUID(effective_trace_correlation)) if effective_trace_correlation else 0
|
||||
if parent_trace_id:
|
||||
parent_span_context = SpanContext(
|
||||
trace_id=parent_trace_id,
|
||||
span_id=parent_span_id,
|
||||
is_remote=True,
|
||||
trace_flags=TraceFlags(TraceFlags.SAMPLED),
|
||||
)
|
||||
parent_context = trace.set_span_in_context(trace.NonRecordingSpan(parent_span_context))
|
||||
elif correlation_id and correlation_id != span_id_source:
|
||||
# Child span: parent is the correlation-group root (workflow root span)
|
||||
parent_span_id = compute_deterministic_span_id(correlation_id)
|
||||
parent_trace_id = int(uuid.UUID(effective_trace_correlation or correlation_id))
|
||||
parent_span_context = SpanContext(
|
||||
trace_id=parent_trace_id,
|
||||
span_id=parent_span_id,
|
||||
is_remote=True,
|
||||
trace_flags=TraceFlags(TraceFlags.SAMPLED),
|
||||
)
|
||||
parent_context = trace.set_span_in_context(trace.NonRecordingSpan(parent_span_context))
|
||||
|
||||
span_start_time = _datetime_to_ns(start_time) if start_time is not None else None
|
||||
span_end_on_exit = end_time is None
|
||||
|
||||
with self._tracer.start_as_current_span(
|
||||
name,
|
||||
context=parent_context,
|
||||
start_time=span_start_time,
|
||||
end_on_exit=span_end_on_exit,
|
||||
) as span:
|
||||
for key, value in attributes.items():
|
||||
if value is not None:
|
||||
span.set_attribute(key, value)
|
||||
if end_time is not None:
|
||||
span.end(end_time=_datetime_to_ns(end_time))
|
||||
except Exception:
|
||||
logger.exception("Failed to export span %s", name)
|
||||
finally:
|
||||
set_correlation_id(None)
|
||||
set_span_id_source(None)
|
||||
|
||||
def increment_counter(
|
||||
self, name: EnterpriseTelemetryCounter, value: int, labels: dict[str, AttributeValue]
|
||||
) -> None:
|
||||
counter = self._counters.get(name)
|
||||
if counter:
|
||||
counter.add(value, cast(Attributes, labels))
|
||||
|
||||
def record_histogram(
|
||||
self, name: EnterpriseTelemetryHistogram, value: float, labels: dict[str, AttributeValue]
|
||||
) -> None:
|
||||
histogram = self._histograms.get(name)
|
||||
if histogram:
|
||||
histogram.record(value, cast(Attributes, labels))
|
||||
|
||||
def shutdown(self) -> None:
|
||||
self._tracer_provider.shutdown()
|
||||
self._meter_provider.shutdown()
|
||||
199
api/enterprise/telemetry/gateway.py
Normal file
199
api/enterprise/telemetry/gateway.py
Normal file
@@ -0,0 +1,199 @@
|
||||
"""Telemetry gateway routing and dispatch.
|
||||
|
||||
Maps ``TelemetryCase`` → ``CaseRoute`` (signal type + CE eligibility)
|
||||
and dispatches events to either the trace pipeline or the metric/log
|
||||
Celery queue.
|
||||
|
||||
Singleton lifecycle is managed by ``ext_enterprise_telemetry.init_app()``
|
||||
which creates the instance during single-threaded Flask app startup.
|
||||
Access via ``ext_enterprise_telemetry.get_gateway()``.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
import logging
|
||||
import uuid
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
from core.ops.entities.trace_entity import TraceTaskName
|
||||
from enterprise.telemetry.contracts import CaseRoute, SignalType, TelemetryCase, TelemetryEnvelope
|
||||
from extensions.ext_storage import storage
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from core.ops.ops_trace_manager import TraceQueueManager
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
PAYLOAD_SIZE_THRESHOLD_BYTES = 1 * 1024 * 1024
|
||||
|
||||
CASE_TO_TRACE_TASK: dict[TelemetryCase, TraceTaskName] = {
|
||||
TelemetryCase.WORKFLOW_RUN: TraceTaskName.WORKFLOW_TRACE,
|
||||
TelemetryCase.MESSAGE_RUN: TraceTaskName.MESSAGE_TRACE,
|
||||
TelemetryCase.NODE_EXECUTION: TraceTaskName.NODE_EXECUTION_TRACE,
|
||||
TelemetryCase.DRAFT_NODE_EXECUTION: TraceTaskName.DRAFT_NODE_EXECUTION_TRACE,
|
||||
TelemetryCase.PROMPT_GENERATION: TraceTaskName.PROMPT_GENERATION_TRACE,
|
||||
}
|
||||
|
||||
CASE_ROUTING: dict[TelemetryCase, CaseRoute] = {
|
||||
TelemetryCase.WORKFLOW_RUN: CaseRoute(signal_type=SignalType.TRACE, ce_eligible=True),
|
||||
TelemetryCase.MESSAGE_RUN: CaseRoute(signal_type=SignalType.TRACE, ce_eligible=True),
|
||||
TelemetryCase.NODE_EXECUTION: CaseRoute(signal_type=SignalType.TRACE, ce_eligible=False),
|
||||
TelemetryCase.DRAFT_NODE_EXECUTION: CaseRoute(signal_type=SignalType.TRACE, ce_eligible=False),
|
||||
TelemetryCase.PROMPT_GENERATION: CaseRoute(signal_type=SignalType.TRACE, ce_eligible=False),
|
||||
TelemetryCase.APP_CREATED: CaseRoute(signal_type=SignalType.METRIC_LOG, ce_eligible=False),
|
||||
TelemetryCase.APP_UPDATED: CaseRoute(signal_type=SignalType.METRIC_LOG, ce_eligible=False),
|
||||
TelemetryCase.APP_DELETED: CaseRoute(signal_type=SignalType.METRIC_LOG, ce_eligible=False),
|
||||
TelemetryCase.FEEDBACK_CREATED: CaseRoute(signal_type=SignalType.METRIC_LOG, ce_eligible=False),
|
||||
TelemetryCase.TOOL_EXECUTION: CaseRoute(signal_type=SignalType.METRIC_LOG, ce_eligible=False),
|
||||
TelemetryCase.MODERATION_CHECK: CaseRoute(signal_type=SignalType.METRIC_LOG, ce_eligible=False),
|
||||
TelemetryCase.SUGGESTED_QUESTION: CaseRoute(signal_type=SignalType.METRIC_LOG, ce_eligible=False),
|
||||
TelemetryCase.DATASET_RETRIEVAL: CaseRoute(signal_type=SignalType.METRIC_LOG, ce_eligible=False),
|
||||
TelemetryCase.GENERATE_NAME: CaseRoute(signal_type=SignalType.METRIC_LOG, ce_eligible=False),
|
||||
}
|
||||
|
||||
|
||||
def _is_enterprise_telemetry_enabled() -> bool:
|
||||
try:
|
||||
from enterprise.telemetry.exporter import is_enterprise_telemetry_enabled
|
||||
|
||||
return is_enterprise_telemetry_enabled()
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
|
||||
def _should_drop_ee_only_event(route: CaseRoute) -> bool:
|
||||
"""Return True when the event is enterprise-only and EE telemetry is disabled."""
|
||||
return not route.ce_eligible and not _is_enterprise_telemetry_enabled()
|
||||
|
||||
|
||||
class TelemetryGateway:
|
||||
"""Routes telemetry events to the trace pipeline or the metric/log Celery queue.
|
||||
|
||||
Stateless — instantiated once during ``ext_enterprise_telemetry.init_app()``
|
||||
and shared for the lifetime of the process.
|
||||
"""
|
||||
|
||||
def emit(
|
||||
self,
|
||||
case: TelemetryCase,
|
||||
context: dict[str, Any],
|
||||
payload: dict[str, Any],
|
||||
trace_manager: TraceQueueManager | None = None,
|
||||
) -> None:
|
||||
route = CASE_ROUTING.get(case)
|
||||
if route is None:
|
||||
logger.warning("Unknown telemetry case: %s, dropping event", case)
|
||||
return
|
||||
|
||||
if _should_drop_ee_only_event(route):
|
||||
logger.debug("Dropping EE-only event: case=%s (EE disabled)", case)
|
||||
return
|
||||
|
||||
logger.debug(
|
||||
"Gateway routing: case=%s, signal_type=%s, ce_eligible=%s",
|
||||
case,
|
||||
route.signal_type,
|
||||
route.ce_eligible,
|
||||
)
|
||||
|
||||
if route.signal_type is SignalType.TRACE:
|
||||
self._emit_trace(case, context, payload, route, trace_manager)
|
||||
else:
|
||||
self._emit_metric_log(case, context, payload)
|
||||
|
||||
def _emit_trace(
|
||||
self,
|
||||
case: TelemetryCase,
|
||||
context: dict[str, Any],
|
||||
payload: dict[str, Any],
|
||||
route: CaseRoute,
|
||||
trace_manager: TraceQueueManager | None,
|
||||
) -> None:
|
||||
from core.ops.ops_trace_manager import TraceQueueManager as LocalTraceQueueManager
|
||||
from core.ops.ops_trace_manager import TraceTask
|
||||
|
||||
trace_task_name = CASE_TO_TRACE_TASK.get(case)
|
||||
if trace_task_name is None:
|
||||
logger.warning("No TraceTaskName mapping for case: %s", case)
|
||||
return
|
||||
|
||||
queue_manager = trace_manager or LocalTraceQueueManager(
|
||||
app_id=context.get("app_id"),
|
||||
user_id=context.get("user_id"),
|
||||
)
|
||||
|
||||
queue_manager.add_trace_task(TraceTask(trace_task_name, **payload))
|
||||
logger.debug("Enqueued trace task: case=%s, app_id=%s", case, context.get("app_id"))
|
||||
|
||||
def _emit_metric_log(
|
||||
self,
|
||||
case: TelemetryCase,
|
||||
context: dict[str, Any],
|
||||
payload: dict[str, Any],
|
||||
) -> None:
|
||||
from tasks.enterprise_telemetry_task import process_enterprise_telemetry
|
||||
|
||||
tenant_id = context.get("tenant_id", "")
|
||||
event_id = str(uuid.uuid4())
|
||||
|
||||
payload_for_envelope, payload_ref = self._handle_payload_sizing(payload, tenant_id, event_id)
|
||||
|
||||
envelope = TelemetryEnvelope(
|
||||
case=case,
|
||||
tenant_id=tenant_id,
|
||||
event_id=event_id,
|
||||
payload=payload_for_envelope,
|
||||
metadata={"payload_ref": payload_ref} if payload_ref else None,
|
||||
)
|
||||
|
||||
process_enterprise_telemetry.delay(envelope.model_dump_json())
|
||||
logger.debug(
|
||||
"Enqueued metric/log event: case=%s, tenant_id=%s, event_id=%s",
|
||||
case,
|
||||
tenant_id,
|
||||
event_id,
|
||||
)
|
||||
|
||||
def _handle_payload_sizing(
|
||||
self,
|
||||
payload: dict[str, Any],
|
||||
tenant_id: str,
|
||||
event_id: str,
|
||||
) -> tuple[dict[str, Any], str | None]:
|
||||
try:
|
||||
payload_json = json.dumps(payload)
|
||||
payload_size = len(payload_json.encode("utf-8"))
|
||||
except (TypeError, ValueError):
|
||||
logger.warning("Failed to serialize payload for sizing: event_id=%s", event_id)
|
||||
return payload, None
|
||||
|
||||
if payload_size <= PAYLOAD_SIZE_THRESHOLD_BYTES:
|
||||
return payload, None
|
||||
|
||||
storage_key = f"telemetry/{tenant_id}/{event_id}.json"
|
||||
try:
|
||||
storage.save(storage_key, payload_json.encode("utf-8"))
|
||||
logger.debug("Stored large payload to storage: key=%s, size=%d", storage_key, payload_size)
|
||||
return {}, storage_key
|
||||
except Exception:
|
||||
logger.warning("Failed to store large payload, inlining instead: event_id=%s", event_id, exc_info=True)
|
||||
return payload, None
|
||||
|
||||
|
||||
def emit(
|
||||
case: TelemetryCase,
|
||||
context: dict[str, Any],
|
||||
payload: dict[str, Any],
|
||||
trace_manager: TraceQueueManager | None = None,
|
||||
) -> None:
|
||||
"""Module-level convenience wrapper.
|
||||
|
||||
Fetches the gateway singleton from the extension; no-ops when
|
||||
enterprise telemetry is disabled (gateway is ``None``).
|
||||
"""
|
||||
from extensions.ext_enterprise_telemetry import get_gateway
|
||||
|
||||
gateway = get_gateway()
|
||||
if gateway is not None:
|
||||
gateway.emit(case, context, payload, trace_manager)
|
||||
76
api/enterprise/telemetry/id_generator.py
Normal file
76
api/enterprise/telemetry/id_generator.py
Normal file
@@ -0,0 +1,76 @@
|
||||
"""Custom OTEL ID Generator for correlation-based trace/span ID derivation.
|
||||
|
||||
Uses contextvars for thread-safe correlation_id -> trace_id mapping.
|
||||
When a span_id_source is set, the span_id is derived deterministically
|
||||
from that value, enabling any span to reference another as parent
|
||||
without depending on span creation order.
|
||||
"""
|
||||
|
||||
import random
|
||||
import uuid
|
||||
from contextvars import ContextVar
|
||||
from typing import cast
|
||||
|
||||
from opentelemetry.sdk.trace.id_generator import IdGenerator
|
||||
|
||||
_correlation_id_context: ContextVar[str | None] = ContextVar("correlation_id", default=None)
|
||||
_span_id_source_context: ContextVar[str | None] = ContextVar("span_id_source", default=None)
|
||||
|
||||
|
||||
def set_correlation_id(correlation_id: str | None) -> None:
|
||||
_correlation_id_context.set(correlation_id)
|
||||
|
||||
|
||||
def get_correlation_id() -> str | None:
|
||||
return _correlation_id_context.get()
|
||||
|
||||
|
||||
def set_span_id_source(source_id: str | None) -> None:
|
||||
"""Set the source for deterministic span_id generation.
|
||||
|
||||
When set, ``generate_span_id()`` derives the span_id from this value
|
||||
(lower 64 bits of the UUID). Pass the ``workflow_run_id`` for workflow
|
||||
root spans or ``node_execution_id`` for node spans.
|
||||
"""
|
||||
_span_id_source_context.set(source_id)
|
||||
|
||||
|
||||
def compute_deterministic_span_id(source_id: str) -> int:
|
||||
"""Derive a deterministic span_id from any UUID string.
|
||||
|
||||
Uses the lower 64 bits of the UUID, guaranteeing non-zero output
|
||||
(OTEL requires span_id != 0).
|
||||
"""
|
||||
span_id = cast(int, uuid.UUID(source_id).int) & ((1 << 64) - 1)
|
||||
return span_id if span_id != 0 else 1
|
||||
|
||||
|
||||
class CorrelationIdGenerator(IdGenerator):
|
||||
"""ID generator that derives trace_id and optionally span_id from context.
|
||||
|
||||
- trace_id: always derived from correlation_id (groups all spans in one trace)
|
||||
- span_id: derived from span_id_source when set (enables deterministic
|
||||
parent-child linking), otherwise random
|
||||
"""
|
||||
|
||||
def generate_trace_id(self) -> int:
|
||||
correlation_id = _correlation_id_context.get()
|
||||
if correlation_id:
|
||||
try:
|
||||
return cast(int, uuid.UUID(correlation_id).int)
|
||||
except (ValueError, AttributeError):
|
||||
pass
|
||||
return random.getrandbits(128)
|
||||
|
||||
def generate_span_id(self) -> int:
|
||||
source = _span_id_source_context.get()
|
||||
if source:
|
||||
try:
|
||||
return compute_deterministic_span_id(source)
|
||||
except (ValueError, AttributeError):
|
||||
pass
|
||||
|
||||
span_id = random.getrandbits(64)
|
||||
while span_id == 0:
|
||||
span_id = random.getrandbits(64)
|
||||
return span_id
|
||||
377
api/enterprise/telemetry/metric_handler.py
Normal file
377
api/enterprise/telemetry/metric_handler.py
Normal file
@@ -0,0 +1,377 @@
|
||||
"""Enterprise metric/log event handler.
|
||||
|
||||
This module processes metric and log telemetry events after they've been
|
||||
dequeued from the enterprise_telemetry Celery queue. It handles case routing,
|
||||
idempotency checking, and payload rehydration.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from enterprise.telemetry.contracts import TelemetryCase, TelemetryEnvelope
|
||||
from extensions.ext_redis import redis_client
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class EnterpriseMetricHandler:
|
||||
"""Handler for enterprise metric and log telemetry events.
|
||||
|
||||
Processes envelopes from the enterprise_telemetry queue, routing each
|
||||
case to the appropriate handler method. Implements idempotency checking
|
||||
and payload rehydration with fallback.
|
||||
"""
|
||||
|
||||
def _increment_diagnostic_counter(self, counter_name: str, labels: dict[str, str] | None = None) -> None:
|
||||
"""Increment a diagnostic counter for operational monitoring.
|
||||
|
||||
Args:
|
||||
counter_name: Name of the counter (e.g., 'processed_total', 'deduped_total').
|
||||
labels: Optional labels for the counter.
|
||||
"""
|
||||
try:
|
||||
from extensions.ext_enterprise_telemetry import get_enterprise_exporter
|
||||
|
||||
exporter = get_enterprise_exporter()
|
||||
if not exporter:
|
||||
return
|
||||
|
||||
full_counter_name = f"enterprise_telemetry.handler.{counter_name}"
|
||||
logger.debug(
|
||||
"Diagnostic counter: %s, labels=%s",
|
||||
full_counter_name,
|
||||
labels or {},
|
||||
)
|
||||
except Exception:
|
||||
logger.debug("Failed to increment diagnostic counter: %s", counter_name, exc_info=True)
|
||||
|
||||
def handle(self, envelope: TelemetryEnvelope) -> None:
|
||||
"""Main entry point for processing telemetry envelopes.
|
||||
|
||||
Args:
|
||||
envelope: The telemetry envelope to process.
