mirror of
https://github.com/langgenius/dify.git
synced 2026-02-05 23:53:58 +00:00
Compare commits
1 Commits
refactor/t
...
feat/go-to
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
559547e9bf |
@@ -1,4 +1,5 @@
|
||||
from collections.abc import Sequence
|
||||
from typing import Any
|
||||
|
||||
from flask_restx import Resource
|
||||
from pydantic import BaseModel, Field
|
||||
@@ -19,6 +20,7 @@ from core.helper.code_executor.python3.python3_code_provider import Python3CodeP
|
||||
from core.llm_generator.entities import RuleCodeGeneratePayload, RuleGeneratePayload, RuleStructuredOutputPayload
|
||||
from core.llm_generator.llm_generator import LLMGenerator
|
||||
from core.model_runtime.errors.invoke import InvokeError
|
||||
from core.workflow.generator import WorkflowGenerator
|
||||
from extensions.ext_database import db
|
||||
from libs.login import current_account_with_tenant, login_required
|
||||
from models import App
|
||||
@@ -41,6 +43,30 @@ class InstructionTemplatePayload(BaseModel):
|
||||
type: str = Field(..., description="Instruction template type")
|
||||
|
||||
|
||||
class PreviousWorkflow(BaseModel):
|
||||
"""Previous workflow attempt for regeneration context."""
|
||||
|
||||
nodes: list[dict[str, Any]] = Field(default_factory=list, description="Previously generated nodes")
|
||||
edges: list[dict[str, Any]] = Field(default_factory=list, description="Previously generated edges")
|
||||
warnings: list[str] = Field(default_factory=list, description="Warnings from previous generation")
|
||||
|
||||
|
||||
class FlowchartGeneratePayload(BaseModel):
|
||||
instruction: str = Field(..., description="Workflow flowchart generation instruction")
|
||||
model_config_data: dict[str, Any] = Field(..., alias="model_config", description="Model configuration")
|
||||
available_nodes: list[dict[str, Any]] = Field(default_factory=list, description="Available node types")
|
||||
existing_nodes: list[dict[str, Any]] = Field(default_factory=list, description="Existing workflow nodes")
|
||||
existing_edges: list[dict[str, Any]] = Field(default_factory=list, description="Existing workflow edges")
|
||||
available_tools: list[dict[str, Any]] = Field(default_factory=list, description="Available tools")
|
||||
selected_node_ids: list[str] = Field(default_factory=list, description="IDs of selected nodes for context")
|
||||
previous_workflow: PreviousWorkflow | None = Field(default=None, description="Previous workflow for regeneration")
|
||||
regenerate_mode: bool = Field(default=False, description="Whether this is a regeneration request")
|
||||
# Language preference for generated content (node titles, descriptions)
|
||||
language: str | None = Field(default=None, description="Preferred language for generated content")
|
||||
# Available models that user has configured (for LLM/question-classifier nodes)
|
||||
available_models: list[dict[str, Any]] = Field(default_factory=list, description="User's configured models")
|
||||
|
||||
|
||||
def reg(cls: type[BaseModel]):
|
||||
console_ns.schema_model(cls.__name__, cls.model_json_schema(ref_template=DEFAULT_REF_TEMPLATE_SWAGGER_2_0))
|
||||
|
||||
@@ -50,6 +76,7 @@ reg(RuleCodeGeneratePayload)
|
||||
reg(RuleStructuredOutputPayload)
|
||||
reg(InstructionGeneratePayload)
|
||||
reg(InstructionTemplatePayload)
|
||||
reg(FlowchartGeneratePayload)
|
||||
reg(ModelConfig)
|
||||
|
||||
|
||||
@@ -240,6 +267,52 @@ class InstructionGenerateApi(Resource):
|
||||
raise CompletionRequestError(e.description)
|
||||
|
||||
|
||||
@console_ns.route("/flowchart-generate")
|
||||
class FlowchartGenerateApi(Resource):
|
||||
@console_ns.doc("generate_workflow_flowchart")
|
||||
@console_ns.doc(description="Generate workflow flowchart using LLM with intent classification")
|
||||
@console_ns.expect(console_ns.models[FlowchartGeneratePayload.__name__])
|
||||
@console_ns.response(200, "Flowchart generated successfully")
|
||||
@console_ns.response(400, "Invalid request parameters")
|
||||
@console_ns.response(402, "Provider quota exceeded")
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self):
|
||||
args = FlowchartGeneratePayload.model_validate(console_ns.payload)
|
||||
_, current_tenant_id = current_account_with_tenant()
|
||||
|
||||
try:
|
||||
# Convert PreviousWorkflow to dict if present
|
||||
previous_workflow_dict = args.previous_workflow.model_dump() if args.previous_workflow else None
|
||||
|
||||
result = WorkflowGenerator.generate_workflow_flowchart(
|
||||
tenant_id=current_tenant_id,
|
||||
instruction=args.instruction,
|
||||
model_config=args.model_config_data,
|
||||
available_nodes=args.available_nodes,
|
||||
existing_nodes=args.existing_nodes,
|
||||
existing_edges=args.existing_edges,
|
||||
available_tools=args.available_tools,
|
||||
selected_node_ids=args.selected_node_ids,
|
||||
previous_workflow=previous_workflow_dict,
|
||||
regenerate_mode=args.regenerate_mode,
|
||||
preferred_language=args.language,
|
||||
available_models=args.available_models,
|
||||
)
|
||||
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
except QuotaExceededError:
|
||||
raise ProviderQuotaExceededError()
|
||||
except ModelCurrentlyNotSupportError:
|
||||
raise ProviderModelCurrentlyNotSupportError()
|
||||
except InvokeError as e:
|
||||
raise CompletionRequestError(e.description)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
@console_ns.route("/instruction-generate/template")
|
||||
class InstructionGenerationTemplateApi(Resource):
|
||||
@console_ns.doc("get_instruction_template")
|
||||
|
||||
1
api/core/workflow/generator/__init__.py
Normal file
1
api/core/workflow/generator/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
from .runner import WorkflowGenerator
|
||||
29
api/core/workflow/generator/config/__init__.py
Normal file
29
api/core/workflow/generator/config/__init__.py
Normal file
@@ -0,0 +1,29 @@
|
||||
"""
|
||||
Vibe Workflow Generator Configuration Module.
|
||||
|
||||
This module centralizes configuration for the Vibe workflow generation feature,
|
||||
including node schemas, fallback rules, and response templates.
|
||||
"""
|
||||
|
||||
from core.workflow.generator.config.node_schemas import (
|
||||
BUILTIN_NODE_SCHEMAS,
|
||||
FALLBACK_RULES,
|
||||
FIELD_NAME_CORRECTIONS,
|
||||
NODE_TYPE_ALIASES,
|
||||
get_builtin_node_schemas,
|
||||
get_corrected_field_name,
|
||||
validate_node_schemas,
|
||||
)
|
||||
from core.workflow.generator.config.responses import DEFAULT_SUGGESTIONS, OFF_TOPIC_RESPONSES
|
||||
|
||||
__all__ = [
|
||||
"BUILTIN_NODE_SCHEMAS",
|
||||
"DEFAULT_SUGGESTIONS",
|
||||
"FALLBACK_RULES",
|
||||
"FIELD_NAME_CORRECTIONS",
|
||||
"NODE_TYPE_ALIASES",
|
||||
"OFF_TOPIC_RESPONSES",
|
||||
"get_builtin_node_schemas",
|
||||
"get_corrected_field_name",
|
||||
"validate_node_schemas",
|
||||
]
|
||||
501
api/core/workflow/generator/config/node_schemas.py
Normal file
501
api/core/workflow/generator/config/node_schemas.py
Normal file
@@ -0,0 +1,501 @@
|
||||
"""
|
||||
Unified Node Configuration for Vibe Workflow Generation.
|
||||
|
||||
This module centralizes all node-related configuration:
|
||||
- Node schemas (parameter definitions)
|
||||
- Fallback rules (keyword-based node type inference)
|
||||
- Node type aliases (natural language to canonical type mapping)
|
||||
- Field name corrections (LLM output normalization)
|
||||
- Validation utilities
|
||||
|
||||
Note: These definitions are the single source of truth.
|
||||
Frontend has a mirrored copy at web/app/components/workflow/hooks/use-workflow-vibe-config.ts
|
||||
"""
|
||||
|
||||
from typing import Any
|
||||
|
||||
# =============================================================================
|
||||
# NODE SCHEMAS
|
||||
# =============================================================================
|
||||
|
||||
# Built-in node schemas with parameter definitions
|
||||
# These help the model understand what config each node type requires
|
||||
_HARDCODED_SCHEMAS: dict[str, dict[str, Any]] = {
|
||||
"http-request": {
|
||||
"description": "Send HTTP requests to external APIs or fetch web content",
|
||||
"required": ["url", "method"],
|
||||
"parameters": {
|
||||
"url": {
|
||||
"type": "string",
|
||||
"description": "Full URL including protocol (https://...)",
|
||||
"example": "{{#start.url#}} or https://api.example.com/data",
|
||||
},
|
||||
"method": {
|
||||
"type": "enum",
|
||||
"options": ["GET", "POST", "PUT", "DELETE", "PATCH", "HEAD"],
|
||||
"description": "HTTP method",
|
||||
},
|
||||
"headers": {
|
||||
"type": "string",
|
||||
"description": "HTTP headers as newline-separated 'Key: Value' pairs",
|
||||
"example": "Content-Type: application/json\nAuthorization: Bearer {{#start.api_key#}}",
|
||||
},
|
||||
"params": {
|
||||
"type": "string",
|
||||
"description": "URL query parameters as newline-separated 'key: value' pairs",
|
||||
},
|
||||
"body": {
|
||||
"type": "object",
|
||||
"description": "Request body with type field required",
|
||||
"example": {"type": "none", "data": []},
|
||||
},
|
||||
"authorization": {
|
||||
"type": "object",
|
||||
"description": "Authorization config",
|
||||
"example": {"type": "no-auth"},
|
||||
},
|
||||
"timeout": {
|
||||
"type": "number",
|
||||
"description": "Request timeout in seconds",
|
||||
"default": 60,
|
||||
},
|
||||
},
|
||||
"outputs": ["body (response content)", "status_code", "headers"],
|
||||
},
|
||||
"code": {
|
||||
"description": "Execute Python or JavaScript code for custom logic",
|
||||
"required": ["code", "language"],
|
||||
"parameters": {
|
||||
"code": {
|
||||
"type": "string",
|
||||
"description": "Code to execute. Must define a main() function that returns a dict.",
|
||||
},
|
||||
"language": {
|
||||
"type": "enum",
|
||||
"options": ["python3", "javascript"],
|
||||
},
|
||||
"variables": {
|
||||
"type": "array",
|
||||
"description": "Input variables passed to the code",
|
||||
"item_schema": {"variable": "string", "value_selector": "array"},
|
||||
},
|
||||
"outputs": {
|
||||
"type": "object",
|
||||
"description": "Output variable definitions",
|
||||
},
|
||||
},
|
||||
"outputs": ["Variables defined in outputs schema"],
|
||||
},
|
||||
"llm": {
|
||||
"description": "Call a large language model for text generation/processing",
|
||||
"required": ["prompt_template"],
|
||||
"parameters": {
|
||||
"model": {
|
||||
"type": "object",
|
||||
"description": "Model configuration (provider, name, mode)",
|
||||
},
|
||||
"prompt_template": {
|
||||
"type": "array",
|
||||
"description": "Messages for the LLM",
|
||||
"item_schema": {
|
||||
"role": "enum: system, user, assistant",
|
||||
"text": "string - message content, can include {{#node_id.field#}} references",
|
||||
},
|
||||
},
|
||||
"context": {
|
||||
"type": "object",
|
||||
"description": "Optional context settings",
|
||||
},
|
||||
"memory": {
|
||||
"type": "object",
|
||||
"description": "Optional memory/conversation settings",
|
||||
},
|
||||
},
|
||||
"outputs": ["text (generated response)"],
|
||||
},
|
||||
"if-else": {
|
||||
"description": "Conditional branching based on conditions",
|
||||
"required": ["cases"],
|
||||
"parameters": {
|
||||
"cases": {
|
||||
"type": "array",
|
||||
"description": "List of condition cases. Each case defines when 'true' branch is taken.",
|
||||
"item_schema": {
|
||||
"case_id": "string - unique case identifier (e.g., 'case_1')",
|
||||
"logical_operator": "enum: and, or - how multiple conditions combine",
|
||||
"conditions": {
|
||||
"type": "array",
|
||||
"item_schema": {
|
||||
"variable_selector": "array of strings - path to variable, e.g. ['node_id', 'field']",
|
||||
"comparison_operator": (
|
||||
"enum: =, ≠, >, <, ≥, ≤, contains, not contains, is, is not, empty, not empty"
|
||||
),
|
||||
"value": "string or number - value to compare against",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
"outputs": ["Branches: true (first case conditions met), false (else/no case matched)"],
|
||||
},
|
||||
"knowledge-retrieval": {
|
||||
"description": "Query knowledge base for relevant content",
|
||||
"required": ["query_variable_selector", "dataset_ids"],
|
||||
"parameters": {
|
||||
"query_variable_selector": {
|
||||
"type": "array",
|
||||
"description": "Path to query variable, e.g. ['start', 'query']",
|
||||
},
|
||||
"dataset_ids": {
|
||||
"type": "array",
|
||||
"description": "List of knowledge base IDs to search",
|
||||
},
|
||||
"retrieval_mode": {
|
||||
"type": "enum",
|
||||
"options": ["single", "multiple"],
|
||||
},
|
||||
},
|
||||
"outputs": ["result (retrieved documents)"],
|
||||
},
|
||||
"template-transform": {
|
||||
"description": "Transform data using Jinja2 templates",
|
||||
"required": ["template", "variables"],
|
||||
"parameters": {
|
||||
"template": {
|
||||
"type": "string",
|
||||
"description": "Jinja2 template string. Use {{ variable_name }} to reference variables.",
|
||||
},
|
||||
"variables": {
|
||||
"type": "array",
|
||||
"description": "Input variables defined for the template",
|
||||
"item_schema": {
|
||||
"variable": "string - variable name to use in template",
|
||||
"value_selector": "array - path to source value, e.g. ['start', 'user_input']",
|
||||
},
|
||||
},
|
||||
},
|
||||
"outputs": ["output (transformed string)"],
|
||||
},
|
||||
"variable-aggregator": {
|
||||
"description": "Aggregate variables from multiple branches",
|
||||
"required": ["variables"],
|
||||
"parameters": {
|
||||
"variables": {
|
||||
"type": "array",
|
||||
"description": "List of variable selectors to aggregate",
|
||||
"item_schema": "array of strings - path to source variable, e.g. ['node_id', 'field']",
|
||||
},
|
||||
},
|
||||
"outputs": ["output (aggregated value)"],
|
||||
},
|
||||
"iteration": {
|
||||
"description": "Loop over array items",
|
||||
"required": ["iterator_selector"],
|
||||
"parameters": {
|
||||
"iterator_selector": {
|
||||
"type": "array",
|
||||
"description": "Path to array variable to iterate",
|
||||
},
|
||||
},
|
||||
"outputs": ["item (current iteration item)", "index (current index)"],
|
||||
},
|
||||
"parameter-extractor": {
|
||||
"description": "Extract structured parameters from user input using LLM",
|
||||
"required": ["query", "parameters"],
|
||||
"parameters": {
|
||||
"model": {
|
||||
"type": "object",
|
||||
"description": "Model configuration (provider, name, mode)",
|
||||
},
|
||||
"query": {
|
||||
"type": "array",
|
||||
"description": "Path to input text to extract parameters from, e.g. ['start', 'user_input']",
|
||||
},
|
||||
"parameters": {
|
||||
"type": "array",
|
||||
"description": "Parameters to extract from the input",
|
||||
"item_schema": {
|
||||
"name": "string - parameter name (required)",
|
||||
"type": (
|
||||
"enum: string, number, boolean, array[string], array[number], array[object], array[boolean]"
|
||||
),
|
||||
"description": "string - description of what to extract (required)",
|
||||
"required": "boolean - whether this parameter is required (MUST be specified)",
|
||||
"options": "array of strings (optional) - for enum-like selection",
|
||||
},
|
||||
},
|
||||
"instruction": {
|
||||
"type": "string",
|
||||
"description": "Additional instructions for extraction",
|
||||
},
|
||||
"reasoning_mode": {
|
||||
"type": "enum",
|
||||
"options": ["function_call", "prompt"],
|
||||
"description": "How to perform extraction (defaults to function_call)",
|
||||
},
|
||||
},
|
||||
"outputs": ["Extracted parameters as defined in parameters array", "__is_success", "__reason"],
|
||||
},
|
||||
"question-classifier": {
|
||||
"description": "Classify user input into predefined categories using LLM",
|
||||
"required": ["query", "classes"],
|
||||
"parameters": {
|
||||
"model": {
|
||||
"type": "object",
|
||||
"description": "Model configuration (provider, name, mode)",
|
||||
},
|
||||
"query": {
|
||||
"type": "array",
|
||||
"description": "Path to input text to classify, e.g. ['start', 'user_input']",
|
||||
},
|
||||
"classes": {
|
||||
"type": "array",
|
||||
"description": "Classification categories",
|
||||
"item_schema": {
|
||||
"id": "string - unique class identifier",
|
||||
"name": "string - class name/label",
|
||||
},
|
||||
},
|
||||
"instruction": {
|
||||
"type": "string",
|
||||
"description": "Additional instructions for classification",
|
||||
},
|
||||
},
|
||||
"outputs": ["class_name (selected class)"],
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
def _get_dynamic_schemas() -> dict[str, dict[str, Any]]:
|
||||
"""
|
||||
Dynamically load schemas from node classes.
|
||||
Uses lazy import to avoid circular dependency.
|
||||
"""
|
||||
from core.workflow.nodes.node_mapping import LATEST_VERSION, NODE_TYPE_CLASSES_MAPPING
|
||||
|
||||
schemas = {}
|
||||
for node_type, version_map in NODE_TYPE_CLASSES_MAPPING.items():
|
||||
# Get the latest version class
|
||||
node_cls = version_map.get(LATEST_VERSION)
|
||||
if not node_cls:
|
||||
continue
|
||||
|
||||
# Get schema from the class
|
||||
schema = node_cls.get_default_config_schema()
|
||||
if schema:
|
||||
schemas[node_type.value] = schema
|
||||
|
||||
return schemas
|
||||
|
||||
|
||||
# Cache for built-in schemas (populated on first access)
|
||||
_builtin_schemas_cache: dict[str, dict[str, Any]] | None = None
|
||||
|
||||
|
||||
def get_builtin_node_schemas() -> dict[str, dict[str, Any]]:
|
||||
"""
|
||||
Get the complete set of built-in node schemas.
|
||||
Combines hardcoded schemas with dynamically loaded ones.
|
||||
Results are cached after first call.
|
||||
"""
|
||||
global _builtin_schemas_cache
|
||||
if _builtin_schemas_cache is None:
|
||||
_builtin_schemas_cache = {**_HARDCODED_SCHEMAS, **_get_dynamic_schemas()}
|
||||
return _builtin_schemas_cache
|
||||
|
||||
|
||||
# For backward compatibility - but use get_builtin_node_schemas() for lazy loading
|
||||
BUILTIN_NODE_SCHEMAS: dict[str, dict[str, Any]] = _HARDCODED_SCHEMAS.copy()
|
||||
|
||||
|
||||
# =============================================================================
|
||||
# FALLBACK RULES
|
||||
# =============================================================================
|
||||
|
||||
# Keyword rules for smart fallback detection
|
||||
# Maps node type to keywords that suggest using that node type as a fallback
|
||||
FALLBACK_RULES: dict[str, list[str]] = {
|
||||
"http-request": [
|
||||
"http",
|
||||
"url",
|
||||
"web",
|
||||
"scrape",
|
||||
"scraper",
|
||||
"fetch",
|
||||
"api",
|
||||
"request",
|
||||
"download",
|
||||
"upload",
|
||||
"webhook",
|
||||
"endpoint",
|
||||
"rest",
|
||||
"get",
|
||||
"post",
|
||||
],
|
||||
"code": [
|
||||
"code",
|
||||
"script",
|
||||
"calculate",
|
||||
"compute",
|
||||
"process",
|
||||
"transform",
|
||||
"parse",
|
||||
"convert",
|
||||
"format",
|
||||
"filter",
|
||||
"sort",
|
||||
"math",
|
||||
"logic",
|
||||
],
|
||||
"llm": [
|
||||
"analyze",
|
||||
"summarize",
|
||||
"summary",
|
||||
"extract",
|
||||
"classify",
|
||||
"translate",
|
||||
"generate",
|
||||
"write",
|
||||
"rewrite",
|
||||
"explain",
|
||||
"answer",
|
||||
"chat",
|
||||
],
|
||||
}
|
||||
|
||||
|
||||
# =============================================================================
|
||||
# NODE TYPE ALIASES
|
||||
# =============================================================================
|
||||
|
||||
# Node type aliases for inference from natural language
|
||||
# Maps common terms to canonical node type names
|
||||
NODE_TYPE_ALIASES: dict[str, str] = {
|
||||
# Start node aliases
|
||||
"start": "start",
|
||||
"begin": "start",
|
||||
"input": "start",
|
||||
# End node aliases
|
||||
"end": "end",
|
||||
"finish": "end",
|
||||
"output": "end",
|
||||
# LLM node aliases
|
||||
"llm": "llm",
|
||||
"ai": "llm",
|
||||
"gpt": "llm",
|
||||
"model": "llm",
|
||||
"chat": "llm",
|
||||
# Code node aliases
|
||||
"code": "code",
|
||||
"script": "code",
|
||||
"python": "code",
|
||||
"javascript": "code",
|
||||
# HTTP request node aliases
|
||||
"http-request": "http-request",
|
||||
"http": "http-request",
|
||||
"request": "http-request",
|
||||
"api": "http-request",
|
||||
"fetch": "http-request",
|
||||
"webhook": "http-request",
|
||||
# Conditional node aliases
|
||||
"if-else": "if-else",
|
||||
"condition": "if-else",
|
||||
"branch": "if-else",
|
||||
"switch": "if-else",
|
||||
# Loop node aliases
|
||||
"iteration": "iteration",
|
||||
"loop": "loop",
|
||||
"foreach": "iteration",
|
||||
# Tool node alias
|
||||
"tool": "tool",
|
||||
}
|
||||
|
||||
|
||||
# =============================================================================
|
||||
# FIELD NAME CORRECTIONS
|
||||
# =============================================================================
|
||||
|
||||
# Field name corrections for LLM-generated node configs
|
||||
# Maps incorrect field names to correct ones for specific node types
|
||||
FIELD_NAME_CORRECTIONS: dict[str, dict[str, str]] = {
|
||||
"http-request": {
|
||||
"text": "body", # LLM might use "text" instead of "body"
|
||||
"content": "body",
|
||||
"response": "body",
|
||||
},
|
||||
"code": {
|
||||
"text": "result", # LLM might use "text" instead of "result"
|
||||
"output": "result",
|
||||
},
|
||||
"llm": {
|
||||
"response": "text",
|
||||
"answer": "text",
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
def get_corrected_field_name(node_type: str, field: str) -> str:
|
||||
"""
|
||||
Get the corrected field name for a node type.
|
||||
|
||||
Args:
|
||||
node_type: The type of the node (e.g., "http-request", "code")
|
||||
field: The field name to correct
|
||||
|
||||
Returns:
|
||||
The corrected field name, or the original if no correction needed
|
||||
"""
|
||||
corrections = FIELD_NAME_CORRECTIONS.get(node_type, {})
|
||||
return corrections.get(field, field)
|
||||
|
||||
|
||||
# =============================================================================
|
||||
# VALIDATION UTILITIES
|
||||
# =============================================================================
|
||||
|
||||
# Node types that are internal and don't need schemas for LLM generation
|
||||
_INTERNAL_NODE_TYPES: set[str] = {
|
||||
# Internal workflow nodes
|
||||
"answer", # Internal to chatflow
|
||||
"loop", # Uses iteration internally
|
||||
"assigner", # Variable assignment utility
|
||||
"variable-assigner", # Variable assignment utility
|
||||
"agent", # Agent node (complex, handled separately)
|
||||
"document-extractor", # Internal document processing
|
||||
"list-operator", # Internal list operations
|
||||
# Iteration internal nodes
|
||||
"iteration-start", # Internal to iteration loop
|
||||
"loop-start", # Internal to loop
|
||||
"loop-end", # Internal to loop
|
||||
# Trigger nodes (not user-creatable via LLM)
|
||||
"trigger-plugin", # Plugin trigger
|
||||
"trigger-schedule", # Scheduled trigger
|
||||
"trigger-webhook", # Webhook trigger
|
||||
# Other internal nodes
|
||||
"datasource", # Data source configuration
|
||||
"human-input", # Human-in-the-loop node
|
||||
"knowledge-index", # Knowledge indexing node
|
||||
}
|
||||
|
||||
|
||||
def validate_node_schemas() -> list[str]:
|
||||
"""
|
||||
Validate that all registered node types have corresponding schemas.
|
||||
|
||||
This function checks if BUILTIN_NODE_SCHEMAS covers all node types
|
||||
registered in NODE_TYPE_CLASSES_MAPPING, excluding internal node types.
|
||||
|
||||
Returns:
|
||||
List of warning messages for missing schemas (empty if all valid)
|
||||
"""
|
||||
from core.workflow.nodes.node_mapping import NODE_TYPE_CLASSES_MAPPING
|
||||
|
||||
schemas = get_builtin_node_schemas()
|
||||
warnings = []
|
||||
for node_type in NODE_TYPE_CLASSES_MAPPING:
|
||||
type_value = node_type.value
|
||||
if type_value in _INTERNAL_NODE_TYPES:
|
||||
continue
|
||||
if type_value not in schemas:
|
||||
warnings.append(f"Missing schema for node type: {type_value}")
|
||||
return warnings
|
||||
72
api/core/workflow/generator/config/responses.py
Normal file
72
api/core/workflow/generator/config/responses.py
Normal file
@@ -0,0 +1,72 @@
|
||||
"""
|
||||
Response Templates for Vibe Workflow Generation.
|
||||
|
||||
This module defines templates for off-topic responses and default suggestions
|
||||
to guide users back to workflow-related requests.
|
||||
"""
|
||||
|
||||
# Off-topic response templates for different categories
|
||||
# Each category has messages in multiple languages
|
||||
OFF_TOPIC_RESPONSES: dict[str, dict[str, str]] = {
|
||||
"weather": {
|
||||
"en": (
|
||||
"I'm the workflow design assistant - I can't check the weather, "
|
||||
"but I can help you build AI workflows! For example, I could help you "
|
||||
"create a workflow that fetches weather data from an API."
|
||||
),
|
||||
"zh": "我是工作流设计助手,无法查询天气。但我可以帮你创建一个从API获取天气数据的工作流!",
|
||||
},
|
||||
"math": {
|
||||
"en": (
|
||||
"I focus on workflow design rather than calculations. However, "
|
||||
"if you need calculations in a workflow, I can help you add a Code node "
|
||||
"that handles math operations!"
|
||||
),
|
||||
"zh": "我专注于工作流设计而非计算。但如果您需要在工作流中进行计算,我可以帮您添加一个处理数学运算的代码节点!",
|
||||
},
|
||||
"joke": {
|
||||
"en": (
|
||||
"While I'd love to share a laugh, I'm specialized in workflow design. "
|
||||
"How about we create something fun instead - like a workflow that generates jokes using AI?"
|
||||
),
|
||||
"zh": "虽然我很想讲笑话,但我专门从事工作流设计。不如我们创建一个有趣的东西——比如使用AI生成笑话的工作流?",
|
||||
},
|
||||
"translation": {
|
||||
"en": (
|
||||
"I can't translate directly, but I can help you build a translation workflow! "
|
||||
"Would you like to create one using an LLM node?"
|
||||
),
|
||||
"zh": "我不能直接翻译,但我可以帮你构建一个翻译工作流!要创建一个使用LLM节点的翻译流程吗?",
|
||||
},
|
||||
"general_coding": {
|
||||
"en": (
|
||||
"I'm specialized in Dify workflow design rather than general coding help. "
|
||||
"But if you want to add code logic to your workflow, I can help you configure a Code node!"
|
||||
),
|
||||
"zh": (
|
||||
"我专注于Dify工作流设计,而非通用编程帮助。但如果您想在工作流中添加代码逻辑,我可以帮您配置一个代码节点!"
|
||||
),
|
||||
},
|
||||
"default": {
|
||||
"en": (
|
||||
"I'm the Dify workflow design assistant. I help create AI automation workflows, "
|
||||
"but I can't help with general questions. Would you like to create a workflow instead?"
|
||||
),
|
||||
"zh": "我是Dify工作流设计助手。我帮助创建AI自动化工作流,但无法回答一般性问题。您想创建一个工作流吗?",
|
||||
},
|
||||
}
|
||||
|
||||
# Default suggestions for off-topic requests
|
||||
# These help guide users towards valid workflow requests
|
||||
DEFAULT_SUGGESTIONS: dict[str, list[str]] = {
|
||||
"en": [
|
||||
"Create a chatbot workflow",
|
||||
"Build a document summarization pipeline",
|
||||
"Add email notification to workflow",
|
||||
],
|
||||
"zh": [
|
||||
"创建一个聊天机器人工作流",
|
||||
"构建文档摘要处理流程",
|
||||
"添加邮件通知到工作流",
|
||||
],
|
||||
}
|
||||
0
api/core/workflow/generator/prompts/__init__.py
Normal file
0
api/core/workflow/generator/prompts/__init__.py
Normal file
733
api/core/workflow/generator/prompts/builder_prompts.py
Normal file
733
api/core/workflow/generator/prompts/builder_prompts.py
Normal file
@@ -0,0 +1,733 @@
|
||||
# =============================================================================
|
||||
# NEW FORMAT: depends_on based prompt (for use with GraphBuilder)
|
||||
# =============================================================================
|
||||
|
||||
BUILDER_SYSTEM_PROMPT_V2 = """<role>
|
||||
You are a Workflow Configuration Engineer.
|
||||
Your goal is to generate workflow node configurations with dependency declarations.
|
||||
The graph structure (edges, start/end nodes) will be automatically built from your output.
|
||||
</role>
|
||||
|
||||
<language_rules>
|
||||
- Detect the language of the user's request automatically (e.g., English, Chinese, Japanese, etc.).
|
||||
- Generate ALL node titles, descriptions, and user-facing text in the SAME language as the user's input.
|
||||
- If the input language is ambiguous or cannot be determined (e.g. code-only input),
|
||||
use {preferred_language} as the target language.
|
||||
</language_rules>
|
||||
|
||||
<inputs>
|
||||
<plan>
|
||||
{plan_context}
|
||||
</plan>
|
||||
|
||||
<tool_schemas>
|
||||
{tool_schemas}
|
||||
</tool_schemas>
|
||||
|
||||
<node_specs>
|
||||
{builtin_node_specs}
|
||||
</node_specs>
|
||||
|
||||
<available_models>
|
||||
{available_models}
|
||||
</available_models>
|
||||
|
||||
<workflow_context>
|
||||
<existing_nodes>
|
||||
{existing_nodes_context}
|
||||
</existing_nodes>
|
||||
<selected_nodes>
|
||||
{selected_nodes_context}
|
||||
</selected_nodes>
|
||||
</workflow_context>
|
||||
</inputs>
|
||||
|
||||
<critical_rules>
|
||||
1. **DO NOT generate start or end nodes** - they are automatically added
|
||||
2. **DO NOT generate edges** - they are automatically built from depends_on
|
||||
3. **Use depends_on array** to declare which nodes must run before this one
|
||||
4. **Leave depends_on empty []** for nodes that should start immediately (connect to start)
|
||||
</critical_rules>
|
||||
|
||||
<rules>
|
||||
1. **Configuration**:
|
||||
- You MUST fill ALL required parameters for every node.
|
||||
- Use `{{{{#node_id.field#}}}}` syntax to reference outputs from previous nodes in text fields.
|
||||
|
||||
2. **Dependency Declaration**:
|
||||
- Each node has a `depends_on` array listing node IDs that must complete before it runs
|
||||
- Empty depends_on `[]` means the node runs immediately after start
|
||||
- Example: `"depends_on": ["fetch_data"]` means this node waits for fetch_data to complete
|
||||
|
||||
3. **Variable References**:
|
||||
- For text fields (like prompts, queries): use string format `{{{{#node_id.field#}}}}`
|
||||
- Dependencies will be auto-inferred from variable references if not explicitly declared
|
||||
|
||||
4. **Tools**:
|
||||
- ONLY use the tools listed in `<tool_schemas>`.
|
||||
- If a planned tool is missing from schemas, fallback to `http-request` or `code`.
|
||||
|
||||
5. **Model Selection** (CRITICAL):
|
||||
- For LLM, question-classifier, and parameter-extractor nodes, you MUST include a "model" config.
|
||||
- You MUST use ONLY models from the `<available_models>` section above.
|
||||
- Copy the EXACT provider and name values from available_models.
|
||||
- NEVER use openai/gpt-4o, gpt-3.5-turbo, gpt-4, or any other models unless they appear in available_models.
|
||||
- If available_models is empty or shows "No models configured", omit the model config entirely.
|
||||
|
||||
6. **if-else Branching**:
|
||||
- Add `true_branch` and `false_branch` in config to specify target node IDs
|
||||
- Example: `"config": {{"cases": [...], "true_branch": "success_node", "false_branch": "fallback_node"}}`
|
||||
|
||||
7. **question-classifier Branching**:
|
||||
- Add `target` field to each class in the classes array
|
||||
- Example: `"classes": [{{"id": "tech", "name": "Tech", "target": "tech_handler"}}, ...]`
|
||||
|
||||
8. **Node Specifics**:
|
||||
- For `if-else` comparison_operator, use literal symbols: `≥`, `≤`, `=`, `≠` (NOT `>=` or `==`).
