Compare commits

..

27 Commits

Author SHA1 Message Date
Jyong
72064372b5 Revert "add clean 7 days datasets (#9424)"
This reverts commit bd678f9ca1.
2024-10-16 22:45:15 +08:00
Jyong
bd678f9ca1 add clean 7 days datasets (#9424) 2024-10-16 22:24:50 +08:00
DDDDD12138
a87890b3cc fix: resolve overlap issue with API Extension selector and modal (#9407) 2024-10-16 17:40:17 +08:00
zhuhao
86594851cb refactor: update the default values of top-k parameter in vdb to be consistent (#9367) 2024-10-16 16:00:21 +08:00
Leo
a83ccccffc fix: incorrect webapp image displayed (#9401) 2024-10-16 15:31:47 +08:00
Jyong
50635e9c15 Fix/economical knowledge retrieval (#9396) 2024-10-16 15:13:45 +08:00
zhuhao
7d3dad3d1d feat: add timezone conversion for time tool (#9393) 2024-10-16 11:17:40 +08:00
ice yao
dd22e78515 fix: Deprecated gemma2-9b model in Fireworks AI Provider (#9373) 2024-10-16 10:44:54 +08:00
Hash Brown
5df1cb0566 feat: storybook (#9324) 2024-10-16 10:18:48 +08:00
crazywoola
423df67042 fix: use gpt-4o-mini for validating credentials (#9387) 2024-10-16 10:18:06 +08:00
ice yao
568d5c46ed feat: Enable baiduvector intergration test (#9369) 2024-10-16 09:41:28 +08:00
非法操作
da25b91980 fix: remove the stream option of zhipu and gemini (#9319) 2024-10-15 19:13:43 +08:00
ice yao
bc0dad6c1c fix: add missing vikingdb param in docker .env.example (#9334) 2024-10-15 19:12:07 +08:00
Jason Tan
9b8aa9b75d feat: add minimax abab6.5t support (#9365) 2024-10-15 19:00:05 +08:00
Bowen Liang
d5bc125617 fix: (#9336 followup) skip poetry preperation in style workflow when no change in api folder (#9362) 2024-10-15 17:56:11 +08:00
非法操作
4ffaabcc04 feat: add glm-4-flashx, deprecated chatglm_turbo (#9357) 2024-10-15 17:33:34 +08:00
Warren Wong
b597a0d31c fix: Azure OpenAI o1 max_completion_token and get_num_token_from_messages error (#9326)
Co-authored-by: wwwc <wwwc@outlook.com>
2024-10-15 16:26:44 +08:00
Wei-shun Bao
fb32e5ca9a fix: In the output, the order of 'ta' is sometimes reversed as 'at'. #8015 (#8791) 2024-10-15 16:24:29 +08:00
zhuhao
cd7ab6231f refactor: Add an enumeration type and use the factory pattern to obtain the corresponding class (#9356) 2024-10-15 12:51:13 +08:00
ice yao
5908fd6552 Adapt input type parameter with MiniMax embedding model (#9342) 2024-10-15 09:01:00 +08:00
omr
6d2c6caa23 refactor: remove unnecessary 'closing' usage for boto3 client (#9343) 2024-10-15 08:42:39 +08:00
Bowen Liang
5eb00502ec chore: clean-up unnecessary annotation on configs with non-null default value (#9323) 2024-10-14 23:47:58 +08:00
ice yao
3f9d6759d4 feat: Add qwen2.5 72B Instruct model in Fireworks AI (#9340) 2024-10-14 23:15:34 +08:00
ice yao
aba70207ab feat: Add fireworks custom llm intergration (#9333) 2024-10-14 22:50:31 +08:00
Bowen Liang
a8134a49c4 fix: poetry installation in CI jobs (#9336) 2024-10-14 22:22:03 +08:00
Hash Brown
fa47f0c707 chore: disable chat service API passing parent_message_id (#8984) 2024-10-14 19:13:16 +08:00
Summer-Gu
8501af298f feat: added dataset recall testing API (#9300) 2024-10-14 17:26:04 +08:00
108 changed files with 7110 additions and 1381 deletions

View File

@@ -27,18 +27,17 @@ jobs:
- name: Checkout code
uses: actions/checkout@v4
- name: Install Poetry
uses: abatilo/actions-poetry@v3
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
cache: 'poetry'
cache-dependency-path: |
api/pyproject.toml
api/poetry.lock
- name: Install Poetry
uses: abatilo/actions-poetry@v3
- name: Check Poetry lockfile
run: |
poetry check -C api --lock

View File

@@ -23,18 +23,17 @@ jobs:
- name: Checkout code
uses: actions/checkout@v4
- name: Install Poetry
uses: abatilo/actions-poetry@v3
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
cache: 'poetry'
cache-dependency-path: |
api/pyproject.toml
api/poetry.lock
- name: Install Poetry
uses: abatilo/actions-poetry@v3
- name: Install dependencies
run: poetry install -C api

View File

@@ -24,15 +24,16 @@ jobs:
with:
files: api/**
- name: Install Poetry
uses: abatilo/actions-poetry@v3
- name: Set up Python
uses: actions/setup-python@v5
if: steps.changed-files.outputs.any_changed == 'true'
with:
python-version: '3.10'
- name: Install Poetry
if: steps.changed-files.outputs.any_changed == 'true'
uses: abatilo/actions-poetry@v3
- name: Python dependencies
if: steps.changed-files.outputs.any_changed == 'true'
run: poetry install -C api --only lint

View File

@@ -85,3 +85,4 @@
cd ../
poetry run -C api bash dev/pytest/pytest_all_tests.sh
```

View File

@@ -14,7 +14,7 @@ class OracleConfig(BaseSettings):
default=None,
)
ORACLE_PORT: Optional[PositiveInt] = Field(
ORACLE_PORT: PositiveInt = Field(
description="Port number on which the Oracle database server is listening (default is 1521)",
default=1521,
)

View File

@@ -14,7 +14,7 @@ class PGVectorConfig(BaseSettings):
default=None,
)
PGVECTOR_PORT: Optional[PositiveInt] = Field(
PGVECTOR_PORT: PositiveInt = Field(
description="Port number on which the PostgreSQL server is listening (default is 5433)",
default=5433,
)

View File

@@ -14,7 +14,7 @@ class PGVectoRSConfig(BaseSettings):
default=None,
)
PGVECTO_RS_PORT: Optional[PositiveInt] = Field(
PGVECTO_RS_PORT: PositiveInt = Field(
description="Port number on which the PostgreSQL server with PGVecto.RS is listening (default is 5431)",
default=5431,
)

View File

@@ -11,27 +11,39 @@ class VikingDBConfig(BaseModel):
"""
VIKINGDB_ACCESS_KEY: Optional[str] = Field(
default=None, description="The Access Key provided by Volcengine VikingDB for API authentication."
description="The Access Key provided by Volcengine VikingDB for API authentication."
"Refer to the following documentation for details on obtaining credentials:"
"https://www.volcengine.com/docs/6291/65568",
default=None,
)
VIKINGDB_SECRET_KEY: Optional[str] = Field(
default=None, description="The Secret Key provided by Volcengine VikingDB for API authentication."
description="The Secret Key provided by Volcengine VikingDB for API authentication.",
default=None,
)
VIKINGDB_REGION: Optional[str] = Field(
default="cn-shanghai",
VIKINGDB_REGION: str = Field(
description="The region of the Volcengine VikingDB service.(e.g., 'cn-shanghai', 'cn-beijing').",
default="cn-shanghai",
)
VIKINGDB_HOST: Optional[str] = Field(
default="api-vikingdb.mlp.cn-shanghai.volces.com",
VIKINGDB_HOST: str = Field(
description="The host of the Volcengine VikingDB service.(e.g., 'api-vikingdb.volces.com', \
'api-vikingdb.mlp.cn-shanghai.volces.com')",
default="api-vikingdb.mlp.cn-shanghai.volces.com",
)
VIKINGDB_SCHEME: Optional[str] = Field(
default="http",
VIKINGDB_SCHEME: str = Field(
description="The scheme of the Volcengine VikingDB service.(e.g., 'http', 'https').",
default="http",
)
VIKINGDB_CONNECTION_TIMEOUT: Optional[int] = Field(
default=30, description="The connection timeout of the Volcengine VikingDB service."
VIKINGDB_CONNECTION_TIMEOUT: int = Field(
description="The connection timeout of the Volcengine VikingDB service.",
default=30,
)
VIKINGDB_SOCKET_TIMEOUT: Optional[int] = Field(
default=30, description="The socket timeout of the Volcengine VikingDB service."
VIKINGDB_SOCKET_TIMEOUT: int = Field(
description="The socket timeout of the Volcengine VikingDB service.",
default=30,
)

View File

@@ -1,88 +1,24 @@
import logging
from flask_restful import Resource
from flask_login import current_user
from flask_restful import Resource, marshal, reqparse
from werkzeug.exceptions import Forbidden, InternalServerError, NotFound
import services
from controllers.console import api
from controllers.console.app.error import (
CompletionRequestError,
ProviderModelCurrentlyNotSupportError,
ProviderNotInitializeError,
ProviderQuotaExceededError,
)
from controllers.console.datasets.error import DatasetNotInitializedError
from controllers.console.datasets.hit_testing_base import DatasetsHitTestingBase
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.errors.error import (
LLMBadRequestError,
ModelCurrentlyNotSupportError,
ProviderTokenNotInitError,
QuotaExceededError,
)
from core.model_runtime.errors.invoke import InvokeError
from fields.hit_testing_fields import hit_testing_record_fields
from libs.login import login_required
from services.dataset_service import DatasetService
from services.hit_testing_service import HitTestingService
class HitTestingApi(Resource):
class HitTestingApi(Resource, DatasetsHitTestingBase):
@setup_required
@login_required
@account_initialization_required
def post(self, dataset_id):
dataset_id_str = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id_str)
if dataset is None:
raise NotFound("Dataset not found.")
dataset = self.get_and_validate_dataset(dataset_id_str)
args = self.parse_args()
self.hit_testing_args_check(args)
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
parser = reqparse.RequestParser()
parser.add_argument("query", type=str, location="json")
parser.add_argument("retrieval_model", type=dict, required=False, location="json")
parser.add_argument("external_retrieval_model", type=dict, required=False, location="json")
args = parser.parse_args()
HitTestingService.hit_testing_args_check(args)
try:
response = HitTestingService.retrieve(
dataset=dataset,
query=args["query"],
account=current_user,
retrieval_model=args["retrieval_model"],
external_retrieval_model=args["external_retrieval_model"],
limit=10,
)
return {"query": response["query"], "records": marshal(response["records"], hit_testing_record_fields)}
except services.errors.index.IndexNotInitializedError:
raise DatasetNotInitializedError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model or Reranking Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
)
except InvokeError as e:
raise CompletionRequestError(e.description)
except ValueError as e:
raise ValueError(str(e))
except Exception as e:
logging.exception("Hit testing failed.")
raise InternalServerError(str(e))
return self.perform_hit_testing(dataset, args)
api.add_resource(HitTestingApi, "/datasets/<uuid:dataset_id>/hit-testing")

View File

@@ -0,0 +1,85 @@
import logging
from flask_login import current_user
from flask_restful import marshal, reqparse
from werkzeug.exceptions import Forbidden, InternalServerError, NotFound
import services.dataset_service
from controllers.console.app.error import (
CompletionRequestError,
ProviderModelCurrentlyNotSupportError,
ProviderNotInitializeError,
ProviderQuotaExceededError,
)
from controllers.console.datasets.error import DatasetNotInitializedError
from core.errors.error import (
LLMBadRequestError,
ModelCurrentlyNotSupportError,
ProviderTokenNotInitError,
QuotaExceededError,
)
from core.model_runtime.errors.invoke import InvokeError
from fields.hit_testing_fields import hit_testing_record_fields
from services.dataset_service import DatasetService
from services.hit_testing_service import HitTestingService
class DatasetsHitTestingBase:
@staticmethod
def get_and_validate_dataset(dataset_id: str):
dataset = DatasetService.get_dataset(dataset_id)
if dataset is None:
raise NotFound("Dataset not found.")
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
return dataset
@staticmethod
def hit_testing_args_check(args):
HitTestingService.hit_testing_args_check(args)
@staticmethod
def parse_args():
parser = reqparse.RequestParser()
parser.add_argument("query", type=str, location="json")
parser.add_argument("retrieval_model", type=dict, required=False, location="json")
parser.add_argument("external_retrieval_model", type=dict, required=False, location="json")
return parser.parse_args()
@staticmethod
def perform_hit_testing(dataset, args):
try:
response = HitTestingService.retrieve(
dataset=dataset,
query=args["query"],
account=current_user,
retrieval_model=args["retrieval_model"],
external_retrieval_model=args["external_retrieval_model"],
limit=10,
)
return {"query": response["query"], "records": marshal(response["records"], hit_testing_record_fields)}
except services.errors.index.IndexNotInitializedError:
raise DatasetNotInitializedError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model or Reranking Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
)
except InvokeError as e:
raise CompletionRequestError(e.description)
except ValueError as e:
raise ValueError(str(e))
except Exception as e:
logging.exception("Hit testing failed.")
