Compare commits

...

2 Commits

Author SHA1 Message Date
Frederick2313072
41dfdf1ac0 fix:score threshold 2025-09-01 16:34:17 +08:00
Frederick2313072
dd7de74aa6 修复top-k硬编码回退问题 2025-09-01 14:27:43 +08:00
35 changed files with 41 additions and 41 deletions

View File

@@ -24,7 +24,7 @@ default_retrieval_model = {
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
"reranking_enable": False,
"reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
"top_k": 2,
"top_k": 4,
"score_threshold_enabled": False,
}

View File

@@ -256,7 +256,7 @@ class AnalyticdbVectorOpenAPI:
response = self._client.query_collection_data(request)
documents = []
for match in response.body.matches.match:
if match.score > score_threshold:
if match.score >= score_threshold:
metadata = json.loads(match.metadata.get("metadata_"))
metadata["score"] = match.score
doc = Document(
@@ -293,7 +293,7 @@ class AnalyticdbVectorOpenAPI:
response = self._client.query_collection_data(request)
documents = []
for match in response.body.matches.match:
if match.score > score_threshold:
if match.score >= score_threshold:
metadata = json.loads(match.metadata.get("metadata_"))
metadata["score"] = match.score
doc = Document(

View File

@@ -229,7 +229,7 @@ class AnalyticdbVectorBySql:
documents = []
for record in cur:
id, vector, score, page_content, metadata = record
if score > score_threshold:
if score >= score_threshold:
metadata["score"] = score
doc = Document(
page_content=page_content,

View File

@@ -157,7 +157,7 @@ class BaiduVector(BaseVector):
if meta is not None:
meta = json.loads(meta)
score = row.get("score", 0.0)
if score > score_threshold:
if score >= score_threshold:
meta["score"] = score
doc = Document(page_content=row_data.get(self.field_text), metadata=meta)
docs.append(doc)

View File

@@ -120,7 +120,7 @@ class ChromaVector(BaseVector):
distance = distances[index]
metadata = dict(metadatas[index])
score = 1 - distance
if score > score_threshold:
if score >= score_threshold:
metadata["score"] = score
doc = Document(
page_content=documents[index],

View File

@@ -304,7 +304,7 @@ class CouchbaseVector(BaseVector):
return docs
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
top_k = kwargs.get("top_k", 2)
top_k = kwargs.get("top_k", 4)
try:
CBrequest = search.SearchRequest.create(search.QueryStringQuery("text:" + query))
search_iter = self._scope.search(

View File

@@ -216,7 +216,7 @@ class ElasticSearchVector(BaseVector):
docs = []
for doc, score in docs_and_scores:
score_threshold = float(kwargs.get("score_threshold") or 0.0)
if score > score_threshold:
if score >= score_threshold:
if doc.metadata is not None:
doc.metadata["score"] = score
docs.append(doc)

View File

@@ -127,7 +127,7 @@ class HuaweiCloudVector(BaseVector):
docs = []
for doc, score in docs_and_scores:
score_threshold = float(kwargs.get("score_threshold") or 0.0)
if score > score_threshold:
if score >= score_threshold:
if doc.metadata is not None:
doc.metadata["score"] = score
docs.append(doc)

View File

@@ -275,7 +275,7 @@ class LindormVectorStore(BaseVector):
docs = []
for doc, score in docs_and_scores:
score_threshold = kwargs.get("score_threshold", 0.0) or 0.0
if score > score_threshold:
if score >= score_threshold:
if doc.metadata is not None:
doc.metadata["score"] = score
docs.append(doc)

View File

@@ -194,7 +194,7 @@ class OpenGauss(BaseVector):
metadata, text, distance = record
score = 1 - distance
metadata["score"] = score
if score > score_threshold:
if score >= score_threshold:
docs.append(Document(page_content=text, metadata=metadata))
return docs

View File

@@ -211,7 +211,7 @@ class OpenSearchVector(BaseVector):
metadata["score"] = hit["_score"]
score_threshold = float(kwargs.get("score_threshold") or 0.0)
if hit["_score"] > score_threshold:
if hit["_score"] >= score_threshold:
doc = Document(page_content=hit["_source"].get(Field.CONTENT_KEY.value), metadata=metadata)
docs.append(doc)

View File

@@ -261,7 +261,7 @@ class OracleVector(BaseVector):
metadata, text, distance = record
score = 1 - distance
metadata["score"] = score
if score > score_threshold:
if score >= score_threshold:
docs.append(Document(page_content=text, metadata=metadata))
conn.close()
return docs

