mirror of
https://github.com/langgenius/dify.git
synced 2026-01-26 01:04:18 +00:00
Compare commits
5 Commits
deploy/age
...
yanli/llm-
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
58bef1950b | ||
|
|
950c0c41ba | ||
|
|
85a916a0b9 | ||
|
|
0b44d6e584 | ||
|
|
a2db284742 |
@@ -0,0 +1,27 @@
|
||||
# Notes: `large_language_model.py`
|
||||
|
||||
## Purpose
|
||||
|
||||
Provides the base `LargeLanguageModel` implementation used by the model runtime to invoke plugin-backed LLMs and to
|
||||
bridge plugin daemon streaming semantics back into API-layer entities (`LLMResult`, `LLMResultChunk`).
|
||||
|
||||
## Key behaviors / invariants
|
||||
|
||||
- `invoke(..., stream=False)` still calls the plugin in streaming mode and then synthesizes a single `LLMResult` from
|
||||
the first yielded `LLMResultChunk`.
|
||||
- Plugin invocation is wrapped by `_invoke_llm_via_plugin(...)`, and `stream=False` normalization is handled by
|
||||
`_normalize_non_stream_plugin_result(...)` / `_build_llm_result_from_first_chunk(...)`.
|
||||
- Tool call deltas are merged incrementally via `_increase_tool_call(...)` to support multiple provider chunking
|
||||
patterns (IDs anchored to first chunk, every chunk, or missing entirely).
|
||||
- A tool-call delta with an empty `id` requires at least one existing tool call; otherwise we raise `ValueError` to
|
||||
surface invalid delta sequences explicitly.
|
||||
- Callback invocation is centralized in `_run_callbacks(...)` to ensure consistent error handling/logging.
|
||||
- For compatibility with dify issue `#17799`, `prompt_messages` may be removed by the plugin daemon in chunks and must
|
||||
be re-attached in this layer before callbacks/consumers use them.
|
||||
- Callback hooks (`on_before_invoke`, `on_new_chunk`, `on_after_invoke`, `on_invoke_error`) must not break invocation
|
||||
unless `callback.raise_error` is true.
|
||||
|
||||
## Test focus
|
||||
|
||||
- `api/tests/unit_tests/core/model_runtime/__base/test_increase_tool_call.py` validates tool-call delta merging and
|
||||
patches `_gen_tool_call_id` for deterministic IDs.
|
||||
@@ -1,7 +1,7 @@
|
||||
import logging
|
||||
import time
|
||||
import uuid
|
||||
from collections.abc import Generator, Sequence
|
||||
from collections.abc import Callable, Generator, Iterator, Sequence
|
||||
from typing import Union
|
||||
|
||||
from pydantic import ConfigDict
|
||||
@@ -30,6 +30,142 @@ def _gen_tool_call_id() -> str:
|
||||
return f"chatcmpl-tool-{str(uuid.uuid4().hex)}"
|
||||
|
||||
|
||||
def _run_callbacks(callbacks: Sequence[Callback] | None, *, event: str, invoke: Callable[[Callback], None]) -> None:
|
||||
if not callbacks:
|
||||
return
|
||||
|
||||
for callback in callbacks:
|
||||
try:
|
||||
invoke(callback)
|
||||
except Exception as e:
|
||||
if callback.raise_error:
|
||||
raise
|
||||
logger.warning("Callback %s %s failed with error %s", callback.__class__.__name__, event, e)
|
||||
|
||||
|
||||
def _get_or_create_tool_call(
|
||||
existing_tools_calls: list[AssistantPromptMessage.ToolCall],
|
||||
tool_call_id: str,
|
||||
) -> AssistantPromptMessage.ToolCall:
|
||||
"""
|
||||
Get or create a tool call by ID.
|
||||
|
||||
If `tool_call_id` is empty, returns the most recently created tool call.