raise InternalServerError(str(e))

View File

@@ -5,7 +5,6 @@ from libs.external_api import ExternalApi
bp = Blueprint("service_api", __name__, url_prefix="/v1")
api = ExternalApi(bp)
from . import index
from .app import app, audio, completion, conversation, file, message, workflow
from .dataset import dataset, document, segment
from .dataset import dataset, document, hit_testing, segment

View File

@@ -4,7 +4,6 @@ from flask_restful import Resource, reqparse
from werkzeug.exceptions import InternalServerError, NotFound
import services
from constants import UUID_NIL
from controllers.service_api import api
from controllers.service_api.app.error import (
AppUnavailableError,
@@ -108,7 +107,6 @@ class ChatApi(Resource):
parser.add_argument("conversation_id", type=uuid_value, location="json")
parser.add_argument("retriever_from", type=str, required=False, default="dev", location="json")
parser.add_argument("auto_generate_name", type=bool, required=False, default=True, location="json")
parser.add_argument("parent_message_id", type=uuid_value, required=False, default=UUID_NIL, location="json")
args = parser.parse_args()

View File

@@ -0,0 +1,17 @@
from controllers.console.datasets.hit_testing_base import DatasetsHitTestingBase
from controllers.service_api import api
from controllers.service_api.wraps import DatasetApiResource
class HitTestingApi(DatasetApiResource, DatasetsHitTestingBase):
def post(self, tenant_id, dataset_id):
dataset_id_str = str(dataset_id)
dataset = self.get_and_validate_dataset(dataset_id_str)
args = self.parse_args()
self.hit_testing_args_check(args)
return self.perform_hit_testing(dataset, args)
api.add_resource(HitTestingApi, "/datasets/<uuid:dataset_id>/hit-testing")

View File

@@ -62,6 +62,8 @@ class CotAgentOutputParser:
thought_str = "thought:"
thought_idx = 0
last_character = ""
for response in llm_response:
if response.delta.usage:
usage_dict["usage"] = response.delta.usage
@@ -74,35 +76,38 @@ class CotAgentOutputParser:
while index < len(response):
steps = 1
delta = response[index : index + steps]
last_character = response[index - 1] if index > 0 else ""
yield_delta = False
if delta == "`":
last_character = delta
code_block_cache += delta
code_block_delimiter_count += 1
else:
if not in_code_block:
if code_block_delimiter_count > 0:
last_character = delta
yield code_block_cache
code_block_cache = ""
else:
last_character = delta
code_block_cache += delta
code_block_delimiter_count = 0
if not in_code_block and not in_json:
if delta.lower() == action_str[action_idx] and action_idx == 0:
if last_character not in {"\n", " ", ""}:
yield_delta = True
else:
last_character = delta
action_cache += delta
action_idx += 1
if action_idx == len(action_str):
action_cache = ""
action_idx = 0
index += steps
yield delta
continue
action_cache += delta
action_idx += 1
if action_idx == len(action_str):
action_cache = ""
action_idx = 0
index += steps
continue
elif delta.lower() == action_str[action_idx] and action_idx > 0:
last_character = delta
action_cache += delta
action_idx += 1
if action_idx == len(action_str):
@@ -112,24 +117,25 @@ class CotAgentOutputParser:
continue
else:
if action_cache:
last_character = delta
yield action_cache
action_cache = ""
action_idx = 0
if delta.lower() == thought_str[thought_idx] and thought_idx == 0:
if last_character not in {"\n", " ", ""}:
yield_delta = True
else:
last_character = delta
thought_cache += delta
thought_idx += 1
if thought_idx == len(thought_str):
thought_cache = ""
thought_idx = 0
index += steps
yield delta
continue
thought_cache += delta
thought_idx += 1
if thought_idx == len(thought_str):
thought_cache = ""
thought_idx = 0
index += steps
continue
elif delta.lower() == thought_str[thought_idx] and thought_idx > 0:
last_character = delta
thought_cache += delta
thought_idx += 1
if thought_idx == len(thought_str):
@@ -139,12 +145,20 @@ class CotAgentOutputParser:
continue
else:
if thought_cache:
last_character = delta
yield thought_cache
thought_cache = ""
thought_idx = 0
if yield_delta:
index += steps
last_character = delta
yield delta
continue
if code_block_delimiter_count == 3:
if in_code_block:
last_character = delta
yield from extra_json_from_code_block(code_block_cache)
code_block_cache = ""
@@ -156,8 +170,10 @@ class CotAgentOutputParser:
if delta == "{":
json_quote_count += 1
in_json = True
last_character = delta
json_cache += delta
elif delta == "}":
last_character = delta
json_cache += delta
if json_quote_count > 0:
json_quote_count -= 1
@@ -168,16 +184,19 @@ class CotAgentOutputParser:
continue
else:
if in_json:
last_character = delta
json_cache += delta
if got_json:
got_json = False
last_character = delta
yield parse_action(json_cache)
json_cache = ""
json_quote_count = 0
in_json = False
if not in_code_block and not in_json:
last_character = delta
yield delta.replace("`", "")
index += steps

View File

@@ -10,6 +10,7 @@ from flask import Flask, current_app
from pydantic import ValidationError
import contexts
from constants import UUID_NIL
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.app.apps.advanced_chat.app_config_manager import AdvancedChatAppConfigManager
from core.app.apps.advanced_chat.app_runner import AdvancedChatAppRunner
@@ -122,7 +123,7 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
inputs=conversation.inputs if conversation else self._get_cleaned_inputs(inputs, app_config),
query=query,
files=file_objs,
parent_message_id=args.get("parent_message_id"),
parent_message_id=args.get("parent_message_id") if invoke_from != InvokeFrom.SERVICE_API else UUID_NIL,
user_id=user.id,
stream=stream,
invoke_from=invoke_from,

View File

@@ -8,6 +8,7 @@ from typing import Any, Literal, Union, overload
from flask import Flask, current_app
from pydantic import ValidationError
from constants import UUID_NIL
from core.app.app_config.easy_ui_based_app.model_config.converter import ModelConfigConverter
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfigManager
@@ -127,7 +128,7 @@ class AgentChatAppGenerator(MessageBasedAppGenerator):
inputs=conversation.inputs if conversation else self._get_cleaned_inputs(inputs, app_config),
query=query,
files=file_objs,
parent_message_id=args.get("parent_message_id"),
parent_message_id=args.get("parent_message_id") if invoke_from != InvokeFrom.SERVICE_API else UUID_NIL,
user_id=user.id,
stream=stream,
invoke_from=invoke_from,

View File

@@ -8,6 +8,7 @@ from typing import Any, Literal, Union, overload
from flask import Flask, current_app
from pydantic import ValidationError
from constants import UUID_NIL
from core.app.app_config.easy_ui_based_app.model_config.converter import ModelConfigConverter
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.app.apps.base_app_queue_manager import AppQueueManager, GenerateTaskStoppedError, PublishFrom
@@ -128,7 +129,7 @@ class ChatAppGenerator(MessageBasedAppGenerator):
inputs=conversation.inputs if conversation else self._get_cleaned_inputs(inputs, app_config),
query=query,
files=file_objs,
parent_message_id=args.get("parent_message_id"),
parent_message_id=args.get("parent_message_id") if invoke_from != InvokeFrom.SERVICE_API else UUID_NIL,
user_id=user.id,
stream=stream,
invoke_from=invoke_from,

View File

@@ -2,8 +2,9 @@ from collections.abc import Mapping
from enum import Enum
from typing import Any, Optional
from pydantic import BaseModel, ConfigDict
from pydantic import BaseModel, ConfigDict, Field, ValidationInfo, field_validator
from constants import UUID_NIL
from core.app.app_config.entities import AppConfig, EasyUIBasedAppConfig, WorkflowUIBasedAppConfig
from core.entities.provider_configuration import ProviderModelBundle
from core.file.file_obj import FileVar
@@ -116,13 +117,36 @@ class EasyUIBasedAppGenerateEntity(AppGenerateEntity):
model_config = ConfigDict(protected_namespaces=())
class ChatAppGenerateEntity(EasyUIBasedAppGenerateEntity):
class ConversationAppGenerateEntity(AppGenerateEntity):
"""
Base entity for conversation-based app generation.
"""
conversation_id: Optional[str] = None
parent_message_id: Optional[str] = Field(
default=None,
description=(
"Starting from v0.9.0, parent_message_id is used to support message regeneration for internal chat API."
"For service API, we need to ensure its forward compatibility, "
"so passing in the parent_message_id as request arg is not supported for now. "
"It needs to be set to UUID_NIL so that the subsequent processing will treat it as legacy messages."
),
)
@field_validator("parent_message_id")
@classmethod
def validate_parent_message_id(cls, v, info: ValidationInfo):
if info.data.get("invoke_from") == InvokeFrom.SERVICE_API and v != UUID_NIL:
raise ValueError("parent_message_id should be UUID_NIL for service API")
return v
class ChatAppGenerateEntity(ConversationAppGenerateEntity, EasyUIBasedAppGenerateEntity):
"""
Chat Application Generate Entity.
"""
conversation_id: Optional[str] = None
parent_message_id: Optional[str] = None
pass
class CompletionAppGenerateEntity(EasyUIBasedAppGenerateEntity):
@@ -133,16 +157,15 @@ class CompletionAppGenerateEntity(EasyUIBasedAppGenerateEntity):
pass
class AgentChatAppGenerateEntity(EasyUIBasedAppGenerateEntity):
class AgentChatAppGenerateEntity(ConversationAppGenerateEntity, EasyUIBasedAppGenerateEntity):
"""
Agent Chat Application Generate Entity.
"""
conversation_id: Optional[str] = None
parent_message_id: Optional[str] = None
pass
class AdvancedChatAppGenerateEntity(AppGenerateEntity):
class AdvancedChatAppGenerateEntity(ConversationAppGenerateEntity):
"""
Advanced Chat Application Generate Entity.
"""
@@ -150,8 +173,6 @@ class AdvancedChatAppGenerateEntity(AppGenerateEntity):
# app config
app_config: WorkflowUIBasedAppConfig
conversation_id: Optional[str] = None
parent_message_id: Optional[str] = None
workflow_run_id: Optional[str] = None
query: str

View File

@@ -1098,6 +1098,14 @@ LLM_BASE_MODELS = [
ModelPropertyKey.CONTEXT_SIZE: 128000,
},
parameter_rules=[
ParameterRule(
name="temperature",
**PARAMETER_RULE_TEMPLATE[DefaultParameterName.TEMPERATURE],
),
ParameterRule(
name="top_p",
**PARAMETER_RULE_TEMPLATE[DefaultParameterName.TOP_P],
),
ParameterRule(
name="response_format",
label=I18nObject(zh_Hans="回复格式", en_US="response_format"),
@@ -1135,6 +1143,14 @@ LLM_BASE_MODELS = [
ModelPropertyKey.CONTEXT_SIZE: 128000,
},
parameter_rules=[
ParameterRule(
name="temperature",
**PARAMETER_RULE_TEMPLATE[DefaultParameterName.TEMPERATURE],
),
ParameterRule(
name="top_p",
**PARAMETER_RULE_TEMPLATE[DefaultParameterName.TOP_P],
),
ParameterRule(
name="response_format",
label=I18nObject(zh_Hans="回复格式", en_US="response_format"),

View File

@@ -119,7 +119,15 @@ class AzureOpenAILargeLanguageModel(_CommonAzureOpenAI, LargeLanguageModel):
try:
client = AzureOpenAI(**self._to_credential_kwargs(credentials))
if ai_model_entity.entity.model_properties.get(ModelPropertyKey.MODE) == LLMMode.CHAT.value:
if model.startswith("o1"):
client.chat.completions.create(
messages=[{"role": "user", "content": "ping"}],
model=model,
temperature=1,
max_completion_tokens=20,
stream=False,
)
elif ai_model_entity.entity.model_properties.get(ModelPropertyKey.MODE) == LLMMode.CHAT.value:
# chat model
client.chat.completions.create(
messages=[{"role": "user", "content": "ping"}],

View File

@@ -18,6 +18,7 @@ supported_model_types:
- text-embedding
configurate_methods:
- predefined-model
- customizable-model
provider_credential_schema:
credential_form_schemas:
- variable: fireworks_api_key
@@ -28,3 +29,75 @@ provider_credential_schema:
placeholder:
zh_Hans: 在此输入您的 API Key
en_US: Enter your API Key
model_credential_schema:
model:
label:
en_US: Model URL
zh_Hans: 模型URL
placeholder:
en_US: Enter your Model URL
zh_Hans: 输入模型URL
credential_form_schemas:
- variable: model_label_zh_Hanns
label:
zh_Hans: 模型中文名称
en_US: The zh_Hans of Model
required: true
type: text-input
placeholder:
zh_Hans: 在此输入您的模型中文名称
en_US: Enter your zh_Hans of Model
- variable: model_label_en_US
label:
zh_Hans: 模型英文名称
en_US: The en_US of Model
required: true
type: text-input
placeholder:
zh_Hans: 在此输入您的模型英文名称
en_US: Enter your en_US of Model
- variable: fireworks_api_key
label:
en_US: API Key
type: secret-input
required: true
placeholder:
zh_Hans: 在此输入您的 API Key
en_US: Enter your API Key
- variable: context_size
label:
zh_Hans: 模型上下文长度
en_US: Model context size
required: true
type: text-input
default: '4096'
placeholder:
zh_Hans: 在此输入您的模型上下文长度
en_US: Enter your Model context size
- variable: max_tokens
label:
zh_Hans: 最大 token 上限
en_US: Upper bound for max tokens
default: '4096'
type: text-input
show_on:
- variable: __model_type
value: llm
- variable: function_calling_type
label:
en_US: Function calling
type: select
required: false
default: no_call
options:
- value: no_call
label:
en_US: Not Support
zh_Hans: 不支持
- value: function_call
label:
en_US: Support
zh_Hans: 支持
show_on:
- variable: __model_type
value: llm

View File

@@ -43,3 +43,4 @@ pricing:
output: '0.2'
unit: '0.000001'
currency: USD
deprecated: true

View File

@@ -8,7 +8,8 @@ from openai.types.chat.chat_completion_chunk import ChoiceDeltaFunctionCall, Cho
from openai.types.chat.chat_completion_message import FunctionCall
from core.model_runtime.callbacks.base_callback import Callback
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.llm_entities import LLMMode, LLMResult, LLMResultChunk, LLMResultChunkDelta
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
ImagePromptMessageContent,
@@ -20,6 +21,15 @@ from core.model_runtime.entities.message_entities import (
ToolPromptMessage,
UserPromptMessage,
)
from core.model_runtime.entities.model_entities import (
AIModelEntity,
FetchFrom,
ModelFeature,
ModelPropertyKey,
ModelType,
ParameterRule,
ParameterType,
)
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.model_runtime.model_providers.fireworks._common import _CommonFireworks
@@ -608,3 +618,50 @@ class FireworksLargeLanguageModel(_CommonFireworks, LargeLanguageModel):
num_tokens += self._get_num_tokens_by_gpt2(required_field)
return num_tokens
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity:
return AIModelEntity(
model=model,
label=I18nObject(
en_US=credentials.get("model_label_en_US", model),
zh_Hans=credentials.get("model_label_zh_Hanns", model),
),
model_type=ModelType.LLM,
features=[ModelFeature.TOOL_CALL, ModelFeature.MULTI_TOOL_CALL, ModelFeature.STREAM_TOOL_CALL]
if credentials.get("function_calling_type") == "function_call"
else [],
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_properties={
ModelPropertyKey.CONTEXT_SIZE: int(credentials.get("context_size", 4096)),
ModelPropertyKey.MODE: LLMMode.CHAT.value,
},
parameter_rules=[
ParameterRule(
name="temperature",
use_template="temperature",
label=I18nObject(en_US="Temperature", zh_Hans="温度"),
type=ParameterType.FLOAT,
),
ParameterRule(
name="max_tokens",
use_template="max_tokens",
default=512,
min=1,
max=int(credentials.get("max_tokens", 4096)),
label=I18nObject(en_US="Max Tokens", zh_Hans="最大标记"),
type=ParameterType.INT,
),
ParameterRule(
name="top_p",
use_template="top_p",
label=I18nObject(en_US="Top P", zh_Hans="Top P"),
type=ParameterType.FLOAT,
),
ParameterRule(
name="top_k",
use_template="top_k",
label=I18nObject(en_US="Top K", zh_Hans="Top K"),
type=ParameterType.FLOAT,
),
],
)

View File

@@ -0,0 +1,46 @@
model: accounts/fireworks/models/qwen2p5-72b-instruct
label:
zh_Hans: Qwen2.5 72B Instruct
en_US: Qwen2.5 72B Instruct
model_type: llm
features:
- agent-thought
- tool-call
model_properties:
mode: chat
context_size: 32768
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
- name: max_tokens
use_template: max_tokens
- name: context_length_exceeded_behavior
default: None
label:
zh_Hans: 上下文长度超出行为
en_US: Context Length Exceeded Behavior
help:
zh_Hans: 上下文长度超出行为
en_US: Context Length Exceeded Behavior
type: string
options:
- None
- truncate
- error
- name: response_format
use_template: response_format
pricing:
input: '0.9'
output: '0.9'
unit: '0.000001'
currency: USD

View File

@@ -32,15 +32,6 @@ parameter_rules:
max: 8192
- name: response_format
use_template: response_format
- name: stream
label:
zh_Hans: 流式输出
en_US: Stream
type: boolean
help:
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
default: false
pricing:
input: '0.00'
output: '0.00'

View File

@@ -32,15 +32,6 @@ parameter_rules:
max: 8192
- name: response_format
use_template: response_format
- name: stream
label:
zh_Hans: 流式输出
en_US: Stream
type: boolean
help:
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
default: false
pricing:
input: '0.00'
output: '0.00'

View File

@@ -32,15 +32,6 @@ parameter_rules:
max: 8192
- name: response_format
use_template: response_format
- name: stream
label:
zh_Hans: 流式输出
en_US: Stream
type: boolean
help:
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
default: false
pricing:
input: '0.00'
output: '0.00'

View File

@@ -32,15 +32,6 @@ parameter_rules:
max: 8192
- name: response_format
use_template: response_format
- name: stream
label:
zh_Hans: 流式输出
en_US: Stream
type: boolean
help:
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
default: false
pricing:
input: '0.00'
output: '0.00'

View File

@@ -32,15 +32,6 @@ parameter_rules:
max: 8192
- name: response_format
use_template: response_format
- name: stream
label:
zh_Hans: 流式输出
en_US: Stream
type: boolean
help:
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
default: false
pricing:
input: '0.00'
output: '0.00'

View File

@@ -32,15 +32,6 @@ parameter_rules:
max: 8192
- name: response_format
use_template: response_format
- name: stream
label:
zh_Hans: 流式输出
en_US: Stream
type: boolean
help:
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
default: false
pricing:
input: '0.00'
output: '0.00'

View File

@@ -32,15 +32,6 @@ parameter_rules:
max: 8192
- name: response_format
use_template: response_format
- name: stream
label:
zh_Hans: 流式输出
en_US: Stream
type: boolean
help:
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
default: false
pricing:
input: '0.00'
output: '0.00'

View File

@@ -32,15 +32,6 @@ parameter_rules:
max: 8192
- name: response_format
use_template: response_format
- name: stream
label:
zh_Hans: 流式输出
en_US: Stream
type: boolean
help:
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
default: false
pricing:
input: '0.00'
output: '0.00'

View File

@@ -32,15 +32,6 @@ parameter_rules:
max: 8192
- name: response_format
use_template: response_format
- name: stream
label:
zh_Hans: 流式输出
en_US: Stream
type: boolean
help:
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
default: false
pricing:
input: '0.00'
output: '0.00'

View File

@@ -32,15 +32,6 @@ parameter_rules:
max: 8192
- name: response_format
use_template: response_format
- name: stream
label:
zh_Hans: 流式输出
en_US: Stream
type: boolean
help:
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
default: false
pricing:
input: '0.00'
output: '0.00'

View File

@@ -32,15 +32,6 @@ parameter_rules:
max: 8192
- name: response_format
use_template: response_format
- name: stream
label:
zh_Hans: 流式输出
en_US: Stream
type: boolean
help:
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
default: false
pricing:
input: '0.00'
output: '0.00'

View File

@@ -32,15 +32,6 @@ parameter_rules:
max: 8192
- name: response_format
use_template: response_format
- name: stream
label:
zh_Hans: 流式输出
en_US: Stream
type: boolean
help:
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
default: false
pricing:
input: '0.00'
output: '0.00'

View File

@@ -32,15 +32,6 @@ parameter_rules:
max: 8192
- name: response_format
use_template: response_format
- name: stream
label:
zh_Hans: 流式输出
en_US: Stream
type: boolean
help:
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
default: false
pricing:
input: '0.00'
output: '0.00'

View File

@@ -27,15 +27,6 @@ parameter_rules:
default: 4096
min: 1
max: 4096
- name: stream
label:
zh_Hans: 流式输出
en_US: Stream
type: boolean
help:
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
default: false
pricing:
input: '0.00'
output: '0.00'

View File

@@ -31,15 +31,6 @@ parameter_rules:
max: 2048
- name: response_format
use_template: response_format
- name: stream
label:
zh_Hans: 流式输出
en_US: Stream
type: boolean
help:
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
default: false
pricing:
input: '0.00'
output: '0.00'

View File

@@ -0,0 +1,44 @@
model: abab6.5t-chat
label:
en_US: Abab6.5t-Chat
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 8192
parameter_rules:
- name: temperature
use_template: temperature
min: 0.01
max: 1
default: 0.9
- name: top_p
use_template: top_p
min: 0.01
max: 1
default: 0.95
- name: max_tokens
use_template: max_tokens
required: true
default: 3072
min: 1
max: 8192
- name: mask_sensitive_info
type: boolean
default: true
label:
zh_Hans: 隐私保护
en_US: Moderate
help:
zh_Hans: 对输出中易涉及隐私问题的文本信息进行打码目前包括但不限于邮箱、域名、链接、证件号、家庭住址等默认true即开启打码
en_US: Mask the sensitive info of the generated content, such as email/domain/link/address/phone/id..