|
||||
"""
|
||||
# Check for duplicate events
|
||||
if self._is_duplicate(envelope):
|
||||
logger.debug(
|
||||
"Skipping duplicate event: tenant_id=%s, event_id=%s",
|
||||
envelope.tenant_id,
|
||||
envelope.event_id,
|
||||
)
|
||||
self._increment_diagnostic_counter("deduped_total")
|
||||
return
|
||||
|
||||
# Route to appropriate handler based on case
|
||||
case = envelope.case
|
||||
if case == TelemetryCase.APP_CREATED:
|
||||
self._on_app_created(envelope)
|
||||
self._increment_diagnostic_counter("processed_total", {"case": "app_created"})
|
||||
elif case == TelemetryCase.APP_UPDATED:
|
||||
self._on_app_updated(envelope)
|
||||
self._increment_diagnostic_counter("processed_total", {"case": "app_updated"})
|
||||
elif case == TelemetryCase.APP_DELETED:
|
||||
self._on_app_deleted(envelope)
|
||||
self._increment_diagnostic_counter("processed_total", {"case": "app_deleted"})
|
||||
elif case == TelemetryCase.FEEDBACK_CREATED:
|
||||
self._on_feedback_created(envelope)
|
||||
self._increment_diagnostic_counter("processed_total", {"case": "feedback_created"})
|
||||
elif case == TelemetryCase.MESSAGE_RUN:
|
||||
self._on_message_run(envelope)
|
||||
self._increment_diagnostic_counter("processed_total", {"case": "message_run"})
|
||||
elif case == TelemetryCase.TOOL_EXECUTION:
|
||||
self._on_tool_execution(envelope)
|
||||
self._increment_diagnostic_counter("processed_total", {"case": "tool_execution"})
|
||||
elif case == TelemetryCase.MODERATION_CHECK:
|
||||
self._on_moderation_check(envelope)
|
||||
self._increment_diagnostic_counter("processed_total", {"case": "moderation_check"})
|
||||
elif case == TelemetryCase.SUGGESTED_QUESTION:
|
||||
self._on_suggested_question(envelope)
|
||||
self._increment_diagnostic_counter("processed_total", {"case": "suggested_question"})
|
||||
elif case == TelemetryCase.DATASET_RETRIEVAL:
|
||||
self._on_dataset_retrieval(envelope)
|
||||
self._increment_diagnostic_counter("processed_total", {"case": "dataset_retrieval"})
|
||||
elif case == TelemetryCase.GENERATE_NAME:
|
||||
self._on_generate_name(envelope)
|
||||
self._increment_diagnostic_counter("processed_total", {"case": "generate_name"})
|
||||
elif case == TelemetryCase.PROMPT_GENERATION:
|
||||
self._on_prompt_generation(envelope)
|
||||
self._increment_diagnostic_counter("processed_total", {"case": "prompt_generation"})
|
||||
else:
|
||||
logger.warning(
|
||||
"Unknown telemetry case: %s (tenant_id=%s, event_id=%s)",
|
||||
case,
|
||||
envelope.tenant_id,
|
||||
envelope.event_id,
|
||||
)
|
||||
|
||||
def _is_duplicate(self, envelope: TelemetryEnvelope) -> bool:
|
||||
"""Check if this event has already been processed.
|
||||
|
||||
Uses Redis with TTL for deduplication. Returns True if duplicate,
|
||||
False if first time seeing this event.
|
||||
|
||||
Args:
|
||||
envelope: The telemetry envelope to check.
|
||||
|
||||
Returns:
|
||||
True if this event_id has been seen before, False otherwise.
|
||||
"""
|
||||
dedup_key = f"telemetry:dedup:{envelope.tenant_id}:{envelope.event_id}"
|
||||
|
||||
try:
|
||||
# Atomic set-if-not-exists with 1h TTL
|
||||
# Returns True if key was set (first time), None if already exists (duplicate)
|
||||
was_set = redis_client.set(dedup_key, b"1", nx=True, ex=3600)
|
||||
return was_set is None
|
||||
except Exception:
|
||||
# Fail open: if Redis is unavailable, process the event
|
||||
# (prefer occasional duplicate over lost data)
|
||||
logger.warning(
|
||||
"Redis unavailable for deduplication check, processing event anyway: %s",
|
||||
envelope.event_id,
|
||||
exc_info=True,
|
||||
)
|
||||
return False
|
||||
|
||||
def _rehydrate(self, envelope: TelemetryEnvelope) -> dict[str, Any]:
|
||||
"""Rehydrate payload from reference or fallback.
|
||||
|
||||
Attempts to resolve payload_ref to full data. If that fails,
|
||||
falls back to payload_fallback. If both fail, emits a degraded
|
||||
event marker.
|
||||
|
||||
Args:
|
||||
envelope: The telemetry envelope containing payload data.
|
||||
|
||||
Returns:
|
||||
The rehydrated payload dictionary.
|
||||
"""
|
||||
# For now, payload is directly in the envelope
|
||||
# Future: implement payload_ref resolution from storage
|
||||
payload = envelope.payload
|
||||
|
||||
if not payload and envelope.payload_fallback:
|
||||
import pickle
|
||||
|
||||
try:
|
||||
payload = pickle.loads(envelope.payload_fallback) # noqa: S301
|
||||
logger.debug("Used payload_fallback for event_id=%s", envelope.event_id)
|
||||
except Exception:
|
||||
logger.warning(
|
||||
"Failed to deserialize payload_fallback for event_id=%s",
|
||||
envelope.event_id,
|
||||
exc_info=True,
|
||||
)
|
||||
|
||||
if not payload:
|
||||
# Both ref and fallback failed - emit degraded event
|
||||
logger.error(
|
||||
"Payload rehydration failed for event_id=%s, tenant_id=%s, case=%s",
|
||||
envelope.event_id,
|
||||
envelope.tenant_id,
|
||||
envelope.case,
|
||||
)
|
||||
# Emit degraded event marker
|
||||
from enterprise.telemetry.entities import EnterpriseTelemetryEvent
|
||||
from enterprise.telemetry.telemetry_log import emit_metric_only_event
|
||||
|
||||
emit_metric_only_event(
|
||||
event_name=EnterpriseTelemetryEvent.REHYDRATION_FAILED,
|
||||
attributes={
|
||||
"dify.tenant_id": envelope.tenant_id,
|
||||
"dify.event_id": envelope.event_id,
|
||||
"dify.case": envelope.case,
|
||||
"rehydration_failed": True,
|
||||
},
|
||||
tenant_id=envelope.tenant_id,
|
||||
)
|
||||
self._increment_diagnostic_counter("rehydration_failed_total")
|
||||
return {}
|
||||
|
||||
return payload
|
||||
|
||||
# Stub methods for each metric/log case
|
||||
# These will be implemented in later tasks with actual emission logic
|
||||
|
||||
def _on_app_created(self, envelope: TelemetryEnvelope) -> None:
|
||||
"""Handle app created event."""
|
||||
from enterprise.telemetry.entities import EnterpriseTelemetryCounter, EnterpriseTelemetryEvent
|
||||
from enterprise.telemetry.telemetry_log import emit_metric_only_event
|
||||
from extensions.ext_enterprise_telemetry import get_enterprise_exporter
|
||||
|
||||
exporter = get_enterprise_exporter()
|
||||
if not exporter:
|
||||
logger.debug("No exporter available for APP_CREATED: event_id=%s", envelope.event_id)
|
||||
return
|
||||
|
||||
payload = self._rehydrate(envelope)
|
||||
if not payload:
|
||||
return
|
||||
|
||||
attrs = {
|
||||
"dify.app.id": payload.get("app_id"),
|
||||
"dify.tenant_id": envelope.tenant_id,
|
||||
"dify.event.id": envelope.event_id,
|
||||
"dify.app.mode": payload.get("mode"),
|
||||
}
|
||||
|
||||
emit_metric_only_event(
|
||||
event_name=EnterpriseTelemetryEvent.APP_CREATED,
|
||||
attributes=attrs,
|
||||
tenant_id=envelope.tenant_id,
|
||||
)
|
||||
exporter.increment_counter(
|
||||
EnterpriseTelemetryCounter.APP_CREATED,
|
||||
1,
|
||||
{
|
||||
"tenant_id": envelope.tenant_id,
|
||||
"app_id": str(payload.get("app_id", "")),
|
||||
"mode": str(payload.get("mode", "")),
|
||||
},
|
||||
)
|
||||
|
||||
def _on_app_updated(self, envelope: TelemetryEnvelope) -> None:
|
||||
"""Handle app updated event."""
|
||||
from enterprise.telemetry.entities import EnterpriseTelemetryCounter, EnterpriseTelemetryEvent
|
||||
from enterprise.telemetry.telemetry_log import emit_metric_only_event
|
||||
from extensions.ext_enterprise_telemetry import get_enterprise_exporter
|
||||
|
||||
exporter = get_enterprise_exporter()
|
||||
if not exporter:
|
||||
logger.debug("No exporter available for APP_UPDATED: event_id=%s", envelope.event_id)
|
||||
return
|
||||
|
||||
payload = self._rehydrate(envelope)
|
||||
if not payload:
|
||||
return
|
||||
|
||||
attrs = {
|
||||
"dify.app.id": payload.get("app_id"),
|
||||
"dify.tenant_id": envelope.tenant_id,
|
||||
"dify.event.id": envelope.event_id,
|
||||
}
|
||||
|
||||
emit_metric_only_event(
|
||||
event_name=EnterpriseTelemetryEvent.APP_UPDATED,
|
||||
attributes=attrs,
|
||||
tenant_id=envelope.tenant_id,
|
||||
)
|
||||
exporter.increment_counter(
|
||||
EnterpriseTelemetryCounter.APP_UPDATED,
|
||||
1,
|
||||
{
|
||||
"tenant_id": envelope.tenant_id,
|
||||
"app_id": str(payload.get("app_id", "")),
|
||||
},
|
||||
)
|
||||
|
||||
def _on_app_deleted(self, envelope: TelemetryEnvelope) -> None:
|
||||
"""Handle app deleted event."""
|
||||
from enterprise.telemetry.entities import EnterpriseTelemetryCounter, EnterpriseTelemetryEvent
|
||||
from enterprise.telemetry.telemetry_log import emit_metric_only_event
|
||||
from extensions.ext_enterprise_telemetry import get_enterprise_exporter
|
||||
|
||||
exporter = get_enterprise_exporter()
|
||||
if not exporter:
|
||||
logger.debug("No exporter available for APP_DELETED: event_id=%s", envelope.event_id)
|
||||
return
|
||||
|
||||
payload = self._rehydrate(envelope)
|
||||
if not payload:
|
||||
return
|
||||
|
||||
attrs = {
|
||||
"dify.app.id": payload.get("app_id"),
|
||||
"dify.tenant_id": envelope.tenant_id,
|
||||
"dify.event.id": envelope.event_id,
|
||||
}
|
||||
|
||||
emit_metric_only_event(
|
||||
event_name=EnterpriseTelemetryEvent.APP_DELETED,
|
||||
attributes=attrs,
|
||||
tenant_id=envelope.tenant_id,
|
||||
)
|
||||
exporter.increment_counter(
|
||||
EnterpriseTelemetryCounter.APP_DELETED,
|
||||
1,
|
||||
{
|
||||
"tenant_id": envelope.tenant_id,
|
||||
"app_id": str(payload.get("app_id", "")),
|
||||
},
|
||||
)
|
||||
|
||||
def _on_feedback_created(self, envelope: TelemetryEnvelope) -> None:
|
||||
"""Handle feedback created event."""
|
||||
from enterprise.telemetry.entities import EnterpriseTelemetryCounter, EnterpriseTelemetryEvent
|
||||
from enterprise.telemetry.telemetry_log import emit_metric_only_event
|
||||
from extensions.ext_enterprise_telemetry import get_enterprise_exporter
|
||||
|
||||
exporter = get_enterprise_exporter()
|
||||
if not exporter:
|
||||
logger.debug("No exporter available for FEEDBACK_CREATED: event_id=%s", envelope.event_id)
|
||||
return
|
||||
|
||||
payload = self._rehydrate(envelope)
|
||||
if not payload:
|
||||
return
|
||||
|
||||
include_content = exporter.include_content
|
||||
attrs: dict = {
|
||||
"dify.message.id": payload.get("message_id"),
|
||||
"dify.tenant_id": envelope.tenant_id,
|
||||
"dify.event.id": envelope.event_id,
|
||||
"dify.app_id": payload.get("app_id"),
|
||||
"dify.conversation.id": payload.get("conversation_id"),
|
||||
"gen_ai.user.id": payload.get("from_end_user_id") or payload.get("from_account_id"),
|
||||
"dify.feedback.rating": payload.get("rating"),
|
||||
"dify.feedback.from_source": payload.get("from_source"),
|
||||
}
|
||||
if include_content:
|
||||
attrs["dify.feedback.content"] = payload.get("content")
|
||||
|
||||
user_id = payload.get("from_end_user_id") or payload.get("from_account_id")
|
||||
emit_metric_only_event(
|
||||
event_name=EnterpriseTelemetryEvent.FEEDBACK_CREATED,
|
||||
attributes=attrs,
|
||||
tenant_id=envelope.tenant_id,
|
||||
user_id=str(user_id or ""),
|
||||
)
|
||||
exporter.increment_counter(
|
||||
EnterpriseTelemetryCounter.FEEDBACK,
|
||||
1,
|
||||
{
|
||||
"tenant_id": envelope.tenant_id,
|
||||
"app_id": str(payload.get("app_id", "")),
|
||||
"rating": str(payload.get("rating", "")),
|
||||
},
|
||||
)
|
||||
|
||||
def _on_message_run(self, envelope: TelemetryEnvelope) -> None:
|
||||
"""Handle message run event (stub)."""
|
||||
logger.debug("Processing MESSAGE_RUN: event_id=%s", envelope.event_id)
|
||||
|
||||
def _on_tool_execution(self, envelope: TelemetryEnvelope) -> None:
|
||||
"""Handle tool execution event (stub)."""
|
||||
logger.debug("Processing TOOL_EXECUTION: event_id=%s", envelope.event_id)
|
||||
|
||||
def _on_moderation_check(self, envelope: TelemetryEnvelope) -> None:
|
||||
"""Handle moderation check event (stub)."""
|
||||
logger.debug("Processing MODERATION_CHECK: event_id=%s", envelope.event_id)
|
||||
|
||||
def _on_suggested_question(self, envelope: TelemetryEnvelope) -> None:
|
||||
"""Handle suggested question event (stub)."""
|
||||
logger.debug("Processing SUGGESTED_QUESTION: event_id=%s", envelope.event_id)
|
||||
|
||||
def _on_dataset_retrieval(self, envelope: TelemetryEnvelope) -> None:
|
||||
"""Handle dataset retrieval event (stub)."""
|
||||
logger.debug("Processing DATASET_RETRIEVAL: event_id=%s", envelope.event_id)
|
||||
|
||||
def _on_generate_name(self, envelope: TelemetryEnvelope) -> None:
|
||||
"""Handle generate name event (stub)."""
|
||||
logger.debug("Processing GENERATE_NAME: event_id=%s", envelope.event_id)
|
||||
|
||||
def _on_prompt_generation(self, envelope: TelemetryEnvelope) -> None:
|
||||
"""Handle prompt generation event (stub)."""
|
||||
logger.debug("Processing PROMPT_GENERATION: event_id=%s", envelope.event_id)
|
||||
122
api/enterprise/telemetry/telemetry_log.py
Normal file
122
api/enterprise/telemetry/telemetry_log.py
Normal file
@@ -0,0 +1,122 @@
|
||||
"""Structured-log emitter for enterprise telemetry events.
|
||||
|
||||
Emits structured JSON log lines correlated with OTEL traces via trace_id.
|
||||
Picked up by ``StructuredJSONFormatter`` → stdout/Loki/Elastic.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
import uuid
|
||||
from functools import lru_cache
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from enterprise.telemetry.entities import EnterpriseTelemetryEvent
|
||||
|
||||
logger = logging.getLogger("dify.telemetry")
|
||||
|
||||
|
||||
@lru_cache(maxsize=4096)
|
||||
def compute_trace_id_hex(uuid_str: str | None) -> str:
|
||||
"""Convert a business UUID string to a 32-hex OTEL-compatible trace_id.
|
||||
|
||||
Returns empty string when *uuid_str* is ``None`` or invalid.
|
||||
"""
|
||||
if not uuid_str:
|
||||
return ""
|
||||
normalized = uuid_str.strip().lower()
|
||||
if len(normalized) == 32 and all(ch in "0123456789abcdef" for ch in normalized):
|
||||
return normalized
|
||||
try:
|
||||
return f"{uuid.UUID(normalized).int:032x}"
|
||||
except (ValueError, AttributeError):
|
||||
return ""
|
||||
|
||||
|
||||
@lru_cache(maxsize=4096)
|
||||
def compute_span_id_hex(uuid_str: str | None) -> str:
|
||||
if not uuid_str:
|
||||
return ""
|
||||
normalized = uuid_str.strip().lower()
|
||||
if len(normalized) == 16 and all(ch in "0123456789abcdef" for ch in normalized):
|
||||
return normalized
|
||||
try:
|
||||
from enterprise.telemetry.id_generator import compute_deterministic_span_id
|
||||
|
||||
return f"{compute_deterministic_span_id(normalized):016x}"
|
||||
except (ValueError, AttributeError):
|
||||
return ""
|
||||
|
||||
|
||||
def emit_telemetry_log(
|
||||
*,
|
||||
event_name: str | EnterpriseTelemetryEvent,
|
||||
attributes: dict[str, Any],
|
||||
signal: str = "metric_only",
|
||||
trace_id_source: str | None = None,
|
||||
span_id_source: str | None = None,
|
||||
tenant_id: str | None = None,
|
||||
user_id: str | None = None,
|
||||
) -> None:
|
||||
"""Emit a structured log line for a telemetry event.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
event_name:
|
||||
Canonical event name, e.g. ``"dify.workflow.run"``.
|
||||
attributes:
|
||||
All event-specific attributes (already built by the caller).
|
||||
signal:
|
||||
``"metric_only"`` for events with no span, ``"span_detail"``
|
||||
for detail logs accompanying a slim span.
|
||||
trace_id_source:
|
||||
A UUID string (e.g. ``workflow_run_id``) used to derive a 32-hex
|
||||
trace_id for cross-signal correlation.
|
||||
tenant_id:
|
||||
Tenant identifier (for the ``IdentityContextFilter``).
|
||||
user_id:
|
||||
User identifier (for the ``IdentityContextFilter``).
|
||||
"""
|
||||
if not logger.isEnabledFor(logging.INFO):
|
||||
return
|
||||
attrs = {
|
||||
"dify.event.name": event_name,
|
||||
"dify.event.signal": signal,
|
||||
**attributes,
|
||||
}
|
||||
|
||||
extra: dict[str, Any] = {"attributes": attrs}
|
||||
|
||||
trace_id_hex = compute_trace_id_hex(trace_id_source)
|
||||
if trace_id_hex:
|
||||
extra["trace_id"] = trace_id_hex
|
||||
span_id_hex = compute_span_id_hex(span_id_source)
|
||||
if span_id_hex:
|
||||
extra["span_id"] = span_id_hex
|
||||
if tenant_id:
|
||||
extra["tenant_id"] = tenant_id
|
||||
if user_id:
|
||||
extra["user_id"] = user_id
|
||||
|
||||
logger.info("telemetry.%s", signal, extra=extra)
|
||||
|
||||
|
||||
def emit_metric_only_event(
|
||||
*,
|
||||
event_name: str | EnterpriseTelemetryEvent,
|
||||
attributes: dict[str, Any],
|
||||
trace_id_source: str | None = None,
|
||||
span_id_source: str | None = None,
|
||||
tenant_id: str | None = None,
|
||||
user_id: str | None = None,
|
||||
) -> None:
|
||||
emit_telemetry_log(
|
||||
event_name=event_name,
|
||||
attributes=attributes,
|
||||
signal="metric_only",
|
||||
trace_id_source=trace_id_source,
|
||||
span_id_source=span_id_source,
|
||||
tenant_id=tenant_id,
|
||||
user_id=user_id,
|
||||
)
|
||||
@@ -3,6 +3,12 @@ from blinker import signal
|
||||
# sender: app
|
||||
app_was_created = signal("app-was-created")
|
||||
|
||||
# sender: app
|
||||
app_was_deleted = signal("app-was-deleted")
|
||||
|
||||
# sender: app
|
||||
app_was_updated = signal("app-was-updated")
|
||||
|
||||
# sender: app, kwargs: app_model_config
|
||||
app_model_config_was_updated = signal("app-model-config-was-updated")
|
||||
|
||||
|
||||
4
api/events/feedback_event.py
Normal file
4
api/events/feedback_event.py
Normal file
@@ -0,0 +1,4 @@
|
||||
from blinker import signal
|
||||
|
||||
# sender: MessageFeedback, kwargs: tenant_id
|
||||
feedback_was_created = signal("feedback-was-created")
|
||||
58
api/extensions/ext_enterprise_telemetry.py
Normal file
58
api/extensions/ext_enterprise_telemetry.py
Normal file
@@ -0,0 +1,58 @@
|
||||
"""Flask extension for enterprise telemetry lifecycle management.
|
||||
|
||||
Initializes the EnterpriseExporter and TelemetryGateway singletons during
|
||||
``create_app()`` (single-threaded), registers blinker event handlers,
|
||||
and hooks atexit for graceful shutdown.
|
||||
|
||||
Skipped entirely when ``ENTERPRISE_ENABLED`` and ``ENTERPRISE_TELEMETRY_ENABLED``
|
||||
are false (``is_enabled()`` gate).
