Compare commits

...

93 Commits

Author SHA1 Message Date
zhsama
8d643e4b85 feat: add assemble variables icon 2026-01-16 18:45:28 +08:00
Novice
4ee49552ce feat: add prompt variable message 2026-01-16 17:10:18 +08:00
zhsama
40caaaab23 Merge branch 'zhsama/assemble-var-input' into feat/pull-a-variable 2026-01-16 17:04:18 +08:00
zhsama
1bc1c04be5 feat: add assemble variables entry 2026-01-16 17:03:22 +08:00
Novice
18abc66585 feat: add context file support 2026-01-16 17:01:44 +08:00
zhsama
e85e31773a Merge branch 'zhsama/llm-warning-ui' into feat/pull-a-variable 2026-01-16 16:22:07 +08:00
zhsama
e5336a2d75 Use warning token borders for mentions 2026-01-16 15:09:42 +08:00
zhsama
7222a896d8 Align warning styles for agent mentions 2026-01-16 15:01:11 +08:00
zhsama
b5712bf8b0 Merge branch 'zhsama/agent-at-nodes' into feat/pull-a-variable 2026-01-16 14:47:37 +08:00
zhsama
7bc2e33e83 Merge remote-tracking branch 'origin/feat/pull-a-variable' into feat/pull-a-variable 2026-01-16 14:43:31 +08:00
Novice
a7826d9ea4 feat: agent add context 2026-01-16 11:47:55 +08:00
zhsama
72eb29c01b fix: fix duplicate agent context warnings in tool node 2026-01-16 00:42:42 +08:00
zhsama
0f3156dfbe fix: list multiple @mentions 2026-01-16 00:19:28 +08:00
zhsama
b21875eaaf fix: simplify @llm warning 2026-01-16 00:08:51 +08:00
zhsama
2591615a3c Merge branch 'zhsama/agent-at-nodes' into feat/pull-a-variable 2026-01-15 23:51:35 +08:00
zhsama
691554ad1c feat: 展示@agent引用 2026-01-15 23:32:14 +08:00
zhsama
f43fde5797 feat: Enhance context variable handling for Agent and LLM nodes 2026-01-15 23:26:19 +08:00
zhsama
f247ebfbe1 feat: Await sub-graph save before syncing workflow draft 2026-01-15 17:53:28 +08:00
zhsama
d641c845dd feat: Pass workflow draft sync callback to sub-graph 2026-01-15 17:12:30 +08:00
zhsama
2e10d67610 perf: Replace topOffset prop with withHeader in Panel component 2026-01-15 16:44:15 +08:00
zhsama
e89d4e14ea Merge branch 'main' into feat/pull-a-variable 2026-01-15 16:14:15 +08:00
zhsama
5525f63032 refactor: sub-graph panel use shared Panel component 2026-01-15 16:12:39 +08:00
zhsama
8ee643e88d fix: fix variable inspect panel width in subgraphs 2026-01-15 15:55:55 +08:00
zhsama
ccb337e8eb fix: Sync extractor prompt template with tool input text 2026-01-15 04:09:35 +08:00
zhsama
1ff677c300 refactor: Remove unused sub-graph persistence and initialization hooks.
Simplified sub-graph store by removing unused state fields and setters.
2026-01-15 04:08:42 +08:00
zhsama
04145b19a1 refactor: refactor prompt template processing logic 2026-01-15 01:14:46 +08:00
zhsama
56e537786f feat: Update LLM context selector styling 2026-01-14 23:30:12 +08:00
zhsama
810f9eaaad feat: Enhance sub-graph components with context handling and variable management 2026-01-14 23:23:09 +08:00
zhsama
4828348532 feat: Add structured output to sub-graph LLM nodes 2026-01-14 17:25:06 +08:00
zhsama
c8c048c3a3 perf: Optimize sub-graph store selectors and layout 2026-01-14 15:39:21 +08:00
Novice
495d575ebc feat: add assemble variable builder api 2026-01-14 14:12:36 +08:00
zhsama
b9052bc244 feat: add sub-graph config panel with variable selection and null
handling
2026-01-14 03:22:42 +08:00
zhsama
b7025ad9d6 feat: change sub-graph prompt handling to use user role 2026-01-13 23:23:18 +08:00
zhsama
c5482c2503 Merge branch 'main' into feat/pull-a-variable 2026-01-13 22:57:27 +08:00
zhsama
d394adfaf7 feat: Fix prompt template handling for Jinja2 edition type 2026-01-13 22:57:05 +08:00
zhsama
bc771d9c50 feat: Add onSave prop to SubGraph components for draft sync 2026-01-13 22:51:29 +08:00
zhsama
96ec176b83 feat: sub-graph to use dynamic node generation 2026-01-13 22:28:30 +08:00
zhsama
f57d2ef31f refactor: refactor workflow nodes state sync and extractor node
lifecycle
2026-01-13 18:37:23 +08:00
zhsama
e80bc78780 fix: clear mock llm node functions 2026-01-13 17:57:02 +08:00
zhsama
ddbbddbd14 refactor: Update variable syntax to support agent context markers
Extend variable pattern matching to support both `#` and `@` markers,
with `@` specifically used for agent context variables. Update regex
patterns, text processing logic, and add sub-graph persistence for agent
variable handling.
2026-01-13 17:13:45 +08:00
Novice
9b961fb41e feat: structured output support file type 2026-01-13 16:48:01 +08:00
Novice
4f79d09d7b chore: change the DSL design 2026-01-13 16:10:18 +08:00
zhsama
dbed937fc6 Merge remote-tracking branch 'origin/feat/pull-a-variable' into feat/pull-a-variable 2026-01-13 15:17:24 +08:00
Novice
969c96b070 feat: add stream response 2026-01-13 14:13:43 +08:00
zhsama
03e0c4c617 feat: Add VarKindType parameter metion to mixed variable text input 2026-01-12 20:08:41 +08:00
zhsama
47790b49d4 fix: Fix agent context variable insertion to preserve existing text 2026-01-12 18:12:06 +08:00
zhsama
b25b069917 fix: refine agent variable logic 2026-01-12 18:12:06 +08:00
Novice
bb190f9610 feat: add mention type variable 2026-01-12 17:40:37 +08:00
zhsama
d65ae68668 Merge branch 'main' into feat/pull-a-variable
# Conflicts:
#	.nvmrc
2026-01-12 17:15:56 +08:00
zhsama
f625350439 refactor:Refactor agent variable handling in mixed variable text input 2026-01-12 17:05:00 +08:00
zhsama
f4e8f64bf7 refactor:Change sub-graph output handling from skip to default 2026-01-12 17:04:13 +08:00
zhsama
d91087492d Refactor sub-graph components structure 2026-01-12 15:00:41 +08:00
zhsama
cab7cd37b8 feat: Add sub-graph component for workflow 2026-01-12 14:56:53 +08:00
zhsama
f925266c1b Merge branch 'main' into feat/pull-a-variable 2026-01-09 16:20:55 +08:00
zhsama
6e2cf23a73 Merge branch 'main' into feat/pull-a-variable 2026-01-09 02:49:47 +08:00
zhsama
8b0bc6937d feat: enhance component picker and workflow variable block functionality 2026-01-08 18:17:09 +08:00
zhsama
872fd98eda Merge remote-tracking branch 'origin/feat/pull-a-variable' into feat/pull-a-variable 2026-01-08 18:16:29 +08:00
Novice
5bcd3b6fe6 feat: add mention node executor 2026-01-08 17:36:21 +08:00
zhsama
1aed585a19 feat: enhance agent integration in prompt editor and mixed-variable text input 2026-01-08 17:02:35 +08:00
zhsama
831eba8b1c feat: update agent functionality in mixed-variable text input 2026-01-08 16:59:09 +08:00
zhsama
8b8e521c4e Merge branch 'main' into feat/pull-a-variable 2026-01-07 22:11:05 +08:00
Novice
88248ad2d3 feat: add node level memory 2026-01-07 13:57:55 +08:00
zhsama
760a739e91 Merge branch 'main' into feat/grouping-branching
# Conflicts:
#	web/package.json
2026-01-06 22:00:01 +08:00
zhsama
d92c476388 feat(workflow): enhance group node availability checks
- Updated `checkMakeGroupAvailability` to include a check for existing group nodes, preventing group creation if a group node is already selected.
- Modified `useMakeGroupAvailability` and `useNodesInteractions` hooks to incorporate the new group node check, ensuring accurate group creation logic.
- Adjusted UI rendering logic in the workflow panel to conditionally display elements based on node type, specifically for group nodes.
2026-01-06 02:07:13 +08:00
zhsama
9012dced6a feat(workflow): improve group node interaction handling
- Enhanced `useNodesInteractions` to better manage group node handlers and connections, ensuring accurate identification of leaf nodes and their branches.
- Updated logic to create handlers based on node connections, differentiating between internal and external connections.
- Refined initial node setup to include target branches for group nodes, improving the overall interaction model for grouped elements.
2026-01-05 17:42:31 +08:00
zhsama
50bed78d7a feat(workflow): add group node support and translations
- Introduced GroupDefault node with metadata and default values for group nodes.
- Enhanced useNodeMetaData hook to handle group node author and description using translations.
- Added translations for group node functionality in English, Japanese, Simplified Chinese, and Traditional Chinese.
2026-01-05 16:29:00 +08:00
zhsama
60250355cb feat(workflow): enhance group edge management and validation
- Introduced `createGroupInboundEdges` function to manage edges for group nodes, ensuring proper connections to head nodes.
- Updated edge creation logic to handle group nodes in both inbound and outbound scenarios, including temporary edges.
- Enhanced validation in `useWorkflow` to check connections for group nodes based on their head nodes.
- Refined edge processing in `preprocessNodesAndEdges` to ensure correct handling of source handles for group edges.
2026-01-05 15:48:26 +08:00
zhsama
75afc2dc0e chore: update packageManager version in package.json to pnpm@10.27.0 2026-01-05 14:42:48 +08:00
zhsama
225b13da93 Merge branch 'main' into feat/grouping-branching 2026-01-04 21:56:13 +08:00
zhsama
37c748192d feat(workflow): implement UI-only group functionality
- Added support for UI-only group nodes, including custom-group, custom-group-input, and custom-group-exit-port types.
- Enhanced edge interactions to manage temporary edges connected to groups, ensuring corresponding real edges are deleted when temp edges are removed.
- Updated node interaction hooks to restore hidden edges and remove temp edges efficiently.
- Implemented logic for creating and managing group structures, including entry and exit ports, while maintaining execution graph integrity.
2026-01-04 21:54:15 +08:00
zhsama
b7a2957340 feat(workflow): implement ungroup functionality for group nodes
- Added `handleUngroup`, `getCanUngroup`, and `getSelectedGroupId` methods to manage ungrouping of selected group nodes.
- Integrated ungrouping logic into the `useShortcuts` hook for keyboard shortcut support (Ctrl + Shift + G).
- Updated UI to include ungroup option in the panel operator popup for group nodes.
- Added translations for the ungroup action in multiple languages.
2026-01-04 21:40:34 +08:00
zhsama
a6ce6a249b feat(workflow): refine strokeDasharray logic for temporary edges 2026-01-04 20:59:33 +08:00
zhsama
8834e6e531 feat(workflow): enhance group node functionality with head and leaf node tracking
- Added headNodeIds and leafNodeIds to GroupNodeData to track nodes that receive input and send output outside the group.
- Updated useNodesInteractions hook to include headNodeIds in the group node data.
- Modified isValidConnection logic in useWorkflow to validate connections based on leaf node types for group nodes.
- Enhanced preprocessNodesAndEdges to rebuild temporary edges for group nodes, connecting them to external nodes for visual representation.
2026-01-04 20:45:42 +08:00
zhsama
39010fd153 Merge branch 'refs/heads/main' into feat/grouping-branching 2026-01-04 17:25:18 +08:00
zhsama
bd338a9043 Merge branch 'main' into feat/grouping-branching 2026-01-02 01:34:02 +08:00
zhsama
39d6383474 Merge branch 'main' into feat/grouping-branching 2025-12-30 22:01:20 +08:00
Stephen Zhou
add8980790 add missing translation 2025-12-30 10:06:49 +08:00
zhsama
5157e1a96c Merge branch 'main' into feat/grouping-branching 2025-12-29 23:33:28 +08:00
zhsama
4bb76acc37 Merge branch 'main' into feat/grouping-branching 2025-12-23 23:56:26 +08:00
zhsama
b513933040 Merge branch 'main' into feat/grouping-branching
# Conflicts:
#	web/app/components/workflow/block-icon.tsx
#	web/app/components/workflow/hooks/use-nodes-interactions.ts
#	web/app/components/workflow/index.tsx
#	web/app/components/workflow/nodes/components.ts
#	web/app/components/workflow/selection-contextmenu.tsx
#	web/app/components/workflow/utils/workflow-init.ts
2025-12-23 23:55:21 +08:00
zhsama
18ea9d3f18 feat: Add GROUP node type and update node configuration filtering in Graph class 2025-12-23 20:44:36 +08:00
zhsama
7b660a9ebc feat: Simplify edge creation for group nodes in useNodesInteractions hook 2025-12-23 17:12:09 +08:00
zhsama
783a49bd97 feat: Refactor group node edge creation logic in useNodesInteractions hook 2025-12-23 16:44:11 +08:00
zhsama
d3c6b09354 feat: Implement group node edge handling in useNodesInteractions hook 2025-12-23 16:37:42 +08:00
zhsama
3d61496d25 feat: Enhance CustomGroupNode with exit ports and visual indicators 2025-12-23 15:36:53 +08:00
zhsama
16bff9e82f Merge branch 'refs/heads/main' into feat/grouping-branching 2025-12-23 15:27:54 +08:00
zhsama
22f25731e8 refactor: streamline edge building and node filtering in workflow graph 2025-12-22 18:59:08 +08:00
zhsama
035f51ad58 Merge branch 'main' into feat/grouping-branching 2025-12-22 18:18:37 +08:00
zhsama
e9795bd772 feat: refine workflow graph processing to exclude additional UI-only node types 2025-12-22 18:17:25 +08:00
zhsama
93b516a4ec feat: add UI-only group node types and enhance workflow graph processing 2025-12-22 17:35:33 +08:00
zhsama
fc9d5b2a62 feat: implement group node functionality and enhance grouping interactions 2025-12-19 15:17:45 +08:00
zhsama
e3bfb95c52 feat: implement grouping availability checks in selection context menu 2025-12-18 17:11:34 +08:00
zhsama
752cb9e4f4 feat: enhance selection context menu with alignment options and grouping functionality
- Added alignment buttons for nodes with tooltips in the selection context menu.
- Implemented grouping functionality with a new "Make group" option, including keyboard shortcuts.
- Updated translations for the new grouping feature in multiple languages.
- Refactored node selection logic to improve performance and readability.
2025-12-17 19:52:02 +08:00
149 changed files with 15561 additions and 658 deletions

1
.gitignore vendored
View File

@@ -209,6 +209,7 @@ api/.vscode
.history
.idea/
web/migration/
# pnpm
/.pnpm-store

View File

@@ -55,6 +55,35 @@ class InstructionTemplatePayload(BaseModel):
type: str = Field(..., description="Instruction template type")
class ContextGeneratePayload(BaseModel):
"""Payload for generating extractor code node."""
workflow_id: str = Field(..., description="Workflow ID")
node_id: str = Field(..., description="Current tool/llm node ID")
parameter_name: str = Field(..., description="Parameter name to generate code for")
language: str = Field(default="python3", description="Code language (python3/javascript)")
prompt_messages: list[dict[str, Any]] = Field(
..., description="Multi-turn conversation history, last message is the current instruction"
)
model_config_data: dict[str, Any] = Field(..., alias="model_config", description="Model configuration")
class SuggestedQuestionsPayload(BaseModel):
"""Payload for generating suggested questions."""
workflow_id: str = Field(..., description="Workflow ID")
node_id: str = Field(..., description="Current tool/llm node ID")
parameter_name: str = Field(..., description="Parameter name")
language: str = Field(
default="English", description="Language for generated questions (e.g. English, Chinese, Japanese)"
)
model_config_data: dict[str, Any] | None = Field(
default=None,
alias="model_config",
description="Model configuration (optional, uses system default if not provided)",
)
def reg(cls: type[BaseModel]):
console_ns.schema_model(cls.__name__, cls.model_json_schema(ref_template=DEFAULT_REF_TEMPLATE_SWAGGER_2_0))
@@ -64,6 +93,8 @@ reg(RuleCodeGeneratePayload)
reg(RuleStructuredOutputPayload)
reg(InstructionGeneratePayload)
reg(InstructionTemplatePayload)
reg(ContextGeneratePayload)
reg(SuggestedQuestionsPayload)
@console_ns.route("/rule-generate")
@@ -278,3 +309,74 @@ class InstructionGenerationTemplateApi(Resource):
return {"data": INSTRUCTION_GENERATE_TEMPLATE_CODE}
case _:
raise ValueError(f"Invalid type: {args.type}")
@console_ns.route("/context-generate")
class ContextGenerateApi(Resource):
@console_ns.doc("generate_with_context")
@console_ns.doc(description="Generate with multi-turn conversation context")
@console_ns.expect(console_ns.models[ContextGeneratePayload.__name__])
@console_ns.response(200, "Content generated successfully")
@console_ns.response(400, "Invalid request parameters or workflow not found")
@console_ns.response(402, "Provider quota exceeded")
@setup_required
@login_required
@account_initialization_required
def post(self):
from core.llm_generator.utils import deserialize_prompt_messages
args = ContextGeneratePayload.model_validate(console_ns.payload)
_, current_tenant_id = current_account_with_tenant()
prompt_messages = deserialize_prompt_messages(args.prompt_messages)
try:
return LLMGenerator.generate_with_context(
tenant_id=current_tenant_id,
workflow_id=args.workflow_id,
node_id=args.node_id,
parameter_name=args.parameter_name,
language=args.language,
prompt_messages=prompt_messages,
model_config=args.model_config_data,
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
@console_ns.route("/context-generate/suggested-questions")
class SuggestedQuestionsApi(Resource):
@console_ns.doc("generate_suggested_questions")
@console_ns.doc(description="Generate suggested questions for context generation")
@console_ns.expect(console_ns.models[SuggestedQuestionsPayload.__name__])
@console_ns.response(200, "Questions generated successfully")
@setup_required
@login_required
@account_initialization_required
def post(self):
args = SuggestedQuestionsPayload.model_validate(console_ns.payload)
_, current_tenant_id = current_account_with_tenant()
try:
return LLMGenerator.generate_suggested_questions(
tenant_id=current_tenant_id,
workflow_id=args.workflow_id,
node_id=args.node_id,
parameter_name=args.parameter_name,
language=args.language,
model_config=args.model_config_data,
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)

View File

@@ -17,7 +17,7 @@ from controllers.console.wraps import account_initialization_required, edit_perm
from controllers.web.error import InvalidArgumentError, NotFoundError
from core.file import helpers as file_helpers
from core.variables.segment_group import SegmentGroup
from core.variables.segments import ArrayFileSegment, FileSegment, Segment
from core.variables.segments import ArrayFileSegment, ArrayPromptMessageSegment, FileSegment, Segment
from core.variables.types import SegmentType
from core.workflow.constants import CONVERSATION_VARIABLE_NODE_ID, SYSTEM_VARIABLE_NODE_ID
from extensions.ext_database import db
@@ -58,6 +58,8 @@ def _convert_values_to_json_serializable_object(value: Segment):
return value.value.model_dump()
elif isinstance(value, ArrayFileSegment):
return [i.model_dump() for i in value.value]
elif isinstance(value, ArrayPromptMessageSegment):
return value.to_object()
elif isinstance(value, SegmentGroup):
return [_convert_values_to_json_serializable_object(i) for i in value.value]
else:

View File

@@ -82,7 +82,7 @@ class AdvancedChatAppGenerateResponseConverter(AppGenerateResponseConverter):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(data)
else:
response_chunk.update(sub_stream_response.model_dump(mode="json"))
response_chunk.update(sub_stream_response.model_dump(mode="json", exclude_none=True))
yield response_chunk
@classmethod
@@ -110,7 +110,7 @@ class AdvancedChatAppGenerateResponseConverter(AppGenerateResponseConverter):
}
if isinstance(sub_stream_response, MessageEndStreamResponse):
sub_stream_response_dict = sub_stream_response.model_dump(mode="json")
sub_stream_response_dict = sub_stream_response.model_dump(mode="json", exclude_none=True)
metadata = sub_stream_response_dict.get("metadata", {})
sub_stream_response_dict["metadata"] = cls._get_simple_metadata(metadata)
response_chunk.update(sub_stream_response_dict)
@@ -120,6 +120,6 @@ class AdvancedChatAppGenerateResponseConverter(AppGenerateResponseConverter):
elif isinstance(sub_stream_response, NodeStartStreamResponse | NodeFinishStreamResponse):
response_chunk.update(sub_stream_response.to_ignore_detail_dict())
else:
response_chunk.update(sub_stream_response.model_dump(mode="json"))
response_chunk.update(sub_stream_response.model_dump(mode="json", exclude_none=True))
yield response_chunk

View File

@@ -81,7 +81,7 @@ class AgentChatAppGenerateResponseConverter(AppGenerateResponseConverter):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(data)
else:
response_chunk.update(sub_stream_response.model_dump(mode="json"))
response_chunk.update(sub_stream_response.model_dump(mode="json", exclude_none=True))
yield response_chunk
@classmethod
@@ -109,7 +109,7 @@ class AgentChatAppGenerateResponseConverter(AppGenerateResponseConverter):
}
if isinstance(sub_stream_response, MessageEndStreamResponse):
sub_stream_response_dict = sub_stream_response.model_dump(mode="json")
sub_stream_response_dict = sub_stream_response.model_dump(mode="json", exclude_none=True)
metadata = sub_stream_response_dict.get("metadata", {})
sub_stream_response_dict["metadata"] = cls._get_simple_metadata(metadata)
response_chunk.update(sub_stream_response_dict)
@@ -117,6 +117,6 @@ class AgentChatAppGenerateResponseConverter(AppGenerateResponseConverter):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(data)
else:
response_chunk.update(sub_stream_response.model_dump(mode="json"))
response_chunk.update(sub_stream_response.model_dump(mode="json", exclude_none=True))
yield response_chunk

View File

@@ -81,7 +81,7 @@ class ChatAppGenerateResponseConverter(AppGenerateResponseConverter):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(data)
else:
response_chunk.update(sub_stream_response.model_dump(mode="json"))
response_chunk.update(sub_stream_response.model_dump(mode="json", exclude_none=True))
yield response_chunk
@classmethod
@@ -109,7 +109,7 @@ class ChatAppGenerateResponseConverter(AppGenerateResponseConverter):
}
if isinstance(sub_stream_response, MessageEndStreamResponse):
sub_stream_response_dict = sub_stream_response.model_dump(mode="json")
sub_stream_response_dict = sub_stream_response.model_dump(mode="json", exclude_none=True)
metadata = sub_stream_response_dict.get("metadata", {})
sub_stream_response_dict["metadata"] = cls._get_simple_metadata(metadata)
response_chunk.update(sub_stream_response_dict)
@@ -117,6 +117,6 @@ class ChatAppGenerateResponseConverter(AppGenerateResponseConverter):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(data)
else:
response_chunk.update(sub_stream_response.model_dump(mode="json"))
response_chunk.update(sub_stream_response.model_dump(mode="json", exclude_none=True))
yield response_chunk

View File

@@ -70,6 +70,8 @@ class _NodeSnapshot:
"""Empty string means the node is not executing inside an iteration."""
loop_id: str = ""
"""Empty string means the node is not executing inside a loop."""
mention_parent_id: str = ""
"""Empty string means the node is not an extractor node."""
class WorkflowResponseConverter:
@@ -131,6 +133,7 @@ class WorkflowResponseConverter:
start_at=event.start_at,
iteration_id=event.in_iteration_id or "",
loop_id=event.in_loop_id or "",
mention_parent_id=event.in_mention_parent_id or "",
)
node_execution_id = NodeExecutionId(event.node_execution_id)
self._node_snapshots[node_execution_id] = snapshot
@@ -287,6 +290,7 @@ class WorkflowResponseConverter:
created_at=int(snapshot.start_at.timestamp()),
iteration_id=event.in_iteration_id,
loop_id=event.in_loop_id,
mention_parent_id=event.in_mention_parent_id,
agent_strategy=event.agent_strategy,
),
)
@@ -373,6 +377,7 @@ class WorkflowResponseConverter:
files=self.fetch_files_from_node_outputs(event.outputs or {}),
iteration_id=event.in_iteration_id,
loop_id=event.in_loop_id,
mention_parent_id=event.in_mention_parent_id,
),
)
@@ -422,6 +427,7 @@ class WorkflowResponseConverter:
files=self.fetch_files_from_node_outputs(event.outputs or {}),
iteration_id=event.in_iteration_id,
loop_id=event.in_loop_id,
mention_parent_id=event.in_mention_parent_id,
retry_index=event.retry_index,
),
)

View File

@@ -79,7 +79,7 @@ class CompletionAppGenerateResponseConverter(AppGenerateResponseConverter):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(data)
else:
response_chunk.update(sub_stream_response.model_dump(mode="json"))
response_chunk.update(sub_stream_response.model_dump(mode="json", exclude_none=True))
yield response_chunk
@classmethod
@@ -106,7 +106,7 @@ class CompletionAppGenerateResponseConverter(AppGenerateResponseConverter):
}
if isinstance(sub_stream_response, MessageEndStreamResponse):
sub_stream_response_dict = sub_stream_response.model_dump(mode="json")
sub_stream_response_dict = sub_stream_response.model_dump(mode="json", exclude_none=True)
metadata = sub_stream_response_dict.get("metadata", {})
if not isinstance(metadata, dict):
metadata = {}
@@ -116,6 +116,6 @@ class CompletionAppGenerateResponseConverter(AppGenerateResponseConverter):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(data)
else:
response_chunk.update(sub_stream_response.model_dump(mode="json"))
response_chunk.update(sub_stream_response.model_dump(mode="json", exclude_none=True))
yield response_chunk

View File

@@ -60,7 +60,7 @@ class WorkflowAppGenerateResponseConverter(AppGenerateResponseConverter):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(cast(dict, data))
else:
response_chunk.update(sub_stream_response.model_dump())
response_chunk.update(sub_stream_response.model_dump(exclude_none=True))
yield response_chunk
@classmethod
@@ -91,5 +91,5 @@ class WorkflowAppGenerateResponseConverter(AppGenerateResponseConverter):
elif isinstance(sub_stream_response, NodeStartStreamResponse | NodeFinishStreamResponse):
response_chunk.update(cast(dict, sub_stream_response.to_ignore_detail_dict()))
else:
response_chunk.update(sub_stream_response.model_dump())
response_chunk.update(sub_stream_response.model_dump(exclude_none=True))
yield response_chunk

View File

@@ -60,7 +60,7 @@ class WorkflowAppGenerateResponseConverter(AppGenerateResponseConverter):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(data)
else:
response_chunk.update(sub_stream_response.model_dump(mode="json"))
response_chunk.update(sub_stream_response.model_dump(mode="json", exclude_none=True))
yield response_chunk
@classmethod
@@ -91,5 +91,5 @@ class WorkflowAppGenerateResponseConverter(AppGenerateResponseConverter):
elif isinstance(sub_stream_response, NodeStartStreamResponse | NodeFinishStreamResponse):
response_chunk.update(sub_stream_response.to_ignore_detail_dict())
else:
response_chunk.update(sub_stream_response.model_dump(mode="json"))
response_chunk.update(sub_stream_response.model_dump(mode="json", exclude_none=True))
yield response_chunk

View File

@@ -385,6 +385,7 @@ class WorkflowBasedAppRunner:
start_at=event.start_at,
in_iteration_id=event.in_iteration_id,
in_loop_id=event.in_loop_id,
in_mention_parent_id=event.in_mention_parent_id,
inputs=inputs,
process_data=process_data,
outputs=outputs,
@@ -405,6 +406,7 @@ class WorkflowBasedAppRunner:
start_at=event.start_at,
in_iteration_id=event.in_iteration_id,
in_loop_id=event.in_loop_id,
in_mention_parent_id=event.in_mention_parent_id,
agent_strategy=event.agent_strategy,
provider_type=event.provider_type,
provider_id=event.provider_id,
@@ -428,6 +430,7 @@ class WorkflowBasedAppRunner:
execution_metadata=execution_metadata,
in_iteration_id=event.in_iteration_id,
in_loop_id=event.in_loop_id,
in_mention_parent_id=event.in_mention_parent_id,
)
)
elif isinstance(event, NodeRunFailedEvent):
@@ -444,6 +447,7 @@ class WorkflowBasedAppRunner:
execution_metadata=event.node_run_result.metadata,
in_iteration_id=event.in_iteration_id,
in_loop_id=event.in_loop_id,
in_mention_parent_id=event.in_mention_parent_id,
)
)
elif isinstance(event, NodeRunExceptionEvent):
@@ -460,6 +464,7 @@ class WorkflowBasedAppRunner:
execution_metadata=event.node_run_result.metadata,
in_iteration_id=event.in_iteration_id,
in_loop_id=event.in_loop_id,
in_mention_parent_id=event.in_mention_parent_id,
)
)
elif isinstance(event, NodeRunStreamChunkEvent):
@@ -469,6 +474,7 @@ class WorkflowBasedAppRunner:
from_variable_selector=list(event.selector),
in_iteration_id=event.in_iteration_id,
in_loop_id=event.in_loop_id,
in_mention_parent_id=event.in_mention_parent_id,
)
)
elif isinstance(event, NodeRunRetrieverResourceEvent):
@@ -477,6 +483,7 @@ class WorkflowBasedAppRunner:
retriever_resources=event.retriever_resources,
in_iteration_id=event.in_iteration_id,
in_loop_id=event.in_loop_id,
in_mention_parent_id=event.in_mention_parent_id,
)
)
elif isinstance(event, NodeRunAgentLogEvent):

View File

@@ -190,6 +190,8 @@ class QueueTextChunkEvent(AppQueueEvent):
"""iteration id if node is in iteration"""
in_loop_id: str | None = None
"""loop id if node is in loop"""
in_mention_parent_id: str | None = None
"""parent node id if this is an extractor node event"""
class QueueAgentMessageEvent(AppQueueEvent):
@@ -229,6 +231,8 @@ class QueueRetrieverResourcesEvent(AppQueueEvent):
"""iteration id if node is in iteration"""
in_loop_id: str | None = None
"""loop id if node is in loop"""
in_mention_parent_id: str | None = None
"""parent node id if this is an extractor node event"""
class QueueAnnotationReplyEvent(AppQueueEvent):
@@ -306,6 +310,8 @@ class QueueNodeStartedEvent(AppQueueEvent):
node_run_index: int = 1 # FIXME(-LAN-): may not used
in_iteration_id: str | None = None
in_loop_id: str | None = None
in_mention_parent_id: str | None = None
"""parent node id if this is an extractor node event"""
start_at: datetime
agent_strategy: AgentNodeStrategyInit | None = None
@@ -328,6 +334,8 @@ class QueueNodeSucceededEvent(AppQueueEvent):
"""iteration id if node is in iteration"""
in_loop_id: str | None = None
"""loop id if node is in loop"""
in_mention_parent_id: str | None = None
"""parent node id if this is an extractor node event"""
start_at: datetime
inputs: Mapping[str, object] = Field(default_factory=dict)
@@ -383,6 +391,8 @@ class QueueNodeExceptionEvent(AppQueueEvent):
"""iteration id if node is in iteration"""
in_loop_id: str | None = None
"""loop id if node is in loop"""
in_mention_parent_id: str | None = None
"""parent node id if this is an extractor node event"""
start_at: datetime
inputs: Mapping[str, object] = Field(default_factory=dict)
@@ -407,6 +417,8 @@ class QueueNodeFailedEvent(AppQueueEvent):
"""iteration id if node is in iteration"""
in_loop_id: str | None = None
"""loop id if node is in loop"""
in_mention_parent_id: str | None = None
"""parent node id if this is an extractor node event"""
start_at: datetime
inputs: Mapping[str, object] = Field(default_factory=dict)

View File

@@ -262,6 +262,7 @@ class NodeStartStreamResponse(StreamResponse):
extras: dict[str, object] = Field(default_factory=dict)
iteration_id: str | None = None
loop_id: str | None = None
mention_parent_id: str | None = None
agent_strategy: AgentNodeStrategyInit | None = None
event: StreamEvent = StreamEvent.NODE_STARTED
@@ -285,6 +286,7 @@ class NodeStartStreamResponse(StreamResponse):
"extras": {},
"iteration_id": self.data.iteration_id,
"loop_id": self.data.loop_id,
"mention_parent_id": self.data.mention_parent_id,
},
}
@@ -320,6 +322,7 @@ class NodeFinishStreamResponse(StreamResponse):
files: Sequence[Mapping[str, Any]] | None = []
iteration_id: str | None = None
loop_id: str | None = None
mention_parent_id: str | None = None
event: StreamEvent = StreamEvent.NODE_FINISHED
workflow_run_id: str
@@ -349,6 +352,7 @@ class NodeFinishStreamResponse(StreamResponse):
"files": [],
"iteration_id": self.data.iteration_id,
"loop_id": self.data.loop_id,
"mention_parent_id": self.data.mention_parent_id,
},
}
@@ -384,6 +388,7 @@ class NodeRetryStreamResponse(StreamResponse):
files: Sequence[Mapping[str, Any]] | None = []
iteration_id: str | None = None
loop_id: str | None = None
mention_parent_id: str | None = None
retry_index: int = 0
event: StreamEvent = StreamEvent.NODE_RETRY
@@ -414,6 +419,7 @@ class NodeRetryStreamResponse(StreamResponse):
"files": [],
"iteration_id": self.data.iteration_id,
"loop_id": self.data.loop_id,
"mention_parent_id": self.data.mention_parent_id,
"retry_index": self.data.retry_index,
},
}

View File

@@ -1,4 +1,5 @@
import base64
import logging
from collections.abc import Mapping
from configs import dify_config
@@ -10,7 +11,10 @@ from core.model_runtime.entities import (
TextPromptMessageContent,
VideoPromptMessageContent,
)
from core.model_runtime.entities.message_entities import PromptMessageContentUnionTypes
from core.model_runtime.entities.message_entities import (
MultiModalPromptMessageContent,
PromptMessageContentUnionTypes,
)
from core.tools.signature import sign_tool_file
from extensions.ext_storage import storage
@@ -18,6 +22,8 @@ from . import helpers
from .enums import FileAttribute
from .models import File, FileTransferMethod, FileType
logger = logging.getLogger(__name__)
def get_attr(*, file: File, attr: FileAttribute):
match attr:
@@ -89,6 +95,8 @@ def to_prompt_message_content(
"format": f.extension.removeprefix("."),
"mime_type": f.mime_type,
"filename": f.filename or "",
# Encoded file reference for context restoration: "transfer_method:related_id" or "remote:url"
"file_ref": _encode_file_ref(f),
}
if f.type == FileType.IMAGE:
params["detail"] = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
@@ -96,6 +104,17 @@ def to_prompt_message_content(
return prompt_class_map[f.type].model_validate(params)
def _encode_file_ref(f: File) -> str | None:
"""Encode file reference as 'transfer_method:id_or_url' string."""
if f.transfer_method == FileTransferMethod.REMOTE_URL:
return f"remote:{f.remote_url}" if f.remote_url else None
elif f.transfer_method == FileTransferMethod.LOCAL_FILE:
return f"local:{f.related_id}" if f.related_id else None
elif f.transfer_method == FileTransferMethod.TOOL_FILE:
return f"tool:{f.related_id}" if f.related_id else None
return None
def download(f: File, /):
if f.transfer_method in (
FileTransferMethod.TOOL_FILE,
@@ -164,3 +183,128 @@ def _to_url(f: File, /):
return sign_tool_file(tool_file_id=f.related_id, extension=f.extension)
else:
raise ValueError(f"Unsupported transfer method: {f.transfer_method}")
def restore_multimodal_content(
content: MultiModalPromptMessageContent,
) -> MultiModalPromptMessageContent:
"""
Restore base64_data or url for multimodal content from file_ref.
file_ref format: "transfer_method:id_or_url" (e.g., "local:abc123", "remote:https://...")
Args:
content: MultiModalPromptMessageContent with file_ref field
Returns:
MultiModalPromptMessageContent with restored base64_data or url
"""
# Skip if no file reference or content already has data
if not content.file_ref:
return content
if content.base64_data or content.url:
return content
try:
file = _build_file_from_ref(
file_ref=content.file_ref,
file_format=content.format,
mime_type=content.mime_type,
filename=content.filename,
)
if not file:
return content
# Restore content based on config
if dify_config.MULTIMODAL_SEND_FORMAT == "base64":
restored_base64 = _get_encoded_string(file)
return content.model_copy(update={"base64_data": restored_base64})
else:
restored_url = _to_url(file)
return content.model_copy(update={"url": restored_url})
except Exception as e:
logger.warning("Failed to restore multimodal content: %s", e)
return content
def _build_file_from_ref(
file_ref: str,
file_format: str | None,
mime_type: str | None,
filename: str | None,
) -> File | None:
"""
Build a File object from encoded file_ref string.
Args:
file_ref: Encoded reference "transfer_method:id_or_url"
file_format: The file format/extension (without dot)
mime_type: The mime type
filename: The filename
Returns:
File object with storage_key loaded, or None if not found
"""
from sqlalchemy import select
from sqlalchemy.orm import Session
from extensions.ext_database import db
from models.model import UploadFile
from models.tools import ToolFile
# Parse file_ref: "method:value"
if ":" not in file_ref:
logger.warning("Invalid file_ref format: %s", file_ref)
return None
method, value = file_ref.split(":", 1)
extension = f".{file_format}" if file_format else None
if method == "remote":
return File(
tenant_id="",
type=FileType.IMAGE,
transfer_method=FileTransferMethod.REMOTE_URL,
remote_url=value,
extension=extension,
mime_type=mime_type,
filename=filename,
storage_key="",
)
# Query database for storage_key
with Session(db.engine) as session:
if method == "local":
stmt = select(UploadFile).where(UploadFile.id == value)
upload_file = session.scalar(stmt)
if upload_file:
return File(
tenant_id=upload_file.tenant_id,
type=FileType(upload_file.extension)
if hasattr(FileType, upload_file.extension.upper())
else FileType.IMAGE,
transfer_method=FileTransferMethod.LOCAL_FILE,
related_id=value,
extension=extension or ("." + upload_file.extension if upload_file.extension else None),
mime_type=mime_type or upload_file.mime_type,
filename=filename or upload_file.name,
storage_key=upload_file.key,
)
elif method == "tool":
stmt = select(ToolFile).where(ToolFile.id == value)
tool_file = session.scalar(stmt)
if tool_file:
return File(
tenant_id=tool_file.tenant_id,
type=FileType.IMAGE,
transfer_method=FileTransferMethod.TOOL_FILE,
related_id=value,
extension=extension,
mime_type=mime_type or tool_file.mimetype,
filename=filename or tool_file.name,
storage_key=tool_file.file_key,
)
logger.warning("File not found for file_ref: %s", file_ref)
return None