- name: presence_penalty
use_template: presence_penalty
- name: frequency_penalty
use_template: frequency_penalty
pricing:
input: '0.005'
output: '0.005'
unit: '0.001'
currency: RMB

View File

@@ -61,7 +61,8 @@ class MinimaxTextEmbeddingModel(TextEmbeddingModel):
url = f"{self.api_base}?GroupId={group_id}"
headers = {"Authorization": "Bearer " + api_key, "Content-Type": "application/json"}
data = {"model": "embo-01", "texts": texts, "type": "db"}
embedding_type = "db" if input_type == EmbeddingInputType.DOCUMENT else "query"
data = {"model": "embo-01", "texts": texts, "type": embedding_type}
try:
response = post(url, headers=headers, data=dumps(data))

View File

@@ -19,9 +19,9 @@ class OpenAIProvider(ModelProvider):
try:
model_instance = self.get_model_instance(ModelType.LLM)
# Use `gpt-3.5-turbo` model for validate,
# Use `gpt-4o-mini` model for validate,
# no matter what model you pass in, text completion model or chat model
model_instance.validate_credentials(model="gpt-3.5-turbo", credentials=credentials)
model_instance.validate_credentials(model="gpt-4o-mini", credentials=credentials)
except CredentialsValidateFailedError as ex:
raise ex
except Exception as ex:

View File

@@ -28,15 +28,6 @@ parameter_rules:
zh_Hans: do_sample 为 true 时启用采样策略do_sample 为 false 时采样策略 temperature、top_p 将不生效。默认值为 true。
en_US: When `do_sample` is set to true, the sampling strategy is enabled. When `do_sample` is set to false, the sampling strategies such as `temperature` and `top_p` will not take effect. The default value is true.
default: true
- name: stream
label:
zh_Hans: 流处理
en_US: Event Stream
type: boolean
help:
zh_Hans: 使用同步调用时,此参数应当设置为 fasle 或者省略。表示模型生成完所有内容后一次性返回所有内容。默认值为 false。如果设置为 true模型将通过标准 Event Stream 逐块返回模型生成内容。Event Stream 结束时会返回一条data[DONE]消息。注意在模型流式输出生成内容的过程中我们会分批对模型生成内容进行检测当检测到违法及不良信息时API会返回错误码1301。开发者识别到错误码1301应及时采取清屏、重启对话等措施删除生成内容并确保不将含有违法及不良信息的内容传递给模型继续生成避免其造成负面影响。
en_US: When using synchronous invocation, this parameter should be set to false or omitted. It indicates that the model will return all the generated content at once after the generation is complete. The default value is false. If set to true, the model will return the generated content in chunks via the standard Event Stream. A data[DONE] message will be sent at the end of the Event Stream.NoteDuring the model's streaming output process, we will batch check the generated content. If illegal or harmful information is detected, the API will return an error code (1301). Developers who identify error code (1301) should promptly take actions such as clearing the screen or restarting the conversation to delete the generated content. They should also ensure that no illegal or harmful content is passed back to the model for continued generation to avoid negative impacts.
default: false
- name: return_type
label:
zh_Hans: 回复类型
@@ -49,3 +40,4 @@ parameter_rules:
options:
- text
- json_string
deprecated: true

View File

@@ -32,15 +32,6 @@ parameter_rules:
zh_Hans: do_sample 为 true 时启用采样策略do_sample 为 false 时采样策略 temperature、top_p 将不生效。默认值为 true。
en_US: When `do_sample` is set to true, the sampling strategy is enabled. When `do_sample` is set to false, the sampling strategies such as `temperature` and `top_p` will not take effect. The default value is true.
default: true
- name: stream
label:
zh_Hans: 流处理
en_US: Event Stream
type: boolean
help:
zh_Hans: 使用同步调用时,此参数应当设置为 fasle 或者省略。表示模型生成完所有内容后一次性返回所有内容。默认值为 false。如果设置为 true模型将通过标准 Event Stream 逐块返回模型生成内容。Event Stream 结束时会返回一条data[DONE]消息。注意在模型流式输出生成内容的过程中我们会分批对模型生成内容进行检测当检测到违法及不良信息时API会返回错误码1301。开发者识别到错误码1301应及时采取清屏、重启对话等措施删除生成内容并确保不将含有违法及不良信息的内容传递给模型继续生成避免其造成负面影响。
en_US: When using synchronous invocation, this parameter should be set to false or omitted. It indicates that the model will return all the generated content at once after the generation is complete. The default value is false. If set to true, the model will return the generated content in chunks via the standard Event Stream. A data[DONE] message will be sent at the end of the Event Stream.NoteDuring the model's streaming output process, we will batch check the generated content. If illegal or harmful information is detected, the API will return an error code (1301). Developers who identify error code (1301) should promptly take actions such as clearing the screen or restarting the conversation to delete the generated content. They should also ensure that no illegal or harmful content is passed back to the model for continued generation to avoid negative impacts.
default: false
- name: max_tokens
use_template: max_tokens
default: 1024

View File

@@ -32,15 +32,6 @@ parameter_rules:
zh_Hans: do_sample 为 true 时启用采样策略do_sample 为 false 时采样策略 temperature、top_p 将不生效。默认值为 true。
en_US: When `do_sample` is set to true, the sampling strategy is enabled. When `do_sample` is set to false, the sampling strategies such as `temperature` and `top_p` will not take effect. The default value is true.
default: true
- name: stream
label:
zh_Hans: 流处理
en_US: Event Stream
type: boolean
help:
zh_Hans: 使用同步调用时,此参数应当设置为 fasle 或者省略。表示模型生成完所有内容后一次性返回所有内容。默认值为 false。如果设置为 true模型将通过标准 Event Stream 逐块返回模型生成内容。Event Stream 结束时会返回一条data[DONE]消息。注意在模型流式输出生成内容的过程中我们会分批对模型生成内容进行检测当检测到违法及不良信息时API会返回错误码1301。开发者识别到错误码1301应及时采取清屏、重启对话等措施删除生成内容并确保不将含有违法及不良信息的内容传递给模型继续生成避免其造成负面影响。
en_US: When using synchronous invocation, this parameter should be set to false or omitted. It indicates that the model will return all the generated content at once after the generation is complete. The default value is false. If set to true, the model will return the generated content in chunks via the standard Event Stream. A data[DONE] message will be sent at the end of the Event Stream.NoteDuring the model's streaming output process, we will batch check the generated content. If illegal or harmful information is detected, the API will return an error code (1301). Developers who identify error code (1301) should promptly take actions such as clearing the screen or restarting the conversation to delete the generated content. They should also ensure that no illegal or harmful content is passed back to the model for continued generation to avoid negative impacts.
default: false
- name: max_tokens
use_template: max_tokens
default: 1024

View File

@@ -32,15 +32,6 @@ parameter_rules:
zh_Hans: do_sample 为 true 时启用采样策略do_sample 为 false 时采样策略 temperature、top_p 将不生效。默认值为 true。
en_US: When `do_sample` is set to true, the sampling strategy is enabled. When `do_sample` is set to false, the sampling strategies such as `temperature` and `top_p` will not take effect. The default value is true.
default: true
- name: stream
label:
zh_Hans: 流处理
en_US: Event Stream
type: boolean
help:
zh_Hans: 使用同步调用时,此参数应当设置为 fasle 或者省略。表示模型生成完所有内容后一次性返回所有内容。默认值为 false。如果设置为 true模型将通过标准 Event Stream 逐块返回模型生成内容。Event Stream 结束时会返回一条data[DONE]消息。注意在模型流式输出生成内容的过程中我们会分批对模型生成内容进行检测当检测到违法及不良信息时API会返回错误码1301。开发者识别到错误码1301应及时采取清屏、重启对话等措施删除生成内容并确保不将含有违法及不良信息的内容传递给模型继续生成避免其造成负面影响。
en_US: When using synchronous invocation, this parameter should be set to false or omitted. It indicates that the model will return all the generated content at once after the generation is complete. The default value is false. If set to true, the model will return the generated content in chunks via the standard Event Stream. A data[DONE] message will be sent at the end of the Event Stream.NoteDuring the model's streaming output process, we will batch check the generated content. If illegal or harmful information is detected, the API will return an error code (1301). Developers who identify error code (1301) should promptly take actions such as clearing the screen or restarting the conversation to delete the generated content. They should also ensure that no illegal or harmful content is passed back to the model for continued generation to avoid negative impacts.
default: false
- name: max_tokens
use_template: max_tokens
default: 1024

View File

@@ -32,15 +32,6 @@ parameter_rules:
zh_Hans: do_sample 为 true 时启用采样策略do_sample 为 false 时采样策略 temperature、top_p 将不生效。默认值为 true。
en_US: When `do_sample` is set to true, the sampling strategy is enabled. When `do_sample` is set to false, the sampling strategies such as `temperature` and `top_p` will not take effect. The default value is true.
default: true
- name: stream
label:
zh_Hans: 流处理
en_US: Event Stream
type: boolean
help:
zh_Hans: 使用同步调用时,此参数应当设置为 fasle 或者省略。表示模型生成完所有内容后一次性返回所有内容。默认值为 false。如果设置为 true模型将通过标准 Event Stream 逐块返回模型生成内容。Event Stream 结束时会返回一条data[DONE]消息。注意在模型流式输出生成内容的过程中我们会分批对模型生成内容进行检测当检测到违法及不良信息时API会返回错误码1301。开发者识别到错误码1301应及时采取清屏、重启对话等措施删除生成内容并确保不将含有违法及不良信息的内容传递给模型继续生成避免其造成负面影响。
en_US: When using synchronous invocation, this parameter should be set to false or omitted. It indicates that the model will return all the generated content at once after the generation is complete. The default value is false. If set to true, the model will return the generated content in chunks via the standard Event Stream. A data[DONE] message will be sent at the end of the Event Stream.NoteDuring the model's streaming output process, we will batch check the generated content. If illegal or harmful information is detected, the API will return an error code (1301). Developers who identify error code (1301) should promptly take actions such as clearing the screen or restarting the conversation to delete the generated content. They should also ensure that no illegal or harmful content is passed back to the model for continued generation to avoid negative impacts.
default: false
- name: max_tokens
use_template: max_tokens
default: 1024

View File

@@ -0,0 +1,53 @@
model: glm-4-flashx
label:
en_US: glm-4-flashx
model_type: llm
features:
- multi-tool-call
- agent-thought
- stream-tool-call
model_properties:
mode: chat
parameter_rules:
- name: temperature
use_template: temperature
default: 0.95
min: 0.0
max: 1.0
help:
zh_Hans: 采样温度,控制输出的随机性,必须为正数取值范围是:(0.0,1.0],不能等于 0,默认值为 0.95 值越大,会使输出更随机,更具创造性;值越小,输出会更加稳定或确定建议您根据应用场景调整 top_p 或 temperature 参数,但不要同时调整两个参数。
en_US: Sampling temperature, controls the randomness of the output, must be a positive number. The value range is (0.0,1.0], which cannot be equal to 0. The default value is 0.95. The larger the value, the more random and creative the output will be; the smaller the value, The output will be more stable or certain. It is recommended that you adjust the top_p or temperature parameters according to the application scenario, but do not adjust both parameters at the same time.
- name: top_p
use_template: top_p
default: 0.7
help:
zh_Hans: 用温度取样的另一种方法,称为核取样取值范围是:(0.0, 1.0) 开区间,不能等于 0 或 1默认值为 0.7 模型考虑具有 top_p 概率质量tokens的结果例如0.1 意味着模型解码器只考虑从前 10% 的概率的候选集中取 tokens 建议您根据应用场景调整 top_p 或 temperature 参数,但不要同时调整两个参数。
en_US: Another method of temperature sampling is called kernel sampling. The value range is (0.0, 1.0) open interval, which cannot be equal to 0 or 1. The default value is 0.7. The model considers the results with top_p probability mass tokens. For example 0.1 means The model decoder only considers tokens from the candidate set with the top 10% probability. It is recommended that you adjust the top_p or temperature parameters according to the application scenario, but do not adjust both parameters at the same time.