|
||||
"""
|
||||
if not tool_call_id:
|
||||
if not existing_tools_calls:
|
||||
raise ValueError("tool_call_id is empty but no existing tool call is available to apply the delta")
|
||||
return existing_tools_calls[-1]
|
||||
|
||||
tool_call = next((tool_call for tool_call in existing_tools_calls if tool_call.id == tool_call_id), None)
|
||||
if tool_call is None:
|
||||
tool_call = AssistantPromptMessage.ToolCall(
|
||||
id=tool_call_id,
|
||||
type="function",
|
||||
function=AssistantPromptMessage.ToolCall.ToolCallFunction(name="", arguments=""),
|
||||
)
|
||||
existing_tools_calls.append(tool_call)
|
||||
|
||||
return tool_call
|
||||
|
||||
|
||||
def _merge_tool_call_delta(
|
||||
tool_call: AssistantPromptMessage.ToolCall,
|
||||
delta: AssistantPromptMessage.ToolCall,
|
||||
) -> None:
|
||||
if delta.id:
|
||||
tool_call.id = delta.id
|
||||
if delta.type:
|
||||
tool_call.type = delta.type
|
||||
if delta.function.name:
|
||||
tool_call.function.name = delta.function.name
|
||||
if delta.function.arguments:
|
||||
tool_call.function.arguments += delta.function.arguments
|
||||
|
||||
|
||||
def _build_llm_result_from_first_chunk(
|
||||
model: str,
|
||||
prompt_messages: Sequence[PromptMessage],
|
||||
chunks: Iterator[LLMResultChunk],
|
||||
) -> LLMResult:
|
||||
"""
|
||||
Build a single `LLMResult` from the first returned chunk.
|
||||
|
||||
This is used for `stream=False` because the plugin side may still implement the response via a chunked stream.
|
||||
"""
|
||||
content = ""
|
||||
content_list: list[PromptMessageContentUnionTypes] = []
|
||||
usage = LLMUsage.empty_usage()
|
||||
system_fingerprint: str | None = None
|
||||
tools_calls: list[AssistantPromptMessage.ToolCall] = []
|
||||
|
||||
first_chunk = next(chunks, None)
|
||||
if first_chunk is not None:
|
||||
if isinstance(first_chunk.delta.message.content, str):
|
||||
content += first_chunk.delta.message.content
|
||||
elif isinstance(first_chunk.delta.message.content, list):
|
||||
content_list.extend(first_chunk.delta.message.content)
|
||||
|
||||
if first_chunk.delta.message.tool_calls:
|
||||
_increase_tool_call(first_chunk.delta.message.tool_calls, tools_calls)
|
||||
|
||||
usage = first_chunk.delta.usage or LLMUsage.empty_usage()
|
||||
system_fingerprint = first_chunk.system_fingerprint
|
||||
|
||||
return LLMResult(
|
||||
model=model,
|
||||
prompt_messages=prompt_messages,
|
||||
message=AssistantPromptMessage(
|
||||
content=content or content_list,
|
||||
tool_calls=tools_calls,
|
||||
),
|
||||
usage=usage,
|
||||
system_fingerprint=system_fingerprint,
|
||||
)
|
||||
|
||||
|
||||
def _invoke_llm_via_plugin(
|
||||
*,
|
||||
tenant_id: str,
|
||||
user_id: str,
|
||||
plugin_id: str,
|
||||
provider: str,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
model_parameters: dict,
|
||||
prompt_messages: Sequence[PromptMessage],
|
||||
tools: list[PromptMessageTool] | None,
|
||||
stop: Sequence[str] | None,
|
||||
stream: bool,
|
||||
) -> Union[LLMResult, Generator[LLMResultChunk, None, None]]:
|
||||
from core.plugin.impl.model import PluginModelClient
|
||||
|
||||
plugin_model_manager = PluginModelClient()
|
||||
return plugin_model_manager.invoke_llm(
|
||||
tenant_id=tenant_id,
|
||||
user_id=user_id,
|
||||
plugin_id=plugin_id,
|
||||
provider=provider,
|
||||
model=model,
|
||||
credentials=credentials,
|
||||
model_parameters=model_parameters,
|
||||
prompt_messages=list(prompt_messages),
|
||||
tools=tools,
|
||||
stop=list(stop) if stop else None,
|
||||
stream=stream,
|
||||
)
|
||||
|
||||
|
||||
def _normalize_non_stream_plugin_result(
|
||||
model: str,
|
||||
prompt_messages: Sequence[PromptMessage],
|
||||
result: Union[LLMResult, Iterator[LLMResultChunk]],
|
||||
) -> LLMResult:
|
||||
if isinstance(result, LLMResult):
|
||||
return result
|
||||
return _build_llm_result_from_first_chunk(model=model, prompt_messages=prompt_messages, chunks=result)
|
||||
|
||||
|
||||
def _increase_tool_call(
|
||||
new_tool_calls: list[AssistantPromptMessage.ToolCall], existing_tools_calls: list[AssistantPromptMessage.ToolCall]
|
||||
):
|
||||
@@ -40,42 +176,13 @@ def _increase_tool_call(
|
||||
:param existing_tools_calls: List of existing tool calls to be modified IN-PLACE.