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import atexit
|
||||
import logging
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from configs import dify_config
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from dify_app import DifyApp
|
||||
from enterprise.telemetry.exporter import EnterpriseExporter
|
||||
from enterprise.telemetry.gateway import TelemetryGateway
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
_exporter: EnterpriseExporter | None = None
|
||||
_gateway: TelemetryGateway | None = None
|
||||
|
||||
|
||||
def is_enabled() -> bool:
|
||||
return bool(dify_config.ENTERPRISE_ENABLED and dify_config.ENTERPRISE_TELEMETRY_ENABLED)
|
||||
|
||||
|
||||
def init_app(app: DifyApp) -> None:
|
||||
global _exporter, _gateway
|
||||
|
||||
if not is_enabled():
|
||||
return
|
||||
|
||||
from enterprise.telemetry.exporter import EnterpriseExporter
|
||||
from enterprise.telemetry.gateway import TelemetryGateway
|
||||
|
||||
_exporter = EnterpriseExporter(dify_config)
|
||||
_gateway = TelemetryGateway()
|
||||
atexit.register(_exporter.shutdown)
|
||||
|
||||
# Import to trigger @signal.connect decorator registration
|
||||
import enterprise.telemetry.event_handlers # noqa: F401 # type: ignore[reportUnusedImport]
|
||||
|
||||
logger.info("Enterprise telemetry initialized")
|
||||
|
||||
|
||||
def get_enterprise_exporter() -> EnterpriseExporter | None:
|
||||
return _exporter
|
||||
|
||||
|
||||
def get_gateway() -> TelemetryGateway | None:
|
||||
return _gateway
|
||||
@@ -21,3 +21,15 @@ class DifySpanAttributes:
|
||||
|
||||
INVOKE_FROM = "dify.invoke_from"
|
||||
"""Invocation source, e.g. SERVICE_API, WEB_APP, DEBUGGER."""
|
||||
|
||||
INVOKED_BY = "dify.invoked_by"
|
||||
"""Invoked by, e.g. end_user, account, user."""
|
||||
|
||||
USAGE_INPUT_TOKENS = "gen_ai.usage.input_tokens"
|
||||
"""Number of input tokens (prompt tokens) used."""
|
||||
|
||||
USAGE_OUTPUT_TOKENS = "gen_ai.usage.output_tokens"
|
||||
"""Number of output tokens (completion tokens) generated."""
|
||||
|
||||
USAGE_TOTAL_TOKENS = "gen_ai.usage.total_tokens"
|
||||
"""Total number of tokens used."""
|
||||
|
||||
@@ -14,7 +14,7 @@ from core.model_runtime.entities.model_entities import ModelPropertyKey, ModelTy
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.tools.tool_manager import ToolManager
|
||||
from core.tools.utils.configuration import ToolParameterConfigurationManager
|
||||
from events.app_event import app_was_created
|
||||
from events.app_event import app_was_created, app_was_deleted
|
||||
from extensions.ext_database import db
|
||||
from libs.datetime_utils import naive_utc_now
|
||||
from libs.login import current_user
|
||||
@@ -340,6 +340,8 @@ class AppService:
|
||||
db.session.delete(app)
|
||||
db.session.commit()
|
||||
|
||||
app_was_deleted.send(app)
|
||||
|
||||
# clean up web app settings
|
||||
if FeatureService.get_system_features().webapp_auth.enabled:
|
||||
EnterpriseService.WebAppAuth.cleanup_webapp(app.id)
|
||||
|
||||
@@ -7,9 +7,10 @@ from core.llm_generator.llm_generator import LLMGenerator
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_manager import ModelManager
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.ops.entities.trace_entity import TraceTaskName
|
||||
from core.ops.ops_trace_manager import TraceQueueManager, TraceTask
|
||||
from core.ops.utils import measure_time
|
||||
from core.telemetry import TelemetryContext, TelemetryEvent, TraceTaskName
|
||||
from core.telemetry import emit as telemetry_emit
|
||||
from events.feedback_event import feedback_was_created
|
||||
from extensions.ext_database import db
|
||||
from libs.infinite_scroll_pagination import InfiniteScrollPagination
|
||||
from models import Account
|
||||
@@ -179,6 +180,9 @@ class MessageService:
|
||||
|
||||
db.session.commit()
|
||||
|
||||
if feedback and rating:
|
||||
feedback_was_created.send(feedback, tenant_id=app_model.tenant_id)
|
||||
|
||||
return feedback
|
||||
|
||||
@classmethod
|
||||
@@ -294,10 +298,15 @@ class MessageService:
|
||||
questions: list[str] = list(questions_sequence)
|
||||
|
||||
# get tracing instance
|
||||
trace_manager = TraceQueueManager(app_id=app_model.id)
|
||||
trace_manager.add_trace_task(
|
||||
TraceTask(
|
||||
TraceTaskName.SUGGESTED_QUESTION_TRACE, message_id=message_id, suggested_question=questions, timer=timer
|
||||
telemetry_emit(
|
||||
TelemetryEvent(
|
||||
name=TraceTaskName.SUGGESTED_QUESTION_TRACE,
|
||||
context=TelemetryContext(tenant_id=app_model.tenant_id, app_id=app_model.id),
|
||||
payload={
|
||||
"message_id": message_id,
|
||||
"suggested_question": questions,
|
||||
"timer": timer,
|
||||
},
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from core.ops.entities.config_entity import BaseTracingConfig
|
||||
@@ -5,6 +6,8 @@ from core.ops.ops_trace_manager import OpsTraceManager, provider_config_map
|
||||
from extensions.ext_database import db
|
||||
from models.model import App, TraceAppConfig
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class OpsService:
|
||||
@classmethod
|
||||
@@ -135,12 +138,13 @@ class OpsService:
|
||||
return trace_config_data.to_dict()
|
||||
|
||||
@classmethod
|
||||
def create_tracing_app_config(cls, app_id: str, tracing_provider: str, tracing_config: dict):
|
||||
def create_tracing_app_config(cls, app_id: str, tracing_provider: str, tracing_config: dict, account_id: str):
|
||||
"""
|
||||
Create tracing app config
|
||||
:param app_id: app id
|
||||
:param tracing_provider: tracing provider
|
||||
:param tracing_config: tracing config
|
||||
:param account_id: account id of the user creating the config
|
||||
:return:
|
||||
"""
|
||||
try:
|
||||
@@ -207,15 +211,19 @@ class OpsService:
|
||||
db.session.add(trace_config_data)
|
||||
db.session.commit()
|
||||
|
||||
# Log the creation with modifier information
|
||||
logger.info("Trace config created: app_id=%s, provider=%s, created_by=%s", app_id, tracing_provider, account_id)
|
||||
|
||||
return {"result": "success"}
|
||||
|
||||
@classmethod
|
||||
def update_tracing_app_config(cls, app_id: str, tracing_provider: str, tracing_config: dict):
|
||||
def update_tracing_app_config(cls, app_id: str, tracing_provider: str, tracing_config: dict, account_id: str):
|
||||
"""
|
||||
Update tracing app config
|
||||
:param app_id: app id
|
||||
:param tracing_provider: tracing provider
|
||||
:param tracing_config: tracing config
|
||||
:param account_id: account id of the user updating the config
|
||||
:return:
|
||||
"""
|
||||
try:
|
||||
@@ -251,14 +259,18 @@ class OpsService:
|
||||
current_trace_config.tracing_config = tracing_config
|
||||
db.session.commit()
|
||||
|
||||
# Log the update with modifier information
|
||||
logger.info("Trace config updated: app_id=%s, provider=%s, updated_by=%s", app_id, tracing_provider, account_id)
|
||||
|
||||
return current_trace_config.to_dict()
|
||||
|
||||
@classmethod
|
||||
def delete_tracing_app_config(cls, app_id: str, tracing_provider: str):
|
||||
def delete_tracing_app_config(cls, app_id: str, tracing_provider: str, account_id: str):
|
||||
"""
|
||||
Delete tracing app config
|
||||
:param app_id: app id
|
||||
:param tracing_provider: tracing provider
|
||||
:param account_id: account id of the user deleting the config
|
||||
:return:
|
||||
"""
|
||||
trace_config = (
|
||||
@@ -270,6 +282,9 @@ class OpsService:
|
||||
if not trace_config:
|
||||
return None
|
||||
|
||||
# Log the deletion with modifier information
|
||||
logger.info("Trace config deleted: app_id=%s, provider=%s, deleted_by=%s", app_id, tracing_provider, account_id)
|
||||
|
||||
db.session.delete(trace_config)
|
||||
db.session.commit()
|
||||
|
||||
|
||||
@@ -27,6 +27,7 @@ from core.workflow.nodes.start.entities import StartNodeData
|
||||
from core.workflow.runtime import VariablePool
|
||||
from core.workflow.system_variable import SystemVariable
|
||||
from core.workflow.workflow_entry import WorkflowEntry
|
||||
from enterprise.telemetry.draft_trace import enqueue_draft_node_execution_trace
|
||||
from enums.cloud_plan import CloudPlan
|
||||
from events.app_event import app_draft_workflow_was_synced, app_published_workflow_was_updated
|
||||
from extensions.ext_database import db
|
||||
@@ -647,6 +648,7 @@ class WorkflowService:
|
||||
node_config = draft_workflow.get_node_config_by_id(node_id)
|
||||
node_type = Workflow.get_node_type_from_node_config(node_config)
|
||||
node_data = node_config.get("data", {})
|
||||
workflow_execution_id: str | None = None
|
||||
if node_type.is_start_node:
|
||||
with Session(bind=db.engine) as session, session.begin():
|
||||
draft_var_srv = WorkflowDraftVariableService(session)
|
||||
@@ -672,10 +674,13 @@ class WorkflowService:
|
||||
node_type=node_type,
|
||||
conversation_id=conversation_id,
|
||||
)
|
||||
workflow_execution_id = variable_pool.system_variables.workflow_execution_id
|
||||
|
||||
else:
|
||||
workflow_execution_id = str(uuid.uuid4())
|
||||
system_variable = SystemVariable(workflow_execution_id=workflow_execution_id)
|
||||
variable_pool = VariablePool(
|
||||
system_variables=SystemVariable.default(),
|
||||
system_variables=system_variable,
|
||||
user_inputs=user_inputs,
|
||||
environment_variables=draft_workflow.environment_variables,
|
||||
conversation_variables=[],
|
||||
@@ -729,6 +734,13 @@ class WorkflowService:
|
||||
with Session(db.engine) as session:
|
||||
outputs = workflow_node_execution.load_full_outputs(session, storage)
|
||||
|
||||
enqueue_draft_node_execution_trace(
|
||||
execution=workflow_node_execution,
|
||||
outputs=outputs,
|
||||
workflow_execution_id=workflow_execution_id,
|
||||
user_id=account.id,
|
||||
)
|
||||
|
||||
with Session(bind=db.engine) as session, session.begin():
|
||||
draft_var_saver = DraftVariableSaver(
|
||||
session=session,
|
||||
@@ -784,19 +796,20 @@ class WorkflowService:
|
||||
Returns:
|
||||
WorkflowNodeExecution: The execution result
|
||||
"""
|
||||
created_at = naive_utc_now()
|
||||
node, node_run_result, run_succeeded, error = self._execute_node_safely(invoke_node_fn)
|
||||
finished_at = naive_utc_now()
|
||||
|
||||
# Create base node execution
|
||||
node_execution = WorkflowNodeExecution(
|
||||
id=str(uuid.uuid4()),
|
||||
id=node.execution_id or str(uuid.uuid4()),
|
||||
workflow_id="", # Single-step execution has no workflow ID
|
||||
index=1,
|
||||
node_id=node_id,
|
||||
node_type=node.node_type,
|
||||
title=node.title,
|
||||
elapsed_time=time.perf_counter() - start_at,
|
||||
created_at=naive_utc_now(),
|
||||
finished_at=naive_utc_now(),
|
||||
created_at=created_at,
|
||||
finished_at=finished_at,
|
||||
)
|
||||
|
||||
# Populate execution result data
|
||||
|
||||
52
api/tasks/enterprise_telemetry_task.py
Normal file
52
api/tasks/enterprise_telemetry_task.py
Normal file
@@ -0,0 +1,52 @@
|
||||
"""Celery worker for enterprise metric/log telemetry events.
|
||||
|
||||
This module defines the Celery task that processes telemetry envelopes
|
||||
from the enterprise_telemetry queue. It deserializes envelopes and
|
||||
dispatches them to the EnterpriseMetricHandler.
|
||||
"""
|
||||
|
||||
import json
|
||||
import logging
|
||||
|
||||
from celery import shared_task
|
||||
|
||||
from enterprise.telemetry.contracts import TelemetryEnvelope
|
||||
from enterprise.telemetry.metric_handler import EnterpriseMetricHandler
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@shared_task(queue="enterprise_telemetry")
|
||||
def process_enterprise_telemetry(envelope_json: str) -> None:
|
||||
"""Process enterprise metric/log telemetry envelope.
|
||||
|
||||
This task is enqueued by the TelemetryGateway for metric/log-only
|
||||
events. It deserializes the envelope and dispatches to the handler.
|
||||
|
||||
Best-effort processing: logs errors but never raises, to avoid
|
||||
failing user requests due to telemetry issues.
|
||||
|
||||
Args:
|
||||
envelope_json: JSON-serialized TelemetryEnvelope.
|
||||
"""
|
||||
try:
|
||||
# Deserialize envelope
|
||||
envelope_dict = json.loads(envelope_json)
|
||||
envelope = TelemetryEnvelope.model_validate(envelope_dict)
|
||||
|
||||
# Process through handler
|
||||
handler = EnterpriseMetricHandler()
|
||||
handler.handle(envelope)
|
||||
|
||||
logger.debug(
|
||||
"Successfully processed telemetry envelope: tenant_id=%s, event_id=%s, case=%s",
|
||||
envelope.tenant_id,
|
||||
envelope.event_id,
|
||||
envelope.case,
|
||||
)
|
||||
except Exception:
|
||||
# Best-effort: log and drop on error, never fail user request
|
||||
logger.warning(
|
||||
"Failed to process enterprise telemetry envelope, dropping event",
|
||||
exc_info=True,
|
||||
)
|
||||
@@ -39,12 +39,24 @@ def process_trace_tasks(file_info):
|
||||
trace_info["documents"] = [Document.model_validate(doc) for doc in trace_info["documents"]]
|
||||
|
||||
try:
|
||||
trace_type = trace_info_info_map.get(trace_info_type)
|
||||
if trace_type:
|
||||
trace_info = trace_type(**trace_info)
|
||||
|
||||
from extensions.ext_enterprise_telemetry import is_enabled as is_ee_telemetry_enabled
|
||||
|
||||
if is_ee_telemetry_enabled():
|
||||
from enterprise.telemetry.enterprise_trace import EnterpriseOtelTrace
|
||||
|
||||
try:
|
||||
EnterpriseOtelTrace().trace(trace_info)
|
||||
except Exception:
|
||||
logger.warning("Enterprise trace failed for app_id: %s", app_id, exc_info=True)
|
||||
|
||||
if trace_instance:
|
||||
with current_app.app_context():
|
||||
trace_type = trace_info_info_map.get(trace_info_type)
|
||||
if trace_type:
|
||||
trace_info = trace_type(**trace_info)
|
||||
trace_instance.trace(trace_info)
|
||||
|
||||
logger.info("Processing trace tasks success, app_id: %s", app_id)
|
||||
except Exception as e:
|
||||
logger.info("error:\n\n\n%s\n\n\n\n", e)
|
||||
@@ -52,4 +64,12 @@ def process_trace_tasks(file_info):
|
||||
redis_client.incr(failed_key)
|
||||
logger.info("Processing trace tasks failed, app_id: %s", app_id)
|
||||
finally:
|
||||
storage.delete(file_path)
|
||||
try:
|
||||
storage.delete(file_path)
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
"Failed to delete trace file %s for app_id %s: %s",
|
||||
file_path,
|
||||
app_id,
|
||||
e,
|
||||
)
|
||||
|
||||
200
api/tests/unit_tests/core/ops/test_trace_queue_manager.py
Normal file
200
api/tests/unit_tests/core/ops/test_trace_queue_manager.py
Normal file
@@ -0,0 +1,200 @@
|
||||
"""Unit tests for TraceQueueManager telemetry guard.
|
||||
|
||||
This test suite verifies that TraceQueueManager correctly drops trace tasks
|
||||
when telemetry is disabled, proving Bug 1 from code review is a false positive.
|
||||
|
||||
The guard logic moved from persistence.py to TraceQueueManager.add_trace_task()
|
||||
at line 1282 of ops_trace_manager.py:
|
||||
if self._enterprise_telemetry_enabled or self.trace_instance:
|
||||
trace_task.app_id = self.app_id
|
||||
trace_manager_queue.put(trace_task)
|
||||
|
||||
Tasks are only enqueued if EITHER:
|
||||
- Enterprise telemetry is enabled (_enterprise_telemetry_enabled=True), OR
|
||||
- A third-party trace instance (Langfuse, etc.) is configured
|
||||
|
||||
When BOTH are false, tasks are silently dropped (correct behavior).
|
||||
"""
|
||||
|
||||
import queue
|
||||
import sys
|
||||
import types
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def trace_queue_manager_and_task(monkeypatch):
|
||||
"""Fixture to provide TraceQueueManager and TraceTask with delayed imports."""
|
||||
module_name = "core.ops.ops_trace_manager"
|
||||
if module_name not in sys.modules:
|
||||
ops_stub = types.ModuleType(module_name)
|
||||
|
||||
class StubTraceTask:
|
||||
def __init__(self, trace_type):
|
||||
self.trace_type = trace_type
|
||||
self.app_id = None
|
||||
|
||||
class StubTraceQueueManager:
|
||||
def __init__(self, app_id=None):
|
||||
self.app_id = app_id
|
||||
from core.telemetry import is_enterprise_telemetry_enabled
|
||||
|
||||
self._enterprise_telemetry_enabled = is_enterprise_telemetry_enabled()
|
||||
self.trace_instance = StubOpsTraceManager.get_ops_trace_instance(app_id)
|
||||
|
||||
def add_trace_task(self, trace_task):
|
||||
if self._enterprise_telemetry_enabled or self.trace_instance:
|
||||
trace_task.app_id = self.app_id
|
||||
from core.ops.ops_trace_manager import trace_manager_queue
|
||||
|
||||
trace_manager_queue.put(trace_task)
|
||||
|
||||
class StubOpsTraceManager:
|
||||
@staticmethod
|
||||
def get_ops_trace_instance(app_id):
|
||||
return None
|
||||
|
||||
ops_stub.TraceQueueManager = StubTraceQueueManager
|
||||
ops_stub.TraceTask = StubTraceTask
|
||||
ops_stub.OpsTraceManager = StubOpsTraceManager
|
||||
ops_stub.trace_manager_queue = MagicMock(spec=queue.Queue)
|
||||
monkeypatch.setitem(sys.modules, module_name, ops_stub)
|
||||
|
||||
from core.ops.entities.trace_entity import TraceTaskName
|
||||
|
||||
ops_module = __import__(module_name, fromlist=["TraceQueueManager", "TraceTask"])
|
||||
TraceQueueManager = ops_module.TraceQueueManager
|
||||
TraceTask = ops_module.TraceTask
|
||||
|
||||
return TraceQueueManager, TraceTask, TraceTaskName
|
||||
|
||||
|
||||
class TestTraceQueueManagerTelemetryGuard:
|
||||
"""Test TraceQueueManager's telemetry guard in add_trace_task()."""
