Compare commits

..

4 Commits

Author SHA1 Message Date
jyong
cc53c9004a downgrade boto3 2025-02-20 19:09:23 +08:00
crazywoola
0e33a3aa5f chore: add ci 2025-02-19 14:34:36 +08:00
Hash Brown
d3895bcd6b revert 2025-02-19 14:32:28 +08:00
Hash Brown
eeb390650b fix: build failed 2025-02-19 14:32:28 +08:00
188 changed files with 849 additions and 2037 deletions

View File

@@ -26,9 +26,6 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
persist-credentials: false
- name: Setup Poetry and Python ${{ matrix.python-version }}
uses: ./.github/actions/setup-poetry

View File

@@ -5,6 +5,7 @@ on:
branches:
- "main"
- "deploy/dev"
- "release/0.15.3-fix1"
release:
types: [published]
@@ -79,12 +80,10 @@ jobs:
cache-to: type=gha,mode=max,scope=${{ matrix.service_name }}
- name: Export digest
env:
DIGEST: ${{ steps.build.outputs.digest }}
run: |
mkdir -p /tmp/digests
sanitized_digest=${DIGEST#sha256:}
touch "/tmp/digests/${sanitized_digest}"
digest="${{ steps.build.outputs.digest }}"
touch "/tmp/digests/${digest#sha256:}"
- name: Upload digest
uses: actions/upload-artifact@v4
@@ -134,15 +133,10 @@ jobs:
- name: Create manifest list and push
working-directory: /tmp/digests
env:
IMAGE_NAME: ${{ env[matrix.image_name_env] }}
run: |
docker buildx imagetools create $(jq -cr '.tags | map("-t " + .) | join(" ")' <<< "$DOCKER_METADATA_OUTPUT_JSON") \
$(printf "$IMAGE_NAME@sha256:%s " *)
$(printf '${{ env[matrix.image_name_env] }}@sha256:%s ' *)
- name: Inspect image
env:
IMAGE_NAME: ${{ env[matrix.image_name_env] }}
IMAGE_VERSION: ${{ steps.meta.outputs.version }}
run: |
docker buildx imagetools inspect "$IMAGE_NAME:$IMAGE_VERSION"
docker buildx imagetools inspect ${{ env[matrix.image_name_env] }}:${{ steps.meta.outputs.version }}

View File

@@ -19,9 +19,6 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
persist-credentials: false
- name: Setup Poetry and Python
uses: ./.github/actions/setup-poetry

View File

@@ -9,6 +9,6 @@ yq eval '.services["pgvecto-rs"].ports += ["5431:5432"]' -i docker/docker-compos
yq eval '.services["elasticsearch"].ports += ["9200:9200"]' -i docker/docker-compose.yaml
yq eval '.services.couchbase-server.ports += ["8091-8096:8091-8096"]' -i docker/docker-compose.yaml
yq eval '.services.couchbase-server.ports += ["11210:11210"]' -i docker/docker-compose.yaml
yq eval '.services.tidb.ports += ["4000:4000"]' -i docker/tidb/docker-compose.yaml
yq eval '.services.tidb.ports += ["4000:4000"]' -i docker/docker-compose.yaml
echo "Ports exposed for sandbox, weaviate, tidb, qdrant, chroma, milvus, pgvector, pgvecto-rs, elasticsearch, couchbase"

View File

@@ -17,9 +17,6 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
persist-credentials: false
- name: Check changed files
id: changed-files
@@ -62,9 +59,6 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
persist-credentials: false
- name: Check changed files
id: changed-files
@@ -95,9 +89,6 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
persist-credentials: false
- name: Check changed files
id: changed-files
@@ -126,9 +117,6 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
persist-credentials: false
- name: Check changed files
id: changed-files

View File

@@ -26,9 +26,6 @@ jobs:
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
persist-credentials: false
- name: Use Node.js ${{ matrix.node-version }}
uses: actions/setup-node@v4

View File

@@ -16,7 +16,6 @@ jobs:
- uses: actions/checkout@v4
with:
fetch-depth: 2 # last 2 commits
persist-credentials: false
- name: Check for file changes in i18n/en-US
id: check_files

View File

@@ -28,9 +28,6 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
persist-credentials: false
- name: Setup Poetry and Python ${{ matrix.python-version }}
uses: ./.github/actions/setup-poetry
@@ -54,15 +51,7 @@ jobs:
- name: Expose Service Ports
run: sh .github/workflows/expose_service_ports.sh
- name: Set up Vector Store (TiDB)
uses: hoverkraft-tech/compose-action@v2.0.2
with:
compose-file: docker/tidb/docker-compose.yaml
services: |
tidb
tiflash
- name: Set up Vector Stores (Weaviate, Qdrant, PGVector, Milvus, PgVecto-RS, Chroma, MyScale, ElasticSearch, Couchbase)
- name: Set up Vector Stores (TiDB, Weaviate, Qdrant, PGVector, Milvus, PgVecto-RS, Chroma, MyScale, ElasticSearch, Couchbase)
uses: hoverkraft-tech/compose-action@v2.0.2
with:
compose-file: |
@@ -78,9 +67,7 @@ jobs:
pgvector
chroma
elasticsearch
- name: Check TiDB Ready
run: poetry run -P api python api/tests/integration_tests/vdb/tidb_vector/check_tiflash_ready.py
tidb
- name: Test Vector Stores
run: poetry run -P api bash dev/pytest/pytest_vdb.sh

View File

@@ -22,9 +22,6 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
persist-credentials: false
- name: Check changed files
id: changed-files

1
.gitignore vendored
View File

@@ -163,7 +163,6 @@ docker/volumes/db/data/*
docker/volumes/redis/data/*
docker/volumes/weaviate/*
docker/volumes/qdrant/*
docker/tidb/volumes/*
docker/volumes/etcd/*
docker/volumes/minio/*
docker/volumes/milvus/*

View File

@@ -108,72 +108,6 @@ Please refer to our [FAQ](https://docs.dify.ai/getting-started/install-self-host
**7. Backend-as-a-Service**:
All of Dify's offerings come with corresponding APIs, so you could effortlessly integrate Dify into your own business logic.
## Feature Comparison
<table style="width: 100%;">
<tr>
<th align="center">Feature</th>
<th align="center">Dify.AI</th>
<th align="center">LangChain</th>
<th align="center">Flowise</th>
<th align="center">OpenAI Assistants API</th>
</tr>
<tr>
<td align="center">Programming Approach</td>
<td align="center">API + App-oriented</td>
<td align="center">Python Code</td>
<td align="center">App-oriented</td>
<td align="center">API-oriented</td>
</tr>
<tr>
<td align="center">Supported LLMs</td>
<td align="center">Rich Variety</td>
<td align="center">Rich Variety</td>
<td align="center">Rich Variety</td>
<td align="center">OpenAI-only</td>
</tr>
<tr>
<td align="center">RAG Engine</td>
<td align="center">✅</td>
<td align="center">✅</td>
<td align="center">✅</td>
<td align="center">✅</td>
</tr>
<tr>
<td align="center">Agent</td>
<td align="center">✅</td>
<td align="center">✅</td>
<td align="center">❌</td>
<td align="center">✅</td>
</tr>
<tr>
<td align="center">Workflow</td>
<td align="center">✅</td>
<td align="center">❌</td>
<td align="center">✅</td>
<td align="center">❌</td>
</tr>
<tr>
<td align="center">Observability</td>
<td align="center">✅</td>
<td align="center">✅</td>
<td align="center">❌</td>
<td align="center">❌</td>
</tr>
<tr>
<td align="center">Enterprise Feature (SSO/Access control)</td>
<td align="center">✅</td>
<td align="center">❌</td>
<td align="center">❌</td>
<td align="center">❌</td>
</tr>
<tr>
<td align="center">Local Deployment</td>
<td align="center">✅</td>
<td align="center">✅</td>
<td align="center">✅</td>
<td align="center">❌</td>
</tr>
</table>
## Using Dify

View File

@@ -87,7 +87,9 @@ Dify is an open-source LLM app development platform. Its intuitive interface com
## Feature Comparison
<table style="width: 100%;">
<tr>
<tr
>
<th align="center">Feature</th>
<th align="center">Dify.AI</th>
<th align="center">LangChain</th>

View File

@@ -106,73 +106,6 @@ Prosimo, glejte naša pogosta vprašanja [FAQ](https://docs.dify.ai/getting-star
**7. Backend-as-a-Service**:
AVse ponudbe Difyja so opremljene z ustreznimi API-ji, tako da lahko Dify brez težav integrirate v svojo poslovno logiko.
## Primerjava Funkcij
<table style="width: 100%;">
<tr>
<th align="center">Funkcija</th>
<th align="center">Dify.AI</th>
<th align="center">LangChain</th>
<th align="center">Flowise</th>
<th align="center">OpenAI Assistants API</th>
</tr>
<tr>
<td align="center">Programski pristop</td>
<td align="center">API + usmerjeno v aplikacije</td>
<td align="center">Python koda</td>
<td align="center">Usmerjeno v aplikacije</td>
<td align="center">Usmerjeno v API</td>
</tr>
<tr>
<td align="center">Podprti LLM-ji</td>
<td align="center">Bogata izbira</td>
<td align="center">Bogata izbira</td>
<td align="center">Bogata izbira</td>
<td align="center">Samo OpenAI</td>
</tr>
<tr>
<td align="center">RAG pogon</td>
<td align="center">✅</td>
<td align="center">✅</td>
<td align="center">✅</td>
<td align="center">✅</td>
</tr>
<tr>
<td align="center">Agent</td>
<td align="center">✅</td>
<td align="center">✅</td>
<td align="center">❌</td>
<td align="center">✅</td>
</tr>
<tr>
<td align="center">Potek dela</td>
<td align="center">✅</td>
<td align="center">❌</td>
<td align="center">✅</td>
<td align="center">❌</td>
</tr>
<tr>
<td align="center">Spremljanje</td>
<td align="center">✅</td>
<td align="center">✅</td>
<td align="center">❌</td>
<td align="center">❌</td>
</tr>
<tr>
<td align="center">Funkcija za podjetja (SSO/nadzor dostopa)</td>
<td align="center">✅</td>
<td align="center">❌</td>
<td align="center">❌</td>
<td align="center">❌</td>
</tr>
<tr>
<td align="center">Lokalna namestitev</td>
<td align="center">✅</td>
<td align="center">✅</td>
<td align="center">✅</td>
<td align="center">❌</td>
</tr>
</table>
## Uporaba Dify
@@ -254,4 +187,4 @@ Zaradi zaščite vaše zasebnosti se izogibajte objavljanju varnostnih vprašanj
## Licenca
To skladišče je na voljo pod [odprtokodno licenco Dify](LICENSE) , ki je v bistvu Apache 2.0 z nekaj dodatnimi omejitvami.
To skladišče je na voljo pod [odprtokodno licenco Dify](LICENSE) , ki je v bistvu Apache 2.0 z nekaj dodatnimi omejitvami.

View File

@@ -37,13 +37,7 @@
4. Create environment.
Dify API service uses [Poetry](https://python-poetry.org/docs/) to manage dependencies. First, you need to add the poetry shell plugin, if you don't have it already, in order to run in a virtual environment. [Note: Poetry shell is no longer a native command so you need to install the poetry plugin beforehand]
```bash
poetry self add poetry-plugin-shell
```
Then, You can execute `poetry shell` to activate the environment.
Dify API service uses [Poetry](https://python-poetry.org/docs/) to manage dependencies. You can execute `poetry shell` to activate the environment.
5. Install dependencies

View File

@@ -315,8 +315,8 @@ class HttpConfig(BaseSettings):
)
RESPECT_XFORWARD_HEADERS_ENABLED: bool = Field(
description="Enable handling of X-Forwarded-For, X-Forwarded-Proto, and X-Forwarded-Port headers"
" when the app is behind a single trusted reverse proxy.",
description="Enable or disable the X-Forwarded-For Proxy Fix middleware from Werkzeug"
" to respect X-* headers to redirect clients",
default=False,
)
@@ -498,11 +498,6 @@ class AuthConfig(BaseSettings):
default=86400,
)
FORGOT_PASSWORD_LOCKOUT_DURATION: PositiveInt = Field(
description="Time (in seconds) a user must wait before retrying password reset after exceeding the rate limit.",
default=86400,
)
class ModerationConfig(BaseSettings):
"""

View File

@@ -15,7 +15,7 @@ AUDIO_EXTENSIONS.extend([ext.upper() for ext in AUDIO_EXTENSIONS])
if dify_config.ETL_TYPE == "Unstructured":
DOCUMENT_EXTENSIONS = ["txt", "markdown", "md", "mdx", "pdf", "html", "htm", "xlsx", "xls"]
DOCUMENT_EXTENSIONS.extend(("doc", "docx", "csv", "eml", "msg", "pptx", "xml", "epub"))
DOCUMENT_EXTENSIONS.extend(("docx", "csv", "eml", "msg", "pptx", "xml", "epub"))
if dify_config.UNSTRUCTURED_API_URL:
DOCUMENT_EXTENSIONS.append("ppt")
DOCUMENT_EXTENSIONS.extend([ext.upper() for ext in DOCUMENT_EXTENSIONS])

View File

@@ -59,9 +59,3 @@ class EmailCodeAccountDeletionRateLimitExceededError(BaseHTTPException):
error_code = "email_code_account_deletion_rate_limit_exceeded"
description = "Too many account deletion emails have been sent. Please try again in 5 minutes."
code = 429
class EmailPasswordResetLimitError(BaseHTTPException):
error_code = "email_password_reset_limit"
description = "Too many failed password reset attempts. Please try again in 24 hours."
code = 429

View File

@@ -6,13 +6,7 @@ from flask_restful import Resource, reqparse # type: ignore
from constants.languages import languages
from controllers.console import api
from controllers.console.auth.error import (
EmailCodeError,
EmailPasswordResetLimitError,
InvalidEmailError,
InvalidTokenError,
PasswordMismatchError,
)
from controllers.console.auth.error import EmailCodeError, InvalidEmailError, InvalidTokenError, PasswordMismatchError
from controllers.console.error import AccountInFreezeError, AccountNotFound, EmailSendIpLimitError
from controllers.console.wraps import setup_required
from events.tenant_event import tenant_was_created
@@ -68,10 +62,6 @@ class ForgotPasswordCheckApi(Resource):
user_email = args["email"]
is_forgot_password_error_rate_limit = AccountService.is_forgot_password_error_rate_limit(args["email"])
if is_forgot_password_error_rate_limit:
raise EmailPasswordResetLimitError()
token_data = AccountService.get_reset_password_data(args["token"])
if token_data is None:
raise InvalidTokenError()
@@ -80,10 +70,8 @@ class ForgotPasswordCheckApi(Resource):
raise InvalidEmailError()
if args["code"] != token_data.get("code"):
AccountService.add_forgot_password_error_rate_limit(args["email"])
raise EmailCodeError()
AccountService.reset_forgot_password_error_rate_limit(args["email"])
return {"is_valid": True, "email": token_data.get("email")}

View File

@@ -50,8 +50,8 @@ class EnterpriseWorkspaceNoOwnerEmail(Resource):
"plan": tenant.plan,
"status": tenant.status,
"custom_config": json.loads(tenant.custom_config) if tenant.custom_config else {},
"created_at": tenant.created_at.isoformat() + "Z" if tenant.created_at else None,
"updated_at": tenant.updated_at.isoformat() + "Z" if tenant.updated_at else None,
"created_at": tenant.created_at.isoformat() if tenant.created_at else None,
"updated_at": tenant.updated_at.isoformat() if tenant.updated_at else None,
}
return {

View File

@@ -140,7 +140,9 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
app_config=app_config,
file_upload_config=file_extra_config,
conversation_id=conversation.id if conversation else None,
inputs=self._prepare_user_inputs(
inputs=conversation.inputs
if conversation
else self._prepare_user_inputs(
user_inputs=inputs, variables=app_config.variables, tenant_id=app_model.tenant_id
),
query=query,

View File

@@ -148,7 +148,9 @@ class AgentChatAppGenerator(MessageBasedAppGenerator):
model_conf=ModelConfigConverter.convert(app_config),
file_upload_config=file_extra_config,
conversation_id=conversation.id if conversation else None,
inputs=self._prepare_user_inputs(
inputs=conversation.inputs
if conversation
else self._prepare_user_inputs(
user_inputs=inputs, variables=app_config.variables, tenant_id=app_model.tenant_id
),
query=query,

View File

@@ -141,7 +141,9 @@ class ChatAppGenerator(MessageBasedAppGenerator):
model_conf=ModelConfigConverter.convert(app_config),
file_upload_config=file_extra_config,
conversation_id=conversation.id if conversation else None,
inputs=self._prepare_user_inputs(
inputs=conversation.inputs
if conversation
else self._prepare_user_inputs(
user_inputs=inputs, variables=app_config.variables, tenant_id=app_model.tenant_id
),
query=query,

View File

@@ -842,4 +842,4 @@ class WorkflowCycleManage:
if node_execution_id not in self._workflow_node_executions:
raise ValueError(f"Workflow node execution not found: {node_execution_id}")
cached_workflow_node_execution = self._workflow_node_executions[node_execution_id]
return session.merge(cached_workflow_node_execution)
return cached_workflow_node_execution

View File

@@ -30,6 +30,11 @@ from core.model_runtime.model_providers.__base.ai_model import AIModel
logger = logging.getLogger(__name__)
HTML_THINKING_TAG = (
'<details style="color:gray;background-color: #f8f8f8;padding: 8px;border-radius: 4px;" open> '
"<summary> Thinking... </summary>"
)
class LargeLanguageModel(AIModel):
"""
@@ -403,7 +408,7 @@ if you are not sure about the structure.
def _wrap_thinking_by_reasoning_content(self, delta: dict, is_reasoning: bool) -> tuple[str, bool]:
"""
If the reasoning response is from delta.get("reasoning_content"), we wrap
it with HTML think tag.
it with HTML details tag.
:param delta: delta dictionary from LLM streaming response
:param is_reasoning: is reasoning
@@ -415,17 +420,25 @@ if you are not sure about the structure.
if reasoning_content:
if not is_reasoning:
content = "<think>\n" + reasoning_content
content = HTML_THINKING_TAG + reasoning_content
is_reasoning = True
else:
content = reasoning_content
elif is_reasoning and content:
# do not end reasoning when content is empty
# there may be more reasoning_content later that follows previous reasoning closely
content = "\n</think>" + content
elif is_reasoning:
content = "</details>" + content
is_reasoning = False
return content, is_reasoning
def _wrap_thinking_by_tag(self, content: str) -> str:
"""
if the reasoning response is a <think>...</think> block from delta.get("content"),
we replace <think> to <detail>.
:param content: delta.get("content")
:return: processed_content
"""
return content.replace("<think>", HTML_THINKING_TAG).replace("</think>", "</details>")
def _invoke_result_generator(
self,
model: str,

View File

@@ -1,6 +1,5 @@
- gemini-2.0-flash-001
- gemini-2.0-flash-exp
- gemini-2.0-flash-lite-preview-02-05
- gemini-2.0-pro-exp-02-05
- gemini-2.0-flash-thinking-exp-1219
- gemini-2.0-flash-thinking-exp-01-21

View File

@@ -1,41 +0,0 @@
model: gemini-2.0-flash-lite-preview-02-05
label:
en_US: Gemini 2.0 Flash Lite Preview 0205
model_type: llm
features:
- agent-thought
- vision
- tool-call
- stream-tool-call
- document
- video
- audio
model_properties:
mode: chat
context_size: 1048576
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: max_output_tokens
use_template: max_tokens
default: 8192
min: 1
max: 8192
- name: json_schema
use_template: json_schema
pricing:
input: '0.00'
output: '0.00'
unit: '0.000001'
currency: USD

View File

@@ -367,6 +367,7 @@ class OllamaLargeLanguageModel(LargeLanguageModel):
# transform assistant message to prompt message
text = chunk_json["response"]
text = self._wrap_thinking_by_tag(text)
assistant_prompt_message = AssistantPromptMessage(content=text)