|
||||
"""
|
||||
|
||||
def get_tool_call(tool_call_id: str):
|
||||
"""
|
||||
Get or create a tool call by ID
|
||||
|
||||
:param tool_call_id: tool call ID
|
||||
:return: existing or new tool call
|
||||
"""
|
||||
if not tool_call_id:
|
||||
return existing_tools_calls[-1]
|
||||
|
||||
_tool_call = next((_tool_call for _tool_call in existing_tools_calls if _tool_call.id == tool_call_id), None)
|
||||
if _tool_call is None:
|
||||
_tool_call = AssistantPromptMessage.ToolCall(
|
||||
id=tool_call_id,
|
||||
type="function",
|
||||
function=AssistantPromptMessage.ToolCall.ToolCallFunction(name="", arguments=""),
|
||||
)
|
||||
existing_tools_calls.append(_tool_call)
|
||||
|
||||
return _tool_call
|
||||
|
||||
for new_tool_call in new_tool_calls:
|
||||
# generate ID for tool calls with function name but no ID to track them
|
||||
if new_tool_call.function.name and not new_tool_call.id:
|
||||
new_tool_call.id = _gen_tool_call_id()
|
||||
# get tool call
|
||||
tool_call = get_tool_call(new_tool_call.id)
|
||||
# update tool call
|
||||
if new_tool_call.id:
|
||||
tool_call.id = new_tool_call.id
|
||||
if new_tool_call.type:
|
||||
tool_call.type = new_tool_call.type
|
||||
if new_tool_call.function.name:
|
||||
tool_call.function.name = new_tool_call.function.name
|
||||
if new_tool_call.function.arguments:
|
||||
tool_call.function.arguments += new_tool_call.function.arguments
|
||||
|
||||
tool_call = _get_or_create_tool_call(existing_tools_calls, new_tool_call.id)
|
||||
_merge_tool_call_delta(tool_call, new_tool_call)
|
||||
|
||||
|
||||
class LargeLanguageModel(AIModel):
|
||||
@@ -141,10 +248,7 @@ class LargeLanguageModel(AIModel):
|
||||
result: Union[LLMResult, Generator[LLMResultChunk, None, None]]
|
||||
|
||||
try:
|
||||
from core.plugin.impl.model import PluginModelClient
|
||||
|
||||
plugin_model_manager = PluginModelClient()
|
||||
result = plugin_model_manager.invoke_llm(
|
||||
result = _invoke_llm_via_plugin(
|
||||
tenant_id=self.tenant_id,
|
||||
user_id=user or "unknown",
|
||||
plugin_id=self.plugin_id,
|
||||
@@ -154,38 +258,13 @@ class LargeLanguageModel(AIModel):
|
||||
model_parameters=model_parameters,
|
||||
prompt_messages=prompt_messages,
|
||||
tools=tools,
|
||||
stop=list(stop) if stop else None,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
)
|
||||
|
||||
if not stream:
|
||||
content = ""
|
||||
content_list = []
|
||||
usage = LLMUsage.empty_usage()
|
||||
system_fingerprint = None
|
||||
tools_calls: list[AssistantPromptMessage.ToolCall] = []
|
||||
|
||||
for chunk in result:
|
||||
if isinstance(chunk.delta.message.content, str):
|
||||
content += chunk.delta.message.content
|
||||
elif isinstance(chunk.delta.message.content, list):
|
||||
content_list.extend(chunk.delta.message.content)
|
||||
if chunk.delta.message.tool_calls:
|
||||
_increase_tool_call(chunk.delta.message.tool_calls, tools_calls)
|
||||
|
||||
usage = chunk.delta.usage or LLMUsage.empty_usage()
|
||||
system_fingerprint = chunk.system_fingerprint
|
||||
break
|
||||
|
||||
result = LLMResult(
|
||||
model=model,
|
||||
prompt_messages=prompt_messages,
|
||||
message=AssistantPromptMessage(
|
||||
content=content or content_list,
|
||||
tool_calls=tools_calls,
|
||||
),
|
||||
usage=usage,
|
||||
system_fingerprint=system_fingerprint,
|
||||
result = _normalize_non_stream_plugin_result(
|
||||
model=model, prompt_messages=prompt_messages, result=result