|
||||
|
||||
def test_task_not_enqueued_when_telemetry_disabled_and_no_trace_instance(self, trace_queue_manager_and_task):
|
||||
"""Verify task is NOT enqueued when telemetry disabled and no trace instance.
|
||||
|
||||
This is the core guard: when _enterprise_telemetry_enabled=False AND
|
||||
trace_instance=None, the task should be silently dropped.
|
||||
"""
|
||||
TraceQueueManager, TraceTask, TraceTaskName = trace_queue_manager_and_task
|
||||
|
||||
mock_queue = MagicMock(spec=queue.Queue)
|
||||
|
||||
trace_task = TraceTask(trace_type=TraceTaskName.WORKFLOW_TRACE)
|
||||
|
||||
with (
|
||||
patch("core.telemetry.is_enterprise_telemetry_enabled", return_value=False),
|
||||
patch("core.ops.ops_trace_manager.OpsTraceManager.get_ops_trace_instance", return_value=None),
|
||||
patch("core.ops.ops_trace_manager.trace_manager_queue", mock_queue),
|
||||
):
|
||||
manager = TraceQueueManager(app_id="test-app-id")
|
||||
manager.add_trace_task(trace_task)
|
||||
|
||||
mock_queue.put.assert_not_called()
|
||||
|
||||
def test_task_enqueued_when_telemetry_enabled(self, trace_queue_manager_and_task):
|
||||
"""Verify task IS enqueued when enterprise telemetry is enabled.
|
||||
|
||||
When _enterprise_telemetry_enabled=True, the task should be enqueued
|
||||
regardless of trace_instance state.
|
||||
"""
|
||||
TraceQueueManager, TraceTask, TraceTaskName = trace_queue_manager_and_task
|
||||
|
||||
mock_queue = MagicMock(spec=queue.Queue)
|
||||
|
||||
trace_task = TraceTask(trace_type=TraceTaskName.WORKFLOW_TRACE)
|
||||
|
||||
with (
|
||||
patch("core.telemetry.is_enterprise_telemetry_enabled", return_value=True),
|
||||
patch("core.ops.ops_trace_manager.OpsTraceManager.get_ops_trace_instance", return_value=None),
|
||||
patch("core.ops.ops_trace_manager.trace_manager_queue", mock_queue),
|
||||
):
|
||||
manager = TraceQueueManager(app_id="test-app-id")
|
||||
manager.add_trace_task(trace_task)
|
||||
|
||||
mock_queue.put.assert_called_once()
|
||||
called_task = mock_queue.put.call_args[0][0]
|
||||
assert called_task.app_id == "test-app-id"
|
||||
|
||||
def test_task_enqueued_when_trace_instance_configured(self, trace_queue_manager_and_task):
|
||||
"""Verify task IS enqueued when third-party trace instance is configured.
|
||||
|
||||
When trace_instance is not None (e.g., Langfuse configured), the task
|
||||
should be enqueued even if enterprise telemetry is disabled.
|
||||
"""
|
||||
TraceQueueManager, TraceTask, TraceTaskName = trace_queue_manager_and_task
|
||||
|
||||
mock_queue = MagicMock(spec=queue.Queue)
|
||||
|
||||
mock_trace_instance = MagicMock()
|
||||
|
||||
trace_task = TraceTask(trace_type=TraceTaskName.WORKFLOW_TRACE)
|
||||
|
||||
with (
|
||||
patch("core.telemetry.is_enterprise_telemetry_enabled", return_value=False),
|
||||
patch(
|
||||
"core.ops.ops_trace_manager.OpsTraceManager.get_ops_trace_instance", return_value=mock_trace_instance
|
||||
),
|
||||
patch("core.ops.ops_trace_manager.trace_manager_queue", mock_queue),
|
||||
):
|
||||
manager = TraceQueueManager(app_id="test-app-id")
|
||||
manager.add_trace_task(trace_task)
|
||||
|
||||
mock_queue.put.assert_called_once()
|
||||
called_task = mock_queue.put.call_args[0][0]
|
||||
assert called_task.app_id == "test-app-id"
|
||||
|
||||
def test_task_enqueued_when_both_telemetry_and_trace_instance_enabled(self, trace_queue_manager_and_task):
|
||||
"""Verify task IS enqueued when both telemetry and trace instance are enabled.
|
||||
|
||||
When both _enterprise_telemetry_enabled=True AND trace_instance is set,
|
||||
the task should definitely be enqueued.
|
||||
"""
|
||||
TraceQueueManager, TraceTask, TraceTaskName = trace_queue_manager_and_task
|
||||
|
||||
mock_queue = MagicMock(spec=queue.Queue)
|
||||
|
||||
mock_trace_instance = MagicMock()
|
||||
|
||||
trace_task = TraceTask(trace_type=TraceTaskName.WORKFLOW_TRACE)
|
||||
|
||||
with (
|
||||
patch("core.telemetry.is_enterprise_telemetry_enabled", return_value=True),
|
||||
patch(
|
||||
"core.ops.ops_trace_manager.OpsTraceManager.get_ops_trace_instance", return_value=mock_trace_instance
|
||||
),
|
||||
patch("core.ops.ops_trace_manager.trace_manager_queue", mock_queue),
|
||||
):
|
||||
manager = TraceQueueManager(app_id="test-app-id")
|
||||
manager.add_trace_task(trace_task)
|
||||
|
||||
mock_queue.put.assert_called_once()
|
||||
called_task = mock_queue.put.call_args[0][0]
|
||||
assert called_task.app_id == "test-app-id"
|
||||
|
||||
def test_app_id_set_before_enqueue(self, trace_queue_manager_and_task):
|
||||
"""Verify app_id is set on the task before enqueuing.
|
||||
|
||||
The guard logic sets trace_task.app_id = self.app_id before calling
|
||||
trace_manager_queue.put(trace_task). This test verifies that behavior.
|
||||
"""
|
||||
TraceQueueManager, TraceTask, TraceTaskName = trace_queue_manager_and_task
|
||||
|
||||
mock_queue = MagicMock(spec=queue.Queue)
|
||||
|
||||
trace_task = TraceTask(trace_type=TraceTaskName.WORKFLOW_TRACE)
|
||||
|
||||
with (
|
||||
patch("core.telemetry.is_enterprise_telemetry_enabled", return_value=True),
|
||||
patch("core.ops.ops_trace_manager.OpsTraceManager.get_ops_trace_instance", return_value=None),
|
||||
patch("core.ops.ops_trace_manager.trace_manager_queue", mock_queue),
|
||||
):
|
||||
manager = TraceQueueManager(app_id="expected-app-id")
|
||||
manager.add_trace_task(trace_task)
|
||||
|
||||
called_task = mock_queue.put.call_args[0][0]
|
||||
assert called_task.app_id == "expected-app-id"
|
||||
181
api/tests/unit_tests/core/telemetry/test_facade.py
Normal file
181
api/tests/unit_tests/core/telemetry/test_facade.py
Normal file
@@ -0,0 +1,181 @@
|
||||
"""Unit tests for core.telemetry.emit() routing and enterprise-only filtering."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import queue
|
||||
import sys
|
||||
import types
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from core.ops.entities.trace_entity import TraceTaskName
|
||||
from core.telemetry.events import TelemetryContext, TelemetryEvent
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def telemetry_test_setup(monkeypatch):
|
||||
module_name = "core.ops.ops_trace_manager"
|
||||
ops_stub = types.ModuleType(module_name)
|
||||
|
||||
class StubTraceTask:
|
||||
def __init__(self, trace_type, **kwargs):
|
||||
self.trace_type = trace_type
|
||||
self.app_id = None
|
||||
self.kwargs = kwargs
|
||||
|
||||
class StubTraceQueueManager:
|
||||
def __init__(self, app_id=None, user_id=None):
|
||||
self.app_id = app_id
|
||||
self.user_id = user_id
|
||||
self.trace_instance = StubOpsTraceManager.get_ops_trace_instance(app_id)
|
||||
|
||||
def add_trace_task(self, trace_task):
|
||||
trace_task.app_id = self.app_id
|
||||
from core.ops.ops_trace_manager import trace_manager_queue
|
||||
|
||||
trace_manager_queue.put(trace_task)
|
||||
|
||||
class StubOpsTraceManager:
|
||||
@staticmethod
|
||||
def get_ops_trace_instance(app_id):
|
||||
return None
|
||||
|
||||
ops_stub.TraceQueueManager = StubTraceQueueManager
|
||||
ops_stub.TraceTask = StubTraceTask
|
||||
ops_stub.OpsTraceManager = StubOpsTraceManager
|
||||
ops_stub.trace_manager_queue = MagicMock(spec=queue.Queue)
|
||||
monkeypatch.setitem(sys.modules, module_name, ops_stub)
|
||||
|
||||
from core.telemetry import emit
|
||||
|
||||
return emit, ops_stub.trace_manager_queue
|
||||
|
||||
|
||||
class TestTelemetryEmit:
|
||||
@patch("core.telemetry._is_enterprise_telemetry_enabled", return_value=True)
|
||||
def test_emit_enterprise_trace_creates_trace_task(self, _mock_ee, telemetry_test_setup):
|
||||
emit_fn, mock_queue = telemetry_test_setup
|
||||
|
||||
event = TelemetryEvent(
|
||||
name=TraceTaskName.DRAFT_NODE_EXECUTION_TRACE,
|
||||
context=TelemetryContext(
|
||||
tenant_id="test-tenant",
|
||||
user_id="test-user",
|
||||
app_id="test-app",
|
||||
),
|
||||
payload={"key": "value"},
|
||||
)
|
||||
|
||||
emit_fn(event)
|
||||
|
||||
mock_queue.put.assert_called_once()
|
||||
called_task = mock_queue.put.call_args[0][0]
|
||||
assert called_task.trace_type == TraceTaskName.DRAFT_NODE_EXECUTION_TRACE
|
||||
|
||||
def test_emit_community_trace_enqueued(self, telemetry_test_setup):
|
||||
emit_fn, mock_queue = telemetry_test_setup
|
||||
|
||||
event = TelemetryEvent(
|
||||
name=TraceTaskName.WORKFLOW_TRACE,
|
||||
context=TelemetryContext(
|
||||
tenant_id="test-tenant",
|
||||
user_id="test-user",
|
||||
app_id="test-app",
|
||||
),
|
||||
payload={},
|
||||
)
|
||||
|
||||
emit_fn(event)
|
||||
|
||||
mock_queue.put.assert_called_once()
|
||||
|
||||
def test_emit_enterprise_only_trace_dropped_when_ee_disabled(self, telemetry_test_setup):
|
||||
emit_fn, mock_queue = telemetry_test_setup
|
||||
|
||||
event = TelemetryEvent(
|
||||
name=TraceTaskName.DRAFT_NODE_EXECUTION_TRACE,
|
||||
context=TelemetryContext(
|
||||
tenant_id="test-tenant",
|
||||
user_id="test-user",
|
||||
app_id="test-app",
|
||||
),
|
||||
payload={},
|
||||
)
|
||||
|
||||
emit_fn(event)
|
||||
|
||||
mock_queue.put.assert_not_called()
|
||||
|
||||
@patch("core.telemetry._is_enterprise_telemetry_enabled", return_value=True)
|
||||
def test_emit_all_enterprise_only_traces_allowed_when_ee_enabled(self, _mock_ee, telemetry_test_setup):
|
||||
emit_fn, mock_queue = telemetry_test_setup
|
||||
|
||||
enterprise_only_traces = [
|
||||
TraceTaskName.DRAFT_NODE_EXECUTION_TRACE,
|
||||
TraceTaskName.NODE_EXECUTION_TRACE,
|
||||
TraceTaskName.PROMPT_GENERATION_TRACE,
|
||||
]
|
||||
|
||||
for trace_name in enterprise_only_traces:
|
||||
mock_queue.reset_mock()
|
||||
|
||||
event = TelemetryEvent(
|
||||
name=trace_name,
|
||||
context=TelemetryContext(
|
||||
tenant_id="test-tenant",
|
||||
user_id="test-user",
|
||||
app_id="test-app",
|
||||
),
|
||||
payload={},
|
||||
)
|
||||
|
||||
emit_fn(event)
|
||||
|
||||
mock_queue.put.assert_called_once()
|
||||
called_task = mock_queue.put.call_args[0][0]
|
||||
assert called_task.trace_type == trace_name
|
||||
|
||||
@patch("core.telemetry._is_enterprise_telemetry_enabled", return_value=True)
|
||||
def test_emit_passes_name_directly_to_trace_task(self, _mock_ee, telemetry_test_setup):
|
||||
emit_fn, mock_queue = telemetry_test_setup
|
||||
|
||||
event = TelemetryEvent(
|
||||
name=TraceTaskName.DRAFT_NODE_EXECUTION_TRACE,
|
||||
context=TelemetryContext(
|
||||
tenant_id="test-tenant",
|
||||
user_id="test-user",
|
||||
app_id="test-app",
|
||||
),
|
||||
payload={"extra": "data"},
|
||||
)
|
||||
|
||||
emit_fn(event)
|
||||
|
||||
mock_queue.put.assert_called_once()
|
||||
called_task = mock_queue.put.call_args[0][0]
|
||||
assert called_task.trace_type == TraceTaskName.DRAFT_NODE_EXECUTION_TRACE
|
||||
assert isinstance(called_task.trace_type, TraceTaskName)
|
||||
|
||||
@patch("core.telemetry._is_enterprise_telemetry_enabled", return_value=True)
|
||||
def test_emit_with_provided_trace_manager(self, _mock_ee, telemetry_test_setup):
|
||||
emit_fn, mock_queue = telemetry_test_setup
|
||||
|
||||
mock_trace_manager = MagicMock()
|
||||
mock_trace_manager.add_trace_task = MagicMock()
|
||||
|
||||
event = TelemetryEvent(
|
||||
name=TraceTaskName.NODE_EXECUTION_TRACE,
|
||||
context=TelemetryContext(
|
||||
tenant_id="test-tenant",
|
||||
user_id="test-user",
|
||||
app_id="test-app",
|
||||
),
|
||||
payload={},
|
||||
)
|
||||
|
||||
emit_fn(event, trace_manager=mock_trace_manager)
|
||||
|
||||
mock_trace_manager.add_trace_task.assert_called_once()
|
||||
called_task = mock_trace_manager.add_trace_task.call_args[0][0]
|
||||
assert called_task.trace_type == TraceTaskName.NODE_EXECUTION_TRACE
|
||||
252
api/tests/unit_tests/core/telemetry/test_gateway_integration.py
Normal file
252
api/tests/unit_tests/core/telemetry/test_gateway_integration.py
Normal file
@@ -0,0 +1,252 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import sys
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from core.telemetry import is_enterprise_telemetry_enabled
|
||||
from enterprise.telemetry.contracts import TelemetryCase
|
||||
from enterprise.telemetry.gateway import TelemetryGateway
|
||||
|
||||
|
||||
class TestTelemetryCoreExports:
|
||||
def test_is_enterprise_telemetry_enabled_exported(self) -> None:
|
||||
from core.telemetry import is_enterprise_telemetry_enabled as exported_func
|
||||
|
||||
assert callable(exported_func)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_ops_trace_manager():
|
||||
mock_module = MagicMock()
|
||||
mock_trace_task_class = MagicMock()
|
||||
mock_trace_task_class.return_value = MagicMock()
|
||||
mock_module.TraceTask = mock_trace_task_class
|
||||
mock_module.TraceQueueManager = MagicMock()
|
||||
|
||||
mock_trace_entity = MagicMock()
|
||||
mock_trace_task_name = MagicMock()
|
||||
mock_trace_task_name.return_value = "workflow"
|
||||
mock_trace_entity.TraceTaskName = mock_trace_task_name
|
||||
|
||||
with (
|
||||
patch.dict(sys.modules, {"core.ops.ops_trace_manager": mock_module}),
|
||||
patch.dict(sys.modules, {"core.ops.entities.trace_entity": mock_trace_entity}),
|
||||
):
|
||||
yield mock_module, mock_trace_entity
|
||||
|
||||
|
||||
class TestGatewayIntegrationTraceRouting:
|
||||
@pytest.fixture
|
||||
def gateway(self) -> TelemetryGateway:
|
||||
return TelemetryGateway()
|
||||
|
||||
@pytest.fixture
|
||||
def mock_trace_manager(self) -> MagicMock:
|
||||
return MagicMock()
|
||||
|
||||
@pytest.mark.usefixtures("mock_ops_trace_manager")
|
||||
def test_ce_eligible_trace_routed_to_trace_manager(
|
||||
self,
|
||||
gateway: TelemetryGateway,
|
||||
mock_trace_manager: MagicMock,
|
||||
) -> None:
|
||||
with patch("enterprise.telemetry.gateway._is_enterprise_telemetry_enabled", return_value=True):
|
||||
context = {"app_id": "app-123", "user_id": "user-456", "tenant_id": "tenant-789"}
|
||||
payload = {"workflow_run_id": "run-abc"}
|
||||
|
||||
gateway.emit(TelemetryCase.WORKFLOW_RUN, context, payload, mock_trace_manager)
|
||||
|
||||
mock_trace_manager.add_trace_task.assert_called_once()
|
||||
|
||||
@pytest.mark.usefixtures("mock_ops_trace_manager")
|
||||
def test_ce_eligible_trace_routed_when_ee_disabled(
|
||||
self,
|
||||
gateway: TelemetryGateway,
|
||||
mock_trace_manager: MagicMock,
|
||||
) -> None:
|
||||
with patch("enterprise.telemetry.gateway._is_enterprise_telemetry_enabled", return_value=False):
|
||||
context = {"app_id": "app-123", "user_id": "user-456"}
|
||||
payload = {"workflow_run_id": "run-abc"}
|
||||
|
||||
gateway.emit(TelemetryCase.WORKFLOW_RUN, context, payload, mock_trace_manager)
|
||||
|
||||
mock_trace_manager.add_trace_task.assert_called_once()
|
||||
|
||||
@pytest.mark.usefixtures("mock_ops_trace_manager")
|
||||
def test_enterprise_only_trace_dropped_when_ee_disabled(
|
||||
self,
|
||||
gateway: TelemetryGateway,
|
||||
mock_trace_manager: MagicMock,
|
||||
) -> None:
|
||||
with patch("enterprise.telemetry.gateway._is_enterprise_telemetry_enabled", return_value=False):
|
||||
context = {"app_id": "app-123", "user_id": "user-456"}
|
||||
payload = {"node_id": "node-abc"}
|
||||
|
||||
gateway.emit(TelemetryCase.NODE_EXECUTION, context, payload, mock_trace_manager)
|
||||
|
||||
mock_trace_manager.add_trace_task.assert_not_called()
|
||||
|
||||
@pytest.mark.usefixtures("mock_ops_trace_manager")
|
||||
def test_enterprise_only_trace_routed_when_ee_enabled(
|
||||
self,
|
||||
gateway: TelemetryGateway,
|
||||
mock_trace_manager: MagicMock,
|
||||
) -> None:
|
||||
with patch("enterprise.telemetry.gateway._is_enterprise_telemetry_enabled", return_value=True):