|
||||
</rules>
|
||||
|
||||
<output_format>
|
||||
Return ONLY a JSON object with a `nodes` array. Each node has:
|
||||
- id: unique identifier
|
||||
- type: node type
|
||||
- title: display name
|
||||
- config: node configuration
|
||||
- depends_on: array of node IDs this depends on
|
||||
|
||||
```json
|
||||
{{{{
|
||||
"nodes": [
|
||||
{{{{
|
||||
"id": "fetch_data",
|
||||
"type": "http-request",
|
||||
"title": "Fetch Data",
|
||||
"config": {{"url": "{{{{#start.url#}}}}", "method": "GET"}},
|
||||
"depends_on": []
|
||||
}}}},
|
||||
{{{{
|
||||
"id": "analyze",
|
||||
"type": "llm",
|
||||
"title": "Analyze",
|
||||
"config": {{"prompt_template": [{{"role": "user", "text": "Analyze: {{{{#fetch_data.body#}}}}"}}]}},
|
||||
"depends_on": ["fetch_data"]
|
||||
}}}}
|
||||
]
|
||||
}}}}
|
||||
```
|
||||
</output_format>
|
||||
|
||||
<examples>
|
||||
<example name="simple_linear">
|
||||
```json
|
||||
{{{{
|
||||
"nodes": [
|
||||
{{{{
|
||||
"id": "llm",
|
||||
"type": "llm",
|
||||
"title": "Generate Response",
|
||||
"config": {{{{
|
||||
"model": {{"provider": "openai", "name": "gpt-4o", "mode": "chat"}},
|
||||
"prompt_template": [{{"role": "user", "text": "Answer: {{{{#start.query#}}}}"}}]
|
||||
}}}},
|
||||
"depends_on": []
|
||||
}}}}
|
||||
]
|
||||
}}}}
|
||||
```
|
||||
</example>
|
||||
|
||||
<example name="parallel_then_merge">
|
||||
```json
|
||||
{{{{
|
||||
"nodes": [
|
||||
{{{{
|
||||
"id": "api1",
|
||||
"type": "http-request",
|
||||
"title": "Fetch API 1",
|
||||
"config": {{"url": "https://api1.example.com", "method": "GET"}},
|
||||
"depends_on": []
|
||||
}}}},
|
||||
{{{{
|
||||
"id": "api2",
|
||||
"type": "http-request",
|
||||
"title": "Fetch API 2",
|
||||
"config": {{"url": "https://api2.example.com", "method": "GET"}},
|
||||
"depends_on": []
|
||||
}}}},
|
||||
{{{{
|
||||
"id": "merge",
|
||||
"type": "llm",
|
||||
"title": "Merge Results",
|
||||
"config": {{{{
|
||||
"prompt_template": [{{"role": "user", "text": "Combine: {{{{#api1.body#}}}} and {{{{#api2.body#}}}}"}}]
|
||||
}}}},
|
||||
"depends_on": ["api1", "api2"]
|
||||
}}}}
|
||||
]
|
||||
}}}}
|
||||
```
|
||||
</example>
|
||||
|
||||
<example name="if_else_branching">
|
||||
```json
|
||||
{{{{
|
||||
"nodes": [
|
||||
{{{{
|
||||
"id": "check",
|
||||
"type": "if-else",
|
||||
"title": "Check Condition",
|
||||
"config": {{{{
|
||||
"cases": [{{{{
|
||||
"case_id": "case_1",
|
||||
"logical_operator": "and",
|
||||
"conditions": [{{{{
|
||||
"variable_selector": ["start", "score"],
|
||||
"comparison_operator": "≥",
|
||||
"value": "60"
|
||||
}}}}]
|
||||
}}}}],
|
||||
"true_branch": "pass_handler",
|
||||
"false_branch": "fail_handler"
|
||||
}}}},
|
||||
"depends_on": []
|
||||
}}}},
|
||||
{{{{
|
||||
"id": "pass_handler",
|
||||
"type": "llm",
|
||||
"title": "Pass Response",
|
||||
"config": {{"prompt_template": [{{"role": "user", "text": "Congratulations!"}}]}},
|
||||
"depends_on": []
|
||||
}}}},
|
||||
{{{{
|
||||
"id": "fail_handler",
|
||||
"type": "llm",
|
||||
"title": "Fail Response",
|
||||
"config": {{"prompt_template": [{{"role": "user", "text": "Try again."}}]}},
|
||||
"depends_on": []
|
||||
}}}}
|
||||
]
|
||||
}}}}
|
||||
```
|
||||
Note: pass_handler and fail_handler have empty depends_on because their connections come from if-else branches.
|
||||
</example>
|
||||
|
||||
<example name="question_classifier">
|
||||
```json
|
||||
{{{{
|
||||
"nodes": [
|
||||
{{{{
|
||||
"id": "classifier",
|
||||
"type": "question-classifier",
|
||||
"title": "Classify Intent",
|
||||
"config": {{{{
|
||||
"model": {{"provider": "openai", "name": "gpt-4o", "mode": "chat"}},
|
||||
"query_variable_selector": ["start", "user_input"],
|
||||
"classes": [
|
||||
{{"id": "tech", "name": "Technical", "target": "tech_handler"}},
|
||||
{{"id": "billing", "name": "Billing", "target": "billing_handler"}},
|
||||
{{"id": "other", "name": "Other", "target": "other_handler"}}
|
||||
]
|
||||
}}}},
|
||||
"depends_on": []
|
||||
}}}},
|
||||
{{{{
|
||||
"id": "tech_handler",
|
||||
"type": "llm",
|
||||
"title": "Tech Support",
|
||||
"config": {{"prompt_template": [{{"role": "user", "text": "Help with tech: {{{{#start.user_input#}}}}"}}]}},
|
||||
"depends_on": []
|
||||
}}}},
|
||||
{{{{
|
||||
"id": "billing_handler",
|
||||
"type": "llm",
|
||||
"title": "Billing Support",
|
||||
"config": {{"prompt_template": [{{"role": "user", "text": "Help with billing: {{{{#start.user_input#}}}}"}}]}},
|
||||
"depends_on": []
|
||||
}}}},
|
||||
{{{{
|
||||
"id": "other_handler",
|
||||
"type": "llm",
|
||||
"title": "General Support",
|
||||
"config": {{"prompt_template": [{{"role": "user", "text": "General help: {{{{#start.user_input#}}}}"}}]}},
|
||||
"depends_on": []
|
||||
}}}}
|
||||
]
|
||||
}}}}
|
||||
```
|
||||
Note: Handler nodes have empty depends_on because their connections come from classifier branches.
|
||||
</example>
|
||||
</examples>
|
||||
"""
|
||||
|
||||
BUILDER_USER_PROMPT_V2 = """<instruction>
|
||||
{instruction}
|
||||
</instruction>
|
||||
|
||||
Generate the workflow nodes configuration. Remember:
|
||||
1. Do NOT generate start or end nodes
|
||||
2. Do NOT generate edges - use depends_on instead
|
||||
3. For if-else: add true_branch/false_branch in config
|
||||
4. For question-classifier: add target to each class
|
||||
"""
|
||||
|
||||
# =============================================================================
|
||||
# LEGACY FORMAT: edges-based prompt (backward compatible)
|
||||
# =============================================================================
|
||||
|
||||
BUILDER_SYSTEM_PROMPT = """<role>
|
||||
You are a Workflow Configuration Engineer.
|
||||
Your goal is to implement the Architect's plan by generating a precise, runnable Dify Workflow JSON configuration.
|
||||
</role>
|
||||
|
||||
<language_rules>
|
||||
- Detect the language of the user's request automatically (e.g., English, Chinese, Japanese, etc.).
|
||||
- Generate ALL node titles, descriptions, and user-facing text in the SAME language as the user's input.
|
||||
- If the input language is ambiguous or cannot be determined (e.g. code-only input),
|
||||
use {preferred_language} as the target language.
|
||||
</language_rules>
|
||||
|
||||
<inputs>
|
||||
<plan>
|
||||
{plan_context}
|
||||
</plan>
|
||||
|
||||
<tool_schemas>
|
||||
{tool_schemas}
|
||||
</tool_schemas>
|
||||
|
||||
<node_specs>
|
||||
{builtin_node_specs}
|
||||
</node_specs>
|
||||
|
||||
<available_models>
|
||||
{available_models}
|
||||
</available_models>
|
||||
|
||||
<workflow_context>
|
||||
<existing_nodes>
|
||||
{existing_nodes_context}
|
||||
</existing_nodes>
|
||||
<existing_edges>
|
||||
{existing_edges_context}
|
||||
</existing_edges>
|
||||
<selected_nodes>
|
||||
{selected_nodes_context}
|
||||
</selected_nodes>
|
||||
</workflow_context>
|
||||
</inputs>
|
||||
|
||||
<rules>
|
||||
1. **Configuration**:
|
||||
- You MUST fill ALL required parameters for every node.
|
||||
- Use `{{{{#node_id.field#}}}}` syntax to reference outputs from previous nodes in text fields.
|
||||
- For 'start' node, define all necessary user inputs.
|
||||
|
||||
2. **Variable References**:
|
||||
- For text fields (like prompts, queries): use string format `{{{{#node_id.field#}}}}`
|
||||
- For 'end' node outputs: use `value_selector` array format `["node_id", "field"]`
|
||||
- Example: to reference 'llm' node's 'text' output in end node, use `["llm", "text"]`
|
||||
|
||||
3. **Tools**:
|
||||
- ONLY use the tools listed in `<tool_schemas>`.
|
||||
- If a planned tool is missing from schemas, fallback to `http-request` or `code`.
|
||||
|
||||
4. **Model Selection** (CRITICAL):
|
||||
- For LLM, question-classifier, and parameter-extractor nodes, you MUST include a "model" config.
|
||||
- You MUST use ONLY models from the `<available_models>` section above.
|
||||
- Copy the EXACT provider and name values from available_models.
|
||||
- NEVER use openai/gpt-4o, gpt-3.5-turbo, gpt-4, or any other models unless they appear in available_models.
|
||||
- If available_models is empty or shows "No models configured", omit the model config entirely.
|
||||
|
||||
5. **Node Specifics**:
|
||||
- For `if-else` comparison_operator, use literal symbols: `≥`, `≤`, `=`, `≠` (NOT `>=` or `==`).
|
||||
|
||||
6. **Modification Mode**:
|
||||
- If `<existing_nodes>` contains nodes, you are MODIFYING an existing workflow.
|
||||
- Keep nodes that are NOT mentioned in the user's instruction UNCHANGED.
|
||||
- Only modify/add/remove nodes that the user explicitly requested.
|
||||
- Preserve node IDs for unchanged nodes to maintain connections.
|
||||
- If user says "add X", append new nodes to existing workflow.
|
||||
- If user says "change Y to Z", only modify that specific node.
|
||||
- If user says "remove X", exclude that node from output.
|
||||
|
||||
**Edge Modification**:
|
||||
- Use `<existing_edges>` to understand current node connections.
|
||||
- If user mentions "fix edge", "connect", "link", or "add connection",
|
||||
review existing_edges and correct missing/wrong connections.
|
||||
- For multi-branch nodes (if-else, question-classifier),
|
||||
ensure EACH branch has proper sourceHandle (e.g., "true"/"false") and target.
|
||||
- Common edge issues to fix:
|
||||
* Missing edge: Two nodes should connect but don't - add the edge
|
||||
* Wrong target: Edge points to wrong node - update the target
|
||||
* Missing sourceHandle: if-else/classifier branches lack sourceHandle - add "true"/"false"
|
||||
* Disconnected nodes: Node has no incoming or outgoing edges - connect it properly
|
||||
- When modifying edges, ensure logical flow makes sense (start → middle → end).
|
||||
- ALWAYS output complete edges array, even if only modifying one edge.
|
||||
|
||||
**Validation Feedback** (Automatic Retry):
|
||||
- If `<validation_feedback>` is present, you are RETRYING after validation errors.
|
||||
- Focus ONLY on fixing the specific validation issues mentioned.
|
||||
- Keep everything else from the previous attempt UNCHANGED (preserve node IDs, edges, etc).
|
||||
- Common validation issues and fixes:
|
||||
* "Missing required connection" → Add the missing edge
|
||||
* "Invalid node configuration" → Fix the specific node's config section
|
||||
* "Type mismatch in variable reference" → Correct the variable selector path
|
||||
* "Unknown variable" → Update variable reference to existing output
|
||||
- When fixing, make MINIMAL changes to address each specific error.
|
||||
|
||||
7. **Output**:
|
||||
- Return ONLY the JSON object with `nodes` and `edges`.
|
||||
- Do NOT generate Mermaid diagrams.
|
||||
- Do NOT generate explanations.
|
||||
</rules>
|
||||
|
||||
<edge_rules priority="critical">
|
||||
**EDGES ARE CRITICAL** - Every node except 'end' MUST have at least one outgoing edge.
|
||||
|
||||
1. **Linear Flow**: Simple source -> target connection
|
||||
```
|
||||
{{"source": "node_a", "target": "node_b"}}
|
||||
```
|
||||
|
||||
2. **question-classifier Branching**: Each class MUST have a separate edge with `sourceHandle` = class `id`
|
||||
- If you define classes: [{{"id": "cls_refund", "name": "Refund"}}, {{"id": "cls_inquiry", "name": "Inquiry"}}]
|
||||
- You MUST create edges:
|
||||
- {{"source": "classifier", "sourceHandle": "cls_refund", "target": "refund_handler"}}
|
||||
- {{"source": "classifier", "sourceHandle": "cls_inquiry", "target": "inquiry_handler"}}
|
||||
|
||||
3. **if-else Branching**: MUST have exactly TWO edges with sourceHandle "true" and "false"
|
||||
- {{"source": "condition", "sourceHandle": "true", "target": "true_branch"}}
|
||||
- {{"source": "condition", "sourceHandle": "false", "target": "false_branch"}}
|
||||
|
||||
4. **Branch Convergence**: Multiple branches can connect to same downstream node
|
||||
- Both true_branch and false_branch can connect to the same 'end' node
|
||||
|
||||
5. **NEVER leave orphan nodes**: Every node must be connected in the graph
|
||||
</edge_rules>
|
||||
|
||||
<examples>
|
||||
<example name="simple_linear">
|
||||
```json
|
||||
{{
|
||||
"nodes": [
|
||||
{{
|
||||
"id": "start",
|
||||
"type": "start",
|
||||
"title": "Start",
|
||||
"config": {{
|
||||
"variables": [{{"variable": "query", "label": "Query", "type": "text-input"}}]
|
||||
}}
|
||||
}},
|
||||
{{
|
||||
"id": "llm",
|
||||
"type": "llm",
|
||||
"title": "Generate Response",
|
||||
"config": {{
|
||||
"model": {{"provider": "openai", "name": "gpt-4o", "mode": "chat"}},
|
||||
"prompt_template": [{{"role": "user", "text": "Answer: {{{{#start.query#}}}}"}}]
|
||||
}}
|
||||
}},
|
||||
{{
|
||||
"id": "end",
|
||||
"type": "end",
|
||||
"title": "End",
|
||||
"config": {{
|
||||
"outputs": [
|
||||
{{"variable": "result", "value_selector": ["llm", "text"]}}
|
||||
]
|
||||
}}
|
||||
}}
|
||||
],
|
||||
"edges": [
|
||||
{{"source": "start", "target": "llm"}},
|
||||
{{"source": "llm", "target": "end"}}
|
||||
]
|
||||
}}
|
||||
```
|
||||
</example>
|
||||
|
||||
<example name="question_classifier_branching" description="Customer service with intent classification">
|
||||
```json
|
||||
{{
|
||||
"nodes": [
|
||||
{{
|
||||
"id": "start",
|
||||
"type": "start",
|
||||
"title": "Start",
|
||||
"config": {{
|
||||
"variables": [{{"variable": "user_input", "label": "User Message", "type": "text-input", "required": true}}]
|
||||
}}
|
||||
}},
|
||||
{{
|
||||
"id": "classifier",
|
||||
"type": "question-classifier",
|
||||
"title": "Classify Intent",
|
||||
"config": {{
|
||||
"model": {{"provider": "openai", "name": "gpt-4o", "mode": "chat"}},
|
||||
"query_variable_selector": ["start", "user_input"],
|
||||
"classes": [
|
||||
{{"id": "cls_refund", "name": "Refund Request"}},
|
||||
{{"id": "cls_inquiry", "name": "Product Inquiry"}},
|
||||
{{"id": "cls_complaint", "name": "Complaint"}},
|
||||
{{"id": "cls_other", "name": "Other"}}
|
||||
],
|
||||
"instruction": "Classify the user's intent"
|
||||
}}
|
||||
}},
|
||||
{{
|
||||
"id": "handle_refund",
|
||||
"type": "llm",
|
||||
"title": "Handle Refund",
|
||||
"config": {{
|
||||
"model": {{"provider": "openai", "name": "gpt-4o", "mode": "chat"}},
|
||||
"prompt_template": [{{"role": "user", "text": "Extract order number and respond: {{{{#start.user_input#}}}}"}}]
|
||||
}}
|
||||
}},
|
||||
{{
|
||||
"id": "handle_inquiry",
|
||||
"type": "llm",
|
||||
"title": "Handle Inquiry",
|
||||
"config": {{
|
||||
"model": {{"provider": "openai", "name": "gpt-4o", "mode": "chat"}},
|
||||
"prompt_template": [{{"role": "user", "text": "Answer product question: {{{{#start.user_input#}}}}"}}]
|
||||
}}
|
||||
}},
|
||||
{{
|
||||
"id": "handle_complaint",
|
||||
"type": "llm",
|
||||
"title": "Handle Complaint",
|
||||
"config": {{
|
||||
"model": {{"provider": "openai", "name": "gpt-4o", "mode": "chat"}},
|
||||
"prompt_template": [{{"role": "user", "text": "Respond with empathy: {{{{#start.user_input#}}}}"}}]
|
||||
}}
|
||||
}},
|
||||
{{
|
||||
"id": "handle_other",
|
||||
"type": "llm",
|
||||
"title": "Handle Other",
|
||||
"config": {{
|
||||
"model": {{"provider": "openai", "name": "gpt-4o", "mode": "chat"}},
|
||||
"prompt_template": [{{"role": "user", "text": "Provide general response: {{{{#start.user_input#}}}}"}}]
|
||||
}}
|
||||
}},
|
||||
{{
|
||||
"id": "end",
|
||||
"type": "end",
|
||||
"title": "End",
|
||||
"config": {{
|
||||
"outputs": [{{"variable": "response", "value_selector": ["handle_refund", "text"]}}]
|
||||
}}
|
||||
}}
|
||||
],
|
||||
"edges": [
|
||||
{{"source": "start", "target": "classifier"}},
|
||||
{{"source": "classifier", "sourceHandle": "cls_refund", "target": "handle_refund"}},
|
||||
{{"source": "classifier", "sourceHandle": "cls_inquiry", "target": "handle_inquiry"}},
|
||||
{{"source": "classifier", "sourceHandle": "cls_complaint", "target": "handle_complaint"}},
|
||||
{{"source": "classifier", "sourceHandle": "cls_other", "target": "handle_other"}},
|
||||
{{"source": "handle_refund", "target": "end"}},
|
||||
{{"source": "handle_inquiry", "target": "end"}},
|
||||
{{"source": "handle_complaint", "target": "end"}},
|
||||
{{"source": "handle_other", "target": "end"}}
|
||||
]
|
||||
}}
|
||||
```
|
||||
CRITICAL: Notice that each class id (cls_refund, cls_inquiry, etc.) becomes a sourceHandle in the edges!
|
||||
</example>
|
||||
|
||||
<example name="if_else_branching" description="Conditional logic with if-else">
|
||||
```json
|
||||
{{
|
||||
"nodes": [
|
||||
{{
|
||||
"id": "start",
|
||||
"type": "start",
|
||||
"title": "Start",
|
||||
"config": {{
|
||||
"variables": [{{"variable": "years", "label": "Years of Experience", "type": "number", "required": true}}]
|
||||
}}
|
||||
}},
|
||||
{{
|
||||
"id": "check_experience",
|
||||
"type": "if-else",
|
||||
"title": "Check Experience",
|
||||
"config": {{
|
||||
"cases": [
|
||||
{{
|
||||
"case_id": "case_1",
|
||||
"logical_operator": "and",
|
||||
"conditions": [
|
||||
{{
|
||||
"variable_selector": ["start", "years"],
|
||||
"comparison_operator": "≥",
|
||||
"value": "3"
|
||||
}}
|
||||
]
|
||||
}}
|
||||
]
|
||||
}}
|
||||
}},
|
||||
{{
|
||||
"id": "qualified",
|
||||
"type": "llm",
|
||||
"title": "Qualified Response",
|
||||
"config": {{
|
||||
"model": {{"provider": "openai", "name": "gpt-4o", "mode": "chat"}},
|
||||
"prompt_template": [{{"role": "user", "text": "Generate qualified candidate response"}}]
|
||||
}}
|
||||
}},
|
||||
{{
|
||||
"id": "not_qualified",
|
||||
"type": "llm",
|
||||
"title": "Not Qualified Response",
|
||||
"config": {{
|
||||
"model": {{"provider": "openai", "name": "gpt-4o", "mode": "chat"}},
|
||||
"prompt_template": [{{"role": "user", "text": "Generate rejection response"}}]
|
||||
}}
|
||||
}},
|
||||
{{
|
||||
"id": "end",
|
||||
"type": "end",
|
||||
"title": "End",
|
||||
"config": {{
|
||||
"outputs": [{{"variable": "result", "value_selector": ["qualified", "text"]}}]
|
||||
}}
|
||||
}}
|
||||
],
|
||||
"edges": [
|
||||
{{"source": "start", "target": "check_experience"}},
|
||||
{{"source": "check_experience", "sourceHandle": "true", "target": "qualified"}},
|
||||
{{"source": "check_experience", "sourceHandle": "false", "target": "not_qualified"}},
|
||||
{{"source": "qualified", "target": "end"}},
|
||||
{{"source": "not_qualified", "target": "end"}}
|
||||
]
|
||||
}}
|
||||
```
|
||||
CRITICAL: if-else MUST have exactly two edges with sourceHandle "true" and "false"!
|
||||
</example>
|
||||
|
||||
<example name="parameter_extractor" description="Extract structured data from text">
|
||||
```json
|
||||
{{
|
||||
"nodes": [
|
||||
{{
|
||||
"id": "start",
|
||||
"type": "start",
|
||||
"title": "Start",
|
||||
"config": {{
|
||||
"variables": [{{"variable": "resume", "label": "Resume Text", "type": "paragraph", "required": true}}]
|
||||
}}
|
||||
}},
|
||||
{{
|
||||
"id": "extract",
|
||||
"type": "parameter-extractor",
|
||||
"title": "Extract Info",
|
||||
"config": {{
|
||||
"model": {{"provider": "openai", "name": "gpt-4o", "mode": "chat"}},
|
||||
"query": ["start", "resume"],
|
||||
"parameters": [
|
||||
{{"name": "name", "type": "string", "description": "Candidate name", "required": true}},
|
||||
{{"name": "years", "type": "number", "description": "Years of experience", "required": true}},
|
||||
{{"name": "skills", "type": "array[string]", "description": "List of skills", "required": true}}
|
||||
],
|
||||
"instruction": "Extract candidate information from resume"
|
||||
}}
|
||||
}},
|
||||
{{
|
||||
"id": "process",
|
||||
"type": "llm",
|
||||
"title": "Process Data",
|
||||
"config": {{
|
||||
"model": {{"provider": "openai", "name": "gpt-4o", "mode": "chat"}},
|
||||
"prompt_template": [{{"role": "user", "text": "Name: {{{{#extract.name#}}}}, Years: {{{{#extract.years#}}}}"}}]
|
||||
}}
|
||||
}},
|
||||
{{
|
||||
"id": "end",
|
||||
"type": "end",
|
||||
"title": "End",
|
||||
"config": {{
|
||||
"outputs": [{{"variable": "result", "value_selector": ["process", "text"]}}]
|
||||
}}
|
||||
}}
|
||||
],
|
||||
"edges": [
|
||||
{{"source": "start", "target": "extract"}},
|
||||
{{"source": "extract", "target": "process"}},
|
||||
{{"source": "process", "target": "end"}}
|
||||
]
|
||||
}}
|
||||
```
|
||||
</example>
|
||||
</examples>
|
||||
|
||||
<edge_checklist>
|
||||
Before finalizing, verify:
|
||||
1. [ ] Every node (except 'end') has at least one outgoing edge
|
||||
2. [ ] 'start' node has exactly one outgoing edge
|
||||
3. [ ] 'question-classifier' has one edge per class, each with sourceHandle = class id
|
||||
4. [ ] 'if-else' has exactly two edges: sourceHandle "true" and sourceHandle "false"
|
||||
5. [ ] All branches eventually connect to 'end' (directly or through other nodes)
|
||||
6. [ ] No orphan nodes exist (every node is reachable from 'start')
|
||||
</edge_checklist>
|
||||
"""
|
||||
|
||||
BUILDER_USER_PROMPT = """<instruction>
|
||||
{instruction}
|
||||
</instruction>
|
||||
|
||||
Generate the full workflow configuration now. Pay special attention to:
|
||||
1. Creating edges for ALL branches of question-classifier and if-else nodes
|
||||
2. Using correct sourceHandle values for branching nodes
|
||||
3. Ensuring every node is connected in the graph
|
||||
"""
|
||||
|
||||
|
||||
def format_existing_nodes(nodes: list[dict] | None) -> str:
|
||||
"""Format existing workflow nodes for context."""
|
||||
if not nodes:
|
||||
return "No existing nodes in workflow (creating from scratch)."
|
||||
|
||||
lines = []
|
||||
for node in nodes:
|
||||
node_id = node.get("id", "unknown")
|
||||
node_type = node.get("type", "unknown")
|
||||
title = node.get("title", "Untitled")
|
||||
lines.append(f"- [{node_id}] {title} ({node_type})")
|
||||
return "\n".join(lines)
|
||||
|
||||
|
||||
def format_selected_nodes(
|
||||
selected_ids: list[str] | None,
|
||||
existing_nodes: list[dict] | None,
|
||||
) -> str:
|
||||
"""Format selected nodes for modification context."""
|
||||
if not selected_ids:
|
||||
return "No nodes selected (generating new workflow)."
|
||||
|
||||
node_map = {n.get("id"): n for n in (existing_nodes or [])}
|
||||
lines = []
|
||||
for node_id in selected_ids:
|
||||
if node_id in node_map:
|
||||
node = node_map[node_id]
|
||||
lines.append(f"- [{node_id}] {node.get('title', 'Untitled')} ({node.get('type', 'unknown')})")
|
||||
else:
|
||||
lines.append(f"- [{node_id}] (not found in current workflow)")
|
||||
return "\n".join(lines)
|
||||
|
||||
|
||||
def format_existing_edges(edges: list[dict] | None) -> str:
|
||||
"""Format existing workflow edges to show connections."""
|
||||
if not edges:
|
||||
return "No existing edges (creating new workflow)."
|
||||
|
||||
lines = []
|
||||
for edge in edges:
|
||||
source = edge.get("source", "unknown")
|
||||
target = edge.get("target", "unknown")
|
||||
source_handle = edge.get("sourceHandle", "")
|
||||
if source_handle:
|
||||
lines.append(f"- {source} ({source_handle}) -> {target}")
|
||||
else:
|
||||
lines.append(f"- {source} -> {target}")
|
||||
return "\n".join(lines)
|
||||
75
api/core/workflow/generator/prompts/planner_prompts.py
Normal file
75
api/core/workflow/generator/prompts/planner_prompts.py
Normal file
@@ -0,0 +1,75 @@
|
||||
PLANNER_SYSTEM_PROMPT = """<role>
|
||||
You are an expert Workflow Architect.
|
||||
Your job is to analyze user requests and plan a high-level automation workflow.
|
||||
</role>
|
||||
|
||||
<task>
|
||||
1. **Classify Intent**:
|
||||
- Is the user asking to create an automation/workflow? -> Intent: "generate"
|
||||
- Is it general chat/weather/jokes? -> Intent: "off_topic"
|
||||
|
||||
2. **Plan Steps** (if intent is "generate"):
|
||||
- Break down the user's goal into logical steps.
|
||||
- For each step, identify if a specific capability/tool is needed.
|
||||
- Select the MOST RELEVANT tools from the available_tools list.
|
||||
- DO NOT configure parameters yet. Just identify the tool.
|
||||
|
||||
3. **Output Format**:
|
||||
Return a JSON object.
|
||||
</task>
|
||||
|
||||
<available_tools>
|
||||
{tools_summary}
|
||||
</available_tools>
|
||||
|
||||
<response_format>
|
||||
If intent is "generate":
|
||||
```json
|
||||
{{
|
||||
"intent": "generate",
|
||||
"plan_thought": "Brief explanation of the plan...",
|
||||
"steps": [
|
||||
{{ "step": 1, "description": "Fetch data from URL", "tool": "http-request" }},
|
||||
{{ "step": 2, "description": "Summarize content", "tool": "llm" }},
|
||||
{{ "step": 3, "description": "Search for info", "tool": "google_search" }}
|
||||
],
|
||||
"required_tool_keys": ["google_search"]
|
||||
}}
|
||||
```
|
||||
(Note: 'http-request', 'llm', 'code' are built-in, you don't need to list them in required_tool_keys,
|
||||
only external tools)
|
||||
|
||||
If intent is "off_topic":
|
||||
```json
|
||||
{{
|
||||
"intent": "off_topic",
|
||||
"message": "I can only help you build workflows. Try asking me to 'Create a workflow that...'",
|
||||
"suggestions": ["Scrape a website", "Summarize a PDF"]
|
||||
}}
|
||||
```
|
||||
</response_format>
|
||||
"""
|
||||
|
||||
PLANNER_USER_PROMPT = """<user_request>
|
||||
{instruction}
|
||||
</user_request>
|
||||
"""
|
||||
|
||||
|
||||
def format_tools_for_planner(tools: list[dict]) -> str:
|
||||
"""Format tools list for planner (Lightweight: Name + Description only)."""
|
||||
if not tools:
|
||||
return "No external tools available."
|
||||
|
||||
lines = []
|
||||
for t in tools:
|
||||
key = t.get("tool_key") or t.get("tool_name")
|
||||
provider = t.get("provider_id") or t.get("provider", "")
|
||||
desc = t.get("tool_description") or t.get("description", "")
|
||||
label = t.get("tool_label") or key
|
||||
|
||||
# Format: - [provider/key] Label: Description
|
||||
full_key = f"{provider}/{key}" if provider else key
|
||||
lines.append(f"- [{full_key}] {label}: {desc}")
|
||||
|
||||
return "\n".join(lines)
|
||||
1264
api/core/workflow/generator/prompts/vibe_prompts.py
Normal file
1264
api/core/workflow/generator/prompts/vibe_prompts.py
Normal file
File diff suppressed because it is too large
Load Diff
349
api/core/workflow/generator/runner.py
Normal file
349
api/core/workflow/generator/runner.py
Normal file
@@ -0,0 +1,349 @@
|
||||
import json
|
||||
import logging
|
||||
import re
|
||||
from collections.abc import Sequence
|
||||
|
||||
import json_repair
|
||||
|
||||
from core.model_manager import ModelManager
|
||||
from core.model_runtime.entities.message_entities import SystemPromptMessage, UserPromptMessage
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.workflow.generator.prompts.builder_prompts import (
|
||||
BUILDER_SYSTEM_PROMPT,
|
||||
BUILDER_SYSTEM_PROMPT_V2,
|
||||
BUILDER_USER_PROMPT,
|
||||
BUILDER_USER_PROMPT_V2,
|
||||
format_existing_edges,
|
||||
format_existing_nodes,
|
||||
format_selected_nodes,
|
||||
)
|
||||
from core.workflow.generator.prompts.planner_prompts import (
|
||||
PLANNER_SYSTEM_PROMPT,
|
||||
PLANNER_USER_PROMPT,
|
||||
format_tools_for_planner,
|
||||
)
|
||||
from core.workflow.generator.prompts.vibe_prompts import (
|
||||
format_available_models,
|
||||
format_available_nodes,
|
||||
format_available_tools,
|
||||
parse_vibe_response,
|
||||
)
|
||||
from core.workflow.generator.utils.graph_builder import CyclicDependencyError, GraphBuilder
|
||||
from core.workflow.generator.utils.mermaid_generator import generate_mermaid
|
||||
from core.workflow.generator.utils.workflow_validator import ValidationHint, WorkflowValidator
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class WorkflowGenerator:
|
||||
"""
|
||||
Refactored Vibe Workflow Generator (Planner-Builder Architecture).
|
||||
Extracts Vibe logic from the monolithic LLMGenerator.
