mirror of
https://github.com/langgenius/dify.git
synced 2026-01-04 13:37:22 +00:00
Compare commits
2 Commits
feat/track
...
bug1
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
41dfdf1ac0 | ||
|
|
dd7de74aa6 |
@@ -24,7 +24,7 @@ default_retrieval_model = {
|
||||
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
|
||||
"reranking_enable": False,
|
||||
"reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
|
||||
"top_k": 2,
|
||||
"top_k": 4,
|
||||
"score_threshold_enabled": False,
|
||||
}
|
||||
|
||||
|
||||
@@ -256,7 +256,7 @@ class AnalyticdbVectorOpenAPI:
|
||||
response = self._client.query_collection_data(request)
|
||||
documents = []
|
||||
for match in response.body.matches.match:
|
||||
if match.score > score_threshold:
|
||||
if match.score >= score_threshold:
|
||||
metadata = json.loads(match.metadata.get("metadata_"))
|
||||
metadata["score"] = match.score
|
||||
doc = Document(
|
||||
@@ -293,7 +293,7 @@ class AnalyticdbVectorOpenAPI:
|
||||
response = self._client.query_collection_data(request)
|
||||
documents = []
|
||||
for match in response.body.matches.match:
|
||||
if match.score > score_threshold:
|
||||
if match.score >= score_threshold:
|
||||
metadata = json.loads(match.metadata.get("metadata_"))
|
||||
metadata["score"] = match.score
|
||||
doc = Document(
|
||||
|
||||
@@ -229,7 +229,7 @@ class AnalyticdbVectorBySql:
|
||||
documents = []
|
||||
for record in cur:
|
||||
id, vector, score, page_content, metadata = record
|
||||
if score > score_threshold:
|
||||
if score >= score_threshold:
|
||||
metadata["score"] = score
|
||||
doc = Document(
|
||||
page_content=page_content,
|
||||
|
||||
@@ -157,7 +157,7 @@ class BaiduVector(BaseVector):
|
||||
if meta is not None:
|
||||
meta = json.loads(meta)
|
||||
score = row.get("score", 0.0)
|
||||
if score > score_threshold:
|
||||
if score >= score_threshold:
|
||||
meta["score"] = score
|
||||
doc = Document(page_content=row_data.get(self.field_text), metadata=meta)
|
||||
docs.append(doc)
|
||||
|
||||
@@ -120,7 +120,7 @@ class ChromaVector(BaseVector):
|
||||
distance = distances[index]
|
||||
metadata = dict(metadatas[index])
|
||||
score = 1 - distance
|
||||
if score > score_threshold:
|
||||
if score >= score_threshold:
|
||||
metadata["score"] = score
|
||||
doc = Document(
|
||||
page_content=documents[index],
|
||||
|
||||
@@ -304,7 +304,7 @@ class CouchbaseVector(BaseVector):
|
||||
return docs
|
||||
|
||||
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
|
||||
top_k = kwargs.get("top_k", 2)
|
||||
top_k = kwargs.get("top_k", 4)
|
||||
try:
|
||||
CBrequest = search.SearchRequest.create(search.QueryStringQuery("text:" + query))
|
||||
search_iter = self._scope.search(
|
||||
|
||||
@@ -216,7 +216,7 @@ class ElasticSearchVector(BaseVector):
|
||||
docs = []
|
||||
for doc, score in docs_and_scores:
|
||||
score_threshold = float(kwargs.get("score_threshold") or 0.0)
|
||||
if score > score_threshold:
|
||||
if score >= score_threshold:
|
||||
if doc.metadata is not None:
|
||||
doc.metadata["score"] = score
|
||||
docs.append(doc)
|
||||
|
||||
@@ -127,7 +127,7 @@ class HuaweiCloudVector(BaseVector):
|
||||
docs = []
|
||||
for doc, score in docs_and_scores:
|
||||
score_threshold = float(kwargs.get("score_threshold") or 0.0)
|
||||
if score > score_threshold:
|
||||
if score >= score_threshold:
|
||||
if doc.metadata is not None:
|
||||
doc.metadata["score"] = score
|
||||
docs.append(doc)
|
||||
|
||||
@@ -275,7 +275,7 @@ class LindormVectorStore(BaseVector):
|
||||
docs = []
|
||||
for doc, score in docs_and_scores:
|
||||
score_threshold = kwargs.get("score_threshold", 0.0) or 0.0
|
||||
if score > score_threshold:
|
||||
if score >= score_threshold:
|
||||
if doc.metadata is not None:
|
||||
doc.metadata["score"] = score
|