|
||||
context = {"app_id": "app-123", "user_id": "user-456"}
|
||||
payload = {"node_id": "node-abc"}
|
||||
|
||||
gateway.emit(TelemetryCase.NODE_EXECUTION, context, payload, mock_trace_manager)
|
||||
|
||||
mock_trace_manager.add_trace_task.assert_called_once()
|
||||
|
||||
|
||||
class TestGatewayIntegrationMetricRouting:
|
||||
@pytest.fixture
|
||||
def gateway(self) -> TelemetryGateway:
|
||||
return TelemetryGateway()
|
||||
|
||||
def test_metric_case_routes_to_celery_task(
|
||||
self,
|
||||
gateway: TelemetryGateway,
|
||||
) -> None:
|
||||
from enterprise.telemetry.contracts import TelemetryEnvelope
|
||||
|
||||
with patch("tasks.enterprise_telemetry_task.process_enterprise_telemetry.delay") as mock_delay:
|
||||
context = {"tenant_id": "tenant-123"}
|
||||
payload = {"app_id": "app-abc", "name": "My App"}
|
||||
|
||||
gateway.emit(TelemetryCase.APP_CREATED, context, payload)
|
||||
|
||||
mock_delay.assert_called_once()
|
||||
envelope_json = mock_delay.call_args[0][0]
|
||||
envelope = TelemetryEnvelope.model_validate_json(envelope_json)
|
||||
assert envelope.case == TelemetryCase.APP_CREATED
|
||||
assert envelope.tenant_id == "tenant-123"
|
||||
assert envelope.payload["app_id"] == "app-abc"
|
||||
|
||||
def test_tool_execution_metric_routed(
|
||||
self,
|
||||
gateway: TelemetryGateway,
|
||||
) -> None:
|
||||
from enterprise.telemetry.contracts import TelemetryEnvelope
|
||||
|
||||
with patch("tasks.enterprise_telemetry_task.process_enterprise_telemetry.delay") as mock_delay:
|
||||
context = {"tenant_id": "tenant-123", "app_id": "app-123"}
|
||||
payload = {"tool_name": "test_tool", "tool_inputs": {}, "tool_outputs": "result"}
|
||||
|
||||
gateway.emit(TelemetryCase.TOOL_EXECUTION, context, payload)
|
||||
|
||||
mock_delay.assert_called_once()
|
||||
envelope_json = mock_delay.call_args[0][0]
|
||||
envelope = TelemetryEnvelope.model_validate_json(envelope_json)
|
||||
assert envelope.case == TelemetryCase.TOOL_EXECUTION
|
||||
|
||||
def test_moderation_check_metric_routed(
|
||||
self,
|
||||
gateway: TelemetryGateway,
|
||||
) -> None:
|
||||
from enterprise.telemetry.contracts import TelemetryEnvelope
|
||||
|
||||
with patch("tasks.enterprise_telemetry_task.process_enterprise_telemetry.delay") as mock_delay:
|
||||
context = {"tenant_id": "tenant-123", "app_id": "app-123"}
|
||||
payload = {"message_id": "msg-123", "moderation_result": {"flagged": False}}
|
||||
|
||||
gateway.emit(TelemetryCase.MODERATION_CHECK, context, payload)
|
||||
|
||||
mock_delay.assert_called_once()
|
||||
envelope_json = mock_delay.call_args[0][0]
|
||||
envelope = TelemetryEnvelope.model_validate_json(envelope_json)
|
||||
assert envelope.case == TelemetryCase.MODERATION_CHECK
|
||||
|
||||
|
||||
class TestGatewayIntegrationCEEligibility:
|
||||
@pytest.fixture
|
||||
def gateway(self) -> TelemetryGateway:
|
||||
return TelemetryGateway()
|
||||
|
||||
@pytest.fixture
|
||||
def mock_trace_manager(self) -> MagicMock:
|
||||
return MagicMock()
|
||||
|
||||
@pytest.mark.usefixtures("mock_ops_trace_manager")
|
||||
def test_workflow_run_is_ce_eligible(
|
||||
self,
|
||||
gateway: TelemetryGateway,
|
||||
mock_trace_manager: MagicMock,
|
||||
) -> None:
|
||||
with patch("enterprise.telemetry.gateway._is_enterprise_telemetry_enabled", return_value=False):
|
||||
context = {"app_id": "app-123", "user_id": "user-456"}
|
||||
payload = {"workflow_run_id": "run-abc"}
|
||||
|
||||
gateway.emit(TelemetryCase.WORKFLOW_RUN, context, payload, mock_trace_manager)
|
||||
|
||||
mock_trace_manager.add_trace_task.assert_called_once()
|
||||
|
||||
@pytest.mark.usefixtures("mock_ops_trace_manager")
|
||||
def test_message_run_is_ce_eligible(
|
||||
self,
|
||||
gateway: TelemetryGateway,
|
||||
mock_trace_manager: MagicMock,
|
||||
) -> None:
|
||||
with patch("enterprise.telemetry.gateway._is_enterprise_telemetry_enabled", return_value=False):
|
||||
context = {"app_id": "app-123", "user_id": "user-456"}
|
||||
payload = {"message_id": "msg-abc", "conversation_id": "conv-123"}
|
||||
|
||||
gateway.emit(TelemetryCase.MESSAGE_RUN, context, payload, mock_trace_manager)
|
||||
|
||||
mock_trace_manager.add_trace_task.assert_called_once()
|
||||
|
||||
@pytest.mark.usefixtures("mock_ops_trace_manager")
|
||||
def test_node_execution_not_ce_eligible(
|
||||
self,
|
||||
gateway: TelemetryGateway,
|
||||
mock_trace_manager: MagicMock,
|
||||
) -> None:
|
||||
with patch("enterprise.telemetry.gateway._is_enterprise_telemetry_enabled", return_value=False):
|
||||
context = {"app_id": "app-123", "user_id": "user-456"}
|
||||
payload = {"node_id": "node-abc"}
|
||||
|
||||
gateway.emit(TelemetryCase.NODE_EXECUTION, context, payload, mock_trace_manager)
|
||||
|
||||
mock_trace_manager.add_trace_task.assert_not_called()
|
||||
|
||||
@pytest.mark.usefixtures("mock_ops_trace_manager")
|
||||
def test_draft_node_execution_not_ce_eligible(
|
||||
self,
|
||||
gateway: TelemetryGateway,
|
||||
mock_trace_manager: MagicMock,
|
||||
) -> None:
|
||||
with patch("enterprise.telemetry.gateway._is_enterprise_telemetry_enabled", return_value=False):
|
||||
context = {"app_id": "app-123", "user_id": "user-456"}
|
||||
payload = {"node_execution_data": {}}
|
||||
|
||||
gateway.emit(TelemetryCase.DRAFT_NODE_EXECUTION, context, payload, mock_trace_manager)
|
||||
|
||||
mock_trace_manager.add_trace_task.assert_not_called()
|
||||
|
||||
@pytest.mark.usefixtures("mock_ops_trace_manager")
|
||||
def test_prompt_generation_not_ce_eligible(
|
||||
self,
|
||||
gateway: TelemetryGateway,
|
||||
mock_trace_manager: MagicMock,
|
||||
) -> None:
|
||||
with patch("enterprise.telemetry.gateway._is_enterprise_telemetry_enabled", return_value=False):
|
||||
context = {"app_id": "app-123", "user_id": "user-456", "tenant_id": "tenant-789"}
|
||||
payload = {"operation_type": "generate", "instruction": "test"}
|
||||
|
||||
gateway.emit(TelemetryCase.PROMPT_GENERATION, context, payload, mock_trace_manager)
|
||||
|
||||
mock_trace_manager.add_trace_task.assert_not_called()
|
||||
|
||||
|
||||
class TestIsEnterpriseTelemetryEnabled:
|
||||
def test_returns_false_when_exporter_import_fails(self) -> None:
|
||||
with patch.dict(sys.modules, {"enterprise.telemetry.exporter": None}):
|
||||
result = is_enterprise_telemetry_enabled()
|
||||
assert result is False
|
||||
|
||||
def test_function_is_callable(self) -> None:
|
||||
assert callable(is_enterprise_telemetry_enabled)
|
||||
0
api/tests/unit_tests/enterprise/__init__.py
Normal file
0
api/tests/unit_tests/enterprise/__init__.py
Normal file
264
api/tests/unit_tests/enterprise/telemetry/test_contracts.py
Normal file
264
api/tests/unit_tests/enterprise/telemetry/test_contracts.py
Normal file
@@ -0,0 +1,264 @@
|
||||
"""Unit tests for telemetry gateway contracts."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import pytest
|
||||
from pydantic import ValidationError
|
||||
|
||||
from enterprise.telemetry.contracts import CaseRoute, SignalType, TelemetryCase, TelemetryEnvelope
|
||||
from enterprise.telemetry.gateway import CASE_ROUTING
|
||||
|
||||
|
||||
class TestTelemetryCase:
|
||||
"""Tests for TelemetryCase enum."""
|
||||
|
||||
def test_all_cases_defined(self) -> None:
|
||||
"""Verify all 14 telemetry cases are defined."""
|
||||
expected_cases = {
|
||||
"WORKFLOW_RUN",
|
||||
"NODE_EXECUTION",
|
||||
"DRAFT_NODE_EXECUTION",
|
||||
"MESSAGE_RUN",
|
||||
"TOOL_EXECUTION",
|
||||
"MODERATION_CHECK",
|
||||
"SUGGESTED_QUESTION",
|
||||
"DATASET_RETRIEVAL",
|
||||
"GENERATE_NAME",
|
||||
"PROMPT_GENERATION",
|
||||
"APP_CREATED",
|
||||
"APP_UPDATED",
|
||||
"APP_DELETED",
|
||||
"FEEDBACK_CREATED",
|
||||
}
|
||||
actual_cases = {case.name for case in TelemetryCase}
|
||||
assert actual_cases == expected_cases
|
||||
|
||||
def test_case_values(self) -> None:
|
||||
"""Verify case enum values are correct."""
|
||||
assert TelemetryCase.WORKFLOW_RUN.value == "workflow_run"
|
||||
assert TelemetryCase.NODE_EXECUTION.value == "node_execution"
|
||||
assert TelemetryCase.DRAFT_NODE_EXECUTION.value == "draft_node_execution"
|
||||
assert TelemetryCase.MESSAGE_RUN.value == "message_run"
|
||||
assert TelemetryCase.TOOL_EXECUTION.value == "tool_execution"
|
||||
assert TelemetryCase.MODERATION_CHECK.value == "moderation_check"
|
||||
assert TelemetryCase.SUGGESTED_QUESTION.value == "suggested_question"
|
||||
assert TelemetryCase.DATASET_RETRIEVAL.value == "dataset_retrieval"
|
||||
assert TelemetryCase.GENERATE_NAME.value == "generate_name"
|
||||
assert TelemetryCase.PROMPT_GENERATION.value == "prompt_generation"
|
||||
assert TelemetryCase.APP_CREATED.value == "app_created"
|
||||
assert TelemetryCase.APP_UPDATED.value == "app_updated"
|
||||
assert TelemetryCase.APP_DELETED.value == "app_deleted"
|
||||
assert TelemetryCase.FEEDBACK_CREATED.value == "feedback_created"
|
||||
|
||||
|
||||
class TestCaseRoute:
|
||||
"""Tests for CaseRoute model."""
|
||||
|
||||
def test_valid_trace_route(self) -> None:
|
||||
"""Verify valid trace route creation."""
|
||||
route = CaseRoute(signal_type=SignalType.TRACE, ce_eligible=True)
|
||||
assert route.signal_type == SignalType.TRACE
|
||||
assert route.ce_eligible is True
|
||||
|
||||
def test_valid_metric_log_route(self) -> None:
|
||||
"""Verify valid metric_log route creation."""
|
||||
route = CaseRoute(signal_type=SignalType.METRIC_LOG, ce_eligible=False)
|
||||
assert route.signal_type == SignalType.METRIC_LOG
|
||||
assert route.ce_eligible is False
|
||||
|
||||
def test_invalid_signal_type(self) -> None:
|
||||
"""Verify invalid signal_type is rejected."""
|
||||
with pytest.raises(ValidationError):
|
||||
CaseRoute(signal_type="invalid", ce_eligible=True)
|
||||
|
||||
|
||||
class TestTelemetryEnvelope:
|
||||
"""Tests for TelemetryEnvelope model."""
|
||||
|
||||
def test_valid_envelope_minimal(self) -> None:
|
||||
"""Verify valid minimal envelope creation."""
|
||||
envelope = TelemetryEnvelope(
|
||||
case=TelemetryCase.WORKFLOW_RUN,
|
||||
tenant_id="tenant-123",
|
||||
event_id="event-456",
|
||||
payload={"key": "value"},
|
||||
)
|
||||
assert envelope.case == TelemetryCase.WORKFLOW_RUN
|
||||
assert envelope.tenant_id == "tenant-123"
|
||||
assert envelope.event_id == "event-456"
|
||||
assert envelope.payload == {"key": "value"}
|
||||
assert envelope.payload_fallback is None
|
||||
assert envelope.metadata is None
|
||||
|
||||
def test_valid_envelope_full(self) -> None:
|
||||
"""Verify valid envelope with all fields."""
|
||||
metadata = {"source": "api"}
|
||||
fallback = b"fallback data"
|
||||
envelope = TelemetryEnvelope(
|
||||
case=TelemetryCase.MESSAGE_RUN,
|
||||
tenant_id="tenant-789",
|
||||
event_id="event-012",
|
||||
payload={"message": "hello"},
|
||||
payload_fallback=fallback,
|
||||
metadata=metadata,
|
||||
)
|
||||
assert envelope.case == TelemetryCase.MESSAGE_RUN
|
||||
assert envelope.tenant_id == "tenant-789"
|
||||
assert envelope.event_id == "event-012"
|
||||
assert envelope.payload == {"message": "hello"}
|
||||
assert envelope.payload_fallback == fallback
|
||||
assert envelope.metadata == metadata
|
||||
|
||||
def test_missing_required_case(self) -> None:
|
||||
"""Verify missing case field is rejected."""
|
||||
with pytest.raises(ValidationError):
|
||||
TelemetryEnvelope(
|
||||
tenant_id="tenant-123",
|
||||
event_id="event-456",
|
||||
payload={"key": "value"},
|
||||
)
|
||||
|
||||
def test_missing_required_tenant_id(self) -> None:
|
||||
"""Verify missing tenant_id field is rejected."""
|
||||
with pytest.raises(ValidationError):
|
||||
TelemetryEnvelope(
|
||||
case=TelemetryCase.WORKFLOW_RUN,
|
||||
event_id="event-456",
|
||||
payload={"key": "value"},
|
||||
)
|
||||
|
||||
def test_missing_required_event_id(self) -> None:
|
||||
"""Verify missing event_id field is rejected."""
|
||||
with pytest.raises(ValidationError):
|
||||
TelemetryEnvelope(
|
||||
case=TelemetryCase.WORKFLOW_RUN,
|
||||
tenant_id="tenant-123",
|
||||
payload={"key": "value"},
|
||||
)
|
||||
|
||||
def test_missing_required_payload(self) -> None:
|
||||
"""Verify missing payload field is rejected."""
|
||||
with pytest.raises(ValidationError):
|
||||
TelemetryEnvelope(
|
||||
case=TelemetryCase.WORKFLOW_RUN,
|
||||
tenant_id="tenant-123",
|
||||
event_id="event-456",
|
||||
)
|
||||
|
||||
def test_payload_fallback_within_limit(self) -> None:
|
||||
"""Verify payload_fallback within 64KB limit is accepted."""
|
||||
fallback = b"x" * 65536
|
||||
envelope = TelemetryEnvelope(
|
||||
case=TelemetryCase.WORKFLOW_RUN,
|
||||
tenant_id="tenant-123",
|
||||
event_id="event-456",
|
||||
payload={"key": "value"},
|
||||
payload_fallback=fallback,
|
||||
)
|
||||
assert envelope.payload_fallback == fallback
|
||||
|
||||
def test_payload_fallback_exceeds_limit(self) -> None:
|
||||
"""Verify payload_fallback exceeding 64KB is rejected."""
|
||||
fallback = b"x" * 65537
|
||||
with pytest.raises(ValidationError) as exc_info:
|
||||
TelemetryEnvelope(
|
||||
case=TelemetryCase.WORKFLOW_RUN,
|
||||
tenant_id="tenant-123",
|
||||
event_id="event-456",
|
||||
payload={"key": "value"},
|
||||
payload_fallback=fallback,
|
||||
)
|
||||
assert "64KB" in str(exc_info.value)
|
||||
|
||||
def test_payload_fallback_none(self) -> None:
|
||||
"""Verify payload_fallback can be None."""
|
||||
envelope = TelemetryEnvelope(
|
||||
case=TelemetryCase.WORKFLOW_RUN,
|
||||
tenant_id="tenant-123",
|
||||
event_id="event-456",
|
||||
payload={"key": "value"},
|
||||
payload_fallback=None,
|
||||
)
|
||||
assert envelope.payload_fallback is None
|
||||
|
||||
|
||||
class TestCaseRouting:
|
||||
"""Tests for CASE_ROUTING table."""
|
||||
|
||||
def test_all_cases_routed(self) -> None:
|
||||
"""Verify all 14 cases have routing entries."""
|
||||
assert len(CASE_ROUTING) == 14
|
||||
for case in TelemetryCase:
|
||||
assert case in CASE_ROUTING
|
||||
|
||||
def test_trace_ce_eligible_cases(self) -> None:
|
||||
"""Verify trace cases with CE eligibility."""
|
||||
ce_eligible_trace_cases = {
|
||||
TelemetryCase.WORKFLOW_RUN,
|
||||
TelemetryCase.MESSAGE_RUN,
|
||||
}
|
||||
for case in ce_eligible_trace_cases:
|
||||
route = CASE_ROUTING[case]
|
||||
assert route.signal_type == SignalType.TRACE
|
||||
assert route.ce_eligible is True
|
||||
|
||||
def test_trace_enterprise_only_cases(self) -> None:
|
||||
"""Verify trace cases that are enterprise-only."""
|
||||
enterprise_only_trace_cases = {
|
||||
TelemetryCase.NODE_EXECUTION,
|
||||
TelemetryCase.DRAFT_NODE_EXECUTION,
|
||||
TelemetryCase.PROMPT_GENERATION,
|
||||
}
|
||||
for case in enterprise_only_trace_cases:
|
||||
route = CASE_ROUTING[case]
|
||||
assert route.signal_type == SignalType.TRACE
|
||||
assert route.ce_eligible is False
|
||||
|
||||
def test_metric_log_cases(self) -> None:
|
||||
"""Verify metric/log-only cases."""
|
||||
metric_log_cases = {
|
||||
TelemetryCase.APP_CREATED,
|
||||
TelemetryCase.APP_UPDATED,
|
||||
TelemetryCase.APP_DELETED,
|
||||
TelemetryCase.FEEDBACK_CREATED,
|
||||
TelemetryCase.TOOL_EXECUTION,
|
||||
TelemetryCase.MODERATION_CHECK,
|
||||
TelemetryCase.SUGGESTED_QUESTION,
|
||||
TelemetryCase.DATASET_RETRIEVAL,
|
||||
TelemetryCase.GENERATE_NAME,
|
||||
}
|
||||
for case in metric_log_cases:
|
||||
route = CASE_ROUTING[case]
|
||||
assert route.signal_type == SignalType.METRIC_LOG
|
||||
assert route.ce_eligible is False
|
||||
|
||||
def test_routing_table_completeness(self) -> None:
|
||||
"""Verify routing table covers all cases with correct types."""
