Compare commits

..

2 Commits

13 changed files with 69 additions and 71 deletions

View File

@@ -9,7 +9,7 @@ class PackagingInfo(BaseSettings):
CURRENT_VERSION: str = Field(
description="Dify version",
default="0.11.2",
default="0.12.0",
)
COMMIT_SHA: str = Field(

View File

@@ -3,6 +3,7 @@ import time
from collections.abc import Mapping, Sequence
from datetime import UTC, datetime
from typing import Any, Optional, Union, cast
from uuid import uuid4
from sqlalchemy.orm import Session
@@ -80,38 +81,38 @@ class WorkflowCycleManage:
inputs[f"sys.{key.value}"] = value
inputs = WorkflowEntry.handle_special_values(inputs)
triggered_from = (
WorkflowRunTriggeredFrom.DEBUGGING
if self._application_generate_entity.invoke_from == InvokeFrom.DEBUGGER
else WorkflowRunTriggeredFrom.APP_RUN
)
# init workflow run
workflow_run = WorkflowRun()
workflow_run_id = self._workflow_system_variables[SystemVariableKey.WORKFLOW_RUN_ID]
if workflow_run_id:
workflow_run.id = workflow_run_id
workflow_run.tenant_id = self._workflow.tenant_id
workflow_run.app_id = self._workflow.app_id
workflow_run.sequence_number = new_sequence_number
workflow_run.workflow_id = self._workflow.id
workflow_run.type = self._workflow.type
workflow_run.triggered_from = triggered_from.value
workflow_run.version = self._workflow.version
workflow_run.graph = self._workflow.graph
workflow_run.inputs = json.dumps(inputs)
workflow_run.status = WorkflowRunStatus.RUNNING.value
workflow_run.created_by_role = (
CreatedByRole.ACCOUNT.value if isinstance(self._user, Account) else CreatedByRole.END_USER.value
)
workflow_run.created_by = self._user.id
# handle special values
inputs = WorkflowEntry.handle_special_values(inputs)
db.session.add(workflow_run)
db.session.commit()
db.session.refresh(workflow_run)
db.session.close()
# init workflow run
with Session(db.engine, expire_on_commit=False) as session:
workflow_run = WorkflowRun()
system_id = self._workflow_system_variables[SystemVariableKey.WORKFLOW_RUN_ID]
workflow_run.id = system_id or str(uuid4())
workflow_run.tenant_id = self._workflow.tenant_id
workflow_run.app_id = self._workflow.app_id
workflow_run.sequence_number = new_sequence_number
workflow_run.workflow_id = self._workflow.id
workflow_run.type = self._workflow.type
workflow_run.triggered_from = triggered_from.value
workflow_run.version = self._workflow.version
workflow_run.graph = self._workflow.graph
workflow_run.inputs = json.dumps(inputs)
workflow_run.status = WorkflowRunStatus.RUNNING
workflow_run.created_by_role = (
CreatedByRole.ACCOUNT if isinstance(self._user, Account) else CreatedByRole.END_USER
)
workflow_run.created_by = self._user.id
workflow_run.created_at = datetime.now(UTC).replace(tzinfo=None)
session.add(workflow_run)
session.commit()
return workflow_run

View File

@@ -720,8 +720,10 @@ class IndexingRunner:
tokens = 0
if embedding_model_instance:
page_content_list = [document.page_content for document in chunk_documents]
tokens += sum(embedding_model_instance.get_text_embedding_num_tokens(page_content_list))
tokens += sum(
embedding_model_instance.get_text_embedding_num_tokens([document.page_content])
for document in chunk_documents
)
# load index
index_processor.load(dataset, chunk_documents, with_keywords=False)

View File

@@ -183,7 +183,7 @@ class ModelInstance:
input_type=input_type,
)
def get_text_embedding_num_tokens(self, texts: list[str]) -> list[int]:
def get_text_embedding_num_tokens(self, texts: list[str]) -> int:
"""
Get number of tokens for text embedding