- name: do_sample
label:
zh_Hans: 采样策略
en_US: Sampling strategy
type: boolean
help:
zh_Hans: do_sample 为 true 时启用采样策略do_sample 为 false 时采样策略 temperature、top_p 将不生效。默认值为 true。
en_US: When `do_sample` is set to true, the sampling strategy is enabled. When `do_sample` is set to false, the sampling strategies such as `temperature` and `top_p` will not take effect. The default value is true.
default: true
- name: max_tokens
use_template: max_tokens
default: 1024
min: 1
max: 4095
- name: web_search
type: boolean
label:
zh_Hans: 联网搜索
en_US: Web Search
default: false
help:
zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。
en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic.
pricing:
input: '0'
output: '0'
unit: '0.001'
currency: RMB

View File

@@ -32,15 +32,6 @@ parameter_rules:
zh_Hans: do_sample 为 true 时启用采样策略do_sample 为 false 时采样策略 temperature、top_p 将不生效。默认值为 true。
en_US: When `do_sample` is set to true, the sampling strategy is enabled. When `do_sample` is set to false, the sampling strategies such as `temperature` and `top_p` will not take effect. The default value is true.
default: true
- name: stream
label:
zh_Hans: 流处理
en_US: Event Stream
type: boolean
help:
zh_Hans: 使用同步调用时,此参数应当设置为 fasle 或者省略。表示模型生成完所有内容后一次性返回所有内容。默认值为 false。如果设置为 true模型将通过标准 Event Stream 逐块返回模型生成内容。Event Stream 结束时会返回一条data[DONE]消息。注意在模型流式输出生成内容的过程中我们会分批对模型生成内容进行检测当检测到违法及不良信息时API会返回错误码1301。开发者识别到错误码1301应及时采取清屏、重启对话等措施删除生成内容并确保不将含有违法及不良信息的内容传递给模型继续生成避免其造成负面影响。
en_US: When using synchronous invocation, this parameter should be set to false or omitted. It indicates that the model will return all the generated content at once after the generation is complete. The default value is false. If set to true, the model will return the generated content in chunks via the standard Event Stream. A data[DONE] message will be sent at the end of the Event Stream.NoteDuring the model's streaming output process, we will batch check the generated content. If illegal or harmful information is detected, the API will return an error code (1301). Developers who identify error code (1301) should promptly take actions such as clearing the screen or restarting the conversation to delete the generated content. They should also ensure that no illegal or harmful content is passed back to the model for continued generation to avoid negative impacts.
default: false
- name: max_tokens
use_template: max_tokens
default: 1024

View File

@@ -32,15 +32,6 @@ parameter_rules:
zh_Hans: do_sample 为 true 时启用采样策略do_sample 为 false 时采样策略 temperature、top_p 将不生效。默认值为 true。
en_US: When `do_sample` is set to true, the sampling strategy is enabled. When `do_sample` is set to false, the sampling strategies such as `temperature` and `top_p` will not take effect. The default value is true.
default: true
- name: stream
label:
zh_Hans: 流处理
en_US: Event Stream
type: boolean
help:
zh_Hans: 使用同步调用时,此参数应当设置为 fasle 或者省略。表示模型生成完所有内容后一次性返回所有内容。默认值为 false。如果设置为 true模型将通过标准 Event Stream 逐块返回模型生成内容。Event Stream 结束时会返回一条data[DONE]消息。注意在模型流式输出生成内容的过程中我们会分批对模型生成内容进行检测当检测到违法及不良信息时API会返回错误码1301。开发者识别到错误码1301应及时采取清屏、重启对话等措施删除生成内容并确保不将含有违法及不良信息的内容传递给模型继续生成避免其造成负面影响。
en_US: When using synchronous invocation, this parameter should be set to false or omitted. It indicates that the model will return all the generated content at once after the generation is complete. The default value is false. If set to true, the model will return the generated content in chunks via the standard Event Stream. A data[DONE] message will be sent at the end of the Event Stream.NoteDuring the model's streaming output process, we will batch check the generated content. If illegal or harmful information is detected, the API will return an error code (1301). Developers who identify error code (1301) should promptly take actions such as clearing the screen or restarting the conversation to delete the generated content. They should also ensure that no illegal or harmful content is passed back to the model for continued generation to avoid negative impacts.
default: false
- name: max_tokens
use_template: max_tokens
default: 1024

View File

@@ -35,15 +35,6 @@ parameter_rules:
zh_Hans: do_sample 为 true 时启用采样策略do_sample 为 false 时采样策略 temperature、top_p 将不生效。默认值为 true。
en_US: When `do_sample` is set to true, the sampling strategy is enabled. When `do_sample` is set to false, the sampling strategies such as `temperature` and `top_p` will not take effect. The default value is true.
default: true
- name: stream
label:
zh_Hans: 流处理
en_US: Event Stream
type: boolean
help:
zh_Hans: 使用同步调用时,此参数应当设置为 fasle 或者省略。表示模型生成完所有内容后一次性返回所有内容。默认值为 false。如果设置为 true模型将通过标准 Event Stream 逐块返回模型生成内容。Event Stream 结束时会返回一条data[DONE]消息。注意在模型流式输出生成内容的过程中我们会分批对模型生成内容进行检测当检测到违法及不良信息时API会返回错误码1301。开发者识别到错误码1301应及时采取清屏、重启对话等措施删除生成内容并确保不将含有违法及不良信息的内容传递给模型继续生成避免其造成负面影响。
en_US: When using synchronous invocation, this parameter should be set to false or omitted. It indicates that the model will return all the generated content at once after the generation is complete. The default value is false. If set to true, the model will return the generated content in chunks via the standard Event Stream. A data[DONE] message will be sent at the end of the Event Stream.NoteDuring the model's streaming output process, we will batch check the generated content. If illegal or harmful information is detected, the API will return an error code (1301). Developers who identify error code (1301) should promptly take actions such as clearing the screen or restarting the conversation to delete the generated content. They should also ensure that no illegal or harmful content is passed back to the model for continued generation to avoid negative impacts.
default: false
- name: max_tokens
use_template: max_tokens
default: 1024

View File

@@ -32,15 +32,6 @@ parameter_rules:
zh_Hans: do_sample 为 true 时启用采样策略do_sample 为 false 时采样策略 temperature、top_p 将不生效。默认值为 true。
en_US: When `do_sample` is set to true, the sampling strategy is enabled. When `do_sample` is set to false, the sampling strategies such as `temperature` and `top_p` will not take effect. The default value is true.
default: true
- name: stream
label:
zh_Hans: 流处理
en_US: Event Stream
type: boolean
help:
zh_Hans: 使用同步调用时,此参数应当设置为 fasle 或者省略。表示模型生成完所有内容后一次性返回所有内容。默认值为 false。如果设置为 true模型将通过标准 Event Stream 逐块返回模型生成内容。Event Stream 结束时会返回一条data[DONE]消息。注意在模型流式输出生成内容的过程中我们会分批对模型生成内容进行检测当检测到违法及不良信息时API会返回错误码1301。开发者识别到错误码1301应及时采取清屏、重启对话等措施删除生成内容并确保不将含有违法及不良信息的内容传递给模型继续生成避免其造成负面影响。
en_US: When using synchronous invocation, this parameter should be set to false or omitted. It indicates that the model will return all the generated content at once after the generation is complete. The default value is false. If set to true, the model will return the generated content in chunks via the standard Event Stream. A data[DONE] message will be sent at the end of the Event Stream.NoteDuring the model's streaming output process, we will batch check the generated content. If illegal or harmful information is detected, the API will return an error code (1301). Developers who identify error code (1301) should promptly take actions such as clearing the screen or restarting the conversation to delete the generated content. They should also ensure that no illegal or harmful content is passed back to the model for continued generation to avoid negative impacts.
default: false
- name: max_tokens
use_template: max_tokens
default: 1024

View File

@@ -30,15 +30,6 @@ parameter_rules:
zh_Hans: do_sample 为 true 时启用采样策略do_sample 为 false 时采样策略 temperature、top_p 将不生效。默认值为 true。
en_US: When `do_sample` is set to true, the sampling strategy is enabled. When `do_sample` is set to false, the sampling strategies such as `temperature` and `top_p` will not take effect. The default value is true.
default: true
- name: stream
label:
zh_Hans: 流处理
en_US: Event Stream
type: boolean
help:
zh_Hans: 使用同步调用时,此参数应当设置为 fasle 或者省略。表示模型生成完所有内容后一次性返回所有内容。默认值为 false。如果设置为 true模型将通过标准 Event Stream 逐块返回模型生成内容。Event Stream 结束时会返回一条data[DONE]消息。注意在模型流式输出生成内容的过程中我们会分批对模型生成内容进行检测当检测到违法及不良信息时API会返回错误码1301。开发者识别到错误码1301应及时采取清屏、重启对话等措施删除生成内容并确保不将含有违法及不良信息的内容传递给模型继续生成避免其造成负面影响。
en_US: When using synchronous invocation, this parameter should be set to false or omitted. It indicates that the model will return all the generated content at once after the generation is complete. The default value is false. If set to true, the model will return the generated content in chunks via the standard Event Stream. A data[DONE] message will be sent at the end of the Event Stream.NoteDuring the model's streaming output process, we will batch check the generated content. If illegal or harmful information is detected, the API will return an error code (1301). Developers who identify error code (1301) should promptly take actions such as clearing the screen or restarting the conversation to delete the generated content. They should also ensure that no illegal or harmful content is passed back to the model for continued generation to avoid negative impacts.
default: false
- name: max_tokens
use_template: max_tokens
default: 1024

View File

@@ -30,15 +30,6 @@ parameter_rules:
zh_Hans: do_sample 为 true 时启用采样策略do_sample 为 false 时采样策略 temperature、top_p 将不生效。默认值为 true。
en_US: When `do_sample` is set to true, the sampling strategy is enabled. When `do_sample` is set to false, the sampling strategies such as `temperature` and `top_p` will not take effect. The default value is true.
default: true
- name: stream
label:
zh_Hans: 流处理
en_US: Event Stream
type: boolean
help:
zh_Hans: 使用同步调用时,此参数应当设置为 fasle 或者省略。表示模型生成完所有内容后一次性返回所有内容。默认值为 false。如果设置为 true模型将通过标准 Event Stream 逐块返回模型生成内容。Event Stream 结束时会返回一条data[DONE]消息。注意在模型流式输出生成内容的过程中我们会分批对模型生成内容进行检测当检测到违法及不良信息时API会返回错误码1301。开发者识别到错误码1301应及时采取清屏、重启对话等措施删除生成内容并确保不将含有违法及不良信息的内容传递给模型继续生成避免其造成负面影响。
en_US: When using synchronous invocation, this parameter should be set to false or omitted. It indicates that the model will return all the generated content at once after the generation is complete. The default value is false. If set to true, the model will return the generated content in chunks via the standard Event Stream. A data[DONE] message will be sent at the end of the Event Stream.NoteDuring the model's streaming output process, we will batch check the generated content. If illegal or harmful information is detected, the API will return an error code (1301). Developers who identify error code (1301) should promptly take actions such as clearing the screen or restarting the conversation to delete the generated content. They should also ensure that no illegal or harmful content is passed back to the model for continued generation to avoid negative impacts.
default: false
- name: max_tokens
use_template: max_tokens
default: 1024

View File

@@ -1,8 +1,8 @@
from typing import Any
from configs import dify_config
from core.rag.datasource.keyword.jieba.jieba import Jieba
from core.rag.datasource.keyword.keyword_base import BaseKeyword
from core.rag.datasource.keyword.keyword_type import KeyWordType
from core.rag.models.document import Document
from models.dataset import Dataset
@@ -13,16 +13,19 @@ class Keyword:
self._keyword_processor = self._init_keyword()
def _init_keyword(self) -> BaseKeyword:
config = dify_config
keyword_type = config.KEYWORD_STORE
keyword_type = dify_config.KEYWORD_STORE
keyword_factory = self.get_keyword_factory(keyword_type)
return keyword_factory(self._dataset)
if not keyword_type:
raise ValueError("Keyword store must be specified.")
@staticmethod
def get_keyword_factory(keyword_type: str) -> type[BaseKeyword]:
match keyword_type:
case KeyWordType.JIEBA:
from core.rag.datasource.keyword.jieba.jieba import Jieba
if keyword_type == "jieba":
return Jieba(dataset=self._dataset)
else:
raise ValueError(f"Keyword store {keyword_type} is not supported.")
return Jieba
case _:
raise ValueError(f"Keyword store {keyword_type} is not supported.")
def create(self, texts: list[Document], **kwargs):
self._keyword_processor.create(texts, **kwargs)

View File

@@ -0,0 +1,5 @@
from enum import Enum
class KeyWordType(str, Enum):
JIEBA = "jieba"

View File

@@ -112,7 +112,7 @@ class ElasticSearchVector(BaseVector):
self._client.indices.delete(index=self._collection_name)
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
top_k = kwargs.get("top_k", 10)
top_k = kwargs.get("top_k", 4)
num_candidates = math.ceil(top_k * 1.5)
knn = {"field": Field.VECTOR.value, "query_vector": query_vector, "k": top_k, "num_candidates": num_candidates}

View File

@@ -121,7 +121,7 @@ class MyScaleVector(BaseVector):
return self._search(f"TextSearch('enable_nlq=false')(text, '{query}')", SortOrder.DESC, **kwargs)
def _search(self, dist: str, order: SortOrder, **kwargs: Any) -> list[Document]:
top_k = kwargs.get("top_k", 5)
top_k = kwargs.get("top_k", 4)
score_threshold = float(kwargs.get("score_threshold") or 0.0)
where_str = (
f"WHERE dist < {1 - score_threshold}"

View File

@@ -168,14 +168,6 @@ class OracleVector(BaseVector):
docs.append(Document(page_content=record[1], metadata=record[0]))
return docs
# def get_ids_by_metadata_field(self, key: str, value: str):
# with self._get_cursor() as cur:
# cur.execute(f"SELECT id FROM {self.table_name} d WHERE d.meta.{key}='{value}'" )
# idss = []
# for record in cur:
# idss.append(record[0])
# return idss
def delete_by_ids(self, ids: list[str]) -> None:
with self._get_cursor() as cur:
cur.execute(f"DELETE FROM {self.table_name} WHERE id IN %s" % (tuple(ids),))
@@ -192,7 +184,7 @@ class OracleVector(BaseVector):
:param top_k: The number of nearest neighbors to return, default is 5.
:return: List of Documents that are nearest to the query vector.
"""
top_k = kwargs.get("top_k", 5)
top_k = kwargs.get("top_k", 4)
with self._get_cursor() as cur:
cur.execute(
f"SELECT meta, text, vector_distance(embedding,:1) AS distance FROM {self.table_name}"

View File

@@ -186,7 +186,7 @@ class PGVectoRS(BaseVector):
query_vector,
).label("distance"),
)
.limit(kwargs.get("top_k", 2))
.limit(kwargs.get("top_k", 4))
.order_by("distance")
)
res = session.execute(stmt)
@@ -205,18 +205,6 @@ class PGVectoRS(BaseVector):
return docs
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
# with Session(self._client) as session:
# select_statement = sql_text(
# f"SELECT text, meta FROM {self._collection_name} WHERE to_tsvector(text) @@ '{query}'::tsquery"
# )
# results = session.execute(select_statement).fetchall()
# if results:
# docs = []
# for result in results:
# doc = Document(page_content=result[0],
# metadata=result[1])
# docs.append(doc)
# return docs
return []

View File

@@ -143,7 +143,7 @@ class PGVector(BaseVector):
:param top_k: The number of nearest neighbors to return, default is 5.
:return: List of Documents that are nearest to the query vector.
"""
top_k = kwargs.get("top_k", 5)
top_k = kwargs.get("top_k", 4)
with self._get_cursor() as cur:
cur.execute(

View File

@@ -224,7 +224,7 @@ class RelytVector(BaseVector):
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
results = self.similarity_search_with_score_by_vector(
k=int(kwargs.get("top_k")), embedding=query_vector, filter=kwargs.get("filter")
k=int(kwargs.get("top_k", 4)), embedding=query_vector, filter=kwargs.get("filter")
)
# Organize results.

View File

@@ -184,7 +184,7 @@ class TiDBVector(BaseVector):
self._delete_by_ids(ids)
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
top_k = kwargs.get("top_k", 5)
top_k = kwargs.get("top_k", 4)
score_threshold = float(kwargs.get("score_threshold") or 0.0)
filter = kwargs.get("filter")
distance = 1 - score_threshold

View File

@@ -173,7 +173,7 @@ class VikingDBVector(BaseVector):
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
results = self._client.get_index(self._collection_name, self._index_name).search_by_vector(
query_vector, limit=kwargs.get("top_k", 50)
query_vector, limit=kwargs.get("top_k", 4)
)
score_threshold = float(kwargs.get("score_threshold") or 0.0)
return self._get_search_res(results, score_threshold)

View File

@@ -235,7 +235,7 @@ class WeaviateVector(BaseVector):
query_obj = query_obj.with_where(kwargs.get("where_filter"))
query_obj = query_obj.with_additional(["vector"])
properties = ["text"]
result = query_obj.with_bm25(query=query, properties=properties).with_limit(kwargs.get("top_k", 2)).do()
result = query_obj.with_bm25(query=query, properties=properties).with_limit(kwargs.get("top_k", 4)).do()
if "errors" in result:
raise ValueError(f"Error during query: {result['errors']}")
docs = []

View File

@@ -217,7 +217,7 @@ class DatasetRetrieval:
"data_source_type": document.data_source_type,
"segment_id": segment.id,
"retriever_from": invoke_from.to_source(),
"score": document_score_list.get(segment.index_node_id, None),
"score": document_score_list.get(segment.index_node_id, 0.0),
}
if invoke_from.to_source() == "dev":
@@ -231,12 +231,12 @@ class DatasetRetrieval:
source["content"] = segment.content
retrieval_resource_list.append(source)
if hit_callback and retrieval_resource_list:
retrieval_resource_list = sorted(retrieval_resource_list, key=lambda x: x.get("score"), reverse=True)
retrieval_resource_list = sorted(retrieval_resource_list, key=lambda x: x.get("score") or 0.0, reverse=True)
for position, item in enumerate(retrieval_resource_list, start=1):
item["position"] = position
hit_callback.return_retriever_resource_info(retrieval_resource_list)
if document_context_list:
document_context_list = sorted(document_context_list, key=lambda x: x.score, reverse=True)
document_context_list = sorted(document_context_list, key=lambda x: x.score or 0.0, reverse=True)
return str("\n".join([document_context.content for document_context in document_context_list]))
return ""

View File

@@ -0,0 +1,48 @@
from datetime import datetime
from typing import Any, Union
import pytz
from core.tools.entities.tool_entities import ToolInvokeMessage
from core.tools.errors import ToolInvokeError
from core.tools.tool.builtin_tool import BuiltinTool
class TimezoneConversionTool(BuiltinTool):
def _invoke(
self,
user_id: str,
tool_parameters: dict[str, Any],
) -> Union[ToolInvokeMessage, list[ToolInvokeMessage]]:
"""
Convert time to equivalent time zone
"""
current_time = tool_parameters.get("current_time")
current_timezone = tool_parameters.get("current_timezone", "Asia/Shanghai")
target_timezone = tool_parameters.get("target_timezone", "Asia/Tokyo")
target_time = self.timezone_convert(current_time, current_timezone, target_timezone)
if not target_time:
return self.create_text_message(
f"Invalid datatime and timezone: {current_time},{current_timezone},{target_timezone}"
)
return self.create_text_message(f"{target_time}")
@staticmethod
def timezone_convert(current_time: str, source_timezone: str, target_timezone: str) -> str:
"""
Convert a time string from source timezone to target timezone.