View File

@@ -1,8 +1,8 @@
import json
import logging
import re
from collections.abc import Sequence
from typing import Protocol, cast
from collections.abc import Mapping, Sequence
from typing import Any, Protocol, cast
import json_repair
@@ -398,6 +398,488 @@ class LLMGenerator:
logger.exception("Failed to invoke LLM model, model: %s", model_config.get("name"))
return {"output": "", "error": f"An unexpected error occurred: {str(e)}"}
@classmethod
def generate_with_context(
cls,
tenant_id: str,
workflow_id: str,
node_id: str,
parameter_name: str,
language: str,
prompt_messages: list[PromptMessage],
model_config: dict,
) -> dict:
"""
Generate extractor code node based on conversation context.
Args:
tenant_id: Tenant/workspace ID
workflow_id: Workflow ID
node_id: Current tool/llm node ID
parameter_name: Parameter name to generate code for
language: Code language (python3/javascript)
prompt_messages: Multi-turn conversation history (last message is instruction)
model_config: Model configuration (provider, name, completion_params)
Returns:
dict with CodeNodeData format:
- variables: Input variable selectors
- code_language: Code language
- code: Generated code
- outputs: Output definitions
- message: Explanation
- error: Error message if any
"""
from sqlalchemy import select
from sqlalchemy.orm import Session
from services.workflow_service import WorkflowService
# Get workflow
with Session(db.engine) as session:
stmt = select(App).where(App.id == workflow_id)
app = session.scalar(stmt)
if not app:
return cls._error_response(f"App {workflow_id} not found")
workflow = WorkflowService().get_draft_workflow(app_model=app)
if not workflow:
return cls._error_response(f"Workflow for app {workflow_id} not found")
# Get upstream nodes via edge backtracking
upstream_nodes = cls._get_upstream_nodes(workflow.graph_dict, node_id)
# Get current node info
current_node = cls._get_node_by_id(workflow.graph_dict, node_id)
if not current_node:
return cls._error_response(f"Node {node_id} not found")
# Get parameter info
parameter_info = cls._get_parameter_info(
tenant_id=tenant_id,
node_data=current_node.get("data", {}),
parameter_name=parameter_name,
)
# Build system prompt
system_prompt = cls._build_extractor_system_prompt(
upstream_nodes=upstream_nodes,
current_node=current_node,
parameter_info=parameter_info,
language=language,
)
# Construct complete prompt_messages with system prompt
complete_messages: list[PromptMessage] = [
SystemPromptMessage(content=system_prompt),
*prompt_messages,
]
from core.llm_generator.output_parser.structured_output import invoke_llm_with_structured_output
# Get model instance and schema
provider = model_config.get("provider", "")
model_name = model_config.get("name", "")
model_instance = ModelManager().get_model_instance(
tenant_id=tenant_id,
model_type=ModelType.LLM,
provider=provider,
model=model_name,
)
model_schema = model_instance.model_type_instance.get_model_schema(model_name, model_instance.credentials)
if not model_schema:
return cls._error_response(f"Model schema not found for {model_name}")
model_parameters = model_config.get("completion_params", {})
json_schema = cls._get_code_node_json_schema()
try:
response = invoke_llm_with_structured_output(
provider=provider,
model_schema=model_schema,
model_instance=model_instance,
prompt_messages=complete_messages,
json_schema=json_schema,
model_parameters=model_parameters,
stream=False,
tenant_id=tenant_id,
)
return cls._parse_code_node_output(
response.structured_output, language, parameter_info.get("type", "string")
)
except InvokeError as e:
return cls._error_response(str(e))
except Exception as e:
logger.exception("Failed to generate with context, model: %s", model_config.get("name"))
return cls._error_response(f"An unexpected error occurred: {str(e)}")
@classmethod
def _error_response(cls, error: str) -> dict:
"""Return error response in CodeNodeData format."""
return {
"variables": [],
"code_language": "python3",
"code": "",
"outputs": {},
"message": "",
"error": error,
}
@classmethod
def generate_suggested_questions(
cls,
tenant_id: str,
workflow_id: str,
node_id: str,
parameter_name: str,
language: str,
model_config: dict | None = None,
) -> dict:
"""
Generate suggested questions for context generation.
Returns dict with questions array and error field.
"""
from sqlalchemy import select
from sqlalchemy.orm import Session
from core.llm_generator.output_parser.structured_output import invoke_llm_with_structured_output
from services.workflow_service import WorkflowService
# Get workflow context (reuse existing logic)
with Session(db.engine) as session:
stmt = select(App).where(App.id == workflow_id)
app = session.scalar(stmt)
if not app:
return {"questions": [], "error": f"App {workflow_id} not found"}
workflow = WorkflowService().get_draft_workflow(app_model=app)
if not workflow:
return {"questions": [], "error": f"Workflow for app {workflow_id} not found"}
upstream_nodes = cls._get_upstream_nodes(workflow.graph_dict, node_id)
current_node = cls._get_node_by_id(workflow.graph_dict, node_id)
if not current_node:
return {"questions": [], "error": f"Node {node_id} not found"}
parameter_info = cls._get_parameter_info(
tenant_id=tenant_id,
node_data=current_node.get("data", {}),
parameter_name=parameter_name,
)
# Build prompt
system_prompt = cls._build_suggested_questions_prompt(
upstream_nodes=upstream_nodes,
current_node=current_node,
parameter_info=parameter_info,
language=language,
)
prompt_messages: list[PromptMessage] = [
SystemPromptMessage(content=system_prompt),
]
# Get model instance - use default if model_config not provided
model_manager = ModelManager()
if model_config:
provider = model_config.get("provider", "")
model_name = model_config.get("name", "")
model_instance = model_manager.get_model_instance(
tenant_id=tenant_id,
model_type=ModelType.LLM,
provider=provider,
model=model_name,
)
else:
model_instance = model_manager.get_default_model_instance(
tenant_id=tenant_id,
model_type=ModelType.LLM,
)
model_name = model_instance.model
model_schema = model_instance.model_type_instance.get_model_schema(model_name, model_instance.credentials)
if not model_schema:
return {"questions": [], "error": f"Model schema not found for {model_name}"}
completion_params = model_config.get("completion_params", {}) if model_config else {}
model_parameters = {**completion_params, "max_tokens": 256}
json_schema = cls._get_suggested_questions_json_schema()
try:
response = invoke_llm_with_structured_output(
provider=model_instance.provider,
model_schema=model_schema,
model_instance=model_instance,
prompt_messages=prompt_messages,
json_schema=json_schema,
model_parameters=model_parameters,
stream=False,
tenant_id=tenant_id,
)
questions = response.structured_output.get("questions", []) if response.structured_output else []
return {"questions": questions, "error": ""}
except InvokeError as e:
return {"questions": [], "error": str(e)}
except Exception as e:
logger.exception("Failed to generate suggested questions, model: %s", model_name)
return {"questions": [], "error": f"An unexpected error occurred: {str(e)}"}
@classmethod
def _build_suggested_questions_prompt(
cls,
upstream_nodes: list[dict],
current_node: dict,
parameter_info: dict,
language: str = "English",
) -> str:
"""Build minimal prompt for suggested questions generation."""
# Simplify upstream nodes to reduce tokens
sources = [f"{n['title']}({','.join(n.get('outputs', {}).keys())})" for n in upstream_nodes[:5]]
param_type = parameter_info.get("type", "string")
param_desc = parameter_info.get("description", "")[:100]
return f"""Suggest 3 code generation questions for extracting data.
Sources: {", ".join(sources)}
Target: {parameter_info.get("name")}({param_type}) - {param_desc}
Output 3 short, practical questions in {language}."""
@classmethod
def _get_suggested_questions_json_schema(cls) -> dict:
"""Return JSON Schema for suggested questions."""
return {
"type": "object",
"properties": {
"questions": {
"type": "array",
"items": {"type": "string"},
"minItems": 3,
"maxItems": 3,
"description": "3 suggested questions",
},
},
"required": ["questions"],
}
@classmethod
def _get_code_node_json_schema(cls) -> dict:
"""Return JSON Schema for structured output."""
return {
"type": "object",
"properties": {
"variables": {
"type": "array",
"items": {
"type": "object",
"properties": {
"variable": {"type": "string", "description": "Variable name in code"},
"value_selector": {
"type": "array",
"items": {"type": "string"},
"description": "Path like [node_id, output_name]",
},
},
"required": ["variable", "value_selector"],
},
},
"code": {"type": "string", "description": "Generated code with main function"},
"outputs": {
"type": "object",
"additionalProperties": {
"type": "object",
"properties": {"type": {"type": "string"}},
},
"description": "Output definitions, key is output name",
},
"explanation": {"type": "string", "description": "Brief explanation of the code"},
},
"required": ["variables", "code", "outputs", "explanation"],
}
@classmethod
def _get_upstream_nodes(cls, graph_dict: Mapping[str, Any], node_id: str) -> list[dict]:
"""
Get all upstream nodes via edge backtracking.
Traverses the graph backwards from node_id to collect all reachable nodes.
"""
from collections import defaultdict
nodes = {n["id"]: n for n in graph_dict.get("nodes", [])}
edges = graph_dict.get("edges", [])
# Build reverse adjacency list
reverse_adj: dict[str, list[str]] = defaultdict(list)
for edge in edges:
reverse_adj[edge["target"]].append(edge["source"])
# BFS to find all upstream nodes
visited: set[str] = set()
queue = [node_id]
upstream: list[dict] = []
while queue:
current = queue.pop(0)
for source in reverse_adj.get(current, []):
if source not in visited:
visited.add(source)
queue.append(source)
if source in nodes:
upstream.append(cls._extract_node_info(nodes[source]))
return upstream
@classmethod
def _get_node_by_id(cls, graph_dict: Mapping[str, Any], node_id: str) -> dict | None:
"""Get node by ID from graph."""
for node in graph_dict.get("nodes", []):
if node["id"] == node_id:
return node
return None
@classmethod
def _extract_node_info(cls, node: dict) -> dict:
"""Extract minimal node info with outputs based on node type."""
node_type = node["data"]["type"]
node_data = node.get("data", {})
# Build outputs based on node type (only type, no description to reduce tokens)
outputs: dict[str, str] = {}
match node_type:
case "start":
for var in node_data.get("variables", []):
name = var.get("variable", var.get("name", ""))
outputs[name] = var.get("type", "string")
case "llm":
outputs["text"] = "string"
case "code":
for name, output in node_data.get("outputs", {}).items():
outputs[name] = output.get("type", "string")
case "http-request":
outputs = {"body": "string", "status_code": "number", "headers": "object"}
case "knowledge-retrieval":
outputs["result"] = "array[object]"
case "tool":
outputs = {"text": "string", "json": "object"}
case _:
outputs["output"] = "string"
info: dict = {
"id": node["id"],
"title": node_data.get("title", node["id"]),
"outputs": outputs,
}
# Only include description if not empty
desc = node_data.get("desc", "")
if desc:
info["desc"] = desc
return info
@classmethod
def _get_parameter_info(cls, tenant_id: str, node_data: dict, parameter_name: str) -> dict:
"""Get parameter info from tool schema using ToolManager."""
default_info = {"name": parameter_name, "type": "string", "description": ""}
if node_data.get("type") != "tool":
return default_info
try:
from core.app.entities.app_invoke_entities import InvokeFrom
from core.tools.entities.tool_entities import ToolProviderType
from core.tools.tool_manager import ToolManager
provider_type_str = node_data.get("provider_type", "")
provider_type = ToolProviderType(provider_type_str) if provider_type_str else ToolProviderType.BUILT_IN
tool_runtime = ToolManager.get_tool_runtime(
provider_type=provider_type,
provider_id=node_data.get("provider_id", ""),
tool_name=node_data.get("tool_name", ""),
tenant_id=tenant_id,
invoke_from=InvokeFrom.DEBUGGER,
)
parameters = tool_runtime.get_merged_runtime_parameters()
for param in parameters:
if param.name == parameter_name:
return {
"name": param.name,
"type": param.type.value if hasattr(param.type, "value") else str(param.type),
"description": param.llm_description
or (param.human_description.en_US if param.human_description else ""),
"required": param.required,
}
except Exception as e:
logger.debug("Failed to get parameter info from ToolManager: %s", e)
return default_info
@classmethod
def _build_extractor_system_prompt(
cls,
upstream_nodes: list[dict],
current_node: dict,
parameter_info: dict,
language: str,
) -> str:
"""Build system prompt for extractor code generation."""
upstream_json = json.dumps(upstream_nodes, indent=2, ensure_ascii=False)
param_type = parameter_info.get("type", "string")
return f"""You are a code generator for workflow automation.
Generate {language} code to extract/transform upstream node outputs for the target parameter.
## Upstream Nodes
{upstream_json}
## Target
Node: {current_node["data"].get("title", current_node["id"])}
Parameter: {parameter_info.get("name")} ({param_type}) - {parameter_info.get("description", "")}
## Requirements
- Write a main function that returns type: {param_type}
- Use value_selector format: ["node_id", "output_name"]
"""
@classmethod
def _parse_code_node_output(cls, content: Mapping[str, Any] | None, language: str, parameter_type: str) -> dict:
"""
Parse structured output to CodeNodeData format.
Args:
content: Structured output dict from invoke_llm_with_structured_output
language: Code language
parameter_type: Expected parameter type
Returns dict with variables, code_language, code, outputs, message, error.
"""
if content is None:
return cls._error_response("Empty or invalid response from LLM")
# Validate and normalize variables
variables = [
{"variable": v.get("variable", ""), "value_selector": v.get("value_selector", [])}
for v in content.get("variables", [])
if isinstance(v, dict)
]
outputs = content.get("outputs", {"result": {"type": parameter_type}})
return {
"variables": variables,
"code_language": language,
"code": content.get("code", ""),
"outputs": outputs,
"message": content.get("explanation", ""),
"error": "",
}
@staticmethod
def instruction_modify_legacy(
tenant_id: str, flow_id: str, current: str, instruction: str, model_config: dict, ideal_output: str | None

View File

@@ -0,0 +1,188 @@
"""
File reference detection and conversion for structured output.
This module provides utilities to:
1. Detect file reference fields in JSON Schema (format: "dify-file-ref")
2. Convert file ID strings to File objects after LLM returns
"""
import uuid
from collections.abc import Mapping
from typing import Any
from core.file import File
from core.variables.segments import ArrayFileSegment, FileSegment
from factories.file_factory import build_from_mapping
FILE_REF_FORMAT = "dify-file-ref"
def is_file_ref_property(schema: dict) -> bool:
"""Check if a schema property is a file reference."""
return schema.get("type") == "string" and schema.get("format") == FILE_REF_FORMAT
def detect_file_ref_fields(schema: Mapping[str, Any], path: str = "") -> list[str]:
"""
Recursively detect file reference fields in schema.
Args:
schema: JSON Schema to analyze
path: Current path in the schema (used for recursion)
Returns:
List of JSON paths containing file refs, e.g., ["image_id", "files[*]"]
"""
file_ref_paths: list[str] = []
schema_type = schema.get("type")
if schema_type == "object":
for prop_name, prop_schema in schema.get("properties", {}).items():
current_path = f"{path}.{prop_name}" if path else prop_name
if is_file_ref_property(prop_schema):
file_ref_paths.append(current_path)
elif isinstance(prop_schema, dict):
file_ref_paths.extend(detect_file_ref_fields(prop_schema, current_path))
elif schema_type == "array":
items_schema = schema.get("items", {})
array_path = f"{path}[*]" if path else "[*]"
if is_file_ref_property(items_schema):
file_ref_paths.append(array_path)
elif isinstance(items_schema, dict):
file_ref_paths.extend(detect_file_ref_fields(items_schema, array_path))
return file_ref_paths
def convert_file_refs_in_output(
output: Mapping[str, Any],
json_schema: Mapping[str, Any],
tenant_id: str,
) -> dict[str, Any]:
"""
Convert file ID strings to File objects based on schema.
Args:
output: The structured_output from LLM result
json_schema: The original JSON schema (to detect file ref fields)
tenant_id: Tenant ID for file lookup
Returns:
Output with file references converted to File objects
"""
file_ref_paths = detect_file_ref_fields(json_schema)
if not file_ref_paths:
return dict(output)
result = _deep_copy_dict(output)
for path in file_ref_paths:
_convert_path_in_place(result, path.split("."), tenant_id)
return result
def _deep_copy_dict(obj: Mapping[str, Any]) -> dict[str, Any]:
"""Deep copy a mapping to a mutable dict."""
result: dict[str, Any] = {}
for key, value in obj.items():
if isinstance(value, Mapping):
result[key] = _deep_copy_dict(value)
elif isinstance(value, list):
result[key] = [_deep_copy_dict(item) if isinstance(item, Mapping) else item for item in value]
else:
result[key] = value
return result
def _convert_path_in_place(obj: dict, path_parts: list[str], tenant_id: str) -> None:
"""Convert file refs at the given path in place, wrapping in Segment types."""
if not path_parts:
return
current = path_parts[0]
remaining = path_parts[1:]
# Handle array notation like "files[*]"
if current.endswith("[*]"):
key = current[:-3] if current != "[*]" else None
target = obj.get(key) if key else obj
if isinstance(target, list):
if remaining:
# Nested array with remaining path - recurse into each item
for item in target:
if isinstance(item, dict):
_convert_path_in_place(item, remaining, tenant_id)
else:
# Array of file IDs - convert all and wrap in ArrayFileSegment
files: list[File] = []
for item in target:
file = _convert_file_id(item, tenant_id)
if file is not None:
files.append(file)
# Replace the array with ArrayFileSegment
if key:
obj[key] = ArrayFileSegment(value=files)
return
if not remaining:
# Leaf node - convert the value and wrap in FileSegment
if current in obj:
file = _convert_file_id(obj[current], tenant_id)
if file is not None:
obj[current] = FileSegment(value=file)
else:
obj[current] = None
else:
# Recurse into nested object
if current in obj and isinstance(obj[current], dict):
_convert_path_in_place(obj[current], remaining, tenant_id)
def _convert_file_id(file_id: Any, tenant_id: str) -> File | None:
"""
Convert a file ID string to a File object.
Tries multiple file sources in order:
1. ToolFile (files generated by tools/workflows)
2. UploadFile (files uploaded by users)
"""
if not isinstance(file_id, str):
return None
# Validate UUID format
try:
uuid.UUID(file_id)
except ValueError:
return None
# Try ToolFile first (files generated by tools/workflows)
try:
return build_from_mapping(
mapping={
"transfer_method": "tool_file",
"tool_file_id": file_id,
},
tenant_id=tenant_id,
)
except ValueError:
pass
# Try UploadFile (files uploaded by users)
try:
return build_from_mapping(
mapping={
"transfer_method": "local_file",
"upload_file_id": file_id,
},
tenant_id=tenant_id,
)
except ValueError:
pass
# File not found in any source
return None

View File

@@ -8,6 +8,7 @@ import json_repair
from pydantic import TypeAdapter, ValidationError
from core.llm_generator.output_parser.errors import OutputParserError
from core.llm_generator.output_parser.file_ref import convert_file_refs_in_output
from core.llm_generator.prompts import STRUCTURED_OUTPUT_PROMPT
from core.model_manager import ModelInstance
from core.model_runtime.callbacks.base_callback import Callback
@@ -57,6 +58,7 @@ def invoke_llm_with_structured_output(
stream: Literal[True],
user: str | None = None,
callbacks: list[Callback] | None = None,
tenant_id: str | None = None,
) -> Generator[LLMResultChunkWithStructuredOutput, None, None]: ...
@overload
def invoke_llm_with_structured_output(
@@ -72,6 +74,7 @@ def invoke_llm_with_structured_output(
stream: Literal[False],
user: str | None = None,
callbacks: list[Callback] | None = None,
tenant_id: str | None = None,
) -> LLMResultWithStructuredOutput: ...
@overload
def invoke_llm_with_structured_output(
@@ -87,6 +90,7 @@ def invoke_llm_with_structured_output(
stream: bool = True,
user: str | None = None,
callbacks: list[Callback] | None = None,
tenant_id: str | None = None,
) -> LLMResultWithStructuredOutput | Generator[LLMResultChunkWithStructuredOutput, None, None]: ...
def invoke_llm_with_structured_output(
*,
@@ -101,20 +105,28 @@ def invoke_llm_with_structured_output(
stream: bool = True,
user: str | None = None,
callbacks: list[Callback] | None = None,
tenant_id: str | None = None,
) -> LLMResultWithStructuredOutput | Generator[LLMResultChunkWithStructuredOutput, None, None]:
"""
Invoke large language model with structured output
1. This method invokes model_instance.invoke_llm with json_schema
2. Try to parse the result as structured output
Invoke large language model with structured output.
This method invokes model_instance.invoke_llm with json_schema and parses
the result as structured output.
:param provider: model provider name
:param model_schema: model schema entity
:param model_instance: model instance to invoke
:param prompt_messages: prompt messages
:param json_schema: json schema
:param json_schema: json schema for structured output
:param model_parameters: model parameters
:param tools: tools for tool calling
:param stop: stop words
:param stream: is stream response
:param user: unique user id
:param callbacks: callbacks
:param tenant_id: tenant ID for file reference conversion. When provided and
json_schema contains file reference fields (format: "dify-file-ref"),
file IDs in the output will be automatically converted to File objects.
:return: full response or stream response chunk generator result
"""
@@ -153,8 +165,18 @@ def invoke_llm_with_structured_output(
f"Failed to parse structured output, LLM result is not a string: {llm_result.message.content}"
)
structured_output = _parse_structured_output(llm_result.message.content)
# Convert file references if tenant_id is provided
if tenant_id is not None:
structured_output = convert_file_refs_in_output(
output=structured_output,
json_schema=json_schema,
tenant_id=tenant_id,
)
return LLMResultWithStructuredOutput(
structured_output=_parse_structured_output(llm_result.message.content),
structured_output=structured_output,
model=llm_result.model,
message=llm_result.message,
usage=llm_result.usage,
@@ -186,8 +208,18 @@ def invoke_llm_with_structured_output(
delta=event.delta,
)
structured_output = _parse_structured_output(result_text)
# Convert file references if tenant_id is provided
if tenant_id is not None:
structured_output = convert_file_refs_in_output(
output=structured_output,
json_schema=json_schema,
tenant_id=tenant_id,
)
yield LLMResultChunkWithStructuredOutput(
structured_output=_parse_structured_output(result_text),
structured_output=structured_output,
model=model_schema.model,
prompt_messages=prompt_messages,
system_fingerprint=system_fingerprint,

View File

@@ -0,0 +1,45 @@
"""Utility functions for LLM generator."""
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
PromptMessage,
PromptMessageRole,
SystemPromptMessage,
ToolPromptMessage,
UserPromptMessage,
)
def deserialize_prompt_messages(messages: list[dict]) -> list[PromptMessage]:
"""
Deserialize list of dicts to list[PromptMessage].
Expected format:
[
{"role": "user", "content": "..."},
{"role": "assistant", "content": "..."},
]
"""
result: list[PromptMessage] = []
for msg in messages:
role = PromptMessageRole.value_of(msg["role"])
content = msg.get("content", "")
match role:
case PromptMessageRole.USER:
result.append(UserPromptMessage(content=content))
case PromptMessageRole.ASSISTANT:
result.append(AssistantPromptMessage(content=content))
case PromptMessageRole.SYSTEM:
result.append(SystemPromptMessage(content=content))
case PromptMessageRole.TOOL:
result.append(ToolPromptMessage(content=content, tool_call_id=msg.get("tool_call_id", "")))
return result
def serialize_prompt_messages(messages: list[PromptMessage]) -> list[dict]:
"""
Serialize list[PromptMessage] to list of dicts.
"""
return [{"role": msg.role.value, "content": msg.content} for msg in messages]

267
api/core/memory/README.md Normal file
View File

@@ -0,0 +1,267 @@
# Memory Module
This module provides memory management for LLM conversations, enabling context retention across dialogue turns.
## Overview
The memory module contains two types of memory implementations:
1. **TokenBufferMemory** - Conversation-level memory (existing)
2. **NodeTokenBufferMemory** - Node-level memory (**Chatflow only**)
> **Note**: `NodeTokenBufferMemory` is only available in **Chatflow** (advanced-chat mode).
> This is because it requires both `conversation_id` and `node_id`, which are only present in Chatflow.
> Standard Workflow mode does not have `conversation_id` and therefore cannot use node-level memory.
```
┌─────────────────────────────────────────────────────────────────────────────┐
│ Memory Architecture │
├─────────────────────────────────────────────────────────────────────────────┤
│ │
│ ┌─────────────────────────────────────────────────────────────────────-┐ │
│ │ TokenBufferMemory │ │
│ │ Scope: Conversation │ │
│ │ Storage: Database (Message table) │ │
│ │ Key: conversation_id │ │
│ └─────────────────────────────────────────────────────────────────────-┘ │
│ │
│ ┌─────────────────────────────────────────────────────────────────────-┐ │
│ │ NodeTokenBufferMemory │ │
│ │ Scope: Node within Conversation │ │
│ │ Storage: WorkflowNodeExecutionModel.outputs["context"] │ │
│ │ Key: (conversation_id, node_id, workflow_run_id) │ │
│ └─────────────────────────────────────────────────────────────────────-┘ │
│ │
└─────────────────────────────────────────────────────────────────────────────┘
```
---
## TokenBufferMemory (Existing)
### Purpose
`TokenBufferMemory` retrieves conversation history from the `Message` table and converts it to `PromptMessage` objects for LLM context.
### Key Features
- **Conversation-scoped**: All messages within a conversation are candidates
- **Thread-aware**: Uses `parent_message_id` to extract only the current thread (supports regeneration scenarios)
- **Token-limited**: Truncates history to fit within `max_token_limit`
- **File support**: Handles `MessageFile` attachments (images, documents, etc.)
### Data Flow
```
Message Table TokenBufferMemory LLM
│ │ │
│ SELECT * FROM messages │ │
│ WHERE conversation_id = ? │ │
│ ORDER BY created_at DESC │ │
├─────────────────────────────────▶│ │
│ │ │
│ extract_thread_messages() │
│ │ │
│ build_prompt_message_with_files() │
│ │ │
│ truncate by max_token_limit │
│ │ │
│ │ Sequence[PromptMessage]
│ ├───────────────────────▶│
│ │ │
```
### Thread Extraction
When a user regenerates a response, a new thread is created:
```
Message A (user)
└── Message A' (assistant)
└── Message B (user)
└── Message B' (assistant)
└── Message A'' (assistant, regenerated) ← New thread
└── Message C (user)
└── Message C' (assistant)
```
`extract_thread_messages()` traces back from the latest message using `parent_message_id` to get only the current thread: `[A, A'', C, C']`
### Usage
```python
from core.memory.token_buffer_memory import TokenBufferMemory
memory = TokenBufferMemory(conversation=conversation, model_instance=model_instance)
history = memory.get_history_prompt_messages(max_token_limit=2000, message_limit=100)
```
---
## NodeTokenBufferMemory
### Purpose
`NodeTokenBufferMemory` provides **node-scoped memory** within a conversation. Each LLM node in a workflow can maintain its own independent conversation history.
### Use Cases
1. **Multi-LLM Workflows**: Different LLM nodes need separate context
2. **Iterative Processing**: An LLM node in a loop needs to accumulate context across iterations
3. **Specialized Agents**: Each agent node maintains its own dialogue history
### Design: Zero Extra Storage
**Key insight**: LLM node already saves complete context in `outputs["context"]`.
Each LLM node execution outputs:
```python
outputs = {
"text": clean_text,
"context": self._build_context(prompt_messages, clean_text), # Complete dialogue history!
...
}
```
This `outputs["context"]` contains:
- All previous user/assistant messages (excluding system prompt)
- The current assistant response
**No separate storage needed** - we just read from the last execution's `outputs["context"]`.
### Benefits
| Aspect | Old Design (Object Storage) | New Design (outputs["context"]) |
|--------|----------------------------|--------------------------------|
| Storage | Separate JSON file | Already in WorkflowNodeExecutionModel |
| Concurrency | Race condition risk | No issue (each execution is INSERT) |
| Cleanup | Need separate cleanup task | Follows node execution lifecycle |
| Migration | Required | None |
| Complexity | High | Low |
### Data Flow
```
WorkflowNodeExecutionModel NodeTokenBufferMemory LLM Node
│ │ │
│ │◀── get_history_prompt_messages()
│ │ │
│ SELECT outputs FROM │ │
│ workflow_node_executions │ │
│ WHERE workflow_run_id = ? │ │
│ AND node_id = ? │ │
│◀─────────────────────────────────┤ │
│ │ │
│ outputs["context"] │ │
├─────────────────────────────────▶│ │
│ │ │
│ deserialize PromptMessages │
│ │ │
│ truncate by max_token_limit │
│ │ │
│ │ Sequence[PromptMessage] │
│ ├──────────────────────────▶│
│ │ │
```
### Thread Tracking
Thread extraction still uses `Message` table's `parent_message_id` structure:
1. Query `Message` table for conversation → get thread's `workflow_run_ids`
2. Get the last completed `workflow_run_id` in the thread
3. Query `WorkflowNodeExecutionModel` for that execution's `outputs["context"]`
### API
```python
class NodeTokenBufferMemory:
def __init__(
self,
app_id: str,
conversation_id: str,
node_id: str,
tenant_id: str,
model_instance: ModelInstance,
):
"""Initialize node-level memory."""
...
def get_history_prompt_messages(
self,
*,
max_token_limit: int = 2000,
message_limit: int | None = None,
) -> Sequence[PromptMessage]:
"""
Retrieve history as PromptMessage sequence.
Reads from last completed execution's outputs["context"].
"""
...
# Legacy methods (no-op, kept for compatibility)
def add_messages(self, *args, **kwargs) -> None: pass
def flush(self) -> None: pass
def clear(self) -> None: pass
```
### Configuration
Add to `MemoryConfig` in `core/workflow/nodes/llm/entities.py`:
```python
class MemoryMode(StrEnum):
CONVERSATION = "conversation" # Use TokenBufferMemory (default)
NODE = "node" # Use NodeTokenBufferMemory (Chatflow only)
class MemoryConfig(BaseModel):
role_prefix: RolePrefix | None = None
window: MemoryWindowConfig | None = None
query_prompt_template: str | None = None
mode: MemoryMode = MemoryMode.CONVERSATION
```
**Mode Behavior:**
| Mode | Memory Class | Scope | Availability |
| -------------- | --------------------- | ------------------------ | ------------- |
| `conversation` | TokenBufferMemory | Entire conversation | All app modes |
| `node` | NodeTokenBufferMemory | Per-node in conversation | Chatflow only |
> When `mode=node` is used in a non-Chatflow context (no conversation_id), it falls back to no memory.
---
## Comparison
| Feature | TokenBufferMemory | NodeTokenBufferMemory |
| -------------- | ------------------------ | ---------------------------------- |
| Scope | Conversation | Node within Conversation |
| Storage | Database (Message table) | WorkflowNodeExecutionModel.outputs |
| Thread Support | Yes | Yes |
| File Support | Yes (via MessageFile) | Yes (via context serialization) |
| Token Limit | Yes | Yes |
| Use Case | Standard chat apps | Complex workflows |
---
## Extending to Other Nodes
Currently only **LLM Node** outputs `context` in its outputs. To enable node memory for other nodes:
1. Add `outputs["context"] = self._build_context(prompt_messages, response)` in the node
2. The `NodeTokenBufferMemory` will automatically pick it up
Nodes that could potentially support this:
- `question_classifier`
- `parameter_extractor`
- `agent`
---
## Future Considerations
1. **Cleanup**: Node memory lifecycle follows `WorkflowNodeExecutionModel`, which already has cleanup mechanisms
2. **Compression**: For very long conversations, consider summarization strategies
3. **Extension**: Other nodes may benefit from node-level memory

View File

@@ -0,0 +1,11 @@
from core.memory.base import BaseMemory
from core.memory.node_token_buffer_memory import (
NodeTokenBufferMemory,
)
from core.memory.token_buffer_memory import TokenBufferMemory
__all__ = [
"BaseMemory",
"NodeTokenBufferMemory",
"TokenBufferMemory",
]

83
api/core/memory/base.py Normal file
View File

@@ -0,0 +1,83 @@
"""
Base memory interfaces and types.
This module defines the common protocol for memory implementations.
"""
from abc import ABC, abstractmethod
from collections.abc import Sequence
from core.model_runtime.entities import ImagePromptMessageContent, PromptMessage
class BaseMemory(ABC):
"""
Abstract base class for memory implementations.
Provides a common interface for both conversation-level and node-level memory.
"""
@abstractmethod
def get_history_prompt_messages(
self,
*,
max_token_limit: int = 2000,
message_limit: int | None = None,
) -> Sequence[PromptMessage]:
"""
Get history prompt messages.
:param max_token_limit: Maximum tokens for history
:param message_limit: Maximum number of messages
:return: Sequence of PromptMessage for LLM context
"""
pass
def get_history_prompt_text(
self,
human_prefix: str = "Human",
ai_prefix: str = "Assistant",
max_token_limit: int = 2000,
message_limit: int | None = None,
) -> str:
"""
Get history prompt as formatted text.
:param human_prefix: Prefix for human messages
:param ai_prefix: Prefix for assistant messages
:param max_token_limit: Maximum tokens for history
:param message_limit: Maximum number of messages
:return: Formatted history text
"""
from core.model_runtime.entities import (
PromptMessageRole,
TextPromptMessageContent,
)
prompt_messages = self.get_history_prompt_messages(
max_token_limit=max_token_limit,
message_limit=message_limit,
)
string_messages = []
for m in prompt_messages:
if m.role == PromptMessageRole.USER:
role = human_prefix
elif m.role == PromptMessageRole.ASSISTANT:
role = ai_prefix
else:
continue
if isinstance(m.content, list):
inner_msg = ""
for content in m.content:
if isinstance(content, TextPromptMessageContent):
inner_msg += f"{content.data}\n"
elif isinstance(content, ImagePromptMessageContent):
inner_msg += "[image]\n"
string_messages.append(f"{role}: {inner_msg.strip()}")
else:
message = f"{role}: {m.content}"
string_messages.append(message)
return "\n".join(string_messages)