View File

@@ -528,6 +528,7 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
delta_content, is_reasoning_started = self._wrap_thinking_by_reasoning_content(
delta, is_reasoning_started
)
delta_content = self._wrap_thinking_by_tag(delta_content)
assistant_message_tool_calls = None
@@ -807,37 +808,34 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
# calculate num tokens for function object
num_tokens += self._get_num_tokens_by_gpt2("name")
if hasattr(tool, "name"):
num_tokens += self._get_num_tokens_by_gpt2(tool.name)
num_tokens += self._get_num_tokens_by_gpt2(tool.name)
num_tokens += self._get_num_tokens_by_gpt2("description")
if hasattr(tool, "description"):
num_tokens += self._get_num_tokens_by_gpt2(tool.description)
if hasattr(tool, "parameters"):
parameters = tool.parameters
num_tokens += self._get_num_tokens_by_gpt2("parameters")
if "title" in parameters:
num_tokens += self._get_num_tokens_by_gpt2("title")
num_tokens += self._get_num_tokens_by_gpt2(parameters.get("title"))
num_tokens += self._get_num_tokens_by_gpt2("type")
num_tokens += self._get_num_tokens_by_gpt2(parameters.get("type"))
if "properties" in parameters:
num_tokens += self._get_num_tokens_by_gpt2("properties")
for key, value in parameters.get("properties", {}).items():
num_tokens += self._get_num_tokens_by_gpt2(key)
for field_key, field_value in value.items():
num_tokens += self._get_num_tokens_by_gpt2(tool.description)
parameters = tool.parameters
num_tokens += self._get_num_tokens_by_gpt2("parameters")
if "title" in parameters:
num_tokens += self._get_num_tokens_by_gpt2("title")
num_tokens += self._get_num_tokens_by_gpt2(parameters.get("title"))
num_tokens += self._get_num_tokens_by_gpt2("type")
num_tokens += self._get_num_tokens_by_gpt2(parameters.get("type"))
if "properties" in parameters:
num_tokens += self._get_num_tokens_by_gpt2("properties")
for key, value in parameters.get("properties").items():
num_tokens += self._get_num_tokens_by_gpt2(key)
for field_key, field_value in value.items():
num_tokens += self._get_num_tokens_by_gpt2(field_key)
if field_key == "enum":
for enum_field in field_value:
num_tokens += 3
num_tokens += self._get_num_tokens_by_gpt2(enum_field)
else:
num_tokens += self._get_num_tokens_by_gpt2(field_key)
if field_key == "enum":
for enum_field in field_value:
num_tokens += 3
num_tokens += self._get_num_tokens_by_gpt2(enum_field)
else:
num_tokens += self._get_num_tokens_by_gpt2(field_key)
num_tokens += self._get_num_tokens_by_gpt2(str(field_value))
if "required" in parameters:
num_tokens += self._get_num_tokens_by_gpt2("required")
for required_field in parameters["required"]:
num_tokens += 3
num_tokens += self._get_num_tokens_by_gpt2(required_field)
num_tokens += self._get_num_tokens_by_gpt2(str(field_value))
if "required" in parameters:
num_tokens += self._get_num_tokens_by_gpt2("required")
for required_field in parameters["required"]:
num_tokens += 3
num_tokens += self._get_num_tokens_by_gpt2(required_field)
return num_tokens

View File

@@ -430,7 +430,7 @@ class SageMakerLargeLanguageModel(LargeLanguageModel):
type=ParameterType.INT,
use_template="max_tokens",
min=1,
max=int(credentials.get("context_length", 2048)),
max=credentials.get("context_length", 2048),
default=512,
label=I18nObject(zh_Hans="最大生成长度", en_US="Max Tokens"),
),
@@ -448,7 +448,7 @@ class SageMakerLargeLanguageModel(LargeLanguageModel):
if support_vision:
features.append(ModelFeature.VISION)
context_length = int(credentials.get("context_length", 2048))
context_length = credentials.get("context_length", 2048)
entity = AIModelEntity(
model=model,

View File

@@ -59,19 +59,6 @@ model_credential_schema:
placeholder:
zh_Hans: 请输出你的Sagemaker推理端点
en_US: Enter your Sagemaker Inference endpoint
- variable: context_length
show_on:
- variable: __model_type
value: llm
label:
zh_Hans: 模型上下文长度
en_US: Model context size
type: text-input
default: '4096'
required: true
placeholder:
zh_Hans: 在此输入您的模型上下文长度
en_US: Enter your Model context size
- variable: audio_s3_cache_bucket
show_on:
- variable: __model_type

View File

@@ -17,13 +17,6 @@
- deepseek-ai/DeepSeek-V2.5
- deepseek-ai/DeepSeek-V3
- deepseek-ai/DeepSeek-Coder-V2-Instruct
- deepseek-ai/DeepSeek-R1-Distill-Llama-8B
- deepseek-ai/DeepSeek-R1-Distill-Llama-70B
- deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
- deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
- deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
- deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
- deepseek-ai/Janus-Pro-7B
- THUDM/glm-4-9b-chat
- 01-ai/Yi-1.5-34B-Chat-16K
- 01-ai/Yi-1.5-9B-Chat-16K

View File

@@ -1,21 +0,0 @@
model: deepseek-ai/DeepSeek-R1-Distill-Llama-70B
label:
zh_Hans: deepseek-ai/DeepSeek-R1-Distill-Llama-70B
en_US: deepseek-ai/DeepSeek-R1-Distill-Llama-70B
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 32000
parameter_rules:
- name: max_tokens
use_template: max_tokens
min: 1
max: 8192
default: 4096
pricing:
input: "0.00"
output: "4.3"
unit: "0.000001"
currency: RMB

View File

@@ -1,21 +0,0 @@
model: deepseek-ai/DeepSeek-R1-Distill-Llama-8B
label:
zh_Hans: deepseek-ai/DeepSeek-R1-Distill-Llama-8B
en_US: deepseek-ai/DeepSeek-R1-Distill-Llama-8B
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 32000
parameter_rules:
- name: max_tokens
use_template: max_tokens
min: 1
max: 8192
default: 4096
pricing:
input: "0.00"
output: "0.00"
unit: "0.000001"
currency: RMB

View File

@@ -1,21 +0,0 @@
model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
label:
zh_Hans: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
en_US: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 32000
parameter_rules:
- name: max_tokens
use_template: max_tokens
min: 1
max: 8192
default: 4096
pricing:
input: "0.00"
output: "1.26"
unit: "0.000001"
currency: RMB

View File

@@ -1,21 +0,0 @@
model: deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
label:
zh_Hans: deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
en_US: deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 32000
parameter_rules:
- name: max_tokens
use_template: max_tokens
min: 1
max: 8192
default: 4096
pricing:
input: "0.00"
output: "0.70"
unit: "0.000001"
currency: RMB

View File

@@ -1,21 +0,0 @@
model: deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
label:
zh_Hans: deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
en_US: deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 32000
parameter_rules:
- name: max_tokens
use_template: max_tokens
min: 1
max: 8192
default: 4096
pricing:
input: "0.00"
output: "1.26"
unit: "0.000001"
currency: RMB

View File

@@ -1,21 +0,0 @@
model: deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
label:
zh_Hans: deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
en_US: deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 32000
parameter_rules:
- name: max_tokens
use_template: max_tokens
min: 1
max: 8192
default: 4096
pricing:
input: "0.00"
output: "0.00"
unit: "0.000001"
currency: RMB

View File

@@ -1,22 +0,0 @@
model: deepseek-ai/Janus-Pro-7B
label:
zh_Hans: deepseek-ai/Janus-Pro-7B
en_US: deepseek-ai/Janus-Pro-7B
model_type: llm
features:
- agent-thought
- vision
model_properties:
mode: chat
context_size: 32000
parameter_rules:
- name: max_tokens
use_template: max_tokens
min: 1
max: 8192
default: 4096
pricing:
input: "0.00"
output: "0.00"
unit: "0.000001"
currency: RMB

View File

@@ -1,7 +1,3 @@
- deepseek-r1
- deepseek-r1-distill-qwen-14b
- deepseek-r1-distill-qwen-32b
- deepseek-v3
- qwen-vl-max-0809
- qwen-vl-max-0201
- qwen-vl-max

View File

@@ -1,21 +0,0 @@
model: deepseek-r1-distill-qwen-14b
label:
zh_Hans: DeepSeek-R1-Distill-Qwen-14B
en_US: DeepSeek-R1-Distill-Qwen-14B
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 32000
parameter_rules:
- name: max_tokens
use_template: max_tokens
min: 1
max: 8192
default: 4096
pricing:
input: "0.001"
output: "0.003"
unit: "0.001"
currency: RMB

View File

@@ -1,21 +0,0 @@
model: deepseek-r1-distill-qwen-32b
label:
zh_Hans: DeepSeek-R1-Distill-Qwen-32B
en_US: DeepSeek-R1-Distill-Qwen-32B
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 32000
parameter_rules:
- name: max_tokens
use_template: max_tokens
min: 1
max: 8192
default: 4096
pricing:
input: "0.002"
output: "0.006"
unit: "0.001"
currency: RMB

View File

@@ -1,21 +0,0 @@
model: deepseek-r1
label:
zh_Hans: DeepSeek-R1
en_US: DeepSeek-R1
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 64000
parameter_rules:
- name: max_tokens
use_template: max_tokens
min: 1
max: 8192
default: 4096
pricing:
input: "0.004"
output: "0.016"
unit: '0.001'
currency: RMB

View File

@@ -1,52 +0,0 @@
model: deepseek-v3
label:
zh_Hans: DeepSeek-V3
en_US: DeepSeek-V3
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 64000
parameter_rules:
- name: temperature
use_template: temperature
- name: max_tokens
use_template: max_tokens
type: int
default: 512
min: 1
max: 4096
help:
zh_Hans: 指定生成结果长度的上限。如果生成结果截断,可以调大该参数。
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: frequency_penalty
use_template: frequency_penalty
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: "0.002"
output: "0.008"
unit: "0.001"
currency: RMB

View File

@@ -197,7 +197,8 @@ class TongyiLargeLanguageModel(LargeLanguageModel):
else:
# nothing different between chat model and completion model in tongyi
params["messages"] = self._convert_prompt_messages_to_tongyi_messages(prompt_messages)
response = Generation.call(**params, result_format="message", stream=stream, incremental_output=stream)
response = Generation.call(**params, result_format="message", stream=stream)
if stream:
return self._handle_generate_stream_response(model, credentials, response, prompt_messages)
@@ -257,9 +258,6 @@ class TongyiLargeLanguageModel(LargeLanguageModel):
"""
full_text = ""
tool_calls = []
is_reasoning_started = False
# for index, response in enumerate(responses):
index = 0
for index, response in enumerate(responses):
if response.status_code not in {200, HTTPStatus.OK}:
raise ServiceUnavailableError(
@@ -313,11 +311,7 @@ class TongyiLargeLanguageModel(LargeLanguageModel):
),
)
else:
message = response.output.choices[0].message
resp_content, is_reasoning_started = self._wrap_thinking_by_reasoning_content(
message, is_reasoning_started
)
resp_content = response.output.choices[0].message.content
if not resp_content:
if "tool_calls" in response.output.choices[0].message:
tool_calls = response.output.choices[0].message["tool_calls"]

View File

@@ -69,15 +69,6 @@ parameter_rules:
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: enable_search
type: boolean
default: false
label:
zh_Hans: 联网搜索
en_US: Web Search
help:
zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。
en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic.
- name: response_format
use_template: response_format
pricing:

View File

@@ -69,15 +69,6 @@ parameter_rules:
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: enable_search
type: boolean
default: false
label:
zh_Hans: 联网搜索
en_US: Web Search
help:
zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。
en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic.
- name: response_format
use_template: response_format
pricing:

View File

@@ -69,15 +69,6 @@ parameter_rules:
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: enable_search
type: boolean
default: false
label:
zh_Hans: 联网搜索
en_US: Web Search
help:
zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。
en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic.
- name: response_format
use_template: response_format
pricing:

View File

@@ -69,15 +69,6 @@ parameter_rules:
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: enable_search
type: boolean
default: false
label:
zh_Hans: 联网搜索
en_US: Web Search
help:
zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。
en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic.
- name: response_format
use_template: response_format
pricing:

View File

@@ -68,15 +68,6 @@ parameter_rules:
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: enable_search
type: boolean
default: false
label:
zh_Hans: 联网搜索
en_US: Web Search
help:
zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。
en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic.
- name: response_format
use_template: response_format
pricing:

View File

@@ -69,15 +69,6 @@ parameter_rules:
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: enable_search
type: boolean
default: false
label:
zh_Hans: 联网搜索
en_US: Web Search
help:
zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。
en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic.
- name: response_format
use_template: response_format
pricing:

View File

@@ -69,15 +69,6 @@ parameter_rules:
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: enable_search
type: boolean
default: false
label:
zh_Hans: 联网搜索
en_US: Web Search
help:
zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。
en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic.
- name: response_format
use_template: response_format
pricing:

View File

@@ -67,15 +67,6 @@ parameter_rules:
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: enable_search
type: boolean
default: false
label:
zh_Hans: 联网搜索
en_US: Web Search
help:
zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。
en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic.
- name: response_format
use_template: response_format
pricing:

View File

@@ -67,15 +67,6 @@ parameter_rules:
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: enable_search
type: boolean
default: false
label:
zh_Hans: 联网搜索
en_US: Web Search
help:
zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。
en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic.
- name: response_format
use_template: response_format
pricing:

View File

@@ -67,15 +67,6 @@ parameter_rules:
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: enable_search
type: boolean
default: false
label:
zh_Hans: 联网搜索
en_US: Web Search
help:
zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。
en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic.
- name: response_format
use_template: response_format
pricing:

View File

@@ -67,15 +67,6 @@ parameter_rules:
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: enable_search
type: boolean
default: false
label:
zh_Hans: 联网搜索
en_US: Web Search
help:
zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。
en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic.
- name: response_format
use_template: response_format
pricing:

View File

@@ -67,15 +67,6 @@ parameter_rules:
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: enable_search
type: boolean
default: false
label:
zh_Hans: 联网搜索
en_US: Web Search
help:
zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。
en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic.
- name: response_format
use_template: response_format
pricing:

View File

@@ -69,15 +69,6 @@ parameter_rules:
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: enable_search
type: boolean
default: false
label:
zh_Hans: 联网搜索
en_US: Web Search
help:
zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。
en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic.
- name: response_format
use_template: response_format
pricing:

View File

@@ -67,15 +67,6 @@ parameter_rules:
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: enable_search
type: boolean
default: false
label:
zh_Hans: 联网搜索
en_US: Web Search
help:
zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。
en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic.
- name: response_format
use_template: response_format
pricing:

View File

@@ -68,15 +68,6 @@ parameter_rules:
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: enable_search
type: boolean
default: false
label:
zh_Hans: 联网搜索
en_US: Web Search
help:
zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。
en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic.
- name: response_format
use_template: response_format
pricing:

View File

@@ -67,15 +67,6 @@ parameter_rules:
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: enable_search
type: boolean
default: false
label:
zh_Hans: 联网搜索
en_US: Web Search
help:
zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。
en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic.
- name: response_format
use_template: response_format
pricing:

View File

@@ -67,15 +67,6 @@ parameter_rules:
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: enable_search
type: boolean
default: false
label:
zh_Hans: 联网搜索
en_US: Web Search
help:
zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。
en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic.
- name: response_format
use_template: response_format
pricing:

View File

@@ -69,15 +69,6 @@ parameter_rules:
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: enable_search
type: boolean
default: false
label:
zh_Hans: 联网搜索
en_US: Web Search
help:
zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。
en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic.
- name: response_format
use_template: response_format
pricing:

View File

@@ -67,15 +67,6 @@ parameter_rules:
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: enable_search
type: boolean
default: false
label:
zh_Hans: 联网搜索
en_US: Web Search
help:
zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。
en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic.
- name: response_format
use_template: response_format
pricing:

View File

@@ -1,22 +0,0 @@
- claude-3-haiku@20240307
- claude-3-opus@20240229
- claude-3-sonnet@20240229
- claude-3-5-sonnet-v2@20241022
- claude-3-5-sonnet@20240620
- gemini-1.0-pro-vision-001
- gemini-1.0-pro-002
- gemini-1.5-flash-001
- gemini-1.5-flash-002
- gemini-1.5-pro-001
- gemini-1.5-pro-002
- gemini-2.0-flash-001
- gemini-2.0-flash-exp
- gemini-2.0-flash-lite-preview-02-05
- gemini-2.0-flash-thinking-exp-01-21
- gemini-2.0-flash-thinking-exp-1219
- gemini-2.0-pro-exp-02-05
- gemini-exp-1114
- gemini-exp-1121
- gemini-exp-1206
- gemini-flash-experimental
- gemini-pro-experimental

View File

@@ -1,4 +1,5 @@
import logging
import re
from collections.abc import Generator
from typing import Optional
@@ -230,17 +231,6 @@ class VolcengineMaaSLargeLanguageModel(LargeLanguageModel):
return _handle_chat_response()
return _handle_stream_chat_response()
def wrap_thinking(self, delta: dict, is_reasoning: bool) -> tuple[str, bool]:
content = ""
reasoning_content = None
if hasattr(delta, "content"):
content = delta.content
if hasattr(delta, "reasoning_content"):
reasoning_content = delta.reasoning_content
return self._wrap_thinking_by_reasoning_content(
{"content": content, "reasoning_content": reasoning_content}, is_reasoning
)
def _generate_v3(
self,
model: str,
@@ -263,7 +253,22 @@ class VolcengineMaaSLargeLanguageModel(LargeLanguageModel):
content = ""
if chunk.choices:
delta = chunk.choices[0].delta
content, is_reasoning_started = self.wrap_thinking(delta, is_reasoning_started)
if is_reasoning_started and not hasattr(delta, "reasoning_content") and not delta.content:
content = ""
elif hasattr(delta, "reasoning_content"):
if not is_reasoning_started:
is_reasoning_started = True
content = "> 💭 " + delta.reasoning_content
else:
content = delta.reasoning_content
if "\n" in content:
content = re.sub(r"\n(?!(>|\n))", "\n> ", content)
elif is_reasoning_started:
content = "\n\n" + delta.content
is_reasoning_started = False
else:
content = delta.content
yield LLMResultChunk(
model=model,
@@ -328,71 +333,54 @@ class VolcengineMaaSLargeLanguageModel(LargeLanguageModel):
"""
model_config = get_model_config(credentials)
if model.startswith("DeepSeek-R1"):
rules = [
ParameterRule(
name="max_tokens",
type=ParameterType.INT,
use_template="max_tokens",
min=1,
max=model_config.properties.max_tokens,
default=512,
label=I18nObject(zh_Hans="最大生成长度", en_US="Max Tokens"),
rules = [
ParameterRule(
name="temperature",
type=ParameterType.FLOAT,
use_template="temperature",
label=I18nObject(zh_Hans="温度", en_US="Temperature"),
),
ParameterRule(
name="top_p",
type=ParameterType.FLOAT,
use_template="top_p",
label=I18nObject(zh_Hans="Top P", en_US="Top P"),
),
ParameterRule(
name="top_k", type=ParameterType.INT, min=1, default=1, label=I18nObject(zh_Hans="Top K", en_US="Top K")
),
ParameterRule(
name="presence_penalty",
type=ParameterType.FLOAT,
use_template="presence_penalty",
label=I18nObject(
en_US="Presence Penalty",
zh_Hans="存在惩罚",
),
]
else:
rules = [
ParameterRule(
name="temperature",
type=ParameterType.FLOAT,
use_template="temperature",
label=I18nObject(zh_Hans="温度", en_US="Temperature"),
min=-2.0,
max=2.0,
),
ParameterRule(
name="frequency_penalty",
type=ParameterType.FLOAT,
use_template="frequency_penalty",
label=I18nObject(
en_US="Frequency Penalty",
zh_Hans="频率惩罚",
),
ParameterRule(
name="top_p",
type=ParameterType.FLOAT,
use_template="top_p",
label=I18nObject(zh_Hans="Top P", en_US="Top P"),
),
ParameterRule(
name="top_k",
type=ParameterType.INT,
min=1,
default=1,
label=I18nObject(zh_Hans="Top K", en_US="Top K"),
),
ParameterRule(
name="presence_penalty",
type=ParameterType.FLOAT,
use_template="presence_penalty",
label=I18nObject(
en_US="Presence Penalty",
zh_Hans="存在惩罚",
),
min=-2.0,
max=2.0,
),
ParameterRule(
name="frequency_penalty",
type=ParameterType.FLOAT,
use_template="frequency_penalty",
label=I18nObject(
en_US="Frequency Penalty",
zh_Hans="频率惩罚",
),
min=-2.0,
max=2.0,
),
ParameterRule(
name="max_tokens",
type=ParameterType.INT,
use_template="max_tokens",
min=1,
max=model_config.properties.max_tokens,
default=512,
label=I18nObject(zh_Hans="最大生成长度", en_US="Max Tokens"),
),
]
min=-2.0,
max=2.0,
),
ParameterRule(
name="max_tokens",
type=ParameterType.INT,
use_template="max_tokens",
min=1,
max=model_config.properties.max_tokens,
default=512,
label=I18nObject(zh_Hans="最大生成长度", en_US="Max Tokens"),
),
]
model_properties = {}
model_properties[ModelPropertyKey.CONTEXT_SIZE] = model_config.properties.context_size

View File

@@ -654,6 +654,7 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
if function_call:
assistant_message_tool_calls += [self._extract_response_function_call(function_call)]
delta_content = self._wrap_thinking_by_tag(delta_content)
# transform assistant message to prompt message
assistant_prompt_message = AssistantPromptMessage(
content=delta_content or "", tool_calls=assistant_message_tool_calls

View File

@@ -452,9 +452,11 @@ class ProviderManager:
provider_name_to_provider_load_balancing_model_configs_dict = defaultdict(list)
for provider_load_balancing_config in provider_load_balancing_configs:
provider_name_to_provider_load_balancing_model_configs_dict[
provider_load_balancing_config.provider_name
].append(provider_load_balancing_config)
(
provider_name_to_provider_load_balancing_model_configs_dict[
provider_load_balancing_config.provider_name
].append(provider_load_balancing_config)
)
return provider_name_to_provider_load_balancing_model_configs_dict