"""
time_format = "%Y-%m-%d %H:%M:%S"
try:
# get source timezone
input_timezone = pytz.timezone(source_timezone)
# get target timezone
output_timezone = pytz.timezone(target_timezone)
local_time = datetime.strptime(current_time, time_format)
datetime_with_tz = input_timezone.localize(local_time)
# timezone convert
converted_datetime = datetime_with_tz.astimezone(output_timezone)
return converted_datetime.strftime(format=time_format)
except Exception as e:
raise ToolInvokeError(str(e))

View File

@@ -0,0 +1,44 @@
identity:
name: timezone_conversion
author: zhuhao
label:
en_US: convert time to equivalent time zone
zh_Hans: 时区转换
description:
human:
en_US: A tool to convert time to equivalent time zone
zh_Hans: 时区转换
llm: A tool to convert time to equivalent time zone
parameters:
- name: current_time
type: string
required: true
form: llm
label:
en_US: current time
zh_Hans: 当前时间
human_description:
en_US: current time, such as 2024-1-1 0:0:0
zh_Hans: 当前时间, 比如2024-1-1 0:0:0
- name: current_timezone
type: string
required: true
form: llm
label:
en_US: Current Timezone
zh_Hans: 当前时区
human_description:
en_US: Current Timezone, such as Asia/Shanghai
zh_Hans: 当前时区, 比如Asia/Shanghai
default: Asia/Shanghai
- name: target_timezone
type: string
required: true
form: llm
label:
en_US: Target Timezone
zh_Hans: 目标时区
human_description:
en_US: Target Timezone, such as Asia/Tokyo
zh_Hans: 目标时区, 比如Asia/Tokyo
default: Asia/Tokyo

View File

@@ -234,7 +234,7 @@ class KnowledgeRetrievalNode(BaseNode):
retrieval_resource_list.append(source)
if retrieval_resource_list:
retrieval_resource_list = sorted(
retrieval_resource_list, key=lambda x: x.get("metadata").get("score"), reverse=True
retrieval_resource_list, key=lambda x: x.get("metadata").get("score") or 0.0, reverse=True
)
position = 1
for item in retrieval_resource_list:

View File

@@ -1,5 +1,4 @@
from collections.abc import Generator
from contextlib import closing
import oss2 as aliyun_s3
from flask import Flask
@@ -34,15 +33,15 @@ class AliyunOssStorage(BaseStorage):
self.client.put_object(self.__wrapper_folder_filename(filename), data)
def load_once(self, filename: str) -> bytes:
with closing(self.client.get_object(self.__wrapper_folder_filename(filename))) as obj:
data = obj.read()
obj = self.client.get_object(self.__wrapper_folder_filename(filename))
data = obj.read()
return data
def load_stream(self, filename: str) -> Generator:
def generate(filename: str = filename) -> Generator:
with closing(self.client.get_object(self.__wrapper_folder_filename(filename))) as obj:
while chunk := obj.read(4096):
yield chunk
obj = self.client.get_object(self.__wrapper_folder_filename(filename))
while chunk := obj.read(4096):
yield chunk
return generate()

View File

@@ -1,6 +1,5 @@
import logging
from collections.abc import Generator
from contextlib import closing
import boto3
from botocore.client import Config
@@ -55,8 +54,7 @@ class AwsS3Storage(BaseStorage):
def load_once(self, filename: str) -> bytes:
try:
with closing(self.client) as client:
data = client.get_object(Bucket=self.bucket_name, Key=filename)["Body"].read()
data = self.client.get_object(Bucket=self.bucket_name, Key=filename)["Body"].read()
except ClientError as ex:
if ex.response["Error"]["Code"] == "NoSuchKey":
raise FileNotFoundError("File not found")
@@ -67,9 +65,8 @@ class AwsS3Storage(BaseStorage):
def load_stream(self, filename: str) -> Generator:
def generate(filename: str = filename) -> Generator:
try:
with closing(self.client) as client:
response = client.get_object(Bucket=self.bucket_name, Key=filename)
yield from response["Body"].iter_chunks()
response = self.client.get_object(Bucket=self.bucket_name, Key=filename)
yield from response["Body"].iter_chunks()
except ClientError as ex:
if ex.response["Error"]["Code"] == "NoSuchKey":
raise FileNotFoundError("File not found")
@@ -79,16 +76,14 @@ class AwsS3Storage(BaseStorage):
return generate()
def download(self, filename, target_filepath):
with closing(self.client) as client:
client.download_file(self.bucket_name, filename, target_filepath)
self.client.download_file(self.bucket_name, filename, target_filepath)
def exists(self, filename):
with closing(self.client) as client:
try:
client.head_object(Bucket=self.bucket_name, Key=filename)
return True
except:
return False
try:
self.client.head_object(Bucket=self.bucket_name, Key=filename)
return True
except:
return False
def delete(self, filename):
self.client.delete_object(Bucket=self.bucket_name, Key=filename)

View File

@@ -2,7 +2,6 @@ import base64
import io
import json
from collections.abc import Generator
from contextlib import closing
from flask import Flask
from google.cloud import storage as google_cloud_storage
@@ -43,7 +42,7 @@ class GoogleCloudStorage(BaseStorage):
def generate(filename: str = filename) -> Generator:
bucket = self.client.get_bucket(self.bucket_name)
blob = bucket.get_blob(filename)
with closing(blob.open(mode="rb")) as blob_stream:
with blob.open(mode="rb") as blob_stream:
while chunk := blob_stream.read(4096):
yield chunk

View File

@@ -1,5 +1,4 @@
from collections.abc import Generator
from contextlib import closing
import boto3
from botocore.exceptions import ClientError
@@ -28,8 +27,7 @@ class OracleOCIStorage(BaseStorage):
def load_once(self, filename: str) -> bytes:
try:
with closing(self.client) as client:
data = client.get_object(Bucket=self.bucket_name, Key=filename)["Body"].read()
data = self.client.get_object(Bucket=self.bucket_name, Key=filename)["Body"].read()
except ClientError as ex:
if ex.response["Error"]["Code"] == "NoSuchKey":
raise FileNotFoundError("File not found")
@@ -40,9 +38,8 @@ class OracleOCIStorage(BaseStorage):
def load_stream(self, filename: str) -> Generator:
def generate(filename: str = filename) -> Generator:
try:
with closing(self.client) as client:
response = client.get_object(Bucket=self.bucket_name, Key=filename)
yield from response["Body"].iter_chunks()
response = self.client.get_object(Bucket=self.bucket_name, Key=filename)
yield from response["Body"].iter_chunks()
except ClientError as ex:
if ex.response["Error"]["Code"] == "NoSuchKey":
raise FileNotFoundError("File not found")
@@ -52,16 +49,14 @@ class OracleOCIStorage(BaseStorage):
return generate()
def download(self, filename, target_filepath):
with closing(self.client) as client:
client.download_file(self.bucket_name, filename, target_filepath)
self.client.download_file(self.bucket_name, filename, target_filepath)
def exists(self, filename):
with closing(self.client) as client:
try:
client.head_object(Bucket=self.bucket_name, Key=filename)
return True
except:
return False
try:
self.client.head_object(Bucket=self.bucket_name, Key=filename)
return True
except:
return False
def delete(self, filename):
self.client.delete_object(Bucket=self.bucket_name, Key=filename)

685
api/poetry.lock generated
View File

@@ -455,13 +455,13 @@ vertex = ["google-auth (>=2,<3)"]
[[package]]
name = "anyio"
version = "4.6.0"
version = "4.6.2.post1"
description = "High level compatibility layer for multiple asynchronous event loop implementations"
optional = false
python-versions = ">=3.9"
files = [
{file = "anyio-4.6.0-py3-none-any.whl", hash = "sha256:c7d2e9d63e31599eeb636c8c5c03a7e108d73b345f064f1c19fdc87b79036a9a"},
{file = "anyio-4.6.0.tar.gz", hash = "sha256:137b4559cbb034c477165047febb6ff83f390fc3b20bf181c1fc0a728cb8beeb"},
{file = "anyio-4.6.2.post1-py3-none-any.whl", hash = "sha256:6d170c36fba3bdd840c73d3868c1e777e33676a69c3a72cf0a0d5d6d8009b61d"},
{file = "anyio-4.6.2.post1.tar.gz", hash = "sha256:4c8bc31ccdb51c7f7bd251f51c609e038d63e34219b44aa86e47576389880b4c"},
]
[package.dependencies]
@@ -472,7 +472,7 @@ typing-extensions = {version = ">=4.1", markers = "python_version < \"3.11\""}
[package.extras]
doc = ["Sphinx (>=7.4,<8.0)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"]
test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.21.0b1)"]
test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "truststore (>=0.9.1)", "uvloop (>=0.21.0b1)"]
trio = ["trio (>=0.26.1)"]
[[package]]
@@ -844,13 +844,13 @@ crt = ["botocore[crt] (>=1.21.0,<2.0a0)"]
[[package]]
name = "botocore"
version = "1.35.38"
version = "1.35.40"
description = "Low-level, data-driven core of boto 3."
optional = false
python-versions = ">=3.8"
files = [
{file = "botocore-1.35.38-py3-none-any.whl", hash = "sha256:2eb17d32fa2d3bb5d475132a83564d28e3acc2161534f24b75a54418a1d51359"},
{file = "botocore-1.35.38.tar.gz", hash = "sha256:55d9305c44e5ba29476df456120fa4fb919f03f066afa82f2ae400485e7465f4"},
{file = "botocore-1.35.40-py3-none-any.whl", hash = "sha256:072cc47f29cb1de4fa77ce6632e4f0480af29b70816973ff415fbaa3f50bd1db"},
{file = "botocore-1.35.40.tar.gz", hash = "sha256:547e0a983856c7d7aeaa30fca2a283873c57c07366cd806d2d639856341b3c31"},
]
[package.dependencies]
@@ -863,53 +863,47 @@ crt = ["awscrt (==0.22.0)"]
[[package]]
name = "bottleneck"
version = "1.4.0"
version = "1.4.1"
description = "Fast NumPy array functions written in C"
optional = false
python-versions = "*"
files = [
{file = "Bottleneck-1.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2110af22aa8c2779faba8aa021d6b559df04449bdf21d510eacd7910934189fe"},
{file = "Bottleneck-1.4.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:381cbd1e52338fcdf9ff01c962e6aa187b2d8b3b369d42e779b6d33ac61f8d35"},
{file = "Bottleneck-1.4.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4a91e40bbb8452e77772614d882be2c34b3b514d9f15460f703293525a6e173d"},
{file = "Bottleneck-1.4.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:59604949aea476f5075b965129eaa3c2d90891fd43b0dfaf2ad7621bb5db14a5"},
{file = "Bottleneck-1.4.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c2c92545e1bc8e859d8d137aefa3b24843bd374b17c9814dafa3bbcea9fc4ec0"},
{file = "Bottleneck-1.4.0-cp310-cp310-win32.whl", hash = "sha256:f63e79bfa2f82a7432c8b147ed321d01ca7769bc17cc04644286a4ce58d30549"},
{file = "Bottleneck-1.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:d69907d8d679cb5091a3f479c46bf1076f149f6311ff3298bac5089b86a2fab1"},
{file = "Bottleneck-1.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:67347b0f01f32a232a6269c37afc1c079e08f6455fa12e91f4a1cd12eb0d11a5"},
{file = "Bottleneck-1.4.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1490348b3bbc0225523dc2c00c6bb3e66168c537d62797bd29783c0826c09838"},
{file = "Bottleneck-1.4.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a704165552496cbcc8bcc5921bb679fd6fa66bb1e758888de091b1223231c9f0"},
{file = "Bottleneck-1.4.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:ffb4e4edf7997069719b9269926cc00a2a12c6e015422d1ebc2f621c4541396a"},
{file = "Bottleneck-1.4.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5d6bf45ed58d5e7414c0011ef2da75474fe597a51970df83596b0bcb79c14c5e"},
{file = "Bottleneck-1.4.0-cp311-cp311-win32.whl", hash = "sha256:ed209f8f3cb9954773764b0fa2510a7a9247ad245593187ac90bd0747771bc5c"},
{file = "Bottleneck-1.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:d53f1a72b12cfd76b56934c33bc0cb7c1a295f23a2d3ffba8c764514c9b5e0ff"},
{file = "Bottleneck-1.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:e720ff24370324c84a82b1a18195274715c23181748b2b9e3dacad24198ca06f"},
{file = "Bottleneck-1.4.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:44305c70c2a1539b0ae968e033f301ad868a6146b47e3cccd73fdfe3fc07c4ee"},
{file = "Bottleneck-1.4.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1b4dac5d2a871b7bd296c2b92426daa27d5b07aa84ef2557db097d29135da4eb"},
{file = "Bottleneck-1.4.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:fbcdd01db9e27741fb16a02b720cf02389d4b0b99cefe3c834c7df88c2d7412d"},
{file = "Bottleneck-1.4.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:14b3334a39308fbb05dacd35ac100842aa9e9bc70afbdcebe43e46179d183fd0"},
{file = "Bottleneck-1.4.0-cp312-cp312-win32.whl", hash = "sha256:520d7a83cd48b3f58e5df1a258acb547f8a5386a8c21ca9e1058d83a0d622fdf"},
{file = "Bottleneck-1.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:b1339b9ad3ee217253f246cde5c3789eb527cf9dd31ff0a1f5a8bf7fc89eadad"},
{file = "Bottleneck-1.4.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f2749602200aaa0e12a0f3f936dd6d4035384ad10d3acf7ac4f418c501683397"},
{file = "Bottleneck-1.4.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bb79a2ac135567694f13339f0bebcee96aec09c596b324b61cd7fd5e306f49d"},
{file = "Bottleneck-1.4.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:c6097bf39723e76ff5bba160daab92ae599df212c859db8d46648548584d04a8"},
{file = "Bottleneck-1.4.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:b5f72b66ccc0272de46b67346cf8490737ba2adc6a302664f5326e7741b6d5ab"},
{file = "Bottleneck-1.4.0-cp37-cp37m-win32.whl", hash = "sha256:9903f017b9d6f2f69ce241b424ddad7265624f64dc6eafbe257d45661febf8bd"},
{file = "Bottleneck-1.4.0-cp37-cp37m-win_amd64.whl", hash = "sha256:834816c316ad184cae7ecb615b69876a42cd2cafb07ee66c57a9c1ccacb63339"},
{file = "Bottleneck-1.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:03c43150f180d86a5633a6da788660d335983f6798fca306ba7f47ff27a1b7e7"},
{file = "Bottleneck-1.4.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eea333dbcadb780356c54f5c4fa7754f143573b57508fff43d5daf63298eb26a"},
{file = "Bottleneck-1.4.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6179791c0119aec3708ef74ddadab8d183e3742adb93a9028718e8696bdf572b"},
{file = "Bottleneck-1.4.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:220b72405f77aebb0137b733b464c2526ded471e4289ac1e840bab8852759a55"},
{file = "Bottleneck-1.4.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8746f0f727997ce4c7457dc1fec4e4e3c0fdd8803514baa3d1c4ea6515ab04b2"},
{file = "Bottleneck-1.4.0-cp38-cp38-win32.whl", hash = "sha256:6a36280ee33d9db799163f04e88b950261e590cc71d089f5e179b21680b5d491"},
{file = "Bottleneck-1.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:de17e012694e6a987bb4eb050dd7f0cf939195a8e00cb23aa93ebee5fd5e64a8"},
{file = "Bottleneck-1.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:28260197ab8a4a6b7adf810523147b1a3e85607f4e26a0f685eb9d155cfc75af"},