View File

@@ -0,0 +1,197 @@
"""
Node-level Token Buffer Memory for Chatflow.
This module provides node-scoped memory within a conversation.
Each LLM node in a workflow can maintain its own independent conversation history.
Note: This is only available in Chatflow (advanced-chat mode) because it requires
both conversation_id and node_id.
Design:
- History is read directly from WorkflowNodeExecutionModel.outputs["context"]
- No separate storage needed - the context is already saved during node execution
- Thread tracking leverages Message table's parent_message_id structure
"""
import logging
from collections.abc import Sequence
from typing import cast
from sqlalchemy import select
from sqlalchemy.orm import Session
from core.file import file_manager
from core.memory.base import BaseMemory
from core.model_manager import ModelInstance
from core.model_runtime.entities import (
AssistantPromptMessage,
MultiModalPromptMessageContent,
PromptMessage,
PromptMessageRole,
SystemPromptMessage,
ToolPromptMessage,
UserPromptMessage,
)
from core.model_runtime.entities.message_entities import PromptMessageContentUnionTypes
from core.prompt.utils.extract_thread_messages import extract_thread_messages
from extensions.ext_database import db
from models.model import Message
from models.workflow import WorkflowNodeExecutionModel
logger = logging.getLogger(__name__)
class NodeTokenBufferMemory(BaseMemory):
"""
Node-level Token Buffer Memory.
Provides node-scoped memory within a conversation. Each LLM node can maintain
its own independent conversation history.
Key design: History is read directly from WorkflowNodeExecutionModel.outputs["context"],
which is already saved during node execution. No separate storage needed.
"""
def __init__(
self,
app_id: str,
conversation_id: str,
node_id: str,
tenant_id: str,
model_instance: ModelInstance,
):
self.app_id = app_id
self.conversation_id = conversation_id
self.node_id = node_id
self.tenant_id = tenant_id
self.model_instance = model_instance
def _get_thread_workflow_run_ids(self) -> list[str]:
"""
Get workflow_run_ids for the current thread by querying Message table.
Returns workflow_run_ids in chronological order (oldest first).
"""
with Session(db.engine, expire_on_commit=False) as session:
stmt = (
select(Message)
.where(Message.conversation_id == self.conversation_id)
.order_by(Message.created_at.desc())
.limit(500)
)
messages = list(session.scalars(stmt).all())
if not messages:
return []
# Extract thread messages using existing logic
thread_messages = extract_thread_messages(messages)
# For newly created message, its answer is temporarily empty, skip it
if thread_messages and not thread_messages[0].answer and thread_messages[0].answer_tokens == 0:
thread_messages.pop(0)
# Reverse to get chronological order, extract workflow_run_ids
return [msg.workflow_run_id for msg in reversed(thread_messages) if msg.workflow_run_id]
def _deserialize_prompt_message(self, msg_dict: dict) -> PromptMessage:
"""Deserialize a dict to PromptMessage based on role."""
role = msg_dict.get("role")
if role in (PromptMessageRole.USER, "user"):
return UserPromptMessage.model_validate(msg_dict)
elif role in (PromptMessageRole.ASSISTANT, "assistant"):
return AssistantPromptMessage.model_validate(msg_dict)
elif role in (PromptMessageRole.SYSTEM, "system"):
return SystemPromptMessage.model_validate(msg_dict)
elif role in (PromptMessageRole.TOOL, "tool"):
return ToolPromptMessage.model_validate(msg_dict)
else:
return PromptMessage.model_validate(msg_dict)
def _deserialize_context(self, context_data: list[dict]) -> list[PromptMessage]:
"""Deserialize context data from outputs to list of PromptMessage."""
messages = []
for msg_dict in context_data:
try:
msg = self._deserialize_prompt_message(msg_dict)
msg = self._restore_multimodal_content(msg)
messages.append(msg)
except Exception as e:
logger.warning("Failed to deserialize prompt message: %s", e)
return messages
def _restore_multimodal_content(self, message: PromptMessage) -> PromptMessage:
"""
Restore multimodal content (base64 or url) from file_ref.
When context is saved, base64_data is cleared to save storage space.
This method restores the content by parsing file_ref (format: "method:id_or_url").
"""
content = message.content
if content is None or isinstance(content, str):
return message
# Process list content, restoring multimodal data from file references
restored_content: list[PromptMessageContentUnionTypes] = []
for item in content:
if isinstance(item, MultiModalPromptMessageContent):
# restore_multimodal_content preserves the concrete subclass type
restored_item = file_manager.restore_multimodal_content(item)
restored_content.append(cast(PromptMessageContentUnionTypes, restored_item))
else:
restored_content.append(item)
return message.model_copy(update={"content": restored_content})
def get_history_prompt_messages(
self,
*,
max_token_limit: int = 2000,
message_limit: int | None = None,
) -> Sequence[PromptMessage]:
"""
Retrieve history as PromptMessage sequence.
History is read directly from the last completed node execution's outputs["context"].
"""
_ = message_limit # unused, kept for interface compatibility
thread_workflow_run_ids = self._get_thread_workflow_run_ids()
if not thread_workflow_run_ids:
return []
# Get the last completed workflow_run_id (contains accumulated context)
last_run_id = thread_workflow_run_ids[-1]
with Session(db.engine, expire_on_commit=False) as session:
stmt = select(WorkflowNodeExecutionModel).where(
WorkflowNodeExecutionModel.workflow_run_id == last_run_id,
WorkflowNodeExecutionModel.node_id == self.node_id,
WorkflowNodeExecutionModel.status == "succeeded",
)
execution = session.scalars(stmt).first()
if not execution:
return []
outputs = execution.outputs_dict
if not outputs:
return []
context_data = outputs.get("context")
if not context_data or not isinstance(context_data, list):
return []
prompt_messages = self._deserialize_context(context_data)
if not prompt_messages:
return []
# Truncate by token limit
try:
current_tokens = self.model_instance.get_llm_num_tokens(prompt_messages)
while current_tokens > max_token_limit and len(prompt_messages) > 1:
prompt_messages.pop(0)
current_tokens = self.model_instance.get_llm_num_tokens(prompt_messages)
except Exception as e:
logger.warning("Failed to count tokens for truncation: %s", e)
return prompt_messages

View File

@@ -5,12 +5,12 @@ from sqlalchemy.orm import sessionmaker
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.file import file_manager
from core.memory.base import BaseMemory
from core.model_manager import ModelInstance
from core.model_runtime.entities import (
AssistantPromptMessage,
ImagePromptMessageContent,
PromptMessage,
PromptMessageRole,
TextPromptMessageContent,
UserPromptMessage,
)
@@ -24,7 +24,7 @@ from repositories.api_workflow_run_repository import APIWorkflowRunRepository
from repositories.factory import DifyAPIRepositoryFactory
class TokenBufferMemory:
class TokenBufferMemory(BaseMemory):
def __init__(
self,
conversation: Conversation,
@@ -115,10 +115,14 @@ class TokenBufferMemory:
return AssistantPromptMessage(content=prompt_message_contents)
def get_history_prompt_messages(
self, max_token_limit: int = 2000, message_limit: int | None = None
self,
*,
max_token_limit: int = 2000,
message_limit: int | None = None,
) -> Sequence[PromptMessage]:
"""
Get history prompt messages.
:param max_token_limit: max token limit
:param message_limit: message limit
"""
@@ -200,44 +204,3 @@ class TokenBufferMemory:
curr_message_tokens = self.model_instance.get_llm_num_tokens(prompt_messages)
return prompt_messages
def get_history_prompt_text(
self,
human_prefix: str = "Human",
ai_prefix: str = "Assistant",
max_token_limit: int = 2000,
message_limit: int | None = None,
) -> str:
"""
Get history prompt text.
:param human_prefix: human prefix
:param ai_prefix: ai prefix
:param max_token_limit: max token limit
:param message_limit: message limit
:return:
"""
prompt_messages = self.get_history_prompt_messages(max_token_limit=max_token_limit, message_limit=message_limit)
string_messages = []
for m in prompt_messages:
if m.role == PromptMessageRole.USER:
role = human_prefix
elif m.role == PromptMessageRole.ASSISTANT:
role = ai_prefix
else:
continue
if isinstance(m.content, list):
inner_msg = ""
for content in m.content:
if isinstance(content, TextPromptMessageContent):
inner_msg += f"{content.data}\n"
elif isinstance(content, ImagePromptMessageContent):
inner_msg += "[image]\n"
string_messages.append(f"{role}: {inner_msg.strip()}")
else:
message = f"{role}: {m.content}"
string_messages.append(message)
return "\n".join(string_messages)

View File

@@ -91,6 +91,9 @@ class MultiModalPromptMessageContent(PromptMessageContent):
mime_type: str = Field(default=..., description="the mime type of multi-modal file")
filename: str = Field(default="", description="the filename of multi-modal file")
# File reference for context restoration, format: "transfer_method:related_id" or "remote:url"
file_ref: str | None = Field(default=None, description="Encoded file reference for restoration")
@property
def data(self):
return self.url or f"data:{self.mime_type};base64,{self.base64_data}"
@@ -276,7 +279,5 @@ class ToolPromptMessage(PromptMessage):
:return: True if prompt message is empty, False otherwise
"""
if not super().is_empty() and not self.tool_call_id:
return False
return True
# ToolPromptMessage is not empty if it has content OR has a tool_call_id
return super().is_empty() and not self.tool_call_id

View File

@@ -5,7 +5,7 @@ from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEnti
from core.file import file_manager
from core.file.models import File
from core.helper.code_executor.jinja2.jinja2_formatter import Jinja2Formatter
from core.memory.token_buffer_memory import TokenBufferMemory
from core.memory.base import BaseMemory
from core.model_runtime.entities import (
AssistantPromptMessage,
PromptMessage,
@@ -43,7 +43,7 @@ class AdvancedPromptTransform(PromptTransform):
files: Sequence[File],
context: str | None,
memory_config: MemoryConfig | None,
memory: TokenBufferMemory | None,
memory: BaseMemory | None,
model_config: ModelConfigWithCredentialsEntity,
image_detail_config: ImagePromptMessageContent.DETAIL | None = None,
) -> list[PromptMessage]:
@@ -84,7 +84,7 @@ class AdvancedPromptTransform(PromptTransform):
files: Sequence[File],
context: str | None,
memory_config: MemoryConfig | None,
memory: TokenBufferMemory | None,
memory: BaseMemory | None,
model_config: ModelConfigWithCredentialsEntity,
image_detail_config: ImagePromptMessageContent.DETAIL | None = None,
) -> list[PromptMessage]:
@@ -145,7 +145,7 @@ class AdvancedPromptTransform(PromptTransform):
files: Sequence[File],
context: str | None,
memory_config: MemoryConfig | None,
memory: TokenBufferMemory | None,
memory: BaseMemory | None,
model_config: ModelConfigWithCredentialsEntity,
image_detail_config: ImagePromptMessageContent.DETAIL | None = None,
) -> list[PromptMessage]:
@@ -270,7 +270,7 @@ class AdvancedPromptTransform(PromptTransform):
def _set_histories_variable(
self,
memory: TokenBufferMemory,
memory: BaseMemory,
memory_config: MemoryConfig,
raw_prompt: str,
role_prefix: MemoryConfig.RolePrefix,

View File

@@ -1,3 +1,4 @@
from enum import StrEnum
from typing import Literal
from pydantic import BaseModel
@@ -5,6 +6,13 @@ from pydantic import BaseModel
from core.model_runtime.entities.message_entities import PromptMessageRole
class MemoryMode(StrEnum):
"""Memory mode for LLM nodes."""
CONVERSATION = "conversation" # Use TokenBufferMemory (default, existing behavior)
NODE = "node" # Use NodeTokenBufferMemory (Chatflow only)
class ChatModelMessage(BaseModel):
"""
Chat Message.
@@ -48,3 +56,4 @@ class MemoryConfig(BaseModel):
role_prefix: RolePrefix | None = None
window: WindowConfig
query_prompt_template: str | None = None
mode: MemoryMode = MemoryMode.CONVERSATION

View File

@@ -1,7 +1,7 @@
from typing import Any
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
from core.memory.token_buffer_memory import TokenBufferMemory
from core.memory.base import BaseMemory
from core.model_manager import ModelInstance
from core.model_runtime.entities.message_entities import PromptMessage
from core.model_runtime.entities.model_entities import ModelPropertyKey
@@ -11,7 +11,7 @@ from core.prompt.entities.advanced_prompt_entities import MemoryConfig
class PromptTransform:
def _append_chat_histories(
self,
memory: TokenBufferMemory,
memory: BaseMemory,
memory_config: MemoryConfig,
prompt_messages: list[PromptMessage],
model_config: ModelConfigWithCredentialsEntity,
@@ -52,7 +52,7 @@ class PromptTransform:
def _get_history_messages_from_memory(
self,
memory: TokenBufferMemory,
memory: BaseMemory,
memory_config: MemoryConfig,
max_token_limit: int,
human_prefix: str | None = None,
@@ -73,7 +73,7 @@ class PromptTransform:
return memory.get_history_prompt_text(**kwargs)
def _get_history_messages_list_from_memory(
self, memory: TokenBufferMemory, memory_config: MemoryConfig, max_token_limit: int
self, memory: BaseMemory, memory_config: MemoryConfig, max_token_limit: int
) -> list[PromptMessage]:
"""Get memory messages."""
return list(

View File

@@ -1047,6 +1047,8 @@ class ToolManager:
continue
tool_input = ToolNodeData.ToolInput.model_validate(tool_configurations.get(parameter.name, {}))
if tool_input.type == "variable":
if not isinstance(tool_input.value, list):
raise ToolParameterError(f"Invalid variable selector for {parameter.name}")
variable = variable_pool.get(tool_input.value)
if variable is None:
raise ToolParameterError(f"Variable {tool_input.value} does not exist")
@@ -1056,6 +1058,11 @@ class ToolManager:
elif tool_input.type == "mixed":
segment_group = variable_pool.convert_template(str(tool_input.value))
parameter_value = segment_group.text
elif tool_input.type == "mention":
# Mention type not supported in agent mode
raise ToolParameterError(
f"Mention type not supported in agent for parameter '{parameter.name}'"
)
else:
raise ToolParameterError(f"Unknown tool input type '{tool_input.type}'")
runtime_parameters[parameter.name] = parameter_value

View File

@@ -4,6 +4,7 @@ from .segments import (
ArrayFileSegment,
ArrayNumberSegment,
ArrayObjectSegment,
ArrayPromptMessageSegment,
ArraySegment,
ArrayStringSegment,
FileSegment,
@@ -20,6 +21,7 @@ from .variables import (
ArrayFileVariable,
ArrayNumberVariable,
ArrayObjectVariable,
ArrayPromptMessageVariable,
ArrayStringVariable,
ArrayVariable,
FileVariable,
@@ -42,6 +44,8 @@ __all__ = [
"ArrayNumberVariable",
"ArrayObjectSegment",
"ArrayObjectVariable",
"ArrayPromptMessageSegment",
"ArrayPromptMessageVariable",
"ArraySegment",
"ArrayStringSegment",
"ArrayStringVariable",

View File

@@ -6,6 +6,7 @@ from typing import Annotated, Any, TypeAlias
from pydantic import BaseModel, ConfigDict, Discriminator, Tag, field_validator
from core.file import File
from core.model_runtime.entities import PromptMessage
from .types import SegmentType
@@ -208,6 +209,15 @@ class ArrayBooleanSegment(ArraySegment):
value: Sequence[bool]
class ArrayPromptMessageSegment(ArraySegment):
value_type: SegmentType = SegmentType.ARRAY_PROMPT_MESSAGE
value: Sequence[PromptMessage]
def to_object(self):
"""Convert to JSON-serializable format for database storage and frontend."""
return [msg.model_dump() for msg in self.value]
def get_segment_discriminator(v: Any) -> SegmentType | None:
if isinstance(v, Segment):
return v.value_type
@@ -248,6 +258,7 @@ SegmentUnion: TypeAlias = Annotated[
| Annotated[ArrayObjectSegment, Tag(SegmentType.ARRAY_OBJECT)]
| Annotated[ArrayFileSegment, Tag(SegmentType.ARRAY_FILE)]
| Annotated[ArrayBooleanSegment, Tag(SegmentType.ARRAY_BOOLEAN)]
| Annotated[ArrayPromptMessageSegment, Tag(SegmentType.ARRAY_PROMPT_MESSAGE)]
),
Discriminator(get_segment_discriminator),
]

View File

@@ -45,6 +45,7 @@ class SegmentType(StrEnum):
ARRAY_OBJECT = "array[object]"
ARRAY_FILE = "array[file]"
ARRAY_BOOLEAN = "array[boolean]"
ARRAY_PROMPT_MESSAGE = "array[message]"
NONE = "none"

View File

@@ -3,8 +3,10 @@ from typing import Any
import orjson
from core.model_runtime.entities import PromptMessage
from .segment_group import SegmentGroup
from .segments import ArrayFileSegment, FileSegment, Segment
from .segments import ArrayFileSegment, ArrayPromptMessageSegment, FileSegment, Segment
def to_selector(node_id: str, name: str, paths: Iterable[str] = ()) -> Sequence[str]:
@@ -16,7 +18,7 @@ def to_selector(node_id: str, name: str, paths: Iterable[str] = ()) -> Sequence[
def segment_orjson_default(o: Any):
"""Default function for orjson serialization of Segment types"""
if isinstance(o, ArrayFileSegment):
if isinstance(o, (ArrayFileSegment, ArrayPromptMessageSegment)):
return [v.model_dump() for v in o.value]
elif isinstance(o, FileSegment):
return o.value.model_dump()
@@ -24,6 +26,8 @@ def segment_orjson_default(o: Any):
return [segment_orjson_default(seg) for seg in o.value]
elif isinstance(o, Segment):
return o.value
elif isinstance(o, PromptMessage):
return o.model_dump()
raise TypeError(f"Object of type {type(o).__name__} is not JSON serializable")

View File

@@ -12,6 +12,7 @@ from .segments import (
ArrayFileSegment,
ArrayNumberSegment,
ArrayObjectSegment,
ArrayPromptMessageSegment,
ArraySegment,
ArrayStringSegment,
BooleanSegment,
@@ -110,6 +111,10 @@ class ArrayBooleanVariable(ArrayBooleanSegment, ArrayVariable):
pass
class ArrayPromptMessageVariable(ArrayPromptMessageSegment, ArrayVariable):
pass
class RAGPipelineVariable(BaseModel):
belong_to_node_id: str = Field(description="belong to which node id, shared means public")
type: str = Field(description="variable type, text-input, paragraph, select, number, file, file-list")
@@ -160,6 +165,7 @@ Variable: TypeAlias = Annotated[
| Annotated[ArrayObjectVariable, Tag(SegmentType.ARRAY_OBJECT)]
| Annotated[ArrayFileVariable, Tag(SegmentType.ARRAY_FILE)]
| Annotated[ArrayBooleanVariable, Tag(SegmentType.ARRAY_BOOLEAN)]
| Annotated[ArrayPromptMessageVariable, Tag(SegmentType.ARRAY_PROMPT_MESSAGE)]
| Annotated[SecretVariable, Tag(SegmentType.SECRET)]
),
Discriminator(get_segment_discriminator),

File diff suppressed because it is too large Load Diff

View File

@@ -63,6 +63,7 @@ class NodeType(StrEnum):
TRIGGER_SCHEDULE = "trigger-schedule"
TRIGGER_PLUGIN = "trigger-plugin"
HUMAN_INPUT = "human-input"
GROUP = "group"
@property
def is_trigger_node(self) -> bool:
@@ -252,6 +253,7 @@ class WorkflowNodeExecutionMetadataKey(StrEnum):
LOOP_VARIABLE_MAP = "loop_variable_map" # single loop variable output
DATASOURCE_INFO = "datasource_info"
COMPLETED_REASON = "completed_reason" # completed reason for loop node
MENTION_PARENT_ID = "mention_parent_id" # parent node id for extractor nodes
class WorkflowNodeExecutionStatus(StrEnum):

View File

@@ -307,7 +307,14 @@ class Graph:
if not node_configs:
raise ValueError("Graph must have at least one node")
node_configs = [node_config for node_config in node_configs if node_config.get("type", "") != "custom-note"]
# Filter out UI-only node types:
# - custom-note: top-level type (node_config.type == "custom-note")
# - group: data-level type (node_config.data.type == "group")
node_configs = [
node_config
for node_config in node_configs
if node_config.get("type", "") != "custom-note" and node_config.get("data", {}).get("type", "") != "group"
]
# Parse node configurations
node_configs_map = cls._parse_node_configs(node_configs)

View File

@@ -93,8 +93,8 @@ class EventHandler:
Args:
event: The event to handle
"""
# Events in loops or iterations are always collected
if event.in_loop_id or event.in_iteration_id:
# Events in loops, iterations, or extractor groups are always collected
if event.in_loop_id or event.in_iteration_id or event.in_mention_parent_id:
self._event_collector.collect(event)
return
return self._dispatch(event)
@@ -125,6 +125,11 @@ class EventHandler:
Args:
event: The node started event
"""
# Check if this is an extractor node (has parent_node_id)
if self._is_extractor_node(event.node_id):
self._handle_extractor_node_started(event)
return
# Track execution in domain model
node_execution = self._graph_execution.get_or_create_node_execution(event.node_id)
is_initial_attempt = node_execution.retry_count == 0
@@ -164,6 +169,11 @@ class EventHandler:
Args:
event: The node succeeded event
"""
# Check if this is an extractor node (has parent_node_id)
if self._is_extractor_node(event.node_id):
self._handle_extractor_node_success(event)
return
# Update domain model
node_execution = self._graph_execution.get_or_create_node_execution(event.node_id)
node_execution.mark_taken()
@@ -226,6 +236,11 @@ class EventHandler:
Args:
event: The node failed event
"""
# Check if this is an extractor node (has parent_node_id)
if self._is_extractor_node(event.node_id):
self._handle_extractor_node_failed(event)
return
# Update domain model
node_execution = self._graph_execution.get_or_create_node_execution(event.node_id)
node_execution.mark_failed(event.error)
@@ -345,3 +360,57 @@ class EventHandler:
self._graph_runtime_state.set_output("answer", value)
else:
self._graph_runtime_state.set_output(key, value)
def _is_extractor_node(self, node_id: str) -> bool:
"""
Check if node_id represents an extractor node (has parent_node_id).
Extractor nodes extract values from list[PromptMessage] for their parent node.
They have a parent_node_id field pointing to their parent node.
"""
node = self._graph.nodes.get(node_id)
if node is None:
return False
return node.node_data.is_extractor_node
def _handle_extractor_node_started(self, event: NodeRunStartedEvent) -> None:
"""
Handle extractor node started event.
Extractor nodes don't need full execution tracking, just collect the event.
"""
# Track in response coordinator for stream ordering
self._response_coordinator.track_node_execution(event.node_id, event.id)
# Collect the event
self._event_collector.collect(event)
def _handle_extractor_node_success(self, event: NodeRunSucceededEvent) -> None:
"""
Handle extractor node success event.
Extractor nodes need special handling:
- Store outputs in variable pool (for reference by other nodes)
- Accumulate token usage
- Collect the event for logging
- Do NOT process edges or enqueue next nodes (parent node handles that)
"""
self._accumulate_node_usage(event.node_run_result.llm_usage)
# Store outputs in variable pool
self._store_node_outputs(event.node_id, event.node_run_result.outputs)
# Collect the event
self._event_collector.collect(event)
def _handle_extractor_node_failed(self, event: NodeRunFailedEvent) -> None:
"""
Handle extractor node failed event.
Extractor node failures are collected for logging,
but the parent node is responsible for handling the error.
"""
self._accumulate_node_usage(event.node_run_result.llm_usage)
# Collect the event for logging
self._event_collector.collect(event)

View File

@@ -68,6 +68,7 @@ class _NodeRuntimeSnapshot:
predecessor_node_id: str | None
iteration_id: str | None
loop_id: str | None
mention_parent_id: str | None
created_at: datetime
@@ -230,6 +231,7 @@ class WorkflowPersistenceLayer(GraphEngineLayer):
metadata = {
WorkflowNodeExecutionMetadataKey.ITERATION_ID: event.in_iteration_id,
WorkflowNodeExecutionMetadataKey.LOOP_ID: event.in_loop_id,
WorkflowNodeExecutionMetadataKey.MENTION_PARENT_ID: event.in_mention_parent_id,
}
domain_execution = WorkflowNodeExecution(
@@ -256,6 +258,7 @@ class WorkflowPersistenceLayer(GraphEngineLayer):
predecessor_node_id=event.predecessor_node_id,
iteration_id=event.in_iteration_id,
loop_id=event.in_loop_id,
mention_parent_id=event.in_mention_parent_id,
created_at=event.start_at,
)
self._node_snapshots[event.id] = snapshot

View File

@@ -21,6 +21,12 @@ class GraphNodeEventBase(GraphEngineEvent):
"""iteration id if node is in iteration"""
in_loop_id: str | None = None
"""loop id if node is in loop"""
in_mention_parent_id: str | None = None
"""Parent node id if this is an extractor node event.
When set, indicates this event belongs to an extractor node that
is extracting values for the specified parent node.
"""
# The version of the node, or "1" if not specified.
node_version: str = "1"

View File

@@ -12,11 +12,20 @@ from sqlalchemy.orm import Session
from core.agent.entities import AgentToolEntity
from core.agent.plugin_entities import AgentStrategyParameter
from core.file import File, FileTransferMethod
from core.memory.base import BaseMemory
from core.memory.node_token_buffer_memory import NodeTokenBufferMemory
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance, ModelManager
from core.model_runtime.entities.llm_entities import LLMUsage, LLMUsageMetadata
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
PromptMessage,
ToolPromptMessage,
UserPromptMessage,
)
from core.model_runtime.entities.model_entities import AIModelEntity, ModelType
from core.model_runtime.utils.encoders import jsonable_encoder
from core.prompt.entities.advanced_prompt_entities import MemoryMode
from core.provider_manager import ProviderManager
from core.tools.entities.tool_entities import (
ToolIdentity,
@@ -136,6 +145,9 @@ class AgentNode(Node[AgentNodeData]):
)
return
# Fetch memory for node memory saving
memory = self._fetch_memory_for_save()
try:
yield from self._transform_message(
messages=message_stream,
@@ -149,6 +161,7 @@ class AgentNode(Node[AgentNodeData]):
node_type=self.node_type,
node_id=self._node_id,
node_execution_id=self.id,
memory=memory,
)
except PluginDaemonClientSideError as e:
transform_error = AgentMessageTransformError(
@@ -395,8 +408,20 @@ class AgentNode(Node[AgentNodeData]):
icon = None
return icon
def _fetch_memory(self, model_instance: ModelInstance) -> TokenBufferMemory | None:
# get conversation id
def _fetch_memory(self, model_instance: ModelInstance) -> BaseMemory | None:
"""
Fetch memory based on configuration mode.
Returns TokenBufferMemory for conversation mode (default),
or NodeTokenBufferMemory for node mode (Chatflow only).
"""
node_data = self.node_data
memory_config = node_data.memory
if not memory_config:
return None
# get conversation id (required for both modes in Chatflow)
conversation_id_variable = self.graph_runtime_state.variable_pool.get(
["sys", SystemVariableKey.CONVERSATION_ID]
)
@@ -404,16 +429,26 @@ class AgentNode(Node[AgentNodeData]):
return None
conversation_id = conversation_id_variable.value
with Session(db.engine, expire_on_commit=False) as session:
stmt = select(Conversation).where(Conversation.app_id == self.app_id, Conversation.id == conversation_id)
conversation = session.scalar(stmt)
if not conversation:
return None
memory = TokenBufferMemory(conversation=conversation, model_instance=model_instance)
return memory
# Return appropriate memory type based on mode
if memory_config.mode == MemoryMode.NODE:
# Node-level memory (Chatflow only)
return NodeTokenBufferMemory(
app_id=self.app_id,
conversation_id=conversation_id,
node_id=self._node_id,
tenant_id=self.tenant_id,
model_instance=model_instance,
)
else:
# Conversation-level memory (default)
with Session(db.engine, expire_on_commit=False) as session:
stmt = select(Conversation).where(
Conversation.app_id == self.app_id, Conversation.id == conversation_id
)
conversation = session.scalar(stmt)
if not conversation:
return None
return TokenBufferMemory(conversation=conversation, model_instance=model_instance)
def _fetch_model(self, value: dict[str, Any]) -> tuple[ModelInstance, AIModelEntity | None]:
provider_manager = ProviderManager()
@@ -457,6 +492,136 @@ class AgentNode(Node[AgentNodeData]):
else:
return [tool for tool in tools if tool.get("type") != ToolProviderType.MCP]
def _fetch_memory_for_save(self) -> BaseMemory | None:
"""
Fetch memory instance for saving node memory.
This is a simplified version that doesn't require model_instance.
"""
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
node_data = self.node_data
if not node_data.memory:
return None
# Get conversation_id
conversation_id_var = self.graph_runtime_state.variable_pool.get(["sys", SystemVariableKey.CONVERSATION_ID])
if not isinstance(conversation_id_var, StringSegment):
return None
conversation_id = conversation_id_var.value
# Return appropriate memory type based on mode
if node_data.memory.mode == MemoryMode.NODE:
# For node memory, we need a model_instance for token counting
# Use a simple default model for this purpose
try:
model_instance = ModelManager().get_default_model_instance(
tenant_id=self.tenant_id,
model_type=ModelType.LLM,
)
except Exception:
return None
return NodeTokenBufferMemory(
app_id=self.app_id,
conversation_id=conversation_id,
node_id=self._node_id,
tenant_id=self.tenant_id,
model_instance=model_instance,
)
else:
# Conversation-level memory doesn't need saving here
return None
def _build_context(
self,
parameters_for_log: dict[str, Any],
user_query: str,
assistant_response: str,
agent_logs: list[AgentLogEvent],
) -> list[PromptMessage]:
"""
Build context from user query, tool calls, and assistant response.
Format: user -> assistant(with tool_calls) -> tool -> assistant
The context includes:
- Current user query (always present, may be empty)
- Assistant message with tool_calls (if tools were called)
- Tool results
- Assistant's final response
"""
context_messages: list[PromptMessage] = []
# Always add user query (even if empty, to maintain conversation structure)
context_messages.append(UserPromptMessage(content=user_query or ""))
# Extract actual tool calls from agent logs
# Only include logs with label starting with "CALL " - these are real tool invocations
tool_calls: list[AssistantPromptMessage.ToolCall] = []
tool_results: list[tuple[str, str, str]] = [] # (tool_call_id, tool_name, result)
for log in agent_logs:
if log.status == "success" and log.label and log.label.startswith("CALL "):
# Extract tool name from label (format: "CALL tool_name")
tool_name = log.label[5:] # Remove "CALL " prefix
tool_call_id = log.message_id
# Parse tool response from data
data = log.data or {}
tool_response = ""
# Try to extract the actual tool response
if "tool_response" in data:
tool_response = data["tool_response"]
elif "output" in data:
tool_response = data["output"]
elif "result" in data:
tool_response = data["result"]
if isinstance(tool_response, dict):
tool_response = str(tool_response)
# Get tool input for arguments
tool_input = data.get("tool_call_input", {}) or data.get("input", {})
if isinstance(tool_input, dict):
import json
tool_input_str = json.dumps(tool_input, ensure_ascii=False)
else:
tool_input_str = str(tool_input) if tool_input else ""
if tool_response:
tool_calls.append(
AssistantPromptMessage.ToolCall(
id=tool_call_id,
type="function",
function=AssistantPromptMessage.ToolCall.ToolCallFunction(
name=tool_name,
arguments=tool_input_str,
),
)
)
tool_results.append((tool_call_id, tool_name, str(tool_response)))
# Add assistant message with tool_calls if there were tool calls
if tool_calls:
context_messages.append(AssistantPromptMessage(content="", tool_calls=tool_calls))
# Add tool result messages
for tool_call_id, tool_name, result in tool_results:
context_messages.append(
ToolPromptMessage(
content=result,
tool_call_id=tool_call_id,
name=tool_name,
)
)
# Add final assistant response
context_messages.append(AssistantPromptMessage(content=assistant_response))
return context_messages
def _transform_message(
self,
messages: Generator[ToolInvokeMessage, None, None],
@@ -467,6 +632,7 @@ class AgentNode(Node[AgentNodeData]):
node_type: NodeType,
node_id: str,
node_execution_id: str,
memory: BaseMemory | None = None,
) -> Generator[NodeEventBase, None, None]:
"""
Convert ToolInvokeMessages into tuple[plain_text, files]
@@ -711,6 +877,12 @@ class AgentNode(Node[AgentNodeData]):
is_final=True,
)
# Get user query from parameters for building context
user_query = parameters_for_log.get("query", "")
# Build context from history, user query, tool calls and assistant response
context = self._build_context(parameters_for_log, user_query, text, agent_logs)
yield StreamCompletedEvent(
node_run_result=NodeRunResult(
status=WorkflowNodeExecutionStatus.SUCCEEDED,
@@ -719,6 +891,7 @@ class AgentNode(Node[AgentNodeData]):
"usage": jsonable_encoder(llm_usage),
"files": ArrayFileSegment(value=files),
"json": json_output,
"context": context,
**variables,
},
metadata={

View File

@@ -1,4 +1,10 @@
from .entities import BaseIterationNodeData, BaseIterationState, BaseLoopNodeData, BaseLoopState, BaseNodeData
from .entities import (
BaseIterationNodeData,
BaseIterationState,
BaseLoopNodeData,
BaseLoopState,
BaseNodeData,
)
from .usage_tracking_mixin import LLMUsageTrackingMixin
__all__ = [

View File

@@ -175,6 +175,16 @@ class BaseNodeData(ABC, BaseModel):
default_value: list[DefaultValue] | None = None
retry_config: RetryConfig = RetryConfig()
# Parent node ID when this node is used as an extractor.
# If set, this node is an "attached" extractor node that extracts values
# from list[PromptMessage] for the parent node's parameters.
parent_node_id: str | None = None
@property
def is_extractor_node(self) -> bool:
"""Check if this node is an extractor node (has parent_node_id)."""
return self.parent_node_id is not None
@property
def default_value_dict(self) -> dict[str, Any]:
if self.default_value:

View File

@@ -270,10 +270,87 @@ class Node(Generic[NodeDataT]):
"""Check if execution should be stopped."""
return self.graph_runtime_state.stop_event.is_set()
def _find_extractor_node_configs(self) -> list[dict[str, Any]]:
"""
Find all extractor node configurations that have parent_node_id == self._node_id.
Returns:
List of node configuration dicts for extractor nodes
"""
nodes = self.graph_config.get("nodes", [])
extractor_configs = []
for node_config in nodes:
node_data = node_config.get("data", {})
if node_data.get("parent_node_id") == self._node_id:
extractor_configs.append(node_config)
return extractor_configs
def _execute_mention_nodes(self) -> Generator[GraphNodeEventBase, None, None]:
"""
Execute all extractor nodes associated with this node.
Extractor nodes are nodes with parent_node_id == self._node_id.
They are executed before the main node to extract values from list[PromptMessage].
"""
from core.workflow.nodes.node_mapping import LATEST_VERSION, NODE_TYPE_CLASSES_MAPPING
extractor_configs = self._find_extractor_node_configs()
logger.debug("[Extractor] Found %d extractor nodes for parent '%s'", len(extractor_configs), self._node_id)
if not extractor_configs:
return
for config in extractor_configs:
node_id = config.get("id")
node_data = config.get("data", {})
node_type_str = node_data.get("type")
if not node_id or not node_type_str:
continue
# Get node class
try:
node_type = NodeType(node_type_str)
except ValueError:
continue
node_mapping = NODE_TYPE_CLASSES_MAPPING.get(node_type)
if not node_mapping:
continue
node_version = str(node_data.get("version", "1"))
node_cls = node_mapping.get(node_version) or node_mapping.get(LATEST_VERSION)
if not node_cls:
continue
# Instantiate and execute the extractor node
extractor_node = node_cls(
id=node_id,
config=config,
graph_init_params=self._graph_init_params,
graph_runtime_state=self.graph_runtime_state,
)
# Execute and process extractor node events
for event in extractor_node.run():
# Tag event with parent node id for stream ordering and history tracking
if isinstance(event, GraphNodeEventBase):
event.in_mention_parent_id = self._node_id
if isinstance(event, NodeRunSucceededEvent):
# Store extractor node outputs in variable pool
outputs: Mapping[str, Any] = event.node_run_result.outputs
for variable_name, variable_value in outputs.items():
self.graph_runtime_state.variable_pool.add((node_id, variable_name), variable_value)
if not isinstance(event, NodeRunStreamChunkEvent):
yield event
def run(self) -> Generator[GraphNodeEventBase, None, None]:
execution_id = self.ensure_execution_id()
self._start_at = naive_utc_now()
# Step 1: Execute associated extractor nodes before main node execution
yield from self._execute_mention_nodes()
# Create and push start event with required fields
start_event = NodeRunStartedEvent(
id=execution_id,

View File

@@ -1,7 +1,7 @@
from collections.abc import Mapping, Sequence
from typing import Any, Literal
from typing import Annotated, Any, Literal, TypeAlias
from pydantic import BaseModel, Field, field_validator
from pydantic import BaseModel, ConfigDict, Field, field_validator
from core.model_runtime.entities import ImagePromptMessageContent, LLMMode
from core.prompt.entities.advanced_prompt_entities import ChatModelMessage, CompletionModelPromptTemplate, MemoryConfig
@@ -58,9 +58,28 @@ class LLMNodeCompletionModelPromptTemplate(CompletionModelPromptTemplate):
jinja2_text: str | None = None
class PromptMessageContext(BaseModel):
"""Context variable reference in prompt template.
YAML/JSON format: { "$context": ["node_id", "variable_name"] }
This will be expanded to list[PromptMessage] at runtime.
"""
model_config = ConfigDict(populate_by_name=True)
value_selector: Sequence[str] = Field(alias="$context")
# Union type for prompt template items (static message or context variable reference)
PromptTemplateItem: TypeAlias = Annotated[
LLMNodeChatModelMessage | PromptMessageContext,
Field(discriminator=None),
]
class LLMNodeData(BaseNodeData):
model: ModelConfig
prompt_template: Sequence[LLMNodeChatModelMessage] | LLMNodeCompletionModelPromptTemplate
prompt_template: Sequence[PromptTemplateItem] | LLMNodeCompletionModelPromptTemplate
prompt_config: PromptConfig = Field(default_factory=PromptConfig)
memory: MemoryConfig | None = None
context: ContextConfig