View File

@@ -202,7 +202,7 @@ class PGVectoRS(BaseVector):
score = 1 - dis
metadata["score"] = score
score_threshold = float(kwargs.get("score_threshold") or 0.0)
if score > score_threshold:
if score >= score_threshold:
doc = Document(page_content=record.text, metadata=metadata)
docs.append(doc)
return docs

View File

@@ -195,7 +195,7 @@ class PGVector(BaseVector):
metadata, text, distance = record
score = 1 - distance
metadata["score"] = score
if score > score_threshold:
if score >= score_threshold:
docs.append(Document(page_content=text, metadata=metadata))
return docs

View File

@@ -170,7 +170,7 @@ class VastbaseVector(BaseVector):
metadata, text, distance = record
score = 1 - distance
metadata["score"] = score
if score > score_threshold:
if score >= score_threshold:
docs.append(Document(page_content=text, metadata=metadata))
return docs

View File

@@ -369,7 +369,7 @@ class QdrantVector(BaseVector):
continue
metadata = result.payload.get(Field.METADATA_KEY.value) or {}
# duplicate check score threshold
if result.score > score_threshold:
if result.score >= score_threshold:
metadata["score"] = result.score
doc = Document(
page_content=result.payload.get(Field.CONTENT_KEY.value, ""),

View File

@@ -233,7 +233,7 @@ class RelytVector(BaseVector):
docs = []
for document, score in results:
score_threshold = float(kwargs.get("score_threshold") or 0.0)
if 1 - score > score_threshold:
if 1 - score >= score_threshold:
docs.append(document)
return docs

View File

@@ -300,7 +300,7 @@ class TableStoreVector(BaseVector):
)
documents = []
for search_hit in search_response.search_hits:
if search_hit.score > score_threshold:
if search_hit.score >= score_threshold:
ots_column_map = {}
for col in search_hit.row[1]:
ots_column_map[col[0]] = col[1]

View File

@@ -291,7 +291,7 @@ class TencentVector(BaseVector):
score = 1 - result.get("score", 0.0)
else:
score = result.get("score", 0.0)
if score > score_threshold:
if score >= score_threshold:
meta["score"] = score
doc = Document(page_content=result.get(self.field_text), metadata=meta)
docs.append(doc)

View File

@@ -351,7 +351,7 @@ class TidbOnQdrantVector(BaseVector):
metadata = result.payload.get(Field.METADATA_KEY.value) or {}
# duplicate check score threshold
score_threshold = kwargs.get("score_threshold") or 0.0
if result.score > score_threshold:
if result.score >= score_threshold:
metadata["score"] = result.score
doc = Document(
page_content=result.payload.get(Field.CONTENT_KEY.value, ""),

View File

@@ -110,7 +110,7 @@ class UpstashVector(BaseVector):
score = record.score
if metadata is not None and text is not None:
metadata["score"] = score
if score > score_threshold:
if score >= score_threshold:
docs.append(Document(page_content=text, metadata=metadata))
return docs

View File

@@ -192,7 +192,7 @@ class VikingDBVector(BaseVector):
metadata = result.fields.get(vdb_Field.METADATA_KEY.value)
if metadata is not None:
metadata = json.loads(metadata)
if result.score > score_threshold:
if result.score >= score_threshold:
metadata["score"] = result.score
doc = Document(page_content=result.fields.get(vdb_Field.CONTENT_KEY.value), metadata=metadata)
docs.append(doc)

View File

@@ -220,7 +220,7 @@ class WeaviateVector(BaseVector):
for doc, score in docs_and_scores:
score_threshold = float(kwargs.get("score_threshold") or 0.0)
# check score threshold
if score > score_threshold:
if score >= score_threshold:
if doc.metadata is not None:
doc.metadata["score"] = score
docs.append(doc)

View File

@@ -123,7 +123,7 @@ class ParagraphIndexProcessor(BaseIndexProcessor):
for result in results:
metadata = result.metadata
metadata["score"] = result.score
if result.score > score_threshold:
if result.score >= score_threshold:
doc = Document(page_content=result.page_content, metadata=metadata)
docs.append(doc)
return docs

View File

@@ -162,7 +162,7 @@ class ParentChildIndexProcessor(BaseIndexProcessor):
for result in results:
metadata = result.metadata
metadata["score"] = result.score
if result.score > score_threshold:
if result.score >= score_threshold:
doc = Document(page_content=result.page_content, metadata=metadata)
docs.append(doc)
return docs

View File

@@ -158,7 +158,7 @@ class QAIndexProcessor(BaseIndexProcessor):
for result in results:
metadata = result.metadata
metadata["score"] = result.score
if result.score > score_threshold:
if result.score >= score_threshold:
doc = Document(page_content=result.page_content, metadata=metadata)
docs.append(doc)
return docs