|
||||
trace_cases = {
|
||||
TelemetryCase.WORKFLOW_RUN,
|
||||
TelemetryCase.MESSAGE_RUN,
|
||||
TelemetryCase.NODE_EXECUTION,
|
||||
TelemetryCase.DRAFT_NODE_EXECUTION,
|
||||
TelemetryCase.PROMPT_GENERATION,
|
||||
}
|
||||
metric_log_cases = {
|
||||
TelemetryCase.APP_CREATED,
|
||||
TelemetryCase.APP_UPDATED,
|
||||
TelemetryCase.APP_DELETED,
|
||||
TelemetryCase.FEEDBACK_CREATED,
|
||||
TelemetryCase.TOOL_EXECUTION,
|
||||
TelemetryCase.MODERATION_CHECK,
|
||||
TelemetryCase.SUGGESTED_QUESTION,
|
||||
TelemetryCase.DATASET_RETRIEVAL,
|
||||
TelemetryCase.GENERATE_NAME,
|
||||
}
|
||||
|
||||
all_cases = trace_cases | metric_log_cases
|
||||
assert len(all_cases) == 14
|
||||
assert all_cases == set(TelemetryCase)
|
||||
|
||||
for case in trace_cases:
|
||||
assert CASE_ROUTING[case].signal_type == SignalType.TRACE
|
||||
|
||||
for case in metric_log_cases:
|
||||
assert CASE_ROUTING[case].signal_type == SignalType.METRIC_LOG
|
||||
134
api/tests/unit_tests/enterprise/telemetry/test_event_handlers.py
Normal file
134
api/tests/unit_tests/enterprise/telemetry/test_event_handlers.py
Normal file
@@ -0,0 +1,134 @@
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from enterprise.telemetry import event_handlers
|
||||
from enterprise.telemetry.contracts import TelemetryCase
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_exporter():
|
||||
with patch("extensions.ext_enterprise_telemetry.get_enterprise_exporter") as mock:
|
||||
exporter = MagicMock()
|
||||
mock.return_value = exporter
|
||||
yield exporter
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_task():
|
||||
with patch("tasks.enterprise_telemetry_task.process_enterprise_telemetry") as mock:
|
||||
yield mock
|
||||
|
||||
|
||||
def test_handle_app_created_calls_task(mock_exporter, mock_task):
|
||||
sender = MagicMock()
|
||||
sender.id = "app-123"
|
||||
sender.tenant_id = "tenant-456"
|
||||
sender.mode = "chat"
|
||||
|
||||
event_handlers._handle_app_created(sender)
|
||||
|
||||
mock_task.delay.assert_called_once()
|
||||
call_args = mock_task.delay.call_args[0][0]
|
||||
assert "app_created" in call_args
|
||||
assert "tenant-456" in call_args
|
||||
assert "app-123" in call_args
|
||||
assert "chat" in call_args
|
||||
|
||||
|
||||
def test_handle_app_created_no_exporter(mock_task):
|
||||
with patch("extensions.ext_enterprise_telemetry.get_enterprise_exporter", return_value=None):
|
||||
sender = MagicMock()
|
||||
sender.id = "app-123"
|
||||
sender.tenant_id = "tenant-456"
|
||||
|
||||
event_handlers._handle_app_created(sender)
|
||||
|
||||
mock_task.delay.assert_not_called()
|
||||
|
||||
|
||||
def test_handle_app_updated_calls_task(mock_exporter, mock_task):
|
||||
sender = MagicMock()
|
||||
sender.id = "app-123"
|
||||
sender.tenant_id = "tenant-456"
|
||||
|
||||
event_handlers._handle_app_updated(sender)
|
||||
|
||||
mock_task.delay.assert_called_once()
|
||||
call_args = mock_task.delay.call_args[0][0]
|
||||
assert "app_updated" in call_args
|
||||
assert "tenant-456" in call_args
|
||||
assert "app-123" in call_args
|
||||
|
||||
|
||||
def test_handle_app_deleted_calls_task(mock_exporter, mock_task):
|
||||
sender = MagicMock()
|
||||
sender.id = "app-123"
|
||||
sender.tenant_id = "tenant-456"
|
||||
|
||||
event_handlers._handle_app_deleted(sender)
|
||||
|
||||
mock_task.delay.assert_called_once()
|
||||
call_args = mock_task.delay.call_args[0][0]
|
||||
assert "app_deleted" in call_args
|
||||
assert "tenant-456" in call_args
|
||||
assert "app-123" in call_args
|
||||
|
||||
|
||||
def test_handle_feedback_created_calls_task(mock_exporter, mock_task):
|
||||
sender = MagicMock()
|
||||
sender.message_id = "msg-123"
|
||||
sender.app_id = "app-456"
|
||||
sender.conversation_id = "conv-789"
|
||||
sender.from_end_user_id = "user-001"
|
||||
sender.from_account_id = None
|
||||
sender.rating = "like"
|
||||
sender.from_source = "api"
|
||||
sender.content = "Great response!"
|
||||
|
||||
event_handlers._handle_feedback_created(sender, tenant_id="tenant-456")
|
||||
|
||||
mock_task.delay.assert_called_once()
|
||||
call_args = mock_task.delay.call_args[0][0]
|
||||
assert "feedback_created" in call_args
|
||||
assert "tenant-456" in call_args
|
||||
assert "msg-123" in call_args
|
||||
assert "app-456" in call_args
|
||||
assert "conv-789" in call_args
|
||||
assert "user-001" in call_args
|
||||
assert "like" in call_args
|
||||
assert "api" in call_args
|
||||
assert "Great response!" in call_args
|
||||
|
||||
|
||||
def test_handle_feedback_created_no_exporter(mock_task):
|
||||
with patch("extensions.ext_enterprise_telemetry.get_enterprise_exporter", return_value=None):
|
||||
sender = MagicMock()
|
||||
sender.message_id = "msg-123"
|
||||
|
||||
event_handlers._handle_feedback_created(sender, tenant_id="tenant-456")
|
||||
|
||||
mock_task.delay.assert_not_called()
|
||||
|
||||
|
||||
def test_handlers_create_valid_envelopes(mock_exporter, mock_task):
|
||||
import json
|
||||
|
||||
from enterprise.telemetry.contracts import TelemetryEnvelope
|
||||
|
||||
sender = MagicMock()
|
||||
sender.id = "app-123"
|
||||
sender.tenant_id = "tenant-456"
|
||||
sender.mode = "chat"
|
||||
|
||||
event_handlers._handle_app_created(sender)
|
||||
|
||||
call_args = mock_task.delay.call_args[0][0]
|
||||
envelope_dict = json.loads(call_args)
|
||||
envelope = TelemetryEnvelope(**envelope_dict)
|
||||
|
||||
assert envelope.case == TelemetryCase.APP_CREATED
|
||||
assert envelope.tenant_id == "tenant-456"
|
||||
assert envelope.event_id
|
||||
assert envelope.payload["app_id"] == "app-123"
|
||||
assert envelope.payload["mode"] == "chat"
|
||||
215
api/tests/unit_tests/enterprise/telemetry/test_exporter.py
Normal file
215
api/tests/unit_tests/enterprise/telemetry/test_exporter.py
Normal file
@@ -0,0 +1,215 @@
|
||||
"""Unit tests for EnterpriseExporter and _ExporterFactory."""
|
||||
|
||||
from types import SimpleNamespace
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
from configs.enterprise import EnterpriseTelemetryConfig
|
||||
from enterprise.telemetry.exporter import EnterpriseExporter
|
||||
|
||||
|
||||
def test_config_api_key_default_empty():
|
||||
"""Test that ENTERPRISE_OTLP_API_KEY defaults to empty string."""
|
||||
config = EnterpriseTelemetryConfig()
|
||||
assert config.ENTERPRISE_OTLP_API_KEY == ""
|
||||
|
||||
|
||||
@patch("enterprise.telemetry.exporter.GRPCSpanExporter")
|
||||
@patch("enterprise.telemetry.exporter.GRPCMetricExporter")
|
||||
def test_api_key_only_injects_bearer_header(mock_metric_exporter: MagicMock, mock_span_exporter: MagicMock) -> None:
|
||||
"""Test that API key alone injects Bearer authorization header."""
|
||||
mock_config = SimpleNamespace(
|
||||
ENTERPRISE_OTLP_ENDPOINT="https://collector.example.com",
|
||||
ENTERPRISE_OTLP_HEADERS="",
|
||||
ENTERPRISE_OTLP_PROTOCOL="grpc",
|
||||
ENTERPRISE_SERVICE_NAME="dify",
|
||||
ENTERPRISE_OTEL_SAMPLING_RATE=1.0,
|
||||
ENTERPRISE_INCLUDE_CONTENT=True,
|
||||
ENTERPRISE_OTLP_API_KEY="test-secret-key",
|
||||
)
|
||||
|
||||
EnterpriseExporter(mock_config)
|
||||
|
||||
# Verify span exporter was called with Bearer header
|
||||
assert mock_span_exporter.call_args is not None
|
||||
headers = mock_span_exporter.call_args.kwargs.get("headers")
|
||||
assert headers is not None
|
||||
assert ("authorization", "Bearer test-secret-key") in headers
|
||||
|
||||
|
||||
@patch("enterprise.telemetry.exporter.GRPCSpanExporter")
|
||||
@patch("enterprise.telemetry.exporter.GRPCMetricExporter")
|
||||
def test_empty_api_key_no_auth_header(mock_metric_exporter: MagicMock, mock_span_exporter: MagicMock) -> None:
|
||||
"""Test that empty API key does not inject authorization header."""
|
||||
mock_config = SimpleNamespace(
|
||||
ENTERPRISE_OTLP_ENDPOINT="https://collector.example.com",
|
||||
ENTERPRISE_OTLP_HEADERS="",
|
||||
ENTERPRISE_OTLP_PROTOCOL="grpc",
|
||||
ENTERPRISE_SERVICE_NAME="dify",
|
||||
ENTERPRISE_OTEL_SAMPLING_RATE=1.0,
|
||||
ENTERPRISE_INCLUDE_CONTENT=True,
|
||||
ENTERPRISE_OTLP_API_KEY="",
|
||||
)
|
||||
|
||||
EnterpriseExporter(mock_config)
|
||||
|
||||
# Verify span exporter was called without authorization header
|
||||
assert mock_span_exporter.call_args is not None
|
||||
headers = mock_span_exporter.call_args.kwargs.get("headers")
|
||||
# Headers should be None or not contain authorization
|
||||
if headers is not None:
|
||||
assert not any(key == "authorization" for key, _ in headers)
|
||||
|
||||
|
||||
@patch("enterprise.telemetry.exporter.GRPCSpanExporter")
|
||||
@patch("enterprise.telemetry.exporter.GRPCMetricExporter")
|
||||
def test_api_key_and_custom_headers_merge(mock_metric_exporter: MagicMock, mock_span_exporter: MagicMock) -> None:
|
||||
"""Test that API key and custom headers are merged correctly."""
|
||||
mock_config = SimpleNamespace(
|
||||
ENTERPRISE_OTLP_ENDPOINT="https://collector.example.com",
|
||||
ENTERPRISE_OTLP_HEADERS="x-custom=foo",
|
||||
ENTERPRISE_OTLP_PROTOCOL="grpc",
|
||||
ENTERPRISE_SERVICE_NAME="dify",
|
||||
ENTERPRISE_OTEL_SAMPLING_RATE=1.0,
|
||||
ENTERPRISE_INCLUDE_CONTENT=True,
|
||||
ENTERPRISE_OTLP_API_KEY="test-key",
|
||||
)
|
||||
|
||||
EnterpriseExporter(mock_config)
|
||||
|
||||
# Verify both headers are present
|
||||
assert mock_span_exporter.call_args is not None
|
||||
headers = mock_span_exporter.call_args.kwargs.get("headers")
|
||||
assert headers is not None
|
||||
assert ("authorization", "Bearer test-key") in headers
|
||||
assert ("x-custom", "foo") in headers
|
||||
|
||||
|
||||
@patch("enterprise.telemetry.exporter.logger")
|
||||
@patch("enterprise.telemetry.exporter.GRPCSpanExporter")
|
||||
@patch("enterprise.telemetry.exporter.GRPCMetricExporter")
|
||||
def test_api_key_overrides_conflicting_header(
|
||||
mock_metric_exporter: MagicMock, mock_span_exporter: MagicMock, mock_logger: MagicMock
|
||||
) -> None:
|
||||
"""Test that API key overrides conflicting authorization header and logs warning."""
|
||||
mock_config = SimpleNamespace(
|
||||
ENTERPRISE_OTLP_ENDPOINT="https://collector.example.com",
|
||||
ENTERPRISE_OTLP_HEADERS="authorization=Basic old",
|
||||
ENTERPRISE_OTLP_PROTOCOL="grpc",
|
||||
ENTERPRISE_SERVICE_NAME="dify",
|
||||
ENTERPRISE_OTEL_SAMPLING_RATE=1.0,
|
||||
ENTERPRISE_INCLUDE_CONTENT=True,
|
||||
ENTERPRISE_OTLP_API_KEY="test-key",
|
||||
)
|
||||
|
||||
EnterpriseExporter(mock_config)
|
||||
|
||||
# Verify Bearer header takes precedence
|
||||
assert mock_span_exporter.call_args is not None
|
||||
headers = mock_span_exporter.call_args.kwargs.get("headers")
|
||||
assert headers is not None
|
||||
assert ("authorization", "Bearer test-key") in headers
|
||||
# Verify old authorization header is not present
|
||||
assert ("authorization", "Basic old") not in headers
|
||||
|
||||
# Verify warning was logged
|
||||
mock_logger.warning.assert_called_once()
|
||||
assert mock_logger.warning.call_args is not None
|
||||
warning_message = mock_logger.warning.call_args[0][0]
|
||||
assert "ENTERPRISE_OTLP_API_KEY is set" in warning_message
|
||||
assert "authorization" in warning_message
|
||||
|
||||
|
||||
@patch("enterprise.telemetry.exporter.GRPCSpanExporter")
|
||||
@patch("enterprise.telemetry.exporter.GRPCMetricExporter")
|
||||
def test_api_key_set_uses_secure_grpc(mock_metric_exporter: MagicMock, mock_span_exporter: MagicMock) -> None:
|
||||
"""Test that API key presence enables TLS (insecure=False) for gRPC."""
|
||||
mock_config = SimpleNamespace(
|
||||
ENTERPRISE_OTLP_ENDPOINT="https://collector.example.com",
|
||||
ENTERPRISE_OTLP_HEADERS="",
|
||||
ENTERPRISE_OTLP_PROTOCOL="grpc",
|
||||
ENTERPRISE_SERVICE_NAME="dify",
|
||||
ENTERPRISE_OTEL_SAMPLING_RATE=1.0,
|
||||
ENTERPRISE_INCLUDE_CONTENT=True,
|
||||
ENTERPRISE_OTLP_API_KEY="test-key",
|
||||
)
|
||||
|
||||
EnterpriseExporter(mock_config)
|
||||
|
||||
# Verify insecure=False for both exporters
|
||||
assert mock_span_exporter.call_args is not None
|
||||
assert mock_span_exporter.call_args.kwargs["insecure"] is False
|
||||
|
||||
assert mock_metric_exporter.call_args is not None
|
||||
assert mock_metric_exporter.call_args.kwargs["insecure"] is False
|
||||
|
||||
|
||||
@patch("enterprise.telemetry.exporter.GRPCSpanExporter")
|
||||
@patch("enterprise.telemetry.exporter.GRPCMetricExporter")
|
||||
def test_no_api_key_uses_insecure_grpc(mock_metric_exporter: MagicMock, mock_span_exporter: MagicMock) -> None:
|
||||
"""Test that empty API key uses insecure gRPC (backward compat)."""
|
||||
mock_config = SimpleNamespace(
|
||||
ENTERPRISE_OTLP_ENDPOINT="http://collector.example.com",
|
||||
ENTERPRISE_OTLP_HEADERS="",
|
||||
ENTERPRISE_OTLP_PROTOCOL="grpc",
|
||||
ENTERPRISE_SERVICE_NAME="dify",
|
||||
ENTERPRISE_OTEL_SAMPLING_RATE=1.0,
|
||||
ENTERPRISE_INCLUDE_CONTENT=True,
|
||||
ENTERPRISE_OTLP_API_KEY="",
|
||||
)
|
||||
|
||||
EnterpriseExporter(mock_config)
|
||||
|
||||
# Verify insecure=True for both exporters
|
||||
assert mock_span_exporter.call_args is not None
|
||||
assert mock_span_exporter.call_args.kwargs["insecure"] is True
|
||||
|
||||
assert mock_metric_exporter.call_args is not None
|
||||
assert mock_metric_exporter.call_args.kwargs["insecure"] is True
|
||||
|
||||
|
||||
@patch("enterprise.telemetry.exporter.HTTPSpanExporter")
|
||||
@patch("enterprise.telemetry.exporter.HTTPMetricExporter")
|
||||
def test_insecure_not_passed_to_http_exporters(mock_metric_exporter: MagicMock, mock_span_exporter: MagicMock) -> None:
|
||||
"""Test that insecure parameter is not passed to HTTP exporters."""
|
||||
mock_config = SimpleNamespace(
|
||||
ENTERPRISE_OTLP_ENDPOINT="http://collector.example.com",
|
||||
ENTERPRISE_OTLP_HEADERS="",
|
||||
ENTERPRISE_OTLP_PROTOCOL="http",
|
||||
ENTERPRISE_SERVICE_NAME="dify",
|
||||
ENTERPRISE_OTEL_SAMPLING_RATE=1.0,
|
||||
ENTERPRISE_INCLUDE_CONTENT=True,
|
||||
ENTERPRISE_OTLP_API_KEY="test-key",
|
||||
)
|
||||
|
||||
EnterpriseExporter(mock_config)
|
||||
|
||||
# Verify insecure kwarg is NOT in HTTP exporter calls
|
||||
assert mock_span_exporter.call_args is not None
|
||||
assert "insecure" not in mock_span_exporter.call_args.kwargs
|
||||
|
||||
assert mock_metric_exporter.call_args is not None
|
||||
assert "insecure" not in mock_metric_exporter.call_args.kwargs
|
||||
|
||||
|
||||
@patch("enterprise.telemetry.exporter.GRPCSpanExporter")
|
||||
@patch("enterprise.telemetry.exporter.GRPCMetricExporter")
|
||||
def test_api_key_with_special_chars_preserved(mock_metric_exporter: MagicMock, mock_span_exporter: MagicMock) -> None:
|
||||
"""Test that API key with special characters is preserved without mangling."""