View File

@@ -8,12 +8,20 @@ from configs import dify_config
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
from core.entities.provider_entities import ProviderQuotaType, QuotaUnit
from core.file.models import File
from core.memory.token_buffer_memory import TokenBufferMemory
from core.memory import NodeTokenBufferMemory, TokenBufferMemory
from core.memory.base import BaseMemory
from core.model_manager import ModelInstance, ModelManager
from core.model_runtime.entities.llm_entities import LLMUsage
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
MultiModalPromptMessageContent,
PromptMessage,
PromptMessageContentUnionTypes,
PromptMessageRole,
)
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.prompt.entities.advanced_prompt_entities import MemoryConfig
from core.prompt.entities.advanced_prompt_entities import MemoryConfig, MemoryMode
from core.variables.segments import ArrayAnySegment, ArrayFileSegment, FileSegment, NoneSegment, StringSegment
from core.workflow.enums import SystemVariableKey
from core.workflow.nodes.llm.entities import ModelConfig
@@ -86,25 +94,56 @@ def fetch_files(variable_pool: VariablePool, selector: Sequence[str]) -> Sequenc
def fetch_memory(
variable_pool: VariablePool, app_id: str, node_data_memory: MemoryConfig | None, model_instance: ModelInstance
) -> TokenBufferMemory | None:
variable_pool: VariablePool,
app_id: str,
tenant_id: str,
node_data_memory: MemoryConfig | None,
model_instance: ModelInstance,
node_id: str = "",
) -> BaseMemory | None:
"""
Fetch memory based on configuration mode.
Returns TokenBufferMemory for conversation mode (default),
or NodeTokenBufferMemory for node mode (Chatflow only).
:param variable_pool: Variable pool containing system variables
:param app_id: Application ID
:param tenant_id: Tenant ID
:param node_data_memory: Memory configuration
:param model_instance: Model instance for token counting
:param node_id: Node ID in the workflow (required for node mode)
:return: Memory instance or None if not applicable
"""
if not node_data_memory:
return None
# get conversation id
# Get conversation_id from variable pool (required for both modes in Chatflow)
conversation_id_variable = variable_pool.get(["sys", SystemVariableKey.CONVERSATION_ID])
if not isinstance(conversation_id_variable, StringSegment):
return None
conversation_id = conversation_id_variable.value
with Session(db.engine, expire_on_commit=False) as session:
stmt = select(Conversation).where(Conversation.app_id == app_id, Conversation.id == conversation_id)
conversation = session.scalar(stmt)
if not conversation:
# Return appropriate memory type based on mode
if node_data_memory.mode == MemoryMode.NODE:
# Node-level memory (Chatflow only)
if not node_id:
return None
memory = TokenBufferMemory(conversation=conversation, model_instance=model_instance)
return memory
return NodeTokenBufferMemory(
app_id=app_id,
conversation_id=conversation_id,
node_id=node_id,
tenant_id=tenant_id,
model_instance=model_instance,
)
else:
# Conversation-level memory (default)
with Session(db.engine, expire_on_commit=False) as session:
stmt = select(Conversation).where(Conversation.app_id == app_id, Conversation.id == conversation_id)
conversation = session.scalar(stmt)
if not conversation:
return None
return TokenBufferMemory(conversation=conversation, model_instance=model_instance)
def deduct_llm_quota(tenant_id: str, model_instance: ModelInstance, usage: LLMUsage):
@@ -170,3 +209,87 @@ def deduct_llm_quota(tenant_id: str, model_instance: ModelInstance, usage: LLMUs
)
session.execute(stmt)
session.commit()
def build_context(
prompt_messages: Sequence[PromptMessage],
assistant_response: str,
) -> list[PromptMessage]:
"""
Build context from prompt messages and assistant response.
Excludes system messages and includes the current LLM response.
Returns list[PromptMessage] for use with ArrayPromptMessageSegment.
Note: Multi-modal content base64 data is truncated to avoid storing large data in context.
"""
context_messages: list[PromptMessage] = [
_truncate_multimodal_content(m) for m in prompt_messages if m.role != PromptMessageRole.SYSTEM
]
context_messages.append(AssistantPromptMessage(content=assistant_response))
return context_messages
def _truncate_multimodal_content(message: PromptMessage) -> PromptMessage:
"""
Truncate multi-modal content base64 data in a message to avoid storing large data.
Preserves the PromptMessage structure for ArrayPromptMessageSegment compatibility.
If file_ref is present, clears base64_data and url (they can be restored later).
Otherwise, truncates base64_data as fallback for legacy data.
"""
content = message.content
if content is None or isinstance(content, str):
return message
# Process list content, handling multi-modal data based on file_ref availability
new_content: list[PromptMessageContentUnionTypes] = []
for item in content:
if isinstance(item, MultiModalPromptMessageContent):
if item.file_ref:
# Clear base64 and url, keep file_ref for later restoration
new_content.append(item.model_copy(update={"base64_data": "", "url": ""}))
else:
# Fallback: truncate base64_data if no file_ref (legacy data)
truncated_base64 = ""
if item.base64_data:
truncated_base64 = item.base64_data[:10] + "...[TRUNCATED]..." + item.base64_data[-10:]
new_content.append(item.model_copy(update={"base64_data": truncated_base64}))
else:
new_content.append(item)
return message.model_copy(update={"content": new_content})
def restore_multimodal_content_in_messages(messages: Sequence[PromptMessage]) -> list[PromptMessage]:
"""
Restore multimodal content (base64 or url) in a list of PromptMessages.
When context is saved, base64_data is cleared to save storage space.
This function restores the content by parsing file_ref in each MultiModalPromptMessageContent.
Args:
messages: List of PromptMessages that may contain truncated multimodal content
Returns:
List of PromptMessages with restored multimodal content
"""
from core.file import file_manager
return [_restore_message_content(msg, file_manager) for msg in messages]
def _restore_message_content(message: PromptMessage, file_manager) -> PromptMessage:
"""Restore multimodal content in a single PromptMessage."""
content = message.content
if content is None or isinstance(content, str):
return message
restored_content: list[PromptMessageContentUnionTypes] = []
for item in content:
if isinstance(item, MultiModalPromptMessageContent):
restored_item = file_manager.restore_multimodal_content(item)
restored_content.append(cast(PromptMessageContentUnionTypes, restored_item))
else:
restored_content.append(item)
return message.model_copy(update={"content": restored_content})

View File

@@ -7,7 +7,7 @@ import logging
import re
import time
from collections.abc import Generator, Mapping, Sequence
from typing import TYPE_CHECKING, Any, Literal
from typing import TYPE_CHECKING, Any, Literal, cast
from sqlalchemy import select
@@ -16,7 +16,7 @@ from core.file import File, FileTransferMethod, FileType, file_manager
from core.helper.code_executor import CodeExecutor, CodeLanguage
from core.llm_generator.output_parser.errors import OutputParserError
from core.llm_generator.output_parser.structured_output import invoke_llm_with_structured_output
from core.memory.token_buffer_memory import TokenBufferMemory
from core.memory.base import BaseMemory
from core.model_manager import ModelInstance, ModelManager
from core.model_runtime.entities import (
ImagePromptMessageContent,
@@ -51,6 +51,7 @@ from core.rag.entities.citation_metadata import RetrievalSourceMetadata
from core.tools.signature import sign_upload_file
from core.variables import (
ArrayFileSegment,
ArrayPromptMessageSegment,
ArraySegment,
FileSegment,
NoneSegment,
@@ -87,6 +88,7 @@ from .entities import (
LLMNodeCompletionModelPromptTemplate,
LLMNodeData,
ModelConfig,
PromptMessageContext,
)
from .exc import (
InvalidContextStructureError,
@@ -159,8 +161,9 @@ class LLMNode(Node[LLMNodeData]):
variable_pool = self.graph_runtime_state.variable_pool
try:
# init messages template
self.node_data.prompt_template = self._transform_chat_messages(self.node_data.prompt_template)
# Parse prompt template to separate static messages and context references
prompt_template = self.node_data.prompt_template
static_messages, context_refs, template_order = self._parse_prompt_template()
# fetch variables and fetch values from variable pool
inputs = self._fetch_inputs(node_data=self.node_data)
@@ -208,8 +211,10 @@ class LLMNode(Node[LLMNodeData]):
memory = llm_utils.fetch_memory(
variable_pool=variable_pool,
app_id=self.app_id,
tenant_id=self.tenant_id,
node_data_memory=self.node_data.memory,
model_instance=model_instance,
node_id=self._node_id,
)
query: str | None = None
@@ -220,21 +225,40 @@ class LLMNode(Node[LLMNodeData]):
):
query = query_variable.text
prompt_messages, stop = LLMNode.fetch_prompt_messages(
sys_query=query,
sys_files=files,
context=context,
memory=memory,
model_config=model_config,
prompt_template=self.node_data.prompt_template,
memory_config=self.node_data.memory,
vision_enabled=self.node_data.vision.enabled,
vision_detail=self.node_data.vision.configs.detail,
variable_pool=variable_pool,
jinja2_variables=self.node_data.prompt_config.jinja2_variables,
tenant_id=self.tenant_id,
context_files=context_files,
)
# Get prompt messages
prompt_messages: Sequence[PromptMessage]
stop: Sequence[str] | None
if isinstance(prompt_template, list) and context_refs:
prompt_messages, stop = self._build_prompt_messages_with_context(
context_refs=context_refs,
template_order=template_order,
static_messages=static_messages,
query=query,
files=files,
context=context,
memory=memory,
model_config=model_config,
context_files=context_files,
)
else:
prompt_messages, stop = LLMNode.fetch_prompt_messages(
sys_query=query,
sys_files=files,
context=context,
memory=memory,
model_config=model_config,
prompt_template=cast(
Sequence[LLMNodeChatModelMessage] | LLMNodeCompletionModelPromptTemplate,
self.node_data.prompt_template,
),
memory_config=self.node_data.memory,
vision_enabled=self.node_data.vision.enabled,
vision_detail=self.node_data.vision.configs.detail,
variable_pool=variable_pool,
jinja2_variables=self.node_data.prompt_config.jinja2_variables,
tenant_id=self.tenant_id,
context_files=context_files,
)
# handle invoke result
generator = LLMNode.invoke_llm(
@@ -250,6 +274,7 @@ class LLMNode(Node[LLMNodeData]):
node_id=self._node_id,
node_type=self.node_type,
reasoning_format=self.node_data.reasoning_format,
tenant_id=self.tenant_id,
)
structured_output: LLMStructuredOutput | None = None
@@ -301,6 +326,7 @@ class LLMNode(Node[LLMNodeData]):
"reasoning_content": reasoning_content,
"usage": jsonable_encoder(usage),
"finish_reason": finish_reason,
"context": llm_utils.build_context(prompt_messages, clean_text),
}
if structured_output:
outputs["structured_output"] = structured_output.structured_output
@@ -367,6 +393,7 @@ class LLMNode(Node[LLMNodeData]):
node_id: str,
node_type: NodeType,
reasoning_format: Literal["separated", "tagged"] = "tagged",
tenant_id: str | None = None,
) -> Generator[NodeEventBase | LLMStructuredOutput, None, None]:
model_schema = model_instance.model_type_instance.get_model_schema(
node_data_model.name, model_instance.credentials
@@ -390,6 +417,7 @@ class LLMNode(Node[LLMNodeData]):
stop=list(stop or []),
stream=True,
user=user_id,
tenant_id=tenant_id,
)
else:
request_start_time = time.perf_counter()
@@ -581,6 +609,212 @@ class LLMNode(Node[LLMNodeData]):
return messages
def _parse_prompt_template(
self,
) -> tuple[list[LLMNodeChatModelMessage], list[PromptMessageContext], list[tuple[int, str]]]:
"""
Parse prompt_template to separate static messages and context references.
Returns:
Tuple of (static_messages, context_refs, template_order)
- static_messages: list of LLMNodeChatModelMessage
- context_refs: list of PromptMessageContext
- template_order: list of (index, type) tuples preserving original order
"""
prompt_template = self.node_data.prompt_template
static_messages: list[LLMNodeChatModelMessage] = []
context_refs: list[PromptMessageContext] = []
template_order: list[tuple[int, str]] = []
if isinstance(prompt_template, list):
for idx, item in enumerate(prompt_template):
if isinstance(item, PromptMessageContext):
context_refs.append(item)
template_order.append((idx, "context"))
else:
static_messages.append(item)
template_order.append((idx, "static"))
# Transform static messages for jinja2
if static_messages:
self.node_data.prompt_template = self._transform_chat_messages(static_messages)
return static_messages, context_refs, template_order
def _build_prompt_messages_with_context(
self,
*,
context_refs: list[PromptMessageContext],
template_order: list[tuple[int, str]],
static_messages: list[LLMNodeChatModelMessage],
query: str | None,
files: Sequence[File],
context: str | None,
memory: BaseMemory | None,
model_config: ModelConfigWithCredentialsEntity,
context_files: list[File],
) -> tuple[list[PromptMessage], Sequence[str] | None]:
"""
Build prompt messages by combining static messages and context references in DSL order.
Returns:
Tuple of (prompt_messages, stop_sequences)
"""
variable_pool = self.graph_runtime_state.variable_pool
# Process messages in DSL order: iterate once and handle each type directly
combined_messages: list[PromptMessage] = []
context_idx = 0
static_idx = 0
for _, type_ in template_order:
if type_ == "context":
# Handle context reference
ctx_ref = context_refs[context_idx]
ctx_var = variable_pool.get(ctx_ref.value_selector)
if ctx_var is None:
raise VariableNotFoundError(f"Variable {'.'.join(ctx_ref.value_selector)} not found")
if not isinstance(ctx_var, ArrayPromptMessageSegment):
raise InvalidVariableTypeError(f"Variable {'.'.join(ctx_ref.value_selector)} is not array[message]")
# Restore multimodal content (base64/url) that was truncated when saving context
restored_messages = llm_utils.restore_multimodal_content_in_messages(ctx_var.value)
combined_messages.extend(restored_messages)
context_idx += 1
else:
# Handle static message
static_msg = static_messages[static_idx]
processed_msgs = LLMNode.handle_list_messages(
messages=[static_msg],
context=context,
jinja2_variables=self.node_data.prompt_config.jinja2_variables or [],
variable_pool=variable_pool,
vision_detail_config=self.node_data.vision.configs.detail,
)
combined_messages.extend(processed_msgs)
static_idx += 1
# Append memory messages
memory_messages = _handle_memory_chat_mode(
memory=memory,
memory_config=self.node_data.memory,
model_config=model_config,
)
combined_messages.extend(memory_messages)
# Append current query if provided
if query:
query_message = LLMNodeChatModelMessage(
text=query,
role=PromptMessageRole.USER,
edition_type="basic",
)
query_msgs = LLMNode.handle_list_messages(
messages=[query_message],
context="",
jinja2_variables=[],
variable_pool=variable_pool,
vision_detail_config=self.node_data.vision.configs.detail,
)
combined_messages.extend(query_msgs)
# Handle files (sys_files and context_files)
combined_messages = self._append_files_to_messages(
messages=combined_messages,
sys_files=files,
context_files=context_files,
model_config=model_config,
)
# Filter empty messages and get stop sequences
combined_messages = self._filter_messages(combined_messages, model_config)
stop = self._get_stop_sequences(model_config)
return combined_messages, stop
def _append_files_to_messages(
self,
*,
messages: list[PromptMessage],
sys_files: Sequence[File],
context_files: list[File],
model_config: ModelConfigWithCredentialsEntity,
) -> list[PromptMessage]:
"""Append sys_files and context_files to messages."""
vision_enabled = self.node_data.vision.enabled
vision_detail = self.node_data.vision.configs.detail
# Handle sys_files (will be deprecated later)
if vision_enabled and sys_files:
file_prompts = [
file_manager.to_prompt_message_content(file, image_detail_config=vision_detail) for file in sys_files
]
if messages and isinstance(messages[-1], UserPromptMessage) and isinstance(messages[-1].content, list):
messages[-1] = UserPromptMessage(content=file_prompts + messages[-1].content)
else:
messages.append(UserPromptMessage(content=file_prompts))
# Handle context_files
if vision_enabled and context_files:
file_prompts = [
file_manager.to_prompt_message_content(file, image_detail_config=vision_detail)
for file in context_files
]
if messages and isinstance(messages[-1], UserPromptMessage) and isinstance(messages[-1].content, list):
messages[-1] = UserPromptMessage(content=file_prompts + messages[-1].content)
else:
messages.append(UserPromptMessage(content=file_prompts))
return messages
def _filter_messages(
self, messages: list[PromptMessage], model_config: ModelConfigWithCredentialsEntity
) -> list[PromptMessage]:
"""Filter empty messages and unsupported content types."""
filtered_messages: list[PromptMessage] = []
for message in messages:
if isinstance(message.content, list):
filtered_content: list[PromptMessageContentUnionTypes] = []
for content_item in message.content:
# Skip non-text content if features are not defined
if not model_config.model_schema.features:
if content_item.type != PromptMessageContentType.TEXT:
continue
filtered_content.append(content_item)
continue
# Skip content if corresponding feature is not supported
feature_map = {
PromptMessageContentType.IMAGE: ModelFeature.VISION,
PromptMessageContentType.DOCUMENT: ModelFeature.DOCUMENT,
PromptMessageContentType.VIDEO: ModelFeature.VIDEO,
PromptMessageContentType.AUDIO: ModelFeature.AUDIO,
}
required_feature = feature_map.get(content_item.type)
if required_feature and required_feature not in model_config.model_schema.features:
continue
filtered_content.append(content_item)
# Simplify single text content
if len(filtered_content) == 1 and filtered_content[0].type == PromptMessageContentType.TEXT:
message.content = filtered_content[0].data
else:
message.content = filtered_content
if not message.is_empty():
filtered_messages.append(message)
if not filtered_messages:
raise NoPromptFoundError(
"No prompt found in the LLM configuration. "
"Please ensure a prompt is properly configured before proceeding."
)
return filtered_messages
def _get_stop_sequences(self, model_config: ModelConfigWithCredentialsEntity) -> Sequence[str] | None:
"""Get stop sequences from model config."""
return model_config.stop
def _fetch_jinja_inputs(self, node_data: LLMNodeData) -> dict[str, str]:
variables: dict[str, Any] = {}
@@ -778,7 +1012,7 @@ class LLMNode(Node[LLMNodeData]):
sys_query: str | None = None,
sys_files: Sequence[File],
context: str | None = None,
memory: TokenBufferMemory | None = None,
memory: BaseMemory | None = None,
model_config: ModelConfigWithCredentialsEntity,
prompt_template: Sequence[LLMNodeChatModelMessage] | LLMNodeCompletionModelPromptTemplate,
memory_config: MemoryConfig | None = None,
@@ -1337,7 +1571,7 @@ def _calculate_rest_token(
def _handle_memory_chat_mode(
*,
memory: TokenBufferMemory | None,
memory: BaseMemory | None,
memory_config: MemoryConfig | None,
model_config: ModelConfigWithCredentialsEntity,
) -> Sequence[PromptMessage]:
@@ -1354,7 +1588,7 @@ def _handle_memory_chat_mode(
def _handle_memory_completion_mode(
*,
memory: TokenBufferMemory | None,
memory: BaseMemory | None,
memory_config: MemoryConfig | None,
model_config: ModelConfigWithCredentialsEntity,
) -> str:

View File

@@ -7,7 +7,7 @@ from typing import Any, cast
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
from core.file import File
from core.memory.token_buffer_memory import TokenBufferMemory
from core.memory.base import BaseMemory
from core.model_manager import ModelInstance
from core.model_runtime.entities import ImagePromptMessageContent
from core.model_runtime.entities.llm_entities import LLMUsage
@@ -145,8 +145,10 @@ class ParameterExtractorNode(Node[ParameterExtractorNodeData]):
memory = llm_utils.fetch_memory(
variable_pool=variable_pool,
app_id=self.app_id,
tenant_id=self.tenant_id,
node_data_memory=node_data.memory,
model_instance=model_instance,
node_id=self._node_id,
)
if (
@@ -244,6 +246,10 @@ class ParameterExtractorNode(Node[ParameterExtractorNodeData]):
# transform result into standard format
result = self._transform_result(data=node_data, result=result or {})
# Build context from prompt messages and response
assistant_response = json.dumps(result, ensure_ascii=False)
context = llm_utils.build_context(prompt_messages, assistant_response)
return NodeRunResult(
status=WorkflowNodeExecutionStatus.SUCCEEDED,
inputs=inputs,
@@ -252,6 +258,7 @@ class ParameterExtractorNode(Node[ParameterExtractorNodeData]):
"__is_success": 1 if not error else 0,
"__reason": error,
"__usage": jsonable_encoder(usage),
"context": context,
**result,
},
metadata={
@@ -299,7 +306,7 @@ class ParameterExtractorNode(Node[ParameterExtractorNodeData]):
query: str,
variable_pool: VariablePool,
model_config: ModelConfigWithCredentialsEntity,
memory: TokenBufferMemory | None,
memory: BaseMemory | None,
files: Sequence[File],
vision_detail: ImagePromptMessageContent.DETAIL | None = None,
) -> tuple[list[PromptMessage], list[PromptMessageTool]]:
@@ -381,7 +388,7 @@ class ParameterExtractorNode(Node[ParameterExtractorNodeData]):
query: str,
variable_pool: VariablePool,
model_config: ModelConfigWithCredentialsEntity,
memory: TokenBufferMemory | None,
memory: BaseMemory | None,
files: Sequence[File],
vision_detail: ImagePromptMessageContent.DETAIL | None = None,
) -> list[PromptMessage]:
@@ -419,7 +426,7 @@ class ParameterExtractorNode(Node[ParameterExtractorNodeData]):
query: str,
variable_pool: VariablePool,
model_config: ModelConfigWithCredentialsEntity,
memory: TokenBufferMemory | None,
memory: BaseMemory | None,
files: Sequence[File],
vision_detail: ImagePromptMessageContent.DETAIL | None = None,
) -> list[PromptMessage]:
@@ -453,7 +460,7 @@ class ParameterExtractorNode(Node[ParameterExtractorNodeData]):
query: str,
variable_pool: VariablePool,
model_config: ModelConfigWithCredentialsEntity,
memory: TokenBufferMemory | None,
memory: BaseMemory | None,
files: Sequence[File],
vision_detail: ImagePromptMessageContent.DETAIL | None = None,
) -> list[PromptMessage]:
@@ -681,7 +688,7 @@ class ParameterExtractorNode(Node[ParameterExtractorNodeData]):
node_data: ParameterExtractorNodeData,
query: str,
variable_pool: VariablePool,
memory: TokenBufferMemory | None,
memory: BaseMemory | None,
max_token_limit: int = 2000,
) -> list[ChatModelMessage]:
model_mode = ModelMode(node_data.model.mode)
@@ -708,7 +715,7 @@ class ParameterExtractorNode(Node[ParameterExtractorNodeData]):
node_data: ParameterExtractorNodeData,
query: str,
variable_pool: VariablePool,
memory: TokenBufferMemory | None,
memory: BaseMemory | None,
max_token_limit: int = 2000,
):
model_mode = ModelMode(node_data.model.mode)

View File

@@ -4,7 +4,7 @@ from collections.abc import Mapping, Sequence
from typing import TYPE_CHECKING, Any
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
from core.memory.token_buffer_memory import TokenBufferMemory
from core.memory.base import BaseMemory
from core.model_manager import ModelInstance
from core.model_runtime.entities import LLMUsage, ModelPropertyKey, PromptMessageRole
from core.model_runtime.utils.encoders import jsonable_encoder
@@ -96,8 +96,10 @@ class QuestionClassifierNode(Node[QuestionClassifierNodeData]):
memory = llm_utils.fetch_memory(
variable_pool=variable_pool,
app_id=self.app_id,
tenant_id=self.tenant_id,
node_data_memory=node_data.memory,
model_instance=model_instance,
node_id=self._node_id,
)
# fetch instruction
node_data.instruction = node_data.instruction or ""
@@ -197,10 +199,15 @@ class QuestionClassifierNode(Node[QuestionClassifierNodeData]):
"model_provider": model_config.provider,
"model_name": model_config.model,
}
# Build context from prompt messages and response
assistant_response = f"class_name: {category_name}, class_id: {category_id}"
context = llm_utils.build_context(prompt_messages, assistant_response)
outputs = {
"class_name": category_name,
"class_id": category_id,
"usage": jsonable_encoder(usage),
"context": context,
}
return NodeRunResult(
@@ -312,7 +319,7 @@ class QuestionClassifierNode(Node[QuestionClassifierNodeData]):
self,
node_data: QuestionClassifierNodeData,
query: str,
memory: TokenBufferMemory | None,
memory: BaseMemory | None,
max_token_limit: int = 2000,
):
model_mode = ModelMode(node_data.model.mode)

View File

@@ -1,11 +1,63 @@
from typing import Any, Literal, Union
import re
from collections.abc import Sequence
from typing import Any, Literal, Self, Union
from pydantic import BaseModel, field_validator
from pydantic import BaseModel, field_validator, model_validator
from pydantic_core.core_schema import ValidationInfo
from core.tools.entities.tool_entities import ToolProviderType
from core.workflow.nodes.base.entities import BaseNodeData
# Pattern to match mention value format: {{@node.context@}}instruction
# The placeholder {{@node.context@}} must appear at the beginning
# Format: {{@agent_node_id.context@}} where agent_node_id is dynamic, context is fixed
MENTION_VALUE_PATTERN = re.compile(r"^\{\{@([a-zA-Z0-9_]+)\.context@\}\}(.*)$", re.DOTALL)
def parse_mention_value(value: str) -> tuple[str, str]:
"""Parse mention value into (node_id, instruction).
Args:
value: The mention value string like "{{@llm.context@}}extract keywords"
Returns:
Tuple of (node_id, instruction)
Raises:
ValueError: If value format is invalid
"""
match = MENTION_VALUE_PATTERN.match(value)
if not match:
raise ValueError(
"For mention type, value must start with {{@node.context@}} placeholder, "
"e.g., '{{@llm.context@}}extract keywords'"
)
return match.group(1), match.group(2)
class MentionConfig(BaseModel):
"""Configuration for extracting value from context variable.
Used when a tool parameter needs to be extracted from list[PromptMessage]
context using an extractor LLM node.
Note: instruction is embedded in the value field as "{{@node.context@}}instruction"
"""
# ID of the extractor LLM node
extractor_node_id: str
# Output variable selector from extractor node
# e.g., ["text"], ["structured_output", "query"]
output_selector: Sequence[str]
# Strategy when output is None
null_strategy: Literal["raise_error", "use_default"] = "raise_error"
# Default value when null_strategy is "use_default"
# Type should match the parameter's expected type
default_value: Any = None
class ToolEntity(BaseModel):
provider_id: str
@@ -35,7 +87,9 @@ class ToolNodeData(BaseNodeData, ToolEntity):
class ToolInput(BaseModel):
# TODO: check this type
value: Union[Any, list[str]]
type: Literal["mixed", "variable", "constant"]
type: Literal["mixed", "variable", "constant", "mention"]
# Required config for mention type, extracting value from context variable
mention_config: MentionConfig | None = None
@field_validator("type", mode="before")
@classmethod
@@ -48,6 +102,9 @@ class ToolNodeData(BaseNodeData, ToolEntity):
if typ == "mixed" and not isinstance(value, str):
raise ValueError("value must be a string")
elif typ == "mention":
# Skip here, will be validated in model_validator
pass
elif typ == "variable":
if not isinstance(value, list):
raise ValueError("value must be a list")
@@ -58,6 +115,26 @@ class ToolNodeData(BaseNodeData, ToolEntity):
raise ValueError("value must be a string, int, float, bool or dict")
return typ
@model_validator(mode="after")
def check_mention_type(self) -> Self:
"""Validate mention type with mention_config."""
if self.type != "mention":
return self
value = self.value
if value is None:
return self
if not isinstance(value, str):
raise ValueError("value must be a string for mention type")
# For mention type, value must match format: {{@node.context@}}instruction
# This will raise ValueError if format is invalid
parse_mention_value(value)
# mention_config is required for mention type
if self.mention_config is None:
raise ValueError("mention_config is required for mention type")
return self
tool_parameters: dict[str, ToolInput]
# The version of the tool parameter.
# If this value is None, it indicates this is a previous version

View File

@@ -1,7 +1,10 @@
import logging
from collections.abc import Generator, Mapping, Sequence
from typing import TYPE_CHECKING, Any
from sqlalchemy import select
logger = logging.getLogger(__name__)
from sqlalchemy.orm import Session
from core.callback_handler.workflow_tool_callback_handler import DifyWorkflowCallbackHandler
@@ -184,6 +187,7 @@ class ToolNode(Node[ToolNodeData]):
tool_parameters (Sequence[ToolParameter]): The list of tool parameters.
variable_pool (VariablePool): The variable pool containing the variables.
node_data (ToolNodeData): The data associated with the tool node.
for_log (bool): Whether to generate parameters for logging.
Returns:
Mapping[str, Any]: A dictionary containing the generated parameters.
@@ -199,14 +203,37 @@ class ToolNode(Node[ToolNodeData]):
continue
tool_input = node_data.tool_parameters[parameter_name]
if tool_input.type == "variable":
variable = variable_pool.get(tool_input.value)
if not isinstance(tool_input.value, list):
raise ToolParameterError(f"Invalid variable selector for parameter '{parameter_name}'")
selector = tool_input.value
variable = variable_pool.get(selector)
if variable is None:
if parameter.required:
raise ToolParameterError(f"Variable {tool_input.value} does not exist")
raise ToolParameterError(f"Variable {selector} does not exist")
continue
parameter_value = variable.value
elif tool_input.type == "mention":
# Mention type: get value from extractor node's output
if tool_input.mention_config is None:
raise ToolParameterError(
f"mention_config is required for mention type parameter '{parameter_name}'"
)
mention_config = tool_input.mention_config.model_dump()
try:
parameter_value, found = variable_pool.resolve_mention(
mention_config, parameter_name=parameter_name
)
if not found and parameter.required:
raise ToolParameterError(
f"Extractor output not found for required parameter '{parameter_name}'"
)
if not found:
continue
except ValueError as e:
raise ToolParameterError(str(e)) from e
elif tool_input.type in {"mixed", "constant"}:
segment_group = variable_pool.convert_template(str(tool_input.value))
template = str(tool_input.value)
segment_group = variable_pool.convert_template(template)
parameter_value = segment_group.log if for_log else segment_group.text
else:
raise ToolParameterError(f"Unknown tool input type '{tool_input.type}'")
@@ -488,8 +515,12 @@ class ToolNode(Node[ToolNodeData]):
for selector in selectors:
result[selector.variable] = selector.value_selector
elif input.type == "variable":
selector_key = ".".join(input.value)
result[f"#{selector_key}#"] = input.value
if isinstance(input.value, list):
selector_key = ".".join(input.value)
result[f"#{selector_key}#"] = input.value
elif input.type == "mention":
# Mention type: value is handled by extractor node, no direct variable reference
pass
elif input.type == "constant":
pass

View File

@@ -268,6 +268,58 @@ class VariablePool(BaseModel):
continue
self.add(selector, value)
def resolve_mention(
self,
mention_config: Mapping[str, Any],
/,
*,
parameter_name: str = "",
) -> tuple[Any, bool]:
"""
Resolve a mention parameter value from an extractor node's output.
Mention parameters reference values extracted by an extractor LLM node
from list[PromptMessage] context.
Args:
mention_config: A dict containing:
- extractor_node_id: ID of the extractor LLM node
- output_selector: Selector path for the output variable (e.g., ["text"])
- null_strategy: "raise_error" or "use_default"
- default_value: Value to use when null_strategy is "use_default"
parameter_name: Name of the parameter being resolved (for error messages)
Returns:
Tuple of (resolved_value, found):
- resolved_value: The extracted value, or default_value if not found
- found: True if value was found, False if using default
Raises:
ValueError: If extractor_node_id is missing, or if null_strategy is
"raise_error" and the value is not found
"""
extractor_node_id = mention_config.get("extractor_node_id")
if not extractor_node_id:
raise ValueError(f"Missing extractor_node_id for mention parameter '{parameter_name}'")
output_selector = list(mention_config.get("output_selector", []))
null_strategy = mention_config.get("null_strategy", "raise_error")
default_value = mention_config.get("default_value")
# Build full selector: [extractor_node_id, ...output_selector]
full_selector = [extractor_node_id] + output_selector
variable = self.get(full_selector)
if variable is None:
if null_strategy == "use_default":
return default_value, False
raise ValueError(
f"Extractor node '{extractor_node_id}' output '{'.'.join(output_selector)}' "
f"not found for parameter '{parameter_name}'"
)
return variable.value, True
@classmethod
def empty(cls) -> VariablePool:
"""Create an empty variable pool."""