View File

@@ -1,4 +1,3 @@
import json
import threading
from typing import Optional
@@ -172,7 +171,7 @@ class RetrievalService:
vector = Vector(dataset=dataset)
documents = vector.search_by_vector(
query,
cls.escape_query_for_search(query),
search_type="similarity_score_threshold",
top_k=top_k,
score_threshold=score_threshold,
@@ -251,7 +250,7 @@ class RetrievalService:
@staticmethod
def escape_query_for_search(query: str) -> str:
return json.dumps(query).strip('"')
return query.replace('"', '\\"')
@staticmethod
def format_retrieval_documents(documents: list[Document]) -> list[RetrievalSegments]:

View File

@@ -9,7 +9,6 @@ from sqlalchemy import text as sql_text
from sqlalchemy.orm import Session, declarative_base
from configs import dify_config
from core.rag.datasource.vdb.field import Field
from core.rag.datasource.vdb.vector_base import BaseVector
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
from core.rag.datasource.vdb.vector_type import VectorType
@@ -55,13 +54,14 @@ class TiDBVector(BaseVector):
return Table(
self._collection_name,
self._orm_base.metadata,
Column(Field.PRIMARY_KEY.value, String(36), primary_key=True, nullable=False),
Column("id", String(36), primary_key=True, nullable=False),
Column(
Field.VECTOR.value,
"vector",
VectorType(dim),
nullable=False,
comment="" if self._distance_func is None else f"hnsw(distance={self._distance_func})",
),
Column(Field.TEXT_KEY.value, TEXT, nullable=False),
Column("text", TEXT, nullable=False),
Column("meta", JSON, nullable=False),
Column("create_time", DateTime, server_default=sqlalchemy.text("CURRENT_TIMESTAMP")),
Column(
@@ -96,7 +96,6 @@ class TiDBVector(BaseVector):
collection_exist_cache_key = "vector_indexing_{}".format(self._collection_name)
if redis_client.get(collection_exist_cache_key):
return
tidb_dist_func = self._get_distance_func()
with Session(self._engine) as session:
session.begin()
create_statement = sql_text(f"""
@@ -105,14 +104,14 @@ class TiDBVector(BaseVector):
text TEXT NOT NULL,
meta JSON NOT NULL,
doc_id VARCHAR(64) AS (JSON_UNQUOTE(JSON_EXTRACT(meta, '$.doc_id'))) STORED,
vector VECTOR<FLOAT>({dimension}) NOT NULL,
create_time DATETIME DEFAULT CURRENT_TIMESTAMP,
update_time DATETIME DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
KEY (doc_id),
VECTOR INDEX idx_vector (({tidb_dist_func}(vector))) USING HNSW
vector VECTOR<FLOAT>({dimension}) NOT NULL COMMENT "hnsw(distance={self._distance_func})",
create_time DATETIME DEFAULT CURRENT_TIMESTAMP,
update_time DATETIME DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
);
""")
session.execute(create_statement)
# tidb vector not support 'CREATE/ADD INDEX' now
session.commit()
redis_client.set(collection_exist_cache_key, 1, ex=3600)
@@ -195,30 +194,23 @@ class TiDBVector(BaseVector):
)
docs = []
tidb_dist_func = self._get_distance_func()
if self._distance_func == "l2":
tidb_func = "Vec_l2_distance"
elif self._distance_func == "cosine":
tidb_func = "Vec_Cosine_distance"
else:
tidb_func = "Vec_Cosine_distance"
with Session(self._engine) as session:
select_statement = sql_text(f"""
SELECT meta, text, distance
FROM (
SELECT
meta,
text,
{tidb_dist_func}(vector, :query_vector_str) AS distance
FROM {self._collection_name}
ORDER BY distance ASC
LIMIT :top_k
) t
WHERE distance <= :distance
""")
res = session.execute(
select_statement,
params={
"query_vector_str": query_vector_str,
"distance": distance,
"top_k": top_k,
},
select_statement = sql_text(
f"""SELECT meta, text, distance FROM (
SELECT meta, text, {tidb_func}(vector, "{query_vector_str}") as distance
FROM {self._collection_name}
ORDER BY distance
LIMIT {top_k}
) t WHERE distance < {distance};"""
)
res = session.execute(select_statement)
results = [(row[0], row[1], row[2]) for row in res]
for meta, text, distance in results:
metadata = json.loads(meta)
@@ -235,16 +227,6 @@ class TiDBVector(BaseVector):
session.execute(sql_text(f"""DROP TABLE IF EXISTS {self._collection_name};"""))
session.commit()
def _get_distance_func(self) -> str:
match self._distance_func:
case "l2":
tidb_dist_func = "VEC_L2_DISTANCE"
case "cosine":
tidb_dist_func = "VEC_COSINE_DISTANCE"
case _:
tidb_dist_func = "VEC_COSINE_DISTANCE"
return tidb_dist_func
class TiDBVectorFactory(AbstractVectorFactory):
def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> TiDBVector:

View File

@@ -195,14 +195,14 @@ class WorkflowTool(Tool):
if isinstance(value, list):
for item in value:
if isinstance(item, dict) and item.get("dify_model_identity") == FILE_MODEL_IDENTITY:
item = self._update_file_mapping(item)
item["tool_file_id"] = item.get("related_id")
file = build_from_mapping(
mapping=item,
tenant_id=str(cast(Tool.Runtime, self.runtime).tenant_id),
)
files.append(file)
elif isinstance(value, dict) and value.get("dify_model_identity") == FILE_MODEL_IDENTITY:
value = self._update_file_mapping(value)
value["tool_file_id"] = value.get("related_id")
file = build_from_mapping(
mapping=value,
tenant_id=str(cast(Tool.Runtime, self.runtime).tenant_id),
@@ -211,11 +211,3 @@ class WorkflowTool(Tool):
result[key] = value
return result, files
def _update_file_mapping(self, file_dict: dict) -> dict:
transfer_method = FileTransferMethod.value_of(file_dict.get("transfer_method"))
if transfer_method == FileTransferMethod.TOOL_FILE:
file_dict["tool_file_id"] = file_dict.get("related_id")
elif transfer_method == FileTransferMethod.LOCAL_FILE:
file_dict["upload_file_id"] = file_dict.get("related_id")
return file_dict

View File

@@ -648,7 +648,7 @@ class GraphEngine:
retries += 1
route_node_state.node_run_result = run_result
yield NodeRunRetryEvent(
id=str(uuid.uuid4()),
id=node_instance.id,
node_id=node_instance.node_id,
node_type=node_instance.node_type,
node_data=node_instance.node_data,
@@ -663,7 +663,7 @@ class GraphEngine:
start_at=retry_start_at,
)
time.sleep(retry_interval)
break
continue
route_node_state.set_finished(run_result=run_result)
if run_result.status == WorkflowNodeExecutionStatus.FAILED:

View File

@@ -107,10 +107,8 @@ def _extract_text_by_mime_type(*, file_content: bytes, mime_type: str) -> str:
return _extract_text_from_plain_text(file_content)
case "application/pdf":
return _extract_text_from_pdf(file_content)
case "application/msword":
case "application/vnd.openxmlformats-officedocument.wordprocessingml.document" | "application/msword":
return _extract_text_from_doc(file_content)
case "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
return _extract_text_from_docx(file_content)
case "text/csv":
return _extract_text_from_csv(file_content)
case "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet" | "application/vnd.ms-excel":
@@ -144,10 +142,8 @@ def _extract_text_by_file_extension(*, file_content: bytes, file_extension: str)
return _extract_text_from_yaml(file_content)
case ".pdf":
return _extract_text_from_pdf(file_content)
case ".doc":
case ".doc" | ".docx":
return _extract_text_from_doc(file_content)
case ".docx":
return _extract_text_from_docx(file_content)
case ".csv":
return _extract_text_from_csv(file_content)
case ".xls" | ".xlsx":
@@ -207,33 +203,7 @@ def _extract_text_from_pdf(file_content: bytes) -> str:
def _extract_text_from_doc(file_content: bytes) -> str:
"""
Extract text from a DOC file.
"""
from unstructured.partition.api import partition_via_api
if not (dify_config.UNSTRUCTURED_API_URL and dify_config.UNSTRUCTURED_API_KEY):
raise TextExtractionError("UNSTRUCTURED_API_URL and UNSTRUCTURED_API_KEY must be set")
try:
with tempfile.NamedTemporaryFile(suffix=".doc", delete=False) as temp_file:
temp_file.write(file_content)
temp_file.flush()
with open(temp_file.name, "rb") as file:
elements = partition_via_api(
file=file,
metadata_filename=temp_file.name,
api_url=dify_config.UNSTRUCTURED_API_URL,
api_key=dify_config.UNSTRUCTURED_API_KEY,
)
os.unlink(temp_file.name)
return "\n".join([getattr(element, "text", "") for element in elements])
except Exception as e:
raise TextExtractionError(f"Failed to extract text from DOC: {str(e)}") from e
def _extract_text_from_docx(file_content: bytes) -> str:
"""
Extract text from a DOCX file.
Extract text from a DOC/DOCX file.
For now support only paragraph and table add more if needed
"""
try:
@@ -285,13 +255,13 @@ def _extract_text_from_docx(file_content: bytes) -> str:
text.append(markdown_table)
except Exception as e:
logger.warning(f"Failed to extract table from DOC: {e}")
logger.warning(f"Failed to extract table from DOC/DOCX: {e}")
continue
return "\n".join(text)
except Exception as e:
raise TextExtractionError(f"Failed to extract text from DOCX: {str(e)}") from e
raise TextExtractionError(f"Failed to extract text from DOC/DOCX: {str(e)}") from e
def _download_file_content(file: File) -> bytes:
@@ -359,29 +329,14 @@ def _extract_text_from_excel(file_content: bytes) -> str:
def _extract_text_from_ppt(file_content: bytes) -> str:
from unstructured.partition.api import partition_via_api
from unstructured.partition.ppt import partition_ppt
try:
if dify_config.UNSTRUCTURED_API_URL and dify_config.UNSTRUCTURED_API_KEY:
with tempfile.NamedTemporaryFile(suffix=".ppt", delete=False) as temp_file:
temp_file.write(file_content)
temp_file.flush()
with open(temp_file.name, "rb") as file:
elements = partition_via_api(
file=file,
metadata_filename=temp_file.name,
api_url=dify_config.UNSTRUCTURED_API_URL,
api_key=dify_config.UNSTRUCTURED_API_KEY,
)
os.unlink(temp_file.name)
else:
with io.BytesIO(file_content) as file:
elements = partition_ppt(file=file)
with io.BytesIO(file_content) as file:
elements = partition_ppt(file=file)
return "\n".join([getattr(element, "text", "") for element in elements])
except Exception as e:
raise TextExtractionError(f"Failed to extract text from PPTX: {str(e)}") from e
raise TextExtractionError(f"Failed to extract text from PPT: {str(e)}") from e
def _extract_text_from_pptx(file_content: bytes) -> str:

View File

@@ -6,4 +6,4 @@ def init_app(app: DifyApp):
if dify_config.RESPECT_XFORWARD_HEADERS_ENABLED:
from werkzeug.middleware.proxy_fix import ProxyFix
app.wsgi_app = ProxyFix(app.wsgi_app, x_port=1) # type: ignore
app.wsgi_app = ProxyFix(app.wsgi_app) # type: ignore

View File

@@ -32,11 +32,7 @@ class AwsS3Storage(BaseStorage):
aws_access_key_id=dify_config.S3_ACCESS_KEY,
endpoint_url=dify_config.S3_ENDPOINT,
region_name=dify_config.S3_REGION,
config=Config(
s3={"addressing_style": dify_config.S3_ADDRESS_STYLE},
request_checksum_calculation="when_required",
response_checksum_validation="when_required",
),
config=Config(s3={"addressing_style": dify_config.S3_ADDRESS_STYLE}),
)
# create bucket
try:

363
api/poetry.lock generated
View File

@@ -568,13 +568,13 @@ cryptography = "*"
[[package]]
name = "azure-ai-inference"
version = "1.0.0b8"
version = "1.0.0b9"
description = "Microsoft Azure AI Inference Client Library for Python"
optional = false
python-versions = ">=3.8"
files = [
{file = "azure_ai_inference-1.0.0b8-py3-none-any.whl", hash = "sha256:9bfcfe6ef5b1699fed6c70058027c253bcbc88f4730e7409fbfc675636ec05e4"},
{file = "azure_ai_inference-1.0.0b8.tar.gz", hash = "sha256:b7bcaaac5f53f2be06804ac6c755be9583ac6ba99df533a3970da081838b4cc1"},
{file = "azure_ai_inference-1.0.0b9-py3-none-any.whl", hash = "sha256:49823732e674092dad83bb8b0d1b65aa73111fab924d61349eb2a8cdc0493990"},
{file = "azure_ai_inference-1.0.0b9.tar.gz", hash = "sha256:1feb496bd84b01ee2691befc04358fa25d7c344d8288e99364438859ad7cd5a4"},
]
[package.dependencies]
@@ -842,32 +842,32 @@ files = [
[[package]]
name = "boto3"
version = "1.36.12"
version = "1.35.74"
description = "The AWS SDK for Python"
optional = false
python-versions = ">=3.8"
files = [
{file = "boto3-1.36.12-py3-none-any.whl", hash = "sha256:32cdf0967287f3ec25a9dc09df0d29cb86b8900c3e0546a63d672775d8127abf"},
{file = "boto3-1.36.12.tar.gz", hash = "sha256:287d84f49bba3255a17b374578127d42b6251e72f55914a62e0ad9ca78c0954b"},
{file = "boto3-1.35.74-py3-none-any.whl", hash = "sha256:dab5bddbbe57dc707b6f6a1f25dc2823b8e234b6fe99fafef7fc406ab73031b9"},
{file = "boto3-1.35.74.tar.gz", hash = "sha256:88370c6845ba71a4dae7f6b357099df29b3965da584be040c8e72c9902bc9492"},
]
[package.dependencies]
botocore = ">=1.36.12,<1.37.0"
botocore = ">=1.35.74,<1.36.0"
jmespath = ">=0.7.1,<2.0.0"
s3transfer = ">=0.11.0,<0.12.0"
s3transfer = ">=0.10.0,<0.11.0"
[package.extras]
crt = ["botocore[crt] (>=1.21.0,<2.0a0)"]
[[package]]
name = "botocore"
version = "1.36.19"
version = "1.35.99"
description = "Low-level, data-driven core of boto 3."
optional = false
python-versions = ">=3.8"
files = [
{file = "botocore-1.36.19-py3-none-any.whl", hash = "sha256:98882c106fec4c08678ea028199f7f5119550fab95d682b30846f7aae04b7bec"},
{file = "botocore-1.36.19.tar.gz", hash = "sha256:cdf6729f601f82b1acdb9004b1f88b57cfb470f576394cdb3bbf5150f7fafb5b"},
{file = "botocore-1.35.99-py3-none-any.whl", hash = "sha256:b22d27b6b617fc2d7342090d6129000af2efd20174215948c0d7ae2da0fab445"},
{file = "botocore-1.35.99.tar.gz", hash = "sha256:1eab44e969c39c5f3d9a3104a0836c24715579a455f12b3979a31d7cde51b3c3"},
]
[package.dependencies]
@@ -876,7 +876,7 @@ python-dateutil = ">=2.1,<3.0.0"
urllib3 = {version = ">=1.25.4,<2.2.0 || >2.2.0,<3", markers = "python_version >= \"3.10\""}
[package.extras]
crt = ["awscrt (==0.23.8)"]
crt = ["awscrt (==0.22.0)"]
[[package]]
name = "bottleneck"
@@ -3485,13 +3485,13 @@ grpc = ["grpcio (>=1.44.0,<2.0.0.dev0)"]
[[package]]
name = "gotrue"
version = "2.11.3"
version = "2.11.4"
description = "Python Client Library for Supabase Auth"
optional = false
python-versions = "<4.0,>=3.9"
files = [
{file = "gotrue-2.11.3-py3-none-any.whl", hash = "sha256:8ad90771ff6b8ede180cf6242c5b0246b9288ad58b57ce0387ef94166e84284b"},
{file = "gotrue-2.11.3.tar.gz", hash = "sha256:14b03eb856b94a96fab73c8d41970ad645a74326ee4da95e66395e6b2c208ff7"},
{file = "gotrue-2.11.4-py3-none-any.whl", hash = "sha256:712e5018acc00d93cfc6d7bfddc3114eb3c420ab03b945757a8ba38c5fc3caa8"},
{file = "gotrue-2.11.4.tar.gz", hash = "sha256:a9ced242b16c6d6bedc43bca21bbefea1ba5fb35fcdaad7d529342099d3b1767"},
]
[package.dependencies]
@@ -4569,13 +4569,13 @@ zookeeper = ["kazoo (>=2.8.0)"]
[[package]]
name = "kubernetes"
version = "32.0.0"
version = "32.0.1"
description = "Kubernetes python client"
optional = false
python-versions = ">=3.6"
files = [
{file = "kubernetes-32.0.0-py2.py3-none-any.whl", hash = "sha256:60fd8c29e8e43d9c553ca4811895a687426717deba9c0a66fb2dcc3f5ef96692"},
{file = "kubernetes-32.0.0.tar.gz", hash = "sha256:319fa840345a482001ac5d6062222daeb66ec4d1bcb3087402aed685adf0aecb"},
{file = "kubernetes-32.0.1-py2.py3-none-any.whl", hash = "sha256:35282ab8493b938b08ab5526c7ce66588232df00ef5e1dbe88a419107dc10998"},
{file = "kubernetes-32.0.1.tar.gz", hash = "sha256:42f43d49abd437ada79a79a16bd48a604d3471a117a8347e87db693f2ba0ba28"},
]
[package.dependencies]
@@ -4759,13 +4759,13 @@ rapidfuzz = ">=3.9.0,<4.0.0"
[[package]]
name = "litellm"
version = "1.61.1"
version = "1.61.11"
description = "Library to easily interface with LLM API providers"
optional = false
python-versions = "!=2.7.*,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,!=3.7.*,>=3.8"
files = [
{file = "litellm-1.61.1-py3-none-any.whl", hash = "sha256:3bb546209979831c0440580b8b2309a138a4ad74ddb68309c5b619916b215bf2"},
{file = "litellm-1.61.1.tar.gz", hash = "sha256:2d02c702444703e7b9e5b960c80a2acda764314497053b0ca5d2ec47329d70a9"},
{file = "litellm-1.61.11-py3-none-any.whl", hash = "sha256:48afe10a3528348b22eef4566972c6606828e7cb6e01d521aaf88d6ea8787472"},
{file = "litellm-1.61.11.tar.gz", hash = "sha256:2cb991e3ad21f84ad73259e5004ae3ea710b3104c17eb78800cef80bb482317e"},
]
[package.dependencies]
@@ -5273,13 +5273,13 @@ tqdm = "*"
[[package]]
name = "mistune"
version = "3.1.1"
version = "3.1.2"
description = "A sane and fast Markdown parser with useful plugins and renderers"
optional = false
python-versions = ">=3.8"
files = [
{file = "mistune-3.1.1-py3-none-any.whl", hash = "sha256:02106ac2aa4f66e769debbfa028509a275069dcffce0dfa578edd7b991ee700a"},
{file = "mistune-3.1.1.tar.gz", hash = "sha256:e0740d635f515119f7d1feb6f9b192ee60f0cc649f80a8f944f905706a21654c"},
{file = "mistune-3.1.2-py3-none-any.whl", hash = "sha256:4b47731332315cdca99e0ded46fc0004001c1299ff773dfb48fbe1fd226de319"},
{file = "mistune-3.1.2.tar.gz", hash = "sha256:733bf018ba007e8b5f2d3a9eb624034f6ee26c4ea769a98ec533ee111d504dff"},
]
[[package]]
@@ -5701,20 +5701,20 @@ files = [
[[package]]
name = "narwhals"
version = "1.26.0"
version = "1.27.1"
description = "Extremely lightweight compatibility layer between dataframe libraries"
optional = false
python-versions = ">=3.8"
files = [
{file = "narwhals-1.26.0-py3-none-any.whl", hash = "sha256:4af8bbdea9e45638bb9a981568a8dfa880e40eb7dcf740d19fd32aea79223c6f"},
{file = "narwhals-1.26.0.tar.gz", hash = "sha256:b9d7605bf1d97a9d87783a69748c39150964e2a1ab0e5a6fef3e59e56772639e"},
{file = "narwhals-1.27.1-py3-none-any.whl", hash = "sha256:71e4a126007886e3dd9d71d0d5921ebd2e8c1f9be9c405fe11850ece2b066c59"},
{file = "narwhals-1.27.1.tar.gz", hash = "sha256:68505d0cee1e6c00382ac8b65e922f8b694a11cbe482a057fa63139de8d0ea03"},
]
[package.extras]
core = ["duckdb", "pandas", "polars", "pyarrow", "pyarrow-stubs"]
cudf = ["cudf (>=24.10.0)"]
dask = ["dask[dataframe] (>=2024.8)"]
dev = ["covdefaults", "hypothesis", "pre-commit", "pytest", "pytest-cov", "pytest-env", "pytest-randomly", "typing-extensions"]
dev = ["covdefaults", "hypothesis", "mypy (>=1.15.0,<1.16.0)", "pandas-stubs", "pre-commit", "pytest", "pytest-cov", "pytest-env", "pytest-randomly", "typing-extensions"]
docs = ["black", "duckdb", "jinja2", "markdown-exec[ansi]", "mkdocs", "mkdocs-autorefs", "mkdocs-material", "mkdocstrings[python]", "pandas", "polars (>=1.0.0)", "pyarrow"]
duckdb = ["duckdb (>=1.0)"]
extra = ["scikit-learn"]
@@ -5724,6 +5724,8 @@ pandas = ["pandas (>=0.25.3)"]
polars = ["polars (>=0.20.3)"]
pyarrow = ["pyarrow (>=11.0.0)"]
pyspark = ["pyspark (>=3.5.0)"]
tests = ["covdefaults", "hypothesis", "pytest", "pytest-cov", "pytest-env", "pytest-randomly", "typing-extensions"]
typing = ["mypy (>=1.15.0,<1.16.0)", "pandas-stubs", "typing-extensions"]
[[package]]
name = "nest-asyncio"
@@ -6909,13 +6911,13 @@ pydantic = ">=1.9,<3.0"
[[package]]
name = "posthog"
version = "3.13.0"
version = "3.14.2"
description = "Integrate PostHog into any python application."
optional = false
python-versions = "*"
files = [
{file = "posthog-3.13.0-py2.py3-none-any.whl", hash = "sha256:0afd0132055a3da9c6b0ecf763e7f2ce2b66659ef16169883394d0835c30d501"},
{file = "posthog-3.13.0.tar.gz", hash = "sha256:54e9de232459846b1686a0cfb58acb02b7ccda379d837e1eb1c3af62c3775915"},
{file = "posthog-3.14.2-py2.py3-none-any.whl", hash = "sha256:f50d41dfe116ace4971b304518de57e0de34a936cdfdff84efed0dd993dfbcda"},
{file = "posthog-3.14.2.tar.gz", hash = "sha256:b9794aa5b316767cc7f8685292f8ff3e0df8b01fcaf2905afe2efa9696cb5c77"},
]
[package.dependencies]
@@ -6958,20 +6960,20 @@ dill = ["dill (>=0.3.9)"]
[[package]]
name = "primp"
version = "0.12.1"
version = "0.13.0"
description = "HTTP client that can impersonate web browsers, mimicking their headers and `TLS/JA3/JA4/HTTP2` fingerprints"
optional = false
python-versions = ">=3.8"
files = [
{file = "primp-0.12.1-cp38-abi3-macosx_10_12_x86_64.whl", hash = "sha256:48af13b6731ab33f7045c620c7fecf4804745e2756c22ace604de24b46d07ee7"},
{file = "primp-0.12.1-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:83030fd7b4059125738f76f56d21322c631c6a7bb7b0f4bd58ef63c59a7ea4e3"},
{file = "primp-0.12.1-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:79380b72b3afad1aead8c4ac91797dce37605561e9a4be9dd9291d6132fdc5e7"},
{file = "primp-0.12.1-cp38-abi3-manylinux_2_34_aarch64.whl", hash = "sha256:286e3e620fe027a103336e5b825949350fbb5121530f57ec04cc27112cd81ea9"},
{file = "primp-0.12.1-cp38-abi3-manylinux_2_34_armv7l.whl", hash = "sha256:61841d3061f74d17ff124c808a00bb2efa2dcbefff18e01510363dd9c3aa0300"},
{file = "primp-0.12.1-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:5407e49166e61287010e9bf6daf84b7b0597a15286a7fb3ad0be36ee43555b4b"},
{file = "primp-0.12.1-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:e0fad52ff964126be5996030b636ac92b110871738ff2523b3e74dcda381f226"},
{file = "primp-0.12.1-cp38-abi3-win_amd64.whl", hash = "sha256:97c8fdc145eb3e9935658a8fff5c9bdc0552fcac3dfb15a1867d3ea08529e056"},
{file = "primp-0.12.1.tar.gz", hash = "sha256:2989375b512b0fec77b4e6cc53d3fef1f2f76103b6565873f040dfea92023279"},
{file = "primp-0.13.0-cp38-abi3-macosx_10_12_x86_64.whl", hash = "sha256:b47da9123a0efe5a8ab063c2906aba05a6d06ebbb4e63c8f685635962b4d7451"},
{file = "primp-0.13.0-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:acfe86b5cf69481936f82908ccbcb773fa7f89f423d82609c701f278eb297236"},
{file = "primp-0.13.0-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6e24410c83772b0afeeac213c75969e153b53195a7da90f7220bb4385616b487"},
{file = "primp-0.13.0-cp38-abi3-manylinux_2_34_aarch64.whl", hash = "sha256:0149e745134c355ed585e54dd95fb6e7e39ed3532951976d7c803b0d181aa976"},
{file = "primp-0.13.0-cp38-abi3-manylinux_2_34_armv7l.whl", hash = "sha256:a6ff2607af26d5c362be1a077e0a3cf027054d04fef0706b86b5cacdb65b441d"},
{file = "primp-0.13.0-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:0b0884d661b235766239f627e987786eed64d4400dbec55819504f570412cf94"},
{file = "primp-0.13.0-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:e601bd8121681c1fc43dd1abeefd4333b524033a1c3bad1e6f401a01798f4c94"},
{file = "primp-0.13.0-cp38-abi3-win_amd64.whl", hash = "sha256:37eefc04e728ae964e7986d37c507b79676f9d2833e356504acc9b1301150ace"},
{file = "primp-0.13.0.tar.gz", hash = "sha256:59f872a8cb3293fac3f451a60e5f9c724264d7a76302b65deaaf31a2bd26b32c"},
]
[package.extras]
@@ -7121,32 +7123,25 @@ files = [
[[package]]
name = "psutil"
version = "6.1.1"
description = "Cross-platform lib for process and system monitoring in Python."
version = "7.0.0"
description = "Cross-platform lib for process and system monitoring in Python. NOTE: the syntax of this script MUST be kept compatible with Python 2.7."
optional = false
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7"
python-versions = ">=3.6"
files = [
{file = "psutil-6.1.1-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:9ccc4316f24409159897799b83004cb1e24f9819b0dcf9c0b68bdcb6cefee6a8"},
{file = "psutil-6.1.1-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:ca9609c77ea3b8481ab005da74ed894035936223422dc591d6772b147421f777"},
{file = "psutil-6.1.1-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:8df0178ba8a9e5bc84fed9cfa61d54601b371fbec5c8eebad27575f1e105c0d4"},
{file = "psutil-6.1.1-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:1924e659d6c19c647e763e78670a05dbb7feaf44a0e9c94bf9e14dfc6ba50468"},
{file = "psutil-6.1.1-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:018aeae2af92d943fdf1da6b58665124897cfc94faa2ca92098838f83e1b1bca"},
{file = "psutil-6.1.1-cp27-none-win32.whl", hash = "sha256:6d4281f5bbca041e2292be3380ec56a9413b790579b8e593b1784499d0005dac"},
{file = "psutil-6.1.1-cp27-none-win_amd64.whl", hash = "sha256:c777eb75bb33c47377c9af68f30e9f11bc78e0f07fbf907be4a5d70b2fe5f030"},
{file = "psutil-6.1.1-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:fc0ed7fe2231a444fc219b9c42d0376e0a9a1a72f16c5cfa0f68d19f1a0663e8"},
{file = "psutil-6.1.1-cp36-abi3-macosx_11_0_arm64.whl", hash = "sha256:0bdd4eab935276290ad3cb718e9809412895ca6b5b334f5a9111ee6d9aff9377"},
{file = "psutil-6.1.1-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b6e06c20c05fe95a3d7302d74e7097756d4ba1247975ad6905441ae1b5b66003"},
{file = "psutil-6.1.1-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:97f7cb9921fbec4904f522d972f0c0e1f4fabbdd4e0287813b21215074a0f160"},
{file = "psutil-6.1.1-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:33431e84fee02bc84ea36d9e2c4a6d395d479c9dd9bba2376c1f6ee8f3a4e0b3"},
{file = "psutil-6.1.1-cp36-cp36m-win32.whl", hash = "sha256:384636b1a64b47814437d1173be1427a7c83681b17a450bfc309a1953e329603"},
{file = "psutil-6.1.1-cp36-cp36m-win_amd64.whl", hash = "sha256:8be07491f6ebe1a693f17d4f11e69d0dc1811fa082736500f649f79df7735303"},
{file = "psutil-6.1.1-cp37-abi3-win32.whl", hash = "sha256:eaa912e0b11848c4d9279a93d7e2783df352b082f40111e078388701fd479e53"},
{file = "psutil-6.1.1-cp37-abi3-win_amd64.whl", hash = "sha256:f35cfccb065fff93529d2afb4a2e89e363fe63ca1e4a5da22b603a85833c2649"},
{file = "psutil-6.1.1.tar.gz", hash = "sha256:cf8496728c18f2d0b45198f06895be52f36611711746b7f30c464b422b50e2f5"},
{file = "psutil-7.0.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:101d71dc322e3cffd7cea0650b09b3d08b8e7c4109dd6809fe452dfd00e58b25"},
{file = "psutil-7.0.0-cp36-abi3-macosx_11_0_arm64.whl", hash = "sha256:39db632f6bb862eeccf56660871433e111b6ea58f2caea825571951d4b6aa3da"},
{file = "psutil-7.0.0-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1fcee592b4c6f146991ca55919ea3d1f8926497a713ed7faaf8225e174581e91"},
{file = "psutil-7.0.0-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b1388a4f6875d7e2aff5c4ca1cc16c545ed41dd8bb596cefea80111db353a34"},
{file = "psutil-7.0.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5f098451abc2828f7dc6b58d44b532b22f2088f4999a937557b603ce72b1993"},
{file = "psutil-7.0.0-cp36-cp36m-win32.whl", hash = "sha256:84df4eb63e16849689f76b1ffcb36db7b8de703d1bc1fe41773db487621b6c17"},
{file = "psutil-7.0.0-cp36-cp36m-win_amd64.whl", hash = "sha256:1e744154a6580bc968a0195fd25e80432d3afec619daf145b9e5ba16cc1d688e"},
{file = "psutil-7.0.0-cp37-abi3-win32.whl", hash = "sha256:ba3fcef7523064a6c9da440fc4d6bd07da93ac726b5733c29027d7dc95b39d99"},
{file = "psutil-7.0.0-cp37-abi3-win_amd64.whl", hash = "sha256:4cf3d4eb1aa9b348dec30105c55cd9b7d4629285735a102beb4441e38db90553"},
{file = "psutil-7.0.0.tar.gz", hash = "sha256:7be9c3eba38beccb6495ea33afd982a44074b78f28c434a1f51cc07fd315c456"},
]
[package.extras]
dev = ["abi3audit", "black", "check-manifest", "coverage", "packaging", "pylint", "pyperf", "pypinfo", "pytest-cov", "requests", "rstcheck", "ruff", "sphinx", "sphinx_rtd_theme", "toml-sort", "twine", "virtualenv", "vulture", "wheel"]
dev = ["abi3audit", "black (==24.10.0)", "check-manifest", "coverage", "packaging", "pylint", "pyperf", "pypinfo", "pytest", "pytest-cov", "pytest-xdist", "requests", "rstcheck", "ruff", "setuptools", "sphinx", "sphinx_rtd_theme", "toml-sort", "twine", "virtualenv", "vulture", "wheel"]
test = ["pytest", "pytest-xdist", "setuptools"]
[[package]]
@@ -7259,53 +7254,53 @@ files = [
[[package]]
name = "pyarrow"
version = "19.0.0"
version = "19.0.1"
description = "Python library for Apache Arrow"
optional = false
python-versions = ">=3.9"
files = [
{file = "pyarrow-19.0.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:c318eda14f6627966997a7d8c374a87d084a94e4e38e9abbe97395c215830e0c"},
{file = "pyarrow-19.0.0-cp310-cp310-macosx_12_0_x86_64.whl", hash = "sha256:62ef8360ff256e960f57ce0299090fb86423afed5e46f18f1225f960e05aae3d"},
{file = "pyarrow-19.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2795064647add0f16563e57e3d294dbfc067b723f0fd82ecd80af56dad15f503"},
{file = "pyarrow-19.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a218670b26fb1bc74796458d97bcab072765f9b524f95b2fccad70158feb8b17"},
{file = "pyarrow-19.0.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:66732e39eaa2247996a6b04c8aa33e3503d351831424cdf8d2e9a0582ac54b34"},
{file = "pyarrow-19.0.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:e675a3ad4732b92d72e4d24009707e923cab76b0d088e5054914f11a797ebe44"},
{file = "pyarrow-19.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:f094742275586cdd6b1a03655ccff3b24b2610c3af76f810356c4c71d24a2a6c"},
{file = "pyarrow-19.0.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:8e3a839bf36ec03b4315dc924d36dcde5444a50066f1c10f8290293c0427b46a"},
{file = "pyarrow-19.0.0-cp311-cp311-macosx_12_0_x86_64.whl", hash = "sha256:ce42275097512d9e4e4a39aade58ef2b3798a93aa3026566b7892177c266f735"},
{file = "pyarrow-19.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9348a0137568c45601b031a8d118275069435f151cbb77e6a08a27e8125f59d4"},
{file = "pyarrow-19.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2a0144a712d990d60f7f42b7a31f0acaccf4c1e43e957f7b1ad58150d6f639c1"},
{file = "pyarrow-19.0.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:2a1a109dfda558eb011e5f6385837daffd920d54ca00669f7a11132d0b1e6042"},
{file = "pyarrow-19.0.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:be686bf625aa7b9bada18defb3a3ea3981c1099697239788ff111d87f04cd263"},
{file = "pyarrow-19.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:239ca66d9a05844bdf5af128861af525e14df3c9591bcc05bac25918e650d3a2"},
{file = "pyarrow-19.0.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:a7bbe7109ab6198688b7079cbad5a8c22de4d47c4880d8e4847520a83b0d1b68"},
{file = "pyarrow-19.0.0-cp312-cp312-macosx_12_0_x86_64.whl", hash = "sha256:4624c89d6f777c580e8732c27bb8e77fd1433b89707f17c04af7635dd9638351"},
{file = "pyarrow-19.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2b6d3ce4288793350dc2d08d1e184fd70631ea22a4ff9ea5c4ff182130249d9b"},
{file = "pyarrow-19.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:450a7d27e840e4d9a384b5c77199d489b401529e75a3b7a3799d4cd7957f2f9c"},
{file = "pyarrow-19.0.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:a08e2a8a039a3f72afb67a6668180f09fddaa38fe0d21f13212b4aba4b5d2451"},
{file = "pyarrow-19.0.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:f43f5aef2a13d4d56adadae5720d1fed4c1356c993eda8b59dace4b5983843c1"},
{file = "pyarrow-19.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:2f672f5364b2d7829ef7c94be199bb88bf5661dd485e21d2d37de12ccb78a136"},
{file = "pyarrow-19.0.0-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:cf3bf0ce511b833f7bc5f5bb3127ba731e97222023a444b7359f3a22e2a3b463"},
{file = "pyarrow-19.0.0-cp313-cp313-macosx_12_0_x86_64.whl", hash = "sha256:4d8b0c0de0a73df1f1bf439af1b60f273d719d70648e898bc077547649bb8352"},
{file = "pyarrow-19.0.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a92aff08e23d281c69835e4a47b80569242a504095ef6a6223c1f6bb8883431d"},
{file = "pyarrow-19.0.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c3b78eff5968a1889a0f3bc81ca57e1e19b75f664d9c61a42a604bf9d8402aae"},
{file = "pyarrow-19.0.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:b34d3bde38eba66190b215bae441646330f8e9da05c29e4b5dd3e41bde701098"},
{file = "pyarrow-19.0.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:5418d4d0fab3a0ed497bad21d17a7973aad336d66ad4932a3f5f7480d4ca0c04"},
{file = "pyarrow-19.0.0-cp313-cp313-win_amd64.whl", hash = "sha256:e82c3d5e44e969c217827b780ed8faf7ac4c53f934ae9238872e749fa531f7c9"},
{file = "pyarrow-19.0.0-cp313-cp313t-macosx_12_0_arm64.whl", hash = "sha256:f208c3b58a6df3b239e0bb130e13bc7487ed14f39a9ff357b6415e3f6339b560"},
{file = "pyarrow-19.0.0-cp313-cp313t-macosx_12_0_x86_64.whl", hash = "sha256:c751c1c93955b7a84c06794df46f1cec93e18610dcd5ab7d08e89a81df70a849"},
{file = "pyarrow-19.0.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b903afaa5df66d50fc38672ad095806443b05f202c792694f3a604ead7c6ea6e"},
{file = "pyarrow-19.0.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a22a4bc0937856263df8b94f2f2781b33dd7f876f787ed746608e06902d691a5"},
{file = "pyarrow-19.0.0-cp313-cp313t-manylinux_2_28_aarch64.whl", hash = "sha256:5e8a28b918e2e878c918f6d89137386c06fe577cd08d73a6be8dafb317dc2d73"},
{file = "pyarrow-19.0.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:29cd86c8001a94f768f79440bf83fee23963af5e7bc68ce3a7e5f120e17edf89"},
{file = "pyarrow-19.0.0-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:c0423393e4a07ff6fea08feb44153302dd261d0551cc3b538ea7a5dc853af43a"},
{file = "pyarrow-19.0.0-cp39-cp39-macosx_12_0_x86_64.whl", hash = "sha256:718947fb6d82409013a74b176bf93e0f49ef952d8a2ecd068fecd192a97885b7"},
{file = "pyarrow-19.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3c1c162c4660e0978411a4761f91113dde8da3433683efa473501254563dcbe8"},
{file = "pyarrow-19.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c73268cf557e688efb60f1ccbc7376f7e18cd8e2acae9e663e98b194c40c1a2d"},
{file = "pyarrow-19.0.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:edfe6d3916e915ada9acc4e48f6dafca7efdbad2e6283db6fd9385a1b23055f1"},
{file = "pyarrow-19.0.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:da410b70a7ab8eb524112f037a7a35da7128b33d484f7671a264a4c224ac131d"},
{file = "pyarrow-19.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:597360ffc71fc8cceea1aec1fb60cb510571a744fffc87db33d551d5de919bec"},
{file = "pyarrow-19.0.0.tar.gz", hash = "sha256:8d47c691765cf497aaeed4954d226568563f1b3b74ff61139f2d77876717084b"},
{file = "pyarrow-19.0.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:fc28912a2dc924dddc2087679cc8b7263accc71b9ff025a1362b004711661a69"},
{file = "pyarrow-19.0.1-cp310-cp310-macosx_12_0_x86_64.whl", hash = "sha256:fca15aabbe9b8355800d923cc2e82c8ef514af321e18b437c3d782aa884eaeec"},
{file = "pyarrow-19.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ad76aef7f5f7e4a757fddcdcf010a8290958f09e3470ea458c80d26f4316ae89"},
{file = "pyarrow-19.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d03c9d6f2a3dffbd62671ca070f13fc527bb1867b4ec2b98c7eeed381d4f389a"},
{file = "pyarrow-19.0.1-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:65cf9feebab489b19cdfcfe4aa82f62147218558d8d3f0fc1e9dea0ab8e7905a"},
{file = "pyarrow-19.0.1-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:41f9706fbe505e0abc10e84bf3a906a1338905cbbcf1177b71486b03e6ea6608"},
{file = "pyarrow-19.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:c6cb2335a411b713fdf1e82a752162f72d4a7b5dbc588e32aa18383318b05866"},
{file = "pyarrow-19.0.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:cc55d71898ea30dc95900297d191377caba257612f384207fe9f8293b5850f90"},
{file = "pyarrow-19.0.1-cp311-cp311-macosx_12_0_x86_64.whl", hash = "sha256:7a544ec12de66769612b2d6988c36adc96fb9767ecc8ee0a4d270b10b1c51e00"},
{file = "pyarrow-19.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0148bb4fc158bfbc3d6dfe5001d93ebeed253793fff4435167f6ce1dc4bddeae"},
{file = "pyarrow-19.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f24faab6ed18f216a37870d8c5623f9c044566d75ec586ef884e13a02a9d62c5"},
{file = "pyarrow-19.0.1-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:4982f8e2b7afd6dae8608d70ba5bd91699077323f812a0448d8b7abdff6cb5d3"},
{file = "pyarrow-19.0.1-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:49a3aecb62c1be1d822f8bf629226d4a96418228a42f5b40835c1f10d42e4db6"},
{file = "pyarrow-19.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:008a4009efdb4ea3d2e18f05cd31f9d43c388aad29c636112c2966605ba33466"},
{file = "pyarrow-19.0.1-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:80b2ad2b193e7d19e81008a96e313fbd53157945c7be9ac65f44f8937a55427b"},
{file = "pyarrow-19.0.1-cp312-cp312-macosx_12_0_x86_64.whl", hash = "sha256:ee8dec072569f43835932a3b10c55973593abc00936c202707a4ad06af7cb294"},
{file = "pyarrow-19.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d5d1ec7ec5324b98887bdc006f4d2ce534e10e60f7ad995e7875ffa0ff9cb14"},
{file = "pyarrow-19.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3ad4c0eb4e2a9aeb990af6c09e6fa0b195c8c0e7b272ecc8d4d2b6574809d34"},
{file = "pyarrow-19.0.1-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:d383591f3dcbe545f6cc62daaef9c7cdfe0dff0fb9e1c8121101cabe9098cfa6"},
{file = "pyarrow-19.0.1-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:b4c4156a625f1e35d6c0b2132635a237708944eb41df5fbe7d50f20d20c17832"},
{file = "pyarrow-19.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:5bd1618ae5e5476b7654c7b55a6364ae87686d4724538c24185bbb2952679960"},
{file = "pyarrow-19.0.1-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:e45274b20e524ae5c39d7fc1ca2aa923aab494776d2d4b316b49ec7572ca324c"},