View File

@@ -65,7 +65,7 @@ default_retrieval_model: dict[str, Any] = {
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
"reranking_enable": False,
"reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
"top_k": 2,
"top_k": 4,
"score_threshold_enabled": False,
}
@@ -647,7 +647,7 @@ class DatasetRetrieval:
retrieval_method=retrieval_model["search_method"],
dataset_id=dataset.id,
query=query,
top_k=retrieval_model.get("top_k") or 2,
top_k=retrieval_model.get("top_k") or 4,
score_threshold=retrieval_model.get("score_threshold", 0.0)
if retrieval_model["score_threshold_enabled"]
else 0.0,
@@ -743,7 +743,7 @@ class DatasetRetrieval:
tool = DatasetMultiRetrieverTool.from_dataset(
dataset_ids=[dataset.id for dataset in available_datasets],
tenant_id=tenant_id,
top_k=retrieve_config.top_k or 2,
top_k=retrieve_config.top_k or 4,
score_threshold=retrieve_config.score_threshold,
hit_callbacks=[hit_callback],
return_resource=return_resource,

View File

@@ -181,7 +181,7 @@ class DatasetMultiRetrieverTool(DatasetRetrieverBaseTool):
retrieval_method="keyword_search",
dataset_id=dataset.id,
query=query,
top_k=retrieval_model.get("top_k") or 2,
top_k=retrieval_model.get("top_k") or 4,
)
if documents:
all_documents.extend(documents)
@@ -192,7 +192,7 @@ class DatasetMultiRetrieverTool(DatasetRetrieverBaseTool):
retrieval_method=retrieval_model["search_method"],
dataset_id=dataset.id,
query=query,
top_k=retrieval_model.get("top_k") or 2,
top_k=retrieval_model.get("top_k") or 4,
score_threshold=retrieval_model.get("score_threshold", 0.0)
if retrieval_model["score_threshold_enabled"]
else 0.0,

View File

@@ -13,7 +13,7 @@ class DatasetRetrieverBaseTool(BaseModel, ABC):
name: str = "dataset"
description: str = "use this to retrieve a dataset. "
tenant_id: str
top_k: int = 2
top_k: int = 4
score_threshold: Optional[float] = None
hit_callbacks: list[DatasetIndexToolCallbackHandler] = []
return_resource: bool

View File

@@ -78,7 +78,7 @@ default_retrieval_model = {
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
"reranking_enable": False,
"reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
"top_k": 2,
"top_k": 4,
"score_threshold_enabled": False,
}

View File

@@ -1149,7 +1149,7 @@ class DocumentService:
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
"reranking_enable": False,
"reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
"top_k": 2,
"top_k": 4,
"score_threshold_enabled": False,
}
@@ -1612,7 +1612,7 @@ class DocumentService:
search_method=RetrievalMethod.SEMANTIC_SEARCH.value,
reranking_enable=False,
reranking_model=RerankingModel(reranking_provider_name="", reranking_model_name=""),
top_k=2,
top_k=4,
score_threshold_enabled=False,
)
# save dataset

View File

@@ -18,7 +18,7 @@ default_retrieval_model = {
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
"reranking_enable": False,
"reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
"top_k": 2,
"top_k": 4,
"score_threshold_enabled": False,
}
@@ -66,7 +66,7 @@ class HitTestingService:
retrieval_method=retrieval_model.get("search_method", "semantic_search"),
dataset_id=dataset.id,
query=query,
top_k=retrieval_model.get("top_k", 2),
top_k=retrieval_model.get("top_k", 4),
score_threshold=retrieval_model.get("score_threshold", 0.0)
if retrieval_model["score_threshold_enabled"]
else 0.0,

View File

@@ -28,7 +28,7 @@ const ExternalKnowledgeBaseCreate: React.FC<ExternalKnowledgeBaseCreateProps> =
external_knowledge_api_id: '',
external_knowledge_id: '',
external_retrieval_model: {
top_k: 2,
top_k: 4,
score_threshold: 0.5,
score_threshold_enabled: false,
},

View File

@@ -49,7 +49,7 @@ const TextAreaWithButton = ({
const { t } = useTranslation()
const [isSettingsOpen, setIsSettingsOpen] = useState(false)
const [externalRetrievalSettings, setExternalRetrievalSettings] = useState({
top_k: 2,
top_k: 4,
score_threshold: 0.5,
score_threshold_enabled: false,
})

View File

@@ -233,7 +233,7 @@ const DebugConfigurationContext = createContext<IDebugConfiguration>({
reranking_provider_name: '',
reranking_model_name: '',
},
top_k: 2,
top_k: 4,
score_threshold_enabled: false,
score_threshold: 0.7,
datasets: {