View File

@@ -4,6 +4,7 @@ from uuid import uuid4
from configs import dify_config
from core.file import File
from core.model_runtime.entities import PromptMessage
from core.variables.exc import VariableError
from core.variables.segments import (
ArrayAnySegment,
@@ -11,6 +12,7 @@ from core.variables.segments import (
ArrayFileSegment,
ArrayNumberSegment,
ArrayObjectSegment,
ArrayPromptMessageSegment,
ArraySegment,
ArrayStringSegment,
BooleanSegment,
@@ -29,6 +31,7 @@ from core.variables.variables import (
ArrayFileVariable,
ArrayNumberVariable,
ArrayObjectVariable,
ArrayPromptMessageVariable,
ArrayStringVariable,
BooleanVariable,
FileVariable,
@@ -61,6 +64,7 @@ SEGMENT_TO_VARIABLE_MAP = {
ArrayFileSegment: ArrayFileVariable,
ArrayNumberSegment: ArrayNumberVariable,
ArrayObjectSegment: ArrayObjectVariable,
ArrayPromptMessageSegment: ArrayPromptMessageVariable,
ArrayStringSegment: ArrayStringVariable,
BooleanSegment: BooleanVariable,
FileSegment: FileVariable,
@@ -156,7 +160,13 @@ def build_segment(value: Any, /) -> Segment:
return ObjectSegment(value=value)
if isinstance(value, File):
return FileSegment(value=value)
if isinstance(value, PromptMessage):
# Single PromptMessage should be wrapped in a list
return ArrayPromptMessageSegment(value=[value])
if isinstance(value, list):
# Check if all items are PromptMessage
if value and all(isinstance(item, PromptMessage) for item in value):
return ArrayPromptMessageSegment(value=value)
items = [build_segment(item) for item in value]
types = {item.value_type for item in items}
if all(isinstance(item, ArraySegment) for item in items):
@@ -200,6 +210,7 @@ _segment_factory: Mapping[SegmentType, type[Segment]] = {
SegmentType.ARRAY_OBJECT: ArrayObjectSegment,
SegmentType.ARRAY_FILE: ArrayFileSegment,
SegmentType.ARRAY_BOOLEAN: ArrayBooleanSegment,
SegmentType.ARRAY_PROMPT_MESSAGE: ArrayPromptMessageSegment,
}
@@ -274,6 +285,10 @@ def build_segment_with_type(segment_type: SegmentType, value: Any) -> Segment:
):
segment_class = _segment_factory[inferred_type]
return segment_class(value_type=inferred_type, value=value)
elif segment_type == SegmentType.ARRAY_PROMPT_MESSAGE and inferred_type == SegmentType.ARRAY_OBJECT:
# PromptMessage serializes to dict, so ARRAY_OBJECT is compatible with ARRAY_PROMPT_MESSAGE
segment_class = _segment_factory[segment_type]
return segment_class(value_type=segment_type, value=value)
else:
raise TypeMismatchError(f"Type mismatch: expected {segment_type}, but got {inferred_type}, value={value}")

View File

@@ -1289,7 +1289,7 @@ class WorkflowDraftVariable(Base):
# which may differ from the original value's type. Typically, they are the same,
# but in cases where the structurally truncated value still exceeds the size limit,
# text slicing is applied, and the `value_type` is converted to `STRING`.
value_type: Mapped[SegmentType] = mapped_column(EnumText(SegmentType, length=20))
value_type: Mapped[SegmentType] = mapped_column(EnumText(SegmentType, length=21))
# The variable's value serialized as a JSON string
#
@@ -1663,7 +1663,7 @@ class WorkflowDraftVariableFile(Base):
# The `value_type` field records the type of the original value.
value_type: Mapped[SegmentType] = mapped_column(
EnumText(SegmentType, length=20),
EnumText(SegmentType, length=21),
nullable=False,
)

View File

@@ -7,6 +7,7 @@ from typing import Any, Generic, TypeAlias, TypeVar, overload
from configs import dify_config
from core.file.models import File
from core.model_runtime.entities import PromptMessage
from core.variables.segments import (
ArrayFileSegment,
ArraySegment,
@@ -287,6 +288,10 @@ class VariableTruncator(BaseTruncator):
if isinstance(item, File):
truncated_value.append(item)
continue
# Handle PromptMessage types - convert to dict for truncation
if isinstance(item, PromptMessage):
truncated_value.append(item)
continue
if i >= target_length:
return _PartResult(truncated_value, used_size, True)
if i > 0:

View File

@@ -0,0 +1,181 @@
app:
description: ''
icon: 🤖
icon_background: '#FFEAD5'
mode: advanced-chat
name: file output schema
use_icon_as_answer_icon: false
dependencies:
- current_identifier: null
type: marketplace
value:
marketplace_plugin_unique_identifier: langgenius/openai:0.2.3@5a7f82fa86e28332ad51941d0b491c1e8a38ead539656442f7bf4c6129cd15fa
version: null
kind: app
version: 0.5.0
workflow:
conversation_variables: []
environment_variables: []
features:
file_upload:
allowed_file_extensions:
- .JPG
- .JPEG
- .PNG
- .GIF
- .WEBP
- .SVG
allowed_file_types:
- image
allowed_file_upload_methods:
- remote_url
- local_file
enabled: true
fileUploadConfig:
attachment_image_file_size_limit: 2
audio_file_size_limit: 50
batch_count_limit: 5
file_size_limit: 15
file_upload_limit: 10
image_file_batch_limit: 10
image_file_size_limit: 10
single_chunk_attachment_limit: 10
video_file_size_limit: 100
workflow_file_upload_limit: 10
number_limits: 3
opening_statement: ''
retriever_resource:
enabled: true
sensitive_word_avoidance:
enabled: false
speech_to_text:
enabled: false
suggested_questions: []
suggested_questions_after_answer:
enabled: false
text_to_speech:
enabled: false
language: ''
voice: ''
graph:
edges:
- data:
sourceType: start
targetType: llm
id: 1768292241666-llm
source: '1768292241666'
sourceHandle: source
target: llm
targetHandle: target
type: custom
- data:
sourceType: llm
targetType: answer
id: llm-answer
source: llm
sourceHandle: source
target: answer
targetHandle: target
type: custom
nodes:
- data:
selected: false
title: User Input
type: start
variables: []
height: 73
id: '1768292241666'
position:
x: 80
y: 282
positionAbsolute:
x: 80
y: 282
sourcePosition: right
targetPosition: left
type: custom
width: 242
- data:
context:
enabled: false
variable_selector: []
memory:
query_prompt_template: '{{#sys.query#}}
{{#sys.files#}}'
role_prefix:
assistant: ''
user: ''
window:
enabled: false
size: 10
model:
completion_params:
temperature: 0.7
mode: chat
name: gpt-4o-mini
provider: langgenius/openai/openai
prompt_template:
- id: e30d75d7-7d85-49ec-be3c-3baf7f6d3c5a
role: system
text: ''
selected: false
structured_output:
schema:
additionalProperties: false
properties:
image:
description: File ID (UUID) of the selected image
format: dify-file-ref
type: string
required:
- image
type: object
structured_output_enabled: true
title: LLM
type: llm
vision:
configs:
detail: high
variable_selector:
- sys
- files
enabled: true
height: 88
id: llm
position:
x: 380
y: 282
positionAbsolute:
x: 380
y: 282
selected: false
sourcePosition: right
targetPosition: left
type: custom
width: 242
- data:
answer: '{{#llm.structured_output.image#}}'
selected: false
title: Answer
type: answer
variables: []
height: 103
id: answer
position:
x: 680
y: 282
positionAbsolute:
x: 680
y: 282
selected: true
sourcePosition: right
targetPosition: left
type: custom
width: 242
viewport:
x: -149
y: 97.5
zoom: 1
rag_pipeline_variables: []

View File

@@ -0,0 +1,307 @@
app:
description: Test for variable extraction feature
icon: 🤖
icon_background: '#FFEAD5'
mode: advanced-chat
name: pav-test-extraction
use_icon_as_answer_icon: false
dependencies:
- current_identifier: null
type: marketplace
value:
marketplace_plugin_unique_identifier: langgenius/google:0.0.8@3efcf55ffeef9d0f77715e0afb23534952ae0cb385c051d0637e86d71199d1a6
version: null
- current_identifier: null
type: marketplace
value:
marketplace_plugin_unique_identifier: langgenius/openai:0.2.3@5a7f82fa86e28332ad51941d0b491c1e8a38ead539656442f7bf4c6129cd15fa
version: null
- current_identifier: null
type: marketplace
value:
marketplace_plugin_unique_identifier: langgenius/tongyi:0.1.16@d8bffbe45418f0c117fb3393e5e40e61faee98f9a2183f062e5a280e74b15d21
version: null
kind: app
version: 0.5.0
workflow:
conversation_variables: []
environment_variables: []
features:
file_upload:
allowed_file_extensions:
- .JPG
- .JPEG
- .PNG
- .GIF
- .WEBP
- .SVG
allowed_file_types:
- image
allowed_file_upload_methods:
- local_file
- remote_url
enabled: false
image:
enabled: false
number_limits: 3
transfer_methods:
- local_file
- remote_url
number_limits: 3
opening_statement: 你好!我是一个搜索助手,请告诉我你想搜索什么内容。
retriever_resource:
enabled: true
sensitive_word_avoidance:
enabled: false
speech_to_text:
enabled: false
suggested_questions: []
suggested_questions_after_answer:
enabled: false
text_to_speech:
enabled: false
language: ''
voice: ''
graph:
edges:
- data:
sourceType: start
targetType: llm
id: 1767773675796-llm
source: '1767773675796'
sourceHandle: source
target: llm
targetHandle: target
type: custom
- data:
isInIteration: false
isInLoop: false
sourceType: llm
targetType: tool
id: llm-source-1767773709491-target
source: llm
sourceHandle: source
target: '1767773709491'
targetHandle: target
type: custom
zIndex: 0
- data:
isInIteration: false
isInLoop: false
sourceType: tool
targetType: answer
id: tool-source-answer-target
source: '1767773709491'
sourceHandle: source
target: answer
targetHandle: target
type: custom
zIndex: 0
nodes:
- data:
selected: false
title: User Input
type: start
variables: []
height: 73
id: '1767773675796'
position:
x: 80
y: 282
positionAbsolute:
x: 80
y: 282
sourcePosition: right
targetPosition: left
type: custom
width: 242
- data:
context:
enabled: false
variable_selector: []
memory:
mode: node
query_prompt_template: '{{#sys.query#}}'
role_prefix:
assistant: ''
user: ''
window:
enabled: true
size: 10
model:
completion_params:
temperature: 0.7
mode: chat
name: qwen-max
provider: langgenius/tongyi/tongyi
prompt_template:
- id: 11d06d15-914a-4915-a5b1-0e35ab4fba51
role: system
text: '你是一个智能搜索助手。用户会告诉你他们想搜索的内容。
请与用户进行对话,了解他们的搜索需求。
当用户明确表达了想要搜索的内容后,你可以回复"好的,我来帮你搜索"。
'
selected: false
title: LLM
type: llm
vision:
enabled: false
height: 88
id: llm
position:
x: 380
y: 282
positionAbsolute:
x: 380
y: 282
selected: false
sourcePosition: right
targetPosition: left
type: custom
width: 242
- data:
is_team_authorization: true
paramSchemas:
- auto_generate: null
default: null
form: llm
human_description:
en_US: used for searching
ja_JP: used for searching
pt_BR: used for searching
zh_Hans: 用于搜索网页内容
label:
en_US: Query string
ja_JP: Query string
pt_BR: Query string
zh_Hans: 查询语句
llm_description: key words for searching
max: null
min: null
name: query
options: []
placeholder: null
precision: null
required: true
scope: null
template: null
type: string
params:
query: ''
plugin_id: langgenius/google
plugin_unique_identifier: langgenius/google:0.0.8@3efcf55ffeef9d0f77715e0afb23534952ae0cb385c051d0637e86d71199d1a6
provider_icon: http://localhost:5001/console/api/workspaces/current/plugin/icon?tenant_id=7217e801-f6f5-49ec-8103-d7de97a4b98f&filename=1c5871163478957bac64c3fe33d72d003f767497d921c74b742aad27a8344a74.svg
provider_id: langgenius/google/google
provider_name: langgenius/google/google
provider_type: builtin
selected: false
title: GoogleSearch
tool_configurations: {}
tool_description: A tool for performing a Google SERP search and extracting
snippets and webpages.Input should be a search query.
tool_label: GoogleSearch
tool_name: google_search
tool_node_version: '2'
tool_parameters:
query:
type: mention
value: '{{@llm.context@}}请从对话历史中提取用户想要搜索的关键词,只返回关键词本身'
mention_config:
extractor_node_id: 1767773709491_ext_query
output_selector:
- structured_output
- query
null_strategy: use_default
default_value: ''
type: tool
height: 52
id: '1767773709491'
position:
x: 682
y: 282
positionAbsolute:
x: 682
y: 282
selected: false
sourcePosition: right
targetPosition: left
type: custom
width: 242
- data:
context:
enabled: false
variable_selector: []
model:
completion_params:
temperature: 0.7
mode: chat
name: gpt-4o-mini
provider: langgenius/openai/openai
parent_node_id: '1767773709491'
prompt_template:
- $context:
- llm
- context
id: 75d58e22-dc59-40c8-ba6f-aeb28f4f305a
- id: 18ba6710-77f5-47f4-b144-9191833bb547
role: user
text: 请从对话历史中提取用户想要搜索的关键词,只返回关键词本身,不要返回其他内容
selected: false
structured_output:
schema:
additionalProperties: false
properties:
query:
description: 搜索的关键词
type: string
required:
- query
type: object
structured_output_enabled: true
title: 提取搜索关键词
type: llm
vision:
enabled: false
height: 88
id: 1767773709491_ext_query
position:
x: 531
y: 382
positionAbsolute:
x: 531
y: 382
selected: true
sourcePosition: right
targetPosition: left
type: custom
width: 242
- data:
answer: '搜索结果:
{{#1767773709491.text#}}
'
selected: false
title: Answer
type: answer
height: 103
id: answer
position:
x: 984
y: 282
positionAbsolute:
x: 984
y: 282
selected: false
sourcePosition: right
targetPosition: left
type: custom
width: 242
viewport:
x: -151
y: 123
zoom: 1
rag_pipeline_variables: []

View File

@@ -0,0 +1,182 @@
"""Tests for file_manager module, specifically multimodal content handling."""
from unittest.mock import patch
from core.file import File, FileTransferMethod, FileType
from core.file.file_manager import (
_encode_file_ref,
restore_multimodal_content,
to_prompt_message_content,
)
from core.model_runtime.entities.message_entities import ImagePromptMessageContent
class TestEncodeFileRef:
"""Tests for _encode_file_ref function."""
def test_encodes_local_file(self):
"""Local file should be encoded as 'local:id'."""
file = File(
tenant_id="t",
type=FileType.IMAGE,
transfer_method=FileTransferMethod.LOCAL_FILE,
related_id="abc123",
storage_key="key",
)
assert _encode_file_ref(file) == "local:abc123"
def test_encodes_tool_file(self):
"""Tool file should be encoded as 'tool:id'."""
file = File(
tenant_id="t",
type=FileType.IMAGE,
transfer_method=FileTransferMethod.TOOL_FILE,
related_id="xyz789",
storage_key="key",
)
assert _encode_file_ref(file) == "tool:xyz789"
def test_encodes_remote_url(self):
"""Remote URL should be encoded as 'remote:url'."""
file = File(
tenant_id="t",
type=FileType.IMAGE,
transfer_method=FileTransferMethod.REMOTE_URL,
remote_url="https://example.com/image.png",
storage_key="",
)
assert _encode_file_ref(file) == "remote:https://example.com/image.png"
class TestToPromptMessageContent:
"""Tests for to_prompt_message_content function with file_ref field."""
@patch("core.file.file_manager.dify_config")
@patch("core.file.file_manager._get_encoded_string")
def test_includes_file_ref(self, mock_get_encoded, mock_config):
"""Generated content should include file_ref field."""
mock_config.MULTIMODAL_SEND_FORMAT = "base64"
mock_get_encoded.return_value = "base64data"
file = File(
id="test-message-file-id",
tenant_id="test-tenant",
type=FileType.IMAGE,
transfer_method=FileTransferMethod.LOCAL_FILE,
related_id="test-related-id",
remote_url=None,
extension=".png",
mime_type="image/png",
filename="test.png",
storage_key="test-key",
)
result = to_prompt_message_content(file)
assert isinstance(result, ImagePromptMessageContent)
assert result.file_ref == "local:test-related-id"
assert result.base64_data == "base64data"
class TestRestoreMultimodalContent:
"""Tests for restore_multimodal_content function."""
def test_returns_content_unchanged_when_no_file_ref(self):
"""Content without file_ref should pass through unchanged."""
content = ImagePromptMessageContent(
format="png",
base64_data="existing-data",
mime_type="image/png",
file_ref=None,
)
result = restore_multimodal_content(content)
assert result.base64_data == "existing-data"
def test_returns_content_unchanged_when_already_has_data(self):
"""Content that already has base64_data should not be reloaded."""
content = ImagePromptMessageContent(
format="png",
base64_data="existing-data",
mime_type="image/png",
file_ref="local:file-id",
)
result = restore_multimodal_content(content)
assert result.base64_data == "existing-data"
def test_returns_content_unchanged_when_already_has_url(self):
"""Content that already has url should not be reloaded."""
content = ImagePromptMessageContent(
format="png",
url="https://example.com/image.png",
mime_type="image/png",
file_ref="local:file-id",
)
result = restore_multimodal_content(content)
assert result.url == "https://example.com/image.png"
@patch("core.file.file_manager.dify_config")
@patch("core.file.file_manager._build_file_from_ref")
@patch("core.file.file_manager._to_url")
def test_restores_url_from_file_ref(self, mock_to_url, mock_build_file, mock_config):
"""Content should be restored from file_ref when url is empty (url mode)."""
mock_config.MULTIMODAL_SEND_FORMAT = "url"
mock_build_file.return_value = "mock_file"
mock_to_url.return_value = "https://restored-url.com/image.png"
content = ImagePromptMessageContent(
format="png",
base64_data="",
url="",
mime_type="image/png",
filename="test.png",
file_ref="local:test-file-id",
)
result = restore_multimodal_content(content)
assert result.url == "https://restored-url.com/image.png"
mock_build_file.assert_called_once()
@patch("core.file.file_manager.dify_config")
@patch("core.file.file_manager._build_file_from_ref")
@patch("core.file.file_manager._get_encoded_string")
def test_restores_base64_from_file_ref(self, mock_get_encoded, mock_build_file, mock_config):
"""Content should be restored as base64 when in base64 mode."""
mock_config.MULTIMODAL_SEND_FORMAT = "base64"
mock_build_file.return_value = "mock_file"
mock_get_encoded.return_value = "restored-base64-data"
content = ImagePromptMessageContent(
format="png",
base64_data="",
url="",
mime_type="image/png",
filename="test.png",
file_ref="local:test-file-id",
)
result = restore_multimodal_content(content)
assert result.base64_data == "restored-base64-data"
mock_build_file.assert_called_once()
def test_handles_invalid_file_ref_gracefully(self):
"""Invalid file_ref format should be handled gracefully."""
content = ImagePromptMessageContent(
format="png",
base64_data="",
url="",
mime_type="image/png",
file_ref="invalid_format_no_colon",
)
result = restore_multimodal_content(content)
# Should return unchanged on error
assert result.base64_data == ""

View File

@@ -0,0 +1,269 @@
"""
Unit tests for file reference detection and conversion.
"""
import uuid
from unittest.mock import MagicMock, patch
import pytest
from core.file import File, FileTransferMethod, FileType
from core.llm_generator.output_parser.file_ref import (
FILE_REF_FORMAT,
convert_file_refs_in_output,
detect_file_ref_fields,
is_file_ref_property,
)
from core.variables.segments import ArrayFileSegment, FileSegment
class TestIsFileRefProperty:
"""Tests for is_file_ref_property function."""
def test_valid_file_ref(self):
schema = {"type": "string", "format": FILE_REF_FORMAT}
assert is_file_ref_property(schema) is True
def test_invalid_type(self):
schema = {"type": "number", "format": FILE_REF_FORMAT}
assert is_file_ref_property(schema) is False
def test_missing_format(self):
schema = {"type": "string"}
assert is_file_ref_property(schema) is False
def test_wrong_format(self):
schema = {"type": "string", "format": "uuid"}
assert is_file_ref_property(schema) is False
class TestDetectFileRefFields:
"""Tests for detect_file_ref_fields function."""
def test_simple_file_ref(self):
schema = {
"type": "object",
"properties": {
"image": {"type": "string", "format": FILE_REF_FORMAT},
},
}
paths = detect_file_ref_fields(schema)
assert paths == ["image"]
def test_multiple_file_refs(self):
schema = {
"type": "object",
"properties": {
"image": {"type": "string", "format": FILE_REF_FORMAT},
"document": {"type": "string", "format": FILE_REF_FORMAT},
"name": {"type": "string"},
},
}
paths = detect_file_ref_fields(schema)
assert set(paths) == {"image", "document"}
def test_array_of_file_refs(self):
schema = {
"type": "object",
"properties": {
"files": {
"type": "array",
"items": {"type": "string", "format": FILE_REF_FORMAT},
},
},
}
paths = detect_file_ref_fields(schema)
assert paths == ["files[*]"]
def test_nested_file_ref(self):
schema = {
"type": "object",
"properties": {
"data": {
"type": "object",
"properties": {
"image": {"type": "string", "format": FILE_REF_FORMAT},
},
},
},
}
paths = detect_file_ref_fields(schema)
assert paths == ["data.image"]
def test_no_file_refs(self):
schema = {
"type": "object",
"properties": {
"name": {"type": "string"},
"count": {"type": "number"},
},
}
paths = detect_file_ref_fields(schema)
assert paths == []
def test_empty_schema(self):
schema = {}
paths = detect_file_ref_fields(schema)
assert paths == []
def test_mixed_schema(self):
schema = {
"type": "object",
"properties": {
"query": {"type": "string"},
"image": {"type": "string", "format": FILE_REF_FORMAT},
"documents": {
"type": "array",
"items": {"type": "string", "format": FILE_REF_FORMAT},
},
},
}
paths = detect_file_ref_fields(schema)
assert set(paths) == {"image", "documents[*]"}
class TestConvertFileRefsInOutput:
"""Tests for convert_file_refs_in_output function."""
@pytest.fixture
def mock_file(self):
"""Create a mock File object with all required attributes."""
file = MagicMock(spec=File)
file.type = FileType.IMAGE
file.transfer_method = FileTransferMethod.TOOL_FILE
file.related_id = "test-related-id"
file.remote_url = None
file.tenant_id = "tenant_123"
file.id = None
file.filename = "test.png"
file.extension = ".png"
file.mime_type = "image/png"
file.size = 1024
file.dify_model_identity = "__dify__file__"
return file
@pytest.fixture
def mock_build_from_mapping(self, mock_file):
"""Mock the build_from_mapping function."""
with patch("core.llm_generator.output_parser.file_ref.build_from_mapping") as mock:
mock.return_value = mock_file
yield mock
def test_convert_simple_file_ref(self, mock_build_from_mapping, mock_file):
file_id = str(uuid.uuid4())
output = {"image": file_id}
schema = {
"type": "object",
"properties": {
"image": {"type": "string", "format": FILE_REF_FORMAT},
},
}
result = convert_file_refs_in_output(output, schema, "tenant_123")
# Result should be wrapped in FileSegment
assert isinstance(result["image"], FileSegment)
assert result["image"].value == mock_file
mock_build_from_mapping.assert_called_once_with(
mapping={"transfer_method": "tool_file", "tool_file_id": file_id},
tenant_id="tenant_123",
)
def test_convert_array_of_file_refs(self, mock_build_from_mapping, mock_file):
file_id1 = str(uuid.uuid4())
file_id2 = str(uuid.uuid4())
output = {"files": [file_id1, file_id2]}
schema = {
"type": "object",
"properties": {
"files": {
"type": "array",
"items": {"type": "string", "format": FILE_REF_FORMAT},
},
},
}
result = convert_file_refs_in_output(output, schema, "tenant_123")
# Result should be wrapped in ArrayFileSegment
assert isinstance(result["files"], ArrayFileSegment)
assert list(result["files"].value) == [mock_file, mock_file]
assert mock_build_from_mapping.call_count == 2
def test_no_conversion_without_file_refs(self):
output = {"name": "test", "count": 5}
schema = {
"type": "object",
"properties": {
"name": {"type": "string"},
"count": {"type": "number"},
},
}
result = convert_file_refs_in_output(output, schema, "tenant_123")
assert result == {"name": "test", "count": 5}
def test_invalid_uuid_returns_none(self):
output = {"image": "not-a-valid-uuid"}
schema = {
"type": "object",
"properties": {
"image": {"type": "string", "format": FILE_REF_FORMAT},
},
}
result = convert_file_refs_in_output(output, schema, "tenant_123")
assert result["image"] is None
def test_file_not_found_returns_none(self):
file_id = str(uuid.uuid4())
output = {"image": file_id}
schema = {
"type": "object",
"properties": {
"image": {"type": "string", "format": FILE_REF_FORMAT},
},
}
with patch("core.llm_generator.output_parser.file_ref.build_from_mapping") as mock:
mock.side_effect = ValueError("File not found")
result = convert_file_refs_in_output(output, schema, "tenant_123")
assert result["image"] is None
def test_preserves_non_file_fields(self, mock_build_from_mapping, mock_file):
file_id = str(uuid.uuid4())
output = {"query": "search term", "image": file_id, "count": 10}
schema = {
"type": "object",
"properties": {
"query": {"type": "string"},
"image": {"type": "string", "format": FILE_REF_FORMAT},
"count": {"type": "number"},
},
}
result = convert_file_refs_in_output(output, schema, "tenant_123")
assert result["query"] == "search term"
assert isinstance(result["image"], FileSegment)
assert result["image"].value == mock_file
assert result["count"] == 10
def test_does_not_modify_original_output(self, mock_build_from_mapping, mock_file):
file_id = str(uuid.uuid4())
original = {"image": file_id}
output = dict(original)
schema = {
"type": "object",
"properties": {
"image": {"type": "string", "format": FILE_REF_FORMAT},
},
}
convert_file_refs_in_output(output, schema, "tenant_123")
# Original should still contain the string ID
assert original["image"] == file_id

View File

@@ -25,6 +25,12 @@ class _StubErrorHandler:
"""Minimal error handler stub for tests."""
class _StubNodeData:
"""Simple node data stub with is_extractor_node property."""
is_extractor_node = False
class _StubNode:
"""Simple node stub exposing the attributes needed by the state manager."""
@@ -36,6 +42,7 @@ class _StubNode:
self.error_strategy = None
self.retry_config = RetryConfig()
self.retry = False
self.node_data = _StubNodeData()
def _build_event_handler(node_id: str) -> tuple[EventHandler, EventManager, GraphExecution]:

View File

@@ -0,0 +1,174 @@
"""Tests for llm_utils module, specifically multimodal content handling."""
import string
from unittest.mock import patch
from core.model_runtime.entities.message_entities import (
ImagePromptMessageContent,
TextPromptMessageContent,
UserPromptMessage,
)
from core.workflow.nodes.llm.llm_utils import (
_truncate_multimodal_content,
build_context,
restore_multimodal_content_in_messages,
)
class TestTruncateMultimodalContent:
"""Tests for _truncate_multimodal_content function."""
def test_returns_message_unchanged_for_string_content(self):
"""String content should pass through unchanged."""
message = UserPromptMessage(content="Hello, world!")
result = _truncate_multimodal_content(message)
assert result.content == "Hello, world!"
def test_returns_message_unchanged_for_none_content(self):
"""None content should pass through unchanged."""
message = UserPromptMessage(content=None)
result = _truncate_multimodal_content(message)
assert result.content is None
def test_clears_base64_when_file_ref_present(self):
"""When file_ref is present, base64_data and url should be cleared."""
image_content = ImagePromptMessageContent(
format="png",
base64_data=string.ascii_lowercase,
url="https://example.com/image.png",
mime_type="image/png",
filename="test.png",
file_ref="local:test-file-id",
)
message = UserPromptMessage(content=[image_content])
result = _truncate_multimodal_content(message)
assert isinstance(result.content, list)
assert len(result.content) == 1
result_content = result.content[0]
assert isinstance(result_content, ImagePromptMessageContent)
assert result_content.base64_data == ""
assert result_content.url == ""
# file_ref should be preserved
assert result_content.file_ref == "local:test-file-id"
def test_truncates_base64_when_no_file_ref(self):
"""When file_ref is missing (legacy), base64_data should be truncated."""
long_base64 = "a" * 100
image_content = ImagePromptMessageContent(
format="png",
base64_data=long_base64,
mime_type="image/png",
filename="test.png",
file_ref=None,
)
message = UserPromptMessage(content=[image_content])
result = _truncate_multimodal_content(message)
assert isinstance(result.content, list)
result_content = result.content[0]
assert isinstance(result_content, ImagePromptMessageContent)
# Should be truncated with marker
assert "...[TRUNCATED]..." in result_content.base64_data
assert len(result_content.base64_data) < len(long_base64)
def test_preserves_text_content(self):
"""Text content should pass through unchanged."""
text_content = TextPromptMessageContent(data="Hello!")
image_content = ImagePromptMessageContent(
format="png",
base64_data="test123",
mime_type="image/png",
file_ref="local:file-id",
)
message = UserPromptMessage(content=[text_content, image_content])
result = _truncate_multimodal_content(message)
assert isinstance(result.content, list)
assert len(result.content) == 2
# Text content unchanged
assert result.content[0].data == "Hello!"
# Image content base64 cleared
assert result.content[1].base64_data == ""
class TestBuildContext:
"""Tests for build_context function."""
def test_excludes_system_messages(self):
"""System messages should be excluded from context."""
from core.model_runtime.entities.message_entities import SystemPromptMessage
messages = [
SystemPromptMessage(content="You are a helpful assistant."),
UserPromptMessage(content="Hello!"),
]
context = build_context(messages, "Hi there!")
# Should have user message + assistant response, no system message
assert len(context) == 2
assert context[0].content == "Hello!"
assert context[1].content == "Hi there!"
def test_appends_assistant_response(self):
"""Assistant response should be appended to context."""
messages = [UserPromptMessage(content="What is 2+2?")]
context = build_context(messages, "The answer is 4.")
assert len(context) == 2
assert context[1].content == "The answer is 4."
class TestRestoreMultimodalContentInMessages:
"""Tests for restore_multimodal_content_in_messages function."""
@patch("core.file.file_manager.restore_multimodal_content")
def test_restores_multimodal_content(self, mock_restore):
"""Should restore multimodal content in messages."""
# Setup mock
restored_content = ImagePromptMessageContent(
format="png",
base64_data="restored-base64",
mime_type="image/png",
file_ref="local:abc123",
)
mock_restore.return_value = restored_content
# Create message with truncated content
truncated_content = ImagePromptMessageContent(
format="png",
base64_data="",
mime_type="image/png",
file_ref="local:abc123",
)
message = UserPromptMessage(content=[truncated_content])
result = restore_multimodal_content_in_messages([message])
assert len(result) == 1
assert result[0].content[0].base64_data == "restored-base64"
mock_restore.assert_called_once()
def test_passes_through_string_content(self):
"""String content should pass through unchanged."""
message = UserPromptMessage(content="Hello!")
result = restore_multimodal_content_in_messages([message])
assert len(result) == 1
assert result[0].content == "Hello!"
def test_passes_through_text_content(self):
"""TextPromptMessageContent should pass through unchanged."""
text_content = TextPromptMessageContent(data="Hello!")
message = UserPromptMessage(content=[text_content])
result = restore_multimodal_content_in_messages([message])
assert len(result) == 1
assert result[0].content[0].data == "Hello!"

View File

@@ -14,7 +14,6 @@ import { BlockEnum } from '@/app/components/workflow/types'
import { useAppContext } from '@/context/app-context'
import { useDocLink } from '@/context/i18n'
import {
useAppTriggers,
useInvalidateAppTriggers,
useUpdateTriggerStatus,

View File

@@ -0,0 +1,6 @@
<svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="0 0 12 12" fill="none">
<path d="M2.91992 1.6875C3.23055 1.68754 3.48242 1.93937 3.48242 2.25C3.48242 2.56063 3.23055 2.81246 2.91992 2.8125C2.63855 2.8125 2.41064 3.04041 2.41064 3.32178V5.46436C2.41061 5.61344 2.35148 5.75637 2.24609 5.86182L2.10791 6L2.24609 6.13818C2.35148 6.24363 2.41061 6.38656 2.41064 6.53564V8.67822C2.41064 8.95959 2.63855 9.1875 2.91992 9.1875C3.23055 9.18754 3.48242 9.43937 3.48242 9.75C3.48242 10.0606 3.23055 10.3125 2.91992 10.3125C2.01723 10.3125 1.28564 9.58091 1.28564 8.67822V6.76855L0.914551 6.39795C0.809062 6.29246 0.75 6.14918 0.75 6C0.75 5.85082 0.809062 5.70754 0.914551 5.60205L1.28564 5.23145V3.32178C1.28564 2.41909 2.01723 1.6875 2.91992 1.6875Z" fill="currentColor"/>
<path d="M9.08008 1.6875C9.98276 1.68751 10.7144 2.41909 10.7144 3.32178V5.23145L11.085 5.60205C11.1904 5.70754 11.25 5.85082 11.25 6C11.25 6.14918 11.1904 6.29246 11.085 6.39795L10.7144 6.76855V8.67822C10.7144 9.58107 9.98213 10.3125 9.08008 10.3125C8.76942 10.3125 8.51758 10.0607 8.51758 9.75C8.51758 9.43934 8.76942 9.1875 9.08008 9.1875C9.36113 9.18749 9.58936 8.95943 9.58936 8.67822V6.53564C9.58939 6.38654 9.64849 6.24363 9.75391 6.13818L9.89209 6L9.75391 5.86182C9.64849 5.75637 9.58939 5.61346 9.58936 5.46436V3.32178C9.58936 3.04041 9.36144 2.81251 9.08008 2.8125C8.76942 2.8125 8.51758 2.56066 8.51758 2.25C8.51758 1.93934 8.76942 1.6875 9.08008 1.6875Z" fill="currentColor"/>
<path d="M5.24707 5.07715C5.36302 5.07715 5.46712 5.14866 5.50879 5.25684L5.8335 6.10059C5.88932 6.24563 6.00388 6.36018 6.14893 6.41602L6.99268 6.74072C7.10086 6.78238 7.17236 6.88648 7.17236 7.00244C7.17229 7.11832 7.10078 7.22202 6.99268 7.26367L6.14893 7.58838C6.00378 7.64424 5.88929 7.75912 5.8335 7.9043L5.50879 8.74756C5.46715 8.8558 5.36307 8.92725 5.24707 8.92725C5.13116 8.92717 5.02746 8.85572 4.98584 8.74756L4.66113 7.9043C4.60526 7.75904 4.49046 7.6442 4.34521 7.58838L3.50195 7.26367C3.39378 7.22205 3.32234 7.11835 3.32227 7.00244C3.32227 6.88645 3.39371 6.78236 3.50195 6.74072L4.34521 6.41602C4.49039 6.36022 4.60523 6.24573 4.66113 6.10059L4.98584 5.25684C5.02749 5.14874 5.13121 5.07723 5.24707 5.07715Z" fill="currentColor"/>
<path d="M6.89746 2.87744C6.98013 2.87754 7.05427 2.92822 7.08398 3.00537L7.29053 3.54297C7.34635 3.68816 7.46125 3.80302 7.60645 3.85889L8.14404 4.06543C8.22123 4.0952 8.27246 4.16966 8.27246 4.25244C8.27236 4.33513 8.22116 4.40922 8.14404 4.43896L7.60645 4.64551C7.46125 4.70138 7.34635 4.81624 7.29053 4.96143L7.08398 5.49902C7.05428 5.57614 6.98014 5.62734 6.89746 5.62744C6.81468 5.62744 6.74019 5.57622 6.71045 5.49902L6.50391 4.96143C6.44808 4.81624 6.33318 4.70138 6.18799 4.64551L5.65039 4.43896C5.57328 4.40922 5.52256 4.33513 5.52246 4.25244C5.52246 4.16966 5.5732 4.0952 5.65039 4.06543L6.18799 3.85889C6.33318 3.80302 6.44808 3.68816 6.50391 3.54297L6.71045 3.00537C6.74019 2.92814 6.81469 2.87744 6.89746 2.87744Z" fill="currentColor"/>
</svg>

After

Width:  |  Height:  |  Size: 2.9 KiB

View File

@@ -0,0 +1,53 @@
{
"icon": {
"type": "element",
"isRootNode": true,
"name": "svg",
"attributes": {
"width": "12",
"height": "12",
"viewBox": "0 0 12 12",
"fill": "none",
"xmlns": "http://www.w3.org/2000/svg"
},
"children": [
{
"type": "element",
"name": "path",
"attributes": {
"d": "M2.91992 1.6875C3.23055 1.68754 3.48242 1.93937 3.48242 2.25C3.48242 2.56063 3.23055 2.81246 2.91992 2.8125C2.63855 2.8125 2.41064 3.04041 2.41064 3.32178V5.46436C2.41061 5.61344 2.35148 5.75637 2.24609 5.86182L2.10791 6L2.24609 6.13818C2.35148 6.24363 2.41061 6.38656 2.41064 6.53564V8.67822C2.41064 8.95959 2.63855 9.1875 2.91992 9.1875C3.23055 9.18754 3.48242 9.43937 3.48242 9.75C3.48242 10.0606 3.23055 10.3125 2.91992 10.3125C2.01723 10.3125 1.28564 9.58091 1.28564 8.67822V6.76855L0.914551 6.39795C0.809062 6.29246 0.75 6.14918 0.75 6C0.75 5.85082 0.809062 5.70754 0.914551 5.60205L1.28564 5.23145V3.32178C1.28564 2.41909 2.01723 1.6875 2.91992 1.6875Z",
"fill": "currentColor"
},
"children": []
},
{
"type": "element",
"name": "path",
"attributes": {
"d": "M9.08008 1.6875C9.98276 1.68751 10.7144 2.41909 10.7144 3.32178V5.23145L11.085 5.60205C11.1904 5.70754 11.25 5.85082 11.25 6C11.25 6.14918 11.1904 6.29246 11.085 6.39795L10.7144 6.76855V8.67822C10.7144 9.58107 9.98213 10.3125 9.08008 10.3125C8.76942 10.3125 8.51758 10.0607 8.51758 9.75C8.51758 9.43934 8.76942 9.1875 9.08008 9.1875C9.36113 9.18749 9.58936 8.95943 9.58936 8.67822V6.53564C9.58939 6.38654 9.64849 6.24363 9.75391 6.13818L9.89209 6L9.75391 5.86182C9.64849 5.75637 9.58939 5.61346 9.58936 5.46436V3.32178C9.58936 3.04041 9.36144 2.81251 9.08008 2.8125C8.76942 2.8125 8.51758 2.56066 8.51758 2.25C8.51758 1.93934 8.76942 1.6875 9.08008 1.6875Z",
"fill": "currentColor"
},
"children": []
},
{
"type": "element",
"name": "path",
"attributes": {
"d": "M5.24707 5.07715C5.36302 5.07715 5.46712 5.14866 5.50879 5.25684L5.8335 6.10059C5.88932 6.24563 6.00388 6.36018 6.14893 6.41602L6.99268 6.74072C7.10086 6.78238 7.17236 6.88648 7.17236 7.00244C7.17229 7.11832 7.10078 7.22202 6.99268 7.26367L6.14893 7.58838C6.00378 7.64424 5.88929 7.75912 5.8335 7.9043L5.50879 8.74756C5.46715 8.8558 5.36307 8.92725 5.24707 8.92725C5.13116 8.92717 5.02746 8.85572 4.98584 8.74756L4.66113 7.9043C4.60526 7.75904 4.49046 7.6442 4.34521 7.58838L3.50195 7.26367C3.39378 7.22205 3.32234 7.11835 3.32227 7.00244C3.32227 6.88645 3.39371 6.78236 3.50195 6.74072L4.34521 6.41602C4.49039 6.36022 4.60523 6.24573 4.66113 6.10059L4.98584 5.25684C5.02749 5.14874 5.13121 5.07723 5.24707 5.07715Z",
"fill": "currentColor"
},
"children": []
},
{
"type": "element",
"name": "path",
"attributes": {
"d": "M6.89746 2.87744C6.98013 2.87754 7.05427 2.92822 7.08398 3.00537L7.29053 3.54297C7.34635 3.68816 7.46125 3.80302 7.60645 3.85889L8.14404 4.06543C8.22123 4.0952 8.27246 4.16966 8.27246 4.25244C8.27236 4.33513 8.22116 4.40922 8.14404 4.43896L7.60645 4.64551C7.46125 4.70138 7.34635 4.81624 7.29053 4.96143L7.08398 5.49902C7.05428 5.57614 6.98014 5.62734 6.89746 5.62744C6.81468 5.62744 6.74019 5.57622 6.71045 5.49902L6.50391 4.96143C6.44808 4.81624 6.33318 4.70138 6.18799 4.64551L5.65039 4.43896C5.57328 4.40922 5.52256 4.33513 5.52246 4.25244C5.52246 4.16966 5.5732 4.0952 5.65039 4.06543L6.18799 3.85889C6.33318 3.80302 6.44808 3.68816 6.50391 3.54297L6.71045 3.00537C6.74019 2.92814 6.81469 2.87744 6.89746 2.87744Z",
"fill": "currentColor"
},
"children": []
}
]
},
"name": "AssembleVariables"
}

View File

@@ -0,0 +1,20 @@
// GENERATE BY script
// DON NOT EDIT IT MANUALLY
import type { IconData } from '@/app/components/base/icons/IconBase'
import * as React from 'react'
import IconBase from '@/app/components/base/icons/IconBase'
import data from './AssembleVariables.json'
const Icon = (
{
ref,
...props
}: React.SVGProps<SVGSVGElement> & {
ref?: React.RefObject<React.RefObject<HTMLOrSVGElement>>
},
) => <IconBase {...props} ref={ref} data={data as IconData} />
Icon.displayName = 'AssembleVariables'
export default Icon

View File

@@ -1,4 +1,5 @@
export { default as AtSign } from './AtSign'
export { default as AssembleVariables } from './AssembleVariables'
export { default as Bookmark } from './Bookmark'
export { default as Check } from './Check'
export { default as CheckDone01 } from './CheckDone01'