|
||||
)
|
||||
except Exception as e:
|
||||
self._trigger_invoke_error_callbacks(
|
||||
@@ -425,27 +504,21 @@ class LargeLanguageModel(AIModel):
|
||||
:param user: unique user id
|
||||
:param callbacks: callbacks
|
||||
"""
|
||||
if callbacks:
|
||||
for callback in callbacks:
|
||||
try:
|
||||
callback.on_before_invoke(
|
||||
llm_instance=self,
|
||||
model=model,
|
||||
credentials=credentials,
|
||||
prompt_messages=prompt_messages,
|
||||
model_parameters=model_parameters,
|
||||
tools=tools,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
user=user,
|
||||
)
|
||||
except Exception as e:
|
||||
if callback.raise_error:
|
||||
raise e
|
||||
else:
|
||||
logger.warning(
|
||||
"Callback %s on_before_invoke failed with error %s", callback.__class__.__name__, e
|
||||
)
|
||||
_run_callbacks(
|
||||
callbacks,
|
||||
event="on_before_invoke",
|
||||
invoke=lambda callback: callback.on_before_invoke(
|
||||
llm_instance=self,
|
||||
model=model,
|
||||
credentials=credentials,
|
||||
prompt_messages=prompt_messages,
|
||||
model_parameters=model_parameters,
|
||||
tools=tools,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
user=user,
|
||||
),
|
||||
)
|
||||
|
||||
def _trigger_new_chunk_callbacks(
|
||||
self,
|
||||
@@ -473,26 +546,22 @@ class LargeLanguageModel(AIModel):
|
||||
:param stream: is stream response
|
||||
:param user: unique user id
|
||||
"""
|
||||
if callbacks:
|
||||
for callback in callbacks:
|
||||
try:
|
||||
callback.on_new_chunk(
|
||||
llm_instance=self,
|
||||
chunk=chunk,
|
||||
model=model,
|
||||
credentials=credentials,
|
||||
prompt_messages=prompt_messages,
|
||||
model_parameters=model_parameters,
|
||||
tools=tools,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
user=user,
|
||||
)
|
||||
except Exception as e:
|
||||
if callback.raise_error:
|
||||
raise e
|
||||
else:
|
||||
logger.warning("Callback %s on_new_chunk failed with error %s", callback.__class__.__name__, e)
|
||||
_run_callbacks(
|
||||
callbacks,
|
||||
event="on_new_chunk",
|
||||
invoke=lambda callback: callback.on_new_chunk(
|
||||
llm_instance=self,
|
||||
chunk=chunk,
|
||||
model=model,
|
||||
credentials=credentials,
|
||||
prompt_messages=prompt_messages,
|
||||
model_parameters=model_parameters,
|
||||
tools=tools,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
user=user,
|
||||
),
|
||||
)
|
||||
|
||||
def _trigger_after_invoke_callbacks(
|
||||
self,
|
||||
@@ -521,28 +590,22 @@ class LargeLanguageModel(AIModel):
|
||||
:param user: unique user id
|
||||
:param callbacks: callbacks
|
||||
"""
|
||||
if callbacks:
|
||||
for callback in callbacks:
|
||||
try:
|
||||
callback.on_after_invoke(
|
||||
llm_instance=self,
|
||||
result=result,
|
||||
model=model,
|
||||
credentials=credentials,
|
||||
prompt_messages=prompt_messages,
|
||||
model_parameters=model_parameters,
|
||||
tools=tools,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
user=user,
|
||||
)
|
||||
except Exception as e:
|
||||
if callback.raise_error:
|
||||
raise e
|
||||
else:
|
||||
logger.warning(
|
||||
"Callback %s on_after_invoke failed with error %s", callback.__class__.__name__, e
|
||||
)
|
||||
_run_callbacks(
|
||||
callbacks,
|
||||
event="on_after_invoke",
|
||||
invoke=lambda callback: callback.on_after_invoke(
|
||||
llm_instance=self,
|
||||
result=result,
|
||||
model=model,
|
||||