||||
docs.append(doc)
|
||||
|
||||
@@ -194,7 +194,7 @@ class OpenGauss(BaseVector):
|
||||
metadata, text, distance = record
|
||||
score = 1 - distance
|
||||
metadata["score"] = score
|
||||
if score > score_threshold:
|
||||
if score >= score_threshold:
|
||||
docs.append(Document(page_content=text, metadata=metadata))
|
||||
return docs
|
||||
|
||||
|
||||
@@ -211,7 +211,7 @@ class OpenSearchVector(BaseVector):
|
||||
|
||||
metadata["score"] = hit["_score"]
|
||||
score_threshold = float(kwargs.get("score_threshold") or 0.0)
|
||||
if hit["_score"] > score_threshold:
|
||||
if hit["_score"] >= score_threshold:
|
||||
doc = Document(page_content=hit["_source"].get(Field.CONTENT_KEY.value), metadata=metadata)
|
||||
docs.append(doc)
|
||||
|
||||
|
||||
@@ -261,7 +261,7 @@ class OracleVector(BaseVector):
|
||||
metadata, text, distance = record
|
||||
score = 1 - distance
|
||||
metadata["score"] = score
|
||||
if score > score_threshold:
|
||||
if score >= score_threshold:
|
||||
docs.append(Document(page_content=text, metadata=metadata))
|
||||
conn.close()
|
||||
return docs
|
||||
|
||||
@@ -202,7 +202,7 @@ class PGVectoRS(BaseVector):
|
||||
score = 1 - dis
|
||||
metadata["score"] = score
|
||||
score_threshold = float(kwargs.get("score_threshold") or 0.0)
|
||||
if score > score_threshold:
|
||||
if score >= score_threshold:
|
||||
doc = Document(page_content=record.text, metadata=metadata)
|
||||
docs.append(doc)
|
||||
return docs
|
||||
|
||||
@@ -195,7 +195,7 @@ class PGVector(BaseVector):
|
||||
metadata, text, distance = record
|
||||
score = 1 - distance
|
||||
metadata["score"] = score
|
||||
if score > score_threshold:
|
||||
if score >= score_threshold:
|
||||
docs.append(Document(page_content=text, metadata=metadata))
|
||||
return docs
|
||||
|
||||
|
||||
@@ -170,7 +170,7 @@ class VastbaseVector(BaseVector):
|
||||
metadata, text, distance = record
|
||||
score = 1 - distance
|
||||
metadata["score"] = score
|
||||
if score > score_threshold:
|
||||
if score >= score_threshold:
|
||||
docs.append(Document(page_content=text, metadata=metadata))
|
||||
return docs
|
||||
|
||||
|
||||
@@ -369,7 +369,7 @@ class QdrantVector(BaseVector):
|
||||
continue
|
||||
metadata = result.payload.get(Field.METADATA_KEY.value) or {}
|
||||
# duplicate check score threshold
|
||||
if result.score > score_threshold:
|
||||
if result.score >= score_threshold:
|
||||
metadata["score"] = result.score
|
||||
doc = Document(
|
||||
page_content=result.payload.get(Field.CONTENT_KEY.value, ""),
|
||||
|
||||
@@ -233,7 +233,7 @@ class RelytVector(BaseVector):
|
||||
docs = []
|
||||
for document, score in results:
|
||||
score_threshold = float(kwargs.get("score_threshold") or 0.0)
|
||||
if 1 - score > score_threshold:
|
||||
if 1 - score >= score_threshold:
|
||||
docs.append(document)
|
||||
return docs
|
||||
|
||||
|
||||
@@ -300,7 +300,7 @@ class TableStoreVector(BaseVector):
|
||||
)
|
||||
documents = []
|
||||
for search_hit in search_response.search_hits:
|
||||
if search_hit.score > score_threshold:
|
||||
if search_hit.score >= score_threshold:
|
||||
ots_column_map = {}
|
||||
for col in search_hit.row[1]:
|
||||
ots_column_map[col[0]] = col[1]
|
||||
|
||||
@@ -291,7 +291,7 @@ class TencentVector(BaseVector):
|
||||
score = 1 - result.get("score", 0.0)
|
||||
else:
|
||||
score = result.get("score", 0.0)
|
||||
if score > score_threshold:
|
||||
if score >= score_threshold:
|
||||
meta["score"] = score
|
||||
doc = Document(page_content=result.get(self.field_text), metadata=meta)
|
||||
docs.append(doc)
|
||||
|
||||
@@ -351,7 +351,7 @@ class TidbOnQdrantVector(BaseVector):
|
||||
metadata = result.payload.get(Field.METADATA_KEY.value) or {}
|
||||
# duplicate check score threshold
|
||||
score_threshold = kwargs.get("score_threshold") or 0.0