{file = "pyarrow-19.0.1-cp313-cp313-macosx_12_0_x86_64.whl", hash = "sha256:d9dedeaf19097a143ed6da37f04f4051aba353c95ef507764d344229b2b740ae"},
{file = "pyarrow-19.0.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6ebfb5171bb5f4a52319344ebbbecc731af3f021e49318c74f33d520d31ae0c4"},
{file = "pyarrow-19.0.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f2a21d39fbdb948857f67eacb5bbaaf36802de044ec36fbef7a1c8f0dd3a4ab2"},
{file = "pyarrow-19.0.1-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:99bc1bec6d234359743b01e70d4310d0ab240c3d6b0da7e2a93663b0158616f6"},
{file = "pyarrow-19.0.1-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:1b93ef2c93e77c442c979b0d596af45e4665d8b96da598db145b0fec014b9136"},
{file = "pyarrow-19.0.1-cp313-cp313-win_amd64.whl", hash = "sha256:d9d46e06846a41ba906ab25302cf0fd522f81aa2a85a71021826f34639ad31ef"},
{file = "pyarrow-19.0.1-cp313-cp313t-macosx_12_0_arm64.whl", hash = "sha256:c0fe3dbbf054a00d1f162fda94ce236a899ca01123a798c561ba307ca38af5f0"},
{file = "pyarrow-19.0.1-cp313-cp313t-macosx_12_0_x86_64.whl", hash = "sha256:96606c3ba57944d128e8a8399da4812f56c7f61de8c647e3470b417f795d0ef9"},
{file = "pyarrow-19.0.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f04d49a6b64cf24719c080b3c2029a3a5b16417fd5fd7c4041f94233af732f3"},
{file = "pyarrow-19.0.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5a9137cf7e1640dce4c190551ee69d478f7121b5c6f323553b319cac936395f6"},
{file = "pyarrow-19.0.1-cp313-cp313t-manylinux_2_28_aarch64.whl", hash = "sha256:7c1bca1897c28013db5e4c83944a2ab53231f541b9e0c3f4791206d0c0de389a"},
{file = "pyarrow-19.0.1-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:58d9397b2e273ef76264b45531e9d552d8ec8a6688b7390b5be44c02a37aade8"},
{file = "pyarrow-19.0.1-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:b9766a47a9cb56fefe95cb27f535038b5a195707a08bf61b180e642324963b46"},
{file = "pyarrow-19.0.1-cp39-cp39-macosx_12_0_x86_64.whl", hash = "sha256:6c5941c1aac89a6c2f2b16cd64fe76bcdb94b2b1e99ca6459de4e6f07638d755"},
{file = "pyarrow-19.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fd44d66093a239358d07c42a91eebf5015aa54fccba959db899f932218ac9cc8"},
{file = "pyarrow-19.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:335d170e050bcc7da867a1ed8ffb8b44c57aaa6e0843b156a501298657b1e972"},
{file = "pyarrow-19.0.1-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:1c7556165bd38cf0cd992df2636f8bcdd2d4b26916c6b7e646101aff3c16f76f"},
{file = "pyarrow-19.0.1-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:699799f9c80bebcf1da0983ba86d7f289c5a2a5c04b945e2f2bcf7e874a91911"},
{file = "pyarrow-19.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:8464c9fbe6d94a7fe1599e7e8965f350fd233532868232ab2596a71586c5a429"},
{file = "pyarrow-19.0.1.tar.gz", hash = "sha256:3bf266b485df66a400f282ac0b6d1b500b9d2ae73314a153dbe97d6d5cc8a99e"},
]
[package.extras]
@@ -8047,13 +8042,13 @@ cli = ["click (>=5.0)"]
[[package]]
name = "python-iso639"
version = "2025.2.8"
version = "2025.2.18"
description = "ISO 639 language codes, names, and other associated information"
optional = false
python-versions = ">=3.9"
files = [
{file = "python_iso639-2025.2.8-py3-none-any.whl", hash = "sha256:fc072f1f2007eae4a877778a73d7653c51020973e719b502e0d31e95a92c99d0"},
{file = "python_iso639-2025.2.8.tar.gz", hash = "sha256:94f27c0286fc81ff0e033d7b63d63a5967eef584b97f13289366bf178953f5d7"},
{file = "python_iso639-2025.2.18-py3-none-any.whl", hash = "sha256:b2d471c37483a26f19248458b20e7bd96492e15368b01053b540126bcc23152f"},
{file = "python_iso639-2025.2.18.tar.gz", hash = "sha256:34e31e8e76eb3fc839629e257b12bcfd957c6edcbd486bbf66ba5185d1f566e8"},
]
[package.extras]
@@ -8404,17 +8399,17 @@ test = ["coveralls", "pycodestyle", "pyflakes", "pylint", "pytest", "pytest-benc
[[package]]
name = "realtime"
version = "2.3.0"
version = "2.4.0"
description = ""
optional = false
python-versions = "<4.0,>=3.9"
files = [
{file = "realtime-2.3.0-py3-none-any.whl", hash = "sha256:6c241681d0517a3bc5e0132842bffd8b592286131b01a68b41cf7e0be94828fc"},
{file = "realtime-2.3.0.tar.gz", hash = "sha256:4071b095d7f750fcd68ec322e05045fce067b5cd5309a7ca809fcc87e50f56a1"},
{file = "realtime-2.4.0-py3-none-any.whl", hash = "sha256:0015219bb398edfdd5e993bc77a42424ed6d6890b7234a0114fe0de4d21e4f8b"},
{file = "realtime-2.4.0.tar.gz", hash = "sha256:4ffc61a9c0f8dbda7e6a48496254a018d5b2d90569f56d1d89c9618f56616c3b"},
]
[package.dependencies]
aiohttp = ">=3.11.11,<4.0.0"
aiohttp = ">=3.11.12,<4.0.0"
python-dateutil = ">=2.8.1,<3.0.0"
typing-extensions = ">=4.12.2,<5.0.0"
websockets = ">=11,<15"
@@ -8846,20 +8841,20 @@ files = [
[[package]]
name = "s3transfer"
version = "0.11.2"
version = "0.10.4"
description = "An Amazon S3 Transfer Manager"
optional = false
python-versions = ">=3.8"
files = [
{file = "s3transfer-0.11.2-py3-none-any.whl", hash = "sha256:be6ecb39fadd986ef1701097771f87e4d2f821f27f6071c872143884d2950fbc"},
{file = "s3transfer-0.11.2.tar.gz", hash = "sha256:3b39185cb72f5acc77db1a58b6e25b977f28d20496b6e58d6813d75f464d632f"},
{file = "s3transfer-0.10.4-py3-none-any.whl", hash = "sha256:244a76a24355363a68164241438de1b72f8781664920260c48465896b712a41e"},
{file = "s3transfer-0.10.4.tar.gz", hash = "sha256:29edc09801743c21eb5ecbc617a152df41d3c287f67b615f73e5f750583666a7"},
]
[package.dependencies]
botocore = ">=1.36.0,<2.0a.0"
botocore = ">=1.33.2,<2.0a.0"
[package.extras]
crt = ["botocore[crt] (>=1.36.0,<2.0a.0)"]
crt = ["botocore[crt] (>=1.33.2,<2.0a.0)"]
[[package]]
name = "safetensors"
@@ -9038,17 +9033,17 @@ test = ["accelerate (>=0.24.1,<=0.27.0)", "apache-airflow (==2.9.3)", "apache-ai
[[package]]
name = "sagemaker-core"
version = "1.0.21"
version = "1.0.16"
description = "An python package for sagemaker core functionalities"
optional = false
python-versions = ">=3.8"
files = [
{file = "sagemaker_core-1.0.21-py3-none-any.whl", hash = "sha256:26ba61fb775adb27b961c1f6b92b55c8c8a788cedb6181ee1d8a11fdb1e72672"},
{file = "sagemaker_core-1.0.21.tar.gz", hash = "sha256:0a9e31c5c1e12ae5f528b511684bde20e30ff0c08ac6e17cc00acb2cec7f52ae"},
{file = "sagemaker_core-1.0.16-py3-none-any.whl", hash = "sha256:603f70552c63d7a798b76749cad00a06af4b7362604a0f965d04b1c97f7a7128"},
{file = "sagemaker_core-1.0.16.tar.gz", hash = "sha256:a5e7325bb2d5ad84e9a34fa81ea9a6d36a3b6aa0f02bf9c356a7973476951def"},
]
[package.dependencies]
boto3 = ">=1.35.75,<2.0.0"
boto3 = ">=1.34.0,<2.0.0"
importlib-metadata = ">=1.4.0,<7.0"
jsonschema = "<5.0.0"
mock = ">4.0,<5.0"
@@ -9118,51 +9113,57 @@ tests = ["black (>=24.3.0)", "matplotlib (>=3.3.4)", "mypy (>=1.9)", "numpydoc (
[[package]]
name = "scipy"
version = "1.15.1"
version = "1.15.2"
description = "Fundamental algorithms for scientific computing in Python"
optional = false
python-versions = ">=3.10"
files = [
{file = "scipy-1.15.1-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:c64ded12dcab08afff9e805a67ff4480f5e69993310e093434b10e85dc9d43e1"},
{file = "scipy-1.15.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:5b190b935e7db569960b48840e5bef71dc513314cc4e79a1b7d14664f57fd4ff"},
{file = "scipy-1.15.1-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:4b17d4220df99bacb63065c76b0d1126d82bbf00167d1730019d2a30d6ae01ea"},
{file = "scipy-1.15.1-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:63b9b6cd0333d0eb1a49de6f834e8aeaefe438df8f6372352084535ad095219e"},
{file = "scipy-1.15.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f151e9fb60fbf8e52426132f473221a49362091ce7a5e72f8aa41f8e0da4f25"},
{file = "scipy-1.15.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21e10b1dd56ce92fba3e786007322542361984f8463c6d37f6f25935a5a6ef52"},
{file = "scipy-1.15.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:5dff14e75cdbcf07cdaa1c7707db6017d130f0af9ac41f6ce443a93318d6c6e0"},
{file = "scipy-1.15.1-cp310-cp310-win_amd64.whl", hash = "sha256:f82fcf4e5b377f819542fbc8541f7b5fbcf1c0017d0df0bc22c781bf60abc4d8"},
{file = "scipy-1.15.1-cp311-cp311-macosx_10_13_x86_64.whl", hash = "sha256:5bd8d27d44e2c13d0c1124e6a556454f52cd3f704742985f6b09e75e163d20d2"},
{file = "scipy-1.15.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:be3deeb32844c27599347faa077b359584ba96664c5c79d71a354b80a0ad0ce0"},
{file = "scipy-1.15.1-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:5eb0ca35d4b08e95da99a9f9c400dc9f6c21c424298a0ba876fdc69c7afacedf"},
{file = "scipy-1.15.1-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:74bb864ff7640dea310a1377d8567dc2cb7599c26a79ca852fc184cc851954ac"},
{file = "scipy-1.15.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:667f950bf8b7c3a23b4199db24cb9bf7512e27e86d0e3813f015b74ec2c6e3df"},
{file = "scipy-1.15.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:395be70220d1189756068b3173853029a013d8c8dd5fd3d1361d505b2aa58fa7"},
{file = "scipy-1.15.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:ce3a000cd28b4430426db2ca44d96636f701ed12e2b3ca1f2b1dd7abdd84b39a"},
{file = "scipy-1.15.1-cp311-cp311-win_amd64.whl", hash = "sha256:3fe1d95944f9cf6ba77aa28b82dd6bb2a5b52f2026beb39ecf05304b8392864b"},
{file = "scipy-1.15.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:c09aa9d90f3500ea4c9b393ee96f96b0ccb27f2f350d09a47f533293c78ea776"},
{file = "scipy-1.15.1-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:0ac102ce99934b162914b1e4a6b94ca7da0f4058b6d6fd65b0cef330c0f3346f"},
{file = "scipy-1.15.1-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:09c52320c42d7f5c7748b69e9f0389266fd4f82cf34c38485c14ee976cb8cb04"},
{file = "scipy-1.15.1-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:cdde8414154054763b42b74fe8ce89d7f3d17a7ac5dd77204f0e142cdc9239e9"},
{file = "scipy-1.15.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4c9d8fc81d6a3b6844235e6fd175ee1d4c060163905a2becce8e74cb0d7554ce"},
{file = "scipy-1.15.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0fb57b30f0017d4afa5fe5f5b150b8f807618819287c21cbe51130de7ccdaed2"},
{file = "scipy-1.15.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:491d57fe89927fa1aafbe260f4cfa5ffa20ab9f1435025045a5315006a91b8f5"},
{file = "scipy-1.15.1-cp312-cp312-win_amd64.whl", hash = "sha256:900f3fa3db87257510f011c292a5779eb627043dd89731b9c461cd16ef76ab3d"},
{file = "scipy-1.15.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:100193bb72fbff37dbd0bf14322314fc7cbe08b7ff3137f11a34d06dc0ee6b85"},
{file = "scipy-1.15.1-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:2114a08daec64980e4b4cbdf5bee90935af66d750146b1d2feb0d3ac30613692"},
{file = "scipy-1.15.1-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:6b3e71893c6687fc5e29208d518900c24ea372a862854c9888368c0b267387ab"},
{file = "scipy-1.15.1-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:837299eec3d19b7e042923448d17d95a86e43941104d33f00da7e31a0f715d3c"},
{file = "scipy-1.15.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:82add84e8a9fb12af5c2c1a3a3f1cb51849d27a580cb9e6bd66226195142be6e"},
{file = "scipy-1.15.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:070d10654f0cb6abd295bc96c12656f948e623ec5f9a4eab0ddb1466c000716e"},
{file = "scipy-1.15.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:55cc79ce4085c702ac31e49b1e69b27ef41111f22beafb9b49fea67142b696c4"},
{file = "scipy-1.15.1-cp313-cp313-win_amd64.whl", hash = "sha256:c352c1b6d7cac452534517e022f8f7b8d139cd9f27e6fbd9f3cbd0bfd39f5bef"},
{file = "scipy-1.15.1-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:0458839c9f873062db69a03de9a9765ae2e694352c76a16be44f93ea45c28d2b"},
{file = "scipy-1.15.1-cp313-cp313t-macosx_12_0_arm64.whl", hash = "sha256:af0b61c1de46d0565b4b39c6417373304c1d4f5220004058bdad3061c9fa8a95"},
{file = "scipy-1.15.1-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:71ba9a76c2390eca6e359be81a3e879614af3a71dfdabb96d1d7ab33da6f2364"},
{file = "scipy-1.15.1-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:14eaa373c89eaf553be73c3affb11ec6c37493b7eaaf31cf9ac5dffae700c2e0"},
{file = "scipy-1.15.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f735bc41bd1c792c96bc426dece66c8723283695f02df61dcc4d0a707a42fc54"},
{file = "scipy-1.15.1-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:2722a021a7929d21168830790202a75dbb20b468a8133c74a2c0230c72626b6c"},
{file = "scipy-1.15.1-cp313-cp313t-win_amd64.whl", hash = "sha256:bc7136626261ac1ed988dca56cfc4ab5180f75e0ee52e58f1e6aa74b5f3eacd5"},
{file = "scipy-1.15.1.tar.gz", hash = "sha256:033a75ddad1463970c96a88063a1df87ccfddd526437136b6ee81ff0312ebdf6"},
{file = "scipy-1.15.2-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:a2ec871edaa863e8213ea5df811cd600734f6400b4af272e1c011e69401218e9"},
{file = "scipy-1.15.2-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:6f223753c6ea76983af380787611ae1291e3ceb23917393079dcc746ba60cfb5"},
{file = "scipy-1.15.2-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:ecf797d2d798cf7c838c6d98321061eb3e72a74710e6c40540f0e8087e3b499e"},
{file = "scipy-1.15.2-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:9b18aa747da280664642997e65aab1dd19d0c3d17068a04b3fe34e2559196cb9"},
{file = "scipy-1.15.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:87994da02e73549dfecaed9e09a4f9d58a045a053865679aeb8d6d43747d4df3"},
{file = "scipy-1.15.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:69ea6e56d00977f355c0f84eba69877b6df084516c602d93a33812aa04d90a3d"},
{file = "scipy-1.15.2-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:888307125ea0c4466287191e5606a2c910963405ce9671448ff9c81c53f85f58"},
{file = "scipy-1.15.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:9412f5e408b397ff5641080ed1e798623dbe1ec0d78e72c9eca8992976fa65aa"},
{file = "scipy-1.15.2-cp310-cp310-win_amd64.whl", hash = "sha256:b5e025e903b4f166ea03b109bb241355b9c42c279ea694d8864d033727205e65"},
{file = "scipy-1.15.2-cp311-cp311-macosx_10_13_x86_64.whl", hash = "sha256:92233b2df6938147be6fa8824b8136f29a18f016ecde986666be5f4d686a91a4"},
{file = "scipy-1.15.2-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:62ca1ff3eb513e09ed17a5736929429189adf16d2d740f44e53270cc800ecff1"},
{file = "scipy-1.15.2-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:4c6676490ad76d1c2894d77f976144b41bd1a4052107902238047fb6a473e971"},
{file = "scipy-1.15.2-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:a8bf5cb4a25046ac61d38f8d3c3426ec11ebc350246a4642f2f315fe95bda655"},
{file = "scipy-1.15.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6a8e34cf4c188b6dd004654f88586d78f95639e48a25dfae9c5e34a6dc34547e"},
{file = "scipy-1.15.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:28a0d2c2075946346e4408b211240764759e0fabaeb08d871639b5f3b1aca8a0"},
{file = "scipy-1.15.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:42dabaaa798e987c425ed76062794e93a243be8f0f20fff6e7a89f4d61cb3d40"},
{file = "scipy-1.15.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:6f5e296ec63c5da6ba6fa0343ea73fd51b8b3e1a300b0a8cae3ed4b1122c7462"},
{file = "scipy-1.15.2-cp311-cp311-win_amd64.whl", hash = "sha256:597a0c7008b21c035831c39927406c6181bcf8f60a73f36219b69d010aa04737"},
{file = "scipy-1.15.2-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:c4697a10da8f8765bb7c83e24a470da5797e37041edfd77fd95ba3811a47c4fd"},
{file = "scipy-1.15.2-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:869269b767d5ee7ea6991ed7e22b3ca1f22de73ab9a49c44bad338b725603301"},
{file = "scipy-1.15.2-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:bad78d580270a4d32470563ea86c6590b465cb98f83d760ff5b0990cb5518a93"},
{file = "scipy-1.15.2-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:b09ae80010f52efddb15551025f9016c910296cf70adbf03ce2a8704f3a5ad20"},
{file = "scipy-1.15.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5a6fd6eac1ce74a9f77a7fc724080d507c5812d61e72bd5e4c489b042455865e"},
{file = "scipy-1.15.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2b871df1fe1a3ba85d90e22742b93584f8d2b8e6124f8372ab15c71b73e428b8"},
{file = "scipy-1.15.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:03205d57a28e18dfd39f0377d5002725bf1f19a46f444108c29bdb246b6c8a11"},
{file = "scipy-1.15.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:601881dfb761311045b03114c5fe718a12634e5608c3b403737ae463c9885d53"},
{file = "scipy-1.15.2-cp312-cp312-win_amd64.whl", hash = "sha256:e7c68b6a43259ba0aab737237876e5c2c549a031ddb7abc28c7b47f22e202ded"},
{file = "scipy-1.15.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:01edfac9f0798ad6b46d9c4c9ca0e0ad23dbf0b1eb70e96adb9fa7f525eff0bf"},
{file = "scipy-1.15.2-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:08b57a9336b8e79b305a143c3655cc5bdbe6d5ece3378578888d2afbb51c4e37"},
{file = "scipy-1.15.2-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:54c462098484e7466362a9f1672d20888f724911a74c22ae35b61f9c5919183d"},
{file = "scipy-1.15.2-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:cf72ff559a53a6a6d77bd8eefd12a17995ffa44ad86c77a5df96f533d4e6c6bb"},
{file = "scipy-1.15.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9de9d1416b3d9e7df9923ab23cd2fe714244af10b763975bea9e4f2e81cebd27"},
{file = "scipy-1.15.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fb530e4794fc8ea76a4a21ccb67dea33e5e0e60f07fc38a49e821e1eae3b71a0"},
{file = "scipy-1.15.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:5ea7ed46d437fc52350b028b1d44e002646e28f3e8ddc714011aaf87330f2f32"},
{file = "scipy-1.15.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:11e7ad32cf184b74380f43d3c0a706f49358b904fa7d5345f16ddf993609184d"},
{file = "scipy-1.15.2-cp313-cp313-win_amd64.whl", hash = "sha256:a5080a79dfb9b78b768cebf3c9dcbc7b665c5875793569f48bf0e2b1d7f68f6f"},
{file = "scipy-1.15.2-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:447ce30cee6a9d5d1379087c9e474628dab3db4a67484be1b7dc3196bfb2fac9"},
{file = "scipy-1.15.2-cp313-cp313t-macosx_12_0_arm64.whl", hash = "sha256:c90ebe8aaa4397eaefa8455a8182b164a6cc1d59ad53f79943f266d99f68687f"},
{file = "scipy-1.15.2-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:def751dd08243934c884a3221156d63e15234a3155cf25978b0a668409d45eb6"},
{file = "scipy-1.15.2-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:302093e7dfb120e55515936cb55618ee0b895f8bcaf18ff81eca086c17bd80af"},
{file = "scipy-1.15.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7cd5b77413e1855351cdde594eca99c1f4a588c2d63711388b6a1f1c01f62274"},
{file = "scipy-1.15.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6d0194c37037707b2afa7a2f2a924cf7bac3dc292d51b6a925e5fcb89bc5c776"},
{file = "scipy-1.15.2-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:bae43364d600fdc3ac327db99659dcb79e6e7ecd279a75fe1266669d9a652828"},
{file = "scipy-1.15.2-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:f031846580d9acccd0044efd1a90e6f4df3a6e12b4b6bd694a7bc03a89892b28"},
{file = "scipy-1.15.2-cp313-cp313t-win_amd64.whl", hash = "sha256:fe8a9eb875d430d81755472c5ba75e84acc980e4a8f6204d402849234d3017db"},
{file = "scipy-1.15.2.tar.gz", hash = "sha256:cd58a314d92838f7e6f755c8a2167ead4f27e1fd5c1251fd54289569ef3495ec"},
]
[package.dependencies]
@@ -9652,13 +9653,13 @@ test = ["pytest", "tornado (>=4.5)", "typeguard"]
[[package]]
name = "tencentcloud-sdk-python-common"
version = "3.0.1318"
version = "3.0.1323"
description = "Tencent Cloud Common SDK for Python"
optional = false
python-versions = "*"
files = [
{file = "tencentcloud-sdk-python-common-3.0.1318.tar.gz", hash = "sha256:c2ddc0a34e16db459d319462bfda1a1c41bda16d21f565914d630aa0ad8ef79a"},
{file = "tencentcloud_sdk_python_common-3.0.1318-py2.py3-none-any.whl", hash = "sha256:5447519f18688a415079f01aa71bcb94c1d7342cae78f281bfd16a39dfa35b45"},
{file = "tencentcloud-sdk-python-common-3.0.1323.tar.gz", hash = "sha256:651ef73a28ed3c3837ff811b8a7b62b7997f3068a1fc6becdd41c7a9b096f15b"},
{file = "tencentcloud_sdk_python_common-3.0.1323-py2.py3-none-any.whl", hash = "sha256:d66313ca6e4a7efbd63e3f28ce5f374a863aa0c9758c5981395d96de3cbb6b4e"},
]
[package.dependencies]
@@ -9666,17 +9667,17 @@ requests = ">=2.16.0"
[[package]]
name = "tencentcloud-sdk-python-hunyuan"
version = "3.0.1318"
version = "3.0.1323"
description = "Tencent Cloud Hunyuan SDK for Python"
optional = false
python-versions = "*"
files = [
{file = "tencentcloud-sdk-python-hunyuan-3.0.1318.tar.gz", hash = "sha256:7378598519b22b6a47654bc153ba9bce8a7611b74feffa822c6bd489359ee60e"},
{file = "tencentcloud_sdk_python_hunyuan-3.0.1318-py2.py3-none-any.whl", hash = "sha256:3316cc94eddb711b8693e26c7f9ab45034ed029b7b0efc5714b422abbba38031"},
{file = "tencentcloud-sdk-python-hunyuan-3.0.1323.tar.gz", hash = "sha256:9f3d00fc9b5eb39d311912f79dc64dd24a2f5582da567c92e585c34eeb759e8f"},
{file = "tencentcloud_sdk_python_hunyuan-3.0.1323-py2.py3-none-any.whl", hash = "sha256:a4ba05295fdd6ef4cf91ec196825cc64a96cc193e93987c6992e4331c85c7a1d"},
]
[package.dependencies]
tencentcloud-sdk-python-common = "3.0.1318"
tencentcloud-sdk-python-common = "3.0.1323"
[[package]]
name = "termcolor"
@@ -10383,13 +10384,13 @@ files = [
[[package]]
name = "unstructured"
version = "0.16.20"
version = "0.16.22"
description = "A library that prepares raw documents for downstream ML tasks."
optional = false
python-versions = ">=3.9.0"
files = [
{file = "unstructured-0.16.20-py3-none-any.whl", hash = "sha256:9749f4310dde0973f4732ee68f9e98d4a673bb06e455e98bc9522027a99c77cd"},
{file = "unstructured-0.16.20.tar.gz", hash = "sha256:95e8b604fae908cfd53b5bf05c4683e0041aa6c914627bb0226edb4530bbfa44"},
{file = "unstructured-0.16.22-py3-none-any.whl", hash = "sha256:33ae7adc3b59b152bfbe5717ffdded5a19d66dc8cf78a2e55d86bef0d0d4899e"},
{file = "unstructured-0.16.22.tar.gz", hash = "sha256:4fc6809980f5bcac2207d79312cef9f14f9bc7ff06ca27d464f087f0b01963b0"},
]
[package.dependencies]
@@ -10420,19 +10421,19 @@ unstructured-client = "*"
wrapt = "*"
[package.extras]
all-docs = ["effdet", "google-cloud-vision", "markdown", "networkx", "onnx", "openpyxl", "pandas", "pdf2image", "pdfminer.six", "pi-heif", "pikepdf", "pypandoc", "pypdf", "python-docx (>=1.1.2)", "python-pptx (>=1.0.1)", "unstructured-inference (>=0.8.6)", "unstructured.pytesseract (>=0.3.12)", "xlrd"]
all-docs = ["effdet", "google-cloud-vision", "markdown", "networkx", "onnx", "openpyxl", "pandas", "pdf2image", "pdfminer.six", "pi-heif", "pikepdf", "pypandoc", "pypdf", "python-docx (>=1.1.2)", "python-pptx (>=1.0.1)", "unstructured-inference (>=0.8.7)", "unstructured.pytesseract (>=0.3.12)", "xlrd"]
csv = ["pandas"]
doc = ["python-docx (>=1.1.2)"]
docx = ["python-docx (>=1.1.2)"]
epub = ["pypandoc"]
huggingface = ["langdetect", "sacremoses", "sentencepiece", "torch", "transformers"]
image = ["effdet", "google-cloud-vision", "onnx", "pdf2image", "pdfminer.six", "pi-heif", "pikepdf", "pypdf", "unstructured-inference (>=0.8.6)", "unstructured.pytesseract (>=0.3.12)"]
local-inference = ["effdet", "google-cloud-vision", "markdown", "networkx", "onnx", "openpyxl", "pandas", "pdf2image", "pdfminer.six", "pi-heif", "pikepdf", "pypandoc", "pypdf", "python-docx (>=1.1.2)", "python-pptx (>=1.0.1)", "unstructured-inference (>=0.8.6)", "unstructured.pytesseract (>=0.3.12)", "xlrd"]
image = ["effdet", "google-cloud-vision", "onnx", "pdf2image", "pdfminer.six", "pi-heif", "pikepdf", "pypdf", "unstructured-inference (>=0.8.7)", "unstructured.pytesseract (>=0.3.12)"]
local-inference = ["effdet", "google-cloud-vision", "markdown", "networkx", "onnx", "openpyxl", "pandas", "pdf2image", "pdfminer.six", "pi-heif", "pikepdf", "pypandoc", "pypdf", "python-docx (>=1.1.2)", "python-pptx (>=1.0.1)", "unstructured-inference (>=0.8.7)", "unstructured.pytesseract (>=0.3.12)", "xlrd"]
md = ["markdown"]
odt = ["pypandoc", "python-docx (>=1.1.2)"]
org = ["pypandoc"]
paddleocr = ["paddlepaddle (==3.0.0b1)", "unstructured.paddleocr (==2.8.1.0)"]
pdf = ["effdet", "google-cloud-vision", "onnx", "pdf2image", "pdfminer.six", "pi-heif", "pikepdf", "pypdf", "unstructured-inference (>=0.8.6)", "unstructured.pytesseract (>=0.3.12)"]
pdf = ["effdet", "google-cloud-vision", "onnx", "pdf2image", "pdfminer.six", "pi-heif", "pikepdf", "pypdf", "unstructured-inference (>=0.8.7)", "unstructured.pytesseract (>=0.3.12)"]
ppt = ["python-pptx (>=1.0.1)"]
pptx = ["python-pptx (>=1.0.1)"]
rst = ["pypandoc"]
@@ -11239,20 +11240,18 @@ propcache = ">=0.2.0"
[[package]]
name = "yfinance"
version = "0.2.52"
version = "0.2.54"
description = "Download market data from Yahoo! Finance API"
optional = false
python-versions = "*"
files = [
{file = "yfinance-0.2.52-py2.py3-none-any.whl", hash = "sha256:3ca150da85f56b999687e13b72304338499a417d5bad6af9da2aa13821992bd7"},
{file = "yfinance-0.2.52.tar.gz", hash = "sha256:d2c2ed9bc935596934cba99fca0f05beaa8384648f78105c77754e92f11bf72f"},
{file = "yfinance-0.2.54-py2.py3-none-any.whl", hash = "sha256:8754f90332158d5d19bf754c1b230864ca2d1d313182a3f94a7bc7718bbe7d90"},
{file = "yfinance-0.2.54.tar.gz", hash = "sha256:a4ab8e2ecba4fda5a36bff0bdc602a014adc732e5eda5d3ac283836ce40356e8"},
]
[package.dependencies]
beautifulsoup4 = ">=4.11.1"
frozendict = ">=2.3.4"
html5lib = ">=1.1"
lxml = ">=4.9.1"
multitasking = ">=0.0.7"
numpy = ">=1.16.5"
pandas = ">=1.3.0"
@@ -11504,4 +11503,4 @@ cffi = ["cffi (>=1.11)"]
[metadata]
lock-version = "2.0"
python-versions = ">=3.11,<3.13"
content-hash = "d4de56bf4d990ae926ccf65936d36dcce4b91273fabe2367b24f2d45d56d55d4"
content-hash = "b4ce96c3bfb9ee46ef28b9372f6fc538c133d3c6d423cf3ec8e3fdf6208a611b"