View File

@@ -38,13 +38,16 @@ export const getInputVars = (text: string): ValueSelector[] => {
if (!text || typeof text !== 'string')
return []
const allVars = text.match(/\{\{#([^#]*)#\}\}/g)
const allVars = text.match(/\{\{[@#]([^@#]*)[@#]\}\}/g)
if (allVars && allVars?.length > 0) {
// {{#context#}}, {{#query#}} is not input vars
const inputVars = allVars
.filter(item => item.includes('.'))
.map((item) => {
const valueSelector = item.replace('{{#', '').replace('#}}', '').split('.')
const valueSelector = item
.replace(/^\{\{[@#]/, '')
.replace(/[@#]\}\}$/, '')
.split('.')
if (valueSelector[1] === 'sys' && /^\d+$/.test(valueSelector[0]))
return valueSelector.slice(1)

View File

@@ -5,6 +5,7 @@ import type {
} from 'lexical'
import type { FC } from 'react'
import type {
AgentBlockType,
ContextBlockType,
CurrentBlockType,
ErrorMessageBlockType,
@@ -103,6 +104,7 @@ export type PromptEditorProps = {
currentBlock?: CurrentBlockType
errorMessageBlock?: ErrorMessageBlockType
lastRunBlock?: LastRunBlockType
agentBlock?: AgentBlockType
isSupportFileVar?: boolean
}
@@ -128,6 +130,7 @@ const PromptEditor: FC<PromptEditorProps> = ({
currentBlock,
errorMessageBlock,
lastRunBlock,
agentBlock,
isSupportFileVar,
}) => {
const { eventEmitter } = useEventEmitterContextContext()
@@ -139,6 +142,7 @@ const PromptEditor: FC<PromptEditorProps> = ({
{
replace: TextNode,
with: (node: TextNode) => new CustomTextNode(node.__text),
withKlass: CustomTextNode,
},
ContextBlockNode,
HistoryBlockNode,
@@ -212,6 +216,22 @@ const PromptEditor: FC<PromptEditorProps> = ({
lastRunBlock={lastRunBlock}
isSupportFileVar={isSupportFileVar}
/>
{(!agentBlock || agentBlock.show) && (
<ComponentPickerBlock
triggerString="@"
contextBlock={contextBlock}
historyBlock={historyBlock}
queryBlock={queryBlock}
variableBlock={variableBlock}
externalToolBlock={externalToolBlock}
workflowVariableBlock={workflowVariableBlock}
currentBlock={currentBlock}
errorMessageBlock={errorMessageBlock}
lastRunBlock={lastRunBlock}
agentBlock={agentBlock}
isSupportFileVar={isSupportFileVar}
/>
)}
<ComponentPickerBlock
triggerString="{"
contextBlock={contextBlock}

View File

@@ -1,6 +1,7 @@
import type { MenuRenderFn } from '@lexical/react/LexicalTypeaheadMenuPlugin'
import type { TextNode } from 'lexical'
import type {
AgentBlockType,
ContextBlockType,
CurrentBlockType,
ErrorMessageBlockType,
@@ -20,7 +21,11 @@ import {
} from '@floating-ui/react'
import { useLexicalComposerContext } from '@lexical/react/LexicalComposerContext'
import { LexicalTypeaheadMenuPlugin } from '@lexical/react/LexicalTypeaheadMenuPlugin'
import { KEY_ESCAPE_COMMAND } from 'lexical'
import {
$getRoot,
$insertNodes,
KEY_ESCAPE_COMMAND,
} from 'lexical'
import {
Fragment,
memo,
@@ -29,7 +34,9 @@ import {
} from 'react'
import ReactDOM from 'react-dom'
import { GeneratorType } from '@/app/components/app/configuration/config/automatic/types'
import AgentNodeList from '@/app/components/workflow/nodes/_base/components/agent-node-list'
import VarReferenceVars from '@/app/components/workflow/nodes/_base/components/variable/var-reference-vars'
import { BlockEnum } from '@/app/components/workflow/types'
import { useEventEmitterContextContext } from '@/context/event-emitter'
import { useBasicTypeaheadTriggerMatch } from '../../hooks'
import { $splitNodeContainingQuery } from '../../utils'
@@ -38,6 +45,7 @@ import { INSERT_ERROR_MESSAGE_BLOCK_COMMAND } from '../error-message-block'
import { INSERT_LAST_RUN_BLOCK_COMMAND } from '../last-run-block'
import { INSERT_VARIABLE_VALUE_BLOCK_COMMAND } from '../variable-block'
import { INSERT_WORKFLOW_VARIABLE_BLOCK_COMMAND } from '../workflow-variable-block'
import { $createWorkflowVariableBlockNode } from '../workflow-variable-block/node'
import { useOptions } from './hooks'
type ComponentPickerProps = {
@@ -51,6 +59,7 @@ type ComponentPickerProps = {
currentBlock?: CurrentBlockType
errorMessageBlock?: ErrorMessageBlockType
lastRunBlock?: LastRunBlockType
agentBlock?: AgentBlockType
isSupportFileVar?: boolean
}
const ComponentPicker = ({
@@ -64,6 +73,7 @@ const ComponentPicker = ({
currentBlock,
errorMessageBlock,
lastRunBlock,
agentBlock,
isSupportFileVar,
}: ComponentPickerProps) => {
const { eventEmitter } = useEventEmitterContextContext()
@@ -151,12 +161,55 @@ const ComponentPicker = ({
editor.dispatchCommand(KEY_ESCAPE_COMMAND, escapeEvent)
}, [editor])
const handleSelectAssembleVariables = useCallback(() => {
editor.update(() => {
const match = checkForTriggerMatch(triggerString, editor)
if (!match)
return
const needRemove = $splitNodeContainingQuery(match)
if (needRemove)
needRemove.remove()
})
workflowVariableBlock?.onAssembleVariables?.()
handleClose()
}, [editor, checkForTriggerMatch, triggerString, workflowVariableBlock, handleClose])
const handleSelectAgent = useCallback((agent: { id: string, title: string }) => {
editor.update(() => {
const needRemove = $splitNodeContainingQuery(checkForTriggerMatch(triggerString, editor)!)
if (needRemove)
needRemove.remove()
const root = $getRoot()
const firstChild = root.getFirstChild()
if (firstChild) {
const selection = firstChild.selectStart()
if (selection) {
const workflowVariableBlockNode = $createWorkflowVariableBlockNode([agent.id, 'text'], {}, undefined)
$insertNodes([workflowVariableBlockNode])
}
}
})
agentBlock?.onSelect?.(agent)
handleClose()
}, [editor, checkForTriggerMatch, triggerString, agentBlock, handleClose])
const isAgentTrigger = triggerString === '@' && agentBlock?.show
const showAssembleVariables = triggerString === '/' && workflowVariableBlock?.showAssembleVariables
const agentNodes = agentBlock?.agentNodes || []
const renderMenu = useCallback<MenuRenderFn<PickerBlockMenuOption>>((
anchorElementRef,
{ options, selectedIndex, selectOptionAndCleanUp, setHighlightedIndex },
) => {
if (!(anchorElementRef.current && (allFlattenOptions.length || workflowVariableBlock?.show)))
return null
if (isAgentTrigger) {
if (!(anchorElementRef.current && agentNodes.length))
return null
}
else {
if (!(anchorElementRef.current && (allFlattenOptions.length || workflowVariableBlock?.show)))
return null
}
setTimeout(() => {
if (anchorElementRef.current)
@@ -167,9 +220,6 @@ const ComponentPicker = ({
<>
{
ReactDOM.createPortal(
// The `LexicalMenu` will try to calculate the position of the floating menu based on the first child.
// Since we use floating ui, we need to wrap it with a div to prevent the position calculation being affected.
// See https://github.com/facebook/lexical/blob/ac97dfa9e14a73ea2d6934ff566282d7f758e8bb/packages/lexical-react/src/shared/LexicalMenu.ts#L493
<div className="h-0 w-0">
<div
className="w-[260px] rounded-lg border-[0.5px] border-components-panel-border bg-components-panel-bg-blur p-1 shadow-lg"
@@ -179,56 +229,75 @@ const ComponentPicker = ({
}}
ref={refs.setFloating}
>
{
workflowVariableBlock?.show && (
<div className="p-1">
<VarReferenceVars
searchBoxClassName="mt-1"
vars={workflowVariableOptions}
onChange={(variables: string[]) => {
handleSelectWorkflowVariable(variables)
}}
maxHeightClass="max-h-[34vh]"
isSupportFileVar={isSupportFileVar}
{isAgentTrigger
? (
<AgentNodeList
nodes={agentNodes.map(node => ({
...node,
type: BlockEnum.Agent || BlockEnum.LLM,
}))}
onSelect={handleSelectAgent}
onClose={handleClose}
onBlur={handleClose}
showManageInputField={workflowVariableBlock.showManageInputField}
onManageInputField={workflowVariableBlock.onManageInputField}
maxHeightClass="max-h-[34vh]"
autoFocus={false}
isInCodeGeneratorInstructionEditor={currentBlock?.generatorType === GeneratorType.code}
/>
</div>
)
}
{
workflowVariableBlock?.show && !!options.length && (
<div className="my-1 h-px w-full -translate-x-1 bg-divider-subtle"></div>
)
}
<div>
{
options.map((option, index) => (
<Fragment key={option.key}>
)
: (
<>
{
// Divider
index !== 0 && options.at(index - 1)?.group !== option.group && (
workflowVariableBlock?.show && (
<div className="p-1">
<VarReferenceVars
searchBoxClassName="mt-1"
vars={workflowVariableOptions}
onChange={(variables: string[]) => {
handleSelectWorkflowVariable(variables)
}}
maxHeightClass="max-h-[34vh]"
isSupportFileVar={isSupportFileVar}
onClose={handleClose}
onBlur={handleClose}
showManageInputField={workflowVariableBlock.showManageInputField}
onManageInputField={workflowVariableBlock.onManageInputField}
showAssembleVariables={showAssembleVariables}
onAssembleVariables={showAssembleVariables ? handleSelectAssembleVariables : undefined}
autoFocus={false}
isInCodeGeneratorInstructionEditor={currentBlock?.generatorType === GeneratorType.code}
/>
</div>
)
}
{
workflowVariableBlock?.show && !!options.length && (
<div className="my-1 h-px w-full -translate-x-1 bg-divider-subtle"></div>
)
}
{option.renderMenuOption({
queryString,
isSelected: selectedIndex === index,
onSelect: () => {
selectOptionAndCleanUp(option)
},
onSetHighlight: () => {
setHighlightedIndex(index)
},
})}
</Fragment>
))
}
</div>
<div>
{
options.map((option, index) => (
<Fragment key={option.key}>
{
index !== 0 && options.at(index - 1)?.group !== option.group && (
<div className="my-1 h-px w-full -translate-x-1 bg-divider-subtle"></div>
)
}
{option.renderMenuOption({
queryString,
isSelected: selectedIndex === index,
onSelect: () => {
selectOptionAndCleanUp(option)
},
onSetHighlight: () => {
setHighlightedIndex(index)
},
})}
</Fragment>
))
}
</div>
</>
)}
</div>
</div>,
anchorElementRef.current,
@@ -236,7 +305,7 @@ const ComponentPicker = ({
}
</>
)
}, [allFlattenOptions.length, workflowVariableBlock?.show, floatingStyles, isPositioned, refs, workflowVariableOptions, isSupportFileVar, handleClose, currentBlock?.generatorType, handleSelectWorkflowVariable, queryString, workflowVariableBlock?.showManageInputField, workflowVariableBlock?.onManageInputField])
}, [isAgentTrigger, agentNodes, allFlattenOptions.length, workflowVariableBlock?.show, floatingStyles, isPositioned, refs, handleSelectAgent, handleClose, workflowVariableOptions, isSupportFileVar, currentBlock?.generatorType, handleSelectWorkflowVariable, queryString, workflowVariableBlock?.showManageInputField, workflowVariableBlock?.onManageInputField, showAssembleVariables, handleSelectAssembleVariables])
return (
<LexicalTypeaheadMenuPlugin

View File

@@ -21,6 +21,7 @@ import {
VariableLabelInEditor,
} from '@/app/components/workflow/nodes/_base/components/variable/variable-label'
import { Type } from '@/app/components/workflow/nodes/llm/types'
import { BlockEnum } from '@/app/components/workflow/types'
import { isExceptionVariable } from '@/app/components/workflow/utils'
import { useSelectOrDelete } from '../../hooks'
import {
@@ -66,6 +67,8 @@ const WorkflowVariableBlockComponent = ({
)()
const [localWorkflowNodesMap, setLocalWorkflowNodesMap] = useState<WorkflowNodesMap>(workflowNodesMap)
const node = localWorkflowNodesMap![variables[isRagVar ? 1 : 0]]
const isContextVariable = (node?.type === BlockEnum.Agent || node?.type === BlockEnum.LLM)
&& variables[variablesLength - 1] === 'context'
const isException = isExceptionVariable(varName, node?.type)
const variableValid = useMemo(() => {
@@ -134,6 +137,9 @@ const WorkflowVariableBlockComponent = ({
})
}, [node, reactflow, store])
if (isContextVariable)
return <span className="hidden" ref={ref} />
const Item = (
<VariableLabelInEditor
nodeType={node?.type}

View File

@@ -2,6 +2,7 @@ import type { LexicalNode, NodeKey, SerializedLexicalNode } from 'lexical'
import type { GetVarType, WorkflowVariableBlockType } from '../../types'
import type { Var } from '@/app/components/workflow/types'
import { DecoratorNode } from 'lexical'
import { BlockEnum } from '@/app/components/workflow/types'
import WorkflowVariableBlockComponent from './component'
export type WorkflowNodesMap = WorkflowVariableBlockType['workflowNodesMap']
@@ -120,7 +121,12 @@ export class WorkflowVariableBlockNode extends DecoratorNode<React.JSX.Element>
}
getTextContent(): string {
return `{{#${this.getVariables().join('.')}#}}`
const variables = this.getVariables()
const node = this.getWorkflowNodesMap()?.[variables[0]]
const isContextVariable = (node?.type === BlockEnum.Agent || node?.type === BlockEnum.LLM)
&& variables[variables.length - 1] === 'context'
const marker = isContextVariable ? '@' : '#'
return `{{${marker}${variables.join('.')}${marker}}}`
}
}
export function $createWorkflowVariableBlockNode(variables: string[], workflowNodesMap: WorkflowNodesMap, getVarType?: GetVarType, environmentVariables?: Var[], conversationVariables?: Var[], ragVariables?: Var[]): WorkflowVariableBlockNode {

View File

@@ -71,6 +71,19 @@ export type WorkflowVariableBlockType = {
getVarType?: GetVarType
showManageInputField?: boolean
onManageInputField?: () => void
showAssembleVariables?: boolean
onAssembleVariables?: () => void
}
export type AgentNode = {
id: string
title: string
}
export type AgentBlockType = {
show?: boolean
agentNodes?: AgentNode[]
onSelect?: (agent: AgentNode) => void
}
export type MenuTextMatch = {

View File

@@ -0,0 +1,194 @@
'use client'
import type { FC } from 'react'
import type { Item } from '@/app/components/base/select'
import type { MentionConfig } from '@/app/components/workflow/nodes/_base/types'
import type { Node, NodeOutPutVar, ValueSelector } from '@/app/components/workflow/types'
import { RiCheckLine } from '@remixicon/react'
import { memo, useCallback, useMemo, useState } from 'react'
import { useTranslation } from 'react-i18next'
import { SimpleSelect } from '@/app/components/base/select'
import CodeEditor from '@/app/components/workflow/nodes/_base/components/editor/code-editor'
import Field from '@/app/components/workflow/nodes/_base/components/field'
import VarReferencePicker from '@/app/components/workflow/nodes/_base/components/variable/var-reference-picker'
import Tab, { TabType } from '@/app/components/workflow/nodes/_base/components/workflow-panel/tab'
import { CodeLanguage } from '@/app/components/workflow/nodes/code/types'
import { cn } from '@/utils/classnames'
type ConfigPanelProps = {
agentName: string
extractorNodeId: string
mentionConfig: MentionConfig
availableNodes: Node[]
availableVars: NodeOutPutVar[]
onMentionConfigChange: (config: MentionConfig) => void
}
const ConfigPanel: FC<ConfigPanelProps> = ({
agentName,
extractorNodeId,
mentionConfig,
availableNodes,
availableVars,
onMentionConfigChange,
}) => {
const { t } = useTranslation()
const [tabType, setTabType] = useState<TabType>(TabType.settings)
const resolvedExtractorId = mentionConfig.extractor_node_id || extractorNodeId
const selectedOutput = useMemo<ValueSelector>(() => {
if (!resolvedExtractorId || !mentionConfig.output_selector?.length)
return []
return [resolvedExtractorId, ...(mentionConfig.output_selector || [])]
}, [mentionConfig.output_selector, resolvedExtractorId])
const handleOutputVarChange = useCallback((value: ValueSelector | string) => {
const selector = Array.isArray(value) ? value : []
const nextExtractorId = selector[0] || resolvedExtractorId
const nextOutputSelector = selector.length > 1 ? selector.slice(1) : []
onMentionConfigChange({
...mentionConfig,
extractor_node_id: nextExtractorId,
output_selector: nextOutputSelector,
})
}, [mentionConfig, onMentionConfigChange, resolvedExtractorId])
const whenOutputNoneOptions = useMemo(() => ([
{
value: 'raise_error',
name: t('subGraphModal.whenOutputNone.error', { ns: 'workflow' }),
description: t('subGraphModal.whenOutputNone.errorDesc', { ns: 'workflow' }),
},
{
value: 'use_default',
name: t('subGraphModal.whenOutputNone.default', { ns: 'workflow' }),
description: t('subGraphModal.whenOutputNone.defaultDesc', { ns: 'workflow' }),
},
]), [t])
const selectedWhenOutputNoneOption = useMemo(() => (
whenOutputNoneOptions.find(item => item.value === mentionConfig.null_strategy) ?? whenOutputNoneOptions[0]
), [mentionConfig.null_strategy, whenOutputNoneOptions])
const handleNullStrategyChange = useCallback((item: Item) => {
if (typeof item.value !== 'string')
return
onMentionConfigChange({
...mentionConfig,
null_strategy: item.value as MentionConfig['null_strategy'],
})
}, [mentionConfig, onMentionConfigChange])
const handleDefaultValueChange = useCallback((value: string) => {
const trimmed = value.trim()
let nextValue: unknown = value
if ((trimmed.startsWith('{') && trimmed.endsWith('}')) || (trimmed.startsWith('[') && trimmed.endsWith(']'))) {
try {
nextValue = JSON.parse(trimmed)
}
catch {
nextValue = value
}
}
onMentionConfigChange({
...mentionConfig,
default_value: nextValue,
})
}, [mentionConfig, onMentionConfigChange])
const defaultValue = mentionConfig.default_value ?? ''
const shouldFormatDefaultValue = typeof defaultValue !== 'string'
return (
<div className="flex h-full flex-col">
<div className="px-4 pb-2 pt-4">
<div className="system-lg-semibold text-text-primary">
{t('subGraphModal.internalStructure', { ns: 'workflow' })}
</div>
<div className="system-sm-regular text-text-tertiary">
{t('subGraphModal.internalStructureDesc', { ns: 'workflow', name: agentName })}
</div>
</div>
<div className="px-4 pb-2">
<Tab value={tabType} onChange={setTabType} />
</div>
{tabType === TabType.lastRun && (
<div className="flex flex-1 items-center justify-center p-4">
<p className="system-sm-regular text-text-tertiary">
{t('subGraphModal.noRunHistory', { ns: 'workflow' })}
</p>
</div>
)}
{tabType === TabType.settings && (
<div className="flex-1 overflow-y-auto">
<div className="space-y-4 px-4 py-4">
<Field title={t('subGraphModal.outputVariables', { ns: 'workflow' })}>
<VarReferencePicker
nodeId={extractorNodeId}
readonly={false}
isShowNodeName
value={selectedOutput}
onChange={handleOutputVarChange}
availableNodes={availableNodes}
availableVars={availableVars}
/>
</Field>
</div>
<div className="space-y-4 px-4 py-4">
<Field
title={t('subGraphModal.whenOutputIsNone', { ns: 'workflow' })}
operations={(
<div className="flex items-center">
<SimpleSelect
items={whenOutputNoneOptions}
defaultValue={mentionConfig.null_strategy}
allowSearch={false}
notClearable
wrapperClassName="min-w-[160px]"
onSelect={handleNullStrategyChange}
renderOption={({ item, selected }) => (
<div className="flex items-start gap-2">
<div className="mt-0.5 flex h-4 w-4 shrink-0 items-center justify-center">
{selected && (
<RiCheckLine className="h-4 w-4 text-[14px] text-text-accent" />
)}
</div>
<div className="min-w-0">
<div className="system-sm-medium text-text-secondary">{item.name}</div>
<div className="system-xs-regular mt-0.5 text-text-tertiary">{item.description}</div>
</div>
</div>
)}
/>
</div>
)}
>
<div className="space-y-2">
{selectedWhenOutputNoneOption?.description && (
<div className="system-xs-regular text-text-tertiary">
{selectedWhenOutputNoneOption.description}
</div>
)}
{mentionConfig.null_strategy === 'use_default' && (
<div className={cn('overflow-hidden rounded-lg border border-components-input-border-active bg-components-input-bg-normal p-1')}>
<CodeEditor
noWrapper
language={CodeLanguage.json}
value={defaultValue}
onChange={handleDefaultValueChange}
isJSONStringifyBeauty={shouldFormatDefaultValue}
className="min-h-[160px]"
/>
</div>
)}
</div>
</Field>
</div>
</div>
)}
</div>
)
}
export default memo(ConfigPanel)

View File

@@ -0,0 +1,87 @@
import type { FC } from 'react'
import type { MentionConfig } from '@/app/components/workflow/nodes/_base/types'
import type { NodeOutPutVar } from '@/app/components/workflow/types'
import { memo, useMemo } from 'react'
import { useStore as useReactFlowStore } from 'reactflow'
import { useShallow } from 'zustand/react/shallow'
import { useIsChatMode, useWorkflowVariables } from '@/app/components/workflow/hooks'
import Panel from '@/app/components/workflow/panel'
import { useStore } from '@/app/components/workflow/store'
import { BlockEnum } from '@/app/components/workflow/types'
import ConfigPanel from './config-panel'
type SubGraphChildrenProps = {
agentName: string
extractorNodeId: string
mentionConfig: MentionConfig
onMentionConfigChange: (config: MentionConfig) => void
}
const SubGraphChildren: FC<SubGraphChildrenProps> = ({
agentName,
extractorNodeId,
mentionConfig,
onMentionConfigChange,
}) => {
const { getNodeAvailableVars } = useWorkflowVariables()
const isChatMode = useIsChatMode()
const nodePanelWidth = useStore(s => s.nodePanelWidth)
const selectedNode = useReactFlowStore(useShallow((s) => {
return s.getNodes().find(node => node.data.selected)
}))
const extractorNode = useReactFlowStore(useShallow((s) => {
return s.getNodes().find(node => node.data.type === BlockEnum.LLM)
}))
const availableNodes = useMemo(() => {
return extractorNode ? [extractorNode] : []
}, [extractorNode])
const availableVars = useMemo<NodeOutPutVar[]>(() => {
if (!extractorNode)
return []
const vars = getNodeAvailableVars({
beforeNodes: [extractorNode],
isChatMode,
filterVar: () => true,
})
return vars.filter(item => item.nodeId === extractorNode.id)
}, [extractorNode, getNodeAvailableVars, isChatMode])
const panelRight = useMemo(() => {
if (selectedNode)
return null
return (
<div className="relative mr-1 h-full">
<div
className="flex h-full flex-col rounded-2xl border-[0.5px] border-components-panel-border bg-components-panel-bg shadow-lg"
style={{ width: `${nodePanelWidth}px` }}
>
<ConfigPanel
agentName={agentName}
extractorNodeId={extractorNodeId}
mentionConfig={mentionConfig}
availableNodes={availableNodes}
availableVars={availableVars}
onMentionConfigChange={onMentionConfigChange}
/>
</div>
</div>
)
}, [agentName, availableNodes, availableVars, extractorNodeId, mentionConfig, nodePanelWidth, onMentionConfigChange, selectedNode])
return (
<Panel
withHeader={false}
components={{
right: panelRight,
}}
/>
)
}
export default memo(SubGraphChildren)

View File

@@ -0,0 +1,109 @@
import type { FC } from 'react'
import type { Viewport } from 'reactflow'
import type { SyncWorkflowDraft, SyncWorkflowDraftCallback } from '../types'
import type { Shape as HooksStoreShape } from '@/app/components/workflow/hooks-store'
import type { MentionConfig } from '@/app/components/workflow/nodes/_base/types'
import type { Edge, Node } from '@/app/components/workflow/types'
import { useCallback, useMemo } from 'react'
import { useStoreApi } from 'reactflow'
import { WorkflowWithInnerContext } from '@/app/components/workflow'
import { useSetWorkflowVarsWithValue } from '@/app/components/workflow/hooks/use-fetch-workflow-inspect-vars'
import { useInspectVarsCrudCommon } from '@/app/components/workflow/hooks/use-inspect-vars-crud-common'
import { FlowType } from '@/types/common'
import { useAvailableNodesMetaData } from '../hooks'
import SubGraphChildren from './sub-graph-children'
type SubGraphMainProps = {
nodes: Node[]
edges: Edge[]
viewport: Viewport
agentName: string
extractorNodeId: string
configsMap?: HooksStoreShape['configsMap']
mentionConfig: MentionConfig
onMentionConfigChange: (config: MentionConfig) => void
onSave?: (nodes: Node[], edges: Edge[]) => void
onSyncWorkflowDraft?: SyncWorkflowDraft
}
const SubGraphMain: FC<SubGraphMainProps> = ({
nodes,
edges,
viewport,
agentName,
extractorNodeId,
configsMap,
mentionConfig,
onMentionConfigChange,
onSave,
onSyncWorkflowDraft,
}) => {
const reactFlowStore = useStoreApi()
const availableNodesMetaData = useAvailableNodesMetaData()
const flowType = configsMap?.flowType ?? FlowType.appFlow
const flowId = configsMap?.flowId ?? ''
const { fetchInspectVars } = useSetWorkflowVarsWithValue({
flowType,
flowId,
})
const inspectVarsCrud = useInspectVarsCrudCommon({
flowType,
flowId,
})
const handleSyncSubGraphDraft = useCallback(async () => {
const { getNodes, edges } = reactFlowStore.getState()
await onSave?.(getNodes() as Node[], edges as Edge[])
}, [onSave, reactFlowStore])
const handleSyncWorkflowDraft = useCallback(async (
notRefreshWhenSyncError?: boolean,
callback?: SyncWorkflowDraftCallback,
) => {
try {
await handleSyncSubGraphDraft()
if (onSyncWorkflowDraft) {
await onSyncWorkflowDraft(notRefreshWhenSyncError, callback)
return
}
callback?.onSuccess?.()
}
catch {
callback?.onError?.()
}
finally {
callback?.onSettled?.()
}
}, [handleSyncSubGraphDraft, onSyncWorkflowDraft])
const hooksStore = useMemo(() => ({
interactionMode: 'subgraph',
availableNodesMetaData,
configsMap,
fetchInspectVars,
...inspectVarsCrud,
doSyncWorkflowDraft: handleSyncWorkflowDraft,
syncWorkflowDraftWhenPageClose: handleSyncSubGraphDraft,
}), [availableNodesMetaData, configsMap, fetchInspectVars, handleSyncSubGraphDraft, handleSyncWorkflowDraft, inspectVarsCrud])
return (
<WorkflowWithInnerContext
nodes={nodes}
edges={edges}
viewport={viewport}
hooksStore={hooksStore as any}
allowSelectionWhenReadOnly
canvasReadOnly
interactionMode="subgraph"
>
<SubGraphChildren
agentName={agentName}
extractorNodeId={extractorNodeId}
mentionConfig={mentionConfig}
onMentionConfigChange={onMentionConfigChange}
/>
</WorkflowWithInnerContext>
)
}
export default SubGraphMain

View File

@@ -0,0 +1,2 @@
export { useAvailableNodesMetaData } from './use-available-nodes-meta-data'
export { useSubGraphNodes } from './use-sub-graph-nodes'

View File

@@ -0,0 +1,43 @@
import type { AvailableNodesMetaData } from '@/app/components/workflow/hooks-store/store'
import { useMemo } from 'react'
import { useTranslation } from 'react-i18next'
import { WORKFLOW_COMMON_NODES } from '@/app/components/workflow/constants/node'
import { BlockEnum } from '@/app/components/workflow/types'
export const useAvailableNodesMetaData = () => {
const { t } = useTranslation()
const availableNodesMetaData = useMemo(() => WORKFLOW_COMMON_NODES.map((node) => {
const { metaData } = node
const title = t(`blocks.${metaData.type}`, { ns: 'workflow' })
const description = t(`blocksAbout.${metaData.type}`, { ns: 'workflow' })
return {
...node,
metaData: {
...metaData,
title,
description,
},
defaultValue: {
...node.defaultValue,
type: metaData.type,
title,
},
}
}), [t])
const availableNodesMetaDataMap = useMemo(() => availableNodesMetaData.reduce((acc, node) => {
acc![node.metaData.type] = node
return acc
}, {} as AvailableNodesMetaData['nodesMap']), [availableNodesMetaData])
return useMemo(() => {
return {
nodes: availableNodesMetaData,
nodesMap: {
...availableNodesMetaDataMap,
[BlockEnum.VariableAssigner]: availableNodesMetaDataMap?.[BlockEnum.VariableAggregator],
},
}
}, [availableNodesMetaData, availableNodesMetaDataMap])
}

View File

@@ -0,0 +1,20 @@
import type { Edge, Node } from '@/app/components/workflow/types'
import { useMemo } from 'react'
import { initialEdges, initialNodes } from '@/app/components/workflow/utils'
export const useSubGraphNodes = (nodes: Node[], edges: Edge[]) => {
const processedNodes = useMemo(
() => initialNodes(nodes, edges),
[nodes, edges],
)
const processedEdges = useMemo(
() => initialEdges(edges, nodes),
[edges, nodes],
)
return {
nodes: processedNodes,
edges: processedEdges,
}
}

View File

@@ -0,0 +1,212 @@
import type { FC } from 'react'
import type { Viewport } from 'reactflow'
import type { SubGraphProps } from './types'
import type { InjectWorkflowStoreSliceFn } from '@/app/components/workflow/store'
import type { PromptItem, PromptTemplateItem } from '@/app/components/workflow/types'
import { memo, useEffect, useMemo } from 'react'
import WorkflowWithDefaultContext from '@/app/components/workflow'
import { NODE_WIDTH_X_OFFSET, START_INITIAL_POSITION } from '@/app/components/workflow/constants'
import { WorkflowContextProvider } from '@/app/components/workflow/context'
import { useStore } from '@/app/components/workflow/store'
import { BlockEnum, EditionType, isPromptMessageContext, PromptRole } from '@/app/components/workflow/types'
import SubGraphMain from './components/sub-graph-main'
import { useSubGraphNodes } from './hooks'
import { createSubGraphSlice } from './store'
const SUB_GRAPH_EDGE_GAP = 160
const SUB_GRAPH_ENTRY_POSITION = {
x: START_INITIAL_POSITION.x,
y: 150,
}
const SUB_GRAPH_LLM_POSITION = {
x: SUB_GRAPH_ENTRY_POSITION.x + NODE_WIDTH_X_OFFSET - SUB_GRAPH_EDGE_GAP,
y: SUB_GRAPH_ENTRY_POSITION.y,
}
const defaultViewport: Viewport = {
x: SUB_GRAPH_EDGE_GAP,
y: 50,
zoom: 1.3,
}
const SubGraphContent: FC<SubGraphProps> = (props) => {
const {
toolNodeId,
paramKey,
agentName,
agentNodeId,
mentionConfig,
onMentionConfigChange,
extractorNode,
toolParamValue,
parentAvailableNodes,
parentAvailableVars,
configsMap,
onSave,
onSyncWorkflowDraft,
} = props
const setParentAvailableVars = useStore(state => state.setParentAvailableVars)
const setParentAvailableNodes = useStore(state => state.setParentAvailableNodes)
useEffect(() => {
setParentAvailableVars?.(parentAvailableVars || [])
setParentAvailableNodes?.(parentAvailableNodes || [])
}, [parentAvailableNodes, parentAvailableVars, setParentAvailableNodes, setParentAvailableVars])
const promptText = useMemo(() => {
if (!toolParamValue)
return ''
// Reason: escape agent id before building a regex pattern.
const escapedAgentId = agentNodeId.replace(/[.*+?^${}()|[\]\\]/g, '\\$&')
const leadingPattern = new RegExp(`^\\{\\{[@#]${escapedAgentId}\\.context[@#]\\}\\}`)
return toolParamValue.replace(leadingPattern, '')
}, [agentNodeId, toolParamValue])
const startNode = useMemo(() => {
return {
id: 'subgraph-source',
type: 'custom',
position: SUB_GRAPH_ENTRY_POSITION,
data: {
type: BlockEnum.Start,
title: agentName,
desc: '',
_connectedSourceHandleIds: ['source'],
_connectedTargetHandleIds: [],
_subGraphEntry: true,
_iconTypeOverride: BlockEnum.Agent,
selected: false,
variables: [],
},
selected: false,
selectable: false,
draggable: false,
connectable: false,
focusable: false,
deletable: false,
}
}, [agentName])
const extractorDisplayNode = useMemo(() => {
if (!extractorNode)
return null
const applyPromptText = (item: PromptItem) => {
if (item.edition_type === EditionType.jinja2) {
return {
...item,
text: promptText,
jinja2_text: promptText,
}
}
return { ...item, text: promptText }
}
const nextPromptTemplate = (() => {
const template = extractorNode.data.prompt_template
if (!Array.isArray(template))
return applyPromptText(template as PromptItem)
const userIndex = template.findIndex(
item => !isPromptMessageContext(item) && (item as PromptItem).role === PromptRole.user,
)
if (userIndex >= 0) {
return template.map((item, index) => {
if (index !== userIndex)
return item
return applyPromptText(item as PromptItem)
}) as PromptTemplateItem[]
}
const useJinja = template.some(
item => !isPromptMessageContext(item) && (item as PromptItem).edition_type === EditionType.jinja2,
)
const defaultUserPrompt: PromptItem = useJinja
? {
role: PromptRole.user,
text: promptText,
jinja2_text: promptText,
edition_type: EditionType.jinja2,
}
: { role: PromptRole.user, text: promptText }
return [...template, defaultUserPrompt] as PromptTemplateItem[]
})()
return {
...extractorNode,
hidden: false,
selected: false,
position: SUB_GRAPH_LLM_POSITION,
data: {
...extractorNode.data,
selected: false,
prompt_template: nextPromptTemplate,
},
}
}, [extractorNode, promptText])
const nodesSource = useMemo(() => {
if (!extractorDisplayNode)
return [startNode]
return [startNode, extractorDisplayNode]
}, [extractorDisplayNode, startNode])
const edgesSource = useMemo(() => {
if (!extractorDisplayNode)
return []
return [
{
id: `${startNode.id}-${extractorDisplayNode.id}`,
source: startNode.id,
sourceHandle: 'source',
target: extractorDisplayNode.id,
targetHandle: 'target',
type: 'custom',
selectable: false,
data: {
sourceType: BlockEnum.Start,
targetType: BlockEnum.LLM,
_isTemp: true,
_isSubGraphTemp: true,
},
},
]
}, [extractorDisplayNode, startNode])
const { nodes, edges } = useSubGraphNodes(nodesSource, edgesSource)
return (
<WorkflowWithDefaultContext
nodes={nodes}
edges={edges}
>
<SubGraphMain
nodes={nodes}
edges={edges}
viewport={defaultViewport}
agentName={agentName}
extractorNodeId={`${toolNodeId}_ext_${paramKey}`}
configsMap={configsMap}
mentionConfig={mentionConfig}
onMentionConfigChange={onMentionConfigChange}
onSave={onSave}
onSyncWorkflowDraft={onSyncWorkflowDraft}
/>
</WorkflowWithDefaultContext>
)
}
const SubGraph: FC<SubGraphProps> = (props) => {
return (
<WorkflowContextProvider
injectWorkflowStoreSliceFn={createSubGraphSlice as InjectWorkflowStoreSliceFn}
>
<SubGraphContent {...props} />
</WorkflowContextProvider>
)
}
export default memo(SubGraph)

View File

@@ -0,0 +1,12 @@
import type { CreateSubGraphSlice, SubGraphSliceShape } from '../types'
const initialState: Omit<SubGraphSliceShape, 'setParentAvailableVars' | 'setParentAvailableNodes'> = {
parentAvailableVars: [],
parentAvailableNodes: [],
}
export const createSubGraphSlice: CreateSubGraphSlice = set => ({
...initialState,
setParentAvailableVars: vars => set(() => ({ parentAvailableVars: vars })),
setParentAvailableNodes: nodes => set(() => ({ parentAvailableNodes: nodes })),
})