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def generate_workflow_flowchart(
|
||||
cls,
|
||||
tenant_id: str,
|
||||
instruction: str,
|
||||
model_config: dict,
|
||||
available_nodes: Sequence[dict[str, object]] | None = None,
|
||||
existing_nodes: Sequence[dict[str, object]] | None = None,
|
||||
existing_edges: Sequence[dict[str, object]] | None = None,
|
||||
available_tools: Sequence[dict[str, object]] | None = None,
|
||||
selected_node_ids: Sequence[str] | None = None,
|
||||
previous_workflow: dict[str, object] | None = None,
|
||||
regenerate_mode: bool = False,
|
||||
preferred_language: str | None = None,
|
||||
available_models: Sequence[dict[str, object]] | None = None,
|
||||
use_graph_builder: bool = False,
|
||||
):
|
||||
"""
|
||||
Generates a Dify Workflow Flowchart from natural language instruction.
|
||||
|
||||
Pipeline:
|
||||
1. Planner: Analyze intent & select tools.
|
||||
2. Context Filter: Filter relevant tools (reduce tokens).
|
||||
3. Builder: Generate node configurations.
|
||||
4. Repair: Fix common node/edge issues (NodeRepair, EdgeRepair).
|
||||
5. Validator: Check for errors & generate friendly hints.
|
||||
6. Renderer: Deterministic Mermaid generation.
|
||||
"""
|
||||
model_manager = ModelManager()
|
||||
model_instance = model_manager.get_model_instance(
|
||||
tenant_id=tenant_id,
|
||||
model_type=ModelType.LLM,
|
||||
provider=model_config.get("provider", ""),
|
||||
model=model_config.get("name", ""),
|
||||
)
|
||||
model_parameters = model_config.get("completion_params", {})
|
||||
available_tools_list = list(available_tools) if available_tools else []
|
||||
|
||||
# Check if this is modification mode (user is refining existing workflow)
|
||||
has_existing_nodes = existing_nodes and len(list(existing_nodes)) > 0
|
||||
|
||||
# --- STEP 1: PLANNER (Skip in modification mode) ---
|
||||
if has_existing_nodes:
|
||||
# In modification mode, skip Planner:
|
||||
# - User intent is clear: modify the existing workflow
|
||||
# - Tools are already in use (from existing nodes)
|
||||
# - No need for intent classification or tool selection
|
||||
plan_data = {"intent": "generate", "steps": [], "required_tool_keys": []}
|
||||
filtered_tools = available_tools_list # Use all available tools
|
||||
else:
|
||||
# In creation mode, run Planner to validate intent and select tools
|
||||
planner_tools_context = format_tools_for_planner(available_tools_list)
|
||||
planner_system = PLANNER_SYSTEM_PROMPT.format(tools_summary=planner_tools_context)
|
||||
planner_user = PLANNER_USER_PROMPT.format(instruction=instruction)
|
||||
|
||||
try:
|
||||
response = model_instance.invoke_llm(
|
||||
prompt_messages=[
|
||||
SystemPromptMessage(content=planner_system),
|
||||
UserPromptMessage(content=planner_user),
|
||||
],
|
||||
model_parameters=model_parameters,
|
||||
stream=False,
|
||||
)
|
||||
plan_content = response.message.content
|
||||
# Reuse parse_vibe_response logic or simple load
|
||||
plan_data = parse_vibe_response(plan_content)
|
||||
except Exception as e:
|
||||
logger.exception("Planner failed")
|
||||
return {"intent": "error", "error": f"Planning failed: {str(e)}"}
|
||||
|
||||
if plan_data.get("intent") == "off_topic":
|
||||
return {
|
||||
"intent": "off_topic",
|
||||
"message": plan_data.get("message", "I can only help with workflow creation."),
|
||||
"suggestions": plan_data.get("suggestions", []),
|
||||
}
|
||||
|
||||
# --- STEP 2: CONTEXT FILTERING ---
|
||||
required_tools = plan_data.get("required_tool_keys", [])
|
||||
|
||||
filtered_tools = []
|
||||
if required_tools:
|
||||
# Simple linear search (optimized version would use a map)
|
||||
for tool in available_tools_list:
|
||||
t_key = tool.get("tool_key") or tool.get("tool_name")
|
||||
provider = tool.get("provider_id") or tool.get("provider")
|
||||
full_key = f"{provider}/{t_key}" if provider else t_key
|
||||
|
||||
# Check if this tool is in required list (match either full key or short name)
|
||||
if t_key in required_tools or full_key in required_tools:
|
||||
filtered_tools.append(tool)
|
||||
else:
|
||||
# If logic only, no tools needed
|
||||
filtered_tools = []
|
||||
|
||||
# --- STEP 3: BUILDER (with retry loop) ---
|
||||
MAX_GLOBAL_RETRIES = 2 # Total attempts: 1 initial + 1 retry
|
||||
|
||||
workflow_data = None
|
||||
mermaid_code = None
|
||||
all_warnings = []
|
||||
all_fixes = []
|
||||
retry_count = 0
|
||||
validation_hints = []
|
||||
|
||||
for attempt in range(MAX_GLOBAL_RETRIES):
|
||||
retry_count = attempt
|
||||
logger.info("Generation attempt %s/%s", attempt + 1, MAX_GLOBAL_RETRIES)
|
||||
|
||||
# Prepare context
|
||||
tool_schemas = format_available_tools(filtered_tools)
|
||||
node_specs = format_available_nodes(list(available_nodes) if available_nodes else [])
|
||||
existing_nodes_context = format_existing_nodes(list(existing_nodes) if existing_nodes else None)
|
||||
existing_edges_context = format_existing_edges(list(existing_edges) if existing_edges else None)
|
||||
selected_nodes_context = format_selected_nodes(
|
||||
list(selected_node_ids) if selected_node_ids else None, list(existing_nodes) if existing_nodes else None
|
||||
)
|
||||
|
||||
# Build retry context
|
||||
retry_context = ""
|
||||
|
||||
# NOTE: Manual regeneration/refinement mode removed
|
||||
# Only handle automatic retry (validation errors)
|
||||
|
||||
# For automatic retry (validation errors)
|
||||
if attempt > 0 and validation_hints:
|
||||
severe_issues = [h for h in validation_hints if h.severity == "error"]
|
||||
if severe_issues:
|
||||
retry_context = "\n<validation_feedback>\n"
|
||||
retry_context += "The previous generation had validation errors:\n"
|
||||
for idx, hint in enumerate(severe_issues[:5], 1):
|
||||
retry_context += f"{idx}. {hint.message}\n"
|
||||
retry_context += "\nPlease fix these specific issues while keeping everything else UNCHANGED.\n"
|
||||
retry_context += "</validation_feedback>\n"
|
||||
|
||||
# Select prompt version based on use_graph_builder flag
|
||||
if use_graph_builder:
|
||||
builder_system = BUILDER_SYSTEM_PROMPT_V2.format(
|
||||
plan_context=json.dumps(plan_data.get("steps", []), indent=2),
|
||||
tool_schemas=tool_schemas,
|
||||
builtin_node_specs=node_specs,
|
||||
available_models=format_available_models(list(available_models or [])),
|
||||
preferred_language=preferred_language or "English",
|
||||
existing_nodes_context=existing_nodes_context,
|
||||
selected_nodes_context=selected_nodes_context,
|
||||
)
|
||||
builder_user = BUILDER_USER_PROMPT_V2.format(instruction=instruction) + retry_context
|
||||
else:
|
||||
builder_system = BUILDER_SYSTEM_PROMPT.format(
|
||||
plan_context=json.dumps(plan_data.get("steps", []), indent=2),
|
||||
tool_schemas=tool_schemas,
|
||||
builtin_node_specs=node_specs,
|
||||
available_models=format_available_models(list(available_models or [])),
|
||||
preferred_language=preferred_language or "English",
|
||||
existing_nodes_context=existing_nodes_context,
|
||||
existing_edges_context=existing_edges_context,
|
||||
selected_nodes_context=selected_nodes_context,
|
||||
)
|
||||
builder_user = BUILDER_USER_PROMPT.format(instruction=instruction) + retry_context
|
||||
|
||||
try:
|
||||
build_res = model_instance.invoke_llm(
|
||||
prompt_messages=[
|
||||
SystemPromptMessage(content=builder_system),
|
||||
UserPromptMessage(content=builder_user),
|
||||
],
|
||||
model_parameters=model_parameters,
|
||||
stream=False,
|
||||
)
|
||||
# Builder output is raw JSON nodes/edges
|
||||
build_content = build_res.message.content
|
||||
match = re.search(r"```(?:json)?\s*([\s\S]+?)```", build_content)
|
||||
if match:
|
||||
build_content = match.group(1)
|
||||
|
||||
workflow_data = json_repair.loads(build_content)
|
||||
|
||||
if "nodes" not in workflow_data:
|
||||
workflow_data["nodes"] = []
|
||||
|
||||
# --- GraphBuilder Mode: Build graph from depends_on ---
|
||||
if use_graph_builder:
|
||||
try:
|
||||
# Extract nodes from LLM output (without start/end)
|
||||
llm_nodes = workflow_data.get("nodes", [])
|
||||
|
||||
# Build complete graph with start/end and edges
|
||||
complete_nodes, edges = GraphBuilder.build_graph(llm_nodes)
|
||||
|
||||
workflow_data["nodes"] = complete_nodes
|
||||
workflow_data["edges"] = edges
|
||||
|
||||
logger.info(
|
||||
"GraphBuilder: built %d nodes, %d edges from %d LLM nodes",
|
||||
len(complete_nodes),
|
||||
len(edges),
|
||||
len(llm_nodes),
|
||||
)
|
||||
|
||||
except CyclicDependencyError as e:
|
||||
logger.warning("GraphBuilder: cyclic dependency detected: %s", e)
|
||||
# Add to validation hints for retry
|
||||
validation_hints.append(
|
||||
ValidationHint(
|
||||
node_id="",
|
||||
field="depends_on",
|
||||
message=f"Cyclic dependency detected: {e}. Please fix the dependency chain.",
|
||||
severity="error",
|
||||
)
|
||||
)
|
||||
if attempt == MAX_GLOBAL_RETRIES - 1:
|
||||
return {
|
||||
"intent": "error",
|
||||
"error": "Failed to build workflow: cyclic dependency detected.",
|
||||
}
|
||||
continue # Retry with error feedback
|
||||
|
||||
except Exception as e:
|
||||
logger.exception("GraphBuilder failed on attempt %d", attempt + 1)
|
||||
if attempt == MAX_GLOBAL_RETRIES - 1:
|
||||
return {"intent": "error", "error": f"Graph building failed: {str(e)}"}
|
||||
continue
|
||||
else:
|
||||
# Legacy mode: edges from LLM output
|
||||
if "edges" not in workflow_data:
|
||||
workflow_data["edges"] = []
|
||||
|
||||
except Exception as e:
|
||||
logger.exception("Builder failed on attempt %d", attempt + 1)
|
||||
if attempt == MAX_GLOBAL_RETRIES - 1:
|
||||
return {"intent": "error", "error": f"Building failed: {str(e)}"}
|
||||
continue # Try again
|
||||
|
||||
# NOTE: NodeRepair and EdgeRepair have been removed.
|
||||
# Validation will detect structural issues, and LLM will fix them on retry.
|
||||
# This is more accurate because LLM understands the workflow context.
|
||||
|
||||
# --- STEP 4: RENDERER (Generate Mermaid early for validation) ---
|
||||
mermaid_code = generate_mermaid(workflow_data)
|
||||
|
||||
# --- STEP 5: VALIDATOR ---
|
||||
is_valid, validation_hints = WorkflowValidator.validate(workflow_data, available_tools_list)
|
||||
|
||||
# --- STEP 6: GRAPH VALIDATION (structural checks using graph algorithms) ---
|
||||
if attempt < MAX_GLOBAL_RETRIES - 1:
|
||||
try:
|
||||
from core.workflow.generator.utils.graph_validator import GraphValidator
|
||||
|
||||
graph_result = GraphValidator.validate(workflow_data)
|
||||
|
||||
if not graph_result.success:
|
||||
# Convert graph errors to validation hints
|
||||
for graph_error in graph_result.errors:
|
||||
validation_hints.append(
|
||||
ValidationHint(
|
||||
node_id=graph_error.node_id,
|
||||
field="edges",
|
||||
message=f"[Graph] {graph_error.message}",
|
||||
severity="error",
|
||||
)
|
||||
)
|
||||
# Also add warnings (dead ends) as hints
|
||||
for graph_warning in graph_result.warnings:
|
||||
validation_hints.append(
|
||||
ValidationHint(
|
||||
node_id=graph_warning.node_id,
|
||||
field="edges",
|
||||
message=f"[Graph] {graph_warning.message}",
|
||||
severity="warning",
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning("Graph validation error: %s", e)
|
||||
# Collect all validation warnings
|
||||
all_warnings = [h.message for h in validation_hints]
|
||||
|
||||
# Check if we should retry
|
||||
severe_issues = [h for h in validation_hints if h.severity == "error"]
|
||||
|
||||
if not severe_issues or attempt == MAX_GLOBAL_RETRIES - 1:
|
||||
break
|
||||
|
||||
# Has severe errors and retries remaining - continue to next attempt
|
||||
|
||||
# Collect all validation warnings
|
||||
all_warnings = [h.message for h in validation_hints]
|
||||
|
||||
# Add stability warning (as requested by user)
|
||||
stability_warning = "The generated workflow may require debugging."
|
||||
if preferred_language and preferred_language.startswith("zh"):
|
||||
stability_warning = "生成的 Workflow 可能需要调试。"
|
||||
all_warnings.append(stability_warning)
|
||||
|
||||
return {
|
||||
"intent": "generate",
|
||||
"flowchart": mermaid_code,
|
||||
"nodes": workflow_data["nodes"],
|
||||
"edges": workflow_data["edges"],
|
||||
"message": plan_data.get("plan_thought", "Generated workflow based on your request."),
|
||||
"warnings": all_warnings,
|
||||
"tool_recommendations": [], # Legacy field
|
||||
"error": "",
|
||||
"fixed_issues": all_fixes, # Track what was auto-fixed
|
||||
"retry_count": retry_count, # Track how many retries were needed
|
||||
}
|
||||
217
api/core/workflow/generator/types.py
Normal file
217
api/core/workflow/generator/types.py
Normal file
@@ -0,0 +1,217 @@
|
||||
"""
|
||||
Type definitions for Vibe Workflow Generator.
|
||||
|
||||
This module provides:
|
||||
- TypedDict classes for lightweight type hints (no runtime overhead)
|
||||
- Pydantic models for runtime validation where needed
|
||||
|
||||
Usage:
|
||||
# For type hints only (no runtime validation):
|
||||
from core.workflow.generator.types import WorkflowNodeDict, WorkflowEdgeDict
|
||||
|
||||
# For runtime validation:
|
||||
from core.workflow.generator.types import WorkflowNode, WorkflowEdge
|
||||
"""
|
||||
|
||||
from typing import Any, TypedDict
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
# ============================================================
|
||||
# TypedDict definitions (lightweight, for type hints only)
|
||||
# ============================================================
|
||||
|
||||
|
||||
class WorkflowNodeDict(TypedDict, total=False):
|
||||
"""
|
||||
Workflow node structure (TypedDict for hints).
|
||||
|
||||
Attributes:
|
||||
id: Unique node identifier
|
||||
type: Node type (e.g., "start", "end", "llm", "if-else", "http-request")
|
||||
title: Human-readable node title
|
||||
config: Node-specific configuration
|
||||
data: Additional node data
|
||||
"""
|
||||
|
||||
id: str
|
||||
type: str
|
||||
title: str
|
||||
config: dict[str, Any]
|
||||
data: dict[str, Any]
|
||||
|
||||
|
||||
class WorkflowEdgeDict(TypedDict, total=False):
|
||||
"""
|
||||
Workflow edge structure (TypedDict for hints).
|
||||
|
||||
Attributes:
|
||||
source: Source node ID
|
||||
target: Target node ID
|
||||
sourceHandle: Branch handle for if-else/question-classifier nodes
|
||||
"""
|
||||
|
||||
source: str
|
||||
target: str
|
||||
sourceHandle: str
|
||||
|
||||
|
||||
class AvailableModelDict(TypedDict):
|
||||
"""
|
||||
Available model structure.
|
||||
|
||||
Attributes:
|
||||
provider: Model provider (e.g., "openai", "anthropic")
|
||||
model: Model name (e.g., "gpt-4", "claude-3")
|
||||
"""
|
||||
|
||||
provider: str
|
||||
model: str
|
||||
|
||||
|
||||
class ToolParameterDict(TypedDict, total=False):
|
||||
"""
|
||||
Tool parameter structure.
|
||||
|
||||
Attributes:
|
||||
name: Parameter name
|
||||
type: Parameter type (e.g., "string", "number", "boolean")
|
||||
required: Whether parameter is required
|
||||
human_description: Human-readable description
|
||||
llm_description: LLM-oriented description
|
||||
options: Available options for enum-type parameters
|
||||
"""
|
||||
|
||||
name: str
|
||||
type: str
|
||||
required: bool
|
||||
human_description: str | dict[str, str]
|
||||
llm_description: str
|
||||
options: list[Any]
|
||||
|
||||
|
||||
class AvailableToolDict(TypedDict, total=False):
|
||||
"""
|
||||
Available tool structure.
|
||||
|
||||
Attributes:
|
||||
provider_id: Tool provider ID
|
||||
provider: Tool provider name (alternative to provider_id)
|
||||
tool_key: Unique tool key
|
||||
tool_name: Tool name (alternative to tool_key)
|
||||
tool_description: Tool description
|
||||
description: Alternative description field
|
||||
is_team_authorization: Whether tool is configured/authorized
|
||||
parameters: List of tool parameters
|
||||
"""
|
||||
|
||||
provider_id: str
|
||||
provider: str
|
||||
tool_key: str
|
||||
tool_name: str
|
||||
tool_description: str
|
||||
description: str
|
||||
is_team_authorization: bool
|
||||
parameters: list[ToolParameterDict]
|
||||
|
||||
|
||||
class WorkflowDataDict(TypedDict, total=False):
|
||||
"""
|
||||
Complete workflow data structure.
|
||||
|
||||
Attributes:
|
||||
nodes: List of workflow nodes
|
||||
edges: List of workflow edges
|
||||
warnings: List of warning messages
|
||||
"""
|
||||
|
||||
nodes: list[WorkflowNodeDict]
|
||||
edges: list[WorkflowEdgeDict]
|
||||
warnings: list[str]
|
||||
|
||||
|
||||
# ============================================================
|
||||
# Pydantic models (for runtime validation)
|
||||
# ============================================================
|
||||
|
||||
|
||||
class WorkflowNode(BaseModel):
|
||||
"""
|
||||
Workflow node with runtime validation.
|
||||
|
||||
Use this model when you need to validate node data at runtime.
|
||||
For lightweight type hints without validation, use WorkflowNodeDict.
|
||||
"""
|
||||
|
||||
id: str
|
||||
type: str
|
||||
title: str = ""
|
||||
config: dict[str, Any] = Field(default_factory=dict)
|
||||
data: dict[str, Any] = Field(default_factory=dict)
|
||||
|
||||
|
||||
class WorkflowEdge(BaseModel):
|
||||
"""
|
||||
Workflow edge with runtime validation.
|
||||
|
||||
Use this model when you need to validate edge data at runtime.
|
||||
For lightweight type hints without validation, use WorkflowEdgeDict.
|
||||
"""
|
||||
|
||||
source: str
|
||||
target: str
|
||||
sourceHandle: str | None = None
|
||||
|
||||
|
||||
class AvailableModel(BaseModel):
|
||||
"""
|
||||
Available model with runtime validation.
|
||||
|
||||
Use this model when you need to validate model data at runtime.
|
||||
For lightweight type hints without validation, use AvailableModelDict.
|
||||
"""
|
||||
|
||||
provider: str
|
||||
model: str
|
||||
|
||||
|
||||
class ToolParameter(BaseModel):
|
||||
"""Tool parameter with runtime validation."""
|
||||
|
||||
name: str = ""
|
||||
type: str = "string"
|
||||
required: bool = False
|
||||
human_description: str | dict[str, str] = ""
|
||||
llm_description: str = ""
|
||||
options: list[Any] = Field(default_factory=list)
|
||||
|
||||
|
||||
class AvailableTool(BaseModel):
|
||||
"""
|
||||
Available tool with runtime validation.
|
||||
|
||||
Use this model when you need to validate tool data at runtime.
|
||||
For lightweight type hints without validation, use AvailableToolDict.
|
||||
"""
|
||||
|
||||
provider_id: str = ""
|
||||
provider: str = ""
|
||||
tool_key: str = ""
|
||||
tool_name: str = ""
|
||||
tool_description: str = ""
|
||||
description: str = ""
|
||||
is_team_authorization: bool = False
|
||||
parameters: list[ToolParameter] = Field(default_factory=list)
|
||||
|
||||
|
||||
class WorkflowData(BaseModel):
|
||||
"""
|
||||
Complete workflow data with runtime validation.
|
||||
|
||||
Use this model when you need to validate workflow data at runtime.
|
||||
For lightweight type hints without validation, use WorkflowDataDict.
|
||||
"""
|
||||
|
||||
nodes: list[WorkflowNode] = Field(default_factory=list)
|
||||
edges: list[WorkflowEdge] = Field(default_factory=list)
|
||||
warnings: list[str] = Field(default_factory=list)
|
||||
384
api/core/workflow/generator/utils/edge_repair.py
Normal file
384
api/core/workflow/generator/utils/edge_repair.py
Normal file
@@ -0,0 +1,384 @@
|
||||
"""
|
||||
Edge Repair Utility for Vibe Workflow Generation.
|
||||
|
||||
This module provides intelligent edge repair capabilities for generated workflows.
|
||||
It can detect and fix common edge issues:
|
||||
- Missing edges between sequential nodes
|
||||
- Incomplete branches for question-classifier and if-else nodes
|
||||
- Orphaned nodes without connections
|
||||
|
||||
The repair logic is deterministic and doesn't require LLM calls.
|
||||
"""
|
||||
|
||||
import logging
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
from core.workflow.generator.types import WorkflowDataDict, WorkflowEdgeDict, WorkflowNodeDict
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class RepairResult:
|
||||
"""Result of edge repair operation."""
|
||||
|
||||
nodes: list[WorkflowNodeDict]
|
||||
edges: list[WorkflowEdgeDict]
|
||||
repairs_made: list[str] = field(default_factory=list)
|
||||
warnings: list[str] = field(default_factory=list)
|
||||
|
||||
@property
|
||||
def was_repaired(self) -> bool:
|
||||
"""Check if any repairs were made."""
|
||||
return len(self.repairs_made) > 0
|
||||
|
||||
|
||||
class EdgeRepair:
|
||||
"""
|
||||
Intelligent edge repair for workflow graphs.
|
||||
|
||||
Repairs are applied in order:
|
||||
1. Infer linear connections from node order (if no edges exist)
|
||||
2. Add missing branch edges for question-classifier
|
||||
3. Add missing branch edges for if-else
|
||||
4. Connect orphaned nodes
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def repair(cls, workflow_data: WorkflowDataDict) -> RepairResult:
|
||||
"""
|
||||
Repair edges in the workflow data.
|
||||
|
||||
Args:
|
||||
workflow_data: Dict containing 'nodes' and 'edges'
|
||||
|
||||
Returns:
|
||||
RepairResult with repaired nodes, edges, and repair logs
|
||||
"""
|
||||
nodes = list(workflow_data.get("nodes", []))
|
||||
edges = list(workflow_data.get("edges", []))
|
||||
repairs: list[str] = []
|
||||
warnings: list[str] = []
|
||||
|
||||
logger.info("[EDGE REPAIR] Starting repair process for %s nodes, %s edges", len(nodes), len(edges))
|
||||
|
||||
# Build node lookup
|
||||
|
||||
# Build node lookup
|
||||
node_map = {n.get("id"): n for n in nodes if n.get("id")}
|
||||
node_ids = set(node_map.keys())
|
||||
|
||||
# 1. If no edges at all, infer linear chain
|
||||
if not edges and len(nodes) > 1:
|
||||
edges, inferred_repairs = cls._infer_linear_chain(nodes)
|
||||
repairs.extend(inferred_repairs)
|
||||
|
||||
# 2. Build edge index for analysis
|
||||
outgoing_edges: dict[str, list[WorkflowEdgeDict]] = {}
|
||||
incoming_edges: dict[str, list[WorkflowEdgeDict]] = {}
|
||||
for edge in edges:
|
||||
src = edge.get("source")
|
||||
tgt = edge.get("target")
|
||||
if src:
|
||||
outgoing_edges.setdefault(src, []).append(edge)
|
||||
if tgt:
|
||||
incoming_edges.setdefault(tgt, []).append(edge)
|
||||
|
||||
# 3. Repair question-classifier branches
|
||||
for node in nodes:
|
||||
if node.get("type") == "question-classifier":
|
||||
new_edges, branch_repairs, branch_warnings = cls._repair_classifier_branches(
|
||||
node, edges, outgoing_edges, node_ids
|
||||
)
|
||||
edges.extend(new_edges)
|
||||
repairs.extend(branch_repairs)
|
||||
warnings.extend(branch_warnings)
|
||||
# Update outgoing index
|
||||
for edge in new_edges:
|
||||
outgoing_edges.setdefault(edge.get("source"), []).append(edge)
|
||||
|
||||
# 4. Repair if-else branches
|
||||
for node in nodes:
|
||||
if node.get("type") == "if-else":
|
||||
new_edges, branch_repairs, branch_warnings = cls._repair_if_else_branches(
|
||||
node, edges, outgoing_edges, node_ids
|
||||
)
|
||||
edges.extend(new_edges)
|
||||
repairs.extend(branch_repairs)
|
||||
warnings.extend(branch_warnings)
|
||||
# Update outgoing index
|
||||
for edge in new_edges:
|
||||
outgoing_edges.setdefault(edge.get("source"), []).append(edge)
|
||||
|
||||
# 5. Connect orphaned nodes (nodes with no incoming edge, except start)
|
||||
new_edges, orphan_repairs = cls._connect_orphaned_nodes(nodes, edges, outgoing_edges, incoming_edges)
|
||||
edges.extend(new_edges)
|
||||
repairs.extend(orphan_repairs)
|
||||
|
||||
# 6. Connect nodes with no outgoing edge to 'end' (except end nodes)
|
||||
new_edges, terminal_repairs = cls._connect_terminal_nodes(nodes, edges, outgoing_edges)
|
||||
edges.extend(new_edges)
|
||||
repairs.extend(terminal_repairs)
|
||||
|
||||
if repairs:
|
||||
logger.info("[EDGE REPAIR] Completed with %s repairs:", len(repairs))
|
||||
for i, repair in enumerate(repairs, 1):
|
||||
logger.info("[EDGE REPAIR] %s. %s", i, repair)
|
||||
else:
|
||||
logger.info("[EDGE REPAIR] Completed - no repairs needed")
|
||||
|
||||
return RepairResult(
|
||||
nodes=nodes,
|
||||
edges=edges,
|
||||
repairs_made=repairs,
|
||||
warnings=warnings,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _infer_linear_chain(cls, nodes: list[WorkflowNodeDict]) -> tuple[list[WorkflowEdgeDict], list[str]]:
|
||||
"""
|
||||
Infer a linear chain of edges from node order.
|
||||
|
||||
This is used when no edges are provided at all.
|
||||
"""
|
||||
edges: list[WorkflowEdgeDict] = []
|
||||
repairs: list[str] = []
|
||||
|
||||
# Filter to get ordered node IDs
|
||||
node_ids = [n.get("id") for n in nodes if n.get("id")]
|
||||
|
||||
if len(node_ids) < 2:
|
||||
return edges, repairs
|
||||
|
||||
# Create edges between consecutive nodes
|
||||
for i in range(len(node_ids) - 1):
|
||||
src = node_ids[i]
|
||||
tgt = node_ids[i + 1]
|
||||
edges.append({"source": src, "target": tgt})
|
||||
repairs.append(f"Inferred edge: {src} -> {tgt}")
|
||||
|
||||
return edges, repairs
|
||||
|
||||
@classmethod
|
||||
def _repair_classifier_branches(
|
||||
cls,
|
||||
node: WorkflowNodeDict,
|
||||
edges: list[WorkflowEdgeDict],
|
||||
outgoing_edges: dict[str, list[WorkflowEdgeDict]],
|
||||
valid_node_ids: set[str],
|
||||
) -> tuple[list[WorkflowEdgeDict], list[str], list[str]]:
|
||||
"""
|
||||
Repair missing branches for question-classifier nodes.
|
||||
|
||||
For each class that doesn't have an edge, create one pointing to 'end'.
|
||||
"""
|
||||
new_edges: list[WorkflowEdgeDict] = []
|
||||
repairs: list[str] = []
|
||||
warnings: list[str] = []
|
||||
|
||||
node_id = node.get("id")
|
||||
if not node_id:
|
||||
return new_edges, repairs, warnings
|
||||
|
||||
config = node.get("config", {})
|
||||
classes = config.get("classes", [])
|
||||
|
||||
if not classes:
|
||||
return new_edges, repairs, warnings
|
||||
|
||||
# Get existing sourceHandles for this node
|
||||
existing_handles = set()
|
||||
for edge in outgoing_edges.get(node_id, []):
|
||||
handle = edge.get("sourceHandle")
|
||||
if handle:
|
||||
existing_handles.add(handle)
|
||||
|
||||
# Find 'end' node as default target
|
||||
end_node_id = "end"
|
||||
if "end" not in valid_node_ids:
|
||||
# Try to find an end node
|
||||
for nid in valid_node_ids:
|
||||
if "end" in nid.lower():
|
||||
end_node_id = nid
|
||||
break
|
||||
|
||||
# Add missing branches
|
||||
for cls_def in classes:
|
||||
if not isinstance(cls_def, dict):
|
||||
continue
|
||||
cls_id = cls_def.get("id")
|
||||
cls_name = cls_def.get("name", cls_id)
|
||||
|
||||
if cls_id and cls_id not in existing_handles:
|
||||
new_edge = {
|
||||
"source": node_id,
|
||||
"sourceHandle": cls_id,
|
||||
"target": end_node_id,
|
||||
}
|
||||
new_edges.append(new_edge)
|
||||
repairs.append(f"Added missing branch edge for class '{cls_name}' -> {end_node_id}")
|
||||
warnings.append(
|
||||
f"Auto-connected question-classifier branch '{cls_name}' to '{end_node_id}'. "
|
||||
"You may want to redirect this to a specific handler node."
|
||||
)
|
||||
|
||||
return new_edges, repairs, warnings
|
||||
|
||||
@classmethod
|
||||
def _repair_if_else_branches(
|
||||
cls,
|
||||
node: WorkflowNodeDict,
|
||||
edges: list[WorkflowEdgeDict],
|
||||
outgoing_edges: dict[str, list[WorkflowEdgeDict]],
|
||||
valid_node_ids: set[str],
|
||||
) -> tuple[list[WorkflowEdgeDict], list[str], list[str]]:
|
||||
"""
|
||||
Repair missing branches for if-else nodes.
|
||||
|
||||
If-else in Dify uses case_id as sourceHandle for each condition,
|
||||
plus 'false' for the else branch.
|
||||
"""
|
||||
new_edges: list[WorkflowEdgeDict] = []
|
||||
repairs: list[str] = []
|
||||
warnings: list[str] = []
|
||||
|
||||
node_id = node.get("id")
|
||||
if not node_id:
|
||||
return new_edges, repairs, warnings
|
||||
|
||||
# Get existing sourceHandles
|
||||
existing_handles = set()
|
||||
for edge in outgoing_edges.get(node_id, []):
|
||||
handle = edge.get("sourceHandle")
|
||||
if handle:
|
||||
existing_handles.add(handle)
|
||||
|
||||
# Find 'end' node as default target
|
||||
end_node_id = "end"
|
||||
if "end" not in valid_node_ids:
|
||||
for nid in valid_node_ids:
|
||||
if "end" in nid.lower():
|
||||
end_node_id = nid
|
||||
break
|
||||
|
||||
# Get required branches from config
|
||||
config = node.get("config", {})
|
||||
cases = config.get("cases", [])
|
||||
|
||||
# Build required handles: each case_id + 'false' for else
|
||||
required_branches = set()
|
||||
for case in cases:
|
||||
case_id = case.get("case_id")
|
||||
if case_id:
|
||||
required_branches.add(case_id)
|
||||
required_branches.add("false") # else branch
|
||||
|
||||
# Add missing branches
|
||||
for branch in required_branches:
|
||||
if branch not in existing_handles:
|
||||
new_edge = {
|
||||
"source": node_id,
|
||||
"sourceHandle": branch,
|
||||
"target": end_node_id,
|
||||
}
|
||||
new_edges.append(new_edge)
|
||||
repairs.append(f"Added missing if-else branch '{branch}' -> {end_node_id}")
|
||||
warnings.append(
|
||||
f"Auto-connected if-else branch '{branch}' to '{end_node_id}'. "
|
||||
"You may want to redirect this to a specific handler node."
|
||||
)
|
||||
|
||||
return new_edges, repairs, warnings
|
||||
|
||||
@classmethod
|
||||
def _connect_orphaned_nodes(
|
||||
cls,
|
||||
nodes: list[WorkflowNodeDict],
|
||||
edges: list[WorkflowEdgeDict],
|
||||
outgoing_edges: dict[str, list[WorkflowEdgeDict]],
|
||||
incoming_edges: dict[str, list[WorkflowEdgeDict]],
|
||||
) -> tuple[list[WorkflowEdgeDict], list[str]]:
|
||||
"""
|
||||
Connect orphaned nodes to the previous node in sequence.
|
||||
|
||||
An orphaned node has no incoming edges and is not a 'start' node.
|
||||
"""
|
||||
new_edges: list[WorkflowEdgeDict] = []
|
||||
repairs: list[str] = []
|
||||
|
||||
node_ids = [n.get("id") for n in nodes if n.get("id")]
|
||||
node_types = {n.get("id"): n.get("type") for n in nodes}
|
||||
|
||||
for i, node_id in enumerate(node_ids):
|
||||
node_type = node_types.get(node_id)
|
||||
|
||||
# Skip start nodes - they don't need incoming edges
|
||||
if node_type == "start":
|
||||
continue
|
||||
|
||||
# Check if node has incoming edges
|
||||
if node_id not in incoming_edges or not incoming_edges[node_id]:
|
||||
# Find previous node to connect from
|
||||
if i > 0:
|
||||
prev_node_id = node_ids[i - 1]
|
||||
new_edge = {"source": prev_node_id, "target": node_id}
|
||||
new_edges.append(new_edge)
|
||||
repairs.append(f"Connected orphaned node: {prev_node_id} -> {node_id}")
|
||||
|
||||
# Update incoming_edges for subsequent checks
|
||||
incoming_edges.setdefault(node_id, []).append(new_edge)
|
||||
|
||||
return new_edges, repairs
|
||||
|
||||
@classmethod
|
||||
def _connect_terminal_nodes(
|
||||
cls,
|
||||
nodes: list[WorkflowNodeDict],
|
||||
edges: list[WorkflowEdgeDict],
|
||||
outgoing_edges: dict[str, list[WorkflowEdgeDict]],
|
||||
) -> tuple[list[WorkflowEdgeDict], list[str]]:
|
||||
"""
|
||||
Connect terminal nodes (no outgoing edges) to 'end'.
|
||||
|
||||
A terminal node has no outgoing edges and is not an 'end' node.
|
||||
This ensures all branches eventually reach 'end'.
|
||||
"""
|
||||
new_edges: list[WorkflowEdgeDict] = []
|
||||
repairs: list[str] = []
|
||||
|
||||
# Find end node
|
||||
end_node_id = None
|
||||
node_ids = set()
|
||||
for n in nodes:
|
||||
nid = n.get("id")
|
||||
ntype = n.get("type")
|
||||
if nid:
|
||||
node_ids.add(nid)
|
||||
if ntype == "end":
|
||||
end_node_id = nid
|
||||
|
||||
if not end_node_id:
|
||||
# No end node found, can't connect
|
||||
return new_edges, repairs
|
||||
|
||||
for node in nodes:
|
||||
node_id = node.get("id")
|
||||
node_type = node.get("type")
|
||||
|
||||
# Skip end nodes
|
||||
if node_type == "end":
|
||||
continue
|
||||
|
||||
# Skip nodes that already have outgoing edges
|
||||
if outgoing_edges.get(node_id):
|
||||
continue
|
||||
|
||||
# Connect to end
|
||||
new_edge = {"source": node_id, "target": end_node_id}
|
||||
new_edges.append(new_edge)
|
||||
repairs.append(f"Connected terminal node to end: {node_id} -> {end_node_id}")
|
||||
|
||||
# Update for subsequent checks
|
||||
outgoing_edges.setdefault(node_id, []).append(new_edge)
|
||||
|
||||
return new_edges, repairs
|
||||
621
api/core/workflow/generator/utils/graph_builder.py
Normal file
621
api/core/workflow/generator/utils/graph_builder.py
Normal file
@@ -0,0 +1,621 @@
|
||||
"""
|
||||
GraphBuilder: Automatic workflow graph construction from node list.
|
||||
|
||||
This module implements the core logic for building complete workflow graphs
|
||||
from LLM-generated node lists with dependency declarations.
|
||||
|
||||
Key features:
|
||||
- Automatic start/end node generation
|
||||
- Dependency inference from variable references
|
||||
- Topological sorting with cycle detection
|
||||
- Special handling for branching nodes (if-else, question-classifier)
|
||||
- Silent error recovery where possible
|
||||
"""
|
||||
|
||||
import json
|
||||
import logging
|
||||
import re
|
||||
import uuid
|
||||
from collections import defaultdict
|
||||
from typing import Any
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Pattern to match variable references like {{#node_id.field#}}
|
||||
VAR_PATTERN = re.compile(r"\{\{#([^.#]+)\.[^#]+#\}\}")
|
||||
|
||||
# System variable prefixes to exclude from dependency inference
|
||||
SYSTEM_VAR_PREFIXES = {"sys", "start", "env"}
|
||||
|
||||
# Node types that have special branching behavior
|
||||
BRANCHING_NODE_TYPES = {"if-else", "question-classifier"}
|
||||
|
||||
# Container node types (iteration, loop) - these have internal subgraphs
|
||||
# but behave as single-input-single-output nodes in the external graph
|
||||
CONTAINER_NODE_TYPES = {"iteration", "loop"}
|
||||
|
||||
|
||||
class GraphBuildError(Exception):
|
||||
"""Raised when graph cannot be built due to unrecoverable errors."""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class CyclicDependencyError(GraphBuildError):
|
||||
"""Raised when cyclic dependencies are detected."""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class GraphBuilder:
|
||||
"""
|
||||
Builds complete workflow graphs from LLM-generated node lists.
|
||||
|
||||
This class handles the conversion from a simplified node list format
|
||||
(with depends_on declarations) to a full workflow graph with nodes and edges.
|
||||
|
||||
The LLM only needs to generate:
|
||||
- Node configurations with depends_on arrays
|
||||
- Branch targets in config for branching nodes
|
||||
|
||||
The GraphBuilder automatically:
|
||||
- Adds start and end nodes
|
||||
- Generates all edges from dependencies
|
||||
- Infers implicit dependencies from variable references
|
||||
- Handles branching nodes (if-else, question-classifier)
|
||||
- Validates graph structure (no cycles, proper connectivity)
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def build_graph(
|
||||
cls,
|
||||
nodes: list[dict[str, Any]],
|
||||
start_config: dict[str, Any] | None = None,
|
||||
end_config: dict[str, Any] | None = None,
|
||||
) -> tuple[list[dict[str, Any]], list[dict[str, Any]]]:
|
||||
"""
|
||||
Build a complete workflow graph from a node list.