View File

@@ -21,7 +21,7 @@ azure-ai-inference = "~1.0.0b8"
azure-ai-ml = "~1.20.0"
azure-identity = "1.16.1"
beautifulsoup4 = "4.12.2"
boto3 = "1.36.12"
boto3 = "1.35.74"
bs4 = "~0.0.1"
cachetools = "~5.3.0"
celery = "~5.4.0"
@@ -88,7 +88,7 @@ tencentcloud-sdk-python-hunyuan = "~3.0.1294"
tiktoken = "~0.8.0"
tokenizers = "~0.15.0"
transformers = "~4.35.0"
unstructured = { version = "~0.16.13", extras = ["docx", "epub", "md", "msg", "ppt", "pptx"] }
unstructured = { version = "~0.16.1", extras = ["docx", "epub", "md", "msg", "ppt", "pptx"] }
validators = "0.21.0"
volcengine-python-sdk = {extras = ["ark"], version = "~1.0.98"}
websocket-client = "~1.7.0"

View File

@@ -77,7 +77,6 @@ class AccountService:
prefix="email_code_account_deletion_rate_limit", max_attempts=1, time_window=60 * 1
)
LOGIN_MAX_ERROR_LIMITS = 5
FORGOT_PASSWORD_MAX_ERROR_LIMITS = 5
@staticmethod
def _get_refresh_token_key(refresh_token: str) -> str:
@@ -504,32 +503,6 @@ class AccountService:
key = f"login_error_rate_limit:{email}"
redis_client.delete(key)
@staticmethod
def add_forgot_password_error_rate_limit(email: str) -> None:
key = f"forgot_password_error_rate_limit:{email}"
count = redis_client.get(key)
if count is None:
count = 0
count = int(count) + 1
redis_client.setex(key, dify_config.FORGOT_PASSWORD_LOCKOUT_DURATION, count)
@staticmethod
def is_forgot_password_error_rate_limit(email: str) -> bool:
key = f"forgot_password_error_rate_limit:{email}"
count = redis_client.get(key)
if count is None:
return False
count = int(count)
if count > AccountService.FORGOT_PASSWORD_MAX_ERROR_LIMITS:
return True
return False
@staticmethod
def reset_forgot_password_error_rate_limit(email: str):
key = f"forgot_password_error_rate_limit:{email}"
redis_client.delete(key)
@staticmethod
def is_email_send_ip_limit(ip_address: str):
minute_key = f"email_send_ip_limit_minute:{ip_address}"

View File

@@ -47,7 +47,7 @@ class HitTestingService:
all_documents = RetrievalService.retrieve(
retrieval_method=retrieval_model.get("search_method", "semantic_search"),
dataset_id=dataset.id,
query=query,
query=cls.escape_query_for_search(query),
top_k=retrieval_model.get("top_k", 2),
score_threshold=retrieval_model.get("score_threshold", 0.0)
if retrieval_model["score_threshold_enabled"]

View File

@@ -1,59 +0,0 @@
import time
import pymysql
def check_tiflash_ready() -> bool:
try:
connection = pymysql.connect(
host="localhost",
port=4000,
user="root",
password="",
)
with connection.cursor() as cursor:
# Doc reference:
# https://docs.pingcap.com/zh/tidb/stable/information-schema-cluster-hardware
select_tiflash_query = """
SELECT * FROM information_schema.cluster_hardware
WHERE TYPE='tiflash'
LIMIT 1;
"""
cursor.execute(select_tiflash_query)
result = cursor.fetchall()
return result is not None and len(result) > 0
except Exception as e:
print(f"TiFlash is not ready. Exception: {e}")
return False
finally:
if connection:
connection.close()
def main():
max_attempts = 30
retry_interval_seconds = 2
is_tiflash_ready = False
for attempt in range(max_attempts):
try:
is_tiflash_ready = check_tiflash_ready()
except Exception as e:
print(f"TiFlash is not ready. Exception: {e}")
is_tiflash_ready = False
if is_tiflash_ready:
break
else:
print(f"Attempt {attempt + 1} failedretry in {retry_interval_seconds} seconds...")
time.sleep(retry_interval_seconds)
if is_tiflash_ready:
print("TiFlash is ready in TiDB.")
else:
print(f"TiFlash is not ready in TiDB after {max_attempts} attempting checks.")
exit(1)
if __name__ == "__main__":
main()

View File

@@ -8,7 +8,7 @@ from core.variables.variables import StringVariable
from core.workflow.entities.node_entities import NodeRunResult
from core.workflow.nodes.document_extractor import DocumentExtractorNode, DocumentExtractorNodeData
from core.workflow.nodes.document_extractor.node import (
_extract_text_from_docx,
_extract_text_from_doc,
_extract_text_from_pdf,
_extract_text_from_plain_text,
)
@@ -120,7 +120,7 @@ def test_run_extract_text(
monkeypatch.setattr("core.workflow.nodes.document_extractor.node._extract_text_from_pdf", mock_pdf_extract)
elif mime_type.startswith("application/vnd.openxmlformats"):
mock_docx_extract = Mock(return_value=expected_text[0])
monkeypatch.setattr("core.workflow.nodes.document_extractor.node._extract_text_from_docx", mock_docx_extract)
monkeypatch.setattr("core.workflow.nodes.document_extractor.node._extract_text_from_doc", mock_docx_extract)
result = document_extractor_node._run()
@@ -163,14 +163,14 @@ def test_extract_text_from_pdf(mock_pdf_document):
@patch("docx.Document")
def test_extract_text_from_docx(mock_document):
def test_extract_text_from_doc(mock_document):
mock_paragraph1 = Mock()
mock_paragraph1.text = "Paragraph 1"
mock_paragraph2 = Mock()
mock_paragraph2.text = "Paragraph 2"
mock_document.return_value.paragraphs = [mock_paragraph1, mock_paragraph2]
text = _extract_text_from_docx(b"PK\x03\x04")
text = _extract_text_from_doc(b"PK\x03\x04")
assert text == "Paragraph 1\nParagraph 2"

View File

@@ -887,10 +887,6 @@ SSRF_HTTP_PORT=3128
SSRF_COREDUMP_DIR=/var/spool/squid
SSRF_REVERSE_PROXY_PORT=8194
SSRF_SANDBOX_HOST=sandbox
SSRF_DEFAULT_TIME_OUT=5
SSRF_DEFAULT_CONNECT_TIME_OUT=5
SSRF_DEFAULT_READ_TIME_OUT=5
SSRF_DEFAULT_WRITE_TIME_OUT=5
# ------------------------------
# docker env var for specifying vector db type at startup

View File

@@ -199,6 +199,16 @@ services:
- '${EXPOSE_NGINX_PORT:-80}:${NGINX_PORT:-80}'
- '${EXPOSE_NGINX_SSL_PORT:-443}:${NGINX_SSL_PORT:-443}'
# The TiDB vector store.
# For production use, please refer to https://github.com/pingcap/tidb-docker-compose
tidb:
image: pingcap/tidb:v8.4.0
profiles:
- tidb
command:
- --store=unistore
restart: always
# The Weaviate vector store.
weaviate:
image: semitechnologies/weaviate:1.19.0

View File

@@ -377,10 +377,6 @@ x-shared-env: &shared-api-worker-env
SSRF_COREDUMP_DIR: ${SSRF_COREDUMP_DIR:-/var/spool/squid}
SSRF_REVERSE_PROXY_PORT: ${SSRF_REVERSE_PROXY_PORT:-8194}
SSRF_SANDBOX_HOST: ${SSRF_SANDBOX_HOST:-sandbox}
SSRF_DEFAULT_TIME_OUT: ${SSRF_DEFAULT_TIME_OUT:-5}
SSRF_DEFAULT_CONNECT_TIME_OUT: ${SSRF_DEFAULT_CONNECT_TIME_OUT:-5}
SSRF_DEFAULT_READ_TIME_OUT: ${SSRF_DEFAULT_READ_TIME_OUT:-5}
SSRF_DEFAULT_WRITE_TIME_OUT: ${SSRF_DEFAULT_WRITE_TIME_OUT:-5}
EXPOSE_NGINX_PORT: ${EXPOSE_NGINX_PORT:-80}
EXPOSE_NGINX_SSL_PORT: ${EXPOSE_NGINX_SSL_PORT:-443}
POSITION_TOOL_PINS: ${POSITION_TOOL_PINS:-}
@@ -594,6 +590,16 @@ services:
- '${EXPOSE_NGINX_PORT:-80}:${NGINX_PORT:-80}'
- '${EXPOSE_NGINX_SSL_PORT:-443}:${NGINX_SSL_PORT:-443}'
# The TiDB vector store.
# For production use, please refer to https://github.com/pingcap/tidb-docker-compose
tidb:
image: pingcap/tidb:v8.4.0
profiles:
- tidb
command:
- --store=unistore
restart: always
# The Weaviate vector store.
weaviate:
image: semitechnologies/weaviate:1.19.0

View File

@@ -3,7 +3,6 @@
proxy_set_header Host $host;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;
proxy_set_header X-Forwarded-Port $server_port;
proxy_http_version 1.1;
proxy_set_header Connection "";
proxy_buffering off;

View File

@@ -7,7 +7,6 @@ acl localnet src 192.168.0.0/16 # RFC 1918 local private network (LAN)
acl localnet src fc00::/7 # RFC 4193 local private network range
acl localnet src fe80::/10 # RFC 4291 link-local (directly plugged) machines
acl SSL_ports port 443
# acl SSL_ports port 1025-65535 # Enable the configuration to resolve this issue: https://github.com/langgenius/dify/issues/12792
acl Safe_ports port 80 # http
acl Safe_ports port 21 # ftp
acl Safe_ports port 443 # https

View File

@@ -1,4 +0,0 @@
# PD Configuration File reference:
# https://docs.pingcap.com/tidb/stable/pd-configuration-file#pd-configuration-file
[replication]
max-replicas = 1