{file = "Bottleneck-1.4.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:90d5d188a0cca0b9655ff2904ee61e7f183079e97550be98c2541a2eec358a72"},
{file = "Bottleneck-1.4.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2861ff645d236f1a6f5c6d1ddb3db37d19af1d91057bdc4fd7b76299a15b3079"},
{file = "Bottleneck-1.4.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:6136ce7dcf825c432a20b80ab1c460264a437d8430fff32536176147e0b6b832"},
{file = "Bottleneck-1.4.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:889e6855b77345622b4ba927335d3118745d590492941f5f78554f157d259e92"},
{file = "Bottleneck-1.4.0-cp39-cp39-win32.whl", hash = "sha256:817aa43a671ede696ea023d8f35839a391244662340cc95a0f46965dda8b35cf"},
{file = "Bottleneck-1.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:23834d82177d6997f21fa63156550668cd07a9a6e5a1b66ea80f1a14ac6ffd07"},
{file = "bottleneck-1.4.0.tar.gz", hash = "sha256:beb36df519b8709e7d357c0c9639b03b885ca6355bbf5e53752c685de51605b8"},
{file = "Bottleneck-1.4.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5be5fc34f03216d85f14d01ca12c857ee68f72d7c17dccd22743326200ba3b9f"},
{file = "Bottleneck-1.4.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7f44cc6ad1a44d3427009fa2c2298ef0b346b7024e30dc7fc9778f5b78f8c10c"},
{file = "Bottleneck-1.4.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4e5babe835350e9f8710b3f8ffb9d5d202b4b13d77bad0e0f9a395af16a55f36"},
{file = "Bottleneck-1.4.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:d22a9b4d9cef8bb218df15a13d4aa213042c434c595d5c732d7f4ad287dbe565"},
{file = "Bottleneck-1.4.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:f47cb74ad6675dc7a54ef9f6fa9e649134e98ba71e6c98b8a34054e48014c941"},
{file = "Bottleneck-1.4.1-cp310-cp310-win32.whl", hash = "sha256:3a4acf90714de7783f4706eb19d42f4d32ac842082c7b42d6956530ef0884b19"},
{file = "Bottleneck-1.4.1-cp310-cp310-win_amd64.whl", hash = "sha256:54d60a44bf439c06d35c6c3abdb39aca3de330064c48922a6bad0a96b1f096d5"},
{file = "Bottleneck-1.4.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d491dad4757e9bed4204b3b823dfe9996733e11fbd9d3abaec52329a30a02bcc"},
{file = "Bottleneck-1.4.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c9186982d57db422641f30a30201fc7b158166887ca803c2af975cab6c9febb7"},
{file = "Bottleneck-1.4.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:59e5bdff742067f10c7fda48e981e4b50ba7c7f39f8627e8c9a1c7224457badd"},
{file = "Bottleneck-1.4.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:8ab6086ced21414288a5b79a00fe359d463a3189f82b5a71adce931655ba93c2"},
{file = "Bottleneck-1.4.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:359d3a08e7c1a0938b07d6117cab8b38d4140df6712fbe56491ad44f46878d2f"},
{file = "Bottleneck-1.4.1-cp311-cp311-win32.whl", hash = "sha256:bb642a652e656a20ea239d241aa2c39e0e3d3882aacea7d3f8412d9ec7a5f185"},
{file = "Bottleneck-1.4.1-cp311-cp311-win_amd64.whl", hash = "sha256:bd89930c0375799aaf381a2a2924ca53a17ef84734d9e1a5763da7eb4499e53d"},
{file = "Bottleneck-1.4.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:32a0e516a66a0d048e993bc926aa878208e8db549d30e39bef7b933a81dcad26"},
{file = "Bottleneck-1.4.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1be7a1589a553ce6575d77a0ae3404b4a0a69c647e1cda85e41f388a61c1210d"},
{file = "Bottleneck-1.4.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:845e2975704c1e40cd27a3d1d3eb45af031e7f25edf826577dbedab33bf1674e"},
{file = "Bottleneck-1.4.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:fea946c0fed796b62ddd812ea6533d2733d7a070383236a0d9ba585e66619c30"},
{file = "Bottleneck-1.4.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:23e16efc311df996321fde53537815acca26dca731395d9e6da36e743fc0d27f"},
{file = "Bottleneck-1.4.1-cp312-cp312-win32.whl", hash = "sha256:75ab6c9daed8528f9f0f37efb9f15d0b9759b8902325abcfd38cb79126c76db4"},
{file = "Bottleneck-1.4.1-cp312-cp312-win_amd64.whl", hash = "sha256:7ce544479354ef3893c04b8f135b454c126cc236907879f552422855de5df35d"},
{file = "Bottleneck-1.4.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:681e8889170d349bed1a7c30a4b32ba25f6988e1432217a91967fd7a5a963d7d"},
{file = "Bottleneck-1.4.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d774d69ed3ba968b9b2e5271b14d013f85b820612ec4dbd8f0a32f23a07c6d77"},
{file = "Bottleneck-1.4.1-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d0a0be22fa01c2698ff746a4e1e27238acd18409a353e2c7172b0e50b2f04a9"},
{file = "Bottleneck-1.4.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:eb39b78f99304f174338c486a015d490707374a0c349167ba6ade7b6d3484304"},
{file = "Bottleneck-1.4.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:052fcc86f5713a3192f3ce0a4f950c2ff451df8c43c9d0291e7c4bd624ae1292"},
{file = "Bottleneck-1.4.1-cp313-cp313-win32.whl", hash = "sha256:cbcc5e36ba50a50d5d8084e2772008b33b9507d06c2c1642c8e2299709439881"},
{file = "Bottleneck-1.4.1-cp313-cp313-win_amd64.whl", hash = "sha256:3e36a7ab42bc0f1e2508f1c33308fb08c8454edc4694164ee8fdd46918adea03"},
{file = "Bottleneck-1.4.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f12ab7f52881065323ac4ac1f8fd424cf5ecde0d9c0746945fb6e8b1a5cbfcac"},
{file = "Bottleneck-1.4.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a76155466718066fcfb77329b29be71d1bce679b1a7daf693a7a08fbf42577b8"},
{file = "Bottleneck-1.4.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cde4981d889f41f175a054ad5c3434b81ee8749f31b6e7b9ec92776ec4f7292f"},
{file = "Bottleneck-1.4.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:351ddfedc51c2575c90d43a03e350bdc00020e219dfa877480df2b69dbc31eab"},
{file = "Bottleneck-1.4.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:98032a0efb2a4f46223645600f53cb9f7c50dbec8c146e2869585dc9f81fa0ea"},
{file = "Bottleneck-1.4.1-cp39-cp39-win32.whl", hash = "sha256:ddc2218dc8e8b626d1645e57596bc353559facb99c362c9ba5eb6d5b4a12d5fc"},
{file = "Bottleneck-1.4.1-cp39-cp39-win_amd64.whl", hash = "sha256:d6f275a727a59c27897e3e29dabde4d8af299fcfc667f13a9b00fd2a1ab72178"},
{file = "bottleneck-1.4.1.tar.gz", hash = "sha256:58c66619db62291c9ca3b497b05f40f7b1ff9ac010b88bff1925f3101dae2c89"},
]
[package.dependencies]
@@ -2159,63 +2153,63 @@ typing_extensions = ">=4.0,<5.0"
[[package]]
name = "duckdb"
version = "1.1.1"
version = "1.1.2"
description = "DuckDB in-process database"
optional = false
python-versions = ">=3.7.0"
files = [
{file = "duckdb-1.1.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:e310610b692d30aa7f1f40d7878b26978a5b191f23fa8fa082bd17092c67c2fd"},
{file = "duckdb-1.1.1-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:7acc97c3cc995850a4fa59dfa6ce713d7ea187c9696632161aa09d898f001a2b"},
{file = "duckdb-1.1.1-cp310-cp310-macosx_12_0_x86_64.whl", hash = "sha256:c0a09d78daea0de7ddf3d6d1113e80ceed8c15537e93f8efaad53024ffbde245"},
{file = "duckdb-1.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50c3b1667b0c73cb076b1b1f8fa0fd88fcef5c2bbb2b9acdef79e2eae429c248"},
{file = "duckdb-1.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1499a9b159d4675ea46786b7ebdbabd8287c62b6b116ccfd529112318d47184e"},
{file = "duckdb-1.1.1-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:876deda2ce97f4a9005a9ac862f0ebee9e5956d51d589a24955802ca91726d49"},
{file = "duckdb-1.1.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:40be901b38c709076f699b0c2f42a0c5663a496647eba350530e3a77f46a239b"},
{file = "duckdb-1.1.1-cp310-cp310-win_amd64.whl", hash = "sha256:5cb7642c5b21b8165b60029c274fc931c7c29cae3124b9a95ed73d050dd23584"},
{file = "duckdb-1.1.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:959716b65cf1c94fc117ac9c9692eea0bd64ae53bc8ab6538d459087b474dbeb"},
{file = "duckdb-1.1.1-cp311-cp311-macosx_12_0_universal2.whl", hash = "sha256:6ff3c52ce0f8d25478155eb01de043ad0a25badbd10e684a2cd74363f1b86cde"},
{file = "duckdb-1.1.1-cp311-cp311-macosx_12_0_x86_64.whl", hash = "sha256:430294cf11ce866d3b726cf4530462316e20b773fed3cf2de3cf63eb89650da6"},
{file = "duckdb-1.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dc9d48f772fafeea52568a0568cd11314cd79a10214069f3700dbcb31ebdf511"},
{file = "duckdb-1.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:572095739024d9a5aa2dd8336c289af6a624c203004213e49b7e2469275e940f"},
{file = "duckdb-1.1.1-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:660d9baf637b9a15e1ba74bbe02d3b4a20d82e8cbbd7d0712e0d59e3e9d6efea"},
{file = "duckdb-1.1.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:b91973605c8a30a38c4381a27895e7768cb3caa6700b2534ab76cc6b72cac390"},
{file = "duckdb-1.1.1-cp311-cp311-win_amd64.whl", hash = "sha256:f57c9e070cecf42d379145a75f325ec57fb1d410d6ff6592b5a28c2ff2b5792c"},
{file = "duckdb-1.1.1-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:926a99b81c50b9a4a43ca26dcb781f934d35e773d22913548396601ab8d44c12"},
{file = "duckdb-1.1.1-cp312-cp312-macosx_12_0_universal2.whl", hash = "sha256:55a2632d27b5a965f1d9fc74b03383e80a3f8e3dc9596807dfb02c8db08cfcb7"},
{file = "duckdb-1.1.1-cp312-cp312-macosx_12_0_x86_64.whl", hash = "sha256:8d8174fe47caf48d830dc477a45cedc8c970722df09dc1456bddc760ff6ccf68"},
{file = "duckdb-1.1.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9ad84023399002222fa8d5264a8dc2083053027910df728da92cabb07494a489"},
{file = "duckdb-1.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1c8adbc8b37444424c72043288f1521c860555a4f151ee4b744e6125f5d05729"},
{file = "duckdb-1.1.1-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:550524c1b423eeb7ca0fdf1c2e6d29e723d7ec7cfab3050b9feb55a620ae927f"},
{file = "duckdb-1.1.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:4064243e4d3f445975b78773677de0ccbe924f9c7058a7c2cfedb24bba2ba939"},
{file = "duckdb-1.1.1-cp312-cp312-win_amd64.whl", hash = "sha256:4f64516dc62dd0fcbb9785c5bc7532a4fca3e6016bbcc92a2b235aa972c631f6"},
{file = "duckdb-1.1.1-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:4bf75a64c927470b6618496adcfbf0f316ef09d46a44cfe8e38b78e9ff40c8a0"},
{file = "duckdb-1.1.1-cp313-cp313-macosx_12_0_universal2.whl", hash = "sha256:5c8cd6fd7107299b9a243836cd8163e4c08d6228f18cbee4ed9f535f53300096"},
{file = "duckdb-1.1.1-cp313-cp313-macosx_12_0_x86_64.whl", hash = "sha256:fc81c02b4d73533a438a9bbae19499531d85b752233c905facc4df41bbde043c"},
{file = "duckdb-1.1.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:baff4014caf6553b624a296e4db2926602670bd9be6e0fc75f3e970b085631b0"},
{file = "duckdb-1.1.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e21b75a9a60f10b5b5033138c317d929018c92f355fadae5949b310a9179e0a7"},
{file = "duckdb-1.1.1-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:8220f039c5ea06dc126232464ab9b77197f80ae53d4611b0a41f73c54f6f3931"},
{file = "duckdb-1.1.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:07384414ceae585d4106a7dc154331ae42f45390ed675ec81e3d01f2252a6b01"},
{file = "duckdb-1.1.1-cp313-cp313-win_amd64.whl", hash = "sha256:82776b3999e71a962db0bdc3f0258407ef41453f63eb47c33da29b644f8eb530"},
{file = "duckdb-1.1.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35d4323655be4053fb90d47e85222c93fd56aea0e8ab0ac44bd8f7249ba85697"},
{file = "duckdb-1.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:990d0799e0f543a4369413dc6caf7782cbbab49955c08c28ac56d5dab5ccef11"},
{file = "duckdb-1.1.1-cp37-cp37m-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5ef3ba36b317abe000f502702eaaefdd8c3651a25aa0ad409f9487b286e2fb28"},
{file = "duckdb-1.1.1-cp37-cp37m-win_amd64.whl", hash = "sha256:2c6e513a572967cd2bab0f20ce265f8eaf95ea7b554eecf1c233717c38569abc"},
{file = "duckdb-1.1.1-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:567471cb964a0e54a7874c578e81af7b6ab474676ae6469ae1c33c2353f76fb1"},
{file = "duckdb-1.1.1-cp38-cp38-macosx_12_0_universal2.whl", hash = "sha256:a41d8eb4dc538d17660b78f2f4ecd0ba29666a396453bb71d6f4972bf2b3959e"},
{file = "duckdb-1.1.1-cp38-cp38-macosx_12_0_x86_64.whl", hash = "sha256:31be0b9bc1909fb60abda7cd30615fe0224d1e451160d79e8e0313d6205417b0"},
{file = "duckdb-1.1.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:541fb49da108e080d4f2984d2fdabaee36d65967a33642f8bce03373b29952f0"},
{file = "duckdb-1.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e1c54f836dac5eddbe369fa654811e979bb07688638a52d1c006172feb5b75a5"},
{file = "duckdb-1.1.1-cp38-cp38-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:afb97970ee72e554b507c6f2e40b356bdbf8fc1f466e7c4d1797183eb66c0809"},
{file = "duckdb-1.1.1-cp38-cp38-win_amd64.whl", hash = "sha256:a2cdcb68247f02017a35a0b617ceb1d36a02a7c0588d7e2ed91c9a4e9f14c3f6"},
{file = "duckdb-1.1.1-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:36d71969cb98d10dc2391d8755921258d197995cc8c69e6c82fc377c2f71940a"},
{file = "duckdb-1.1.1-cp39-cp39-macosx_12_0_universal2.whl", hash = "sha256:3693f464409379a21aff4e35b5f67eb6c96fc402649d9ffddbda4ee9ee9ba9b6"},
{file = "duckdb-1.1.1-cp39-cp39-macosx_12_0_x86_64.whl", hash = "sha256:06ca7f4ca785cc86e9f9aa23d16b67b82dc454b14c396b2e0ff4c09698c7838e"},
{file = "duckdb-1.1.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5ed92f3229bf70897a742e7648f648aa8b0c81a7489072aec5515c5635f3303c"},
{file = "duckdb-1.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a80ebf52c03f81265b67720abc06a5c7770d08df82b30cabbe266012bd526229"},
{file = "duckdb-1.1.1-cp39-cp39-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:402a42b992227ebb371a48681ce71b6d1c0661385454b269e6aa379f77a8a83a"},
{file = "duckdb-1.1.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:a182d3cbf2e352aaddf392887331bbac460c473cbd55c65d6b6121ef7b43f174"},
{file = "duckdb-1.1.1-cp39-cp39-win_amd64.whl", hash = "sha256:fafc7d1ec4401787597a5f983d4ef8a9b0638f31e1674a458c57383911166f27"},
{file = "duckdb-1.1.1.tar.gz", hash = "sha256:74fb07c1334a73e0ead1b0a03646d349921dac655762d916c8e45194c8218d30"},
{file = "duckdb-1.1.2-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:91e7f99cf5cab1d26f92cb014429153497d805e79689baa44f4c4585a8cb243f"},
{file = "duckdb-1.1.2-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:0107de622fe208142a1108263a03c43956048dcc99be3702d8e5d2aeaf99554c"},
{file = "duckdb-1.1.2-cp310-cp310-macosx_12_0_x86_64.whl", hash = "sha256:8a09610f780857677725897856f8cdf3cafd8a991f871e6cb8ba88b2dbc8d737"},