|
||||
|
||||
Args:
|
||||
nodes: LLM-generated nodes (without start/end)
|
||||
start_config: Optional configuration for start node
|
||||
end_config: Optional configuration for end node
|
||||
|
||||
Returns:
|
||||
Tuple of (complete_nodes, edges) where:
|
||||
- complete_nodes includes start, user nodes, and end
|
||||
- edges contains all connections
|
||||
|
||||
Raises:
|
||||
CyclicDependencyError: If cyclic dependencies are detected
|
||||
GraphBuildError: If graph cannot be built
|
||||
"""
|
||||
if not nodes:
|
||||
# Empty node list - create minimal workflow
|
||||
start_node = cls._create_start_node([], start_config)
|
||||
end_node = cls._create_end_node([], end_config)
|
||||
edge = cls._create_edge("start", "end")
|
||||
return [start_node, end_node], [edge]
|
||||
|
||||
# Build node index for quick lookup
|
||||
node_map = {node["id"]: node for node in nodes}
|
||||
|
||||
# Step 1: Extract explicit dependencies from depends_on
|
||||
dependencies = cls._extract_explicit_dependencies(nodes)
|
||||
|
||||
# Step 2: Infer implicit dependencies from variable references
|
||||
dependencies = cls._infer_dependencies_from_variables(nodes, dependencies, node_map)
|
||||
|
||||
# Step 3: Validate and fix dependencies (remove invalid references)
|
||||
dependencies = cls._validate_dependencies(dependencies, node_map)
|
||||
|
||||
# Step 4: Topological sort (detects cycles)
|
||||
sorted_node_ids = cls._topological_sort(nodes, dependencies)
|
||||
|
||||
# Step 5: Generate start node
|
||||
start_node = cls._create_start_node(nodes, start_config)
|
||||
|
||||
# Step 6: Generate edges
|
||||
edges = cls._generate_edges(nodes, sorted_node_ids, dependencies, node_map)
|
||||
|
||||
# Step 7: Find terminal nodes and generate end node
|
||||
terminal_nodes = cls._find_terminal_nodes(nodes, dependencies, node_map)
|
||||
end_node = cls._create_end_node(terminal_nodes, end_config)
|
||||
|
||||
# Step 8: Add edges from terminal nodes to end
|
||||
for terminal_id in terminal_nodes:
|
||||
edges.append(cls._create_edge(terminal_id, "end"))
|
||||
|
||||
# Step 9: Assemble complete node list
|
||||
all_nodes = [start_node, *nodes, end_node]
|
||||
|
||||
return all_nodes, edges
|
||||
|
||||
@classmethod
|
||||
def _extract_explicit_dependencies(
|
||||
cls,
|
||||
nodes: list[dict[str, Any]],
|
||||
) -> dict[str, list[str]]:
|
||||
"""
|
||||
Extract explicit dependencies from depends_on field.
|
||||
|
||||
Args:
|
||||
nodes: List of nodes with optional depends_on field
|
||||
|
||||
Returns:
|
||||
Dictionary mapping node_id -> list of dependency node_ids
|
||||
"""
|
||||
dependencies: dict[str, list[str]] = {}
|
||||
|
||||
for node in nodes:
|
||||
node_id = node.get("id", "")
|
||||
depends_on = node.get("depends_on", [])
|
||||
|
||||
# Ensure depends_on is a list
|
||||
if isinstance(depends_on, str):
|
||||
depends_on = [depends_on] if depends_on else []
|
||||
elif not isinstance(depends_on, list):
|
||||
depends_on = []
|
||||
|
||||
dependencies[node_id] = list(depends_on)
|
||||
|
||||
return dependencies
|
||||
|
||||
@classmethod
|
||||
def _infer_dependencies_from_variables(
|
||||
cls,
|
||||
nodes: list[dict[str, Any]],
|
||||
explicit_deps: dict[str, list[str]],
|
||||
node_map: dict[str, dict[str, Any]],
|
||||
) -> dict[str, list[str]]:
|
||||
"""
|
||||
Infer implicit dependencies from variable references in config.
|
||||
|
||||
Scans node configurations for patterns like {{#node_id.field#}}
|
||||
and adds those as dependencies if not already declared.
|
||||
|
||||
Args:
|
||||
nodes: List of nodes
|
||||
explicit_deps: Already extracted explicit dependencies
|
||||
node_map: Map of node_id -> node for validation
|
||||
|
||||
Returns:
|
||||
Updated dependencies dictionary
|
||||
"""
|
||||
for node in nodes:
|
||||
node_id = node.get("id", "")
|
||||
config = node.get("config", {})
|
||||
|
||||
# Serialize config to search for variable references
|
||||
try:
|
||||
config_str = json.dumps(config, ensure_ascii=False)
|
||||
except (TypeError, ValueError):
|
||||
continue
|
||||
|
||||
# Find all variable references
|
||||
referenced_nodes = set(VAR_PATTERN.findall(config_str))
|
||||
|
||||
# Filter out system variables
|
||||
referenced_nodes -= SYSTEM_VAR_PREFIXES
|
||||
|
||||
# Ensure node_id exists in dependencies
|
||||
if node_id not in explicit_deps:
|
||||
explicit_deps[node_id] = []
|
||||
|
||||
# Add inferred dependencies
|
||||
for ref in referenced_nodes:
|
||||
# Skip self-references (e.g., loop nodes referencing their own outputs)
|
||||
if ref == node_id:
|
||||
logger.debug(
|
||||
"Skipping self-reference: %s -> %s",
|
||||
node_id,
|
||||
ref,
|
||||
)
|
||||
continue
|
||||
|
||||
if ref in node_map and ref not in explicit_deps[node_id]:
|
||||
explicit_deps[node_id].append(ref)
|
||||
logger.debug(
|
||||
"Inferred dependency: %s -> %s (from variable reference)",
|
||||
node_id,
|
||||
ref,
|
||||
)
|
||||
|
||||
return explicit_deps
|
||||
|
||||
@classmethod
|
||||
def _validate_dependencies(
|
||||
cls,
|
||||
dependencies: dict[str, list[str]],
|
||||
node_map: dict[str, dict[str, Any]],
|
||||
) -> dict[str, list[str]]:
|
||||
"""
|
||||
Validate dependencies and remove invalid references.
|
||||
|
||||
Silent fix: References to non-existent nodes are removed.
|
||||
|
||||
Args:
|
||||
dependencies: Dependencies to validate
|
||||
node_map: Map of valid node IDs
|
||||
|
||||
Returns:
|
||||
Validated dependencies
|
||||
"""
|
||||
valid_deps: dict[str, list[str]] = {}
|
||||
|
||||
for node_id, deps in dependencies.items():
|
||||
valid_deps[node_id] = []
|
||||
for dep in deps:
|
||||
if dep in node_map:
|
||||
valid_deps[node_id].append(dep)
|
||||
else:
|
||||
logger.warning(
|
||||
"Removed invalid dependency: %s -> %s (node does not exist)",
|
||||
node_id,
|
||||
dep,
|
||||
)
|
||||
|
||||
return valid_deps
|
||||
|
||||
@classmethod
|
||||
def _topological_sort(
|
||||
cls,
|
||||
nodes: list[dict[str, Any]],
|
||||
dependencies: dict[str, list[str]],
|
||||
) -> list[str]:
|
||||
"""
|
||||
Perform topological sort on nodes based on dependencies.
|
||||
|
||||
Uses Kahn's algorithm for cycle detection.
|
||||
|
||||
Args:
|
||||
nodes: List of nodes
|
||||
dependencies: Dependency graph
|
||||
|
||||
Returns:
|
||||
List of node IDs in topological order
|
||||
|
||||
Raises:
|
||||
CyclicDependencyError: If cyclic dependencies are detected
|
||||
"""
|
||||
# Build in-degree map
|
||||
in_degree: dict[str, int] = defaultdict(int)
|
||||
reverse_deps: dict[str, list[str]] = defaultdict(list)
|
||||
|
||||
node_ids = {node["id"] for node in nodes}
|
||||
|
||||
for node_id in node_ids:
|
||||
in_degree[node_id] = 0
|
||||
|
||||
for node_id, deps in dependencies.items():
|
||||
for dep in deps:
|
||||
if dep in node_ids:
|
||||
in_degree[node_id] += 1
|
||||
reverse_deps[dep].append(node_id)
|
||||
|
||||
# Start with nodes that have no dependencies
|
||||
queue = [nid for nid in node_ids if in_degree[nid] == 0]
|
||||
sorted_ids: list[str] = []
|
||||
|
||||
while queue:
|
||||
current = queue.pop(0)
|
||||
sorted_ids.append(current)
|
||||
|
||||
for dependent in reverse_deps[current]:
|
||||
in_degree[dependent] -= 1
|
||||
if in_degree[dependent] == 0:
|
||||
queue.append(dependent)
|
||||
|
||||
# Check for cycles
|
||||
if len(sorted_ids) != len(node_ids):
|
||||
remaining = node_ids - set(sorted_ids)
|
||||
raise CyclicDependencyError(
|
||||
f"Cyclic dependency detected involving nodes: {remaining}"
|
||||
)
|
||||
|
||||
return sorted_ids
|
||||
|
||||
@classmethod
|
||||
def _generate_edges(
|
||||
cls,
|
||||
nodes: list[dict[str, Any]],
|
||||
sorted_node_ids: list[str],
|
||||
dependencies: dict[str, list[str]],
|
||||
node_map: dict[str, dict[str, Any]],
|
||||
) -> list[dict[str, Any]]:
|
||||
"""
|
||||
Generate all edges based on dependencies and special node handling.
|
||||
|
||||
Args:
|
||||
nodes: List of nodes
|
||||
sorted_node_ids: Topologically sorted node IDs
|
||||
dependencies: Dependency graph
|
||||
node_map: Map of node_id -> node
|
||||
|
||||
Returns:
|
||||
List of edge dictionaries
|
||||
"""
|
||||
edges: list[dict[str, Any]] = []
|
||||
nodes_with_incoming: set[str] = set()
|
||||
|
||||
# Track which nodes have outgoing edges from branching
|
||||
branching_sources: set[str] = set()
|
||||
|
||||
# First pass: Handle branching nodes
|
||||
for node in nodes:
|
||||
node_id = node.get("id", "")
|
||||
node_type = node.get("type", "")
|
||||
|
||||
if node_type == "if-else":
|
||||
branch_edges = cls._handle_if_else_node(node)
|
||||
edges.extend(branch_edges)
|
||||
branching_sources.add(node_id)
|
||||
nodes_with_incoming.update(edge["target"] for edge in branch_edges)
|
||||
|
||||
elif node_type == "question-classifier":
|
||||
branch_edges = cls._handle_question_classifier_node(node)
|
||||
edges.extend(branch_edges)
|
||||
branching_sources.add(node_id)
|
||||
nodes_with_incoming.update(edge["target"] for edge in branch_edges)
|
||||
|
||||
# Second pass: Generate edges from dependencies
|
||||
for node_id in sorted_node_ids:
|
||||
deps = dependencies.get(node_id, [])
|
||||
|
||||
if deps:
|
||||
# Connect from each dependency
|
||||
for dep_id in deps:
|
||||
dep_node = node_map.get(dep_id, {})
|
||||
dep_type = dep_node.get("type", "")
|
||||
|
||||
# Skip if dependency is a branching node (edges handled above)
|
||||
if dep_type in BRANCHING_NODE_TYPES:
|
||||
continue
|
||||
|
||||
edges.append(cls._create_edge(dep_id, node_id))
|
||||
nodes_with_incoming.add(node_id)
|
||||
else:
|
||||
# No dependencies - connect from start
|
||||
# But skip if this node receives edges from branching nodes
|
||||
if node_id not in nodes_with_incoming:
|
||||
edges.append(cls._create_edge("start", node_id))
|
||||
nodes_with_incoming.add(node_id)
|
||||
|
||||
return edges
|
||||
|
||||
@classmethod
|
||||
def _handle_if_else_node(
|
||||
cls,
|
||||
node: dict[str, Any],
|
||||
) -> list[dict[str, Any]]:
|
||||
"""
|
||||
Handle if-else node branching.
|
||||
|
||||
Expects config to contain true_branch and/or false_branch.
|
||||
|
||||
Args:
|
||||
node: If-else node
|
||||
|
||||
Returns:
|
||||
List of branch edges
|
||||
"""
|
||||
edges: list[dict[str, Any]] = []
|
||||
node_id = node.get("id", "")
|
||||
config = node.get("config", {})
|
||||
|
||||
true_branch = config.get("true_branch")
|
||||
false_branch = config.get("false_branch")
|
||||
|
||||
if true_branch:
|
||||
edges.append(cls._create_edge(node_id, true_branch, source_handle="true"))
|
||||
|
||||
if false_branch:
|
||||
edges.append(cls._create_edge(node_id, false_branch, source_handle="false"))
|
||||
|
||||
# If no branches specified, log warning
|
||||
if not true_branch and not false_branch:
|
||||
logger.warning(
|
||||
"if-else node %s has no branch targets specified",
|
||||
node_id,
|
||||
)
|
||||
|
||||
return edges
|
||||
|
||||
@classmethod
|
||||
def _handle_question_classifier_node(
|
||||
cls,
|
||||
node: dict[str, Any],
|
||||
) -> list[dict[str, Any]]:
|
||||
"""
|
||||
Handle question-classifier node branching.
|
||||
|
||||
Expects config.classes to contain class definitions with target fields.
|
||||
|
||||
Args:
|
||||
node: Question-classifier node
|
||||
|
||||
Returns:
|
||||
List of branch edges
|
||||
"""
|
||||
edges: list[dict[str, Any]] = []
|
||||
node_id = node.get("id", "")
|
||||
config = node.get("config", {})
|
||||
classes = config.get("classes", [])
|
||||
|
||||
if not classes:
|
||||
logger.warning(
|
||||
"question-classifier node %s has no classes defined",
|
||||
node_id,
|
||||
)
|
||||
return edges
|
||||
|
||||
for cls_def in classes:
|
||||
class_id = cls_def.get("id", "")
|
||||
target = cls_def.get("target")
|
||||
|
||||
if target:
|
||||
edges.append(cls._create_edge(node_id, target, source_handle=class_id))
|
||||
else:
|
||||
# Silent fix: Connect to end if no target specified
|
||||
edges.append(cls._create_edge(node_id, "end", source_handle=class_id))
|
||||
logger.debug(
|
||||
"question-classifier class %s has no target, connecting to end",
|
||||
class_id,
|
||||
)
|
||||
|
||||
return edges
|
||||
|
||||
@classmethod
|
||||
def _find_terminal_nodes(
|
||||
cls,
|
||||
nodes: list[dict[str, Any]],
|
||||
dependencies: dict[str, list[str]],
|
||||
node_map: dict[str, dict[str, Any]],
|
||||
) -> list[str]:
|
||||
"""
|
||||
Find nodes that should connect to the end node.
|
||||
|
||||
Terminal nodes are those that:
|
||||
- Are not dependencies of any other node
|
||||
- Are not branching nodes (those connect to their branches)
|
||||
|
||||
Args:
|
||||
nodes: List of nodes
|
||||
dependencies: Dependency graph
|
||||
node_map: Map of node_id -> node
|
||||
|
||||
Returns:
|
||||
List of terminal node IDs
|
||||
"""
|
||||
# Build set of all nodes that are depended upon
|
||||
depended_upon: set[str] = set()
|
||||
for deps in dependencies.values():
|
||||
depended_upon.update(deps)
|
||||
|
||||
# Also track nodes that are branch targets
|
||||
branch_targets: set[str] = set()
|
||||
branching_nodes: set[str] = set()
|
||||
|
||||
for node in nodes:
|
||||
node_id = node.get("id", "")
|
||||
node_type = node.get("type", "")
|
||||
config = node.get("config", {})
|
||||
|
||||
if node_type == "if-else":
|
||||
branching_nodes.add(node_id)
|
||||
if config.get("true_branch"):
|
||||
branch_targets.add(config["true_branch"])
|
||||
if config.get("false_branch"):
|
||||
branch_targets.add(config["false_branch"])
|
||||
|
||||
elif node_type == "question-classifier":
|
||||
branching_nodes.add(node_id)
|
||||
for cls_def in config.get("classes", []):
|
||||
if cls_def.get("target"):
|
||||
branch_targets.add(cls_def["target"])
|
||||
|
||||
# Find terminal nodes
|
||||
terminal_nodes: list[str] = []
|
||||
for node in nodes:
|
||||
node_id = node.get("id", "")
|
||||
node_type = node.get("type", "")
|
||||
|
||||
# Skip branching nodes - they don't connect to end directly
|
||||
if node_type in BRANCHING_NODE_TYPES:
|
||||
continue
|
||||
|
||||
# Terminal if not depended upon and not a branch target that leads elsewhere
|
||||
if node_id not in depended_upon:
|
||||
terminal_nodes.append(node_id)
|
||||
|
||||
# If no terminal nodes found (shouldn't happen), use all non-branching nodes
|
||||
if not terminal_nodes:
|
||||
terminal_nodes = [
|
||||
node["id"]
|
||||
for node in nodes
|
||||
if node.get("type") not in BRANCHING_NODE_TYPES
|
||||
]
|
||||
logger.warning("No terminal nodes found, using all non-branching nodes")
|
||||
|
||||
return terminal_nodes
|
||||
|
||||
@classmethod
|
||||
def _create_start_node(
|
||||
cls,
|
||||
nodes: list[dict[str, Any]],
|
||||
config: dict[str, Any] | None = None,
|
||||
) -> dict[str, Any]:
|
||||
"""
|
||||
Create a start node.
|
||||
|
||||
Args:
|
||||
nodes: User nodes (for potential config inference)
|
||||
config: Optional start node configuration
|
||||
|
||||
Returns:
|
||||
Start node dictionary
|
||||
"""
|
||||
return {
|
||||
"id": "start",
|
||||
"type": "start",
|
||||
"title": "Start",
|
||||
"config": config or {},
|
||||
"data": {},
|
||||
}
|
||||
|
||||
@classmethod
|
||||
def _create_end_node(
|
||||
cls,
|
||||
terminal_nodes: list[str],
|
||||
config: dict[str, Any] | None = None,
|
||||
) -> dict[str, Any]:
|
||||
"""
|
||||
Create an end node.
|
||||
|
||||
Args:
|
||||
terminal_nodes: Nodes that will connect to end
|
||||
config: Optional end node configuration
|
||||
|
||||
Returns:
|
||||
End node dictionary
|
||||
"""
|
||||
return {
|
||||
"id": "end",
|
||||
"type": "end",
|
||||
"title": "End",
|
||||
"config": config or {},
|
||||
"data": {},
|
||||
}
|
||||
|
||||
@classmethod
|
||||
def _create_edge(
|
||||
cls,
|
||||
source: str,
|
||||
target: str,
|
||||
source_handle: str | None = None,
|
||||
) -> dict[str, Any]:
|
||||
"""
|
||||
Create an edge dictionary.
|
||||
|
||||
Args:
|
||||
source: Source node ID
|
||||
target: Target node ID
|
||||
source_handle: Optional handle for branching (e.g., "true", "false", class_id)
|
||||
|
||||
Returns:
|
||||
Edge dictionary
|
||||
"""
|
||||
edge: dict[str, Any] = {
|
||||
"id": f"{source}-{target}-{uuid.uuid4().hex[:8]}",
|
||||
"source": source,
|
||||
"target": target,
|
||||
}
|
||||
|
||||
if source_handle:
|
||||
edge["sourceHandle"] = source_handle
|
||||
else:
|
||||
edge["sourceHandle"] = "source"
|
||||
|
||||
edge["targetHandle"] = "target"
|
||||
|
||||
return edge
|
||||
280
api/core/workflow/generator/utils/graph_validator.py
Normal file
280
api/core/workflow/generator/utils/graph_validator.py
Normal file
@@ -0,0 +1,280 @@
|
||||
"""
|
||||
Graph Validator for Workflow Generation
|
||||
|
||||
Validates workflow graph structure using graph algorithms:
|
||||
- Reachability from start node (BFS)
|
||||
- Reachability to end node (reverse BFS)
|
||||
- Branch edge validation for if-else and classifier nodes
|
||||
"""
|
||||
|
||||
import time
|
||||
from collections import deque
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
|
||||
@dataclass
|
||||
class GraphError:
|
||||
"""Represents a structural error in the workflow graph."""
|
||||
|
||||
node_id: str
|
||||
node_type: str
|
||||
error_type: str # "unreachable", "dead_end", "cycle", "missing_start", "missing_end"
|
||||
message: str
|
||||
|
||||
|
||||
@dataclass
|
||||
class GraphValidationResult:
|
||||
"""Result of graph validation."""
|
||||
|
||||
success: bool
|
||||
errors: list[GraphError] = field(default_factory=list)
|
||||
warnings: list[GraphError] = field(default_factory=list)
|
||||
execution_time: float = 0.0
|
||||
stats: dict = field(default_factory=dict)
|
||||
|
||||
|
||||
class GraphValidator:
|
||||
"""
|
||||
Validates workflow graph structure using proper graph algorithms.
|
||||
|
||||
Performs:
|
||||
1. Forward reachability analysis (BFS from start)
|
||||
2. Backward reachability analysis (reverse BFS from end)
|
||||
3. Branch edge validation for if-else and classifier nodes
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def _build_adjacency(
|
||||
nodes: dict[str, dict], edges: list[dict]
|
||||
) -> tuple[dict[str, list[str]], dict[str, list[str]]]:
|
||||
"""Build forward and reverse adjacency lists from edges."""
|
||||
outgoing: dict[str, list[str]] = {node_id: [] for node_id in nodes}
|
||||
incoming: dict[str, list[str]] = {node_id: [] for node_id in nodes}
|
||||
|
||||
for edge in edges:
|
||||
source = edge.get("source")
|
||||
target = edge.get("target")
|
||||
if source in outgoing and target in incoming:
|
||||
outgoing[source].append(target)
|
||||
incoming[target].append(source)
|
||||
|
||||
return outgoing, incoming
|
||||
|
||||
@staticmethod
|
||||
def _bfs_reachable(start: str, adjacency: dict[str, list[str]]) -> set[str]:
|
||||
"""BFS to find all nodes reachable from start node."""
|
||||
if start not in adjacency:
|
||||
return set()
|
||||
|
||||
visited = set()
|
||||
queue = deque([start])
|
||||
visited.add(start)
|
||||
|
||||
while queue:
|
||||
current = queue.popleft()
|
||||
for neighbor in adjacency.get(current, []):
|
||||
if neighbor not in visited:
|
||||
visited.add(neighbor)
|
||||
queue.append(neighbor)
|
||||
|
||||
return visited
|
||||
|
||||
@staticmethod
|
||||
def validate(workflow_data: dict) -> GraphValidationResult:
|
||||
"""Validate workflow graph structure."""
|
||||
start_time = time.time()
|
||||
errors: list[GraphError] = []
|
||||
warnings: list[GraphError] = []
|
||||
|
||||
nodes_list = workflow_data.get("nodes", [])
|
||||
edges_list = workflow_data.get("edges", [])
|
||||
nodes = {n["id"]: n for n in nodes_list if n.get("id")}
|
||||
|
||||
# Find start and end nodes
|
||||
start_node_id = None
|
||||
end_node_ids = []
|
||||
|
||||
for node_id, node in nodes.items():
|
||||
node_type = node.get("type")
|
||||
if node_type == "start":
|
||||
start_node_id = node_id
|
||||
elif node_type == "end":
|
||||
end_node_ids.append(node_id)
|
||||
|
||||
# Check start node exists
|
||||
if not start_node_id:
|
||||
errors.append(
|
||||
GraphError(
|
||||
node_id="workflow",
|
||||
node_type="workflow",
|
||||
error_type="missing_start",
|
||||
message="Workflow has no start node",
|
||||
)
|
||||
)
|
||||
|
||||
# Check end node exists
|
||||
if not end_node_ids:
|
||||
errors.append(
|
||||
GraphError(
|
||||
node_id="workflow",
|
||||
node_type="workflow",
|
||||
error_type="missing_end",
|
||||
message="Workflow has no end node",
|
||||
)
|
||||
)
|
||||
|
||||
# If missing start or end, can't do reachability analysis
|
||||
if not start_node_id or not end_node_ids:
|
||||
execution_time = time.time() - start_time
|
||||
return GraphValidationResult(
|
||||
success=False,
|
||||
errors=errors,
|
||||
warnings=warnings,
|
||||
execution_time=execution_time,
|
||||
stats={"nodes": len(nodes), "edges": len(edges_list)},
|
||||
)
|
||||
|
||||
# Build adjacency lists
|
||||
outgoing, incoming = GraphValidator._build_adjacency(nodes, edges_list)
|
||||
|
||||
# --- FORWARD REACHABILITY: BFS from start ---
|
||||
reachable_from_start = GraphValidator._bfs_reachable(start_node_id, outgoing)
|
||||
|
||||
# Find unreachable nodes
|
||||
unreachable_nodes = set(nodes.keys()) - reachable_from_start
|
||||
for node_id in unreachable_nodes:
|
||||
node = nodes[node_id]
|
||||
errors.append(
|
||||
GraphError(
|
||||
node_id=node_id,
|
||||
node_type=node.get("type", "unknown"),
|
||||
error_type="unreachable",
|
||||
message=f"Node '{node_id}' is not reachable from start node",
|
||||
)
|
||||
)
|
||||
|
||||
# --- BACKWARD REACHABILITY: Reverse BFS from end nodes ---
|
||||
can_reach_end: set[str] = set()
|
||||
for end_id in end_node_ids:
|
||||
can_reach_end.update(GraphValidator._bfs_reachable(end_id, incoming))
|
||||
|
||||
# Find dead-end nodes (can't reach any end node)
|
||||
dead_end_nodes = set(nodes.keys()) - can_reach_end
|
||||
for node_id in dead_end_nodes:
|
||||
if node_id in unreachable_nodes:
|
||||
continue
|
||||
node = nodes[node_id]
|
||||
warnings.append(
|
||||
GraphError(
|
||||
node_id=node_id,
|
||||
node_type=node.get("type", "unknown"),
|
||||
error_type="dead_end",
|
||||
message=f"Node '{node_id}' cannot reach any end node (dead end)",
|
||||
)
|
||||
)
|
||||
|
||||
# --- Start node has outgoing edges? ---
|
||||
if not outgoing.get(start_node_id):
|
||||
errors.append(
|
||||
GraphError(
|
||||
node_id=start_node_id,
|
||||
node_type="start",
|
||||
error_type="disconnected",
|
||||
message="Start node has no outgoing connections",
|
||||
)
|
||||
)
|
||||
|
||||
# --- End nodes have incoming edges? ---
|
||||
for end_id in end_node_ids:
|
||||
if not incoming.get(end_id):
|
||||
errors.append(
|
||||
GraphError(
|
||||
node_id=end_id,
|
||||
node_type="end",
|
||||
error_type="disconnected",
|
||||
message="End node has no incoming connections",
|
||||
)
|
||||
)
|
||||
|
||||
# --- BRANCH EDGE VALIDATION ---
|
||||
edge_handles: dict[str, set[str]] = {}
|
||||
for edge in edges_list:
|
||||
source = edge.get("source")
|
||||
handle = edge.get("sourceHandle", "")
|
||||
if source:
|
||||
if source not in edge_handles:
|
||||
edge_handles[source] = set()
|
||||
edge_handles[source].add(handle)
|
||||
|
||||
# Check if-else and question-classifier nodes
|
||||
for node_id, node in nodes.items():
|
||||
node_type = node.get("type")
|
||||
|
||||
if node_type == "if-else":
|
||||
handles = edge_handles.get(node_id, set())
|
||||
config = node.get("config", {})
|
||||
cases = config.get("cases", [])
|
||||
|
||||
required_handles = set()
|
||||
for case in cases:
|
||||
case_id = case.get("case_id")
|
||||
if case_id:
|
||||
required_handles.add(case_id)
|
||||
required_handles.add("false")
|
||||
|
||||
missing = required_handles - handles
|
||||
for handle in missing:
|
||||
errors.append(
|
||||
GraphError(
|
||||
node_id=node_id,
|
||||
node_type=node_type,
|
||||
error_type="missing_branch",
|
||||
message=f"If-else node '{node_id}' missing edge for branch '{handle}'",
|
||||
)
|
||||
)
|
||||
|
||||
elif node_type == "question-classifier":
|
||||
handles = edge_handles.get(node_id, set())
|
||||
config = node.get("config", {})
|
||||
classes = config.get("classes", [])
|
||||
|
||||
required_handles = set()
|
||||
for cls in classes:
|
||||
if isinstance(cls, dict):
|
||||
cls_id = cls.get("id")
|
||||
if cls_id:
|
||||
required_handles.add(cls_id)
|
||||
|
||||
missing = required_handles - handles
|
||||
for handle in missing:
|
||||
cls_name = handle
|
||||
for cls in classes:
|
||||
if isinstance(cls, dict) and cls.get("id") == handle:
|
||||
cls_name = cls.get("name", handle)
|
||||
break
|
||||
errors.append(
|
||||
GraphError(
|
||||
node_id=node_id,
|
||||
node_type=node_type,
|
||||
error_type="missing_branch",
|
||||
message=f"Classifier '{node_id}' missing edge for class '{cls_name}'",
|
||||
)
|
||||
)
|
||||
|
||||
execution_time = time.time() - start_time
|
||||
success = len(errors) == 0
|
||||
|
||||
return GraphValidationResult(
|
||||
success=success,
|
||||
errors=errors,
|
||||
warnings=warnings,
|
||||
execution_time=execution_time,
|
||||
stats={
|
||||
"nodes": len(nodes),
|
||||
"edges": len(edges_list),
|
||||
"reachable_from_start": len(reachable_from_start),
|
||||
"can_reach_end": len(can_reach_end),
|
||||
"unreachable": len(unreachable_nodes),
|
||||
"dead_ends": len(dead_end_nodes - unreachable_nodes),
|
||||
},
|
||||
)
|
||||
113
api/core/workflow/generator/utils/mermaid_generator.py
Normal file
113
api/core/workflow/generator/utils/mermaid_generator.py
Normal file
@@ -0,0 +1,113 @@
|
||||
import logging
|
||||
|
||||
from core.workflow.generator.types import WorkflowDataDict
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def generate_mermaid(workflow_data: WorkflowDataDict) -> str:
|
||||
"""
|
||||
Generate a Mermaid flowchart from workflow data consisting of nodes and edges.
|
||||
|
||||
Args:
|
||||
workflow_data: Dict containing 'nodes' (list) and 'edges' (list)
|
||||
|
||||
Returns:
|
||||
String containing the Mermaid flowchart syntax
|
||||
"""
|
||||
nodes = workflow_data.get("nodes", [])
|
||||
edges = workflow_data.get("edges", [])
|
||||
|
||||
lines = ["flowchart TD"]
|
||||
|
||||
# 1. Define Nodes
|
||||
# Format: node_id["title<br/>type"] or similar
|
||||
# We will use the Vibe Workflow standard format: id["type=TYPE|title=TITLE"]
|
||||
# Or specifically for tool nodes: id["type=tool|title=TITLE|tool=TOOL_KEY"]
|
||||
|
||||
# Map of original IDs to safe Mermaid IDs
|
||||
id_map = {}
|
||||
|
||||
def get_safe_id(original_id: str) -> str:
|
||||
if original_id == "end":
|
||||
return "end_node"
|
||||
if original_id == "subgraph":
|
||||
return "subgraph_node"
|
||||
# Mermaid IDs should be alphanumeric.
|
||||
# If the ID has special chars, we might need to escape or hash, but Vibe usually generates simple IDs.
|
||||
# We'll trust standard IDs but handle the reserved keyword 'end'.
|
||||
return original_id
|
||||
|
||||
for node in nodes:
|
||||
node_id = node.get("id")
|
||||
if not node_id:
|
||||
continue
|
||||
|
||||
safe_id = get_safe_id(node_id)
|
||||
id_map[node_id] = safe_id
|
||||
|
||||
node_type = node.get("type", "unknown")
|
||||
title = node.get("title", "Untitled")
|
||||
|
||||
# Escape quotes in title
|
||||
safe_title = title.replace('"', "'")
|
||||
|
||||
if node_type == "tool":
|
||||
config = node.get("config", {})
|
||||
# Try multiple fields for tool reference
|
||||
tool_ref = (
|
||||
config.get("tool_key")
|
||||
or config.get("tool")
|
||||
or config.get("tool_name")
|
||||
or node.get("tool_name")
|
||||
or "unknown"
|
||||
)
|
||||
node_def = f'{safe_id}["type={node_type}|title={safe_title}|tool={tool_ref}"]'
|
||||
else:
|
||||
node_def = f'{safe_id}["type={node_type}|title={safe_title}"]'
|
||||
|
||||
lines.append(f" {node_def}")
|
||||
|
||||
# 2. Define Edges
|
||||
# Format: source --> target
|
||||
|
||||
# Track defined nodes to avoid edge errors
|
||||
defined_node_ids = {n.get("id") for n in nodes if n.get("id")}
|
||||
|
||||
for edge in edges:
|
||||
source = edge.get("source")
|
||||
target = edge.get("target")
|
||||
|
||||
# Skip invalid edges
|
||||
if not source or not target:
|
||||
continue
|
||||
|
||||
if source not in defined_node_ids or target not in defined_node_ids:
|
||||
continue
|
||||
|
||||
safe_source = id_map.get(source, source)
|
||||
safe_target = id_map.get(target, target)
|
||||
|
||||
# Handle conditional branches (true/false) if present
|
||||
# In Dify workflow, sourceHandle is often used for this
|
||||
source_handle = edge.get("sourceHandle")
|
||||
label = ""
|
||||
|
||||
if source_handle == "true":
|
||||
label = "|true|"
|
||||
elif source_handle == "false":
|
||||
label = "|false|"
|
||||
elif source_handle and source_handle != "source":
|
||||
# For question-classifier or other multi-path nodes
|
||||
# Clean up handle for display if needed
|
||||
safe_handle = str(source_handle).replace('"', "'")
|
||||
label = f"|{safe_handle}|"
|
||||
|
||||
edge_line = f" {safe_source} -->{label} {safe_target}"
|
||||
lines.append(edge_line)
|
||||
|
||||
# Start/End nodes are implicitly handled if they are in the 'nodes' list
|
||||
# If not, we might need to add them, but usually the Builder should produce them.
|
||||
|
||||
result = "\n".join(lines)
|
||||
return result
|
||||
304
api/core/workflow/generator/utils/node_repair.py
Normal file
304
api/core/workflow/generator/utils/node_repair.py
Normal file
@@ -0,0 +1,304 @@
|
||||
"""
|
||||
Node Repair Utility for Vibe Workflow Generation.
|
||||
|
||||
This module provides intelligent node configuration repair capabilities.
|
||||
It can detect and fix common node configuration issues:
|
||||
- Invalid comparison operators in if-else nodes (e.g. '>=' -> '≥')
|
||||
"""
|
||||
|
||||
import copy
|
||||
import logging
|
||||
import uuid
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
from core.workflow.generator.types import WorkflowNodeDict
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class NodeRepairResult:
|
||||
"""Result of node repair operation."""
|
||||
|
||||
nodes: list[WorkflowNodeDict]
|
||||
repairs_made: list[str] = field(default_factory=list)
|
||||
warnings: list[str] = field(default_factory=list)
|
||||
|
||||
@property
|
||||
def was_repaired(self) -> bool:
|
||||
"""Check if any repairs were made."""
|
||||
return len(self.repairs_made) > 0
|
||||
|
||||
|
||||
class NodeRepair:
|
||||
"""
|
||||
Intelligent node configuration repair.
|
||||
"""
|
||||
|
||||
OPERATOR_MAP = {
|
||||
">=": "≥",
|
||||
"<=": "≤",
|
||||
"!=": "≠",
|
||||
"==": "=",
|
||||
}
|
||||
|
||||
TYPE_MAPPING = {
|
||||
"json": "object",
|
||||
"dict": "object",
|
||||
"dictionary": "object",
|
||||
"float": "number",
|
||||
"int": "number",
|
||||
"integer": "number",
|
||||
"double": "number",
|
||||
"str": "string",
|
||||
"text": "string",
|
||||
"bool": "boolean",
|
||||
"list": "array[object]",
|
||||
"array": "array[object]",
|
||||
}
|
||||
|
||||
_REPAIR_HANDLERS = {
|
||||
"if-else": "_repair_if_else_operators",
|
||||
"variable-aggregator": "_repair_variable_aggregator_variables",
|
||||
"code": "_repair_code_node_config",
|
||||
}
|
||||
|
||||
@classmethod
|
||||
def repair(
|
||||
cls,
|
||||
nodes: list[WorkflowNodeDict],
|
||||
llm_callback=None,
|
||||
) -> NodeRepairResult:
|
||||
"""
|
||||
Repair node configurations.