View File

@@ -78,13 +78,8 @@ class DatasetDocumentStore:
model_type=ModelType.TEXT_EMBEDDING,
model=self._dataset.embedding_model,
)
if embedding_model:
page_content_list = [doc.page_content for doc in docs]
tokens_list = embedding_model.get_text_embedding_num_tokens(page_content_list)
else:
tokens_list = [0] * len(docs)
for doc, tokens in zip(docs, tokens_list):
for doc in docs:
if not isinstance(doc, Document):
raise ValueError("doc must be a Document")
@@ -96,6 +91,12 @@ class DatasetDocumentStore:
f"doc_id {doc.metadata['doc_id']} already exists. Set allow_update to True to overwrite."
)
# calc embedding use tokens
if embedding_model:
tokens = embedding_model.get_text_embedding_num_tokens(texts=[doc.page_content])
else:
tokens = 0
if not segment_document:
max_position += 1

View File

@@ -65,9 +65,8 @@ class FixedRecursiveCharacterTextSplitter(EnhanceRecursiveCharacterTextSplitter)
chunks = [text]
final_chunks = []
chunks_lengths = self._length_function(chunks)
for chunk, chunk_length in zip(chunks, chunks_lengths):
if chunk_length > self._chunk_size:
for chunk in chunks:
if self._length_function(chunk) > self._chunk_size:
final_chunks.extend(self.recursive_split_text(chunk))
else:
final_chunks.append(chunk)
@@ -94,8 +93,8 @@ class FixedRecursiveCharacterTextSplitter(EnhanceRecursiveCharacterTextSplitter)
# Now go merging things, recursively splitting longer texts.
_good_splits = []
_good_splits_lengths = [] # cache the lengths of the splits
s_lens = self._length_function(splits)
for s, s_len in zip(splits, s_lens):
for s in splits:
s_len = self._length_function(s)
if s_len < self._chunk_size:
_good_splits.append(s)
_good_splits_lengths.append(s_len)

View File

@@ -45,7 +45,7 @@ class TextSplitter(BaseDocumentTransformer, ABC):
self,
chunk_size: int = 4000,
chunk_overlap: int = 200,
length_function: Callable[[str], [int]] = len,
length_function: Callable[[str], int] = len,
keep_separator: bool = False,
add_start_index: bool = False,
) -> None:
@@ -224,8 +224,8 @@ class CharacterTextSplitter(TextSplitter):
splits = _split_text_with_regex(text, self._separator, self._keep_separator)
_separator = "" if self._keep_separator else self._separator
_good_splits_lengths = [] # cache the lengths of the splits
if splits:
_good_splits_lengths.extend(self._length_function(splits))
for split in splits:
_good_splits_lengths.append(self._length_function(split))
return self._merge_splits(splits, _separator, _good_splits_lengths)
@@ -478,8 +478,9 @@ class RecursiveCharacterTextSplitter(TextSplitter):
_good_splits = []
_good_splits_lengths = [] # cache the lengths of the splits
_separator = "" if self._keep_separator else separator
s_lens = self._length_function(splits)
for s, s_len in zip(splits, s_lens):
for s in splits:
s_len = self._length_function(s)
if s_len < self._chunk_size:
_good_splits.append(s)
_good_splits_lengths.append(s_len)

View File

@@ -1,7 +1,7 @@
import json
from collections.abc import Mapping, Sequence
from datetime import UTC, datetime
from enum import Enum
from enum import Enum, StrEnum
from typing import Any, Optional, Union
import sqlalchemy as sa
@@ -314,7 +314,7 @@ class Workflow(db.Model):
)
class WorkflowRunStatus(Enum):
class WorkflowRunStatus(StrEnum):
"""
Workflow Run Status Enum
"""
@@ -393,13 +393,13 @@ class WorkflowRun(db.Model):
version = db.Column(db.String(255), nullable=False)
graph = db.Column(db.Text)
inputs = db.Column(db.Text)
status = db.Column(db.String(255), nullable=False)
outputs: Mapped[str] = db.Column(db.Text)
status = db.Column(db.String(255), nullable=False) # running, succeeded, failed, stopped
outputs: Mapped[str] = mapped_column(sa.Text, default="{}")
error = db.Column(db.Text)
elapsed_time = db.Column(db.Float, nullable=False, server_default=db.text("0"))
total_tokens = db.Column(db.Integer, nullable=False, server_default=db.text("0"))
total_steps = db.Column(db.Integer, server_default=db.text("0"))
created_by_role = db.Column(db.String(255), nullable=False)
created_by_role = db.Column(db.String(255), nullable=False) # account, end_user
created_by = db.Column(StringUUID, nullable=False)
created_at = db.Column(db.DateTime, nullable=False, server_default=db.text("CURRENT_TIMESTAMP(0)"))
finished_at = db.Column(db.DateTime)