|
||||
if result.score > score_threshold:
|
||||
if result.score >= score_threshold:
|
||||
metadata["score"] = result.score
|
||||
doc = Document(
|
||||
page_content=result.payload.get(Field.CONTENT_KEY.value, ""),
|
||||
|
||||
@@ -110,7 +110,7 @@ class UpstashVector(BaseVector):
|
||||
score = record.score
|
||||
if metadata is not None and text is not None:
|
||||
metadata["score"] = score
|
||||
if score > score_threshold:
|
||||
if score >= score_threshold:
|
||||
docs.append(Document(page_content=text, metadata=metadata))
|
||||
return docs
|
||||
|
||||
|
||||
@@ -192,7 +192,7 @@ class VikingDBVector(BaseVector):
|
||||
metadata = result.fields.get(vdb_Field.METADATA_KEY.value)
|
||||
if metadata is not None:
|
||||
metadata = json.loads(metadata)
|
||||
if result.score > score_threshold:
|
||||
if result.score >= score_threshold:
|
||||
metadata["score"] = result.score
|
||||
doc = Document(page_content=result.fields.get(vdb_Field.CONTENT_KEY.value), metadata=metadata)
|
||||
docs.append(doc)
|
||||
|
||||
@@ -220,7 +220,7 @@ class WeaviateVector(BaseVector):
|
||||
for doc, score in docs_and_scores:
|
||||
score_threshold = float(kwargs.get("score_threshold") or 0.0)
|
||||
# check score threshold
|
||||
if score > score_threshold:
|
||||
if score >= score_threshold:
|
||||
if doc.metadata is not None:
|
||||
doc.metadata["score"] = score
|
||||
docs.append(doc)
|
||||
|
||||
@@ -123,7 +123,7 @@ class ParagraphIndexProcessor(BaseIndexProcessor):
|
||||
for result in results:
|
||||
metadata = result.metadata
|
||||
metadata["score"] = result.score
|
||||
if result.score > score_threshold:
|
||||
if result.score >= score_threshold:
|
||||
doc = Document(page_content=result.page_content, metadata=metadata)
|
||||
docs.append(doc)
|
||||
return docs
|
||||
|
||||
@@ -162,7 +162,7 @@ class ParentChildIndexProcessor(BaseIndexProcessor):
|
||||
for result in results:
|
||||
metadata = result.metadata
|
||||
metadata["score"] = result.score
|
||||
if result.score > score_threshold:
|
||||
if result.score >= score_threshold:
|
||||
doc = Document(page_content=result.page_content, metadata=metadata)
|
||||
docs.append(doc)
|
||||
return docs
|
||||
|
||||
@@ -158,7 +158,7 @@ class QAIndexProcessor(BaseIndexProcessor):
|
||||
for result in results:
|
||||
metadata = result.metadata
|
||||
metadata["score"] = result.score
|
||||
if result.score > score_threshold:
|
||||
if result.score >= score_threshold:
|
||||
doc = Document(page_content=result.page_content, metadata=metadata)
|
||||
docs.append(doc)
|
||||
return docs
|
||||
|
||||
@@ -65,7 +65,7 @@ default_retrieval_model: dict[str, Any] = {
|
||||
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
|
||||
"reranking_enable": False,
|
||||
"reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
|
||||
"top_k": 2,
|
||||
"top_k": 4,
|
||||
"score_threshold_enabled": False,
|
||||
}
|
||||
|
||||
@@ -647,7 +647,7 @@ class DatasetRetrieval:
|
||||
retrieval_method=retrieval_model["search_method"],
|
||||
dataset_id=dataset.id,
|
||||
query=query,
|
||||
top_k=retrieval_model.get("top_k") or 2,
|
||||
top_k=retrieval_model.get("top_k") or 4,
|
||||
score_threshold=retrieval_model.get("score_threshold", 0.0)
|
||||
if retrieval_model["score_threshold_enabled"]
|
||||
else 0.0,
|
||||
@@ -743,7 +743,7 @@ class DatasetRetrieval:
|
||||
tool = DatasetMultiRetrieverTool.from_dataset(
|
||||
dataset_ids=[dataset.id for dataset in available_datasets],
|
||||
tenant_id=tenant_id,
|
||||
top_k=retrieve_config.top_k or 2,
|
||||
top_k=retrieve_config.top_k or 4,
|
||||
score_threshold=retrieve_config.score_threshold,
|
||||
hit_callbacks=[hit_callback],
|
||||
return_resource=return_resource,
|
||||
|
||||
@@ -181,7 +181,7 @@ class DatasetMultiRetrieverTool(DatasetRetrieverBaseTool):