|
||||
|
||||
Args:
|
||||
nodes: List of node dictionaries
|
||||
llm_callback: Optional callback(node, issue_desc) -> fixed_config_part
|
||||
|
||||
Returns:
|
||||
NodeRepairResult with repaired nodes and logs
|
||||
"""
|
||||
# Deep copy to avoid mutating original
|
||||
nodes = copy.deepcopy(nodes)
|
||||
repairs: list[str] = []
|
||||
warnings: list[str] = []
|
||||
|
||||
logger.info("[NODE REPAIR] Starting repair process for %s nodes", len(nodes))
|
||||
|
||||
for node in nodes:
|
||||
node_type = node.get("type")
|
||||
|
||||
# 1. Rule-based repairs
|
||||
handler_name = cls._REPAIR_HANDLERS.get(node_type)
|
||||
if handler_name:
|
||||
handler = getattr(cls, handler_name)
|
||||
# Check if handler accepts llm_callback (inspect signature or just pass generic kwargs?)
|
||||
# Simplest for now: handlers signature: (node, repairs, llm_callback=None)
|
||||
try:
|
||||
handler(node, repairs, llm_callback=llm_callback)
|
||||
except TypeError:
|
||||
# Fallback for handlers that don't accept llm_callback yet
|
||||
handler(node, repairs)
|
||||
|
||||
# Add other node type repairs here as needed
|
||||
|
||||
if repairs:
|
||||
logger.info("[NODE REPAIR] Completed with %s repairs:", len(repairs))
|
||||
for i, repair in enumerate(repairs, 1):
|
||||
logger.info("[NODE REPAIR] %s. %s", i, repair)
|
||||
else:
|
||||
logger.info("[NODE REPAIR] Completed - no repairs needed")
|
||||
|
||||
return NodeRepairResult(
|
||||
nodes=nodes,
|
||||
repairs_made=repairs,
|
||||
warnings=warnings,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _repair_if_else_operators(cls, node: WorkflowNodeDict, repairs: list[str], **kwargs):
|
||||
"""
|
||||
Normalize comparison operators in if-else nodes.
|
||||
And ensure 'id' field exists for cases and conditions (frontend requirement).
|
||||
"""
|
||||
node_id = node.get("id", "unknown")
|
||||
config = node.get("config", {})
|
||||
cases = config.get("cases", [])
|
||||
|
||||
for case in cases:
|
||||
# Ensure case_id
|
||||
if "case_id" not in case:
|
||||
case["case_id"] = str(uuid.uuid4())
|
||||
repairs.append(f"Generated missing case_id for case in node '{node_id}'")
|
||||
|
||||
conditions = case.get("conditions", [])
|
||||
for condition in conditions:
|
||||
# Ensure condition id
|
||||
if "id" not in condition:
|
||||
condition["id"] = str(uuid.uuid4())
|
||||
# Not logging this repair to avoid clutter, as it's a structural fix
|
||||
|
||||
# Ensure value type (LLM might return int/float, but we need str/bool/list)
|
||||
val = condition.get("value")
|
||||
if isinstance(val, (int, float)) and not isinstance(val, bool):
|
||||
condition["value"] = str(val)
|
||||
repairs.append(f"Coerced numeric value to string in node '{node_id}'")
|
||||
|
||||
op = condition.get("comparison_operator")
|
||||
if op in cls.OPERATOR_MAP:
|
||||
new_op = cls.OPERATOR_MAP[op]
|
||||
condition["comparison_operator"] = new_op
|
||||
repairs.append(f"Normalized operator '{op}' to '{new_op}' in node '{node_id}'")
|
||||
|
||||
@classmethod
|
||||
def _repair_variable_aggregator_variables(cls, node: WorkflowNodeDict, repairs: list[str]):
|
||||
"""
|
||||
Repair variable-aggregator variables format.
|
||||
Converts dict format to list[list[str]] format.
|
||||
Expected: [["node_id", "field"], ["node_id2", "field2"]]
|
||||
May receive: [{"name": "...", "value_selector": ["node_id", "field"]}, ...]
|
||||
"""
|
||||
node_id = node.get("id", "unknown")
|
||||
config = node.get("config", {})
|
||||
variables = config.get("variables", [])
|
||||
|
||||
if not variables:
|
||||
return
|
||||
|
||||
repaired = False
|
||||
repaired_variables = []
|
||||
|
||||
for var in variables:
|
||||
if isinstance(var, dict):
|
||||
# Convert dict format to array format
|
||||
value_selector = var.get("value_selector") or var.get("selector") or var.get("path")
|
||||
if isinstance(value_selector, list) and len(value_selector) > 0:
|
||||
repaired_variables.append(value_selector)
|
||||
repaired = True
|
||||
else:
|
||||
# Try to extract from name field - LLM may generate {"name": "node_id.field"}
|
||||
name = var.get("name")
|
||||
if isinstance(name, str) and "." in name:
|
||||
# Try to parse "node_id.field" format
|
||||
parts = name.split(".", 1)
|
||||
if len(parts) == 2:
|
||||
repaired_variables.append([parts[0], parts[1]])
|
||||
repaired = True
|
||||
else:
|
||||
logger.warning(
|
||||
"Variable aggregator node '%s' has invalid variable format: %s",
|
||||
node_id,
|
||||
var,
|
||||
)
|
||||
repaired_variables.append([]) # Empty array as fallback
|
||||
else:
|
||||
# If no valid selector or name, skip this variable
|
||||
logger.warning(
|
||||
"Variable aggregator node '%s' has invalid variable format: %s",
|
||||
node_id,
|
||||
var,
|
||||
)
|
||||
# Don't add empty array - skip invalid variables
|
||||
elif isinstance(var, list):
|
||||
# Already in correct format
|
||||
repaired_variables.append(var)
|
||||
else:
|
||||
# Unknown format, skip
|
||||
logger.warning("Variable aggregator node '%s' has unknown variable format: %s", node_id, var)
|
||||
# Don't add empty array - skip invalid variables
|
||||
|
||||
if repaired:
|
||||
config["variables"] = repaired_variables
|
||||
repairs.append(f"Repaired variable-aggregator variables format in node '{node_id}'")
|
||||
|
||||
@classmethod
|
||||
def _repair_code_node_config(cls, node: WorkflowNodeDict, repairs: list[str], llm_callback=None):
|
||||
"""
|
||||
Repair code node configuration (outputs and variables).
|
||||
1. Outputs: Converts list format to dict format AND normalizes types.
|
||||
2. Variables: Ensures value_selector exists.
|
||||
"""
|
||||
node_id = node.get("id", "unknown")
|
||||
config = node.get("config", {})
|
||||
|
||||
if "variables" not in config:
|
||||
config["variables"] = []
|
||||
|
||||
# --- Repair Variables ---
|
||||
variables = config.get("variables")
|
||||
if isinstance(variables, list):
|
||||
for var in variables:
|
||||
if isinstance(var, dict):
|
||||
# Ensure value_selector exists (frontend crashes if missing)
|
||||
if "value_selector" not in var:
|
||||
var["value_selector"] = []
|
||||
# Not logging trivial repairs
|
||||
|
||||
# --- Repair Outputs ---
|
||||
outputs = config.get("outputs")
|
||||
|
||||
if not outputs:
|
||||
return
|
||||
|
||||
# Helper to normalize type
|
||||
def normalize_type(t: str) -> str:
|
||||
t_lower = str(t).lower()
|
||||
return cls.TYPE_MAPPING.get(t_lower, t)
|
||||
|
||||
# 1. Handle Dict format (Standard) - Check for invalid types
|
||||
if isinstance(outputs, dict):
|
||||
changed = False
|
||||
for var_name, var_config in outputs.items():
|
||||
if isinstance(var_config, dict):
|
||||
original_type = var_config.get("type")
|
||||
if original_type:
|
||||
new_type = normalize_type(original_type)
|
||||
if new_type != original_type:
|
||||
var_config["type"] = new_type
|
||||
changed = True
|
||||
repairs.append(
|
||||
f"Normalized type '{original_type}' to '{new_type}' "
|
||||
f"for var '{var_name}' in node '{node_id}'"
|
||||
)
|
||||
return
|
||||
|
||||
# 2. Handle List format (Repair needed)
|
||||
if isinstance(outputs, list):
|
||||
new_outputs = {}
|
||||
for item in outputs:
|
||||
if isinstance(item, dict):
|
||||
var_name = item.get("variable") or item.get("name")
|
||||
var_type = item.get("type")
|
||||
if var_name and var_type:
|
||||
norm_type = normalize_type(var_type)
|
||||
new_outputs[var_name] = {"type": norm_type}
|
||||
if norm_type != var_type:
|
||||
repairs.append(
|
||||
f"Normalized type '{var_type}' to '{norm_type}' "
|
||||
f"during list conversion in node '{node_id}'"
|
||||
)
|
||||
|
||||
if new_outputs:
|
||||
config["outputs"] = new_outputs
|
||||
repairs.append(f"Repaired code node outputs format in node '{node_id}'")
|
||||
else:
|
||||
# Fallback: Try LLM if available
|
||||
if llm_callback:
|
||||
try:
|
||||
# Attempt to fix using LLM
|
||||
fixed_outputs = llm_callback(
|
||||
node,
|
||||
"outputs must be a dictionary like {'var_name': {'type': 'string'}}, "
|
||||
"but got a list or valid conversion failed.",
|
||||
)
|
||||
if isinstance(fixed_outputs, dict) and fixed_outputs:
|
||||
config["outputs"] = fixed_outputs
|
||||
repairs.append(f"Repaired code node outputs format using LLM in node '{node_id}'")
|
||||
return
|
||||
except Exception as e:
|
||||
logger.warning("LLM fallback repair failed for node '%s': %s", node_id, e)
|
||||
|
||||
# If conversion/LLM failed, set to empty dict
|
||||
config["outputs"] = {}
|
||||
repairs.append(f"Reset invalid code node outputs to empty dict in node '{node_id}'")
|
||||
101
api/core/workflow/generator/utils/workflow_validator.py
Normal file
101
api/core/workflow/generator/utils/workflow_validator.py
Normal file
@@ -0,0 +1,101 @@
|
||||
from dataclasses import dataclass
|
||||
|
||||
from core.workflow.generator.types import AvailableModelDict, AvailableToolDict, WorkflowDataDict
|
||||
from core.workflow.generator.validation.context import ValidationContext
|
||||
from core.workflow.generator.validation.engine import ValidationEngine
|
||||
from core.workflow.generator.validation.rules import Severity
|
||||
|
||||
|
||||
@dataclass
|
||||
class ValidationHint:
|
||||
"""Legacy compatibility class for validation hints."""
|
||||
|
||||
node_id: str
|
||||
field: str
|
||||
message: str
|
||||
severity: str # 'error', 'warning'
|
||||
suggestion: str = None
|
||||
node_type: str = None # Added for test compatibility
|
||||
|
||||
# Alias for potential old code using 'type' instead of 'severity'
|
||||
@property
|
||||
def type(self) -> str:
|
||||
return self.severity
|
||||
|
||||
@property
|
||||
def element_id(self) -> str:
|
||||
return self.node_id
|
||||
|
||||
|
||||
FriendlyHint = ValidationHint # Alias for backward compatibility
|
||||
|
||||
|
||||
class WorkflowValidator:
|
||||
"""
|
||||
Validates the generated workflow configuration (nodes and edges).
|
||||
Wraps the new ValidationEngine for backward compatibility.
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def validate(
|
||||
cls,
|
||||
workflow_data: WorkflowDataDict,
|
||||
available_tools: list[AvailableToolDict],
|
||||
available_models: list[AvailableModelDict] | None = None,
|
||||
) -> tuple[bool, list[ValidationHint]]:
|
||||
"""
|
||||
Validate workflow data and return validity status and hints.
|
||||
|
||||
Args:
|
||||
workflow_data: Dict containing 'nodes' and 'edges'
|
||||
available_tools: List of available tool configurations
|
||||
available_models: List of available models (added for Vibe compat)
|
||||
|
||||
Returns:
|
||||
Tuple(max_severity_is_not_error, list_of_hints)
|
||||
"""
|
||||
nodes = workflow_data.get("nodes", [])
|
||||
edges = workflow_data.get("edges", [])
|
||||
|
||||
# Create context
|
||||
context = ValidationContext(
|
||||
nodes=nodes,
|
||||
edges=edges,
|
||||
available_models=available_models or [],
|
||||
available_tools=available_tools or [],
|
||||
)
|
||||
|
||||
# Run validation engine
|
||||
engine = ValidationEngine()
|
||||
result = engine.validate(context)
|
||||
|
||||
# Convert engine errors to legacy hints
|
||||
hints: list[ValidationHint] = []
|
||||
|
||||
error_count = 0
|
||||
warning_count = 0
|
||||
|
||||
for error in result.all_errors:
|
||||
# Map severity
|
||||
severity = "error" if error.severity == Severity.ERROR else "warning"
|
||||
|
||||
if severity == "error":
|
||||
error_count += 1
|
||||
else:
|
||||
warning_count += 1
|
||||
|
||||
# Map field from message or details if possible (heuristic)
|
||||
field_name = error.details.get("field", "unknown")
|
||||
|
||||
hints.append(
|
||||
ValidationHint(
|
||||
node_id=error.node_id,
|
||||
field=field_name,
|
||||
message=error.message,
|
||||
severity=severity,
|
||||
suggestion=error.fix_hint,
|
||||
node_type=error.node_type,
|
||||
)
|
||||
)
|
||||
|
||||
return result.is_valid, hints
|
||||
42
api/core/workflow/generator/validation/__init__.py
Normal file
42
api/core/workflow/generator/validation/__init__.py
Normal file
@@ -0,0 +1,42 @@
|
||||
"""
|
||||
Validation Rule Engine for Vibe Workflow Generation.
|
||||
|
||||
This module provides a declarative, schema-based validation system for
|
||||
generated workflow nodes. It classifies errors into fixable (LLM can auto-fix)
|
||||
and user-required (needs manual intervention) categories.
|
||||
|
||||
Usage:
|
||||
from core.workflow.generator.validation import ValidationEngine, ValidationContext
|
||||
|
||||
context = ValidationContext(
|
||||
available_models=[...],
|
||||
available_tools=[...],
|
||||
nodes=[...],
|
||||
edges=[...],
|
||||
)
|
||||
engine = ValidationEngine()
|
||||
result = engine.validate(context)
|
||||
|
||||
# Access classified errors
|
||||
fixable_errors = result.fixable_errors
|
||||
user_required_errors = result.user_required_errors
|
||||
"""
|
||||
|
||||
from core.workflow.generator.validation.context import ValidationContext
|
||||
from core.workflow.generator.validation.engine import ValidationEngine, ValidationResult
|
||||
from core.workflow.generator.validation.rules import (
|
||||
RuleCategory,
|
||||
Severity,
|
||||
ValidationError,
|
||||
ValidationRule,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
"RuleCategory",
|
||||
"Severity",
|
||||
"ValidationContext",
|
||||
"ValidationEngine",
|
||||
"ValidationError",
|
||||
"ValidationResult",
|
||||
"ValidationRule",
|
||||
]
|
||||
115
api/core/workflow/generator/validation/context.py
Normal file
115
api/core/workflow/generator/validation/context.py
Normal file
@@ -0,0 +1,115 @@
|
||||
"""
|
||||
Validation Context for the Rule Engine.
|
||||
|
||||
The ValidationContext holds all the data needed for validation:
|
||||
- Generated nodes and edges
|
||||
- Available models, tools, and datasets
|
||||
- Node output schemas for variable reference validation
|
||||
"""
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
from core.workflow.generator.types import (
|
||||
AvailableModelDict,
|
||||
AvailableToolDict,
|
||||
WorkflowEdgeDict,
|
||||
WorkflowNodeDict,
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class ValidationContext:
|
||||
"""
|
||||
Context object containing all data needed for validation.
|
||||
|
||||
This is passed to each validation rule, providing access to:
|
||||
- The nodes being validated
|
||||
- Edge connections between nodes
|
||||
- Available external resources (models, tools)
|
||||
"""
|
||||
|
||||
# Generated workflow data
|
||||
nodes: list[WorkflowNodeDict] = field(default_factory=list)
|
||||
edges: list[WorkflowEdgeDict] = field(default_factory=list)
|
||||
|
||||
# Available external resources
|
||||
available_models: list[AvailableModelDict] = field(default_factory=list)
|
||||
available_tools: list[AvailableToolDict] = field(default_factory=list)
|
||||
|
||||
# Cached lookups (populated lazily)
|
||||
_node_map: dict[str, WorkflowNodeDict] | None = field(default=None, repr=False)
|
||||
_model_set: set[tuple[str, str]] | None = field(default=None, repr=False)
|
||||
_tool_set: set[str] | None = field(default=None, repr=False)
|
||||
_configured_tool_set: set[str] | None = field(default=None, repr=False)
|
||||
|
||||
@property
|
||||
def node_map(self) -> dict[str, WorkflowNodeDict]:
|
||||
"""Get a map of node_id -> node for quick lookup."""
|
||||
if self._node_map is None:
|
||||
self._node_map = {node.get("id", ""): node for node in self.nodes}
|
||||
return self._node_map
|
||||
|
||||
@property
|
||||
def model_set(self) -> set[tuple[str, str]]:
|
||||
"""Get a set of (provider, model_name) tuples for quick lookup."""
|
||||
if self._model_set is None:
|
||||
self._model_set = {(m.get("provider", ""), m.get("model", "")) for m in self.available_models}
|
||||
return self._model_set
|
||||
|
||||
@property
|
||||
def tool_set(self) -> set[str]:
|
||||
"""Get a set of all tool keys (both configured and unconfigured)."""
|
||||
if self._tool_set is None:
|
||||
self._tool_set = set()
|
||||
for tool in self.available_tools:
|
||||
provider = tool.get("provider_id") or tool.get("provider", "")
|
||||
tool_key = tool.get("tool_key") or tool.get("tool_name", "")
|
||||
if provider and tool_key:
|
||||
self._tool_set.add(f"{provider}/{tool_key}")
|
||||
if tool_key:
|
||||
self._tool_set.add(tool_key)
|
||||
return self._tool_set
|
||||
|
||||
@property
|
||||
def configured_tool_set(self) -> set[str]:
|
||||
"""Get a set of configured (authorized) tool keys."""
|
||||
if self._configured_tool_set is None:
|
||||
self._configured_tool_set = set()
|
||||
for tool in self.available_tools:
|
||||
if not tool.get("is_team_authorization", False):
|
||||
continue
|
||||
provider = tool.get("provider_id") or tool.get("provider", "")
|
||||
tool_key = tool.get("tool_key") or tool.get("tool_name", "")
|
||||
if provider and tool_key:
|
||||
self._configured_tool_set.add(f"{provider}/{tool_key}")
|
||||
if tool_key:
|
||||
self._configured_tool_set.add(tool_key)
|
||||
return self._configured_tool_set
|
||||
|
||||
def has_model(self, provider: str, model_name: str) -> bool:
|
||||
"""Check if a model is available."""
|
||||
return (provider, model_name) in self.model_set
|
||||
|
||||
def has_tool(self, tool_key: str) -> bool:
|
||||
"""Check if a tool exists (configured or not)."""
|
||||
return tool_key in self.tool_set
|
||||
|
||||
def is_tool_configured(self, tool_key: str) -> bool:
|
||||
"""Check if a tool is configured and ready to use."""
|
||||
return tool_key in self.configured_tool_set
|
||||
|
||||
def get_node(self, node_id: str) -> WorkflowNodeDict | None:
|
||||
"""Get a node by its ID."""
|
||||
return self.node_map.get(node_id)
|
||||
|
||||
def get_node_ids(self) -> set[str]:
|
||||
"""Get all node IDs in the workflow."""
|
||||
return set(self.node_map.keys())
|
||||
|
||||
def get_upstream_nodes(self, node_id: str) -> list[str]:
|
||||
"""Get IDs of nodes that connect to this node (upstream)."""
|
||||
return [edge.get("source", "") for edge in self.edges if edge.get("target") == node_id]
|
||||
|
||||
def get_downstream_nodes(self, node_id: str) -> list[str]:
|
||||
"""Get IDs of nodes that this node connects to (downstream)."""
|
||||
return [edge.get("target", "") for edge in self.edges if edge.get("source") == node_id]
|
||||
260
api/core/workflow/generator/validation/engine.py
Normal file
260
api/core/workflow/generator/validation/engine.py
Normal file
@@ -0,0 +1,260 @@
|
||||
"""
|
||||
Validation Engine - Core validation logic.
|
||||
|
||||
The ValidationEngine orchestrates rule execution and aggregates results.
|
||||
It provides a clean interface for validating workflow nodes.
|
||||
"""
|
||||
|
||||
import logging
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Any
|
||||
|
||||
from core.workflow.generator.types import (
|
||||
AvailableModelDict,
|
||||
AvailableToolDict,
|
||||
WorkflowEdgeDict,
|
||||
WorkflowNodeDict,
|
||||
)
|
||||
from core.workflow.generator.validation.context import ValidationContext
|
||||
from core.workflow.generator.validation.rules import (
|
||||
RuleCategory,
|
||||
Severity,
|
||||
ValidationError,
|
||||
get_registry,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class ValidationResult:
|
||||
"""
|
||||
Result of validation containing all errors classified by fixability.
|
||||
|
||||
Attributes:
|
||||
all_errors: All validation errors found
|
||||
fixable_errors: Errors that LLM can automatically fix
|
||||
user_required_errors: Errors that require user intervention
|
||||
warnings: Non-blocking warnings
|
||||
stats: Validation statistics
|
||||
"""
|
||||
|
||||
all_errors: list[ValidationError] = field(default_factory=list)
|
||||
fixable_errors: list[ValidationError] = field(default_factory=list)
|
||||
user_required_errors: list[ValidationError] = field(default_factory=list)
|
||||
warnings: list[ValidationError] = field(default_factory=list)
|
||||
stats: dict[str, int] = field(default_factory=dict)
|
||||
|
||||
@property
|
||||
def has_errors(self) -> bool:
|
||||
"""Check if there are any errors (excluding warnings)."""
|
||||
return len(self.fixable_errors) > 0 or len(self.user_required_errors) > 0
|
||||
|
||||
@property
|
||||
def has_fixable_errors(self) -> bool:
|
||||
"""Check if there are fixable errors."""
|
||||
return len(self.fixable_errors) > 0
|
||||
|
||||
@property
|
||||
def is_valid(self) -> bool:
|
||||
"""Check if validation passed (no errors, warnings are OK)."""
|
||||
return not self.has_errors
|
||||
|
||||
def to_dict(self) -> dict[str, Any]:
|
||||
"""Convert to dictionary for API response."""
|
||||
return {
|
||||
"fixable": [e.to_dict() for e in self.fixable_errors],
|
||||
"user_required": [e.to_dict() for e in self.user_required_errors],
|
||||
"warnings": [e.to_dict() for e in self.warnings],
|
||||
"all_warnings": [e.message for e in self.all_errors],
|
||||
"stats": self.stats,
|
||||
}
|
||||
|
||||
def get_error_messages(self) -> list[str]:
|
||||
"""Get all error messages as strings."""
|
||||
return [e.message for e in self.all_errors]
|
||||
|
||||
def get_fixable_by_node(self) -> dict[str, list[ValidationError]]:
|
||||
"""Group fixable errors by node ID."""
|
||||
result: dict[str, list[ValidationError]] = {}
|
||||
for error in self.fixable_errors:
|
||||
if error.node_id not in result:
|
||||
result[error.node_id] = []
|
||||
result[error.node_id].append(error)
|
||||
return result
|
||||
|
||||
|
||||
class ValidationEngine:
|
||||
"""
|
||||
The main validation engine.
|
||||
|
||||
Usage:
|
||||
engine = ValidationEngine()
|
||||
context = ValidationContext(nodes=[...], available_models=[...])
|
||||
result = engine.validate(context)
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self._registry = get_registry()
|
||||
|
||||
def validate(self, context: ValidationContext) -> ValidationResult:
|
||||
"""
|
||||
Validate all nodes in the context.
|
||||
|
||||
Args:
|
||||
context: ValidationContext with nodes, edges, and available resources
|
||||
|
||||
Returns:
|
||||
ValidationResult with classified errors
|
||||
"""
|
||||
result = ValidationResult()
|
||||
stats = {
|
||||
"total_nodes": len(context.nodes),
|
||||
"total_rules_checked": 0,
|
||||
"total_errors": 0,
|
||||
"fixable_count": 0,
|
||||
"user_required_count": 0,
|
||||
"warning_count": 0,
|
||||
}
|
||||
|
||||
# Validate each node
|
||||
for node in context.nodes:
|
||||
node_type = node.get("type", "unknown")
|
||||
node_id = node.get("id", "unknown")
|
||||
|
||||
# Get applicable rules for this node type
|
||||
rules = self._registry.get_rules_for_node(node_type)
|
||||
|
||||
for rule in rules:
|
||||
stats["total_rules_checked"] += 1
|
||||
|
||||
try:
|
||||
errors = rule.check(node, context)
|
||||
for error in errors:
|
||||
result.all_errors.append(error)
|
||||
stats["total_errors"] += 1
|
||||
|
||||
# Classify by severity and fixability
|
||||
if error.severity == Severity.WARNING:
|
||||
result.warnings.append(error)
|
||||
stats["warning_count"] += 1
|
||||
elif error.is_fixable:
|
||||
result.fixable_errors.append(error)
|
||||
stats["fixable_count"] += 1
|
||||
else:
|
||||
result.user_required_errors.append(error)
|
||||
stats["user_required_count"] += 1
|
||||
|
||||
except Exception:
|
||||
logger.exception(
|
||||
"Rule '%s' failed for node '%s'",
|
||||
rule.id,
|
||||
node_id,
|
||||
)
|
||||
# Don't let a rule failure break the entire validation
|
||||
continue
|
||||
|
||||
# Validate edges separately
|
||||
edge_errors = self._validate_edges(context)
|
||||
for error in edge_errors:
|
||||
result.all_errors.append(error)
|
||||
stats["total_errors"] += 1
|
||||
if error.is_fixable:
|
||||
result.fixable_errors.append(error)
|
||||
stats["fixable_count"] += 1
|
||||
else:
|
||||
result.user_required_errors.append(error)
|
||||
stats["user_required_count"] += 1
|
||||
|
||||
result.stats = stats
|
||||
|
||||
return result
|
||||
|
||||
def _validate_edges(self, context: ValidationContext) -> list[ValidationError]:
|
||||
"""Validate edge connections."""
|
||||
errors: list[ValidationError] = []
|
||||
valid_node_ids = context.get_node_ids()
|
||||
|
||||
for edge in context.edges:
|
||||
source = edge.get("source", "")
|
||||
target = edge.get("target", "")
|
||||
|
||||
if source and source not in valid_node_ids:
|
||||
errors.append(
|
||||
ValidationError(
|
||||
rule_id="edge.source.invalid",
|
||||
node_id=source,
|
||||
node_type="edge",
|
||||
category=RuleCategory.SEMANTIC,
|
||||
severity=Severity.ERROR,
|
||||
is_fixable=True,
|
||||
message=f"Edge source '{source}' does not exist",
|
||||
fix_hint="Update edge to reference existing node",
|
||||
)
|
||||
)
|
||||
|
||||
if target and target not in valid_node_ids:
|
||||
errors.append(
|
||||
ValidationError(
|
||||
rule_id="edge.target.invalid",
|
||||
node_id=target,
|
||||
node_type="edge",
|
||||
category=RuleCategory.SEMANTIC,
|
||||
severity=Severity.ERROR,
|
||||
is_fixable=True,
|
||||
message=f"Edge target '{target}' does not exist",
|
||||
fix_hint="Update edge to reference existing node",
|
||||
)
|
||||
)
|
||||
|
||||
return errors
|
||||
|
||||
def validate_single_node(
|
||||
self,
|
||||
node: WorkflowNodeDict,
|
||||
context: ValidationContext,
|
||||
) -> list[ValidationError]:
|
||||
"""
|
||||
Validate a single node.
|
||||
|
||||
Useful for incremental validation when a node is added/modified.
|
||||
"""
|
||||
node_type = node.get("type", "unknown")
|
||||
rules = self._registry.get_rules_for_node(node_type)
|
||||
|
||||
errors: list[ValidationError] = []
|
||||
for rule in rules:
|
||||
try:
|
||||
errors.extend(rule.check(node, context))
|
||||
except Exception:
|
||||
logger.exception("Rule '%s' failed", rule.id)
|
||||
|
||||
return errors
|
||||
|
||||
|
||||
def validate_nodes(
|
||||
nodes: list[WorkflowNodeDict],
|
||||
edges: list[WorkflowEdgeDict] | None = None,
|
||||
available_models: list[AvailableModelDict] | None = None,
|
||||
available_tools: list[AvailableToolDict] | None = None,
|
||||
) -> ValidationResult:
|
||||
"""
|
||||
Convenience function to validate nodes without creating engine/context manually.
|
||||
|
||||
Args:
|
||||
nodes: List of workflow nodes to validate
|
||||
edges: Optional list of edges
|
||||
available_models: Optional list of available models
|
||||
available_tools: Optional list of available tools
|
||||
|
||||
Returns:
|
||||
ValidationResult with classified errors
|
||||
"""
|
||||
context = ValidationContext(
|
||||
nodes=nodes,
|
||||
edges=edges or [],
|
||||
available_models=available_models or [],
|
||||
available_tools=available_tools or [],
|
||||
)
|
||||
engine = ValidationEngine()
|
||||
return engine.validate(context)
|
||||
947
api/core/workflow/generator/validation/rules.py
Normal file
947
api/core/workflow/generator/validation/rules.py
Normal file
@@ -0,0 +1,947 @@
|
||||
"""
|
||||
Validation Rules Definition and Registry.
|
||||
|
||||
This module defines:
|
||||
- ValidationRule: The rule structure
|
||||
- RuleCategory: Categories of validation rules
|
||||
- Severity: Error severity levels
|
||||
- ValidationError: Error output structure
|
||||
- All built-in validation rules
|
||||
"""
|
||||
|
||||
import re
|
||||
from collections.abc import Callable
|
||||
from dataclasses import dataclass, field
|
||||
from enum import Enum
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
from core.workflow.generator.types import WorkflowNodeDict
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from core.workflow.generator.validation.context import ValidationContext
|
||||
|
||||
|
||||
class RuleCategory(Enum):
|
||||
"""Categories of validation rules."""
|
||||
|
||||
STRUCTURE = "structure" # Field existence, types, formats
|
||||
SEMANTIC = "semantic" # Variable references, edge connections
|
||||
REFERENCE = "reference" # External resources (models, tools, datasets)
|
||||
|
||||
|
||||
class Severity(Enum):
|
||||
"""Severity levels for validation errors."""
|
||||
|
||||
ERROR = "error" # Must be fixed
|
||||
WARNING = "warning" # Should be fixed but not blocking
|
||||
|
||||
|
||||
@dataclass
|
||||
class ValidationError:
|
||||
"""
|
||||
Represents a validation error found during rule execution.
|
||||
|
||||
Attributes:
|
||||
rule_id: The ID of the rule that generated this error
|
||||
node_id: The ID of the node with the error
|
||||
node_type: The type of the node
|
||||
category: The rule category
|
||||
severity: Error severity
|
||||
is_fixable: Whether LLM can auto-fix this error
|
||||
message: Human-readable error message
|
||||
fix_hint: Hint for LLM to fix the error
|
||||
details: Additional error details
|
||||
"""
|
||||
|
||||
rule_id: str
|
||||
node_id: str
|
||||
node_type: str
|
||||
category: RuleCategory
|
||||
severity: Severity
|
||||
is_fixable: bool
|
||||
message: str
|
||||
fix_hint: str = ""
|
||||
details: dict[str, Any] = field(default_factory=dict)
|
||||
|
||||
def to_dict(self) -> dict[str, Any]:
|
||||
"""Convert to dictionary for API response."""
|
||||
return {
|
||||
"rule_id": self.rule_id,
|
||||
"node_id": self.node_id,
|
||||
"node_type": self.node_type,
|
||||
"category": self.category.value,
|
||||
"severity": self.severity.value,
|
||||
"is_fixable": self.is_fixable,
|
||||
"message": self.message,
|
||||
"fix_hint": self.fix_hint,
|
||||
"details": self.details,
|
||||
}
|
||||
|
||||
|
||||
# Type alias for rule check functions
|
||||
RuleCheckFn = Callable[
|
||||
[WorkflowNodeDict, "ValidationContext"],
|
||||
list[ValidationError],
|
||||
]
|
||||
|
||||
|
||||
@dataclass
|
||||
class ValidationRule:
|
||||
"""
|
||||
A validation rule definition.
|
||||
|
||||
Attributes:
|
||||
id: Unique rule identifier (e.g., "llm.model.required")
|
||||
node_types: List of node types this rule applies to, or ["*"] for all
|
||||
category: The rule category
|
||||
severity: Default severity for errors from this rule
|
||||
is_fixable: Whether errors from this rule can be auto-fixed by LLM
|
||||
check: The validation function
|
||||
description: Human-readable description of what this rule checks
|
||||
fix_hint: Default hint for fixing errors from this rule
|
||||
"""
|
||||
|
||||
id: str
|
||||
node_types: list[str]
|
||||
category: RuleCategory
|
||||
severity: Severity
|
||||
is_fixable: bool
|
||||
check: RuleCheckFn
|
||||
description: str = ""
|
||||
fix_hint: str = ""
|
||||
|
||||
def applies_to(self, node_type: str) -> bool:
|
||||
"""Check if this rule applies to a given node type."""
|
||||
return "*" in self.node_types or node_type in self.node_types
|
||||
|
||||
|
||||
# =============================================================================
|
||||
# Rule Registry
|
||||
# =============================================================================
|
||||
|
||||
|
||||
class RuleRegistry:
|
||||
"""
|
||||
Registry for validation rules.
|
||||
|
||||
Rules are registered here and can be retrieved by category or node type.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self._rules: list[ValidationRule] = []
|
||||
|
||||
def register(self, rule: ValidationRule) -> None:
|
||||
"""Register a validation rule."""
|
||||
self._rules.append(rule)
|
||||
|
||||
def get_rules_for_node(self, node_type: str) -> list[ValidationRule]:
|
||||
"""Get all rules that apply to a given node type."""
|
||||
return [r for r in self._rules if r.applies_to(node_type)]
|
||||
|
||||
def get_rules_by_category(self, category: RuleCategory) -> list[ValidationRule]:
|
||||
"""Get all rules in a given category."""
|
||||
return [r for r in self._rules if r.category == category]
|
||||
|
||||
def get_all_rules(self) -> list[ValidationRule]:
|
||||
"""Get all registered rules."""
|
||||
return list(self._rules)
|
||||
|
||||
|
||||
# Global rule registry instance
|
||||
_registry = RuleRegistry()
|
||||
|
||||
|
||||
def register_rule(rule: ValidationRule) -> ValidationRule:
|
||||
"""Decorator/function to register a rule with the global registry."""
|
||||
_registry.register(rule)
|
||||
return rule
|
||||
|
||||
|
||||
def get_registry() -> RuleRegistry:
|
||||
"""Get the global rule registry."""
|
||||
return _registry
|
||||
|
||||
|
||||
# =============================================================================
|
||||
# Helper Functions for Rule Implementations
|
||||
# =============================================================================
|
||||
|
||||
# Explicit placeholder value defined in prompt contract
|
||||
# See: api/core/workflow/generator/prompts/vibe_prompts.py
|
||||
PLACEHOLDER_VALUE = "__PLACEHOLDER__"
|
||||
|
||||
# Variable reference pattern: {{#node_id.field#}}
|
||||
VARIABLE_REF_PATTERN = re.compile(r"\{\{#([^.#]+)\.([^#]+)#\}\}")
|
||||
|
||||
|
||||
def is_placeholder(value: Any) -> bool:
|
||||
"""Check if a value appears to be a placeholder."""
|
||||
if not isinstance(value, str):
|
||||
return False
|
||||
return value == PLACEHOLDER_VALUE or PLACEHOLDER_VALUE in value
|
||||
|
||||
|
||||
def extract_variable_refs(text: str) -> list[tuple[str, str]]:
|
||||
"""
|
||||
Extract variable references from text.
|
||||
|
||||
Returns list of (node_id, field_name) tuples.