View File

@@ -1390,7 +1390,7 @@ class SegmentService:
model=dataset.embedding_model,
)
# calc embedding use tokens
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])[0]
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])
lock_name = "add_segment_lock_document_id_{}".format(document.id)
with redis_client.lock(lock_name, timeout=600):
max_position = (
@@ -1467,11 +1467,9 @@ class SegmentService:
if dataset.indexing_technique == "high_quality" and embedding_model:
# calc embedding use tokens
if document.doc_form == "qa_model":
tokens = embedding_model.get_text_embedding_num_tokens(
texts=[content + segment_item["answer"]]
)[0]
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content + segment_item["answer"]])
else:
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])[0]
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])
segment_document = DocumentSegment(
tenant_id=current_user.current_tenant_id,
dataset_id=document.dataset_id,
@@ -1579,9 +1577,9 @@ class SegmentService:
# calc embedding use tokens
if document.doc_form == "qa_model":
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content + segment.answer])[0]
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content + segment.answer])
else:
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])[0]
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])
segment.content = content
segment.index_node_hash = segment_hash
segment.word_count = len(content)

View File

@@ -58,16 +58,12 @@ def batch_create_segment_to_index_task(
model=dataset.embedding_model,
)
word_count_change = 0
if embedding_model:
tokens_list = embedding_model.get_text_embedding_num_tokens(
texts=[segment["content"] for segment in content]
)
else:
tokens_list = [0] * len(content)
for segment, tokens in zip(content, tokens_list):
for segment in content:
content = segment["content"]
doc_id = str(uuid.uuid4())
segment_hash = helper.generate_text_hash(content)
# calc embedding use tokens
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content]) if embedding_model else 0
max_position = (
db.session.query(func.max(DocumentSegment.position))
.filter(DocumentSegment.document_id == dataset_document.id)

View File

@@ -2,7 +2,7 @@ version: '3'
services:
# API service
api:
image: langgenius/dify-api:0.11.2
image: langgenius/dify-api:0.12.0
restart: always
environment:
# Startup mode, 'api' starts the API server.
@@ -227,7 +227,7 @@ services:
# worker service
# The Celery worker for processing the queue.
worker:
image: langgenius/dify-api:0.11.2
image: langgenius/dify-api:0.12.0
restart: always
environment:
CONSOLE_WEB_URL: ''
@@ -397,7 +397,7 @@ services:
# Frontend web application.
web:
image: langgenius/dify-web:0.11.2
image: langgenius/dify-web:0.12.0
restart: always
environment:
# The base URL of console application api server, refers to the Console base URL of WEB service if console domain is

View File

@@ -291,7 +291,7 @@ x-shared-env: &shared-api-worker-env
services:
# API service
api:
image: langgenius/dify-api:0.11.2
image: langgenius/dify-api:0.12.0
restart: always
environment:
# Use the shared environment variables.
@@ -311,7 +311,7 @@ services:
# worker service
# The Celery worker for processing the queue.
worker:
image: langgenius/dify-api:0.11.2
image: langgenius/dify-api:0.12.0
restart: always
environment:
# Use the shared environment variables.
@@ -330,7 +330,7 @@ services:
# Frontend web application.
web:
image: langgenius/dify-web:0.11.2
image: langgenius/dify-web:0.12.0
restart: always
environment:
CONSOLE_API_URL: ${CONSOLE_API_URL:-}

View File

@@ -1,6 +1,6 @@
{
"name": "dify-web",
"version": "0.11.2",
"version": "0.12.0",
"private": true,
"engines": {
"node": ">=18.17.0"