|
||||
retrieval_method="keyword_search",
|
||||
dataset_id=dataset.id,
|
||||
query=query,
|
||||
top_k=retrieval_model.get("top_k") or 2,
|
||||
top_k=retrieval_model.get("top_k") or 4,
|
||||
)
|
||||
if documents:
|
||||
all_documents.extend(documents)
|
||||
@@ -192,7 +192,7 @@ class DatasetMultiRetrieverTool(DatasetRetrieverBaseTool):
|
||||
retrieval_method=retrieval_model["search_method"],
|
||||
dataset_id=dataset.id,
|
||||
query=query,
|
||||
top_k=retrieval_model.get("top_k") or 2,
|
||||
top_k=retrieval_model.get("top_k") or 4,
|
||||
score_threshold=retrieval_model.get("score_threshold", 0.0)
|
||||
if retrieval_model["score_threshold_enabled"]
|
||||
else 0.0,
|
||||
|
||||
@@ -13,7 +13,7 @@ class DatasetRetrieverBaseTool(BaseModel, ABC):
|
||||
name: str = "dataset"
|
||||
description: str = "use this to retrieve a dataset. "
|
||||
tenant_id: str
|
||||
top_k: int = 2
|
||||
top_k: int = 4
|
||||
score_threshold: Optional[float] = None
|
||||
hit_callbacks: list[DatasetIndexToolCallbackHandler] = []
|
||||
return_resource: bool
|
||||
|
||||
@@ -78,7 +78,7 @@ default_retrieval_model = {
|
||||
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
|
||||
"reranking_enable": False,
|
||||
"reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
|
||||
"top_k": 2,
|
||||
"top_k": 4,
|
||||
"score_threshold_enabled": False,
|
||||
}
|
||||
|
||||
|
||||
@@ -1149,7 +1149,7 @@ class DocumentService:
|
||||
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
|
||||
"reranking_enable": False,
|
||||
"reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
|
||||
"top_k": 2,
|
||||
"top_k": 4,
|
||||
"score_threshold_enabled": False,
|
||||
}
|
||||
|
||||
@@ -1612,7 +1612,7 @@ class DocumentService:
|
||||
search_method=RetrievalMethod.SEMANTIC_SEARCH.value,
|
||||
reranking_enable=False,
|
||||
reranking_model=RerankingModel(reranking_provider_name="", reranking_model_name=""),
|
||||
top_k=2,
|
||||
top_k=4,
|
||||
score_threshold_enabled=False,
|
||||
)
|
||||
# save dataset
|
||||
|
||||
@@ -18,7 +18,7 @@ default_retrieval_model = {
|
||||
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
|
||||
"reranking_enable": False,
|
||||
"reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
|
||||
"top_k": 2,
|
||||
"top_k": 4,
|
||||
"score_threshold_enabled": False,
|
||||
}
|
||||
|
||||
@@ -66,7 +66,7 @@ class HitTestingService:
|
||||
retrieval_method=retrieval_model.get("search_method", "semantic_search"),
|
||||
dataset_id=dataset.id,
|
||||
query=query,
|
||||
top_k=retrieval_model.get("top_k", 2),
|
||||
top_k=retrieval_model.get("top_k", 4),
|
||||
score_threshold=retrieval_model.get("score_threshold", 0.0)
|
||||
if retrieval_model["score_threshold_enabled"]
|
||||
else 0.0,
|
||||
|
||||
@@ -28,7 +28,7 @@ const ExternalKnowledgeBaseCreate: React.FC<ExternalKnowledgeBaseCreateProps> =
|
||||
external_knowledge_api_id: '',
|
||||
external_knowledge_id: '',
|
||||
external_retrieval_model: {
|
||||
top_k: 2,
|
||||
top_k: 4,
|
||||
score_threshold: 0.5,
|
||||
score_threshold_enabled: false,
|
||||
},
|
||||
|
||||
@@ -49,7 +49,7 @@ const TextAreaWithButton = ({
|
||||
const { t } = useTranslation()
|
||||
const [isSettingsOpen, setIsSettingsOpen] = useState(false)
|
||||
const [externalRetrievalSettings, setExternalRetrievalSettings] = useState({
|
||||
top_k: 2,
|
||||
top_k: 4,
|
||||
score_threshold: 0.5,
|
||||
score_threshold_enabled: false,
|
||||
})
|
||||
|
||||
@@ -233,7 +233,7 @@ const DebugConfigurationContext = createContext<IDebugConfiguration>({
|
||||
reranking_provider_name: '',
|
||||
reranking_model_name: '',
|
||||
},
|
||||
top_k: 2,
|
||||
top_k: 4,
|
||||
score_threshold_enabled: false,
|
||||
score_threshold: 0.7,
|
||||
datasets: {
|
||||
|
||||
Reference in New Issue
Block a user