|
||||
"""
|
||||
return VARIABLE_REF_PATTERN.findall(text)
|
||||
|
||||
|
||||
def check_required_field(
|
||||
config: dict[str, Any],
|
||||
field_name: str,
|
||||
node_id: str,
|
||||
node_type: str,
|
||||
rule_id: str,
|
||||
fix_hint: str = "",
|
||||
) -> ValidationError | None:
|
||||
"""Helper to check if a required field exists and is non-empty."""
|
||||
value = config.get(field_name)
|
||||
if value is None or value == "" or (isinstance(value, list) and len(value) == 0):
|
||||
return ValidationError(
|
||||
rule_id=rule_id,
|
||||
node_id=node_id,
|
||||
node_type=node_type,
|
||||
category=RuleCategory.STRUCTURE,
|
||||
severity=Severity.ERROR,
|
||||
is_fixable=True,
|
||||
message=f"Node '{node_id}': missing required field '{field_name}'",
|
||||
fix_hint=fix_hint or f"Add '{field_name}' to the node config",
|
||||
)
|
||||
return None
|
||||
|
||||
|
||||
# =============================================================================
|
||||
# Structure Rules - Field existence, types, formats
|
||||
# =============================================================================
|
||||
|
||||
|
||||
def _check_llm_prompt_template(node: WorkflowNodeDict, ctx: "ValidationContext") -> list[ValidationError]:
|
||||
"""Check that LLM node has prompt_template."""
|
||||
errors: list[ValidationError] = []
|
||||
node_id = node.get("id", "unknown")
|
||||
config = node.get("config", {})
|
||||
|
||||
err = check_required_field(
|
||||
config,
|
||||
"prompt_template",
|
||||
node_id,
|
||||
"llm",
|
||||
"llm.prompt_template.required",
|
||||
"Add prompt_template with system and user messages",
|
||||
)
|
||||
if err:
|
||||
errors.append(err)
|
||||
|
||||
return errors
|
||||
|
||||
|
||||
def _check_http_request_url(node: WorkflowNodeDict, ctx: "ValidationContext") -> list[ValidationError]:
|
||||
"""Check that http-request node has url and method."""
|
||||
errors: list[ValidationError] = []
|
||||
node_id = node.get("id", "unknown")
|
||||
config = node.get("config", {})
|
||||
|
||||
# Check url
|
||||
url = config.get("url", "")
|
||||
if not url:
|
||||
errors.append(
|
||||
ValidationError(
|
||||
rule_id="http.url.required",
|
||||
node_id=node_id,
|
||||
node_type="http-request",
|
||||
category=RuleCategory.STRUCTURE,
|
||||
severity=Severity.ERROR,
|
||||
is_fixable=True,
|
||||
message=f"Node '{node_id}': http-request missing required 'url'",
|
||||
fix_hint="Add url - use {{#start.url#}} or a concrete URL",
|
||||
)
|
||||
)
|
||||
elif is_placeholder(url):
|
||||
errors.append(
|
||||
ValidationError(
|
||||
rule_id="http.url.placeholder",
|
||||
node_id=node_id,
|
||||
node_type="http-request",
|
||||
category=RuleCategory.STRUCTURE,
|
||||
severity=Severity.ERROR,
|
||||
is_fixable=True,
|
||||
message=f"Node '{node_id}': url contains placeholder value",
|
||||
fix_hint="Replace placeholder with actual URL or variable reference",
|
||||
)
|
||||
)
|
||||
|
||||
# Check method
|
||||
method = config.get("method", "")
|
||||
if not method:
|
||||
errors.append(
|
||||
ValidationError(
|
||||
rule_id="http.method.required",
|
||||
node_id=node_id,
|
||||
node_type="http-request",
|
||||
category=RuleCategory.STRUCTURE,
|
||||
severity=Severity.ERROR,
|
||||
is_fixable=True,
|
||||
message=f"Node '{node_id}': http-request missing 'method'",
|
||||
fix_hint="Add method: GET, POST, PUT, DELETE, or PATCH",
|
||||
)
|
||||
)
|
||||
|
||||
return errors
|
||||
|
||||
|
||||
def _check_code_node(node: WorkflowNodeDict, ctx: "ValidationContext") -> list[ValidationError]:
|
||||
"""Check that code node has code and language."""
|
||||
errors: list[ValidationError] = []
|
||||
node_id = node.get("id", "unknown")
|
||||
config = node.get("config", {})
|
||||
|
||||
err = check_required_field(
|
||||
config,
|
||||
"code",
|
||||
node_id,
|
||||
"code",
|
||||
"code.code.required",
|
||||
"Add code with a main() function that returns a dict",
|
||||
)
|
||||
if err:
|
||||
errors.append(err)
|
||||
|
||||
err = check_required_field(
|
||||
config,
|
||||
"language",
|
||||
node_id,
|
||||
"code",
|
||||
"code.language.required",
|
||||
"Add language: python3 or javascript",
|
||||
)
|
||||
if err:
|
||||
errors.append(err)
|
||||
|
||||
return errors
|
||||
|
||||
|
||||
def _check_question_classifier(node: WorkflowNodeDict, ctx: "ValidationContext") -> list[ValidationError]:
|
||||
"""Check that question-classifier has classes."""
|
||||
errors: list[ValidationError] = []
|
||||
node_id = node.get("id", "unknown")
|
||||
config = node.get("config", {})
|
||||
|
||||
err = check_required_field(
|
||||
config,
|
||||
"classes",
|
||||
node_id,
|
||||
"question-classifier",
|
||||
"classifier.classes.required",
|
||||
"Add classes array with id and name for each classification",
|
||||
)
|
||||
if err:
|
||||
errors.append(err)
|
||||
|
||||
return errors
|
||||
|
||||
|
||||
def _check_parameter_extractor(node: WorkflowNodeDict, ctx: "ValidationContext") -> list[ValidationError]:
|
||||
"""Check that parameter-extractor has parameters and instruction."""
|
||||
errors: list[ValidationError] = []
|
||||
node_id = node.get("id", "unknown")
|
||||
config = node.get("config", {})
|
||||
|
||||
err = check_required_field(
|
||||
config,
|
||||
"parameters",
|
||||
node_id,
|
||||
"parameter-extractor",
|
||||
"extractor.parameters.required",
|
||||
"Add parameters array with name, type, description fields",
|
||||
)
|
||||
if err:
|
||||
errors.append(err)
|
||||
else:
|
||||
# Check individual parameters for required fields
|
||||
parameters = config.get("parameters", [])
|
||||
if isinstance(parameters, list):
|
||||
for i, param in enumerate(parameters):
|
||||
if isinstance(param, dict):
|
||||
# Check for 'required' field (boolean)
|
||||
if "required" not in param:
|
||||
errors.append(
|
||||
ValidationError(
|
||||
rule_id="extractor.param.required_field.missing",
|
||||
node_id=node_id,
|
||||
node_type="parameter-extractor",
|
||||
category=RuleCategory.STRUCTURE,
|
||||
severity=Severity.ERROR,
|
||||
is_fixable=True,
|
||||
message=f"Node '{node_id}': parameter[{i}] missing 'required' field",
|
||||
fix_hint=f"Add 'required': True to parameter '{param.get('name', 'unknown')}'",
|
||||
details={"param_index": i, "param_name": param.get("name")},
|
||||
)
|
||||
)
|
||||
|
||||
# instruction is recommended but not strictly required
|
||||
if not config.get("instruction"):
|
||||
errors.append(
|
||||
ValidationError(
|
||||
rule_id="extractor.instruction.recommended",
|
||||
node_id=node_id,
|
||||
node_type="parameter-extractor",
|
||||
category=RuleCategory.STRUCTURE,
|
||||
severity=Severity.WARNING,
|
||||
is_fixable=True,
|
||||
message=f"Node '{node_id}': parameter-extractor should have 'instruction'",
|
||||
fix_hint="Add instruction describing what to extract",
|
||||
)
|
||||
)
|
||||
|
||||
return errors
|
||||
|
||||
|
||||
def _check_knowledge_retrieval(node: WorkflowNodeDict, ctx: "ValidationContext") -> list[ValidationError]:
|
||||
"""Check that knowledge-retrieval has dataset_ids."""
|
||||
errors: list[ValidationError] = []
|
||||
node_id = node.get("id", "unknown")
|
||||
config = node.get("config", {})
|
||||
|
||||
dataset_ids = config.get("dataset_ids", [])
|
||||
if not dataset_ids:
|
||||
errors.append(
|
||||
ValidationError(
|
||||
rule_id="knowledge.dataset.required",
|
||||
node_id=node_id,
|
||||
node_type="knowledge-retrieval",
|
||||
category=RuleCategory.STRUCTURE,
|
||||
severity=Severity.ERROR,
|
||||
is_fixable=False, # User must select knowledge base
|
||||
message=f"Node '{node_id}': knowledge-retrieval missing 'dataset_ids'",
|
||||
fix_hint="User must select knowledge bases in the UI",
|
||||
)
|
||||
)
|
||||
else:
|
||||
# Check for placeholder values
|
||||
for ds_id in dataset_ids:
|
||||
if is_placeholder(ds_id):
|
||||
errors.append(
|
||||
ValidationError(
|
||||
rule_id="knowledge.dataset.placeholder",
|
||||
node_id=node_id,
|
||||
node_type="knowledge-retrieval",
|
||||
category=RuleCategory.STRUCTURE,
|
||||
severity=Severity.ERROR,
|
||||
is_fixable=False,
|
||||
message=f"Node '{node_id}': dataset_ids contains placeholder",
|
||||
fix_hint="User must replace placeholder with actual knowledge base ID",
|
||||
details={"placeholder_value": ds_id},
|
||||
)
|
||||
)
|
||||
break
|
||||
|
||||
return errors
|
||||
|
||||
|
||||
def _check_end_node(node: WorkflowNodeDict, ctx: "ValidationContext") -> list[ValidationError]:
|
||||
"""Check that end node has outputs defined."""
|
||||
errors: list[ValidationError] = []
|
||||
node_id = node.get("id", "unknown")
|
||||
config = node.get("config", {})
|
||||
|
||||
outputs = config.get("outputs", [])
|
||||
if not outputs:
|
||||
errors.append(
|
||||
ValidationError(
|
||||
rule_id="end.outputs.recommended",
|
||||
node_id=node_id,
|
||||
node_type="end",
|
||||
category=RuleCategory.STRUCTURE,
|
||||
severity=Severity.WARNING,
|
||||
is_fixable=True,
|
||||
message="End node should define output variables",
|
||||
fix_hint="Add outputs array with variable and value_selector",
|
||||
)
|
||||
)
|
||||
|
||||
return errors
|
||||
|
||||
|
||||
# =============================================================================
|
||||
# Semantic Rules - Variable references, edge connections
|
||||
# =============================================================================
|
||||
|
||||
|
||||
def _check_variable_references(node: WorkflowNodeDict, ctx: "ValidationContext") -> list[ValidationError]:
|
||||
"""Check that variable references point to valid nodes."""
|
||||
errors: list[ValidationError] = []
|
||||
node_id = node.get("id", "unknown")
|
||||
node_type = node.get("type", "unknown")
|
||||
config = node.get("config", {})
|
||||
|
||||
# Get all valid node IDs (including 'start' which is always valid)
|
||||
valid_node_ids = ctx.get_node_ids()
|
||||
valid_node_ids.add("start")
|
||||
valid_node_ids.add("sys") # System variables
|
||||
|
||||
def check_text_for_refs(text: str, field_path: str) -> None:
|
||||
if not isinstance(text, str):
|
||||
return
|
||||
refs = extract_variable_refs(text)
|
||||
for ref_node_id, ref_field in refs:
|
||||
if ref_node_id not in valid_node_ids:
|
||||
errors.append(
|
||||
ValidationError(
|
||||
rule_id="variable.ref.invalid_node",
|
||||
node_id=node_id,
|
||||
node_type=node_type,
|
||||
category=RuleCategory.SEMANTIC,
|
||||
severity=Severity.ERROR,
|
||||
is_fixable=True,
|
||||
message=f"Node '{node_id}': references non-existent node '{ref_node_id}'",
|
||||
fix_hint=f"Change {{{{#{ref_node_id}.{ref_field}#}}}} to reference a valid node",
|
||||
details={"field_path": field_path, "invalid_ref": ref_node_id},
|
||||
)
|
||||
)
|
||||
|
||||
# Check prompt_template for LLM nodes
|
||||
prompt_template = config.get("prompt_template", [])
|
||||
if isinstance(prompt_template, list):
|
||||
for i, msg in enumerate(prompt_template):
|
||||
if isinstance(msg, dict):
|
||||
text = msg.get("text", "")
|
||||
check_text_for_refs(text, f"prompt_template[{i}].text")
|
||||
|
||||
# Check instruction field
|
||||
instruction = config.get("instruction", "")
|
||||
check_text_for_refs(instruction, "instruction")
|
||||
|
||||
# Check url for http-request
|
||||
url = config.get("url", "")
|
||||
check_text_for_refs(url, "url")
|
||||
|
||||
return errors
|
||||
|
||||
|
||||
# NOTE: _check_node_has_outgoing_edge removed - handled by GraphValidator
|
||||
|
||||
|
||||
# NOTE: _check_node_has_incoming_edge removed - handled by GraphValidator
|
||||
|
||||
|
||||
# NOTE: _check_question_classifier_branches removed - handled by EdgeRepair
|
||||
|
||||
|
||||
# NOTE: _check_if_else_branches removed - handled by EdgeRepair
|
||||
|
||||
|
||||
def _check_if_else_operators(node: WorkflowNodeDict, ctx: "ValidationContext") -> list[ValidationError]:
|
||||
"""Check that if-else comparison operators are valid."""
|
||||
errors: list[ValidationError] = []
|
||||
node_id = node.get("id", "unknown")
|
||||
node_type = node.get("type", "unknown")
|
||||
|
||||
if node_type != "if-else":
|
||||
return errors
|
||||
|
||||
valid_operators = {
|
||||
"contains",
|
||||
"not contains",
|
||||
"start with",
|
||||
"end with",
|
||||
"is",
|
||||
"is not",
|
||||
"empty",
|
||||
"not empty",
|
||||
"in",
|
||||
"not in",
|
||||
"all of",
|
||||
"=",
|
||||
"≠",
|
||||
">",
|
||||
"<",
|
||||
"≥",
|
||||
"≤",
|
||||
"null",
|
||||
"not null",
|
||||
"exists",
|
||||
"not exists",
|
||||
}
|
||||
|
||||
config = node.get("config", {})
|
||||
cases = config.get("cases", [])
|
||||
|
||||
for case in cases:
|
||||
conditions = case.get("conditions", [])
|
||||
for condition in conditions:
|
||||
op = condition.get("comparison_operator")
|
||||
if op and op not in valid_operators:
|
||||
errors.append(
|
||||
ValidationError(
|
||||
rule_id="ifelse.operator.invalid",
|
||||
node_id=node_id,
|
||||
node_type=node_type,
|
||||
category=RuleCategory.SEMANTIC,
|
||||
severity=Severity.ERROR,
|
||||
is_fixable=True,
|
||||
message=f"Invalid operator '{op}' in if-else node",
|
||||
fix_hint=f"Use one of: {', '.join(sorted(valid_operators))}",
|
||||
details={"invalid_operator": op, "field": "config.cases.conditions.comparison_operator"},
|
||||
)
|
||||
)
|
||||
|
||||
return errors
|
||||
|
||||
|
||||
def _check_edge_targets_exist(node: WorkflowNodeDict, ctx: "ValidationContext") -> list[ValidationError]:
|
||||
"""Check that edge targets reference existing nodes."""
|
||||
errors: list[ValidationError] = []
|
||||
node_id = node.get("id", "unknown")
|
||||
node_type = node.get("type", "unknown")
|
||||
|
||||
valid_node_ids = ctx.get_node_ids()
|
||||
|
||||
# Check all outgoing edges from this node
|
||||
for edge in ctx.edges:
|
||||
if edge.get("source") == node_id:
|
||||
target = edge.get("target")
|
||||
if target and target not in valid_node_ids:
|
||||
errors.append(
|
||||
ValidationError(
|
||||
rule_id="edge.target.invalid",
|
||||
node_id=node_id,
|
||||
node_type=node_type,
|
||||
category=RuleCategory.SEMANTIC,
|
||||
severity=Severity.ERROR,
|
||||
is_fixable=True,
|
||||
message=f"Edge from '{node_id}' targets non-existent node '{target}'",
|
||||
fix_hint=f"Change edge target from '{target}' to an existing node",
|
||||
details={"invalid_target": target, "field": "edges"},
|
||||
)
|
||||
)
|
||||
|
||||
return errors
|
||||
|
||||
|
||||
# =============================================================================
|
||||
# Reference Rules - External resources (models, tools, datasets)
|
||||
# =============================================================================
|
||||
|
||||
# Node types that require model configuration
|
||||
MODEL_REQUIRED_NODE_TYPES = {"llm", "question-classifier", "parameter-extractor"}
|
||||
|
||||
|
||||
def _check_model_config(node: WorkflowNodeDict, ctx: "ValidationContext") -> list[ValidationError]:
|
||||
"""Check that model configuration is valid."""
|
||||
errors: list[ValidationError] = []
|
||||
node_id = node.get("id", "unknown")
|
||||
node_type = node.get("type", "unknown")
|
||||
config = node.get("config", {})
|
||||
|
||||
if node_type not in MODEL_REQUIRED_NODE_TYPES:
|
||||
return errors
|
||||
|
||||
model = config.get("model")
|
||||
|
||||
# Check if model config exists
|
||||
if not model:
|
||||
if ctx.available_models:
|
||||
errors.append(
|
||||
ValidationError(
|
||||
rule_id="model.required",
|
||||
node_id=node_id,
|
||||
node_type=node_type,
|
||||
category=RuleCategory.REFERENCE,
|
||||
severity=Severity.ERROR,
|
||||
is_fixable=True,
|
||||
message=f"Node '{node_id}' ({node_type}): missing required 'model' configuration",
|
||||
fix_hint="Add model config using one of the available models",
|
||||
)
|
||||
)
|
||||
else:
|
||||
errors.append(
|
||||
ValidationError(
|
||||
rule_id="model.no_available",
|
||||
node_id=node_id,
|
||||
node_type=node_type,
|
||||
category=RuleCategory.REFERENCE,
|
||||
severity=Severity.ERROR,
|
||||
is_fixable=False,
|
||||
message=f"Node '{node_id}' ({node_type}): needs model but no models available",
|
||||
fix_hint="User must configure a model provider first",
|
||||
)
|
||||
)
|
||||
return errors
|
||||
|
||||
# Check if model config is valid
|
||||
if isinstance(model, dict):
|
||||
provider = model.get("provider", "")
|
||||
name = model.get("name", "")
|
||||
|
||||
# Check for placeholder values
|
||||
if is_placeholder(provider) or is_placeholder(name):
|
||||
if ctx.available_models:
|
||||
errors.append(
|
||||
ValidationError(
|
||||
rule_id="model.placeholder",
|
||||
node_id=node_id,
|
||||
node_type=node_type,
|
||||
category=RuleCategory.REFERENCE,
|
||||
severity=Severity.ERROR,
|
||||
is_fixable=True,
|
||||
message=f"Node '{node_id}': model config contains placeholder",
|
||||
fix_hint="Replace placeholder with actual model from available_models",
|
||||
)
|
||||
)
|
||||
return errors
|
||||
|
||||
# Check if model exists in available_models
|
||||
if ctx.available_models and provider and name:
|
||||
if not ctx.has_model(provider, name):
|
||||
errors.append(
|
||||
ValidationError(
|
||||
rule_id="model.not_found",
|
||||
node_id=node_id,
|
||||
node_type=node_type,
|
||||
category=RuleCategory.REFERENCE,
|
||||
severity=Severity.ERROR,
|
||||
is_fixable=True,
|
||||
message=f"Node '{node_id}': model '{provider}/{name}' not in available models",
|
||||
fix_hint="Replace with a model from available_models",
|
||||
details={"provider": provider, "model": name},
|
||||
)
|
||||
)
|
||||
|
||||
return errors
|
||||
|
||||
|
||||
def _check_tool_reference(node: WorkflowNodeDict, ctx: "ValidationContext") -> list[ValidationError]:
|
||||
"""Check that tool references are valid and configured."""
|
||||
errors: list[ValidationError] = []
|
||||
node_id = node.get("id", "unknown")
|
||||
node_type = node.get("type", "unknown")
|
||||
|
||||
if node_type != "tool":
|
||||
return errors
|
||||
|
||||
config = node.get("config", {})
|
||||
tool_ref = (
|
||||
config.get("tool_key")
|
||||
or config.get("tool_name")
|
||||
or config.get("provider_id", "") + "/" + config.get("tool_name", "")
|
||||
)
|
||||
|
||||
if not tool_ref:
|
||||
errors.append(
|
||||
ValidationError(
|
||||
rule_id="tool.key.required",
|
||||
node_id=node_id,
|
||||
node_type=node_type,
|
||||
category=RuleCategory.REFERENCE,
|
||||
severity=Severity.ERROR,
|
||||
is_fixable=True,
|
||||
message=f"Node '{node_id}': tool node missing tool_key",
|
||||
fix_hint="Add tool_key from available_tools",
|
||||
)
|
||||
)
|
||||
return errors
|
||||
|
||||
# Check if tool exists
|
||||
if not ctx.has_tool(tool_ref):
|
||||
errors.append(
|
||||
ValidationError(
|
||||
rule_id="tool.not_found",
|
||||
node_id=node_id,
|
||||
node_type=node_type,
|
||||
category=RuleCategory.REFERENCE,
|
||||
severity=Severity.ERROR,
|
||||
is_fixable=True, # Can be replaced with http-request fallback
|
||||
message=f"Node '{node_id}': tool '{tool_ref}' not found",
|
||||
fix_hint="Use http-request or code node as fallback",
|
||||
details={"tool_ref": tool_ref},
|
||||
)
|
||||
)
|
||||
elif not ctx.is_tool_configured(tool_ref):
|
||||
errors.append(
|
||||
ValidationError(
|
||||
rule_id="tool.not_configured",
|
||||
node_id=node_id,
|
||||
node_type=node_type,
|
||||
category=RuleCategory.REFERENCE,
|
||||
severity=Severity.WARNING,
|
||||
is_fixable=False, # User needs to configure
|
||||
message=f"Node '{node_id}': tool '{tool_ref}' requires configuration",
|
||||
fix_hint="Configure the tool in Tools settings",
|
||||
details={"tool_ref": tool_ref},
|
||||
)
|
||||
)
|
||||
|
||||
return errors
|
||||
|
||||
|
||||
# =============================================================================
|
||||
# Register All Rules
|
||||
# =============================================================================
|
||||
|
||||
# Structure Rules
|
||||
register_rule(
|
||||
ValidationRule(
|
||||
id="llm.prompt_template.required",
|
||||
node_types=["llm"],
|
||||
category=RuleCategory.STRUCTURE,
|
||||
severity=Severity.ERROR,
|
||||
is_fixable=True,
|
||||
check=_check_llm_prompt_template,
|
||||
description="LLM node must have prompt_template",
|
||||
fix_hint="Add prompt_template with system and user messages",
|
||||
)
|
||||
)
|
||||
|
||||
register_rule(
|
||||
ValidationRule(
|
||||
id="http.config.required",
|
||||
node_types=["http-request"],
|
||||
category=RuleCategory.STRUCTURE,
|
||||
severity=Severity.ERROR,
|
||||
is_fixable=True,
|
||||
check=_check_http_request_url,
|
||||
description="HTTP request node must have url and method",
|
||||
fix_hint="Add url and method to config",
|
||||
)
|
||||
)
|
||||
|
||||
register_rule(
|
||||
ValidationRule(
|
||||
id="code.config.required",
|
||||
node_types=["code"],
|
||||
category=RuleCategory.STRUCTURE,
|
||||
severity=Severity.ERROR,
|
||||
is_fixable=True,
|
||||
check=_check_code_node,
|
||||
description="Code node must have code and language",
|
||||
fix_hint="Add code with main() function and language",
|
||||
)
|
||||
)
|
||||
|
||||
register_rule(
|
||||
ValidationRule(
|
||||
id="classifier.classes.required",
|
||||
node_types=["question-classifier"],
|
||||
category=RuleCategory.STRUCTURE,
|
||||
severity=Severity.ERROR,
|
||||
is_fixable=True,
|
||||
check=_check_question_classifier,
|
||||
description="Question classifier must have classes",
|
||||
fix_hint="Add classes array with classification options",
|
||||
)
|
||||
)
|
||||
|
||||
register_rule(
|
||||
ValidationRule(
|
||||
id="extractor.config.required",
|
||||
node_types=["parameter-extractor"],
|
||||
category=RuleCategory.STRUCTURE,
|
||||
severity=Severity.ERROR,
|
||||
is_fixable=True,
|
||||
check=_check_parameter_extractor,
|
||||
description="Parameter extractor must have parameters",
|
||||
fix_hint="Add parameters array",
|
||||
)
|
||||
)
|
||||
|
||||
register_rule(
|
||||
ValidationRule(
|
||||
id="knowledge.config.required",
|
||||
node_types=["knowledge-retrieval"],
|
||||
category=RuleCategory.STRUCTURE,
|
||||
severity=Severity.ERROR,
|
||||
is_fixable=False,
|
||||
check=_check_knowledge_retrieval,
|
||||
description="Knowledge retrieval must have dataset_ids",
|
||||
fix_hint="User must select knowledge base",
|
||||
)
|
||||
)
|
||||
|
||||
register_rule(
|
||||
ValidationRule(
|
||||
id="end.outputs.check",
|
||||
node_types=["end"],
|
||||
category=RuleCategory.STRUCTURE,
|
||||
severity=Severity.WARNING,
|
||||
is_fixable=True,
|
||||
check=_check_end_node,
|
||||
description="End node should have outputs",
|
||||
fix_hint="Add outputs array",
|
||||
)
|
||||
)
|
||||
|
||||
# Semantic Rules
|
||||
register_rule(
|
||||
ValidationRule(
|
||||
id="variable.references.valid",
|
||||
node_types=["*"],
|
||||
category=RuleCategory.SEMANTIC,
|
||||
severity=Severity.ERROR,
|
||||
is_fixable=True,
|
||||
check=_check_variable_references,
|
||||
description="Variable references must point to valid nodes",
|
||||
fix_hint="Fix variable reference to use valid node ID",
|
||||
)
|
||||
)
|
||||
|
||||
# Edge Validation Rules
|
||||
# NOTE: Edge connectivity and branch completeness are now handled by:
|
||||
# - GraphValidator (BFS-based reachability analysis)
|
||||
# - EdgeRepair (automatic branch edge repair)
|
||||
|
||||
register_rule(
|
||||
ValidationRule(
|
||||
id="edge.targets.valid",
|
||||
node_types=["*"],
|
||||
category=RuleCategory.SEMANTIC,
|
||||
severity=Severity.ERROR,
|
||||
is_fixable=True,
|
||||
check=_check_edge_targets_exist,
|
||||
description="Edge targets must reference existing nodes",
|
||||
fix_hint="Change edge target to an existing node ID",
|
||||
)
|
||||
)
|
||||
|
||||
# Reference Rules
|
||||
register_rule(
|
||||
ValidationRule(
|
||||
id="model.config.valid",
|
||||
node_types=["llm", "question-classifier", "parameter-extractor"],
|
||||
category=RuleCategory.REFERENCE,
|
||||
severity=Severity.ERROR,
|
||||
is_fixable=True,
|
||||
check=_check_model_config,
|
||||
description="Model configuration must be valid",
|
||||
fix_hint="Add valid model from available_models",
|
||||
)
|
||||
)
|
||||
|
||||
register_rule(
|
||||
ValidationRule(
|
||||
id="tool.reference.valid",
|
||||
node_types=["tool"],
|
||||
category=RuleCategory.REFERENCE,
|
||||
severity=Severity.ERROR,
|
||||
is_fixable=True,
|
||||
check=_check_tool_reference,
|
||||
description="Tool reference must be valid and configured",
|
||||
fix_hint="Use valid tool or fallback node",
|
||||
)
|
||||
)
|
||||
|
||||
register_rule(
|
||||
ValidationRule(
|
||||
id="ifelse.operator.valid",
|
||||
node_types=["if-else"],
|
||||
category=RuleCategory.SEMANTIC,
|
||||
severity=Severity.ERROR,
|
||||
is_fixable=True,
|
||||
check=_check_if_else_operators,
|
||||
description="If-else operators must be valid",
|
||||
fix_hint="Use standard operators like ≥, ≤, =, ≠",
|
||||
)
|
||||
)
|
||||
@@ -0,0 +1,434 @@
|
||||
"""
|
||||
Unit tests for the Vibe Workflow Validator.
|
||||
|
||||
Tests cover:
|
||||
- Basic validation function
|
||||
- User-friendly validation hints
|
||||
- Edge cases and error handling
|
||||
"""
|
||||
|
||||
from core.workflow.generator.utils.workflow_validator import ValidationHint, WorkflowValidator
|
||||
|
||||
|
||||
class TestValidationHint:
|
||||
"""Tests for ValidationHint dataclass."""
|
||||
|
||||
def test_hint_creation(self):
|
||||
"""Test creating a validation hint."""
|
||||
hint = ValidationHint(
|
||||
node_id="llm_1",
|
||||
field="model",
|
||||
message="Model is not configured",
|
||||
severity="error",
|
||||
)
|
||||
assert hint.node_id == "llm_1"
|
||||
assert hint.field == "model"
|
||||
assert hint.message == "Model is not configured"
|
||||
assert hint.severity == "error"
|
||||
|
||||
def test_hint_with_suggestion(self):
|
||||
"""Test hint with suggestion."""
|
||||
hint = ValidationHint(
|
||||
node_id="http_1",
|
||||
field="url",
|
||||
message="URL is required",
|
||||
severity="error",
|
||||
suggestion="Add a valid URL like https://api.example.com",
|
||||
)
|
||||
assert hint.suggestion is not None
|
||||
|
||||
|
||||
class TestWorkflowValidatorBasic:
|
||||
"""Tests for basic validation scenarios."""
|
||||
|
||||
def test_empty_workflow_is_valid(self):
|
||||
"""Test empty workflow passes validation."""
|
||||
workflow_data = {"nodes": [], "edges": []}
|
||||
is_valid, hints = WorkflowValidator.validate(workflow_data, [])
|
||||
|
||||
# Empty but valid structure
|
||||
assert is_valid is True
|
||||
assert len(hints) == 0
|
||||
|
||||
def test_minimal_valid_workflow(self):
|
||||
"""Test minimal Start → End workflow."""
|
||||
workflow_data = {
|
||||
"nodes": [
|
||||
{"id": "start", "type": "start", "config": {}},
|
||||
{"id": "end", "type": "end", "config": {}},
|
||||
],
|
||||
"edges": [{"source": "start", "target": "end"}],
|
||||
}
|
||||
is_valid, hints = WorkflowValidator.validate(workflow_data, [])
|
||||
|
||||
assert is_valid is True
|
||||
|
||||
def test_complete_workflow_with_llm(self):
|
||||
"""Test complete workflow with LLM node."""
|
||||
workflow_data = {
|
||||
"nodes": [
|
||||
{"id": "start", "type": "start", "config": {"variables": []}},
|
||||
{
|
||||
"id": "llm",
|
||||
"type": "llm",
|
||||
"config": {
|
||||
"model": {"provider": "openai", "name": "gpt-4"},
|
||||
"prompt_template": [{"role": "user", "text": "Hello"}],
|
||||
},
|
||||
},
|
||||
{"id": "end", "type": "end", "config": {"outputs": []}},
|
||||
],
|
||||
"edges": [
|
||||
{"source": "start", "target": "llm"},
|
||||
{"source": "llm", "target": "end"},
|
||||
],
|
||||
}
|
||||
is_valid, hints = WorkflowValidator.validate(workflow_data, [])
|
||||
|
||||
# Should pass with no critical errors
|
||||
errors = [h for h in hints if h.severity == "error"]
|
||||
assert len(errors) == 0
|
||||
|
||||
|
||||
class TestVariableReferenceValidation:
|
||||
"""Tests for variable reference validation."""
|
||||
|
||||
def test_valid_variable_reference(self):
|
||||
"""Test valid variable reference passes."""
|
||||
workflow_data = {
|
||||
"nodes": [
|
||||
{"id": "start", "type": "start", "config": {}},
|
||||
{
|
||||
"id": "llm",
|
||||
"type": "llm",
|
||||
"config": {"prompt_template": [{"role": "user", "text": "Query: {{#start.query#}}"}]},
|
||||
},
|
||||
],
|
||||
"edges": [{"source": "start", "target": "llm"}],
|
||||
}
|
||||
is_valid, hints = WorkflowValidator.validate(workflow_data, [])
|
||||
|
||||
ref_errors = [h for h in hints if "reference" in h.message.lower()]
|
||||
assert len(ref_errors) == 0
|
||||
|
||||
def test_invalid_variable_reference(self):
|
||||
"""Test invalid variable reference generates hint."""
|
||||
workflow_data = {
|
||||
"nodes": [
|
||||
{"id": "start", "type": "start", "config": {}},
|
||||
{
|
||||
"id": "llm",
|
||||
"type": "llm",
|
||||
"config": {"prompt_template": [{"role": "user", "text": "{{#nonexistent.field#}}"}]},
|
||||
},
|
||||
],
|
||||
"edges": [{"source": "start", "target": "llm"}],
|
||||
}
|
||||
is_valid, hints = WorkflowValidator.validate(workflow_data, [])
|
||||
|
||||
# Should have a hint about invalid reference
|
||||
ref_hints = [h for h in hints if "nonexistent" in h.message or "reference" in h.message.lower()]
|
||||
assert len(ref_hints) >= 1
|
||||
|
||||
|
||||
class TestEdgeValidation:
|
||||
"""Tests for edge validation."""
|
||||
|
||||
def test_edge_with_invalid_source(self):
|
||||
"""Test edge with non-existent source generates hint."""
|
||||
workflow_data = {
|
||||
"nodes": [{"id": "end", "type": "end", "config": {}}],
|
||||
"edges": [{"source": "nonexistent", "target": "end"}],
|
||||
}
|
||||
is_valid, hints = WorkflowValidator.validate(workflow_data, [])
|
||||
|
||||
# Should have hint about invalid edge
|
||||
edge_hints = [h for h in hints if "edge" in h.message.lower() or "source" in h.message.lower()]
|
||||
assert len(edge_hints) >= 1
|
||||
|
||||
def test_edge_with_invalid_target(self):
|
||||
"""Test edge with non-existent target generates hint."""
|
||||
workflow_data = {
|
||||
"nodes": [{"id": "start", "type": "start", "config": {}}],
|
||||
"edges": [{"source": "start", "target": "nonexistent"}],
|
||||
}
|
||||
is_valid, hints = WorkflowValidator.validate(workflow_data, [])
|
||||
|
||||
edge_hints = [h for h in hints if "edge" in h.message.lower() or "target" in h.message.lower()]
|
||||
assert len(edge_hints) >= 1
|
||||
|
||||
|
||||
class TestToolValidation:
|
||||
"""Tests for tool node validation."""
|
||||
|
||||
def test_tool_node_found_in_available(self):
|
||||
"""Test tool node that exists in available tools."""
|
||||
workflow_data = {
|
||||
"nodes": [
|
||||
{"id": "start", "type": "start", "config": {}},
|
||||
{
|
||||
"id": "tool1",
|
||||
"type": "tool",
|
||||
"config": {"tool_key": "google/search"},
|
||||
},
|
||||
{"id": "end", "type": "end", "config": {}},
|
||||
],
|
||||
"edges": [{"source": "start", "target": "tool1"}, {"source": "tool1", "target": "end"}],
|
||||
}
|
||||
available_tools = [{"provider_id": "google", "tool_key": "search", "is_team_authorization": True}]
|
||||
is_valid, hints = WorkflowValidator.validate(workflow_data, available_tools)
|
||||
|
||||
tool_errors = [h for h in hints if h.severity == "error" and "tool" in h.message.lower()]
|
||||
assert len(tool_errors) == 0
|
||||
|
||||
def test_tool_node_not_found(self):
|
||||
"""Test tool node not in available tools generates hint."""