View File

@@ -0,0 +1,42 @@
import type { StateCreator } from 'zustand'
import type { Shape as HooksStoreShape } from '@/app/components/workflow/hooks-store'
import type { MentionConfig } from '@/app/components/workflow/nodes/_base/types'
import type { LLMNodeType } from '@/app/components/workflow/nodes/llm/types'
import type { Edge, Node, NodeOutPutVar, ValueSelector } from '@/app/components/workflow/types'
export type SyncWorkflowDraftCallback = {
onSuccess?: () => void
onError?: () => void
onSettled?: () => void
}
export type SyncWorkflowDraft = (
notRefreshWhenSyncError?: boolean,
callback?: SyncWorkflowDraftCallback,
) => Promise<void>
export type SubGraphProps = {
toolNodeId: string
paramKey: string
sourceVariable: ValueSelector
agentNodeId: string
agentName: string
configsMap?: HooksStoreShape['configsMap']
mentionConfig: MentionConfig
onMentionConfigChange: (config: MentionConfig) => void
extractorNode?: Node<LLMNodeType>
toolParamValue?: string
parentAvailableNodes?: Node[]
parentAvailableVars?: NodeOutPutVar[]
onSave?: (nodes: Node[], edges: Edge[]) => void
onSyncWorkflowDraft?: SyncWorkflowDraft
}
export type SubGraphSliceShape = {
parentAvailableVars: NodeOutPutVar[]
parentAvailableNodes: Node[]
setParentAvailableVars: (vars: NodeOutPutVar[]) => void
setParentAvailableNodes: (nodes: Node[]) => void
}
export type CreateSubGraphSlice = StateCreator<SubGraphSliceShape>

View File

@@ -1,6 +1,7 @@
import type { FC } from 'react'
import { memo } from 'react'
import AppIcon from '@/app/components/base/app-icon'
import { Folder as FolderLine } from '@/app/components/base/icons/src/vender/line/files'
import {
Agent,
Answer,
@@ -54,6 +55,7 @@ const DEFAULT_ICON_MAP: Record<BlockEnum, React.ComponentType<{ className: strin
[BlockEnum.TemplateTransform]: TemplatingTransform,
[BlockEnum.VariableAssigner]: VariableX,
[BlockEnum.VariableAggregator]: VariableX,
[BlockEnum.Group]: FolderLine,
[BlockEnum.Assigner]: Assigner,
[BlockEnum.Tool]: VariableX,
[BlockEnum.IterationStart]: VariableX,
@@ -97,6 +99,7 @@ const ICON_CONTAINER_BG_COLOR_MAP: Record<string, string> = {
[BlockEnum.VariableAssigner]: 'bg-util-colors-blue-blue-500',
[BlockEnum.VariableAggregator]: 'bg-util-colors-blue-blue-500',
[BlockEnum.Tool]: 'bg-util-colors-blue-blue-500',
[BlockEnum.Group]: 'bg-util-colors-blue-blue-500',
[BlockEnum.Assigner]: 'bg-util-colors-blue-blue-500',
[BlockEnum.ParameterExtractor]: 'bg-util-colors-blue-blue-500',
[BlockEnum.DocExtractor]: 'bg-util-colors-green-green-500',

View File

@@ -131,6 +131,11 @@ export const SUPPORT_OUTPUT_VARS_NODE = [
]
export const AGENT_OUTPUT_STRUCT: Var[] = [
{
variable: 'context',
type: VarType.arrayObject,
schemaType: 'List[promptMessage]',
},
{
variable: 'usage',
type: VarType.object,
@@ -142,6 +147,11 @@ export const LLM_OUTPUT_STRUCT: Var[] = [
variable: 'text',
type: VarType.string,
},
{
variable: 'context',
type: VarType.arrayObject,
schemaType: 'List[promptMessage]',
},
{
variable: 'reasoning_content',
type: VarType.string,

View File

@@ -25,7 +25,8 @@ import {
useAvailableBlocks,
useNodesInteractions,
} from './hooks'
import { NodeRunningStatus } from './types'
import { useHooksStore } from './hooks-store'
import { BlockEnum, NodeRunningStatus } from './types'
import { getEdgeColor } from './utils'
const CustomEdge = ({
@@ -56,6 +57,8 @@ const CustomEdge = ({
})
const [open, setOpen] = useState(false)
const { handleNodeAdd } = useNodesInteractions()
const interactionMode = useHooksStore(s => s.interactionMode)
const allowGraphActions = interactionMode !== 'subgraph'
const { availablePrevBlocks } = useAvailableBlocks((data as Edge['data'])!.targetType, (data as Edge['data'])?.isInIteration || (data as Edge['data'])?.isInLoop)
const { availableNextBlocks } = useAvailableBlocks((data as Edge['data'])!.sourceType, (data as Edge['data'])?.isInIteration || (data as Edge['data'])?.isInLoop)
const {
@@ -136,35 +139,37 @@ const CustomEdge = ({
stroke,
strokeWidth: 2,
opacity: data._dimmed ? 0.3 : (data._waitingRun ? 0.7 : 1),
strokeDasharray: data._isTemp ? '8 8' : undefined,
strokeDasharray: (data._isTemp && !data._isSubGraphTemp && data.sourceType !== BlockEnum.Group && data.targetType !== BlockEnum.Group) ? '8 8' : undefined,
}}
/>
<EdgeLabelRenderer>
<div
className={cn(
'nopan nodrag hover:scale-125',
data?._hovering ? 'block' : 'hidden',
open && '!block',
data.isInIteration && `z-[${ITERATION_CHILDREN_Z_INDEX}]`,
data.isInLoop && `z-[${LOOP_CHILDREN_Z_INDEX}]`,
)}
style={{
position: 'absolute',
transform: `translate(-50%, -50%) translate(${labelX}px, ${labelY}px)`,
pointerEvents: 'all',
opacity: data._waitingRun ? 0.7 : 1,
}}
>
<BlockSelector
open={open}
onOpenChange={handleOpenChange}
asChild
onSelect={handleInsert}
availableBlocksTypes={intersection(availablePrevBlocks, availableNextBlocks)}
triggerClassName={() => 'hover:scale-150 transition-all'}
/>
</div>
</EdgeLabelRenderer>
{allowGraphActions && (
<EdgeLabelRenderer>
<div
className={cn(
'nopan nodrag hover:scale-125',
data?._hovering ? 'block' : 'hidden',
open && '!block',
data.isInIteration && `z-[${ITERATION_CHILDREN_Z_INDEX}]`,
data.isInLoop && `z-[${LOOP_CHILDREN_Z_INDEX}]`,
)}
style={{
position: 'absolute',
transform: `translate(-50%, -50%) translate(${labelX}px, ${labelY}px)`,
pointerEvents: 'all',
opacity: data._waitingRun ? 0.7 : 1,
}}
>
<BlockSelector
open={open}
onOpenChange={handleOpenChange}
asChild
onSelect={handleInsert}
availableBlocksTypes={intersection(availablePrevBlocks, availableNextBlocks)}
triggerClassName={() => 'hover:scale-150 transition-all'}
/>
</div>
</EdgeLabelRenderer>
)}
</>
)
}

View File

@@ -0,0 +1,11 @@
export const CUSTOM_GROUP_NODE = 'custom-group'
export const CUSTOM_GROUP_INPUT_NODE = 'custom-group-input'
export const CUSTOM_GROUP_EXIT_PORT_NODE = 'custom-group-exit-port'
export const GROUP_CHILDREN_Z_INDEX = 1002
export const UI_ONLY_GROUP_NODE_TYPES = new Set([
CUSTOM_GROUP_NODE,
CUSTOM_GROUP_INPUT_NODE,
CUSTOM_GROUP_EXIT_PORT_NODE,
])

View File

@@ -0,0 +1,54 @@
'use client'
import type { FC } from 'react'
import type { CustomGroupExitPortNodeData } from './types'
import { memo } from 'react'
import { Handle, Position } from 'reactflow'
import { cn } from '@/utils/classnames'
type CustomGroupExitPortNodeProps = {
id: string
data: CustomGroupExitPortNodeData
}
const CustomGroupExitPortNode: FC<CustomGroupExitPortNodeProps> = ({ id: _id, data }) => {
return (
<div
className={cn(
'flex items-center justify-center',
'h-8 w-8 rounded-full',
'bg-util-colors-green-green-500 shadow-md',
data.selected && 'ring-2 ring-primary-400',
)}
>
{/* Target handle - receives internal connections from leaf nodes */}
<Handle
id="target"
type="target"
position={Position.Left}
className="!h-2 !w-2 !border-0 !bg-white"
/>
{/* Source handle - connects to external nodes */}
<Handle
id="source"
type="source"
position={Position.Right}
className="!h-2 !w-2 !border-0 !bg-white"
/>
{/* Icon */}
<svg
className="h-4 w-4 text-white"
viewBox="0 0 24 24"
fill="none"
stroke="currentColor"
strokeWidth={2}
>
<path d="M5 12h14M12 5l7 7-7 7" />
</svg>
</div>
)
}
export default memo(CustomGroupExitPortNode)

View File

@@ -0,0 +1,55 @@
'use client'
import type { FC } from 'react'
import type { CustomGroupInputNodeData } from './types'
import { memo } from 'react'
import { Handle, Position } from 'reactflow'
import { cn } from '@/utils/classnames'
type CustomGroupInputNodeProps = {
id: string
data: CustomGroupInputNodeData
}
const CustomGroupInputNode: FC<CustomGroupInputNodeProps> = ({ id: _id, data }) => {
return (
<div
className={cn(
'flex items-center justify-center',
'h-8 w-8 rounded-full',
'bg-util-colors-blue-blue-500 shadow-md',
data.selected && 'ring-2 ring-primary-400',
)}
>
{/* Target handle - receives external connections */}
<Handle
id="target"
type="target"
position={Position.Left}
className="!h-2 !w-2 !border-0 !bg-white"
/>
{/* Source handle - connects to entry nodes */}
<Handle
id="source"
type="source"
position={Position.Right}
className="!h-2 !w-2 !border-0 !bg-white"
/>
{/* Icon */}
<svg
className="h-4 w-4 text-white"
viewBox="0 0 24 24"
fill="none"
stroke="currentColor"
strokeWidth={2}
>
<path d="M9 12l2 2 4-4" />
<circle cx="12" cy="12" r="10" />
</svg>
</div>
)
}
export default memo(CustomGroupInputNode)

View File

@@ -0,0 +1,94 @@
'use client'
import type { FC } from 'react'
import type { CustomGroupNodeData } from './types'
import { memo } from 'react'
import { Handle, Position } from 'reactflow'
import { Plus02 } from '@/app/components/base/icons/src/vender/line/general'
import { cn } from '@/utils/classnames'
type CustomGroupNodeProps = {
id: string
data: CustomGroupNodeData
}
const CustomGroupNode: FC<CustomGroupNodeProps> = ({ data }) => {
const { group } = data
const exitPorts = group.exitPorts ?? []
const connectedSourceHandleIds = data._connectedSourceHandleIds ?? []
return (
<div
className={cn(
'bg-workflow-block-parma-bg/50 group relative rounded-2xl border-2 border-dashed border-components-panel-border',
data.selected && 'border-primary-400',
)}
style={{
width: data.width || 280,
height: data.height || 200,
}}
>
{/* Group Header */}
<div className="absolute -top-7 left-0 flex items-center gap-1 px-2">
<span className="text-xs font-medium text-text-tertiary">
{group.title}
</span>
</div>
{/* Target handle for incoming connections */}
<Handle
id="target"
type="target"
position={Position.Left}
className={cn(
'!h-4 !w-4 !rounded-none !border-none !bg-transparent !outline-none',
'after:absolute after:left-1.5 after:top-1 after:h-2 after:w-0.5 after:bg-workflow-link-line-handle',
'transition-all hover:scale-125',
)}
style={{ top: '50%' }}
/>
<div className="px-3 pt-3">
{exitPorts.map((port, index) => {
const connected = connectedSourceHandleIds.includes(port.portNodeId)
return (
<div key={port.portNodeId} className="relative flex h-6 items-center px-1">
<div className="w-full text-right text-xs font-semibold text-text-secondary">
{port.name}
</div>
<Handle
id={port.portNodeId}
type="source"
position={Position.Right}
className={cn(
'group/handle z-[1] !h-4 !w-4 !rounded-none !border-none !bg-transparent !outline-none',
'after:absolute after:right-1.5 after:top-1 after:h-2 after:w-0.5 after:bg-workflow-link-line-handle',
'transition-all hover:scale-125',
!connected && 'after:opacity-0',
'!-right-[21px] !top-1/2 !-translate-y-1/2',
)}
isConnectable
/>
{/* Visual "+" indicator (styling aligned with existing branch handles) */}
<div
className={cn(
'pointer-events-none absolute z-10 hidden h-4 w-4 items-center justify-center rounded-full bg-components-button-primary-bg text-text-primary-on-surface',
'-right-[21px] top-1/2 -translate-y-1/2',
'group-hover:flex',
data.selected && '!flex',
)}
>
<Plus02 className="h-2.5 w-2.5" />
</div>
</div>
)
})}
</div>
</div>
)
}
export default memo(CustomGroupNode)

View File

@@ -0,0 +1,19 @@
export {
CUSTOM_GROUP_EXIT_PORT_NODE,
CUSTOM_GROUP_INPUT_NODE,
CUSTOM_GROUP_NODE,
GROUP_CHILDREN_Z_INDEX,
UI_ONLY_GROUP_NODE_TYPES,
} from './constants'
export { default as CustomGroupExitPortNode } from './custom-group-exit-port-node'
export { default as CustomGroupInputNode } from './custom-group-input-node'
export { default as CustomGroupNode } from './custom-group-node'
export type {
CustomGroupExitPortNodeData,
CustomGroupInputNodeData,
CustomGroupNodeData,
ExitPortInfo,
GroupMember,
} from './types'

View File

@@ -0,0 +1,82 @@
import type { BlockEnum } from '../types'
/**
* Exit port info stored in Group node
*/
export type ExitPortInfo = {
portNodeId: string
leafNodeId: string
sourceHandle: string
name: string
}
/**
* Group node data structure
* node.type = 'custom-group'
* node.data.type = '' (empty string to bypass backend NodeType validation)
*/
export type CustomGroupNodeData = {
type: '' // Empty string bypasses backend NodeType validation
title: string
desc?: string
_connectedSourceHandleIds?: string[]
_connectedTargetHandleIds?: string[]
group: {
groupId: string
title: string
memberNodeIds: string[]
entryNodeIds: string[]
inputNodeId: string
exitPorts: ExitPortInfo[]
collapsed: boolean
}
width?: number
height?: number
selected?: boolean
_isTempNode?: boolean
}
/**
* Group Input node data structure
* node.type = 'custom-group-input'
* node.data.type = ''
*/
export type CustomGroupInputNodeData = {
type: ''
title: string
desc?: string
groupInput: {
groupId: string
title: string
}
selected?: boolean
_isTempNode?: boolean
}
/**
* Exit Port node data structure
* node.type = 'custom-group-exit-port'
* node.data.type = ''
*/
export type CustomGroupExitPortNodeData = {
type: ''
title: string
desc?: string
exitPort: {
groupId: string
leafNodeId: string
sourceHandle: string
name: string
}
selected?: boolean
_isTempNode?: boolean
}
/**
* Member node info for display
*/
export type GroupMember = {
id: string
type: BlockEnum
label?: string
}

View File

@@ -23,6 +23,7 @@ export type AvailableNodesMetaData = {
nodesMap?: Record<BlockEnum, NodeDefault<any>>
}
export type CommonHooksFnMap = {
interactionMode?: 'default' | 'subgraph'
doSyncWorkflowDraft: (
notRefreshWhenSyncError?: boolean,
callback?: {
@@ -76,6 +77,7 @@ export type Shape = {
} & CommonHooksFnMap
export const createHooksStore = ({
interactionMode = 'default',
doSyncWorkflowDraft = async () => noop(),
syncWorkflowDraftWhenPageClose = noop,
handleRefreshWorkflowDraft = noop,
@@ -118,6 +120,7 @@ export const createHooksStore = ({
}: Partial<Shape>) => {
return createStore<Shape>(set => ({
refreshAll: props => set(state => ({ ...state, ...props })),
interactionMode,
doSyncWorkflowDraft,
syncWorkflowDraftWhenPageClose,
handleRefreshWorkflowDraft,

View File

@@ -197,7 +197,8 @@ export const useChecklist = (nodes: Node[], edges: Edge[]) => {
// Start nodes and Trigger nodes should not show unConnected error if they have validation errors
// or if they are valid start nodes (even without incoming connections)
const isStartNodeMeta = nodesExtraData?.[node.data.type as BlockEnum]?.metaData.isStart ?? false
const canSkipConnectionCheck = shouldCheckStartNode ? isStartNodeMeta : true
const isSubGraphNode = Boolean((node.data as { parent_node_id?: string }).parent_node_id)
const canSkipConnectionCheck = isSubGraphNode || (shouldCheckStartNode ? isStartNodeMeta : true)
const isUnconnected = !validNodes.find(n => n.id === node.id)
const shouldShowError = errorMessage || (isUnconnected && !canSkipConnectionCheck)
@@ -390,7 +391,8 @@ export const useChecklistBeforePublish = () => {
}
const isStartNodeMeta = nodesExtraData?.[node.data.type as BlockEnum]?.metaData.isStart ?? false
const canSkipConnectionCheck = shouldCheckStartNode ? isStartNodeMeta : true
const isSubGraphNode = Boolean((node.data as { parent_node_id?: string }).parent_node_id)
const canSkipConnectionCheck = isSubGraphNode || (shouldCheckStartNode ? isStartNodeMeta : true)
const isUnconnected = !validNodes.find(n => n.id === node.id)
if (isUnconnected && !canSkipConnectionCheck) {

View File

@@ -10,6 +10,7 @@ import { useCallback } from 'react'
import {
useStoreApi,
} from 'reactflow'
import { BlockEnum } from '../types'
import { getNodesConnectedSourceOrTargetHandleIdsMap } from '../utils'
import { useNodesSyncDraft } from './use-nodes-sync-draft'
import { useNodesReadOnly } from './use-workflow'
@@ -108,6 +109,50 @@ export const useEdgesInteractions = () => {
return
const currentEdge = edges[currentEdgeIndex]
const nodes = getNodes()
// collect edges to delete (including corresponding real edges for temp edges)
const edgesToDelete: Set<string> = new Set([currentEdge.id])
// if deleting a temp edge connected to a group, also delete the corresponding real hidden edge
if (currentEdge.data?._isTemp) {
const groupNode = nodes.find(n =>
n.data.type === BlockEnum.Group
&& (n.id === currentEdge.source || n.id === currentEdge.target),
)
if (groupNode) {
const memberIds = new Set((groupNode.data.members || []).map((m: { id: string }) => m.id))
if (currentEdge.target === groupNode.id) {
// inbound temp edge: find real edge with same source, target is a head node
edges.forEach((edge) => {
if (edge.source === currentEdge.source
&& memberIds.has(edge.target)
&& edge.sourceHandle === currentEdge.sourceHandle) {
edgesToDelete.add(edge.id)
}
})
}
else if (currentEdge.source === groupNode.id) {
// outbound temp edge: sourceHandle format is "leafNodeId-originalHandle"
const sourceHandle = currentEdge.sourceHandle || ''
const lastDashIndex = sourceHandle.lastIndexOf('-')
if (lastDashIndex > 0) {
const leafNodeId = sourceHandle.substring(0, lastDashIndex)
const originalHandle = sourceHandle.substring(lastDashIndex + 1)
edges.forEach((edge) => {
if (edge.source === leafNodeId
&& edge.target === currentEdge.target
&& (edge.sourceHandle || 'source') === originalHandle) {
edgesToDelete.add(edge.id)
}
})
}
}
}
}
const nodesConnectedSourceOrTargetHandleIdsMap = getNodesConnectedSourceOrTargetHandleIdsMap(
[
{ type: 'remove', edge: currentEdge },
@@ -126,7 +171,10 @@ export const useEdgesInteractions = () => {
})
setNodes(newNodes)
const newEdges = produce(edges, (draft) => {
draft.splice(currentEdgeIndex, 1)
for (let i = draft.length - 1; i >= 0; i--) {
if (edgesToDelete.has(draft[i].id))
draft.splice(i, 1)
}
})
setEdges(newEdges)
handleSyncWorkflowDraft()

View File

@@ -0,0 +1,138 @@
import type { PredecessorHandle } from '../utils'
import { useMemo } from 'react'
import { useStore as useReactFlowStore } from 'reactflow'
import { shallow } from 'zustand/shallow'
import { BlockEnum } from '../types'
import { getCommonPredecessorHandles } from '../utils'
export type MakeGroupAvailability = {
canMakeGroup: boolean
branchEntryNodeIds: string[]
commonPredecessorHandle?: PredecessorHandle
}
type MinimalEdge = {
id: string
source: string
sourceHandle: string
target: string
}
/**
* Pure function to check if the selected nodes can be grouped.
* Can be called both from React hooks and imperatively.
*/
export const checkMakeGroupAvailability = (
selectedNodeIds: string[],
edges: MinimalEdge[],
hasGroupNode = false,
): MakeGroupAvailability => {
if (selectedNodeIds.length <= 1 || hasGroupNode) {
return {
canMakeGroup: false,
branchEntryNodeIds: [],
commonPredecessorHandle: undefined,
}
}
const selectedNodeIdSet = new Set(selectedNodeIds)
const inboundFromOutsideTargets = new Set<string>()
const incomingEdgeCounts = new Map<string, number>()
const incomingFromSelectedTargets = new Set<string>()
edges.forEach((edge) => {
// Only consider edges whose target is inside the selected subgraph.
if (!selectedNodeIdSet.has(edge.target))
return
incomingEdgeCounts.set(edge.target, (incomingEdgeCounts.get(edge.target) ?? 0) + 1)
if (selectedNodeIdSet.has(edge.source))
incomingFromSelectedTargets.add(edge.target)
else
inboundFromOutsideTargets.add(edge.target)
})
// Branch head (entry) definition:
// - has at least one incoming edge
// - and all its incoming edges come from outside the selected subgraph
const branchEntryNodeIds = selectedNodeIds.filter((nodeId) => {
const incomingEdgeCount = incomingEdgeCounts.get(nodeId) ?? 0
if (incomingEdgeCount === 0)
return false
return !incomingFromSelectedTargets.has(nodeId)
})
// No branch head means we cannot tell how many branches are represented by this selection.
if (branchEntryNodeIds.length === 0) {
return {
canMakeGroup: false,
branchEntryNodeIds,
commonPredecessorHandle: undefined,
}
}
// Guardrail: disallow side entrances into the selected subgraph.
// If an outside node connects to a non-entry node inside the selection, the grouping boundary is ambiguous.
const branchEntryNodeIdSet = new Set(branchEntryNodeIds)
const hasInboundToNonEntryNode = Array.from(inboundFromOutsideTargets).some(nodeId => !branchEntryNodeIdSet.has(nodeId))
if (hasInboundToNonEntryNode) {
return {
canMakeGroup: false,
branchEntryNodeIds,
commonPredecessorHandle: undefined,
}
}
// Compare the branch heads by their common predecessor "handler" (source node + sourceHandle).
// This is required for multi-handle nodes like If-Else / Classifier where different branches use different handles.
const commonPredecessorHandles = getCommonPredecessorHandles(
branchEntryNodeIds,
// Only look at edges coming from outside the selected subgraph when determining the "pre" handler.
edges.filter(edge => !selectedNodeIdSet.has(edge.source)),
)
if (commonPredecessorHandles.length !== 1) {
return {
canMakeGroup: false,
branchEntryNodeIds,
commonPredecessorHandle: undefined,
}
}
return {
canMakeGroup: true,
branchEntryNodeIds,
commonPredecessorHandle: commonPredecessorHandles[0],
}
}
export const useMakeGroupAvailability = (selectedNodeIds: string[]): MakeGroupAvailability => {
const edgeKeys = useReactFlowStore((state) => {
const delimiter = '\u0000'
const keys = state.edges.map(edge => `${edge.source}${delimiter}${edge.sourceHandle || 'source'}${delimiter}${edge.target}`)
keys.sort()
return keys
}, shallow)
const hasGroupNode = useReactFlowStore((state) => {
return state.getNodes().some(node => node.selected && node.data.type === BlockEnum.Group)
})
return useMemo(() => {
const delimiter = '\u0000'
const edges = edgeKeys.map((key) => {
const [source, handleId, target] = key.split(delimiter)
return {
id: key,
source,
sourceHandle: handleId || 'source',
target,
}
})
return checkMakeGroupAvailability(selectedNodeIds, edges, hasGroupNode)
}, [edgeKeys, selectedNodeIds, hasGroupNode])
}