|
||||
special_key = "abc+def/ghi=jkl=="
|
||||
mock_config = SimpleNamespace(
|
||||
ENTERPRISE_OTLP_ENDPOINT="https://collector.example.com",
|
||||
ENTERPRISE_OTLP_HEADERS="",
|
||||
ENTERPRISE_OTLP_PROTOCOL="grpc",
|
||||
ENTERPRISE_SERVICE_NAME="dify",
|
||||
ENTERPRISE_OTEL_SAMPLING_RATE=1.0,
|
||||
ENTERPRISE_INCLUDE_CONTENT=True,
|
||||
ENTERPRISE_OTLP_API_KEY=special_key,
|
||||
)
|
||||
|
||||
EnterpriseExporter(mock_config)
|
||||
|
||||
# Verify special characters are preserved in Bearer header
|
||||
assert mock_span_exporter.call_args is not None
|
||||
headers = mock_span_exporter.call_args.kwargs.get("headers")
|
||||
assert headers is not None
|
||||
assert ("authorization", f"Bearer {special_key}") in headers
|
||||
301
api/tests/unit_tests/enterprise/telemetry/test_gateway.py
Normal file
301
api/tests/unit_tests/enterprise/telemetry/test_gateway.py
Normal file
@@ -0,0 +1,301 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import sys
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from core.ops.entities.trace_entity import TraceTaskName
|
||||
from enterprise.telemetry.contracts import SignalType, TelemetryCase, TelemetryEnvelope
|
||||
from enterprise.telemetry.gateway import (
|
||||
CASE_ROUTING,
|
||||
CASE_TO_TRACE_TASK,
|
||||
PAYLOAD_SIZE_THRESHOLD_BYTES,
|
||||
TelemetryGateway,
|
||||
emit,
|
||||
)
|
||||
|
||||
|
||||
class TestCaseRoutingTable:
|
||||
def test_all_cases_have_routing(self) -> None:
|
||||
for case in TelemetryCase:
|
||||
assert case in CASE_ROUTING, f"Missing routing for {case}"
|
||||
|
||||
def test_trace_cases(self) -> None:
|
||||
trace_cases = [
|
||||
TelemetryCase.WORKFLOW_RUN,
|
||||
TelemetryCase.MESSAGE_RUN,
|
||||
TelemetryCase.NODE_EXECUTION,
|
||||
TelemetryCase.DRAFT_NODE_EXECUTION,
|
||||
TelemetryCase.PROMPT_GENERATION,
|
||||
]
|
||||
for case in trace_cases:
|
||||
assert CASE_ROUTING[case].signal_type is SignalType.TRACE, f"{case} should be trace"
|
||||
|
||||
def test_metric_log_cases(self) -> None:
|
||||
metric_log_cases = [
|
||||
TelemetryCase.APP_CREATED,
|
||||
TelemetryCase.APP_UPDATED,
|
||||
TelemetryCase.APP_DELETED,
|
||||
TelemetryCase.FEEDBACK_CREATED,
|
||||
TelemetryCase.TOOL_EXECUTION,
|
||||
TelemetryCase.MODERATION_CHECK,
|
||||
TelemetryCase.SUGGESTED_QUESTION,
|
||||
TelemetryCase.DATASET_RETRIEVAL,
|
||||
TelemetryCase.GENERATE_NAME,
|
||||
]
|
||||
for case in metric_log_cases:
|
||||
assert CASE_ROUTING[case].signal_type is SignalType.METRIC_LOG, f"{case} should be metric_log"
|
||||
|
||||
def test_ce_eligible_cases(self) -> None:
|
||||
ce_eligible_cases = [TelemetryCase.WORKFLOW_RUN, TelemetryCase.MESSAGE_RUN]
|
||||
for case in ce_eligible_cases:
|
||||
assert CASE_ROUTING[case].ce_eligible is True, f"{case} should be CE eligible"
|
||||
|
||||
def test_enterprise_only_cases(self) -> None:
|
||||
enterprise_only_cases = [
|
||||
TelemetryCase.NODE_EXECUTION,
|
||||
TelemetryCase.DRAFT_NODE_EXECUTION,
|
||||
TelemetryCase.PROMPT_GENERATION,
|
||||
]
|
||||
for case in enterprise_only_cases:
|
||||
assert CASE_ROUTING[case].ce_eligible is False, f"{case} should be enterprise-only"
|
||||
|
||||
def test_trace_cases_have_task_name_mapping(self) -> None:
|
||||
trace_cases = [c for c in TelemetryCase if CASE_ROUTING[c].signal_type is SignalType.TRACE]
|
||||
for case in trace_cases:
|
||||
assert case in CASE_TO_TRACE_TASK, f"Missing TraceTaskName mapping for {case}"
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_ops_trace_manager():
|
||||
mock_module = MagicMock()
|
||||
mock_trace_task_class = MagicMock()
|
||||
mock_trace_task_class.return_value = MagicMock()
|
||||
mock_module.TraceTask = mock_trace_task_class
|
||||
mock_module.TraceQueueManager = MagicMock()
|
||||
|
||||
mock_trace_entity = MagicMock()
|
||||
mock_trace_task_name = MagicMock()
|
||||
mock_trace_task_name.return_value = "workflow"
|
||||
mock_trace_entity.TraceTaskName = mock_trace_task_name
|
||||
|
||||
with (
|
||||
patch.dict(sys.modules, {"core.ops.ops_trace_manager": mock_module}),
|
||||
patch.dict(sys.modules, {"core.ops.entities.trace_entity": mock_trace_entity}),
|
||||
):
|
||||
yield mock_module, mock_trace_entity
|
||||
|
||||
|
||||
class TestTelemetryGatewayTraceRouting:
|
||||
@pytest.fixture
|
||||
def gateway(self) -> TelemetryGateway:
|
||||
return TelemetryGateway()
|
||||
|
||||
@pytest.fixture
|
||||
def mock_trace_manager(self) -> MagicMock:
|
||||
return MagicMock()
|
||||
|
||||
@patch("enterprise.telemetry.gateway._is_enterprise_telemetry_enabled", return_value=True)
|
||||
def test_trace_case_routes_to_trace_manager(
|
||||
self,
|
||||
_mock_ee_enabled: MagicMock,
|
||||
gateway: TelemetryGateway,
|
||||
mock_trace_manager: MagicMock,
|
||||
mock_ops_trace_manager: tuple[MagicMock, MagicMock],
|
||||
) -> None:
|
||||
context = {"app_id": "app-123", "user_id": "user-456", "tenant_id": "tenant-789"}
|
||||
payload = {"workflow_run_id": "run-abc"}
|
||||
|
||||
gateway.emit(TelemetryCase.WORKFLOW_RUN, context, payload, mock_trace_manager)
|
||||
|
||||
mock_trace_manager.add_trace_task.assert_called_once()
|
||||
|
||||
@patch("enterprise.telemetry.gateway._is_enterprise_telemetry_enabled", return_value=False)
|
||||
def test_ce_eligible_trace_enqueued_when_ee_disabled(
|
||||
self,
|
||||
_mock_ee_enabled: MagicMock,
|
||||
gateway: TelemetryGateway,
|
||||
mock_trace_manager: MagicMock,
|
||||
mock_ops_trace_manager: tuple[MagicMock, MagicMock],
|
||||
) -> None:
|
||||
context = {"app_id": "app-123", "user_id": "user-456"}
|
||||
payload = {"workflow_run_id": "run-abc"}
|
||||
|
||||
gateway.emit(TelemetryCase.WORKFLOW_RUN, context, payload, mock_trace_manager)
|
||||
|
||||
mock_trace_manager.add_trace_task.assert_called_once()
|
||||
|
||||
@patch("enterprise.telemetry.gateway._is_enterprise_telemetry_enabled", return_value=False)
|
||||
def test_enterprise_only_trace_dropped_when_ee_disabled(
|
||||
self,
|
||||
_mock_ee_enabled: MagicMock,
|
||||
gateway: TelemetryGateway,
|
||||
mock_trace_manager: MagicMock,
|
||||
mock_ops_trace_manager: tuple[MagicMock, MagicMock],
|
||||
) -> None:
|
||||
context = {"app_id": "app-123", "user_id": "user-456"}
|
||||
payload = {"node_id": "node-abc"}
|
||||
|
||||
gateway.emit(TelemetryCase.NODE_EXECUTION, context, payload, mock_trace_manager)
|
||||
|
||||
mock_trace_manager.add_trace_task.assert_not_called()
|
||||
|
||||
@patch("enterprise.telemetry.gateway._is_enterprise_telemetry_enabled", return_value=True)
|
||||
def test_enterprise_only_trace_enqueued_when_ee_enabled(
|
||||
self,
|
||||
_mock_ee_enabled: MagicMock,
|
||||
gateway: TelemetryGateway,
|
||||
mock_trace_manager: MagicMock,
|
||||
mock_ops_trace_manager: tuple[MagicMock, MagicMock],
|
||||
) -> None:
|
||||
context = {"app_id": "app-123", "user_id": "user-456"}
|
||||
payload = {"node_id": "node-abc"}
|
||||
|
||||
gateway.emit(TelemetryCase.NODE_EXECUTION, context, payload, mock_trace_manager)
|
||||
|
||||
mock_trace_manager.add_trace_task.assert_called_once()
|
||||
|
||||
|
||||
class TestTelemetryGatewayMetricLogRouting:
|
||||
@pytest.fixture
|
||||
def gateway(self) -> TelemetryGateway:
|
||||
return TelemetryGateway()
|
||||
|
||||
@patch("tasks.enterprise_telemetry_task.process_enterprise_telemetry.delay")
|
||||
def test_metric_case_routes_to_celery_task(
|
||||
self,
|
||||
mock_delay: MagicMock,
|
||||
gateway: TelemetryGateway,
|
||||
) -> None:
|
||||
context = {"tenant_id": "tenant-123"}
|
||||
payload = {"app_id": "app-abc", "name": "My App"}
|
||||
|
||||
gateway.emit(TelemetryCase.APP_CREATED, context, payload)
|
||||
|
||||
mock_delay.assert_called_once()
|
||||
envelope_json = mock_delay.call_args[0][0]
|
||||
envelope = TelemetryEnvelope.model_validate_json(envelope_json)
|
||||
assert envelope.case == TelemetryCase.APP_CREATED
|
||||
assert envelope.tenant_id == "tenant-123"
|
||||
assert envelope.payload["app_id"] == "app-abc"
|
||||
|
||||
@patch("tasks.enterprise_telemetry_task.process_enterprise_telemetry.delay")
|
||||
def test_envelope_has_unique_event_id(
|
||||
self,
|
||||
mock_delay: MagicMock,
|
||||
gateway: TelemetryGateway,
|
||||
) -> None:
|
||||
context = {"tenant_id": "tenant-123"}
|
||||
payload = {"app_id": "app-abc"}
|
||||
|
||||
gateway.emit(TelemetryCase.APP_CREATED, context, payload)
|
||||
gateway.emit(TelemetryCase.APP_CREATED, context, payload)
|
||||
|
||||
assert mock_delay.call_count == 2
|
||||
envelope1 = TelemetryEnvelope.model_validate_json(mock_delay.call_args_list[0][0][0])
|
||||
envelope2 = TelemetryEnvelope.model_validate_json(mock_delay.call_args_list[1][0][0])
|
||||
assert envelope1.event_id != envelope2.event_id
|
||||
|
||||
|
||||
class TestTelemetryGatewayPayloadSizing:
|
||||
@pytest.fixture
|
||||
def gateway(self) -> TelemetryGateway:
|
||||
return TelemetryGateway()
|
||||
|
||||
@patch("tasks.enterprise_telemetry_task.process_enterprise_telemetry.delay")
|
||||
def test_small_payload_inlined(
|
||||
self,
|
||||
mock_delay: MagicMock,
|
||||
gateway: TelemetryGateway,
|
||||
) -> None:
|
||||
context = {"tenant_id": "tenant-123"}
|
||||
payload = {"key": "small_value"}
|
||||
|
||||
gateway.emit(TelemetryCase.APP_CREATED, context, payload)
|
||||
|
||||
envelope_json = mock_delay.call_args[0][0]
|
||||
envelope = TelemetryEnvelope.model_validate_json(envelope_json)
|
||||
assert envelope.payload == payload
|
||||
assert envelope.metadata is None
|
||||
|
||||
@patch("enterprise.telemetry.gateway.storage")
|
||||
@patch("tasks.enterprise_telemetry_task.process_enterprise_telemetry.delay")
|
||||
def test_large_payload_stored(
|
||||
self,
|
||||
mock_delay: MagicMock,
|
||||
mock_storage: MagicMock,
|
||||
gateway: TelemetryGateway,
|
||||
) -> None:
|
||||
context = {"tenant_id": "tenant-123"}
|
||||
large_value = "x" * (PAYLOAD_SIZE_THRESHOLD_BYTES + 1000)
|
||||
payload = {"key": large_value}
|
||||
|
||||
gateway.emit(TelemetryCase.APP_CREATED, context, payload)
|
||||
|
||||
mock_storage.save.assert_called_once()
|
||||
storage_key = mock_storage.save.call_args[0][0]
|
||||
assert storage_key.startswith("telemetry/tenant-123/")
|
||||
|
||||
envelope_json = mock_delay.call_args[0][0]
|
||||
envelope = TelemetryEnvelope.model_validate_json(envelope_json)
|
||||
assert envelope.payload == {}
|
||||
assert envelope.metadata is not None
|
||||
assert envelope.metadata["payload_ref"] == storage_key
|
||||
|
||||
@patch("enterprise.telemetry.gateway.storage")
|
||||
@patch("tasks.enterprise_telemetry_task.process_enterprise_telemetry.delay")
|
||||
def test_large_payload_fallback_on_storage_error(
|
||||
self,
|
||||
mock_delay: MagicMock,
|
||||
mock_storage: MagicMock,
|
||||
gateway: TelemetryGateway,
|
||||
) -> None:
|
||||
mock_storage.save.side_effect = Exception("Storage failure")
|
||||
context = {"tenant_id": "tenant-123"}
|
||||
large_value = "x" * (PAYLOAD_SIZE_THRESHOLD_BYTES + 1000)
|
||||
payload = {"key": large_value}
|
||||
|
||||
gateway.emit(TelemetryCase.APP_CREATED, context, payload)
|
||||
|
||||
envelope_json = mock_delay.call_args[0][0]
|
||||
envelope = TelemetryEnvelope.model_validate_json(envelope_json)
|
||||
assert envelope.payload == payload
|
||||
assert envelope.metadata is None
|
||||
|
||||
|
||||
class TestModuleLevelFunctions:
|
||||
@patch("extensions.ext_enterprise_telemetry.get_gateway")
|
||||
@patch("enterprise.telemetry.gateway._is_enterprise_telemetry_enabled", return_value=True)
|
||||
def test_emit_function_uses_gateway(
|
||||
self,
|
||||
_mock_ee_enabled: MagicMock,
|
||||
mock_get_gateway: MagicMock,
|
||||
mock_ops_trace_manager: tuple[MagicMock, MagicMock],
|
||||
) -> None:
|
||||
mock_gateway = TelemetryGateway()
|
||||
mock_get_gateway.return_value = mock_gateway
|
||||
mock_trace_manager = MagicMock()
|
||||
context = {"app_id": "app-123", "user_id": "user-456"}
|
||||
payload = {"workflow_run_id": "run-abc"}
|
||||
|
||||
with patch.object(mock_gateway, "emit") as mock_emit:
|
||||
emit(TelemetryCase.WORKFLOW_RUN, context, payload, mock_trace_manager)
|
||||
mock_emit.assert_called_once_with(TelemetryCase.WORKFLOW_RUN, context, payload, mock_trace_manager)
|
||||
|
||||
|
||||
class TestTraceTaskNameMapping:
|
||||
def test_workflow_run_mapping(self) -> None:
|
||||
assert CASE_TO_TRACE_TASK[TelemetryCase.WORKFLOW_RUN] is TraceTaskName.WORKFLOW_TRACE
|
||||
|
||||
def test_message_run_mapping(self) -> None:
|
||||
assert CASE_TO_TRACE_TASK[TelemetryCase.MESSAGE_RUN] is TraceTaskName.MESSAGE_TRACE
|
||||
|
||||
def test_node_execution_mapping(self) -> None:
|
||||
assert CASE_TO_TRACE_TASK[TelemetryCase.NODE_EXECUTION] is TraceTaskName.NODE_EXECUTION_TRACE
|
||||
|
||||
def test_draft_node_execution_mapping(self) -> None:
|
||||
assert CASE_TO_TRACE_TASK[TelemetryCase.DRAFT_NODE_EXECUTION] is TraceTaskName.DRAFT_NODE_EXECUTION_TRACE
|
||||
|
||||
def test_prompt_generation_mapping(self) -> None:
|
||||
assert CASE_TO_TRACE_TASK[TelemetryCase.PROMPT_GENERATION] is TraceTaskName.PROMPT_GENERATION_TRACE
|
||||
474
api/tests/unit_tests/enterprise/telemetry/test_metric_handler.py
Normal file
474
api/tests/unit_tests/enterprise/telemetry/test_metric_handler.py
Normal file
@@ -0,0 +1,474 @@
|
||||
"""Unit tests for EnterpriseMetricHandler."""