View File

@@ -1,13 +0,0 @@
# TiFlash tiflash-learner.toml Configuration File reference:
# https://docs.pingcap.com/tidb/stable/tiflash-configuration#configure-the-tiflash-learnertoml-file
log-file = "/logs/tiflash_tikv.log"
[server]
engine-addr = "tiflash:4030"
addr = "0.0.0.0:20280"
advertise-addr = "tiflash:20280"
status-addr = "tiflash:20292"
[storage]
data-dir = "/data/flash"

View File

@@ -1,19 +0,0 @@
# TiFlash tiflash.toml Configuration File reference:
# https://docs.pingcap.com/tidb/stable/tiflash-configuration#configure-the-tiflashtoml-file
listen_host = "0.0.0.0"
path = "/data"
[flash]
tidb_status_addr = "tidb:10080"
service_addr = "tiflash:4030"
[flash.proxy]
config = "/tiflash-learner.toml"
[logger]
errorlog = "/logs/tiflash_error.log"
log = "/logs/tiflash.log"
[raft]
pd_addr = "pd0:2379"

View File

@@ -1,62 +0,0 @@
services:
pd0:
image: pingcap/pd:v8.5.1
# ports:
# - "2379"
volumes:
- ./config/pd.toml:/pd.toml:ro
- ./volumes/data:/data
- ./volumes/logs:/logs
command:
- --name=pd0
- --client-urls=http://0.0.0.0:2379
- --peer-urls=http://0.0.0.0:2380
- --advertise-client-urls=http://pd0:2379
- --advertise-peer-urls=http://pd0:2380
- --initial-cluster=pd0=http://pd0:2380
- --data-dir=/data/pd
- --config=/pd.toml
- --log-file=/logs/pd.log
restart: on-failure
tikv:
image: pingcap/tikv:v8.5.1
volumes:
- ./volumes/data:/data
- ./volumes/logs:/logs
command:
- --addr=0.0.0.0:20160
- --advertise-addr=tikv:20160
- --status-addr=tikv:20180
- --data-dir=/data/tikv
- --pd=pd0:2379
- --log-file=/logs/tikv.log
depends_on:
- "pd0"
restart: on-failure
tidb:
image: pingcap/tidb:v8.5.1
# ports:
# - "4000:4000"
volumes:
- ./volumes/logs:/logs
command:
- --advertise-address=tidb
- --store=tikv
- --path=pd0:2379
- --log-file=/logs/tidb.log
depends_on:
- "tikv"
restart: on-failure
tiflash:
image: pingcap/tiflash:v8.5.1
volumes:
- ./config/tiflash.toml:/tiflash.toml:ro
- ./config/tiflash-learner.toml:/tiflash-learner.toml:ro
- ./volumes/data:/data
- ./volumes/logs:/logs
command:
- --config=/tiflash.toml
depends_on:
- "tikv"
- "tidb"
restart: on-failure

View File

@@ -146,8 +146,7 @@ const AppDetailLayout: FC<IAppDetailLayoutProps> = (props) => {
})
}
}
// eslint-disable-next-line react-hooks/exhaustive-deps
}, [appDetailRes, appId, getNavigations, isCurrentWorkspaceEditor, isLoadingAppDetail, isLoadingCurrentWorkspace, router, setAppDetail, systemFeatures.enable_web_sso_switch_component])
}, [appDetailRes, appId, getNavigations, isCurrentWorkspaceEditor, isLoadingAppDetail, isLoadingCurrentWorkspace, pathname, router, setAppDetail, systemFeatures.enable_web_sso_switch_component])
useUnmount(() => {
setAppDetail()
@@ -162,9 +161,9 @@ const AppDetailLayout: FC<IAppDetailLayoutProps> = (props) => {
}
return (
<div className={cn(s.app, 'flex relative', 'overflow-hidden')}>
<div className={cn(s.app, 'flex', 'overflow-hidden')}>
{appDetail && (
<AppSideBar title={appDetail.name} icon={appDetail.icon} icon_background={appDetail.icon_background as string} desc={appDetail.mode} navigation={navigation} />
<AppSideBar title={appDetail.name} icon={appDetail.icon} icon_background={appDetail.icon_background} desc={appDetail.mode} navigation={navigation} />
)}
<div className="bg-components-panel-bg grow overflow-hidden">
{children}

View File

@@ -24,11 +24,9 @@ import AppContext from '@/context/app-context'
export type ICardViewProps = {
appId: string
isInPanel?: boolean
className?: string
}
const CardView: FC<ICardViewProps> = ({ appId, isInPanel, className }) => {
const CardView: FC<ICardViewProps> = ({ appId }) => {
const { t } = useTranslation()
const { notify } = useContext(ToastContext)
const appDetail = useAppStore(state => state.appDetail)
@@ -122,11 +120,10 @@ const CardView: FC<ICardViewProps> = ({ appId, isInPanel, className }) => {
return <Loading />
return (
<div className={className || 'grid gap-6 grid-cols-1 xl:grid-cols-2 w-full mb-6'}>
<div className="grid gap-6 grid-cols-1 xl:grid-cols-2 w-full mb-6">
<AppCard
appInfo={appDetail}
cardType="webapp"
isInPanel={isInPanel}
onChangeStatus={onChangeSiteStatus}
onGenerateCode={onGenerateCode}
onSaveSiteConfig={onSaveSiteConfig}
@@ -134,7 +131,6 @@ const CardView: FC<ICardViewProps> = ({ appId, isInPanel, className }) => {
<AppCard
cardType="api"
appInfo={appDetail}
isInPanel={isInPanel}
onChangeStatus={onChangeApiStatus}
/>
</div>

View File

@@ -31,6 +31,8 @@ const ApiServer: FC<ApiServerProps> = ({
</div>
<SecretKeyButton
className='flex-shrink-0 !h-8 bg-white'
textCls='!text-gray-700 font-medium'
iconCls='stroke-[1.2px]'
/>
</div>
)

View File

@@ -1,18 +1,18 @@
import { useTranslation } from 'react-i18next'
import { useRouter } from 'next/navigation'
import { useContext, useContextSelector } from 'use-context-selector'
import { RiArrowDownSLine } from '@remixicon/react'
import React, { useCallback, useState } from 'react'
import {
RiDeleteBinLine,
RiEditLine,
RiEqualizer2Line,
RiFileCopy2Line,
RiFileDownloadLine,
RiFileUploadLine,
} from '@remixicon/react'
import AppIcon from '../base/app-icon'
import SwitchAppModal from '../app/switch-app-modal'
import s from './style.module.css'
import cn from '@/utils/classnames'
import {
PortalToFollowElem,
PortalToFollowElemContent,
PortalToFollowElemTrigger,
} from '@/app/components/base/portal-to-follow-elem'
import Divider from '@/app/components/base/divider'
import Confirm from '@/app/components/base/confirm'
import { useStore as useAppStore } from '@/app/components/app/store'
import { ToastContext } from '@/app/components/base/toast'
@@ -22,6 +22,8 @@ import { copyApp, deleteApp, exportAppConfig, updateAppInfo } from '@/service/ap
import DuplicateAppModal from '@/app/components/app/duplicate-modal'
import type { DuplicateAppModalProps } from '@/app/components/app/duplicate-modal'
import CreateAppModal from '@/app/components/explore/create-app-modal'
import { AiText, ChatBot, CuteRobot } from '@/app/components/base/icons/src/vender/solid/communication'
import { Route } from '@/app/components/base/icons/src/vender/solid/mapsAndTravel'
import type { CreateAppModalProps } from '@/app/components/explore/create-app-modal'
import { NEED_REFRESH_APP_LIST_KEY } from '@/config'
import { getRedirection } from '@/utils/app-redirection'
@@ -29,9 +31,6 @@ import UpdateDSLModal from '@/app/components/workflow/update-dsl-modal'
import type { EnvironmentVariable } from '@/app/components/workflow/types'
import DSLExportConfirmModal from '@/app/components/workflow/dsl-export-confirm-modal'
import { fetchWorkflowDraft } from '@/service/workflow'
import ContentDialog from '@/app/components/base/content-dialog'
import Button from '@/app/components/base/button'
import CardView from '@/app/(commonLayout)/app/(appDetailLayout)/[appId]/overview/cardView'
export type IAppInfoProps = {
expand: boolean
@@ -48,6 +47,7 @@ const AppInfo = ({ expand }: IAppInfoProps) => {
const [showEditModal, setShowEditModal] = useState(false)
const [showDuplicateModal, setShowDuplicateModal] = useState(false)
const [showConfirmDelete, setShowConfirmDelete] = useState(false)
const [showSwitchTip, setShowSwitchTip] = useState<string>('')
const [showSwitchModal, setShowSwitchModal] = useState<boolean>(false)
const [showImportDSLModal, setShowImportDSLModal] = useState<boolean>(false)
const [secretEnvList, setSecretEnvList] = useState<EnvironmentVariable[]>([])
@@ -183,199 +183,291 @@ const AppInfo = ({ expand }: IAppInfoProps) => {
return null
return (
<div>
<button
onClick={() => {
if (isCurrentWorkspaceEditor)
setOpen(v => !v)
}}
className='block w-full'
>
<div className={cn('flex rounded-lg', expand ? 'p-2 pb-2.5 flex-col gap-2' : 'p-1 gap-1 justify-center items-start', open && 'bg-state-base-hover', isCurrentWorkspaceEditor && 'hover:bg-state-base-hover cursor-pointer')}>
<div className={`flex items-center self-stretch ${expand ? 'justify-between' : 'flex-col gap-1'}`}>
<AppIcon
size={expand ? 'large' : 'small'}
iconType={appDetail.icon_type}
icon={appDetail.icon}
background={appDetail.icon_background}
imageUrl={appDetail.icon_url}
/>
<div className='flex p-0.5 justify-center items-center rounded-md'>
<div className='flex w-5 h-5 justify-center items-center'>
<RiEqualizer2Line className='w-4 h-4 text-text-tertiary' />
</div>
<PortalToFollowElem
open={open}
onOpenChange={setOpen}
placement='bottom-start'
offset={4}
>
<div className='relative'>
<PortalToFollowElemTrigger
onClick={() => {
if (isCurrentWorkspaceEditor)
setOpen(v => !v)
}}
className='block'
>
<div className={cn('flex p-1 rounded-lg', open && 'bg-gray-100', isCurrentWorkspaceEditor && 'hover:bg-gray-100 cursor-pointer')}>
<div className='relative shrink-0 mr-2'>
<AppIcon
size={expand ? 'large' : 'small'}
iconType={appDetail.icon_type}
icon={appDetail.icon}
background={appDetail.icon_background}
imageUrl={appDetail.icon_url}
/>
<span className={cn(
'absolute bottom-[-3px] right-[-3px] w-4 h-4 p-0.5 bg-white rounded border-[0.5px] border-[rgba(0,0,0,0.02)] shadow-sm',
!expand && '!w-3.5 !h-3.5 !bottom-[-2px] !right-[-2px]',
)}>
{appDetail.mode === 'advanced-chat' && (
<ChatBot className={cn('w-3 h-3 text-[#1570EF]', !expand && '!w-2.5 !h-2.5')} />
)}
{appDetail.mode === 'agent-chat' && (
<CuteRobot className={cn('w-3 h-3 text-indigo-600', !expand && '!w-2.5 !h-2.5')} />
)}
{appDetail.mode === 'chat' && (
<ChatBot className={cn('w-3 h-3 text-[#1570EF]', !expand && '!w-2.5 !h-2.5')} />
)}
{appDetail.mode === 'completion' && (
<AiText className={cn('w-3 h-3 text-[#0E9384]', !expand && '!w-2.5 !h-2.5')} />
)}
{appDetail.mode === 'workflow' && (
<Route className={cn('w-3 h-3 text-[#f79009]', !expand && '!w-2.5 !h-2.5')} />
)}
</span>
</div>
</div>
{
expand && (
<div className='flex flex-col items-start gap-1'>
<div className='flex w-full'>
<div className='text-text-secondary system-md-semibold truncate'>{appDetail.name}</div>
{expand && (
<div className="grow w-0">
<div className='flex justify-between items-center text-sm leading-5 font-medium text-text-secondary'>
<div className='truncate' title={appDetail.name}>{appDetail.name}</div>
{isCurrentWorkspaceEditor && <RiArrowDownSLine className='shrink-0 ml-[2px] w-3 h-3 text-gray-500' />}
</div>
<div className='flex items-center text-[10px] leading-[18px] font-medium text-gray-500 gap-1'>
{appDetail.mode === 'advanced-chat' && (
<>
<div className='shrink-0 px-1 border bg-white border-[rgba(0,0,0,0.08)] rounded-[5px] truncate'>{t('app.types.chatbot').toUpperCase()}</div>
<div title={t('app.types.advanced') || ''} className='px-1 border bg-white border-[rgba(0,0,0,0.08)] rounded-[5px] truncate'>{t('app.types.advanced').toUpperCase()}</div>
</>
)}
{appDetail.mode === 'agent-chat' && (
<div className='shrink-0 px-1 border bg-white border-[rgba(0,0,0,0.08)] rounded-[5px] truncate'>{t('app.types.agent').toUpperCase()}</div>
)}
{appDetail.mode === 'chat' && (
<>
<div className='shrink-0 px-1 border bg-white border-[rgba(0,0,0,0.08)] rounded-[5px] truncate'>{t('app.types.chatbot').toUpperCase()}</div>
<div title={t('app.types.basic') || ''} className='px-1 border bg-white border-[rgba(0,0,0,0.08)] rounded-[5px] truncate'>{(t('app.types.basic').toUpperCase())}</div>
</>
)}
{appDetail.mode === 'completion' && (
<>
<div className='shrink-0 px-1 border bg-white border-[rgba(0,0,0,0.08)] rounded-[5px] truncate'>{t('app.types.completion').toUpperCase()}</div>
<div title={t('app.types.basic') || ''} className='px-1 border bg-white border-[rgba(0,0,0,0.08)] rounded-[5px] truncate'>{(t('app.types.basic').toUpperCase())}</div>
</>
)}
{appDetail.mode === 'workflow' && (
<div className='shrink-0 px-1 border bg-white border-[rgba(0,0,0,0.08)] rounded-[5px] truncate'>{t('app.types.workflow').toUpperCase()}</div>
)}
</div>
<div className='text-text-tertiary system-2xs-medium-uppercase'>{appDetail.mode === 'advanced-chat' ? t('app.types.chatbot') : appDetail.mode === 'agent-chat' ? t('app.types.agent') : appDetail.mode === 'chat' ? t('app.types.chatbot') : appDetail.mode === 'completion' ? t('app.types.completion') : t('app.types.workflow')}</div>
</div>
)
}
</div>
</button>
<ContentDialog
show={open}
onClose={() => setOpen(false)}
className='!p-0 flex flex-col absolute left-2 top-2 bottom-2 w-[420px] rounded-2xl'
>
<div className='flex p-4 flex-col justify-center items-start gap-3 self-stretch shrink-0'>
<div className='flex items-center gap-3 self-stretch'>
<AppIcon
size="large"
iconType={appDetail.icon_type}
icon={appDetail.icon}
background={appDetail.icon_background}
imageUrl={appDetail.icon_url}
/>
<div className='flex flex-col justify-center items-start grow w-full'>
<div className='text-text-secondary system-md-semibold truncate w-full'>{appDetail.name}</div>
<div className='text-text-tertiary system-2xs-medium-uppercase'>{appDetail.mode === 'advanced-chat' ? t('app.types.chatbot') : appDetail.mode === 'agent-chat' ? t('app.types.agent') : appDetail.mode === 'chat' ? t('app.types.chatbot') : appDetail.mode === 'completion' ? t('app.types.completion') : t('app.types.workflow')}</div>
</div>
)}
</div>
{/* description */}
{appDetail.description && (
<div className='text-text-tertiary system-xs-regular'>{appDetail.description}</div>
)}
{/* operations */}
<div className='flex items-center gap-1 self-stretch'>
<Button
size={'small'}
variant={'secondary'}
className='gap-[1px]'
onClick={() => {
</PortalToFollowElemTrigger>
<PortalToFollowElemContent className='z-[1002]'>
<div className='relative w-[320px] bg-white rounded-2xl shadow-xl'>
{/* header */}
<div className={cn('flex pl-4 pt-3 pr-3', !appDetail.description && 'pb-2')}>
<div className='relative shrink-0 mr-2'>
<AppIcon
size="large"
iconType={appDetail.icon_type}
icon={appDetail.icon}
background={appDetail.icon_background}
imageUrl={appDetail.icon_url}
/>
<span className='absolute bottom-[-3px] right-[-3px] w-4 h-4 p-0.5 bg-white rounded border-[0.5px] border-[rgba(0,0,0,0.02)] shadow-sm'>
{appDetail.mode === 'advanced-chat' && (
<ChatBot className='w-3 h-3 text-[#1570EF]' />
)}
{appDetail.mode === 'agent-chat' && (
<CuteRobot className='w-3 h-3 text-indigo-600' />
)}
{appDetail.mode === 'chat' && (
<ChatBot className='w-3 h-3 text-[#1570EF]' />
)}
{appDetail.mode === 'completion' && (
<AiText className='w-3 h-3 text-[#0E9384]' />
)}
{appDetail.mode === 'workflow' && (
<Route className='w-3 h-3 text-[#f79009]' />
)}
</span>
</div>
<div className='grow w-0'>
<div title={appDetail.name} className='flex justify-between items-center text-sm leading-5 font-medium text-gray-900 truncate'>{appDetail.name}</div>
<div className='flex items-center text-[10px] leading-[18px] font-medium text-gray-500 gap-1'>
{appDetail.mode === 'advanced-chat' && (
<>
<div className='shrink-0 px-1 border bg-white border-[rgba(0,0,0,0.08)] rounded-[5px] truncate'>{t('app.types.chatbot').toUpperCase()}</div>
<div title={t('app.types.advanced') || ''} className='px-1 border bg-white border-[rgba(0,0,0,0.08)] rounded-[5px] truncate'>{t('app.types.advanced').toUpperCase()}</div>
</>
)}
{appDetail.mode === 'agent-chat' && (
<div className='shrink-0 px-1 border bg-white border-[rgba(0,0,0,0.08)] rounded-[5px] truncate'>{t('app.types.agent').toUpperCase()}</div>
)}
{appDetail.mode === 'chat' && (
<>
<div className='shrink-0 px-1 border bg-white border-[rgba(0,0,0,0.08)] rounded-[5px] truncate'>{t('app.types.chatbot').toUpperCase()}</div>
<div title={t('app.types.basic') || ''} className='px-1 border bg-white border-[rgba(0,0,0,0.08)] rounded-[5px] truncate'>{(t('app.types.basic').toUpperCase())}</div>
</>
)}
{appDetail.mode === 'completion' && (
<>
<div className='shrink-0 px-1 border bg-white border-[rgba(0,0,0,0.08)] rounded-[5px] truncate'>{t('app.types.completion').toUpperCase()}</div>
<div title={t('app.types.basic') || ''} className='px-1 border bg-white border-[rgba(0,0,0,0.08)] rounded-[5px] truncate'>{(t('app.types.basic').toUpperCase())}</div>
</>
)}
{appDetail.mode === 'workflow' && (
<div className='shrink-0 px-1 border bg-white border-[rgba(0,0,0,0.08)] rounded-[5px] truncate'>{t('app.types.workflow').toUpperCase()}</div>
)}
</div>
</div>
</div>
{/* description */}
{appDetail.description && (
<div className='px-4 py-2 text-gray-500 text-xs leading-[18px]'>{appDetail.description}</div>
)}
{/* operations */}
<Divider className="!my-1" />
<div className="w-full py-1">
<div className='h-9 py-2 px-3 mx-1 flex items-center hover:bg-gray-50 rounded-lg cursor-pointer' onClick={() => {
setOpen(false)
setShowEditModal(true)
}}
>
<RiEditLine className='w-3.5 h-3.5 text-components-button-secondary-text' />
<span className='text-components-button-secondary-text system-xs-medium'>{t('app.editApp')}</span>
</Button>
<Button
size={'small'}
variant={'secondary'}
className='gap-[1px]'
onClick={() => {
}}>
<span className='text-gray-700 text-sm leading-5'>{t('app.editApp')}</span>
</div>
<div className='h-9 py-2 px-3 mx-1 flex items-center hover:bg-gray-50 rounded-lg cursor-pointer' onClick={() => {
setOpen(false)
setShowDuplicateModal(true)
}}
}}>
<span className='text-gray-700 text-sm leading-5'>{t('app.duplicate')}</span>
</div>
{(appDetail.mode === 'completion' || appDetail.mode === 'chat') && (
<>
<Divider className="!my-1" />
<div
className='h-9 py-2 px-3 mx-1 flex items-center hover:bg-gray-50 rounded-lg cursor-pointer'
onMouseEnter={() => setShowSwitchTip(appDetail.mode)}
onMouseLeave={() => setShowSwitchTip('')}
onClick={() => {
setOpen(false)
setShowSwitchModal(true)
}}
>
<span className='text-gray-700 text-sm leading-5'>{t('app.switch')}</span>
</div>
</>
)}
<Divider className="!my-1" />
<div className='h-9 py-2 px-3 mx-1 flex items-center hover:bg-gray-50 rounded-lg cursor-pointer' onClick={exportCheck}>
<span className='text-gray-700 text-sm leading-5'>{t('app.export')}</span>
</div>
{
(appDetail.mode === 'advanced-chat' || appDetail.mode === 'workflow') && (
<div
className='h-9 py-2 px-3 mx-1 flex items-center hover:bg-gray-50 rounded-lg cursor-pointer'
onClick={() => {
setOpen(false)
setShowImportDSLModal(true)
}}>
<span className='text-gray-700 text-sm leading-5'>{t('workflow.common.importDSL')}</span>
</div>
)
}
<Divider className="!my-1" />
<div className='group h-9 py-2 px-3 mx-1 flex items-center hover:bg-red-50 rounded-lg cursor-pointer' onClick={() => {
setOpen(false)
setShowConfirmDelete(true)
}}>
<span className='text-gray-700 text-sm leading-5 group-hover:text-red-500'>
{t('common.operation.delete')}
</span>
</div>
</div>
{/* switch tip */}
<div
className={cn(
'hidden absolute left-[324px] top-0 w-[376px] rounded-xl bg-white border-[0.5px] border-[rgba(0,0,0,0.05)] shadow-lg',
showSwitchTip && '!block',
)}
>
<RiFileCopy2Line className='w-3.5 h-3.5 text-components-button-secondary-text' />
<span className='text-components-button-secondary-text system-xs-medium'>{t('app.duplicate')}</span>
</Button>
<Button
size={'small'}
variant={'secondary'}
className='gap-[1px]'
onClick={exportCheck}
>
<RiFileDownloadLine className='w-3.5 h-3.5 text-components-button-secondary-text' />
<span className='text-components-button-secondary-text system-xs-medium'>{t('app.export')}</span>
</Button>
{
(appDetail.mode === 'advanced-chat' || appDetail.mode === 'workflow') && (
<Button
size={'small'}
variant={'secondary'}
className='gap-[1px]'
onClick={() => {
setOpen(false)
setShowImportDSLModal(true)
}}
>
<RiFileUploadLine className='w-3.5 h-3.5 text-components-button-secondary-text' />
<span className='text-components-button-secondary-text system-xs-medium'>{t('workflow.common.importDSL')}</span>
</Button>
)
}
<div className={cn(
'w-full h-[256px] bg-center bg-no-repeat bg-contain rounded-xl',
showSwitchTip === 'chat' && s.expertPic,
showSwitchTip === 'completion' && s.completionPic,
)} />
<div className='px-4 pb-2'>
<div className='flex items-center gap-1 text-gray-700 text-md leading-6 font-semibold'>
{showSwitchTip === 'chat' ? t('app.types.advanced') : t('app.types.workflow')}
<span className='px-1 rounded-[5px] bg-white border border-black/8 text-gray-500 text-[10px] leading-[18px] font-medium'>BETA</span>
</div>
<div className='text-orange-500 text-xs leading-[18px] font-medium'>{t('app.newApp.advancedFor').toLocaleUpperCase()}</div>
<div className='mt-1 text-gray-500 text-sm leading-5'>{t('app.newApp.advancedDescription')}</div>
</div>
</div>
</div>
</div>
<div className='flex flex-1'>
<CardView
appId={appDetail.id}
isInPanel={true}
className='flex flex-col px-2 py-1 gap-2 grow overflow-auto'
</PortalToFollowElemContent>
{showSwitchModal && (
<SwitchAppModal
inAppDetail
show={showSwitchModal}
appDetail={appDetail}
onClose={() => setShowSwitchModal(false)}
onSuccess={() => setShowSwitchModal(false)}
/>
</div>
<div className='flex p-2 flex-col justify-center items-start gap-3 self-stretch border-t-[0.5px] border-divider-subtle shrink-0 min-h-fit'>
<Button
size={'medium'}
variant={'ghost'}
className='gap-0.5'
onClick={() => {
setOpen(false)
setShowConfirmDelete(true)
}}
>
<RiDeleteBinLine className='w-4 h-4 text-text-tertiary' />
<span className='text-text-tertiary system-sm-medium'>{t('common.operation.deleteApp')}</span>
</Button>
</div>
</ContentDialog>
{showSwitchModal && (
<SwitchAppModal
inAppDetail
show={showSwitchModal}
appDetail={appDetail}
onClose={() => setShowSwitchModal(false)}
onSuccess={() => setShowSwitchModal(false)}
/>
)}
{showEditModal && (
<CreateAppModal
isEditModal
appName={appDetail.name}
appIconType={appDetail.icon_type}
appIcon={appDetail.icon}
appIconBackground={appDetail.icon_background}
appIconUrl={appDetail.icon_url}
appDescription={appDetail.description}
appMode={appDetail.mode}
appUseIconAsAnswerIcon={appDetail.use_icon_as_answer_icon}
show={showEditModal}
onConfirm={onEdit}
onHide={() => setShowEditModal(false)}
/>
)}
{showDuplicateModal && (
<DuplicateAppModal
appName={appDetail.name}
icon_type={appDetail.icon_type}
icon={appDetail.icon}
icon_background={appDetail.icon_background}
icon_url={appDetail.icon_url}
show={showDuplicateModal}
onConfirm={onCopy}
onHide={() => setShowDuplicateModal(false)}
/>
)}
{showConfirmDelete && (
<Confirm
title={t('app.deleteAppConfirmTitle')}
content={t('app.deleteAppConfirmContent')}
isShow={showConfirmDelete}
onConfirm={onConfirmDelete}
onCancel={() => setShowConfirmDelete(false)}
/>
)}
{showImportDSLModal && (
<UpdateDSLModal
onCancel={() => setShowImportDSLModal(false)}
onBackup={exportCheck}
/>
)}
{secretEnvList.length > 0 && (
<DSLExportConfirmModal
envList={secretEnvList}
onConfirm={onExport}
onClose={() => setSecretEnvList([])}
/>
)}
</div>
)}
{showEditModal && (
<CreateAppModal
isEditModal
appName={appDetail.name}
appIconType={appDetail.icon_type}
appIcon={appDetail.icon}
appIconBackground={appDetail.icon_background}
appIconUrl={appDetail.icon_url}
appDescription={appDetail.description}
appMode={appDetail.mode}
appUseIconAsAnswerIcon={appDetail.use_icon_as_answer_icon}
show={showEditModal}
onConfirm={onEdit}
onHide={() => setShowEditModal(false)}
/>
)}
{showDuplicateModal && (
<DuplicateAppModal
appName={appDetail.name}
icon_type={appDetail.icon_type}
icon={appDetail.icon}
icon_background={appDetail.icon_background}
icon_url={appDetail.icon_url}
show={showDuplicateModal}
onConfirm={onCopy}
onHide={() => setShowDuplicateModal(false)}
/>
)}
{showConfirmDelete && (
<Confirm
title={t('app.deleteAppConfirmTitle')}
content={t('app.deleteAppConfirmContent')}
isShow={showConfirmDelete}
onConfirm={onConfirmDelete}
onCancel={() => setShowConfirmDelete(false)}
/>
)}
{showImportDSLModal && (
<UpdateDSLModal
onCancel={() => setShowImportDSLModal(false)}
onBackup={exportCheck}
/>
)}
{secretEnvList.length > 0 && (
<DSLExportConfirmModal
envList={secretEnvList}
onConfirm={onExport}
onClose={() => setSecretEnvList([])}
/>
)}
</div>
</PortalToFollowElem>
)
}