credentials=credentials,
|
||||
prompt_messages=prompt_messages,
|
||||
model_parameters=model_parameters,
|
||||
tools=tools,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
user=user,
|
||||
),
|
||||
)
|
||||
|
||||
def _trigger_invoke_error_callbacks(
|
||||
self,
|
||||
@@ -571,25 +634,19 @@ class LargeLanguageModel(AIModel):
|
||||
:param user: unique user id
|
||||
:param callbacks: callbacks
|
||||
"""
|
||||
if callbacks:
|
||||
for callback in callbacks:
|
||||
try:
|
||||
callback.on_invoke_error(
|
||||
llm_instance=self,
|
||||
ex=ex,
|
||||
model=model,
|
||||
credentials=credentials,
|
||||
prompt_messages=prompt_messages,
|
||||
model_parameters=model_parameters,
|
||||
tools=tools,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
user=user,
|
||||
)
|
||||
except Exception as e:
|
||||
if callback.raise_error:
|
||||
raise e
|
||||
else:
|
||||
logger.warning(
|
||||
"Callback %s on_invoke_error failed with error %s", callback.__class__.__name__, e
|
||||
)
|
||||
_run_callbacks(
|
||||
callbacks,
|
||||
event="on_invoke_error",
|
||||
invoke=lambda callback: callback.on_invoke_error(
|
||||
llm_instance=self,
|
||||
ex=ex,
|
||||
model=model,
|
||||
credentials=credentials,
|
||||
prompt_messages=prompt_messages,
|
||||
model_parameters=model_parameters,
|
||||
tools=tools,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
user=user,
|
||||
),
|
||||
)
|
||||
|
||||
@@ -1,5 +1,7 @@
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from core.model_runtime.entities.message_entities import AssistantPromptMessage
|
||||
from core.model_runtime.model_providers.__base.large_language_model import _increase_tool_call
|
||||
|
||||
@@ -97,3 +99,14 @@ def test__increase_tool_call():
|
||||
mock_id_generator.side_effect = [_exp_case.id for _exp_case in EXPECTED_CASE_4]
|
||||
with patch("core.model_runtime.model_providers.__base.large_language_model._gen_tool_call_id", mock_id_generator):
|
||||
_run_case(INPUTS_CASE_4, EXPECTED_CASE_4)
|
||||
|
||||
|
||||
def test__increase_tool_call__no_id_no_name_first_delta_should_raise():
|
||||
inputs = [
|
||||
ToolCall(id="", type="function", function=ToolCall.ToolCallFunction(name="", arguments='{"arg1": ')),
|
||||
ToolCall(id="", type="function", function=ToolCall.ToolCallFunction(name="func_foo", arguments='"value"}')),
|
||||
]
|
||||
actual: list[ToolCall] = []
|
||||
with patch("core.model_runtime.model_providers.__base.large_language_model._gen_tool_call_id", MagicMock()):
|
||||
with pytest.raises(ValueError):
|
||||
_increase_tool_call(inputs, actual)
|
||||
|
||||
@@ -0,0 +1,103 @@
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
|
||||
from core.model_runtime.entities.message_entities import (
|
||||
AssistantPromptMessage,
|
||||
TextPromptMessageContent,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.model_providers.__base.large_language_model import _normalize_non_stream_plugin_result
|
||||
|
||||
|
||||
def _make_chunk(
|
||||
*,
|
||||
model: str = "test-model",
|
||||
content: str | list[TextPromptMessageContent] | None,
|
||||
tool_calls: list[AssistantPromptMessage.ToolCall] | None = None,
|
||||
usage: LLMUsage | None = None,
|
||||
system_fingerprint: str | None = None,
|
||||
) -> LLMResultChunk:
|
||||
message = AssistantPromptMessage(content=content, tool_calls=tool_calls or [])
|
||||
delta = LLMResultChunkDelta(index=0, message=message, usage=usage)
|
||||