|
||||
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from enterprise.telemetry.contracts import TelemetryCase, TelemetryEnvelope
|
||||
from enterprise.telemetry.metric_handler import EnterpriseMetricHandler
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_redis():
|
||||
with patch("enterprise.telemetry.metric_handler.redis_client") as mock:
|
||||
yield mock
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def sample_envelope():
|
||||
return TelemetryEnvelope(
|
||||
case=TelemetryCase.APP_CREATED,
|
||||
tenant_id="test-tenant",
|
||||
event_id="test-event-123",
|
||||
payload={"app_id": "app-123", "name": "Test App"},
|
||||
)
|
||||
|
||||
|
||||
def test_dispatch_app_created(sample_envelope, mock_redis):
|
||||
mock_redis.set.return_value = True
|
||||
|
||||
handler = EnterpriseMetricHandler()
|
||||
with patch.object(handler, "_on_app_created") as mock_handler:
|
||||
handler.handle(sample_envelope)
|
||||
mock_handler.assert_called_once_with(sample_envelope)
|
||||
|
||||
|
||||
def test_dispatch_app_updated(mock_redis):
|
||||
mock_redis.set.return_value = True
|
||||
envelope = TelemetryEnvelope(
|
||||
case=TelemetryCase.APP_UPDATED,
|
||||
tenant_id="test-tenant",
|
||||
event_id="test-event-456",
|
||||
payload={},
|
||||
)
|
||||
|
||||
handler = EnterpriseMetricHandler()
|
||||
with patch.object(handler, "_on_app_updated") as mock_handler:
|
||||
handler.handle(envelope)
|
||||
mock_handler.assert_called_once_with(envelope)
|
||||
|
||||
|
||||
def test_dispatch_app_deleted(mock_redis):
|
||||
mock_redis.set.return_value = True
|
||||
envelope = TelemetryEnvelope(
|
||||
case=TelemetryCase.APP_DELETED,
|
||||
tenant_id="test-tenant",
|
||||
event_id="test-event-789",
|
||||
payload={},
|
||||
)
|
||||
|
||||
handler = EnterpriseMetricHandler()
|
||||
with patch.object(handler, "_on_app_deleted") as mock_handler:
|
||||
handler.handle(envelope)
|
||||
mock_handler.assert_called_once_with(envelope)
|
||||
|
||||
|
||||
def test_dispatch_feedback_created(mock_redis):
|
||||
mock_redis.set.return_value = True
|
||||
envelope = TelemetryEnvelope(
|
||||
case=TelemetryCase.FEEDBACK_CREATED,
|
||||
tenant_id="test-tenant",
|
||||
event_id="test-event-abc",
|
||||
payload={},
|
||||
)
|
||||
|
||||
handler = EnterpriseMetricHandler()
|
||||
with patch.object(handler, "_on_feedback_created") as mock_handler:
|
||||
handler.handle(envelope)
|
||||
mock_handler.assert_called_once_with(envelope)
|
||||
|
||||
|
||||
def test_dispatch_message_run(mock_redis):
|
||||
mock_redis.set.return_value = True
|
||||
envelope = TelemetryEnvelope(
|
||||
case=TelemetryCase.MESSAGE_RUN,
|
||||
tenant_id="test-tenant",
|
||||
event_id="test-event-msg",
|
||||
payload={},
|
||||
)
|
||||
|
||||
handler = EnterpriseMetricHandler()
|
||||
with patch.object(handler, "_on_message_run") as mock_handler:
|
||||
handler.handle(envelope)
|
||||
mock_handler.assert_called_once_with(envelope)
|
||||
|
||||
|
||||
def test_dispatch_tool_execution(mock_redis):
|
||||
mock_redis.set.return_value = True
|
||||
envelope = TelemetryEnvelope(
|
||||
case=TelemetryCase.TOOL_EXECUTION,
|
||||
tenant_id="test-tenant",
|
||||
event_id="test-event-tool",
|
||||
payload={},
|
||||
)
|
||||
|
||||
handler = EnterpriseMetricHandler()
|
||||
with patch.object(handler, "_on_tool_execution") as mock_handler:
|
||||
handler.handle(envelope)
|
||||
mock_handler.assert_called_once_with(envelope)
|
||||
|
||||
|
||||
def test_dispatch_moderation_check(mock_redis):
|
||||
mock_redis.set.return_value = True
|
||||
envelope = TelemetryEnvelope(
|
||||
case=TelemetryCase.MODERATION_CHECK,
|
||||
tenant_id="test-tenant",
|
||||
event_id="test-event-mod",
|
||||
payload={},
|
||||
)
|
||||
|
||||
handler = EnterpriseMetricHandler()
|
||||
with patch.object(handler, "_on_moderation_check") as mock_handler:
|
||||
handler.handle(envelope)
|
||||
mock_handler.assert_called_once_with(envelope)
|
||||
|
||||
|
||||
def test_dispatch_suggested_question(mock_redis):
|
||||
mock_redis.set.return_value = True
|
||||
envelope = TelemetryEnvelope(
|
||||
case=TelemetryCase.SUGGESTED_QUESTION,
|
||||
tenant_id="test-tenant",
|
||||
event_id="test-event-sq",
|
||||
payload={},
|
||||
)
|
||||
|
||||
handler = EnterpriseMetricHandler()
|
||||
with patch.object(handler, "_on_suggested_question") as mock_handler:
|
||||
handler.handle(envelope)
|
||||
mock_handler.assert_called_once_with(envelope)
|
||||
|
||||
|
||||
def test_dispatch_dataset_retrieval(mock_redis):
|
||||
mock_redis.set.return_value = True
|
||||
envelope = TelemetryEnvelope(
|
||||
case=TelemetryCase.DATASET_RETRIEVAL,
|
||||
tenant_id="test-tenant",
|
||||
event_id="test-event-ds",
|
||||
payload={},
|
||||
)
|
||||
|
||||
handler = EnterpriseMetricHandler()
|
||||
with patch.object(handler, "_on_dataset_retrieval") as mock_handler:
|
||||
handler.handle(envelope)
|
||||
mock_handler.assert_called_once_with(envelope)
|
||||
|
||||
|
||||
def test_dispatch_generate_name(mock_redis):
|
||||
mock_redis.set.return_value = True
|
||||
envelope = TelemetryEnvelope(
|
||||
case=TelemetryCase.GENERATE_NAME,
|
||||
tenant_id="test-tenant",
|
||||
event_id="test-event-gn",
|
||||
payload={},
|
||||
)
|
||||
|
||||
handler = EnterpriseMetricHandler()
|
||||
with patch.object(handler, "_on_generate_name") as mock_handler:
|
||||
handler.handle(envelope)
|
||||
mock_handler.assert_called_once_with(envelope)
|
||||
|
||||
|
||||
def test_dispatch_prompt_generation(mock_redis):
|
||||
mock_redis.set.return_value = True
|
||||
envelope = TelemetryEnvelope(
|
||||
case=TelemetryCase.PROMPT_GENERATION,
|
||||
tenant_id="test-tenant",
|
||||
event_id="test-event-pg",
|
||||
payload={},
|
||||
)
|
||||
|
||||
handler = EnterpriseMetricHandler()
|
||||
with patch.object(handler, "_on_prompt_generation") as mock_handler:
|
||||
handler.handle(envelope)
|
||||
mock_handler.assert_called_once_with(envelope)
|
||||
|
||||
|
||||
def test_all_known_cases_have_handlers(mock_redis):
|
||||
mock_redis.set.return_value = True
|
||||
handler = EnterpriseMetricHandler()
|
||||
|
||||
for case in TelemetryCase:
|
||||
envelope = TelemetryEnvelope(
|
||||
case=case,
|
||||
tenant_id="test-tenant",
|
||||
event_id=f"test-{case.value}",
|
||||
payload={},
|
||||
)
|
||||
handler.handle(envelope)
|
||||
|
||||
|
||||
def test_idempotency_duplicate(sample_envelope, mock_redis):
|
||||
mock_redis.set.return_value = None
|
||||
|
||||
handler = EnterpriseMetricHandler()
|
||||
with patch.object(handler, "_on_app_created") as mock_handler:
|
||||
handler.handle(sample_envelope)
|
||||
mock_handler.assert_not_called()
|
||||
|
||||
|
||||
def test_idempotency_first_seen(sample_envelope, mock_redis):
|
||||
mock_redis.set.return_value = True
|
||||
|
||||
handler = EnterpriseMetricHandler()
|
||||
is_dup = handler._is_duplicate(sample_envelope)
|
||||
|
||||
assert is_dup is False
|
||||
mock_redis.set.assert_called_once_with(
|
||||
"telemetry:dedup:test-tenant:test-event-123",
|
||||
b"1",
|
||||
nx=True,
|
||||
ex=3600,
|
||||
)
|
||||
|
||||
|
||||
def test_idempotency_redis_failure_fails_open(sample_envelope, mock_redis, caplog):
|
||||
mock_redis.set.side_effect = Exception("Redis unavailable")
|
||||
|
||||
handler = EnterpriseMetricHandler()
|
||||
is_dup = handler._is_duplicate(sample_envelope)
|
||||
|
||||
assert is_dup is False
|
||||
assert "Redis unavailable for deduplication check" in caplog.text
|
||||
|
||||
|
||||
def test_rehydration_uses_payload(sample_envelope):
|
||||
handler = EnterpriseMetricHandler()
|
||||
payload = handler._rehydrate(sample_envelope)
|
||||
|
||||
assert payload == {"app_id": "app-123", "name": "Test App"}
|
||||
|
||||
|
||||
def test_rehydration_fallback():
|
||||
import pickle
|
||||
|
||||
fallback_data = {"fallback": "data"}
|
||||
envelope = TelemetryEnvelope(
|
||||
case=TelemetryCase.APP_CREATED,
|
||||
tenant_id="test-tenant",
|
||||
event_id="test-event-fb",
|
||||
payload={},
|
||||
payload_fallback=pickle.dumps(fallback_data),
|
||||
)
|
||||
|
||||
handler = EnterpriseMetricHandler()
|
||||
payload = handler._rehydrate(envelope)
|
||||
|
||||
assert payload == fallback_data
|
||||
|
||||
|
||||
def test_rehydration_emits_degraded_event_on_failure():
|
||||
envelope = TelemetryEnvelope(
|
||||
case=TelemetryCase.APP_CREATED,
|
||||
tenant_id="test-tenant",
|
||||
event_id="test-event-fail",
|
||||
payload={},
|
||||
payload_fallback=None,
|
||||
)
|
||||
|
||||
handler = EnterpriseMetricHandler()
|
||||
with patch("enterprise.telemetry.telemetry_log.emit_metric_only_event") as mock_emit:
|
||||
payload = handler._rehydrate(envelope)
|
||||
|
||||
from enterprise.telemetry.entities import EnterpriseTelemetryEvent
|
||||
|
||||
assert payload == {}
|
||||
mock_emit.assert_called_once()
|
||||
call_args = mock_emit.call_args
|
||||
assert call_args[1]["event_name"] == EnterpriseTelemetryEvent.REHYDRATION_FAILED
|
||||
assert call_args[1]["attributes"]["rehydration_failed"] is True
|
||||
|
||||
|
||||
def test_on_app_created_emits_correct_event(mock_redis):
|
||||
mock_redis.set.return_value = True
|
||||
envelope = TelemetryEnvelope(
|
||||
case=TelemetryCase.APP_CREATED,
|
||||
tenant_id="tenant-123",
|
||||
event_id="event-456",
|
||||
payload={"app_id": "app-789", "mode": "chat"},
|
||||
)
|
||||
|
||||
handler = EnterpriseMetricHandler()
|
||||
with (
|
||||
patch("extensions.ext_enterprise_telemetry.get_enterprise_exporter") as mock_get_exporter,
|
||||
patch("enterprise.telemetry.telemetry_log.emit_metric_only_event") as mock_emit,
|
||||
):
|
||||
mock_exporter = MagicMock()
|
||||
mock_get_exporter.return_value = mock_exporter
|
||||
|
||||
handler._on_app_created(envelope)
|
||||
|
||||
from enterprise.telemetry.entities import EnterpriseTelemetryEvent
|
||||
|
||||
mock_emit.assert_called_once_with(
|
||||
event_name=EnterpriseTelemetryEvent.APP_CREATED,
|
||||
attributes={
|
||||
"dify.app.id": "app-789",
|
||||
"dify.tenant_id": "tenant-123",
|
||||
"dify.app.mode": "chat",
|
||||
},
|
||||
tenant_id="tenant-123",
|
||||
)
|
||||
from enterprise.telemetry.entities import EnterpriseTelemetryCounter
|
||||
|
||||
mock_exporter.increment_counter.assert_called_once()
|
||||
call_args = mock_exporter.increment_counter.call_args
|
||||
assert call_args[0][0] == EnterpriseTelemetryCounter.APP_CREATED
|
||||
assert call_args[0][1] == 1
|
||||
assert call_args[0][2]["tenant_id"] == "tenant-123"
|
||||
assert call_args[0][2]["app_id"] == "app-789"
|
||||
assert call_args[0][2]["mode"] == "chat"
|
||||
|
||||
|
||||
def test_on_app_updated_emits_correct_event(mock_redis):
|
||||
mock_redis.set.return_value = True
|
||||
envelope = TelemetryEnvelope(
|
||||
case=TelemetryCase.APP_UPDATED,
|
||||
tenant_id="tenant-123",
|
||||
event_id="event-456",
|
||||
payload={"app_id": "app-789"},
|
||||
)
|
||||
|
||||
handler = EnterpriseMetricHandler()
|
||||
with (
|
||||
patch("extensions.ext_enterprise_telemetry.get_enterprise_exporter") as mock_get_exporter,
|
||||
patch("enterprise.telemetry.telemetry_log.emit_metric_only_event") as mock_emit,
|
||||
):
|
||||
mock_exporter = MagicMock()
|
||||
mock_get_exporter.return_value = mock_exporter
|
||||
|
||||
handler._on_app_updated(envelope)
|
||||
|
||||
from enterprise.telemetry.entities import EnterpriseTelemetryEvent
|
||||
|
||||
mock_emit.assert_called_once_with(
|
||||
event_name=EnterpriseTelemetryEvent.APP_UPDATED,
|
||||
attributes={
|
||||
"dify.app.id": "app-789",
|
||||
"dify.tenant_id": "tenant-123",
|
||||
},
|
||||
tenant_id="tenant-123",
|
||||
)
|
||||
from enterprise.telemetry.entities import EnterpriseTelemetryCounter
|
||||
|
||||
mock_exporter.increment_counter.assert_called_once()
|
||||
call_args = mock_exporter.increment_counter.call_args
|
||||
assert call_args[0][0] == EnterpriseTelemetryCounter.APP_UPDATED
|
||||
assert call_args[0][1] == 1
|
||||
assert call_args[0][2]["tenant_id"] == "tenant-123"
|
||||
assert call_args[0][2]["app_id"] == "app-789"
|
||||
|
||||
|
||||
def test_on_app_deleted_emits_correct_event(mock_redis):
|
||||
mock_redis.set.return_value = True
|
||||
envelope = TelemetryEnvelope(
|
||||
case=TelemetryCase.APP_DELETED,
|
||||
tenant_id="tenant-123",
|
||||
event_id="event-456",
|
||||
payload={"app_id": "app-789"},
|
||||
)
|
||||
|
||||
handler = EnterpriseMetricHandler()
|
||||
with (
|
||||
patch("extensions.ext_enterprise_telemetry.get_enterprise_exporter") as mock_get_exporter,
|
||||
patch("enterprise.telemetry.telemetry_log.emit_metric_only_event") as mock_emit,
|
||||
):
|
||||
mock_exporter = MagicMock()
|
||||
mock_get_exporter.return_value = mock_exporter
|
||||
|
||||
handler._on_app_deleted(envelope)
|
||||
|
||||
from enterprise.telemetry.entities import EnterpriseTelemetryEvent
|
||||
|
||||
mock_emit.assert_called_once_with(
|
||||
event_name=EnterpriseTelemetryEvent.APP_DELETED,
|
||||
attributes={
|
||||
"dify.app.id": "app-789",
|
||||
"dify.tenant_id": "tenant-123",
|
||||
},
|
||||
tenant_id="tenant-123",
|
||||
)
|
||||
from enterprise.telemetry.entities import EnterpriseTelemetryCounter
|
||||
|
||||
mock_exporter.increment_counter.assert_called_once()
|
||||
call_args = mock_exporter.increment_counter.call_args
|
||||
assert call_args[0][0] == EnterpriseTelemetryCounter.APP_DELETED
|
||||
assert call_args[0][1] == 1
|
||||
assert call_args[0][2]["tenant_id"] == "tenant-123"
|
||||
assert call_args[0][2]["app_id"] == "app-789"
|
||||
|
||||
|
||||
def test_on_feedback_created_emits_correct_event(mock_redis):
|
||||
mock_redis.set.return_value = True
|
||||
envelope = TelemetryEnvelope(
|
||||
case=TelemetryCase.FEEDBACK_CREATED,
|
||||
tenant_id="tenant-123",
|
||||
event_id="event-456",
|
||||
payload={
|
||||
"message_id": "msg-001",
|
||||
"app_id": "app-789",
|
||||
"conversation_id": "conv-123",
|
||||
"from_end_user_id": "user-456",
|
||||
"from_account_id": None,
|
||||
"rating": "like",
|
||||
"from_source": "api",
|
||||
"content": "Great!",
|
||||
},
|
||||
)
|
||||
|
||||
handler = EnterpriseMetricHandler()
|
||||
with (
|
||||
patch("extensions.ext_enterprise_telemetry.get_enterprise_exporter") as mock_get_exporter,
|
||||
patch("enterprise.telemetry.telemetry_log.emit_metric_only_event") as mock_emit,
|
||||
):
|
||||
mock_exporter = MagicMock()
|
||||
mock_exporter.include_content = True
|
||||
mock_get_exporter.return_value = mock_exporter
|
||||
|
||||
handler._on_feedback_created(envelope)
|
||||
|
||||
mock_emit.assert_called_once()
|
||||
call_args = mock_emit.call_args
|
||||
assert call_args[1]["event_name"] == "dify.feedback.created"
|
||||
assert call_args[1]["attributes"]["dify.message.id"] == "msg-001"
|
||||
assert call_args[1]["attributes"]["dify.feedback.content"] == "Great!"
|
||||
assert call_args[1]["tenant_id"] == "tenant-123"
|
||||
assert call_args[1]["user_id"] == "user-456"
|
||||
|
||||
mock_exporter.increment_counter.assert_called_once()
|
||||
counter_args = mock_exporter.increment_counter.call_args
|
||||
assert counter_args[0][2]["app_id"] == "app-789"
|
||||
assert counter_args[0][2]["rating"] == "like"
|
||||
|
||||
|
||||
def test_on_feedback_created_without_content(mock_redis):
|
||||
mock_redis.set.return_value = True
|
||||
envelope = TelemetryEnvelope(
|
||||
case=TelemetryCase.FEEDBACK_CREATED,
|
||||
tenant_id="tenant-123",
|
||||
event_id="event-456",
|
||||
payload={
|
||||
"message_id": "msg-001",
|
||||
"app_id": "app-789",
|
||||
"conversation_id": "conv-123",
|
||||
"from_end_user_id": "user-456",
|
||||
"from_account_id": None,
|
||||
"rating": "like",
|
||||
"from_source": "api",
|
||||
"content": "Great!",
|
||||
},
|
||||
)
|
||||
|
||||
handler = EnterpriseMetricHandler()
|
||||
with (
|
||||
patch("extensions.ext_enterprise_telemetry.get_enterprise_exporter") as mock_get_exporter,
|
||||
patch("enterprise.telemetry.telemetry_log.emit_metric_only_event") as mock_emit,
|
||||
):
|
||||
mock_exporter = MagicMock()
|
||||
mock_exporter.include_content = False
|
||||
mock_get_exporter.return_value = mock_exporter
|
||||
|
||||
handler._on_feedback_created(envelope)
|
||||
|
||||
mock_emit.assert_called_once()
|
||||
call_args = mock_emit.call_args
|
||||
assert "dify.feedback.content" not in call_args[1]["attributes"]
|
||||
69
api/tests/unit_tests/tasks/test_enterprise_telemetry_task.py
Normal file
69
api/tests/unit_tests/tasks/test_enterprise_telemetry_task.py
Normal file
@@ -0,0 +1,69 @@
|
||||
"""Unit tests for enterprise telemetry Celery task."""
|
||||
|
||||
import json
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from enterprise.telemetry.contracts import TelemetryCase, TelemetryEnvelope
|
||||
from tasks.enterprise_telemetry_task import process_enterprise_telemetry
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def sample_envelope_json():
|
||||
envelope = TelemetryEnvelope(
|
||||
case=TelemetryCase.APP_CREATED,
|
||||
tenant_id="test-tenant",
|
||||
event_id="test-event-123",
|
||||
payload={"app_id": "app-123"},
|
||||
)
|
||||
return envelope.model_dump_json()
|
||||
|
||||
|
||||
def test_process_enterprise_telemetry_success(sample_envelope_json):
|
||||
with patch("tasks.enterprise_telemetry_task.EnterpriseMetricHandler") as mock_handler_class:
|
||||
mock_handler = MagicMock()
|
||||
mock_handler_class.return_value = mock_handler
|
||||
|
||||
process_enterprise_telemetry(sample_envelope_json)
|
||||
|
||||
mock_handler.handle.assert_called_once()
|
||||
call_args = mock_handler.handle.call_args[0][0]
|
||||
assert isinstance(call_args, TelemetryEnvelope)
|
||||
assert call_args.case == TelemetryCase.APP_CREATED
|
||||
assert call_args.tenant_id == "test-tenant"
|
||||
assert call_args.event_id == "test-event-123"
|
||||
|
||||
|
||||
def test_process_enterprise_telemetry_invalid_json(caplog):
|
||||
invalid_json = "not valid json"
|
||||
|
||||
process_enterprise_telemetry(invalid_json)
|
||||
|
||||
assert "Failed to process enterprise telemetry envelope" in caplog.text
|
||||
|
||||
|
||||
def test_process_enterprise_telemetry_handler_exception(sample_envelope_json, caplog):
|
||||
with patch("tasks.enterprise_telemetry_task.EnterpriseMetricHandler") as mock_handler_class:
|
||||
mock_handler = MagicMock()
|
||||
mock_handler.handle.side_effect = Exception("Handler error")
|
||||
mock_handler_class.return_value = mock_handler
|
||||
|
||||
process_enterprise_telemetry(sample_envelope_json)
|
||||
|
||||
assert "Failed to process enterprise telemetry envelope" in caplog.text
|
||||
|
||||
|
||||
def test_process_enterprise_telemetry_validation_error(caplog):
|
||||
invalid_envelope = json.dumps(
|
||||
{
|
||||
"case": "INVALID_CASE",
|
||||
"tenant_id": "test-tenant",
|
||||
"event_id": "test-event",
|
||||
"payload": {},
|
||||
}
|
||||
)
|
||||
|
||||
process_enterprise_telemetry(invalid_envelope)
|
||||
|
||||
assert "Failed to process enterprise telemetry envelope" in caplog.text
|
||||
Reference in New Issue
Block a user