|
||||
workflow_data = {
|
||||
"nodes": [
|
||||
{
|
||||
"id": "tool1",
|
||||
"type": "tool",
|
||||
"config": {"tool_key": "unknown/tool"},
|
||||
}
|
||||
],
|
||||
"edges": [],
|
||||
}
|
||||
available_tools = []
|
||||
is_valid, hints = WorkflowValidator.validate(workflow_data, available_tools)
|
||||
|
||||
tool_hints = [h for h in hints if "tool" in h.message.lower()]
|
||||
assert len(tool_hints) >= 1
|
||||
|
||||
|
||||
class TestQuestionClassifierValidation:
|
||||
"""Tests for question-classifier node validation."""
|
||||
|
||||
def test_question_classifier_with_classes(self):
|
||||
"""Test question-classifier with valid classes."""
|
||||
workflow_data = {
|
||||
"nodes": [
|
||||
{"id": "start", "type": "start", "config": {}},
|
||||
{
|
||||
"id": "classifier",
|
||||
"type": "question-classifier",
|
||||
"config": {
|
||||
"classes": [
|
||||
{"id": "class1", "name": "Class 1"},
|
||||
{"id": "class2", "name": "Class 2"},
|
||||
],
|
||||
"model": {"provider": "openai", "name": "gpt-4", "mode": "chat"},
|
||||
},
|
||||
},
|
||||
{"id": "h1", "type": "llm", "config": {}},
|
||||
{"id": "h2", "type": "llm", "config": {}},
|
||||
{"id": "end", "type": "end", "config": {}},
|
||||
],
|
||||
"edges": [
|
||||
{"source": "start", "target": "classifier"},
|
||||
{"source": "classifier", "sourceHandle": "class1", "target": "h1"},
|
||||
{"source": "classifier", "sourceHandle": "class2", "target": "h2"},
|
||||
{"source": "h1", "target": "end"},
|
||||
{"source": "h2", "target": "end"},
|
||||
],
|
||||
}
|
||||
available_models = [{"provider": "openai", "model": "gpt-4", "mode": "chat"}]
|
||||
is_valid, hints = WorkflowValidator.validate(workflow_data, [], available_models=available_models)
|
||||
|
||||
class_errors = [h for h in hints if "class" in h.message.lower() and h.severity == "error"]
|
||||
assert len(class_errors) == 0
|
||||
|
||||
def test_question_classifier_missing_classes(self):
|
||||
"""Test question-classifier without classes generates hint."""
|
||||
workflow_data = {
|
||||
"nodes": [
|
||||
{
|
||||
"id": "classifier",
|
||||
"type": "question-classifier",
|
||||
"config": {"model": {"provider": "openai", "name": "gpt-4", "mode": "chat"}},
|
||||
}
|
||||
],
|
||||
"edges": [],
|
||||
}
|
||||
available_models = [{"provider": "openai", "model": "gpt-4", "mode": "chat"}]
|
||||
is_valid, hints = WorkflowValidator.validate(workflow_data, [], available_models=available_models)
|
||||
|
||||
# Should have hint about missing classes
|
||||
class_hints = [h for h in hints if "class" in h.message.lower()]
|
||||
assert len(class_hints) >= 1
|
||||
|
||||
|
||||
class TestHttpRequestValidation:
|
||||
"""Tests for HTTP request node validation."""
|
||||
|
||||
def test_http_request_with_url(self):
|
||||
"""Test HTTP request with valid URL."""
|
||||
workflow_data = {
|
||||
"nodes": [
|
||||
{"id": "start", "type": "start", "config": {}},
|
||||
{
|
||||
"id": "http",
|
||||
"type": "http-request",
|
||||
"config": {"url": "https://api.example.com", "method": "GET"},
|
||||
},
|
||||
{"id": "end", "type": "end", "config": {}},
|
||||
],
|
||||
"edges": [{"source": "start", "target": "http"}, {"source": "http", "target": "end"}],
|
||||
}
|
||||
is_valid, hints = WorkflowValidator.validate(workflow_data, [])
|
||||
|
||||
url_errors = [h for h in hints if "url" in h.message.lower() and h.severity == "error"]
|
||||
assert len(url_errors) == 0
|
||||
|
||||
def test_http_request_missing_url(self):
|
||||
"""Test HTTP request without URL generates hint."""
|
||||
workflow_data = {
|
||||
"nodes": [
|
||||
{
|
||||
"id": "http",
|
||||
"type": "http-request",
|
||||
"config": {"method": "GET"},
|
||||
}
|
||||
],
|
||||
"edges": [],
|
||||
}
|
||||
is_valid, hints = WorkflowValidator.validate(workflow_data, [])
|
||||
|
||||
url_hints = [h for h in hints if "url" in h.message.lower()]
|
||||
assert len(url_hints) >= 1
|
||||
|
||||
|
||||
class TestParameterExtractorValidation:
|
||||
"""Tests for parameter-extractor node validation."""
|
||||
|
||||
def test_parameter_extractor_valid_params(self):
|
||||
"""Test parameter-extractor with valid parameters."""
|
||||
workflow_data = {
|
||||
"nodes": [
|
||||
{"id": "start", "type": "start", "config": {}},
|
||||
{
|
||||
"id": "extractor",
|
||||
"type": "parameter-extractor",
|
||||
"config": {
|
||||
"instruction": "Extract info",
|
||||
"parameters": [
|
||||
{
|
||||
"name": "name",
|
||||
"type": "string",
|
||||
"description": "Name",
|
||||
"required": True,
|
||||
}
|
||||
],
|
||||
"model": {"provider": "openai", "name": "gpt-4", "mode": "chat"},
|
||||
},
|
||||
},
|
||||
{"id": "end", "type": "end", "config": {}},
|
||||
],
|
||||
"edges": [{"source": "start", "target": "extractor"}, {"source": "extractor", "target": "end"}],
|
||||
}
|
||||
available_models = [{"provider": "openai", "model": "gpt-4", "mode": "chat"}]
|
||||
is_valid, hints = WorkflowValidator.validate(workflow_data, [], available_models=available_models)
|
||||
|
||||
errors = [h for h in hints if h.severity == "error"]
|
||||
assert len(errors) == 0
|
||||
|
||||
def test_parameter_extractor_missing_required_field(self):
|
||||
"""Test parameter-extractor missing 'required' field in parameter item."""
|
||||
workflow_data = {
|
||||
"nodes": [
|
||||
{
|
||||
"id": "extractor",
|
||||
"type": "parameter-extractor",
|
||||
"config": {
|
||||
"instruction": "Extract info",
|
||||
"parameters": [
|
||||
{
|
||||
"name": "name",
|
||||
"type": "string",
|
||||
"description": "Name",
|
||||
# Missing 'required'
|
||||
}
|
||||
],
|
||||
"model": {"provider": "openai", "name": "gpt-4", "mode": "chat"},
|
||||
},
|
||||
}
|
||||
],
|
||||
"edges": [],
|
||||
}
|
||||
available_models = [{"provider": "openai", "model": "gpt-4", "mode": "chat"}]
|
||||
is_valid, hints = WorkflowValidator.validate(workflow_data, [], available_models=available_models)
|
||||
|
||||
errors = [h for h in hints if "required" in h.message and h.severity == "error"]
|
||||
assert len(errors) >= 1
|
||||
assert "parameter-extractor" in errors[0].node_type
|
||||
|
||||
|
||||
class TestIfElseValidation:
|
||||
"""Tests for if-else node validation."""
|
||||
|
||||
def test_if_else_valid_operators(self):
|
||||
"""Test if-else with valid operators."""
|
||||
workflow_data = {
|
||||
"nodes": [
|
||||
{"id": "start", "type": "start", "config": {}},
|
||||
{
|
||||
"id": "ifelse",
|
||||
"type": "if-else",
|
||||
"config": {
|
||||
"cases": [{"case_id": "c1", "conditions": [{"comparison_operator": "≥", "value": "1"}]}]
|
||||
},
|
||||
},
|
||||
{"id": "t", "type": "llm", "config": {}},
|
||||
{"id": "f", "type": "llm", "config": {}},
|
||||
{"id": "end", "type": "end", "config": {}},
|
||||
],
|
||||
"edges": [
|
||||
{"source": "start", "target": "ifelse"},
|
||||
{"source": "ifelse", "sourceHandle": "true", "target": "t"},
|
||||
{"source": "ifelse", "sourceHandle": "false", "target": "f"},
|
||||
{"source": "t", "target": "end"},
|
||||
{"source": "f", "target": "end"},
|
||||
],
|
||||
}
|
||||
is_valid, hints = WorkflowValidator.validate(workflow_data, [])
|
||||
errors = [h for h in hints if h.severity == "error"]
|
||||
# Filter out LLM model errors if any (available tools/models check might trigger)
|
||||
# (actually available_models empty list might trigger model error?
|
||||
# No, model config validation skips if model field not present? No, LLM has model config.
|
||||
# But logic skips check if key missing? Let's check logic.
|
||||
# _check_model_config checks if provider/name match available. If available is empty, it fails.
|
||||
# But wait, validate default available_models is None?
|
||||
# I should provide mock available_models or ignore model errors.
|
||||
|
||||
# Actually LLM node "config": {} implies missing model config. Rules check if config structure is valid?
|
||||
# Let's filter specifically for operator errors.
|
||||
operator_errors = [h for h in errors if "operator" in h.message]
|
||||
assert len(operator_errors) == 0
|
||||
|
||||
def test_if_else_invalid_operators(self):
|
||||
"""Test if-else with invalid operators."""
|
||||
workflow_data = {
|
||||
"nodes": [
|
||||
{"id": "start", "type": "start", "config": {}},
|
||||
{
|
||||
"id": "ifelse",
|
||||
"type": "if-else",
|
||||
"config": {
|
||||
"cases": [{"case_id": "c1", "conditions": [{"comparison_operator": ">=", "value": "1"}]}]
|
||||
},
|
||||
},
|
||||
{"id": "t", "type": "llm", "config": {}},
|
||||
{"id": "f", "type": "llm", "config": {}},
|
||||
{"id": "end", "type": "end", "config": {}},
|
||||
],
|
||||
"edges": [
|
||||
{"source": "start", "target": "ifelse"},
|
||||
{"source": "ifelse", "sourceHandle": "true", "target": "t"},
|
||||
{"source": "ifelse", "sourceHandle": "false", "target": "f"},
|
||||
{"source": "t", "target": "end"},
|
||||
{"source": "f", "target": "end"},
|
||||
],
|
||||
}
|
||||
is_valid, hints = WorkflowValidator.validate(workflow_data, [])
|
||||
operator_errors = [h for h in hints if "operator" in h.message and h.severity == "error"]
|
||||
assert len(operator_errors) > 0
|
||||
assert "≥" in operator_errors[0].suggestion
|
||||
@@ -0,0 +1,189 @@
|
||||
import { isInWorkflowPage, VIBE_COMMAND_EVENT } from '@/app/components/workflow/constants'
|
||||
import i18n from '@/i18n-config/i18next-config'
|
||||
import { bananaCommand } from './banana'
|
||||
import { registerCommands, unregisterCommands } from './command-bus'
|
||||
|
||||
vi.mock('@/i18n-config/i18next-config', () => ({
|
||||
default: {
|
||||
t: vi.fn((key: string, options?: Record<string, unknown>) => {
|
||||
if (!options)
|
||||
return key
|
||||
return `${key}:${JSON.stringify(options)}`
|
||||
}),
|
||||
},
|
||||
}))
|
||||
|
||||
vi.mock('@/app/components/workflow/constants', async () => {
|
||||
const actual = await vi.importActual<typeof import('@/app/components/workflow/constants')>(
|
||||
'@/app/components/workflow/constants',
|
||||
)
|
||||
return {
|
||||
...actual,
|
||||
isInWorkflowPage: vi.fn(),
|
||||
}
|
||||
})
|
||||
|
||||
vi.mock('./command-bus', () => ({
|
||||
registerCommands: vi.fn(),
|
||||
unregisterCommands: vi.fn(),
|
||||
}))
|
||||
|
||||
const mockedIsInWorkflowPage = vi.mocked(isInWorkflowPage)
|
||||
const mockedRegisterCommands = vi.mocked(registerCommands)
|
||||
const mockedUnregisterCommands = vi.mocked(unregisterCommands)
|
||||
const mockedT = vi.mocked(i18n.t)
|
||||
|
||||
type CommandArgs = { dsl?: string }
|
||||
type CommandMap = Record<string, (args?: CommandArgs) => void | Promise<void>>
|
||||
|
||||
beforeEach(() => {
|
||||
vi.clearAllMocks()
|
||||
})
|
||||
|
||||
// Command availability, search, and registration behavior for banana command.
|
||||
describe('bananaCommand', () => {
|
||||
// Command metadata mirrors the static definition.
|
||||
describe('metadata', () => {
|
||||
it('should expose name, mode, and description', () => {
|
||||
// Assert
|
||||
expect(bananaCommand.name).toBe('banana')
|
||||
expect(bananaCommand.mode).toBe('submenu')
|
||||
expect(bananaCommand.description).toContain('app.gotoAnything.actions.vibeDesc')
|
||||
})
|
||||
})
|
||||
|
||||
// Availability mirrors workflow page detection.
|
||||
describe('availability', () => {
|
||||
it('should return true when on workflow page', () => {
|
||||
// Arrange
|
||||
mockedIsInWorkflowPage.mockReturnValue(true)
|
||||
|
||||
// Act
|
||||
const available = bananaCommand.isAvailable?.()
|
||||
|
||||
// Assert
|
||||
expect(available).toBe(true)
|
||||
expect(mockedIsInWorkflowPage).toHaveBeenCalledTimes(1)
|
||||
})
|
||||
|
||||
it('should return false when not on workflow page', () => {
|
||||
// Arrange
|
||||
mockedIsInWorkflowPage.mockReturnValue(false)
|
||||
|
||||
// Act
|
||||
const available = bananaCommand.isAvailable?.()
|
||||
|
||||
// Assert
|
||||
expect(available).toBe(false)
|
||||
expect(mockedIsInWorkflowPage).toHaveBeenCalledTimes(1)
|
||||
})
|
||||
})
|
||||
|
||||
// Search results depend on provided arguments.
|
||||
describe('search', () => {
|
||||
it('should return hint description when args are empty', async () => {
|
||||
// Arrange
|
||||
mockedIsInWorkflowPage.mockReturnValue(true)
|
||||
|
||||
// Act
|
||||
const result = await bananaCommand.search(' ')
|
||||
|
||||
// Assert
|
||||
expect(result).toHaveLength(1)
|
||||
const [item] = result
|
||||
expect(item.description).toContain('app.gotoAnything.actions.vibeHint')
|
||||
expect(item.data?.args?.dsl).toBe('')
|
||||
expect(item.data?.command).toBe('workflow.vibe')
|
||||
expect(mockedT).toHaveBeenCalledWith(
|
||||
'app.gotoAnything.actions.vibeTitle',
|
||||
expect.objectContaining({ lng: 'en' }),
|
||||
)
|
||||
expect(mockedT).toHaveBeenCalledWith(
|
||||
'app.gotoAnything.actions.vibeHint',
|
||||
expect.objectContaining({ prompt: expect.any(String), lng: 'en' }),
|
||||
)
|
||||
})
|
||||
|
||||
it('should return default description when args are provided', async () => {
|
||||
// Arrange
|
||||
mockedIsInWorkflowPage.mockReturnValue(true)
|
||||
|
||||
// Act
|
||||
const result = await bananaCommand.search(' make a flow ', 'fr')
|
||||
|
||||
// Assert
|
||||
expect(result).toHaveLength(1)
|
||||
const [item] = result
|
||||
expect(item.description).toContain('app.gotoAnything.actions.vibeDesc')
|
||||
expect(item.data?.args?.dsl).toBe('make a flow')
|
||||
expect(item.data?.command).toBe('workflow.vibe')
|
||||
expect(mockedT).toHaveBeenCalledWith(
|
||||
'app.gotoAnything.actions.vibeTitle',
|
||||
expect.objectContaining({ lng: 'fr' }),
|
||||
)
|
||||
expect(mockedT).toHaveBeenCalledWith(
|
||||
'app.gotoAnything.actions.vibeDesc',
|
||||
expect.objectContaining({ lng: 'fr' }),
|
||||
)
|
||||
})
|
||||
|
||||
it('should fall back to Banana when title translation is empty', async () => {
|
||||
// Arrange
|
||||
mockedIsInWorkflowPage.mockReturnValue(true)
|
||||
mockedT.mockImplementationOnce(() => '')
|
||||
|
||||
// Act
|
||||
const result = await bananaCommand.search('make a plan')
|
||||
|
||||
// Assert
|
||||
expect(result).toHaveLength(1)
|
||||
expect(result[0]?.title).toBe('Banana')
|
||||
})
|
||||
})
|
||||
|
||||
// Command registration and event dispatching.
|
||||
describe('registration', () => {
|
||||
it('should register the workflow vibe command', () => {
|
||||
// Act
|
||||
expect(bananaCommand.register).toBeDefined()
|
||||
bananaCommand.register?.({})
|
||||
|
||||
// Assert
|
||||
expect(mockedRegisterCommands).toHaveBeenCalledTimes(1)
|
||||
const commands = mockedRegisterCommands.mock.calls[0]?.[0] as CommandMap
|
||||
expect(commands['workflow.vibe']).toEqual(expect.any(Function))
|
||||
})
|
||||
|
||||
it('should dispatch vibe event when command handler runs', async () => {
|
||||
// Arrange
|
||||
const dispatchSpy = vi.spyOn(document, 'dispatchEvent')
|
||||
expect(bananaCommand.register).toBeDefined()
|
||||
bananaCommand.register?.({})
|
||||
expect(mockedRegisterCommands).toHaveBeenCalledTimes(1)
|
||||
const commands = mockedRegisterCommands.mock.calls[0]?.[0] as CommandMap
|
||||
|
||||
try {
|
||||
// Act
|
||||
await commands['workflow.vibe']?.({ dsl: 'hello' })
|
||||
|
||||
// Assert
|
||||
expect(dispatchSpy).toHaveBeenCalledTimes(1)
|
||||
const event = dispatchSpy.mock.calls[0][0] as CustomEvent
|
||||
expect(event.type).toBe(VIBE_COMMAND_EVENT)
|
||||
expect(event.detail).toEqual({ dsl: 'hello' })
|
||||
}
|
||||
finally {
|
||||
dispatchSpy.mockRestore()
|
||||
}
|
||||
})
|
||||
|
||||
it('should unregister workflow vibe command', () => {
|
||||
// Act
|
||||
expect(bananaCommand.unregister).toBeDefined()
|
||||
bananaCommand.unregister?.()
|
||||
|
||||
// Assert
|
||||
expect(mockedUnregisterCommands).toHaveBeenCalledWith(['workflow.vibe'])
|
||||
})
|
||||
})
|
||||
})
|
||||
59
web/app/components/goto-anything/actions/commands/banana.tsx
Normal file
59
web/app/components/goto-anything/actions/commands/banana.tsx
Normal file
@@ -0,0 +1,59 @@
|
||||
import type { SlashCommandHandler } from './types'
|
||||
import { RiSparklingFill } from '@remixicon/react'
|
||||
import * as React from 'react'
|
||||
import { getI18n } from 'react-i18next'
|
||||
import { isInWorkflowPage, VIBE_COMMAND_EVENT } from '@/app/components/workflow/constants'
|
||||
import { registerCommands, unregisterCommands } from './command-bus'
|
||||
|
||||
type BananaDeps = Record<string, never>
|
||||
|
||||
const BANANA_PROMPT_EXAMPLE = 'Summarize a document, classify sentiment, then notify Slack'
|
||||
|
||||
const dispatchVibeCommand = (input?: string) => {
|
||||
if (typeof document === 'undefined')
|
||||
return
|
||||
|
||||
document.dispatchEvent(new CustomEvent(VIBE_COMMAND_EVENT, { detail: { dsl: input } }))
|
||||
}
|
||||
|
||||
export const bananaCommand: SlashCommandHandler<BananaDeps> = {
|
||||
name: 'banana',
|
||||
description: getI18n().t('gotoAnything.actions.vibeDesc', { ns: 'app' }),
|
||||
mode: 'submenu',
|
||||
isAvailable: () => isInWorkflowPage(),
|
||||
|
||||
async search(args: string, locale: string = 'en') {
|
||||
const trimmed = args.trim()
|
||||
const hasInput = !!trimmed
|
||||
|
||||
return [{
|
||||
id: 'banana-vibe',
|
||||
title: getI18n().t('gotoAnything.actions.vibeTitle', { ns: 'app', lng: locale }) || 'Banana',
|
||||
description: hasInput
|
||||
? getI18n().t('gotoAnything.actions.vibeDesc', { ns: 'app', lng: locale })
|
||||
: getI18n().t('gotoAnything.actions.vibeHint', { ns: 'app', lng: locale, prompt: BANANA_PROMPT_EXAMPLE }),
|
||||
type: 'command' as const,
|
||||
icon: (
|
||||
<div className="flex h-6 w-6 items-center justify-center rounded-md border-[0.5px] border-divider-regular bg-components-panel-bg">
|
||||
<RiSparklingFill className="h-4 w-4 text-text-tertiary" />
|
||||
</div>
|
||||
),
|
||||
data: {
|
||||
command: 'workflow.vibe',
|
||||
args: { dsl: trimmed },
|
||||
},
|
||||
}]
|
||||
},
|
||||
|
||||
register(_deps: BananaDeps) {
|
||||
registerCommands({
|
||||
'workflow.vibe': async (args) => {
|
||||
dispatchVibeCommand(args?.dsl)
|
||||
},
|
||||
})
|
||||
},
|
||||
|
||||
unregister() {
|
||||
unregisterCommands(['workflow.vibe'])
|
||||
},
|
||||
}
|
||||
@@ -5,6 +5,7 @@ import { useEffect } from 'react'
|
||||
import { getI18n } from 'react-i18next'
|
||||
import { setLocaleOnClient } from '@/i18n-config'
|
||||
import { accountCommand } from './account'
|
||||
import { bananaCommand } from './banana'
|
||||
import { executeCommand } from './command-bus'
|
||||
import { communityCommand } from './community'
|
||||
import { docsCommand } from './docs'
|
||||
@@ -43,6 +44,7 @@ export const registerSlashCommands = (deps: Record<string, any>) => {
|
||||
slashCommandRegistry.register(communityCommand, {})
|
||||
slashCommandRegistry.register(accountCommand, {})
|
||||
slashCommandRegistry.register(zenCommand, {})
|
||||
slashCommandRegistry.register(bananaCommand, {})
|
||||
}
|
||||
|
||||
export const unregisterSlashCommands = () => {
|
||||
@@ -54,6 +56,7 @@ export const unregisterSlashCommands = () => {
|
||||
slashCommandRegistry.unregister('community')
|
||||
slashCommandRegistry.unregister('account')
|
||||
slashCommandRegistry.unregister('zen')
|
||||
slashCommandRegistry.unregister('banana')
|
||||
}
|
||||
|
||||
export const SlashCommandProvider = () => {
|
||||
|
||||
59
web/app/components/goto-anything/actions/commands/vibe.tsx
Normal file
59
web/app/components/goto-anything/actions/commands/vibe.tsx
Normal file
@@ -0,0 +1,59 @@
|
||||
import type { SlashCommandHandler } from './types'
|
||||
import { RiSparklingFill } from '@remixicon/react'
|
||||
import * as React from 'react'
|
||||
import { getI18n } from 'react-i18next'
|
||||
import { isInWorkflowPage, VIBE_COMMAND_EVENT } from '@/app/components/workflow/constants'
|
||||
import { registerCommands, unregisterCommands } from './command-bus'
|
||||
|
||||
type VibeDeps = Record<string, never>
|
||||
|
||||
const VIBE_PROMPT_EXAMPLE = 'Summarize a document, classify sentiment, then notify Slack'
|
||||
|
||||
const dispatchVibeCommand = (input?: string) => {
|
||||
if (typeof document === 'undefined')
|
||||
return
|
||||
|
||||
document.dispatchEvent(new CustomEvent(VIBE_COMMAND_EVENT, { detail: { dsl: input } }))
|
||||
}
|
||||
|
||||
export const vibeCommand: SlashCommandHandler<VibeDeps> = {
|
||||
name: 'vibe',
|
||||
description: getI18n().t('gotoAnything.actions.vibeDesc', { ns: 'app' }),
|
||||
mode: 'submenu',
|
||||
isAvailable: () => isInWorkflowPage(),
|
||||
|
||||
async search(args: string, locale: string = 'en') {
|
||||
const trimmed = args.trim()
|
||||
const hasInput = !!trimmed
|
||||
|
||||
return [{
|
||||
id: 'vibe',
|
||||
title: getI18n().t('gotoAnything.actions.vibeTitle', { ns: 'app', lng: locale }) || 'Vibe',
|
||||
description: hasInput
|
||||
? getI18n().t('gotoAnything.actions.vibeDesc', { ns: 'app', lng: locale })
|
||||
: getI18n().t('gotoAnything.actions.vibeHint', { ns: 'app', lng: locale, prompt: VIBE_PROMPT_EXAMPLE }),
|
||||
type: 'command' as const,
|
||||
icon: (
|
||||
<div className="flex h-6 w-6 items-center justify-center rounded-md border-[0.5px] border-divider-regular bg-components-panel-bg">
|
||||
<RiSparklingFill className="h-4 w-4 text-text-tertiary" />
|
||||
</div>
|
||||
),
|
||||
data: {
|
||||
command: 'workflow.vibe',
|
||||
args: { dsl: trimmed },
|
||||
},
|
||||
}]
|
||||
},
|
||||
|
||||
register(_deps: VibeDeps) {
|
||||
registerCommands({
|
||||
'workflow.vibe': async (args) => {
|
||||
dispatchVibeCommand(args?.dsl)
|
||||
},
|
||||
})
|
||||
},
|
||||
|
||||
unregister() {
|
||||
unregisterCommands(['workflow.vibe'])
|
||||
},
|
||||
}
|
||||
@@ -160,7 +160,7 @@
|
||||
* - `@knowledge` / `@kb` - Search knowledge bases
|
||||
* - `@plugin` - Search plugins
|
||||
* - `@node` - Search workflow nodes (workflow pages only)
|
||||
* - `/` - Execute slash commands (theme, language, etc.)
|
||||
* - `/` - Execute slash commands (theme, language, banana, etc.)
|
||||
*/
|
||||
|
||||
import type { ActionItem, SearchResult } from './types'
|
||||
|
||||
@@ -116,6 +116,7 @@ const CommandSelector: FC<Props> = ({ actions, onCommandSelect, searchFilter, co
|
||||
'/docs': 'gotoAnything.actions.docDesc',
|
||||
'/community': 'gotoAnything.actions.communityDesc',
|
||||
'/zen': 'gotoAnything.actions.zenDesc',
|
||||
'/banana': 'gotoAnything.actions.vibeDesc',
|
||||
} as const
|
||||
return t(slashKeyMap[item.key as keyof typeof slashKeyMap] || item.description, { ns: 'app' })
|
||||
})()
|
||||
|
||||
@@ -9,6 +9,9 @@ export const NODE_WIDTH = 240
|
||||
export const X_OFFSET = 60
|
||||
export const NODE_WIDTH_X_OFFSET = NODE_WIDTH + X_OFFSET
|
||||
export const Y_OFFSET = 39
|
||||
export const VIBE_COMMAND_EVENT = 'workflow-vibe-command'
|
||||
export const VIBE_REGENERATE_EVENT = 'workflow-vibe-regenerate'
|
||||
export const VIBE_ACCEPT_EVENT = 'workflow-vibe-accept'
|
||||
export const START_INITIAL_POSITION = { x: 80, y: 282 }
|
||||
export const AUTO_LAYOUT_OFFSET = {
|
||||
x: -42,
|
||||
|
||||
@@ -0,0 +1,80 @@
|
||||
import { describe, expect, it } from 'vitest'
|
||||
import { replaceVariableReferences } from '../use-workflow-vibe'
|
||||
|
||||
// Mock types needed for the test
|
||||
type NodeData = {
|
||||
title: string
|
||||
[key: string]: any
|
||||
}
|
||||
|
||||
describe('use-workflow-vibe', () => {
|
||||
describe('replaceVariableReferences', () => {
|
||||
it('should replace variable references in strings', () => {
|
||||
const data = {
|
||||
title: 'Test Node',
|
||||
prompt: 'Hello {{#old_id.query#}}',
|
||||
}
|
||||
const nodeIdMap = new Map<string, any>()
|
||||
nodeIdMap.set('old_id', { id: 'new_uuid', data: { type: 'llm' } })
|
||||
|
||||
const result = replaceVariableReferences(data, nodeIdMap) as NodeData
|
||||
expect(result.prompt).toBe('Hello {{#new_uuid.query#}}')
|
||||
})
|
||||
|
||||
it('should handle multiple references in one string', () => {
|
||||
const data = {
|
||||
title: 'Test Node',
|
||||
text: '{{#node1.out#}} and {{#node2.out#}}',
|
||||
}
|
||||
const nodeIdMap = new Map<string, any>()
|
||||
nodeIdMap.set('node1', { id: 'uuid1', data: { type: 'llm' } })
|
||||
nodeIdMap.set('node2', { id: 'uuid2', data: { type: 'llm' } })
|
||||
|
||||
const result = replaceVariableReferences(data, nodeIdMap) as NodeData
|
||||
expect(result.text).toBe('{{#uuid1.out#}} and {{#uuid2.out#}}')
|
||||
})
|
||||
|
||||
it('should replace variable references in value_selector arrays', () => {
|
||||
const data = {
|
||||
title: 'End Node',
|
||||
outputs: [
|
||||
{
|
||||
variable: 'result',
|
||||
value_selector: ['old_id', 'text'],
|
||||
},
|
||||
],
|
||||
}
|
||||
const nodeIdMap = new Map<string, any>()
|
||||
nodeIdMap.set('old_id', { id: 'new_uuid', data: { type: 'llm' } })
|
||||
|
||||
const result = replaceVariableReferences(data, nodeIdMap) as NodeData
|
||||
expect(result.outputs[0].value_selector).toEqual(['new_uuid', 'text'])
|
||||
})
|
||||
|
||||
it('should handle nested objects recursively', () => {
|
||||
const data = {
|
||||
config: {
|
||||
model: {
|
||||
prompt: '{{#old_id.text#}}',
|
||||
},
|
||||
},
|
||||
}
|
||||
const nodeIdMap = new Map<string, any>()
|
||||
nodeIdMap.set('old_id', { id: 'new_uuid', data: { type: 'llm' } })
|
||||
|
||||
const result = replaceVariableReferences(data, nodeIdMap) as any
|
||||
expect(result.config.model.prompt).toBe('{{#new_uuid.text#}}')
|
||||
})
|
||||
|
||||
it('should ignoring missing node mappings', () => {
|
||||
const data = {
|
||||
text: '{{#missing_id.text#}}',
|
||||
}
|
||||
const nodeIdMap = new Map<string, any>()
|
||||
// missing_id is not in map
|
||||
|
||||
const result = replaceVariableReferences(data, nodeIdMap) as NodeData
|
||||
expect(result.text).toBe('{{#missing_id.text#}}')
|
||||
})
|
||||
})
|
||||
})
|
||||
@@ -24,3 +24,5 @@ export * from './use-workflow-run'
|
||||
export * from './use-workflow-search'
|
||||
export * from './use-workflow-start-run'
|
||||
export * from './use-workflow-variables'
|
||||
export * from './use-workflow-vibe'
|
||||
export * from './use-workflow-vibe-config'
|
||||
|
||||
@@ -0,0 +1,99 @@
|
||||
/**
|
||||
* Vibe Workflow Generator Configuration
|
||||
*
|
||||
* This module centralizes configuration for the Vibe workflow generation feature,
|
||||
* including node type aliases and field name corrections.
|
||||
*
|
||||
* Note: These definitions are mirrored in the backend at:
|
||||
* api/core/workflow/generator/config/node_schemas.py
|
||||
* When updating these values, also update the backend file.
|
||||
*/
|
||||
|
||||
/**
|
||||
* Node type aliases for inference from natural language.
|
||||
* Maps common terms to canonical node type names.
|
||||
*/
|
||||
export const NODE_TYPE_ALIASES: Record<string, string> = {
|
||||
// Start node aliases
|
||||
'start': 'start',
|
||||
'begin': 'start',
|
||||
'input': 'start',
|
||||
// End node aliases
|
||||
'end': 'end',
|
||||
'finish': 'end',
|
||||
'output': 'end',
|
||||
// LLM node aliases
|
||||
'llm': 'llm',
|
||||
'ai': 'llm',
|
||||
'gpt': 'llm',
|
||||
'model': 'llm',
|
||||
'chat': 'llm',
|
||||
// Code node aliases
|
||||
'code': 'code',
|
||||
'script': 'code',
|
||||
'python': 'code',
|
||||
'javascript': 'code',
|
||||
// HTTP request node aliases
|
||||
'http-request': 'http-request',
|
||||
'http': 'http-request',
|
||||
'request': 'http-request',
|
||||
'api': 'http-request',
|
||||
'fetch': 'http-request',
|
||||
'webhook': 'http-request',
|
||||
// Conditional node aliases
|
||||
'if-else': 'if-else',
|
||||
'condition': 'if-else',
|
||||
'branch': 'if-else',
|
||||
'switch': 'if-else',
|
||||
// Loop node aliases
|
||||
'iteration': 'iteration',
|
||||
'loop': 'loop',
|
||||
'foreach': 'iteration',
|
||||
// Tool node alias
|
||||
'tool': 'tool',
|
||||
}
|
||||
|
||||
/**
|
||||
* Field name corrections for LLM-generated node configs.
|
||||
* Maps incorrect field names to correct ones for specific node types.
|
||||
*/
|
||||
export const FIELD_NAME_CORRECTIONS: Record<string, Record<string, string>> = {
|
||||
'http-request': {
|
||||
text: 'body', // LLM might use "text" instead of "body"
|
||||
content: 'body',
|
||||
response: 'body',
|
||||
},
|
||||
'code': {
|
||||
text: 'result', // LLM might use "text" instead of "result"
|
||||
output: 'result',
|
||||
},
|
||||
'llm': {
|
||||
response: 'text',
|
||||
answer: 'text',
|
||||
},
|
||||
}
|
||||
|
||||
/**
|
||||
* Correct field names based on node type.
|
||||
* LLM sometimes generates wrong field names (e.g., "text" instead of "body" for HTTP nodes).
|
||||
*
|
||||
* @param field - The field name to correct
|
||||
* @param nodeType - The type of the node
|
||||
* @returns The corrected field name, or the original if no correction needed
|
||||
*/
|
||||
export const correctFieldName = (field: string, nodeType: string): string => {
|
||||
const corrections = FIELD_NAME_CORRECTIONS[nodeType]
|
||||
if (corrections && corrections[field])
|
||||
return corrections[field]
|
||||
return field
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the canonical node type from an alias.
|
||||
*
|
||||
* @param alias - The alias to look up
|
||||
* @returns The canonical node type, or undefined if not found
|
||||
*/
|
||||
export const getCanonicalNodeType = (alias: string): string | undefined => {
|
||||
return NODE_TYPE_ALIASES[alias.toLowerCase()]
|
||||
}
|
||||
1571
web/app/components/workflow/hooks/use-workflow-vibe.tsx
Normal file
1571
web/app/components/workflow/hooks/use-workflow-vibe.tsx
Normal file
File diff suppressed because it is too large
Load Diff
333
web/app/components/workflow/panel/vibe-panel/index.spec.tsx
Normal file
333
web/app/components/workflow/panel/vibe-panel/index.spec.tsx
Normal file
@@ -0,0 +1,333 @@
|
||||
/**
|
||||
* VibePanel Component Tests
|
||||
*
|
||||
* Covers rendering states, user interactions, and edge cases for the vibe panel.