View File

@@ -58,7 +58,7 @@ export default function AppBasic({ icon, icon_background, name, isExternal, type
const { t } = useTranslation()
return (
<div className="flex items-center grow">
<div className="flex items-start p-1">
{icon && icon_background && iconType === 'app' && (
<div className='flex-shrink-0 mr-3'>
<AppIcon icon={icon} background={icon_background} />
@@ -71,10 +71,8 @@ export default function AppBasic({ icon, icon_background, name, isExternal, type
}
{mode === 'expand' && <div className="group">
<div className={`flex flex-row items-center system-md-semibold text-text-secondary group-hover:text-text-primary ${textStyle?.main ?? ''}`}>
<div className="max-w-[180px] truncate">
{name}
</div>
<div className={`flex flex-row items-center text-sm font-semibold text-gray-700 group-hover:text-gray-900 break-all ${textStyle?.main ?? ''}`}>
{name}
{hoverTip
&& <Tooltip
popupContent={
@@ -88,6 +86,7 @@ export default function AppBasic({ icon, icon_background, name, isExternal, type
/>
}
</div>
<div className={`text-xs font-normal text-gray-500 group-hover:text-gray-700 break-all ${textStyle?.extra ?? ''}`}>{type}</div>
<div className='text-text-tertiary system-2xs-medium-uppercase'>{isExternal ? t('dataset.externalTag') : ''}</div>
</div>}
</div>

View File

@@ -57,7 +57,7 @@ const AppDetailNav = ({ title, desc, isExternal, icon, icon_background, navigati
<div
className={`
shrink-0
${expand ? 'p-2' : 'p-1'}
${expand ? 'p-3' : 'p-2'}
`}
>
{iconType === 'app' && (

View File

@@ -1,14 +1,14 @@
'use client'
import type { HTMLProps } from 'react'
import React, { useMemo, useState } from 'react'
import {
Cog8ToothIcon,
DocumentTextIcon,
PaintBrushIcon,
RocketLaunchIcon,
} from '@heroicons/react/24/outline'
import { usePathname, useRouter } from 'next/navigation'
import { useTranslation } from 'react-i18next'
import {
RiBookOpenLine,
RiEqualizer2Line,
RiExternalLinkLine,
RiPaintBrushLine,
RiWindowLine,
} from '@remixicon/react'
import SettingsModal from './settings'
import EmbeddedModal from './embedded'
import CustomizeModal from './customize'
@@ -18,6 +18,7 @@ import Tooltip from '@/app/components/base/tooltip'
import AppBasic from '@/app/components/app-sidebar/basic'
import { asyncRunSafe, randomString } from '@/utils'
import Button from '@/app/components/base/button'
import Tag from '@/app/components/base/tag'
import Switch from '@/app/components/base/switch'
import Divider from '@/app/components/base/divider'
import CopyFeedback from '@/app/components/base/copy-feedback'
@@ -27,12 +28,10 @@ import SecretKeyButton from '@/app/components/develop/secret-key/secret-key-butt
import type { AppDetailResponse } from '@/models/app'
import { useAppContext } from '@/context/app-context'
import type { AppSSO } from '@/types/app'
import Indicator from '@/app/components/header/indicator'
export type IAppCardProps = {
className?: string
appInfo: AppDetailResponse & Partial<AppSSO>
isInPanel?: boolean
cardType?: 'api' | 'webapp'
customBgColor?: string
onChangeStatus: (val: boolean) => Promise<void>
@@ -40,9 +39,12 @@ export type IAppCardProps = {
onGenerateCode?: () => Promise<void>
}
const EmbedIcon = ({ className = '' }: HTMLProps<HTMLDivElement>) => {
return <div className={`${style.codeBrowserIcon} ${className}`}></div>
}
function AppCard({
appInfo,
isInPanel,
cardType = 'webapp',
customBgColor,
onChangeStatus,
@@ -64,18 +66,17 @@ function AppCard({
const OPERATIONS_MAP = useMemo(() => {
const operationsMap = {
webapp: [
{ opName: t('appOverview.overview.appInfo.launch'), opIcon: RiExternalLinkLine },
{ opName: t('appOverview.overview.appInfo.preview'), opIcon: RocketLaunchIcon },
{ opName: t('appOverview.overview.appInfo.customize.entry'), opIcon: PaintBrushIcon },
] as { opName: string; opIcon: any }[],
api: [{ opName: t('appOverview.overview.apiInfo.doc'), opIcon: RiBookOpenLine }],
api: [{ opName: t('appOverview.overview.apiInfo.doc'), opIcon: DocumentTextIcon }],
app: [],
}
if (appInfo.mode !== 'completion' && appInfo.mode !== 'workflow')
operationsMap.webapp.push({ opName: t('appOverview.overview.appInfo.embedded.entry'), opIcon: RiWindowLine })
operationsMap.webapp.push({ opName: t('appOverview.overview.appInfo.customize.entry'), opIcon: RiPaintBrushLine })
operationsMap.webapp.push({ opName: t('appOverview.overview.appInfo.embedded.entry'), opIcon: EmbedIcon })
if (isCurrentWorkspaceEditor)
operationsMap.webapp.push({ opName: t('appOverview.overview.appInfo.settings.entry'), opIcon: RiEqualizer2Line })
operationsMap.webapp.push({ opName: t('appOverview.overview.appInfo.settings.entry'), opIcon: Cog8ToothIcon })
return operationsMap
}, [isCurrentWorkspaceEditor, appInfo, t])
@@ -91,9 +92,13 @@ function AppCard({
const appUrl = `${app_base_url}/${appMode}/${access_token}`
const apiUrl = appInfo?.api_base_url
let bgColor = 'bg-primary-50 bg-opacity-40'
if (cardType === 'api')
bgColor = 'bg-purple-50'
const genClickFuncByName = (opName: string) => {
switch (opName) {
case t('appOverview.overview.appInfo.launch'):
case t('appOverview.overview.appInfo.preview'):
return () => {
window.open(appUrl, '_blank')
}
@@ -130,50 +135,49 @@ function AppCard({
return (
<div
className={
`${isInPanel ? 'border-l-[0.5px] border-t' : 'shadow-xs border-[0.5px]'} rounded-xl border-effects-highlight w-full max-w-full ${className ?? ''}`}
`shadow-xs border-[0.5px] rounded-lg border-gray-200 ${className ?? ''}`}
>
<div className={`${customBgColor ?? 'bg-background-default'} rounded-xl`}>
<div className='flex flex-col p-3 justify-center items-start gap-3 self-stretch border-b-[0.5px] border-divider-subtle w-full'>
<div className='flex items-center gap-3 self-stretch w-full'>
<AppBasic
iconType={cardType}
icon={appInfo.icon}
icon_background={appInfo.icon_background}
name={basicName}
type={
isApp
? t('appOverview.overview.appInfo.explanation')
: t('appOverview.overview.apiInfo.explanation')
}
/>
<div className='flex items-center gap-1'>
<Indicator color={runningStatus ? 'green' : 'yellow'} />
<div className={`${runningStatus ? 'text-text-success' : 'text-text-warning'} system-xs-semibold-uppercase`}>
{runningStatus
? t('appOverview.overview.status.running')
: t('appOverview.overview.status.disable')}
</div>
</div>
<div className={`px-6 py-5 ${customBgColor ?? bgColor} rounded-lg`}>
<div className="mb-2.5 flex flex-row items-start justify-between">
<AppBasic
iconType={cardType}
icon={appInfo.icon}
icon_background={appInfo.icon_background}
name={basicName}
type={
isApp
? t('appOverview.overview.appInfo.explanation')
: t('appOverview.overview.apiInfo.explanation')
}
/>
<div className="flex flex-row items-center h-9">
<Tag className="mr-2" color={runningStatus ? 'green' : 'yellow'}>
{runningStatus
? t('appOverview.overview.status.running')
: t('appOverview.overview.status.disable')}
</Tag>
<Switch defaultValue={runningStatus} onChange={onChangeStatus} disabled={toggleDisabled} />
</div>
<div className='flex flex-col justify-center items-start self-stretch'>
<div className="pb-1 system-xs-medium text-text-tertiary">
</div>
<div className="flex flex-col justify-center py-2">
<div className="py-1">
<div className="pb-1 text-xs text-gray-500">
{isApp
? t('appOverview.overview.appInfo.accessibleAddress')
: t('appOverview.overview.apiInfo.accessibleAddress')}
</div>
<div className="w-full h-9 pl-2 p-1 bg-components-input-bg-normal rounded-lg items-center inline-flex gap-0.5">
<div className="h-4 px-1 justify-start items-start gap-2 flex flex-1 min-w-0">
<div className="text-text-secondary text-xs font-medium text-ellipsis overflow-hidden whitespace-nowrap">
<div className="w-full h-9 pl-2 pr-0.5 py-0.5 bg-black bg-opacity-2 rounded-lg border border-black border-opacity-5 justify-start items-center inline-flex">
<div className="h-4 px-2 justify-start items-start gap-2 flex flex-1 min-w-0">
<div className="text-gray-700 text-xs font-medium text-ellipsis overflow-hidden whitespace-nowrap">
{isApp ? appUrl : apiUrl}
</div>
</div>
<Divider type="vertical" className="!h-3.5 shrink-0 !mx-0.5" />
{isApp && <ShareQRCode content={isApp ? appUrl : apiUrl} selectorId={randomString(8)} className={'hover:bg-gray-200'} />}
<CopyFeedback
content={isApp ? appUrl : apiUrl}
className={'!size-6'}
className={'hover:bg-gray-200'}
/>
{isApp && <ShareQRCode content={isApp ? appUrl : apiUrl} className='z-50 !size-6 hover:bg-state-base-hover rounded-md' selectorId={randomString(8)} />}
{isApp && <Divider type="vertical" className="!h-3.5 shrink-0 !mx-0.5" />}
{/* button copy link/ button regenerate */}
{showConfirmDelete && (
<Confirm
@@ -193,7 +197,7 @@ function AppCard({
popupContent={t('appOverview.overview.appInfo.regenerate') || ''}
>
<div
className="w-6 h-6 cursor-pointer hover:bg-state-base-hover rounded-md"
className="w-8 h-8 ml-0.5 cursor-pointer hover:bg-gray-200 rounded-lg"
onClick={() => setShowConfirmDelete(true)}
>
<div
@@ -206,8 +210,8 @@ function AppCard({
</div>
</div>
</div>
<div className={'flex p-3 items-center gap-1 self-stretch'}>
{!isApp && <SecretKeyButton appId={appInfo.id} />}
<div className={'pt-2 flex flex-row items-center flex-wrap gap-y-2'}>
{!isApp && <SecretKeyButton className='flex-shrink-0 !h-8 bg-white mr-2' textCls='!text-gray-700 font-medium' iconCls='stroke-[1.2px]' appId={appInfo.id} />}
{OPERATIONS_MAP[cardType].map((op) => {
const disabled
= op.opName === t('appOverview.overview.appInfo.settings.entry')
@@ -215,9 +219,7 @@ function AppCard({
: !runningStatus
return (
<Button
className="mr-1 min-w-[88px]"
size="small"
variant={'ghost'}
className="mr-2"
key={op.opName}
onClick={genClickFuncByName(op.opName)}
disabled={disabled}
@@ -228,9 +230,9 @@ function AppCard({
}
popupClassName={disabled ? 'mt-[-8px]' : '!hidden'}
>
<div className="flex items-center justify-center gap-[1px]">
<op.opIcon className="h-3.5 w-3.5" />
<div className={`${runningStatus ? 'text-text-tertiary' : 'text-components-button-ghost-text-disabled'} system-xs-medium px-[3px]`}>{op.opName}</div>
<div className="flex flex-row items-center">
<op.opIcon className="h-4 w-4 mr-1.5 stroke-[1.8px]" />
<span className="text-[13px]">{op.opName}</span>
</div>
</Tooltip>
</Button>

View File

@@ -289,7 +289,6 @@ const SettingsModal: FC<ISettingsModalProps> = ({
items={languages.filter(item => item.supported)}
defaultValue={language}
onSelect={item => setLanguage(item.value as Language)}
notClearable
/>
</div>
{/* theme color */}

View File

@@ -78,7 +78,7 @@ const ConfigPanel = () => {
styleCss={CssTransform(themeBuilder.theme?.backgroundButtonDefaultColorStyle ?? '')}
variant='secondary-accent'
size='small'
className='shrink-0 text-white'
className='shrink-0'
onClick={() => setCollapsed(false)}
>
<Edit02 className='mr-1 w-3 h-3' />

View File

@@ -1,59 +0,0 @@
import { Fragment, type ReactNode } from 'react'
import { Transition } from '@headlessui/react'
import classNames from '@/utils/classnames'
type ContentDialogProps = {
className?: string
show: boolean
onClose?: () => void
children: ReactNode
}
const ContentDialog = ({
className,
show,
onClose,
children,
}: ContentDialogProps) => {
return (
<Transition
show={show}
as="div"
className="absolute left-0 top-0 w-full h-full z-20 p-2 box-border"
>
<Transition.Child
as={Fragment}
enter="ease-out duration-300"
enterFrom="opacity-0"
enterTo="opacity-100"
leave="ease-in duration-200"
leaveFrom="opacity-100"
leaveTo="opacity-0"
>
<div
className="absolute left-0 inset-0 w-full bg-app-detail-overlay-bg"
onClick={onClose}
/>
</Transition.Child>
<Transition.Child
as={Fragment}
enter="transform transition ease-out duration-300"
enterFrom="-translate-x-full"
enterTo="translate-x-0"
leave="transform transition ease-in duration-200"
leaveFrom="translate-x-0"
leaveTo="-translate-x-full"
>
<div className={classNames(
'absolute left-0 w-full bg-app-detail-bg border-r border-divider-burn',
className,
)}>
{children}
</div>
</Transition.Child>
</Transition>
)
}
export default ContentDialog

Some files were not shown because too many files have changed in this diff Show More