{file = "duckdb-1.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c0f0ddac0482f0f3fece54d720d13819e82ae26c01a939ffa66a87be53f7f665"},
{file = "duckdb-1.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:84103373e818758dfa361d27781d0f096553843c5ffb9193260a0786c5248270"},
{file = "duckdb-1.1.2-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:bfdfd23e2bf58014ad0673973bd0ed88cd048dfe8e82420814a71d7d52ef2288"},
{file = "duckdb-1.1.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:25889e6e29b87047b1dd56385ac08156e4713c59326cc6fff89657d01b2c417b"},
{file = "duckdb-1.1.2-cp310-cp310-win_amd64.whl", hash = "sha256:312570fa5277c3079de18388b86c2d87cbe1044838bb152b235c0227581d5d42"},
{file = "duckdb-1.1.2-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:568439ea4fce8cb72ec1f767cd510686a9e7e29a011fc7c56d990059a6e94e48"},
{file = "duckdb-1.1.2-cp311-cp311-macosx_12_0_universal2.whl", hash = "sha256:74974f2d7210623a5d61b1fb0cb589c6e5ffcbf7dbb757a04c5ba24adcfc8cac"},
{file = "duckdb-1.1.2-cp311-cp311-macosx_12_0_x86_64.whl", hash = "sha256:e26422a3358c816d764639070945b73eef55d1b4df990989e3492c85ef725c21"},
{file = "duckdb-1.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:87e972bd452eeeab197fe39dcaeecdb7c264b1f75a0ee67e532e235fe45b84df"},
{file = "duckdb-1.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a6b73e70b73c8df85da383f6e557c03cad5c877868b9a7e41715761e8166c1e"},
{file = "duckdb-1.1.2-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:623cb1952466aae5907af84107bcdec25a5ca021a8b6441e961f41edc724f6f2"},
{file = "duckdb-1.1.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:d9fc0b550f96901fa7e76dc70a13f6477ad3e18ef1cb21d414c3a5569de3f27e"},
{file = "duckdb-1.1.2-cp311-cp311-win_amd64.whl", hash = "sha256:181edb1973bd8f493bcb6ecfa035f1a592dff4667758592f300619012ba251c0"},
{file = "duckdb-1.1.2-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:83372b1b411086cac01ab2071122772fa66170b1b41ddbc37527464066083668"},
{file = "duckdb-1.1.2-cp312-cp312-macosx_12_0_universal2.whl", hash = "sha256:db37441deddfee6ac35a0c742d2f9e90e4e50b9e76d586a060d122b8fc56dada"},
{file = "duckdb-1.1.2-cp312-cp312-macosx_12_0_x86_64.whl", hash = "sha256:19142a77e72874aeaa6fda30aeb13612c6de5e8c60fbcc3392cea6ef0694eeaf"},
{file = "duckdb-1.1.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:099d99dd48d6e4682a3dd6233ceab73d977ebe1a87afaac54cf77c844e24514a"},
{file = "duckdb-1.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:be86e586ca7af7e807f72479a2b8d0983565360b19dbda4ef8a9d7b3909b8e2c"},
{file = "duckdb-1.1.2-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:578e0953e4d8ba8da0cd69fb2930c45f51ce47d213b77d8a4cd461f9c0960b87"},
{file = "duckdb-1.1.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:72b5eb5762c1a5e68849c7143f3b3747a9f15c040e34e41559f233a1569ad16f"},
{file = "duckdb-1.1.2-cp312-cp312-win_amd64.whl", hash = "sha256:9b4c6b6a08180261d98330d97355503961a25ca31cd9ef296e0681f7895b4a2c"},
{file = "duckdb-1.1.2-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:695dcbc561374b126e86659709feadf883c9969ed718e94713edd4ba15d16619"},
{file = "duckdb-1.1.2-cp313-cp313-macosx_12_0_universal2.whl", hash = "sha256:ada29be1e889f486c6cf1f6dffd15463e748faf361f33996f2e862779edc24a9"},
{file = "duckdb-1.1.2-cp313-cp313-macosx_12_0_x86_64.whl", hash = "sha256:6ca722738fa9eb6218619740631de29acfdd132de6f6a6350fee5e291c2f6117"},
{file = "duckdb-1.1.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c796d33f1e5a0c8c570d22da0c0b1db8578687e427029e1ce2c8ce3f9fffa6a3"},
{file = "duckdb-1.1.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5c0996988a70dd3bc8111d9b9aeab7e38ed1999a52607c5f1b528e362b4dd1c"},
{file = "duckdb-1.1.2-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:6c37b039f6d6fed14d89450f5ccf54922b3304192d7412e12d6cc8d9e757f7a2"},
{file = "duckdb-1.1.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e8c766b87f675c76d6d17103bf6fb9fb1a9e2fcb3d9b25c28bbc634bde31223e"},
{file = "duckdb-1.1.2-cp313-cp313-win_amd64.whl", hash = "sha256:e3e6300b7ccaf64b609f4f0780a6e1d25ab8cf34cceed46e62c35b6c4c5cb63b"},
{file = "duckdb-1.1.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8a01fae9604a54ecbc26e7503c522311f15afbd2870e6d8f6fbef4545dfae550"},
{file = "duckdb-1.1.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:492b1d86a696428bd3f14dc1c7c3230e2dbca8978f288be64b04a26e0e00fad5"},
{file = "duckdb-1.1.2-cp37-cp37m-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:1bba58459ad897a78c4e478a097626fc266459a40338cecc68a49a8d5dc72fb7"},
{file = "duckdb-1.1.2-cp37-cp37m-win_amd64.whl", hash = "sha256:d395a3bf510bf24686821eec15802624797dcb33e8f14f8a7cc8e17d909474af"},
{file = "duckdb-1.1.2-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:fd800f75728727fe699ed1eb22b636867cf48c9dd105ee88b977e20c89df4509"},
{file = "duckdb-1.1.2-cp38-cp38-macosx_12_0_universal2.whl", hash = "sha256:d8caaf43909e49537e26df51d80d075ae2b25a610d28ed8bd31d6ccebeaf3c65"},
{file = "duckdb-1.1.2-cp38-cp38-macosx_12_0_x86_64.whl", hash = "sha256:564166811c68d9c7f9911eb707ad32ec9c2507b98336d894fbe658b85bf1c697"},
{file = "duckdb-1.1.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:19386aa09f0d6f97634ba2972096d1c80d880176dfb0e949eadc91c98262a663"},
{file = "duckdb-1.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9e8387bcc9a591ad14011ddfec0d408d1d9b1889c6c9b495a04c7016a24b9b3"},
{file = "duckdb-1.1.2-cp38-cp38-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:f8c5ff4970403ed3ff0ac71fe0ce1e6be3199df9d542afc84c424b444ba4ffe8"},
{file = "duckdb-1.1.2-cp38-cp38-win_amd64.whl", hash = "sha256:9283dcca87c3260eb631a99d738fa72b8545ed45b475bc72ad254f7310e14284"},
{file = "duckdb-1.1.2-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:f87edaf20001530e63a4f7bda13b55dc3152d7171226915f2bf34e0813c8759e"},
{file = "duckdb-1.1.2-cp39-cp39-macosx_12_0_universal2.whl", hash = "sha256:efec169b3fe0b821e3207ba3e445f227d42dd62b4440ff79c37fa168a4fc5a71"},
{file = "duckdb-1.1.2-cp39-cp39-macosx_12_0_x86_64.whl", hash = "sha256:89164a2d29d56605a95ee5032aa415dd487028c4fd3e06d971497840e74c56e7"},
{file = "duckdb-1.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6858e10c60ff7e70e61d3dd53d2545c8b2609942e45fd6de38cd0dee52932de3"},
{file = "duckdb-1.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ca967c5a57b1d0cb0fd5e539ab24110e5a59dcbedd365bb2dc80533d6e44a8d"},
{file = "duckdb-1.1.2-cp39-cp39-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:4ce949f1d7999aa6a046eb64067eee41d4c5c2872ba4fa408c9947742d0c7231"},
{file = "duckdb-1.1.2-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:9ba6d1f918e6ca47a368a0c32806016405cb9beb2c245806b0ca998f569d2bdf"},
{file = "duckdb-1.1.2-cp39-cp39-win_amd64.whl", hash = "sha256:7111fd3e7b334a7be383313ce29918b7c643e4f6ef44d6d63c3ab3fa6716c114"},
{file = "duckdb-1.1.2.tar.gz", hash = "sha256:c8232861dc8ec6daa29067056d5a0e5789919f2ab22ab792787616d7cd52f02a"},
]
[[package]]
@@ -2361,18 +2355,18 @@ test = ["pytest (>=6)"]
[[package]]
name = "fastapi"
version = "0.115.0"
version = "0.115.2"
description = "FastAPI framework, high performance, easy to learn, fast to code, ready for production"
optional = false
python-versions = ">=3.8"
files = [
{file = "fastapi-0.115.0-py3-none-any.whl", hash = "sha256:17ea427674467486e997206a5ab25760f6b09e069f099b96f5b55a32fb6f1631"},
{file = "fastapi-0.115.0.tar.gz", hash = "sha256:f93b4ca3529a8ebc6fc3fcf710e5efa8de3df9b41570958abf1d97d843138004"},
{file = "fastapi-0.115.2-py3-none-any.whl", hash = "sha256:61704c71286579cc5a598763905928f24ee98bfcc07aabe84cfefb98812bbc86"},
{file = "fastapi-0.115.2.tar.gz", hash = "sha256:3995739e0b09fa12f984bce8fa9ae197b35d433750d3d312422d846e283697ee"},
]
[package.dependencies]
pydantic = ">=1.7.4,<1.8 || >1.8,<1.8.1 || >1.8.1,<2.0.0 || >2.0.0,<2.0.1 || >2.0.1,<2.1.0 || >2.1.0,<3.0.0"
starlette = ">=0.37.2,<0.39.0"
starlette = ">=0.37.2,<0.41.0"
typing-extensions = ">=4.8.0"
[package.extras]
@@ -2719,49 +2713,50 @@ woff = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "zopfli (>=0.1.4)"]
[[package]]
name = "frozendict"
version = "2.4.5"
version = "2.4.6"
description = "A simple immutable dictionary"
optional = false
python-versions = ">=3.6"
files = [
{file = "frozendict-2.4.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1f364cfe5ef97523a4434e9f458bb4821594d3531d898621e5acae43463dcb5e"},
{file = "frozendict-2.4.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4f073c926b1f88fa85ed85222101f61f6c4b2180c95d1528ca6ecc7cef835442"},
{file = "frozendict-2.4.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8582f26ca862bb1e40ed790d934adf6afcfc904b0425dcfe01aed2103bed27fb"},
{file = "frozendict-2.4.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b3eea1678607174c468fe4e3b903625bccfb3215ae2b0138220dc1f6ef71f37"},
{file = "frozendict-2.4.5-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:3af1b09bad761d5500b096b757c346591b5dfdc8443aa9642c2c02b4885dc09e"},
{file = "frozendict-2.4.5-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:76c7af5f9db9ae01531edaf38fd3e8faae1bb6b94abbf8fa5bd0326f52e777df"},
{file = "frozendict-2.4.5-cp310-cp310-win_amd64.whl", hash = "sha256:a5448639058157ccd7f26ba83e441066c6ae515beb68b9b99d5b2dbb0bb36b19"},
{file = "frozendict-2.4.5-cp310-cp310-win_arm64.whl", hash = "sha256:24953a1cfe344415e7557413e493e21fa9c4cecbc13284b6f334837aa5601c9f"},
{file = "frozendict-2.4.5-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:754924d53b1fd2dae7b15f9c86b0610334a840ae728cc717f24aa040fc94136f"},
{file = "frozendict-2.4.5-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:95bf788d65e3a50d9deef5c68e568c59acf473fea8a7a4d7e405a7e63ac85cdd"},
{file = "frozendict-2.4.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:35730ff269b8a6eb07c3d91d5fd6a7f5c32e08bef665fe1ef51012bdb2702196"},
{file = "frozendict-2.4.5-cp36-cp36m-musllinux_1_2_aarch64.whl", hash = "sha256:eb58e0c41bc6bb60a8b0852d50da8836380fb78311608dc26791e3e9aa25bcfe"},
{file = "frozendict-2.4.5-cp36-cp36m-musllinux_1_2_x86_64.whl", hash = "sha256:0483776fa25f0c3f9ff75a89b5276a582231f83baea85b091dfefde99b95ac5c"},
{file = "frozendict-2.4.5-cp36-cp36m-win_amd64.whl", hash = "sha256:a967730a115cb8b5d028e0d07cd680c04324e913ee3d1caef9e039ca740343c4"},
{file = "frozendict-2.4.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:6d10ad91ded20fae8737fddcfed1b6358207f95292a335f96c4cd365d97f5e30"},
{file = "frozendict-2.4.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3702438d81deab127963ab41dca1738a0fbf11038a50a25c5f814943a2d25de5"},
{file = "frozendict-2.4.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:de1126d6dd39d7939be388161b973ffadb9c6e97f8f9fdcb52ba790828621191"},
{file = "frozendict-2.4.5-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:f8d677a6066ca3289181028fccabf77413addddaa7a6629485d52aeaa4f4899c"},
{file = "frozendict-2.4.5-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:f2ff03ed21657cde7ea04fffc76f0c1736100a03671e4682722685e63486cd96"},
{file = "frozendict-2.4.5-cp37-cp37m-win_amd64.whl", hash = "sha256:14755127b988b428f95f11fa626374e247f8a40316697218f1e2f44c107c5027"},
{file = "frozendict-2.4.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:bbf9dcb69a44519308c775bcf72b8417c3102f415f77df19b8eddb97b8f88d78"},
{file = "frozendict-2.4.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:ee3e6f4013446d17c580ce0bac41a1f81371c21dd6e34a85c0f26bae94fdfd9b"},
{file = "frozendict-2.4.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2b51e0aae859fc8d56138eac4be121a76647fa66ea620af8a62d9d6938729441"},
{file = "frozendict-2.4.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:af4bdffecff350a68f1a966dec84459d3ea8e2606c14fb3ebe937b8c6c9e9129"},
{file = "frozendict-2.4.5-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:f1385852cb05a31ae76c972caa3a07679414b01a664848bde2bae71c9910f045"},
{file = "frozendict-2.4.5-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:e591124818f2d5d8f2d284a7b78604f4180e73d770c33252370edccff5969293"},
{file = "frozendict-2.4.5-cp38-cp38-win_amd64.whl", hash = "sha256:05786d9cff61ee95149c15cdfc10cf4b4cb10e1eab1d4648b0c99ed58fedb86d"},
{file = "frozendict-2.4.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:98b1483980c47bb74ef777ab748031a69eb41c43ef44494e9db79111638fdb84"},
{file = "frozendict-2.4.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:08e8d4ebc950916b5cdeedcb697cf893c5903d9cb8ab27dffe41072a08e1cfc1"},
{file = "frozendict-2.4.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:73ff80ce3f95c3ec60b38ef4ddf5cb8e20ea3edce2f56e89af7c4c45013684bf"},
{file = "frozendict-2.4.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dee64c44e1a146171bdd2bf4501210f273a5ab73cc2e924a01f81b14e4612f94"},
{file = "frozendict-2.4.5-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:a81d80ded07f0e34a3fa2b78235a48259b886ad20a96da5526a9404d192c6eb3"},
{file = "frozendict-2.4.5-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:043bce9f5e7e8df8313d0c961b2da3346c0b002311d88c74cadae2b1f8fd2904"},
{file = "frozendict-2.4.5-cp39-cp39-win_amd64.whl", hash = "sha256:d2b2a9c809ebb54c8c0fe2acc38d45299f3e9a9d90061773468896221cab1eaa"},
{file = "frozendict-2.4.5-cp39-cp39-win_arm64.whl", hash = "sha256:20cf1db30ca0c8f76a05ec1256132f505cf6f93eb382a5961c738377037b5b9d"},
{file = "frozendict-2.4.5-py311-none-any.whl", hash = "sha256:6be054ba76e8a49c6846a7369db3eaaa0593c29a644026c25923f13fdea06483"},
{file = "frozendict-2.4.5-py312-none-any.whl", hash = "sha256:b8481d83a7219e9e14c719113ea2d8321d7840af35af58c72b3864b7123e7de3"},
{file = "frozendict-2.4.5.tar.gz", hash = "sha256:fd7add309789595c044c0155a0bddfa9d20c77f65de1e33a14aa3033b936ef63"},
{file = "frozendict-2.4.6-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c3a05c0a50cab96b4bb0ea25aa752efbfceed5ccb24c007612bc63e51299336f"},
{file = "frozendict-2.4.6-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f5b94d5b07c00986f9e37a38dd83c13f5fe3bf3f1ccc8e88edea8fe15d6cd88c"},