|
||||
*/
|
||||
|
||||
import type { Shape as WorkflowState } from '@/app/components/workflow/store/workflow'
|
||||
import type { Edge, Node } from '@/app/components/workflow/types'
|
||||
import { fireEvent, render, screen, waitFor } from '@testing-library/react'
|
||||
import userEvent from '@testing-library/user-event'
|
||||
import Toast from '@/app/components/base/toast'
|
||||
import { WorkflowContext } from '@/app/components/workflow/context'
|
||||
import { HooksStoreContext } from '@/app/components/workflow/hooks-store/provider'
|
||||
import { createHooksStore } from '@/app/components/workflow/hooks-store/store'
|
||||
import { createWorkflowStore } from '@/app/components/workflow/store/workflow'
|
||||
import { BlockEnum } from '@/app/components/workflow/types'
|
||||
import { VIBE_APPLY_EVENT, VIBE_COMMAND_EVENT } from '../../constants'
|
||||
import VibePanel from './index'
|
||||
|
||||
// ============================================================================
|
||||
// Mocks
|
||||
// ============================================================================
|
||||
|
||||
const mockCopy = vi.hoisted(() => vi.fn())
|
||||
const mockUseVibeFlowData = vi.hoisted(() => vi.fn())
|
||||
|
||||
vi.mock('copy-to-clipboard', () => ({
|
||||
default: mockCopy,
|
||||
}))
|
||||
|
||||
vi.mock('@/app/components/header/account-setting/model-provider-page/hooks', () => ({
|
||||
useModelListAndDefaultModelAndCurrentProviderAndModel: () => ({ defaultModel: null }),
|
||||
}))
|
||||
|
||||
vi.mock('@/app/components/header/account-setting/model-provider-page/model-parameter-modal', () => ({
|
||||
__esModule: true,
|
||||
default: ({ modelId, provider }: { modelId: string, provider: string }) => (
|
||||
<div data-testid="model-parameter-modal" data-model-id={modelId} data-provider={provider} />
|
||||
),
|
||||
}))
|
||||
|
||||
vi.mock('@/app/components/workflow/hooks/use-workflow-vibe', () => ({
|
||||
useVibeFlowData: () => mockUseVibeFlowData(),
|
||||
}))
|
||||
|
||||
vi.mock('@/app/components/workflow/workflow-preview', () => ({
|
||||
__esModule: true,
|
||||
default: ({ nodes, edges }: { nodes: Node[], edges: Edge[] }) => (
|
||||
<div data-testid="workflow-preview" data-nodes-count={nodes.length} data-edges-count={edges.length} />
|
||||
),
|
||||
}))
|
||||
|
||||
// ============================================================================
|
||||
// Test Utilities
|
||||
// ============================================================================
|
||||
|
||||
type FlowGraph = {
|
||||
nodes: Node[]
|
||||
edges: Edge[]
|
||||
}
|
||||
|
||||
type VibeFlowData = {
|
||||
versions: FlowGraph[]
|
||||
currentVersionIndex: number
|
||||
setCurrentVersionIndex: (index: number) => void
|
||||
current?: FlowGraph
|
||||
}
|
||||
|
||||
const createMockNode = (overrides: Partial<Node> = {}): Node => ({
|
||||
id: 'node-1',
|
||||
type: 'custom',
|
||||
position: { x: 0, y: 0 },
|
||||
data: {
|
||||
title: 'Start',
|
||||
desc: '',
|
||||
type: BlockEnum.Start,
|
||||
},
|
||||
...overrides,
|
||||
})
|
||||
|
||||
const createMockEdge = (overrides: Partial<Edge> = {}): Edge => ({
|
||||
id: 'edge-1',
|
||||
source: 'node-1',
|
||||
target: 'node-2',
|
||||
data: {
|
||||
sourceType: BlockEnum.Start,
|
||||
targetType: BlockEnum.End,
|
||||
},
|
||||
...overrides,
|
||||
})
|
||||
|
||||
const createFlowGraph = (overrides: Partial<FlowGraph> = {}): FlowGraph => ({
|
||||
nodes: [],
|
||||
edges: [],
|
||||
...overrides,
|
||||
})
|
||||
|
||||
const createVibeFlowData = (overrides: Partial<VibeFlowData> = {}): VibeFlowData => ({
|
||||
versions: [],
|
||||
currentVersionIndex: 0,
|
||||
setCurrentVersionIndex: vi.fn(),
|
||||
current: undefined,
|
||||
...overrides,
|
||||
})
|
||||
|
||||
const renderVibePanel = ({
|
||||
workflowState,
|
||||
vibeFlowData,
|
||||
}: {
|
||||
workflowState?: Partial<WorkflowState>
|
||||
vibeFlowData?: VibeFlowData
|
||||
} = {}) => {
|
||||
if (vibeFlowData)
|
||||
mockUseVibeFlowData.mockReturnValue(vibeFlowData)
|
||||
|
||||
const workflowStore = createWorkflowStore({})
|
||||
const vibeFlowState = vibeFlowData
|
||||
? {
|
||||
vibeFlowVersions: vibeFlowData.versions,
|
||||
vibeFlowCurrentIndex: vibeFlowData.currentVersionIndex,
|
||||
currentVibeFlow: vibeFlowData.current,
|
||||
}
|
||||
: {}
|
||||
|
||||
workflowStore.setState({
|
||||
showVibePanel: true,
|
||||
isVibeGenerating: false,
|
||||
vibePanelInstruction: '',
|
||||
vibePanelMermaidCode: '',
|
||||
...vibeFlowState,
|
||||
...workflowState,
|
||||
})
|
||||
|
||||
const hooksStore = createHooksStore({})
|
||||
|
||||
return {
|
||||
workflowStore,
|
||||
...render(
|
||||
<WorkflowContext.Provider value={workflowStore}>
|
||||
<HooksStoreContext.Provider value={hooksStore}>
|
||||
<VibePanel />
|
||||
</HooksStoreContext.Provider>
|
||||
</WorkflowContext.Provider>,
|
||||
),
|
||||
}
|
||||
}
|
||||
|
||||
const getCopyButton = () => {
|
||||
const buttons = screen.getAllByRole('button')
|
||||
const copyButton = buttons.find(button => button.textContent?.trim() === '' && button.querySelector('svg'))
|
||||
if (!copyButton)
|
||||
throw new Error('Copy button not found')
|
||||
return copyButton
|
||||
}
|
||||
|
||||
// ============================================================================
|
||||
// Tests
|
||||
// ============================================================================
|
||||
|
||||
describe('VibePanel', () => {
|
||||
let toastNotifySpy: ReturnType<typeof vi.spyOn>
|
||||
|
||||
beforeEach(() => {
|
||||
vi.clearAllMocks()
|
||||
mockUseVibeFlowData.mockReturnValue(createVibeFlowData())
|
||||
toastNotifySpy = vi.spyOn(Toast, 'notify').mockImplementation(() => ({ clear: vi.fn() }))
|
||||
})
|
||||
|
||||
afterEach(() => {
|
||||
toastNotifySpy.mockRestore()
|
||||
})
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
// Rendering: default visibility and primary view states.
|
||||
// --------------------------------------------------------------------------
|
||||
describe('Rendering', () => {
|
||||
it('should render nothing when panel is hidden', () => {
|
||||
renderVibePanel({ workflowState: { showVibePanel: false } })
|
||||
|
||||
expect(screen.queryByText(/app\.gotoAnything\.actions\.vibeTitle/i)).not.toBeInTheDocument()
|
||||
})
|
||||
|
||||
it('should render placeholder when no preview data and not generating', () => {
|
||||
renderVibePanel({
|
||||
workflowState: { showVibePanel: true, isVibeGenerating: false },
|
||||
vibeFlowData: createVibeFlowData({ current: undefined }),
|
||||
})
|
||||
|
||||
expect(screen.getByText(/appDebug\.generate\.newNoDataLine1/i)).toBeInTheDocument()
|
||||
})
|
||||
|
||||
it('should render loading state when generating', () => {
|
||||
renderVibePanel({
|
||||
workflowState: { showVibePanel: true, isVibeGenerating: true },
|
||||
})
|
||||
|
||||
expect(screen.getByText(/workflow\.vibe\.generatingFlowchart/i)).toBeInTheDocument()
|
||||
expect(screen.getByRole('button', { name: 'appDebug.generate.generate' })).toBeDisabled()
|
||||
})
|
||||
|
||||
it('should render preview panel when nodes exist', () => {
|
||||
const flowGraph = createFlowGraph({
|
||||
nodes: [createMockNode()],
|
||||
edges: [createMockEdge()],
|
||||
})
|
||||
|
||||
renderVibePanel({
|
||||
vibeFlowData: createVibeFlowData({
|
||||
current: flowGraph,
|
||||
versions: [flowGraph],
|
||||
}),
|
||||
})
|
||||
|
||||
expect(screen.getByTestId('workflow-preview')).toBeInTheDocument()
|
||||
expect(screen.getByRole('button', { name: 'workflow.vibe.apply' })).toBeInTheDocument()
|
||||
expect(screen.getByText(/appDebug\.generate\.version/i)).toBeInTheDocument()
|
||||
})
|
||||
})
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
// Props: store-driven inputs that toggle behavior.
|
||||
// --------------------------------------------------------------------------
|
||||
describe('Props', () => {
|
||||
it('should render modal content when showVibePanel is true', () => {
|
||||
renderVibePanel({ workflowState: { showVibePanel: true } })
|
||||
|
||||
expect(screen.getByText(/app\.gotoAnything\.actions\.vibeTitle/i)).toBeInTheDocument()
|
||||
})
|
||||
})
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
// User Interactions: input edits and action triggers.
|
||||
// --------------------------------------------------------------------------
|
||||
describe('User Interactions', () => {
|
||||
it('should update instruction in store when typing', async () => {
|
||||
const { workflowStore } = renderVibePanel()
|
||||
|
||||
const textarea = screen.getByPlaceholderText('workflow.vibe.missingInstruction')
|
||||
fireEvent.change(textarea, { target: { value: 'Build a vibe flow' } })
|
||||
|
||||
await waitFor(() => {
|
||||
expect(workflowStore.getState().vibePanelInstruction).toBe('Build a vibe flow')
|
||||
})
|
||||
})
|
||||
|
||||
it('should dispatch command event with instruction when generate clicked', async () => {
|
||||
const user = userEvent.setup()
|
||||
const { workflowStore } = renderVibePanel({
|
||||
workflowState: { vibePanelInstruction: 'Generate a workflow' },
|
||||
})
|
||||
|
||||
const handler = vi.fn()
|
||||
document.addEventListener(VIBE_COMMAND_EVENT, handler)
|
||||
|
||||
await user.click(screen.getByRole('button', { name: 'appDebug.generate.generate' }))
|
||||
|
||||
expect(handler).toHaveBeenCalledTimes(1)
|
||||
const event = handler.mock.calls[0][0] as CustomEvent<{ dsl?: string }>
|
||||
expect(event.detail).toEqual({ dsl: workflowStore.getState().vibePanelInstruction })
|
||||
|
||||
document.removeEventListener(VIBE_COMMAND_EVENT, handler)
|
||||
})
|
||||
|
||||
it('should close panel when dismiss clicked', async () => {
|
||||
const user = userEvent.setup()
|
||||
const { workflowStore } = renderVibePanel({
|
||||
workflowState: {
|
||||
vibePanelMermaidCode: 'graph TD',
|
||||
isVibeGenerating: true,
|
||||
},
|
||||
})
|
||||
|
||||
await user.click(screen.getByRole('button', { name: 'appDebug.generate.dismiss' }))
|
||||
|
||||
const state = workflowStore.getState()
|
||||
expect(state.showVibePanel).toBe(false)
|
||||
expect(state.vibePanelMermaidCode).toBe('')
|
||||
expect(state.isVibeGenerating).toBe(false)
|
||||
})
|
||||
|
||||
it('should dispatch apply event and close panel when apply clicked', async () => {
|
||||
const user = userEvent.setup()
|
||||
const flowGraph = createFlowGraph({
|
||||
nodes: [createMockNode()],
|
||||
edges: [createMockEdge()],
|
||||
})
|
||||
const { workflowStore } = renderVibePanel({
|
||||
workflowState: { vibePanelMermaidCode: 'graph TD' },
|
||||
vibeFlowData: createVibeFlowData({
|
||||
current: flowGraph,
|
||||
versions: [flowGraph],
|
||||
}),
|
||||
})
|
||||
|
||||
const handler = vi.fn()
|
||||
document.addEventListener(VIBE_APPLY_EVENT, handler)
|
||||
|
||||
await user.click(screen.getByRole('button', { name: 'workflow.vibe.apply' }))
|
||||
|
||||
expect(handler).toHaveBeenCalledTimes(1)
|
||||
const state = workflowStore.getState()
|
||||
expect(state.showVibePanel).toBe(false)
|
||||
expect(state.vibePanelMermaidCode).toBe('')
|
||||
expect(state.isVibeGenerating).toBe(false)
|
||||
|
||||
document.removeEventListener(VIBE_APPLY_EVENT, handler)
|
||||
})
|
||||
|
||||
it('should copy mermaid and notify when copy clicked', async () => {
|
||||
const user = userEvent.setup()
|
||||
const flowGraph = createFlowGraph({
|
||||
nodes: [createMockNode()],
|
||||
edges: [createMockEdge()],
|
||||
})
|
||||
|
||||
renderVibePanel({
|
||||
workflowState: { vibePanelMermaidCode: 'graph TD' },
|
||||
vibeFlowData: createVibeFlowData({
|
||||
current: flowGraph,
|
||||
versions: [flowGraph],
|
||||
}),
|
||||
})
|
||||
|
||||
await user.click(getCopyButton())
|
||||
|
||||
expect(mockCopy).toHaveBeenCalledWith('graph TD')
|
||||
expect(toastNotifySpy).toHaveBeenCalledWith(expect.objectContaining({
|
||||
type: 'success',
|
||||
message: 'common.actionMsg.copySuccessfully',
|
||||
}))
|
||||
})
|
||||
})
|
||||
})
|
||||
332
web/app/components/workflow/panel/vibe-panel/index.tsx
Normal file
332
web/app/components/workflow/panel/vibe-panel/index.tsx
Normal file
@@ -0,0 +1,332 @@
|
||||
'use client'
|
||||
|
||||
import type { FC } from 'react'
|
||||
import type { FormValue } from '@/app/components/header/account-setting/model-provider-page/declarations'
|
||||
import type { CompletionParams, Model } from '@/types/app'
|
||||
import { RiClipboardLine } from '@remixicon/react'
|
||||
import copy from 'copy-to-clipboard'
|
||||
import { useCallback, useMemo, useState } from 'react'
|
||||
import { useTranslation } from 'react-i18next'
|
||||
import { z } from 'zod'
|
||||
import ResPlaceholder from '@/app/components/app/configuration/config/automatic/res-placeholder'
|
||||
import VersionSelector from '@/app/components/app/configuration/config/automatic/version-selector'
|
||||
import Button from '@/app/components/base/button'
|
||||
import { Generator } from '@/app/components/base/icons/src/vender/other'
|
||||
import Loading from '@/app/components/base/loading'
|
||||
import Modal from '@/app/components/base/modal'
|
||||
import Textarea from '@/app/components/base/textarea'
|
||||
import Toast from '@/app/components/base/toast'
|
||||
import { ModelTypeEnum } from '@/app/components/header/account-setting/model-provider-page/declarations'
|
||||
import { useModelListAndDefaultModelAndCurrentProviderAndModel } from '@/app/components/header/account-setting/model-provider-page/hooks'
|
||||
import ModelParameterModal from '@/app/components/header/account-setting/model-provider-page/model-parameter-modal'
|
||||
import { ModelModeType } from '@/types/app'
|
||||
import { VIBE_APPLY_EVENT, VIBE_COMMAND_EVENT } from '../../constants'
|
||||
import { useStore, useWorkflowStore } from '../../store'
|
||||
import WorkflowPreview from '../../workflow-preview'
|
||||
|
||||
const CompletionParamsSchema = z.object({
|
||||
max_tokens: z.number(),
|
||||
temperature: z.number(),
|
||||
top_p: z.number(),
|
||||
echo: z.boolean(),
|
||||
stop: z.array(z.string()),
|
||||
presence_penalty: z.number(),
|
||||
frequency_penalty: z.number(),
|
||||
})
|
||||
|
||||
const ModelSchema = z.object({
|
||||
provider: z.string(),
|
||||
name: z.string(),
|
||||
mode: z.nativeEnum(ModelModeType),
|
||||
completion_params: CompletionParamsSchema,
|
||||
})
|
||||
|
||||
const VibePanel: FC = () => {
|
||||
const { t } = useTranslation()
|
||||
const workflowStore = useWorkflowStore()
|
||||
const showVibePanel = useStore(s => s.showVibePanel)
|
||||
const setShowVibePanel = useStore(s => s.setShowVibePanel)
|
||||
const isVibeGenerating = useStore(s => s.isVibeGenerating)
|
||||
const setIsVibeGenerating = useStore(s => s.setIsVibeGenerating)
|
||||
const vibePanelInstruction = useStore(s => s.vibePanelInstruction)
|
||||
const vibePanelMermaidCode = useStore(s => s.vibePanelMermaidCode)
|
||||
const setVibePanelMermaidCode = useStore(s => s.setVibePanelMermaidCode)
|
||||
const currentFlowGraph = useStore(s => s.currentVibeFlow)
|
||||
const versions = useStore(s => s.vibeFlowVersions)
|
||||
const currentVersionIndex = useStore(s => s.vibeFlowCurrentIndex)
|
||||
|
||||
const vibePanelPreviewNodes = currentFlowGraph?.nodes || []
|
||||
const vibePanelPreviewEdges = currentFlowGraph?.edges || []
|
||||
|
||||
const setVibePanelInstruction = useStore(s => s.setVibePanelInstruction)
|
||||
const vibePanelIntent = useStore(s => s.vibePanelIntent)
|
||||
const setVibePanelIntent = useStore(s => s.setVibePanelIntent)
|
||||
const vibePanelMessage = useStore(s => s.vibePanelMessage)
|
||||
const setVibePanelMessage = useStore(s => s.setVibePanelMessage)
|
||||
const vibePanelSuggestions = useStore(s => s.vibePanelSuggestions)
|
||||
const setVibePanelSuggestions = useStore(s => s.setVibePanelSuggestions)
|
||||
|
||||
const { defaultModel } = useModelListAndDefaultModelAndCurrentProviderAndModel(ModelTypeEnum.textGeneration)
|
||||
|
||||
// Track user's explicit model selection (from localStorage)
|
||||
const [userModel, setUserModel] = useState<Model | null>(() => {
|
||||
try {
|
||||
const stored = localStorage.getItem('auto-gen-model')
|
||||
if (stored) {
|
||||
const parsed = JSON.parse(stored)
|
||||
const result = ModelSchema.safeParse(parsed)
|
||||
if (result.success)
|
||||
return result.data
|
||||
|
||||
// If validation fails, clear the invalid data
|
||||
localStorage.removeItem('auto-gen-model')
|
||||
}
|
||||
}
|
||||
catch {
|
||||
// ignore parse errors
|
||||
}
|
||||
return null
|
||||
})
|
||||
|
||||
// Derive the actual model from user selection or default
|
||||
const model: Model = useMemo(() => {
|
||||
if (userModel)
|
||||
return userModel
|
||||
if (defaultModel) {
|
||||
return {
|
||||
name: defaultModel.model,
|
||||
provider: defaultModel.provider.provider,
|
||||
mode: ModelModeType.chat,
|
||||
completion_params: {} as CompletionParams,
|
||||
}
|
||||
}
|
||||
return {
|
||||
name: '',
|
||||
provider: '',
|
||||
mode: ModelModeType.chat,
|
||||
completion_params: {} as CompletionParams,
|
||||
}
|
||||
}, [userModel, defaultModel])
|
||||
|
||||
const setModel = useCallback((newModel: Model) => {
|
||||
setUserModel(newModel)
|
||||
localStorage.setItem('auto-gen-model', JSON.stringify(newModel))
|
||||
}, [])
|
||||
|
||||
const handleModelChange = useCallback((newValue: { modelId: string, provider: string, mode?: string, features?: string[] }) => {
|
||||
setModel({
|
||||
...model,
|
||||
provider: newValue.provider,
|
||||
name: newValue.modelId,
|
||||
mode: newValue.mode as ModelModeType,
|
||||
})
|
||||
}, [model, setModel])
|
||||
|
||||
const handleCompletionParamsChange = useCallback((newParams: FormValue) => {
|
||||
setModel({
|
||||
...model,
|
||||
completion_params: newParams as CompletionParams,
|
||||
})
|
||||
}, [model, setModel])
|
||||
|
||||
const handleInstructionChange = useCallback((e: React.ChangeEvent<HTMLTextAreaElement>) => {
|
||||
workflowStore.setState(state => ({
|
||||
...state,
|
||||
vibePanelInstruction: e.target.value,
|
||||
}))
|
||||
}, [workflowStore])
|
||||
|
||||
const handleClose = useCallback(() => {
|
||||
setShowVibePanel(false)
|
||||
setVibePanelMermaidCode('')
|
||||
setIsVibeGenerating(false)
|
||||
setVibePanelIntent('')
|
||||
setVibePanelMessage('')
|
||||
setVibePanelSuggestions([])
|
||||
}, [setShowVibePanel, setVibePanelMermaidCode, setIsVibeGenerating, setVibePanelIntent, setVibePanelMessage, setVibePanelSuggestions])
|
||||
|
||||
const handleGenerate = useCallback(() => {
|
||||
const event = new CustomEvent(VIBE_COMMAND_EVENT, {
|
||||
detail: { dsl: vibePanelInstruction },
|
||||
})
|
||||
document.dispatchEvent(event)
|
||||
}, [vibePanelInstruction])
|
||||
|
||||
const handleAccept = useCallback(() => {
|
||||
const event = new CustomEvent(VIBE_APPLY_EVENT)
|
||||
document.dispatchEvent(event)
|
||||
handleClose()
|
||||
}, [handleClose])
|
||||
|
||||
const handleCopyMermaid = useCallback(() => {
|
||||
copy(vibePanelMermaidCode)
|
||||
Toast.notify({ type: 'success', message: t('actionMsg.copySuccessfully', { ns: 'common' }) })
|
||||
}, [vibePanelMermaidCode, t])
|
||||
|
||||
const handleSuggestionClick = useCallback((suggestion: string) => {
|
||||
setVibePanelInstruction(suggestion)
|
||||
// Trigger generation with the suggestion
|
||||
const event = new CustomEvent(VIBE_COMMAND_EVENT, {
|
||||
detail: { dsl: suggestion },
|
||||
})
|
||||
document.dispatchEvent(event)
|
||||
}, [setVibePanelInstruction])
|
||||
|
||||
const handleVersionChange = useCallback((index: number) => {
|
||||
const { setVibeFlowCurrentIndex } = workflowStore.getState()
|
||||
setVibeFlowCurrentIndex(index)
|
||||
}, [workflowStore])
|
||||
|
||||
// Button label - always use "Generate" (refinement mode removed)
|
||||
const generateButtonLabel = useMemo(() => {
|
||||
return t('generate.generate', { ns: 'appDebug' })
|
||||
}, [t])
|
||||
|
||||
if (!showVibePanel)
|
||||
return null
|
||||
|
||||
const renderLoading = (
|
||||
<div className="flex h-full w-full grow flex-col items-center justify-center space-y-3">
|
||||
<Loading />
|
||||
<div className="text-[13px] text-text-tertiary">{t('vibe.generatingFlowchart', { ns: 'workflow' })}</div>
|
||||
</div>
|
||||
)
|
||||
|
||||
const renderOffTopic = (
|
||||
<div className="flex h-full w-0 grow flex-col items-center justify-center p-6">
|
||||
<div className="flex max-w-[400px] flex-col items-center text-center">
|
||||
<div className="text-sm font-medium text-text-secondary">
|
||||
{t('vibe.offTopicTitle', { ns: 'workflow' })}
|
||||
</div>
|
||||
<div className="mt-1 text-xs text-text-tertiary">
|
||||
{vibePanelMessage || t('vibe.offTopicDefault', { ns: 'workflow' })}
|
||||
</div>
|
||||
{vibePanelSuggestions.length > 0 && (
|
||||
<div className="mt-6 w-full">
|
||||
<div className="mb-2 text-xs text-text-quaternary">
|
||||
{t('vibe.trySuggestion', { ns: 'workflow' })}
|
||||
</div>
|
||||
<div className="flex flex-col gap-2">
|
||||
{vibePanelSuggestions.map(suggestion => (
|
||||
<button
|
||||
key={suggestion}
|
||||
onClick={() => handleSuggestionClick(suggestion)}
|
||||
className="w-full cursor-pointer rounded-lg border border-divider-subtle bg-components-panel-bg px-3 py-2.5 text-left text-sm text-text-secondary transition-colors hover:border-divider-regular hover:bg-state-base-hover"
|
||||
>
|
||||
{suggestion}
|
||||
</button>
|
||||
))}
|
||||
</div>
|
||||
</div>
|
||||
)}
|
||||
</div>
|
||||
</div>
|
||||
)
|
||||
|
||||
return (
|
||||
<Modal
|
||||
isShow={showVibePanel}
|
||||
onClose={handleClose}
|
||||
className="min-w-[1140px] !p-0"
|
||||
clickOutsideNotClose
|
||||
>
|
||||
<div className="flex h-[680px] flex-wrap">
|
||||
<div className="h-full w-[300px] shrink-0 overflow-y-auto border-r border-divider-regular p-6">
|
||||
<div className="mb-5">
|
||||
<div className="text-lg font-bold leading-[28px] text-text-primary">{t('gotoAnything.actions.vibeTitle', { ns: 'app' })}</div>
|
||||
<div className="mt-1 text-[13px] font-normal text-text-tertiary">{t('gotoAnything.actions.vibeDesc', { ns: 'app' })}</div>
|
||||
</div>
|
||||
<div>
|
||||
<ModelParameterModal
|
||||
popupClassName="!w-[520px]"
|
||||
portalToFollowElemContentClassName="z-[1000]"
|
||||
isAdvancedMode={true}
|
||||
provider={model.provider}
|
||||
completionParams={model.completion_params}
|
||||
modelId={model.name}
|
||||
setModel={handleModelChange}
|
||||
onCompletionParamsChange={handleCompletionParamsChange}
|
||||
hideDebugWithMultipleModel
|
||||
/>
|
||||
</div>
|
||||
<div className="mt-4">
|
||||
<div className="system-sm-semibold-uppercase mb-1.5 text-text-secondary">{t('generate.instruction', { ns: 'appDebug' })}</div>
|
||||
<Textarea
|
||||
className="min-h-[240px] resize-none rounded-[10px] px-4 pt-3"
|
||||
placeholder={t('vibe.missingInstruction', { ns: 'workflow' })}
|
||||
value={vibePanelInstruction}
|
||||
onChange={handleInstructionChange}
|
||||
/>
|
||||
</div>
|
||||
|
||||
<div className="mt-7 flex justify-end space-x-2">
|
||||
<Button onClick={handleClose}>{t('generate.dismiss', { ns: 'appDebug' })}</Button>
|
||||
<Button
|
||||
className="flex space-x-1"
|
||||
variant="primary"
|
||||
onClick={handleGenerate}
|
||||
disabled={isVibeGenerating}
|
||||
>
|
||||
<Generator className="h-4 w-4" />
|
||||
<span className="system-xs-semibold">{generateButtonLabel}</span>
|
||||
</Button>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
{isVibeGenerating && (
|
||||
<div className="h-full w-0 grow bg-background-default-subtle">
|
||||
{renderLoading}
|
||||
</div>
|
||||
)}
|
||||
{!isVibeGenerating && vibePanelIntent === 'off_topic' && renderOffTopic}
|
||||
{!isVibeGenerating && vibePanelIntent !== 'off_topic' && (vibePanelPreviewNodes.length > 0 || vibePanelMermaidCode) && (
|
||||
<div className="relative h-full w-0 grow bg-background-default-subtle p-6 pb-0">
|
||||
<div className="flex h-full flex-col">
|
||||
<div className="mb-3 flex shrink-0 items-center justify-between">
|
||||
<div className="flex shrink-0 flex-col">
|
||||
<div className="system-xl-semibold text-text-secondary">{t('vibe.panelTitle', { ns: 'workflow' })}</div>
|
||||
<VersionSelector
|
||||
versionLen={versions.length}
|
||||
value={currentVersionIndex}
|
||||
onChange={handleVersionChange}
|
||||
contentClassName="z-[1200]"
|
||||
/>
|
||||
</div>
|
||||
<div className="flex items-center space-x-2">
|
||||
<Button
|
||||
variant="secondary"
|
||||
size="medium"
|
||||
onClick={handleCopyMermaid}
|
||||
className="px-2"
|
||||
>
|
||||
<RiClipboardLine className="h-4 w-4" />
|
||||
</Button>
|
||||
<Button
|
||||
variant="primary"
|
||||
size="medium"
|
||||
onClick={handleAccept}
|
||||
>
|
||||
{t('vibe.apply', { ns: 'workflow' })}
|
||||
</Button>
|
||||
</div>
|
||||
</div>
|
||||
<div className="flex grow flex-col overflow-hidden pb-6">
|
||||
<WorkflowPreview
|
||||
key={currentVersionIndex}
|
||||
fitView
|
||||
fitViewOptions={{ padding: 0.2 }}
|
||||
nodes={vibePanelPreviewNodes}
|
||||
edges={vibePanelPreviewEdges}
|
||||
className="rounded-lg border border-divider-subtle"
|
||||
/>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
)}
|
||||
{!isVibeGenerating && vibePanelIntent !== 'off_topic' && vibePanelPreviewNodes.length === 0 && !vibePanelMermaidCode && <ResPlaceholder />}
|
||||
</div>
|
||||
</Modal>
|
||||
)
|
||||
}
|
||||
|
||||
export default VibePanel
|
||||
@@ -11,6 +11,7 @@ import type { LayoutSliceShape } from './layout-slice'
|
||||
import type { NodeSliceShape } from './node-slice'
|
||||
import type { PanelSliceShape } from './panel-slice'
|
||||
import type { ToolSliceShape } from './tool-slice'
|
||||
import type { VibeWorkflowSliceShape } from './vibe-workflow-slice'
|
||||
import type { VersionSliceShape } from './version-slice'
|
||||
import type { WorkflowDraftSliceShape } from './workflow-draft-slice'
|
||||
import type { WorkflowSliceShape } from './workflow-slice'
|
||||
@@ -33,6 +34,7 @@ import { createNodeSlice } from './node-slice'
|
||||
|
||||
import { createPanelSlice } from './panel-slice'
|
||||
import { createToolSlice } from './tool-slice'
|
||||
import { createVibeWorkflowSlice } from './vibe-workflow-slice'
|
||||
import { createVersionSlice } from './version-slice'
|
||||
import { createWorkflowDraftSlice } from './workflow-draft-slice'
|
||||
import { createWorkflowSlice } from './workflow-slice'
|
||||
@@ -55,6 +57,7 @@ export type Shape
|
||||
& WorkflowSliceShape
|
||||
& InspectVarsSliceShape
|
||||
& LayoutSliceShape
|
||||
& VibeWorkflowSliceShape
|
||||
& SliceFromInjection
|
||||
|
||||
export type InjectWorkflowStoreSliceFn = StateCreator<SliceFromInjection>
|
||||
@@ -80,6 +83,7 @@ export const createWorkflowStore = (params: CreateWorkflowStoreParams) => {
|
||||
...createWorkflowSlice(...args),
|
||||
...createInspectVarsSlice(...args),
|
||||
...createLayoutSlice(...args),
|
||||
...createVibeWorkflowSlice(...args),
|
||||
...(injectWorkflowStoreSliceFn?.(...args) || {} as SliceFromInjection),
|
||||
}))
|
||||
}
|
||||
|
||||
@@ -0,0 +1,78 @@
|
||||
import type { StateCreator } from 'zustand'
|
||||
import type { Edge, Node } from '../../types'
|
||||
|
||||
export type FlowGraph = {
|
||||
nodes: Node[]
|
||||
edges: Edge[]
|
||||
}
|
||||
|
||||
export type VibeWorkflowSliceShape = {
|
||||
vibePanelMermaidCode: string
|
||||
setVibePanelMermaidCode: (vibePanelMermaidCode: string) => void
|
||||
isVibeGenerating: boolean
|
||||
setIsVibeGenerating: (isVibeGenerating: boolean) => void
|
||||
vibePanelInstruction: string
|
||||
setVibePanelInstruction: (vibePanelInstruction: string) => void
|
||||
vibeFlowVersions: FlowGraph[]
|
||||
setVibeFlowVersions: (versions: FlowGraph[]) => void
|
||||
vibeFlowCurrentIndex: number
|
||||
setVibeFlowCurrentIndex: (index: number) => void
|
||||
addVibeFlowVersion: (version: FlowGraph) => void
|
||||
currentVibeFlow: FlowGraph | undefined
|
||||
}
|
||||
|
||||
const getCurrentVibeFlow = (versions: FlowGraph[], currentIndex: number): FlowGraph | undefined => {
|
||||
if (!versions || versions.length === 0)
|
||||
return undefined
|
||||
const index = currentIndex ?? 0
|
||||
if (index < 0)
|
||||
return undefined
|
||||
return versions[index] || versions[versions.length - 1]
|
||||
}
|
||||
|
||||
export const createVibeWorkflowSlice: StateCreator<VibeWorkflowSliceShape> = (set, get) => ({
|
||||
vibePanelMermaidCode: '',
|
||||
setVibePanelMermaidCode: vibePanelMermaidCode => set(() => ({ vibePanelMermaidCode })),
|
||||
isVibeGenerating: false,
|
||||
setIsVibeGenerating: isVibeGenerating => set(() => ({ isVibeGenerating })),
|
||||
vibePanelInstruction: '',
|
||||
setVibePanelInstruction: vibePanelInstruction => set(() => ({ vibePanelInstruction })),
|
||||
vibeFlowVersions: [],
|
||||
setVibeFlowVersions: versions => set((state) => {
|
||||
const currentVibeFlow = getCurrentVibeFlow(versions, state.vibeFlowCurrentIndex)
|
||||
return { vibeFlowVersions: versions, currentVibeFlow }
|
||||
}),
|
||||
vibeFlowCurrentIndex: 0,
|
||||
setVibeFlowCurrentIndex: (index) => {
|
||||
const state = get()
|
||||
const versions = state.vibeFlowVersions || []
|
||||
|
||||
if (!versions || versions.length === 0) {
|
||||
set({ vibeFlowCurrentIndex: 0, currentVibeFlow: undefined })
|
||||
return
|
||||
}
|
||||
|
||||
const normalizedIndex = Math.min(Math.max(index, 0), versions.length - 1)
|
||||
const currentVibeFlow = getCurrentVibeFlow(versions, normalizedIndex)
|
||||
set({ vibeFlowCurrentIndex: normalizedIndex, currentVibeFlow })
|
||||
},
|
||||
addVibeFlowVersion: (version) => {
|
||||
// Prevent adding empty graphs
|
||||
if (!version || !version.nodes || version.nodes.length === 0) {
|
||||
set({ vibeFlowCurrentIndex: -1, currentVibeFlow: undefined })
|
||||
return
|
||||
}
|
||||
|
||||
set((state) => {
|
||||
const newVersions = [...(state.vibeFlowVersions || []), version]
|
||||
const newIndex = newVersions.length - 1
|
||||
const currentVibeFlow = getCurrentVibeFlow(newVersions, newIndex)
|
||||
return {
|
||||
vibeFlowVersions: newVersions,
|
||||
vibeFlowCurrentIndex: newIndex,
|
||||
currentVibeFlow,
|
||||
}
|
||||
})
|
||||
},
|
||||
currentVibeFlow: undefined,
|
||||
})
|
||||
Reference in New Issue
Block a user