View File

@@ -8,6 +8,7 @@ import type {
ResizeParamsWithDirection,
} from 'reactflow'
import type { PluginDefaultValue } from '../block-selector/types'
import type { GroupHandler, GroupMember, GroupNodeData } from '../nodes/group/types'
import type { IterationNodeType } from '../nodes/iteration/types'
import type { LoopNodeType } from '../nodes/loop/types'
import type { VariableAssignerNodeType } from '../nodes/variable-assigner/types'
@@ -52,6 +53,7 @@ import { useWorkflowHistoryStore } from '../workflow-history-store'
import { useAutoGenerateWebhookUrl } from './use-auto-generate-webhook-url'
import { useHelpline } from './use-helpline'
import useInspectVarsCrud from './use-inspect-vars-crud'
import { checkMakeGroupAvailability } from './use-make-group'
import { useNodesMetaData } from './use-nodes-meta-data'
import { useNodesSyncDraft } from './use-nodes-sync-draft'
import {
@@ -73,6 +75,151 @@ const ENTRY_NODE_WRAPPER_OFFSET = {
y: 21, // Adjusted based on visual testing feedback
} as const
/**
* Parse group handler id to get original node id and sourceHandle
* Handler id format: `${nodeId}-${sourceHandle}`
*/
function parseGroupHandlerId(handlerId: string): { originalNodeId: string, originalSourceHandle: string } {
const lastDashIndex = handlerId.lastIndexOf('-')
return {
originalNodeId: handlerId.substring(0, lastDashIndex),
originalSourceHandle: handlerId.substring(lastDashIndex + 1),
}
}
/**
* Create a pair of edges for group node connections:
* - realEdge: hidden edge from original node to target (persisted to backend)
* - uiEdge: visible temp edge from group to target (UI-only, not persisted)
*/
function createGroupEdgePair(params: {
groupNodeId: string
handlerId: string
targetNodeId: string
targetHandle: string
nodes: Node[]
baseEdgeData?: Partial<Edge['data']>
zIndex?: number
}): { realEdge: Edge, uiEdge: Edge } | null {
const { groupNodeId, handlerId, targetNodeId, targetHandle, nodes, baseEdgeData = {}, zIndex = 0 } = params
const groupNode = nodes.find(node => node.id === groupNodeId)
const groupData = groupNode?.data as GroupNodeData | undefined
const handler = groupData?.handlers?.find(h => h.id === handlerId)
let originalNodeId: string
let originalSourceHandle: string
if (handler?.nodeId && handler?.sourceHandle) {
originalNodeId = handler.nodeId
originalSourceHandle = handler.sourceHandle
}
else {
const parsed = parseGroupHandlerId(handlerId)
originalNodeId = parsed.originalNodeId
originalSourceHandle = parsed.originalSourceHandle
}
const originalNode = nodes.find(node => node.id === originalNodeId)
const targetNode = nodes.find(node => node.id === targetNodeId)
if (!originalNode || !targetNode)
return null
// Create the real edge (from original node to target) - hidden because original node is in group
const realEdge: Edge = {
id: `${originalNodeId}-${originalSourceHandle}-${targetNodeId}-${targetHandle}`,
type: CUSTOM_EDGE,
source: originalNodeId,
sourceHandle: originalSourceHandle,
target: targetNodeId,
targetHandle,
hidden: true,
data: {
...baseEdgeData,
sourceType: originalNode.data.type,
targetType: targetNode.data.type,
_hiddenInGroupId: groupNodeId,
},
zIndex,
}
// Create the UI edge (from group to target) - temporary, not persisted to backend
const uiEdge: Edge = {
id: `${groupNodeId}-${handlerId}-${targetNodeId}-${targetHandle}`,
type: CUSTOM_EDGE,
source: groupNodeId,
sourceHandle: handlerId,
target: targetNodeId,
targetHandle,
data: {
...baseEdgeData,
sourceType: BlockEnum.Group,
targetType: targetNode.data.type,
_isTemp: true,
},
zIndex,
}
return { realEdge, uiEdge }
}
function createGroupInboundEdges(params: {
sourceNodeId: string
sourceHandle: string
groupNodeId: string
groupData: GroupNodeData
nodes: Node[]
baseEdgeData?: Partial<Edge['data']>
zIndex?: number
}): { realEdges: Edge[], uiEdge: Edge } | null {
const { sourceNodeId, sourceHandle, groupNodeId, groupData, nodes, baseEdgeData = {}, zIndex = 0 } = params
const sourceNode = nodes.find(node => node.id === sourceNodeId)
const headNodeIds = groupData.headNodeIds || []
if (!sourceNode || headNodeIds.length === 0)
return null
const realEdges: Edge[] = headNodeIds.map((headNodeId) => {
const headNode = nodes.find(node => node.id === headNodeId)
return {
id: `${sourceNodeId}-${sourceHandle}-${headNodeId}-target`,
type: CUSTOM_EDGE,
source: sourceNodeId,
sourceHandle,
target: headNodeId,
targetHandle: 'target',
hidden: true,
data: {
...baseEdgeData,
sourceType: sourceNode.data.type,
targetType: headNode?.data.type,
_hiddenInGroupId: groupNodeId,
},
zIndex,
} as Edge
})
const uiEdge: Edge = {
id: `${sourceNodeId}-${sourceHandle}-${groupNodeId}-target`,
type: CUSTOM_EDGE,
source: sourceNodeId,
sourceHandle,
target: groupNodeId,
targetHandle: 'target',
data: {
...baseEdgeData,
sourceType: sourceNode.data.type,
targetType: BlockEnum.Group,
_isTemp: true,
},
zIndex,
}
return { realEdges, uiEdge }
}
export const useNodesInteractions = () => {
const { t } = useTranslation()
const store = useStoreApi()
@@ -448,6 +595,146 @@ export const useNodesInteractions = () => {
return
}
// Check if source is a group node - need special handling
const isSourceGroup = sourceNode?.data.type === BlockEnum.Group
if (isSourceGroup && sourceHandle && target && targetHandle) {
const { originalNodeId, originalSourceHandle } = parseGroupHandlerId(sourceHandle)
// Check if real edge already exists
if (edges.find(edge =>
edge.source === originalNodeId
&& edge.sourceHandle === originalSourceHandle
&& edge.target === target
&& edge.targetHandle === targetHandle,
)) {
return
}
const parentNode = nodes.find(node => node.id === targetNode?.parentId)
const isInIteration = parentNode && parentNode.data.type === BlockEnum.Iteration
const isInLoop = !!parentNode && parentNode.data.type === BlockEnum.Loop
const edgePair = createGroupEdgePair({
groupNodeId: source!,
handlerId: sourceHandle,
targetNodeId: target,
targetHandle,
nodes,
baseEdgeData: {
isInIteration,
iteration_id: isInIteration ? targetNode?.parentId : undefined,
isInLoop,
loop_id: isInLoop ? targetNode?.parentId : undefined,
},
})
if (!edgePair)
return
const { realEdge, uiEdge } = edgePair
// Update connected handle ids for the original node
const nodesConnectedSourceOrTargetHandleIdsMap
= getNodesConnectedSourceOrTargetHandleIdsMap(
[{ type: 'add', edge: realEdge }],
nodes,
)
const newNodes = produce(nodes, (draft: Node[]) => {
draft.forEach((node) => {
if (nodesConnectedSourceOrTargetHandleIdsMap[node.id]) {
node.data = {
...node.data,
...nodesConnectedSourceOrTargetHandleIdsMap[node.id],
}
}
})
})
const newEdges = produce(edges, (draft) => {
draft.push(realEdge)
draft.push(uiEdge)
})
setNodes(newNodes)
setEdges(newEdges)
handleSyncWorkflowDraft()
saveStateToHistory(WorkflowHistoryEvent.NodeConnect, {
nodeId: targetNode?.id,
})
return
}
const isTargetGroup = targetNode?.data.type === BlockEnum.Group
if (isTargetGroup && source && sourceHandle) {
const groupData = targetNode.data as GroupNodeData
const headNodeIds = groupData.headNodeIds || []
if (edges.find(edge =>
edge.source === source
&& edge.sourceHandle === sourceHandle
&& edge.target === target
&& edge.targetHandle === targetHandle,
)) {
return
}
const parentNode = nodes.find(node => node.id === sourceNode?.parentId)
const isInIteration = parentNode && parentNode.data.type === BlockEnum.Iteration
const isInLoop = !!parentNode && parentNode.data.type === BlockEnum.Loop
const inboundResult = createGroupInboundEdges({
sourceNodeId: source,
sourceHandle,
groupNodeId: target!,
groupData,
nodes,
baseEdgeData: {
isInIteration,
iteration_id: isInIteration ? sourceNode?.parentId : undefined,
isInLoop,
loop_id: isInLoop ? sourceNode?.parentId : undefined,
},
})
if (!inboundResult)
return
const { realEdges, uiEdge } = inboundResult
const edgeChanges = realEdges.map(edge => ({ type: 'add' as const, edge }))
const nodesConnectedSourceOrTargetHandleIdsMap
= getNodesConnectedSourceOrTargetHandleIdsMap(edgeChanges, nodes)
const newNodes = produce(nodes, (draft: Node[]) => {
draft.forEach((node) => {
if (nodesConnectedSourceOrTargetHandleIdsMap[node.id]) {
node.data = {
...node.data,
...nodesConnectedSourceOrTargetHandleIdsMap[node.id],
}
}
})
})
const newEdges = produce(edges, (draft) => {
realEdges.forEach((edge) => {
draft.push(edge)
})
draft.push(uiEdge)
})
setNodes(newNodes)
setEdges(newEdges)
handleSyncWorkflowDraft()
saveStateToHistory(WorkflowHistoryEvent.NodeConnect, {
nodeId: headNodeIds[0],
})
return
}
if (
edges.find(
edge =>
@@ -909,8 +1196,34 @@ export const useNodesInteractions = () => {
}
}
let newEdge = null
if (nodeType !== BlockEnum.DataSource) {
// Check if prevNode is a group node - need special handling
const isPrevNodeGroup = prevNode.data.type === BlockEnum.Group
let newEdge: Edge | null = null
let newUiEdge: Edge | null = null
if (isPrevNodeGroup && prevNodeSourceHandle && nodeType !== BlockEnum.DataSource) {
const edgePair = createGroupEdgePair({
groupNodeId: prevNodeId,
handlerId: prevNodeSourceHandle,
targetNodeId: newNode.id,
targetHandle,
nodes: [...nodes, newNode],
baseEdgeData: {
isInIteration,
isInLoop,
iteration_id: isInIteration ? prevNode.parentId : undefined,
loop_id: isInLoop ? prevNode.parentId : undefined,
_connectedNodeIsSelected: true,
},
})
if (edgePair) {
newEdge = edgePair.realEdge
newUiEdge = edgePair.uiEdge
}
}
else if (nodeType !== BlockEnum.DataSource) {
// Normal case: prevNode is not a group
newEdge = {
id: `${prevNodeId}-${prevNodeSourceHandle}-${newNode.id}-${targetHandle}`,
type: CUSTOM_EDGE,
@@ -935,9 +1248,10 @@ export const useNodesInteractions = () => {
}
}
const edgesToAdd = [newEdge, newUiEdge].filter(Boolean).map(edge => ({ type: 'add' as const, edge: edge! }))
const nodesConnectedSourceOrTargetHandleIdsMap
= getNodesConnectedSourceOrTargetHandleIdsMap(
(newEdge ? [{ type: 'add', edge: newEdge }] : []),
edgesToAdd,
nodes,
)
const newNodes = produce(nodes, (draft: Node[]) => {
@@ -1006,6 +1320,8 @@ export const useNodesInteractions = () => {
})
if (newEdge)
draft.push(newEdge)
if (newUiEdge)
draft.push(newUiEdge)
})
setNodes(newNodes)
@@ -1090,7 +1406,7 @@ export const useNodesInteractions = () => {
const afterNodesInSameBranch = getAfterNodesInSameBranch(nextNodeId!)
const afterNodesInSameBranchIds = afterNodesInSameBranch.map(
node => node.id,
(node: Node) => node.id,
)
const newNodes = produce(nodes, (draft) => {
draft.forEach((node) => {
@@ -1200,37 +1516,113 @@ export const useNodesInteractions = () => {
}
}
const currentEdgeIndex = edges.findIndex(
edge => edge.source === prevNodeId && edge.target === nextNodeId,
)
let newPrevEdge = null
// Check if prevNode is a group node - need special handling
const isPrevNodeGroup = prevNode.data.type === BlockEnum.Group
let newPrevEdge: Edge | null = null
let newPrevUiEdge: Edge | null = null
const edgesToRemove: string[] = []
if (nodeType !== BlockEnum.DataSource) {
newPrevEdge = {
id: `${prevNodeId}-${prevNodeSourceHandle}-${newNode.id}-${targetHandle}`,
type: CUSTOM_EDGE,
source: prevNodeId,
sourceHandle: prevNodeSourceHandle,
target: newNode.id,
if (isPrevNodeGroup && prevNodeSourceHandle && nodeType !== BlockEnum.DataSource) {
const { originalNodeId, originalSourceHandle } = parseGroupHandlerId(prevNodeSourceHandle)
// Find edges to remove: both hidden real edge and UI temp edge from group to nextNode
const hiddenEdge = edges.find(
edge => edge.source === originalNodeId
&& edge.sourceHandle === originalSourceHandle
&& edge.target === nextNodeId,
)
const uiTempEdge = edges.find(
edge => edge.source === prevNodeId
&& edge.sourceHandle === prevNodeSourceHandle
&& edge.target === nextNodeId,
)
if (hiddenEdge)
edgesToRemove.push(hiddenEdge.id)
if (uiTempEdge)
edgesToRemove.push(uiTempEdge.id)
const edgePair = createGroupEdgePair({
groupNodeId: prevNodeId,
handlerId: prevNodeSourceHandle,
targetNodeId: newNode.id,
targetHandle,
data: {
sourceType: prevNode.data.type,
targetType: newNode.data.type,
nodes: [...nodes, newNode],
baseEdgeData: {
isInIteration,
isInLoop,
iteration_id: isInIteration ? prevNode.parentId : undefined,
loop_id: isInLoop ? prevNode.parentId : undefined,
_connectedNodeIsSelected: true,
},
zIndex: prevNode.parentId
? isInIteration
? ITERATION_CHILDREN_Z_INDEX
: LOOP_CHILDREN_Z_INDEX
: 0,
})
if (edgePair) {
newPrevEdge = edgePair.realEdge
newPrevUiEdge = edgePair.uiEdge
}
}
else {
const isNextNodeGroupForRemoval = nextNode.data.type === BlockEnum.Group
if (isNextNodeGroupForRemoval) {
const groupData = nextNode.data as GroupNodeData
const headNodeIds = groupData.headNodeIds || []
headNodeIds.forEach((headNodeId) => {
const realEdge = edges.find(
edge => edge.source === prevNodeId
&& edge.sourceHandle === prevNodeSourceHandle
&& edge.target === headNodeId,
)
if (realEdge)
edgesToRemove.push(realEdge.id)
})
const uiEdge = edges.find(
edge => edge.source === prevNodeId
&& edge.sourceHandle === prevNodeSourceHandle
&& edge.target === nextNodeId,
)
if (uiEdge)
edgesToRemove.push(uiEdge.id)
}
else {
const currentEdge = edges.find(
edge => edge.source === prevNodeId && edge.target === nextNodeId,
)
if (currentEdge)
edgesToRemove.push(currentEdge.id)
}
if (nodeType !== BlockEnum.DataSource) {
newPrevEdge = {
id: `${prevNodeId}-${prevNodeSourceHandle}-${newNode.id}-${targetHandle}`,
type: CUSTOM_EDGE,
source: prevNodeId,
sourceHandle: prevNodeSourceHandle,
target: newNode.id,
targetHandle,
data: {
sourceType: prevNode.data.type,
targetType: newNode.data.type,
isInIteration,
isInLoop,
iteration_id: isInIteration ? prevNode.parentId : undefined,
loop_id: isInLoop ? prevNode.parentId : undefined,
_connectedNodeIsSelected: true,
},
zIndex: prevNode.parentId
? isInIteration
? ITERATION_CHILDREN_Z_INDEX
: LOOP_CHILDREN_Z_INDEX
: 0,
}
}
}
let newNextEdge: Edge | null = null
let newNextUiEdge: Edge | null = null
const newNextRealEdges: Edge[] = []
const nextNodeParentNode
= nodes.find(node => node.id === nextNode.parentId) || null
@@ -1241,49 +1633,113 @@ export const useNodesInteractions = () => {
= !!nextNodeParentNode
&& nextNodeParentNode.data.type === BlockEnum.Loop
const isNextNodeGroup = nextNode.data.type === BlockEnum.Group
if (
nodeType !== BlockEnum.IfElse
&& nodeType !== BlockEnum.QuestionClassifier
&& nodeType !== BlockEnum.LoopEnd
) {
newNextEdge = {
id: `${newNode.id}-${sourceHandle}-${nextNodeId}-${nextNodeTargetHandle}`,
type: CUSTOM_EDGE,
source: newNode.id,
sourceHandle,
target: nextNodeId,
targetHandle: nextNodeTargetHandle,
data: {
sourceType: newNode.data.type,
targetType: nextNode.data.type,
isInIteration: isNextNodeInIteration,
isInLoop: isNextNodeInLoop,
iteration_id: isNextNodeInIteration
? nextNode.parentId
: undefined,
loop_id: isNextNodeInLoop ? nextNode.parentId : undefined,
_connectedNodeIsSelected: true,
},
zIndex: nextNode.parentId
? isNextNodeInIteration
? ITERATION_CHILDREN_Z_INDEX
: LOOP_CHILDREN_Z_INDEX
: 0,
if (isNextNodeGroup) {
const groupData = nextNode.data as GroupNodeData
const headNodeIds = groupData.headNodeIds || []
headNodeIds.forEach((headNodeId) => {
const headNode = nodes.find(node => node.id === headNodeId)
newNextRealEdges.push({
id: `${newNode.id}-${sourceHandle}-${headNodeId}-target`,
type: CUSTOM_EDGE,
source: newNode.id,
sourceHandle,
target: headNodeId,
targetHandle: 'target',
hidden: true,
data: {
sourceType: newNode.data.type,
targetType: headNode?.data.type,
isInIteration: isNextNodeInIteration,
isInLoop: isNextNodeInLoop,
iteration_id: isNextNodeInIteration ? nextNode.parentId : undefined,
loop_id: isNextNodeInLoop ? nextNode.parentId : undefined,
_hiddenInGroupId: nextNodeId,
_connectedNodeIsSelected: true,
},
zIndex: nextNode.parentId
? isNextNodeInIteration
? ITERATION_CHILDREN_Z_INDEX
: LOOP_CHILDREN_Z_INDEX
: 0,
} as Edge)
})
newNextUiEdge = {
id: `${newNode.id}-${sourceHandle}-${nextNodeId}-target`,
type: CUSTOM_EDGE,
source: newNode.id,
sourceHandle,
target: nextNodeId,
targetHandle: 'target',
data: {
sourceType: newNode.data.type,
targetType: BlockEnum.Group,
isInIteration: isNextNodeInIteration,
isInLoop: isNextNodeInLoop,
iteration_id: isNextNodeInIteration ? nextNode.parentId : undefined,
loop_id: isNextNodeInLoop ? nextNode.parentId : undefined,
_isTemp: true,
_connectedNodeIsSelected: true,
},
zIndex: nextNode.parentId
? isNextNodeInIteration
? ITERATION_CHILDREN_Z_INDEX
: LOOP_CHILDREN_Z_INDEX
: 0,
}
}
else {
newNextEdge = {
id: `${newNode.id}-${sourceHandle}-${nextNodeId}-${nextNodeTargetHandle}`,
type: CUSTOM_EDGE,
source: newNode.id,
sourceHandle,
target: nextNodeId,
targetHandle: nextNodeTargetHandle,
data: {
sourceType: newNode.data.type,
targetType: nextNode.data.type,
isInIteration: isNextNodeInIteration,
isInLoop: isNextNodeInLoop,
iteration_id: isNextNodeInIteration
? nextNode.parentId
: undefined,
loop_id: isNextNodeInLoop ? nextNode.parentId : undefined,
_connectedNodeIsSelected: true,
},
zIndex: nextNode.parentId
? isNextNodeInIteration
? ITERATION_CHILDREN_Z_INDEX
: LOOP_CHILDREN_Z_INDEX
: 0,
}
}
}
const edgeChanges = [
...edgesToRemove.map(id => ({ type: 'remove' as const, edge: edges.find(e => e.id === id)! })).filter(c => c.edge),
...(newPrevEdge ? [{ type: 'add' as const, edge: newPrevEdge }] : []),
...(newPrevUiEdge ? [{ type: 'add' as const, edge: newPrevUiEdge }] : []),
...(newNextEdge ? [{ type: 'add' as const, edge: newNextEdge }] : []),
...newNextRealEdges.map(edge => ({ type: 'add' as const, edge })),
...(newNextUiEdge ? [{ type: 'add' as const, edge: newNextUiEdge }] : []),
]
const nodesConnectedSourceOrTargetHandleIdsMap
= getNodesConnectedSourceOrTargetHandleIdsMap(
[
{ type: 'remove', edge: edges[currentEdgeIndex] },
...(newPrevEdge ? [{ type: 'add', edge: newPrevEdge }] : []),
...(newNextEdge ? [{ type: 'add', edge: newNextEdge }] : []),
],
edgeChanges,
[...nodes, newNode],
)
const afterNodesInSameBranch = getAfterNodesInSameBranch(nextNodeId!)
const afterNodesInSameBranchIds = afterNodesInSameBranch.map(
node => node.id,
(node: Node) => node.id,
)
const newNodes = produce(nodes, (draft) => {
draft.forEach((node) => {
@@ -1342,7 +1798,10 @@ export const useNodesInteractions = () => {
})
}
const newEdges = produce(edges, (draft) => {
draft.splice(currentEdgeIndex, 1)
const filteredDraft = draft.filter(edge => !edgesToRemove.includes(edge.id))
draft.length = 0
draft.push(...filteredDraft)
draft.forEach((item) => {
item.data = {
...item.data,
@@ -1351,9 +1810,15 @@ export const useNodesInteractions = () => {
})
if (newPrevEdge)
draft.push(newPrevEdge)
if (newPrevUiEdge)
draft.push(newPrevUiEdge)
if (newNextEdge)
draft.push(newNextEdge)
newNextRealEdges.forEach((edge) => {
draft.push(edge)
})
if (newNextUiEdge)
draft.push(newNextUiEdge)
})
setEdges(newEdges)
}
@@ -2087,6 +2552,302 @@ export const useNodesInteractions = () => {
setEdges(newEdges)
}, [store])
// Check if there are any nodes selected via box selection
const hasBundledNodes = useCallback(() => {
const { getNodes } = store.getState()
const nodes = getNodes()
return nodes.some(node => node.data._isBundled)
}, [store])
const getCanMakeGroup = useCallback(() => {
const { getNodes, edges } = store.getState()
const nodes = getNodes()
const bundledNodes = nodes.filter(node => node.data._isBundled)
if (bundledNodes.length <= 1)
return false
const bundledNodeIds = bundledNodes.map(node => node.id)
const minimalEdges = edges.map(edge => ({
id: edge.id,
source: edge.source,
sourceHandle: edge.sourceHandle || 'source',
target: edge.target,
}))
const hasGroupNode = bundledNodes.some(node => node.data.type === BlockEnum.Group)
const { canMakeGroup } = checkMakeGroupAvailability(bundledNodeIds, minimalEdges, hasGroupNode)
return canMakeGroup
}, [store])
const handleMakeGroup = useCallback(() => {
const { getNodes, setNodes, edges, setEdges } = store.getState()
const nodes = getNodes()
const bundledNodes = nodes.filter(node => node.data._isBundled)
if (bundledNodes.length <= 1)
return
const bundledNodeIds = bundledNodes.map(node => node.id)
const minimalEdges = edges.map(edge => ({
id: edge.id,
source: edge.source,
sourceHandle: edge.sourceHandle || 'source',
target: edge.target,
}))
const hasGroupNode = bundledNodes.some(node => node.data.type === BlockEnum.Group)
const { canMakeGroup } = checkMakeGroupAvailability(bundledNodeIds, minimalEdges, hasGroupNode)
if (!canMakeGroup)
return
const bundledNodeIdSet = new Set(bundledNodeIds)
const bundledNodeIdIsLeaf = new Set<string>()
const inboundEdges = edges.filter(edge => !bundledNodeIdSet.has(edge.source) && bundledNodeIdSet.has(edge.target))
const outboundEdges = edges.filter(edge => bundledNodeIdSet.has(edge.source) && !bundledNodeIdSet.has(edge.target))
// leaf node: no outbound edges to other nodes in the selection
const handlers: GroupHandler[] = []
const leafNodeIdSet = new Set<string>()
bundledNodes.forEach((node: Node) => {
const targetBranches = node.data._targetBranches || [{ id: 'source', name: node.data.title }]
targetBranches.forEach((branch) => {
// A branch should be a handler if it's either:
// 1. Connected to a node OUTSIDE the group
// 2. NOT connected to any node INSIDE the group
const isConnectedInside = edges.some(edge =>
edge.source === node.id
&& (edge.sourceHandle === branch.id || (!edge.sourceHandle && branch.id === 'source'))
&& bundledNodeIdSet.has(edge.target),
)
const isConnectedOutside = edges.some(edge =>
edge.source === node.id
&& (edge.sourceHandle === branch.id || (!edge.sourceHandle && branch.id === 'source'))
&& !bundledNodeIdSet.has(edge.target),
)
if (isConnectedOutside || !isConnectedInside) {
const handlerId = `${node.id}-${branch.id}`
handlers.push({
id: handlerId,
label: branch.name || node.data.title || node.id,
nodeId: node.id,
sourceHandle: branch.id,
})
leafNodeIdSet.add(node.id)
}
})
})
const leafNodeIds = Array.from(leafNodeIdSet)
leafNodeIds.forEach(id => bundledNodeIdIsLeaf.add(id))
const members: GroupMember[] = bundledNodes.map((node) => {
return {
id: node.id,
type: node.data.type,
label: node.data.title,
}
})
// head nodes: nodes that receive input from outside the group
const headNodeIds = [...new Set(inboundEdges.map(edge => edge.target))]
// put the group node at the top-left corner of the selection, slightly offset
const { x: minX, y: minY } = getTopLeftNodePosition(bundledNodes)
const groupNodeData: GroupNodeData = {
title: t('operator.makeGroup', { ns: 'workflow' }),
desc: '',
type: BlockEnum.Group,
members,
handlers,
headNodeIds,
leafNodeIds,
selected: true,
_targetBranches: handlers.map(handler => ({
id: handler.id,
name: handler.label || handler.id,
})),
}
const { newNode: groupNode } = generateNewNode({
data: groupNodeData,
position: {
x: minX - 20,
y: minY - 20,
},
})
const nodeTypeMap = new Map(nodes.map(node => [node.id, node.data.type]))
const newNodes = produce(nodes, (draft) => {
draft.forEach((node) => {
if (bundledNodeIdSet.has(node.id)) {
node.data._isBundled = false
node.selected = false
node.hidden = true
node.data._hiddenInGroupId = groupNode.id
}
else {
node.data._isBundled = false
}
})
draft.push(groupNode)
})
const newEdges = produce(edges, (draft) => {
draft.forEach((edge) => {
if (bundledNodeIdSet.has(edge.source) || bundledNodeIdSet.has(edge.target)) {
edge.hidden = true
edge.data = {
...edge.data,
_hiddenInGroupId: groupNode.id,
_isBundled: false,
}
}
else if (edge.data?._isBundled) {
edge.data._isBundled = false
}
})
// re-add the external inbound edges to the group node as UI-only edges (not persisted to backend)
inboundEdges.forEach((edge) => {
draft.push({
id: `${edge.id}__to-${groupNode.id}`,
type: edge.type || CUSTOM_EDGE,
source: edge.source,
target: groupNode.id,
sourceHandle: edge.sourceHandle,
targetHandle: 'target',
data: {
...edge.data,
sourceType: nodeTypeMap.get(edge.source)!,
targetType: BlockEnum.Group,
_hiddenInGroupId: undefined,
_isBundled: false,
_isTemp: true, // UI-only edge, not persisted to backend
},
zIndex: edge.zIndex,
})
})
// outbound edges of the group node as UI-only edges (not persisted to backend)
outboundEdges.forEach((edge) => {
if (!bundledNodeIdIsLeaf.has(edge.source))
return
// Use the same handler id format: nodeId-sourceHandle
const originalSourceHandle = edge.sourceHandle || 'source'
const handlerId = `${edge.source}-${originalSourceHandle}`
draft.push({
id: `${groupNode.id}-${edge.target}-${edge.targetHandle || 'target'}-${handlerId}`,
type: edge.type || CUSTOM_EDGE,
source: groupNode.id,
target: edge.target,
sourceHandle: handlerId,
targetHandle: edge.targetHandle,
data: {
...edge.data,
sourceType: BlockEnum.Group,
targetType: nodeTypeMap.get(edge.target)!,
_hiddenInGroupId: undefined,
_isBundled: false,
_isTemp: true,
},
zIndex: edge.zIndex,
})
})
})
setNodes(newNodes)
setEdges(newEdges)
workflowStore.setState({
selectionMenu: undefined,
})
handleSyncWorkflowDraft()
saveStateToHistory(WorkflowHistoryEvent.NodeAdd, {
nodeId: groupNode.id,
})
}, [handleSyncWorkflowDraft, saveStateToHistory, store, t, workflowStore])
// check if the current selection can be ungrouped (single selected Group node)
const getCanUngroup = useCallback(() => {
const { getNodes } = store.getState()
const nodes = getNodes()
const selectedNodes = nodes.filter(node => node.selected)
if (selectedNodes.length !== 1)
return false
return selectedNodes[0].data.type === BlockEnum.Group
}, [store])
// get the selected group node id for ungroup operation
const getSelectedGroupId = useCallback(() => {
const { getNodes } = store.getState()
const nodes = getNodes()
const selectedNodes = nodes.filter(node => node.selected)
if (selectedNodes.length === 1 && selectedNodes[0].data.type === BlockEnum.Group)
return selectedNodes[0].id
return undefined
}, [store])
const handleUngroup = useCallback((groupId: string) => {
const { getNodes, setNodes, edges, setEdges } = store.getState()
const nodes = getNodes()
const groupNode = nodes.find(n => n.id === groupId)
if (!groupNode || groupNode.data.type !== BlockEnum.Group)
return
const memberIds = new Set((groupNode.data.members || []).map((m: { id: string }) => m.id))
// restore hidden member nodes
const newNodes = produce(nodes, (draft) => {
draft.forEach((node) => {
if (memberIds.has(node.id)) {
node.hidden = false
delete node.data._hiddenInGroupId
}
})
// remove group node
const groupIndex = draft.findIndex(n => n.id === groupId)
if (groupIndex !== -1)
draft.splice(groupIndex, 1)
})
// restore hidden edges and remove temp edges in single pass O(E)
const newEdges = produce(edges, (draft) => {
const indicesToRemove: number[] = []
for (let i = 0; i < draft.length; i++) {
const edge = draft[i]
// restore hidden edges that involve member nodes
if (edge.hidden && (memberIds.has(edge.source) || memberIds.has(edge.target)))
edge.hidden = false
// collect temp edges connected to group for removal
if (edge.data?._isTemp && (edge.source === groupId || edge.target === groupId))
indicesToRemove.push(i)
}
// remove collected indices in reverse order to avoid index shift
for (let i = indicesToRemove.length - 1; i >= 0; i--)
draft.splice(indicesToRemove[i], 1)
})
setNodes(newNodes)
setEdges(newEdges)
handleSyncWorkflowDraft()
saveStateToHistory(WorkflowHistoryEvent.NodeDelete, {
nodeId: groupId,
})
}, [handleSyncWorkflowDraft, saveStateToHistory, store])
return {
handleNodeDragStart,
handleNodeDrag,
@@ -2107,11 +2868,17 @@ export const useNodesInteractions = () => {
handleNodesPaste,
handleNodesDuplicate,
handleNodesDelete,
handleMakeGroup,
handleUngroup,
handleNodeResize,
handleNodeDisconnect,
handleHistoryBack,
handleHistoryForward,
dimOtherNodes,
undimAllNodes,
hasBundledNodes,
getCanMakeGroup,
getCanUngroup,
getSelectedGroupId,
}
}

View File

@@ -1,8 +1,10 @@
import type { AvailableNodesMetaData } from '@/app/components/workflow/hooks-store'
import type { Node } from '@/app/components/workflow/types'
import { useMemo } from 'react'
import { useTranslation } from 'react-i18next'
import { CollectionType } from '@/app/components/tools/types'
import { useHooksStore } from '@/app/components/workflow/hooks-store'
import GroupDefault from '@/app/components/workflow/nodes/group/default'
import { useStore } from '@/app/components/workflow/store'
import { BlockEnum } from '@/app/components/workflow/types'
import { useGetLanguage } from '@/context/i18n'
@@ -25,6 +27,7 @@ export const useNodesMetaData = () => {
}
export const useNodeMetaData = (node: Node) => {
const { t } = useTranslation()
const language = useGetLanguage()
const { data: buildInTools } = useAllBuiltInTools()
const { data: customTools } = useAllCustomTools()
@@ -34,6 +37,9 @@ export const useNodeMetaData = (node: Node) => {
const { data } = node
const nodeMetaData = availableNodesMetaData.nodesMap?.[data.type]
const author = useMemo(() => {
if (data.type === BlockEnum.Group)
return GroupDefault.metaData.author
if (data.type === BlockEnum.DataSource)
return dataSourceList?.find(dataSource => dataSource.plugin_id === data.plugin_id)?.author
@@ -48,6 +54,9 @@ export const useNodeMetaData = (node: Node) => {
}, [data, buildInTools, customTools, workflowTools, nodeMetaData, dataSourceList])
const description = useMemo(() => {
if (data.type === BlockEnum.Group)
return t('blocksAbout.group', { ns: 'workflow' })
if (data.type === BlockEnum.DataSource)
return dataSourceList?.find(dataSource => dataSource.plugin_id === data.plugin_id)?.description[language]
if (data.type === BlockEnum.Tool) {
@@ -58,7 +67,7 @@ export const useNodeMetaData = (node: Node) => {
return customTools?.find(toolWithProvider => toolWithProvider.id === data.provider_id)?.description[language]
}
return nodeMetaData?.metaData.description
}, [data, buildInTools, customTools, workflowTools, nodeMetaData, dataSourceList, language])
}, [data, buildInTools, customTools, workflowTools, nodeMetaData, dataSourceList, language, t])
return useMemo(() => {
return {

View File

@@ -17,7 +17,7 @@ import {
} from '../utils'
import { useWorkflowHistoryStore } from '../workflow-history-store'
export const useShortcuts = (): void => {
export const useShortcuts = (enabled = true): void => {
const {
handleNodesCopy,
handleNodesPaste,
@@ -27,6 +27,12 @@ export const useShortcuts = (): void => {
handleHistoryForward,
dimOtherNodes,
undimAllNodes,
hasBundledNodes,
getCanMakeGroup,
handleMakeGroup,
getCanUngroup,
getSelectedGroupId,
handleUngroup,
} = useNodesInteractions()
const { shortcutsEnabled: workflowHistoryShortcutsEnabled } = useWorkflowHistoryStore()
const { handleSyncWorkflowDraft } = useNodesSyncDraft()
@@ -60,13 +66,17 @@ export const useShortcuts = (): void => {
}
const shouldHandleShortcut = useCallback((e: KeyboardEvent) => {
if (!enabled)
return false
return !isEventTargetInputArea(e.target as HTMLElement)
}, [])
}, [enabled])
const shouldHandleCopy = useCallback(() => {
if (!enabled)
return false
const selection = document.getSelection()
return !selection || selection.isCollapsed
}, [])
}, [enabled])
useKeyPress(['delete', 'backspace'], (e) => {
if (shouldHandleShortcut(e)) {
@@ -78,7 +88,8 @@ export const useShortcuts = (): void => {
useKeyPress(`${getKeyboardKeyCodeBySystem('ctrl')}.c`, (e) => {
const { showDebugAndPreviewPanel } = workflowStore.getState()
if (shouldHandleShortcut(e) && shouldHandleCopy() && !showDebugAndPreviewPanel) {
// Only intercept when nodes are selected via box selection
if (shouldHandleShortcut(e) && shouldHandleCopy() && !showDebugAndPreviewPanel && hasBundledNodes()) {
e.preventDefault()
handleNodesCopy()
}
@@ -99,6 +110,26 @@ export const useShortcuts = (): void => {
}
}, { exactMatch: true, useCapture: true })
useKeyPress(`${getKeyboardKeyCodeBySystem('ctrl')}.g`, (e) => {
// Only intercept when the selection can be grouped
if (shouldHandleShortcut(e) && getCanMakeGroup()) {
e.preventDefault()
// Close selection context menu if open
workflowStore.setState({ selectionMenu: undefined })
handleMakeGroup()
}
}, { exactMatch: true, useCapture: true })
useKeyPress(`${getKeyboardKeyCodeBySystem('ctrl')}.shift.g`, (e) => {
// Only intercept when the selection can be ungrouped
if (shouldHandleShortcut(e) && getCanUngroup()) {
e.preventDefault()
const groupId = getSelectedGroupId()
if (groupId)
handleUngroup(groupId)
}
}, { exactMatch: true, useCapture: true })
useKeyPress(`${getKeyboardKeyCodeBySystem('alt')}.r`, (e) => {
if (shouldHandleShortcut(e)) {
e.preventDefault()
@@ -255,6 +286,8 @@ export const useShortcuts = (): void => {
// Listen for zen toggle event from /zen command
useEffect(() => {
if (!enabled)
return
const handleZenToggle = () => {
handleToggleMaximizeCanvas()
}
@@ -263,5 +296,5 @@ export const useShortcuts = (): void => {
return () => {
window.removeEventListener(ZEN_TOGGLE_EVENT, handleZenToggle)
}
}, [handleToggleMaximizeCanvas])
}, [enabled, handleToggleMaximizeCanvas])
}

View File

@@ -37,7 +37,10 @@ export const useWorkflowNodeFinished = () => {
}))
const newNodes = produce(nodes, (draft) => {
const currentNode = draft.find(node => node.id === data.node_id)!
const currentNode = draft.find(node => node.id === data.node_id)
// Skip if node not found (e.g., virtual extraction nodes)
if (!currentNode)
return
currentNode.data._runningStatus = data.status
if (data.status === NodeRunningStatus.Exception) {
if (data.execution_metadata?.error_strategy === ErrorHandleTypeEnum.failBranch)

View File

@@ -45,6 +45,11 @@ export const useWorkflowNodeStarted = () => {
} = reactflow
const currentNodeIndex = nodes.findIndex(node => node.id === data.node_id)
const currentNode = nodes[currentNodeIndex]
// Skip if node not found (e.g., virtual extraction nodes)
if (!currentNode)
return
const position = currentNode.position
const zoom = transform[2]

View File

@@ -1,10 +1,10 @@
import type {
Connection,
} from 'reactflow'
import type { GroupNodeData } from '../nodes/group/types'
import type { IterationNodeType } from '../nodes/iteration/types'
import type { LoopNodeType } from '../nodes/loop/types'
import type {
BlockEnum,
Edge,
Node,
ValueSelector,
@@ -28,14 +28,12 @@ import {
} from '../constants'
import { findUsedVarNodes, getNodeOutputVars, updateNodeVars } from '../nodes/_base/components/variable/utils'
import { CUSTOM_NOTE_NODE } from '../note-node/constants'
import {
useStore,
useWorkflowStore,
} from '../store'
import {
WorkflowRunningStatus,
} from '../types'
import { BlockEnum, WorkflowRunningStatus } from '../types'
import {
getWorkflowEntryNode,
isWorkflowEntryNode,
@@ -381,7 +379,7 @@ export const useWorkflow = () => {
return startNodes
}, [nodesMap, getRootNodesById])
const isValidConnection = useCallback(({ source, sourceHandle: _sourceHandle, target }: Connection) => {
const isValidConnection = useCallback(({ source, sourceHandle, target }: Connection) => {
const {
edges,
getNodes,
@@ -396,15 +394,42 @@ export const useWorkflow = () => {
if (sourceNode.parentId !== targetNode.parentId)
return false
// For Group nodes, use the leaf node's type for validation
// sourceHandle format: "${leafNodeId}-${originalSourceHandle}"
let actualSourceType = sourceNode.data.type
if (sourceNode.data.type === BlockEnum.Group && sourceHandle) {
const lastDashIndex = sourceHandle.lastIndexOf('-')
if (lastDashIndex > 0) {
const leafNodeId = sourceHandle.substring(0, lastDashIndex)
const leafNode = nodes.find(node => node.id === leafNodeId)
if (leafNode)
actualSourceType = leafNode.data.type
}
}
if (sourceNode && targetNode) {
const sourceNodeAvailableNextNodes = getAvailableBlocks(sourceNode.data.type, !!sourceNode.parentId).availableNextBlocks
const sourceNodeAvailableNextNodes = getAvailableBlocks(actualSourceType, !!sourceNode.parentId).availableNextBlocks
const targetNodeAvailablePrevNodes = getAvailableBlocks(targetNode.data.type, !!targetNode.parentId).availablePrevBlocks
if (!sourceNodeAvailableNextNodes.includes(targetNode.data.type))
return false
if (targetNode.data.type === BlockEnum.Group) {
const groupData = targetNode.data as GroupNodeData
const headNodeIds = groupData.headNodeIds || []
if (headNodeIds.length > 0) {
const headNode = nodes.find(node => node.id === headNodeIds[0])
if (headNode) {
const headNodeAvailablePrevNodes = getAvailableBlocks(headNode.data.type, !!targetNode.parentId).availablePrevBlocks
if (!headNodeAvailablePrevNodes.includes(actualSourceType))
return false
}
}
}
else {
if (!sourceNodeAvailableNextNodes.includes(targetNode.data.type))
return false
if (!targetNodeAvailablePrevNodes.includes(sourceNode.data.type))
return false
if (!targetNodeAvailablePrevNodes.includes(actualSourceType))
return false
}
}
const hasCycle = (node: Node, visited = new Set()) => {
@@ -473,13 +498,9 @@ export const useNodesReadOnly = () => {
const isRestoring = useStore(s => s.isRestoring)
const getNodesReadOnly = useCallback((): boolean => {
const {
workflowRunningData,
historyWorkflowData,
isRestoring,
} = workflowStore.getState()
const state = workflowStore.getState()
return !!(workflowRunningData?.result.status === WorkflowRunningStatus.Running || historyWorkflowData || isRestoring)
return !!(state.workflowRunningData?.result.status === WorkflowRunningStatus.Running || state.historyWorkflowData || state.isRestoring)
}, [workflowStore])
return {
@@ -525,6 +546,7 @@ export const useIsNodeInLoop = (loopId: string) => {
return false
if (node.parentId === loopId)
return true
return false

View File

@@ -2,6 +2,7 @@
import type { FC } from 'react'
import type {
NodeMouseHandler,
Viewport,
} from 'reactflow'
import type { Shape as HooksStoreShape } from './hooks-store'
@@ -54,6 +55,14 @@ import {
} from './constants'
import CustomConnectionLine from './custom-connection-line'
import CustomEdge from './custom-edge'
import {
CUSTOM_GROUP_EXIT_PORT_NODE,
CUSTOM_GROUP_INPUT_NODE,
CUSTOM_GROUP_NODE,
CustomGroupExitPortNode,
CustomGroupInputNode,
CustomGroupNode,
} from './custom-group-node'
import DatasetsDetailProvider from './datasets-detail-store/provider'
import HelpLine from './help-line'
import {
@@ -94,6 +103,7 @@ import {
} from './store'
import SyncingDataModal from './syncing-data-modal'
import {
BlockEnum,
ControlMode,
} from './types'
import { setupScrollToNodeListener } from './utils/node-navigation'
@@ -112,6 +122,9 @@ const nodeTypes = {
[CUSTOM_ITERATION_START_NODE]: CustomIterationStartNode,
[CUSTOM_LOOP_START_NODE]: CustomLoopStartNode,
[CUSTOM_DATA_SOURCE_EMPTY_NODE]: CustomDataSourceEmptyNode,
[CUSTOM_GROUP_NODE]: CustomGroupNode,
[CUSTOM_GROUP_INPUT_NODE]: CustomGroupInputNode,
[CUSTOM_GROUP_EXIT_PORT_NODE]: CustomGroupExitPortNode,
}
const edgeTypes = {
[CUSTOM_EDGE]: CustomEdge,
@@ -123,6 +136,9 @@ export type WorkflowProps = {
viewport?: Viewport
children?: React.ReactNode
onWorkflowDataUpdate?: (v: any) => void
allowSelectionWhenReadOnly?: boolean
canvasReadOnly?: boolean
interactionMode?: 'default' | 'subgraph'
}
export const Workflow: FC<WorkflowProps> = memo(({
nodes: originalNodes,
@@ -130,6 +146,9 @@ export const Workflow: FC<WorkflowProps> = memo(({
viewport,
children,
onWorkflowDataUpdate,
allowSelectionWhenReadOnly = false,
canvasReadOnly = false,
interactionMode = 'default',
}) => {
const workflowContainerRef = useRef<HTMLDivElement>(null)
const workflowStore = useWorkflowStore()
@@ -182,9 +201,10 @@ export const Workflow: FC<WorkflowProps> = memo(({
id: node.id,
data: node.data,
}))
if (!isEqual(oldData, nodesData))
if (!isEqual(oldData, nodesData)) {
setNodesInStore(nodes)
}, [setNodesInStore, workflowStore])
}
}, [setNodesInStore])
useEffect(() => {
setNodesOnlyChangeWithData(currentNodes as Node[])
}, [currentNodes, setNodesOnlyChangeWithData])
@@ -316,7 +336,8 @@ export const Workflow: FC<WorkflowProps> = memo(({
},
})
useShortcuts()
const isSubGraph = interactionMode === 'subgraph'
useShortcuts(!isSubGraph)
// Initialize workflow node search functionality
useWorkflowSearch()
@@ -370,6 +391,16 @@ export const Workflow: FC<WorkflowProps> = memo(({
}
}
const handleNodeClickInMode = useCallback<NodeMouseHandler>(
(event, node) => {
if (isSubGraph && node.data.type !== BlockEnum.LLM)
return
handleNodeClick(event, node)
},
[handleNodeClick, isSubGraph],
)
return (
<div
id="workflow-container"
@@ -381,18 +412,18 @@ export const Workflow: FC<WorkflowProps> = memo(({
ref={workflowContainerRef}
>
<SyncingDataModal />
<CandidateNode />
{!isSubGraph && <CandidateNode />}
<div
className="pointer-events-none absolute left-0 top-0 z-10 flex w-12 items-center justify-center p-1 pl-2"
style={{ height: controlHeight }}
>
<Control />
{!isSubGraph && <Control />}
</div>
<Operator handleRedo={handleHistoryForward} handleUndo={handleHistoryBack} />
<PanelContextmenu />
<NodeContextmenu />
<SelectionContextmenu />
<HelpLine />
{!isSubGraph && <PanelContextmenu />}
{!isSubGraph && <NodeContextmenu />}
{!isSubGraph && <SelectionContextmenu />}
{!isSubGraph && <HelpLine />}
{
!!showConfirm && (
<Confirm
@@ -415,38 +446,38 @@ export const Workflow: FC<WorkflowProps> = memo(({
onNodeDragStop={handleNodeDragStop}
onNodeMouseEnter={handleNodeEnter}
onNodeMouseLeave={handleNodeLeave}
onNodeClick={handleNodeClick}
onNodeContextMenu={handleNodeContextMenu}
onConnect={handleNodeConnect}
onConnectStart={handleNodeConnectStart}
onConnectEnd={handleNodeConnectEnd}
onNodeClick={handleNodeClickInMode}
onNodeContextMenu={isSubGraph ? undefined : handleNodeContextMenu}
onConnect={isSubGraph ? undefined : handleNodeConnect}
onConnectStart={isSubGraph ? undefined : handleNodeConnectStart}
onConnectEnd={isSubGraph ? undefined : handleNodeConnectEnd}
onEdgeMouseEnter={handleEdgeEnter}
onEdgeMouseLeave={handleEdgeLeave}
onEdgesChange={handleEdgesChange}
onSelectionStart={handleSelectionStart}
onSelectionChange={handleSelectionChange}
onSelectionDrag={handleSelectionDrag}
onPaneContextMenu={handlePaneContextMenu}
onSelectionContextMenu={handleSelectionContextMenu}
onSelectionStart={isSubGraph ? undefined : handleSelectionStart}
onSelectionChange={isSubGraph ? undefined : handleSelectionChange}
onSelectionDrag={isSubGraph ? undefined : handleSelectionDrag}
onPaneContextMenu={isSubGraph ? undefined : handlePaneContextMenu}
onSelectionContextMenu={isSubGraph ? undefined : handleSelectionContextMenu}
connectionLineComponent={CustomConnectionLine}
// NOTE: For LOOP node, how to distinguish between ITERATION and LOOP here? Maybe both are the same?
connectionLineContainerStyle={{ zIndex: ITERATION_CHILDREN_Z_INDEX }}
defaultViewport={viewport}
multiSelectionKeyCode={null}
deleteKeyCode={null}
nodesDraggable={!nodesReadOnly}
nodesConnectable={!nodesReadOnly}
nodesFocusable={!nodesReadOnly}
edgesFocusable={!nodesReadOnly}
panOnScroll={controlMode === ControlMode.Pointer && !workflowReadOnly}
panOnDrag={controlMode === ControlMode.Hand || [1]}
zoomOnPinch={true}
zoomOnScroll={true}
zoomOnDoubleClick={true}
nodesDraggable={!(nodesReadOnly || canvasReadOnly || isSubGraph)}
nodesConnectable={!(nodesReadOnly || canvasReadOnly || isSubGraph)}
nodesFocusable={allowSelectionWhenReadOnly ? true : !nodesReadOnly}
edgesFocusable={isSubGraph ? false : (allowSelectionWhenReadOnly ? true : !nodesReadOnly)}
panOnScroll={!isSubGraph && controlMode === ControlMode.Pointer && !workflowReadOnly}
panOnDrag={!isSubGraph && (controlMode === ControlMode.Hand || [1])}
selectionOnDrag={!isSubGraph && controlMode === ControlMode.Pointer && !workflowReadOnly && !canvasReadOnly}
zoomOnPinch={!isSubGraph}
zoomOnScroll={!isSubGraph}
zoomOnDoubleClick={!isSubGraph}
isValidConnection={isValidConnection}
selectionKeyCode={null}
selectionMode={SelectionMode.Partial}
selectionOnDrag={controlMode === ControlMode.Pointer && !workflowReadOnly}
minZoom={0.25}
>
<Background

Some files were not shown because too many files have changed in this diff Show More