return LLMResultChunk(model=model, delta=delta, system_fingerprint=system_fingerprint)
|
||||
|
||||
|
||||
def test__normalize_non_stream_plugin_result__from_first_chunk_str_content_and_tool_calls():
|
||||
prompt_messages = [UserPromptMessage(content="hi")]
|
||||
|
||||
tool_calls = [
|
||||
AssistantPromptMessage.ToolCall(
|
||||
id="1",
|
||||
type="function",
|
||||
function=AssistantPromptMessage.ToolCall.ToolCallFunction(name="func_foo", arguments=""),
|
||||
),
|
||||
AssistantPromptMessage.ToolCall(
|
||||
id="",
|
||||
type="function",
|
||||
function=AssistantPromptMessage.ToolCall.ToolCallFunction(name="", arguments='{"arg1": '),
|
||||
),
|
||||
AssistantPromptMessage.ToolCall(
|
||||
id="",
|
||||
type="function",
|
||||
function=AssistantPromptMessage.ToolCall.ToolCallFunction(name="", arguments='"value"}'),
|
||||
),
|
||||
]
|
||||
|
||||
usage = LLMUsage.empty_usage().model_copy(update={"prompt_tokens": 1, "total_tokens": 1})
|
||||
chunk = _make_chunk(content="hello", tool_calls=tool_calls, usage=usage, system_fingerprint="fp-1")
|
||||
|
||||
result = _normalize_non_stream_plugin_result(
|
||||
model="test-model", prompt_messages=prompt_messages, result=iter([chunk])
|
||||
)
|
||||
|
||||
assert result.model == "test-model"
|
||||
assert result.prompt_messages == prompt_messages
|
||||
assert result.message.content == "hello"
|
||||
assert result.usage.prompt_tokens == 1
|
||||
assert result.system_fingerprint == "fp-1"
|
||||
assert result.message.tool_calls == [
|
||||
AssistantPromptMessage.ToolCall(
|
||||
id="1",
|
||||
type="function",
|
||||
function=AssistantPromptMessage.ToolCall.ToolCallFunction(name="func_foo", arguments='{"arg1": "value"}'),
|
||||
)
|
||||
]
|
||||
|
||||
|
||||
def test__normalize_non_stream_plugin_result__from_first_chunk_list_content():
|
||||
prompt_messages = [UserPromptMessage(content="hi")]
|
||||
|
||||
content_list = [TextPromptMessageContent(data="a"), TextPromptMessageContent(data="b")]
|
||||
chunk = _make_chunk(content=content_list, usage=LLMUsage.empty_usage())
|
||||
|
||||
result = _normalize_non_stream_plugin_result(
|
||||
model="test-model", prompt_messages=prompt_messages, result=iter([chunk])
|
||||
)
|
||||
|
||||
assert result.message.content == content_list
|
||||
|
||||
|
||||
def test__normalize_non_stream_plugin_result__passthrough_llm_result():
|
||||
prompt_messages = [UserPromptMessage(content="hi")]
|
||||
llm_result = LLMResult(
|
||||
model="test-model",
|
||||
prompt_messages=prompt_messages,
|
||||
message=AssistantPromptMessage(content="ok"),
|
||||
usage=LLMUsage.empty_usage(),
|
||||
)
|
||||
|
||||
assert (
|
||||
_normalize_non_stream_plugin_result(model="test-model", prompt_messages=prompt_messages, result=llm_result)
|
||||
== llm_result
|
||||
)
|
||||
|
||||
|
||||
def test__normalize_non_stream_plugin_result__empty_iterator_defaults():
|
||||
prompt_messages = [UserPromptMessage(content="hi")]
|
||||
|
||||
result = _normalize_non_stream_plugin_result(model="test-model", prompt_messages=prompt_messages, result=iter([]))
|
||||
|
||||
assert result.model == "test-model"
|
||||
assert result.prompt_messages == prompt_messages
|
||||
assert result.message.content == []
|
||||
assert result.message.tool_calls == []
|
||||
assert result.usage == LLMUsage.empty_usage()
|
||||
assert result.system_fingerprint is None
|
||||
Reference in New Issue
Block a user