{file = "frozendict-2.4.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f4c789fd70879ccb6289a603cdebdc4953e7e5dea047d30c1b180529b28257b5"},
{file = "frozendict-2.4.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da6a10164c8a50b34b9ab508a9420df38f4edf286b9ca7b7df8a91767baecb34"},
{file = "frozendict-2.4.6-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:9a8a43036754a941601635ea9c788ebd7a7efbed2becba01b54a887b41b175b9"},
{file = "frozendict-2.4.6-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:c9905dcf7aa659e6a11b8051114c9fa76dfde3a6e50e6dc129d5aece75b449a2"},
{file = "frozendict-2.4.6-cp310-cp310-win_amd64.whl", hash = "sha256:323f1b674a2cc18f86ab81698e22aba8145d7a755e0ac2cccf142ee2db58620d"},
{file = "frozendict-2.4.6-cp310-cp310-win_arm64.whl", hash = "sha256:eabd21d8e5db0c58b60d26b4bb9839cac13132e88277e1376970172a85ee04b3"},
{file = "frozendict-2.4.6-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:eddabeb769fab1e122d3a6872982c78179b5bcc909fdc769f3cf1964f55a6d20"},
{file = "frozendict-2.4.6-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:377a65be0a700188fc21e669c07de60f4f6d35fae8071c292b7df04776a1c27b"},
{file = "frozendict-2.4.6-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce1e9217b85eec6ba9560d520d5089c82dbb15f977906eb345d81459723dd7e3"},
{file = "frozendict-2.4.6-cp36-cp36m-musllinux_1_2_aarch64.whl", hash = "sha256:7291abacf51798d5ffe632771a69c14fb423ab98d63c4ccd1aa382619afe2f89"},
{file = "frozendict-2.4.6-cp36-cp36m-musllinux_1_2_x86_64.whl", hash = "sha256:e72fb86e48811957d66ffb3e95580af7b1af1e6fbd760ad63d7bd79b2c9a07f8"},
{file = "frozendict-2.4.6-cp36-cp36m-win_amd64.whl", hash = "sha256:622301b1c29c4f9bba633667d592a3a2b093cb408ba3ce578b8901ace3931ef3"},
{file = "frozendict-2.4.6-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:a4e3737cb99ed03200cd303bdcd5514c9f34b29ee48f405c1184141bd68611c9"},
{file = "frozendict-2.4.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:49ffaf09241bc1417daa19362a2241a4aa435f758fd4375c39ce9790443a39cd"},
{file = "frozendict-2.4.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2d69418479bfb834ba75b0e764f058af46ceee3d655deb6a0dd0c0c1a5e82f09"},
{file = "frozendict-2.4.6-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:c131f10c4d3906866454c4e89b87a7e0027d533cce8f4652aa5255112c4d6677"},
{file = "frozendict-2.4.6-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:fc67cbb3c96af7a798fab53d52589752c1673027e516b702ab355510ddf6bdff"},
{file = "frozendict-2.4.6-cp37-cp37m-win_amd64.whl", hash = "sha256:7730f8ebe791d147a1586cbf6a42629351d4597773317002181b66a2da0d509e"},
{file = "frozendict-2.4.6-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:807862e14b0e9665042458fde692c4431d660c4219b9bb240817f5b918182222"},
{file = "frozendict-2.4.6-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:9647c74efe3d845faa666d4853cfeabbaee403b53270cabfc635b321f770e6b8"},
{file = "frozendict-2.4.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:665fad3f0f815aa41294e561d98dbedba4b483b3968e7e8cab7d728d64b96e33"},
{file = "frozendict-2.4.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1f42e6b75254ea2afe428ad6d095b62f95a7ae6d4f8272f0bd44a25dddd20f67"},
{file = "frozendict-2.4.6-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:02331541611f3897f260900a1815b63389654951126e6e65545e529b63c08361"},
{file = "frozendict-2.4.6-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:18d50a2598350b89189da9150058191f55057581e40533e470db46c942373acf"},
{file = "frozendict-2.4.6-cp38-cp38-win_amd64.whl", hash = "sha256:1b4a3f8f6dd51bee74a50995c39b5a606b612847862203dd5483b9cd91b0d36a"},
{file = "frozendict-2.4.6-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a76cee5c4be2a5d1ff063188232fffcce05dde6fd5edd6afe7b75b247526490e"},
{file = "frozendict-2.4.6-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ba5ef7328706db857a2bdb2c2a17b4cd37c32a19c017cff1bb7eeebc86b0f411"},
{file = "frozendict-2.4.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:669237c571856be575eca28a69e92a3d18f8490511eff184937283dc6093bd67"},
{file = "frozendict-2.4.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0aaa11e7c472150efe65adbcd6c17ac0f586896096ab3963775e1c5c58ac0098"},
{file = "frozendict-2.4.6-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:b8f2829048f29fe115da4a60409be2130e69402e29029339663fac39c90e6e2b"},
{file = "frozendict-2.4.6-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:94321e646cc39bebc66954a31edd1847d3a2a3483cf52ff051cd0996e7db07db"},
{file = "frozendict-2.4.6-cp39-cp39-win_amd64.whl", hash = "sha256:74b6b26c15dddfefddeb89813e455b00ebf78d0a3662b89506b4d55c6445a9f4"},
{file = "frozendict-2.4.6-cp39-cp39-win_arm64.whl", hash = "sha256:7088102345d1606450bd1801a61139bbaa2cb0d805b9b692f8d81918ea835da6"},
{file = "frozendict-2.4.6-py311-none-any.whl", hash = "sha256:d065db6a44db2e2375c23eac816f1a022feb2fa98cbb50df44a9e83700accbea"},
{file = "frozendict-2.4.6-py312-none-any.whl", hash = "sha256:49344abe90fb75f0f9fdefe6d4ef6d4894e640fadab71f11009d52ad97f370b9"},
{file = "frozendict-2.4.6-py313-none-any.whl", hash = "sha256:7134a2bb95d4a16556bb5f2b9736dceb6ea848fa5b6f3f6c2d6dba93b44b4757"},
{file = "frozendict-2.4.6.tar.gz", hash = "sha256:df7cd16470fbd26fc4969a208efadc46319334eb97def1ddf48919b351192b8e"},
]
[[package]]
@@ -3875,51 +3870,58 @@ pyparsing = {version = ">=2.4.2,<3.0.0 || >3.0.0,<3.0.1 || >3.0.1,<3.0.2 || >3.0
[[package]]
name = "httptools"
version = "0.6.1"
version = "0.6.2"
description = "A collection of framework independent HTTP protocol utils."
optional = false
python-versions = ">=3.8.0"
files = [
{file = "httptools-0.6.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:d2f6c3c4cb1948d912538217838f6e9960bc4a521d7f9b323b3da579cd14532f"},
{file = "httptools-0.6.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:00d5d4b68a717765b1fabfd9ca755bd12bf44105eeb806c03d1962acd9b8e563"},
{file = "httptools-0.6.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:639dc4f381a870c9ec860ce5c45921db50205a37cc3334e756269736ff0aac58"},
{file = "httptools-0.6.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e57997ac7fb7ee43140cc03664de5f268813a481dff6245e0075925adc6aa185"},
{file = "httptools-0.6.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:0ac5a0ae3d9f4fe004318d64b8a854edd85ab76cffbf7ef5e32920faef62f142"},
{file = "httptools-0.6.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:3f30d3ce413088a98b9db71c60a6ada2001a08945cb42dd65a9a9fe228627658"},
{file = "httptools-0.6.1-cp310-cp310-win_amd64.whl", hash = "sha256:1ed99a373e327f0107cb513b61820102ee4f3675656a37a50083eda05dc9541b"},
{file = "httptools-0.6.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:7a7ea483c1a4485c71cb5f38be9db078f8b0e8b4c4dc0210f531cdd2ddac1ef1"},
{file = "httptools-0.6.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:85ed077c995e942b6f1b07583e4eb0a8d324d418954fc6af913d36db7c05a5a0"},
{file = "httptools-0.6.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8b0bb634338334385351a1600a73e558ce619af390c2b38386206ac6a27fecfc"},
{file = "httptools-0.6.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7d9ceb2c957320def533671fc9c715a80c47025139c8d1f3797477decbc6edd2"},
{file = "httptools-0.6.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:4f0f8271c0a4db459f9dc807acd0eadd4839934a4b9b892f6f160e94da309837"},
{file = "httptools-0.6.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:6a4f5ccead6d18ec072ac0b84420e95d27c1cdf5c9f1bc8fbd8daf86bd94f43d"},
{file = "httptools-0.6.1-cp311-cp311-win_amd64.whl", hash = "sha256:5cceac09f164bcba55c0500a18fe3c47df29b62353198e4f37bbcc5d591172c3"},
{file = "httptools-0.6.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:75c8022dca7935cba14741a42744eee13ba05db00b27a4b940f0d646bd4d56d0"},
{file = "httptools-0.6.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:48ed8129cd9a0d62cf4d1575fcf90fb37e3ff7d5654d3a5814eb3d55f36478c2"},
{file = "httptools-0.6.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6f58e335a1402fb5a650e271e8c2d03cfa7cea46ae124649346d17bd30d59c90"},
{file = "httptools-0.6.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:93ad80d7176aa5788902f207a4e79885f0576134695dfb0fefc15b7a4648d503"},
{file = "httptools-0.6.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:9bb68d3a085c2174c2477eb3ffe84ae9fb4fde8792edb7bcd09a1d8467e30a84"},
{file = "httptools-0.6.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:b512aa728bc02354e5ac086ce76c3ce635b62f5fbc32ab7082b5e582d27867bb"},
{file = "httptools-0.6.1-cp312-cp312-win_amd64.whl", hash = "sha256:97662ce7fb196c785344d00d638fc9ad69e18ee4bfb4000b35a52efe5adcc949"},
{file = "httptools-0.6.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:8e216a038d2d52ea13fdd9b9c9c7459fb80d78302b257828285eca1c773b99b3"},
{file = "httptools-0.6.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:3e802e0b2378ade99cd666b5bffb8b2a7cc8f3d28988685dc300469ea8dd86cb"},
{file = "httptools-0.6.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4bd3e488b447046e386a30f07af05f9b38d3d368d1f7b4d8f7e10af85393db97"},
{file = "httptools-0.6.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fe467eb086d80217b7584e61313ebadc8d187a4d95bb62031b7bab4b205c3ba3"},
{file = "httptools-0.6.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:3c3b214ce057c54675b00108ac42bacf2ab8f85c58e3f324a4e963bbc46424f4"},
{file = "httptools-0.6.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8ae5b97f690badd2ca27cbf668494ee1b6d34cf1c464271ef7bfa9ca6b83ffaf"},
{file = "httptools-0.6.1-cp38-cp38-win_amd64.whl", hash = "sha256:405784577ba6540fa7d6ff49e37daf104e04f4b4ff2d1ac0469eaa6a20fde084"},
{file = "httptools-0.6.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:95fb92dd3649f9cb139e9c56604cc2d7c7bf0fc2e7c8d7fbd58f96e35eddd2a3"},
{file = "httptools-0.6.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:dcbab042cc3ef272adc11220517278519adf8f53fd3056d0e68f0a6f891ba94e"},
{file = "httptools-0.6.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0cf2372e98406efb42e93bfe10f2948e467edfd792b015f1b4ecd897903d3e8d"},
{file = "httptools-0.6.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:678fcbae74477a17d103b7cae78b74800d795d702083867ce160fc202104d0da"},
{file = "httptools-0.6.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:e0b281cf5a125c35f7f6722b65d8542d2e57331be573e9e88bc8b0115c4a7a81"},
{file = "httptools-0.6.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:95658c342529bba4e1d3d2b1a874db16c7cca435e8827422154c9da76ac4e13a"},
{file = "httptools-0.6.1-cp39-cp39-win_amd64.whl", hash = "sha256:7ebaec1bf683e4bf5e9fbb49b8cc36da482033596a415b3e4ebab5a4c0d7ec5e"},
{file = "httptools-0.6.1.tar.gz", hash = "sha256:c6e26c30455600b95d94b1b836085138e82f177351454ee841c148f93a9bad5a"},
{file = "httptools-0.6.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:0238f07780782c018e9801d8f5f5aea3a4680a1af132034b444f677718c6fe88"},
{file = "httptools-0.6.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:10d28e5597d4349390c640232c9366ddc15568114f56724fe30a53de9686b6ab"},
{file = "httptools-0.6.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9ddaf99e362ae4169f6a8b3508f3487264e0a1b1e58c0b07b86407bc9ecee831"},
{file = "httptools-0.6.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:efc9d039b6b8a36b182bc60774bb5d456b8ff9ec44cf97719f2f38bb1dcdd546"},
{file = "httptools-0.6.2-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:b57cb8a4a8a8ffdaf0395326ef3b9c1aba36e58a421438fc04c002a1f511db63"},
{file = "httptools-0.6.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:b73cda1326738eab5d60640ca0b87ac4e4db09a099423c41b59a5681917e8d1d"},
{file = "httptools-0.6.2-cp310-cp310-win_amd64.whl", hash = "sha256:352a496244360deb1c1d108391d76cd6f3dd9f53ccf975a082e74c6761af30c9"},
{file = "httptools-0.6.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:2e9d225b178a6cc700c23cf2f5daf85a10f93f1db7c34e9ee4ee0bbc29ad458a"},
{file = "httptools-0.6.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d49b14fcc9b12a52da8667587efa124a18e1a3eb63bbbcabf9882f4008d171d6"},
{file = "httptools-0.6.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2d5c33d98b2311ddbe06e92b12b14de334dcfbe64ebcbb2c7a34b5c6036db512"},
{file = "httptools-0.6.2-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:53cd2d776700bf0ed0e6fb203d716b041712ea4906479031cc5ac5421ecaa7d2"},
{file = "httptools-0.6.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:7da016a0dab1fcced89dfff8537033c5dc200015e14023368f3f4a69e39b8716"},
{file = "httptools-0.6.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:4d6e0ba155a1b3159551ac6b4551eb20028617e2e4bb71f2c61efed0756e6825"},
{file = "httptools-0.6.2-cp311-cp311-win_amd64.whl", hash = "sha256:ad44569b0f508e046ffe85b4a547d5b68d1548fd90767df69449cc28021ee709"},
{file = "httptools-0.6.2-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:c92d2b7c1a914ab2f66454961eeaf904f4fe7529b93ff537619d22c18b82d070"},
{file = "httptools-0.6.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:78f920a75c1dbcb5a48a495f384d73ceb41e437a966c318eb7e56f1c1ad1df3e"},
{file = "httptools-0.6.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:56bcd9ba0adf16edb4e3e45b8b9346f5b3b2372402e953d54c84b345d0f691e0"},
{file = "httptools-0.6.2-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e350a887adb38ac65c93c2f395b60cf482baca61fd396ed8d6fd313dbcce6fac"},
{file = "httptools-0.6.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:ddc328c2a2daf2cf4bdc7bbc8a458dc4c840637223d4b8e01bce2168cc79fd23"},
{file = "httptools-0.6.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:ddaf38943dbb32333a182c894b6092a68b56c5e36d0c54ba3761d28119b15447"},
{file = "httptools-0.6.2-cp312-cp312-win_amd64.whl", hash = "sha256:052f7f50e4a38f069478143878371ed17937f268349bcd68f6f7a9de9fcfce21"},
{file = "httptools-0.6.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:406f7dc5d9db68cd9ac638d14c74d077085f76b45f704d3ec38d43b842b3cb44"},
{file = "httptools-0.6.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:77e22c33123ce11231ff2773d8905e20b45d77a69459def7481283b72a583955"},
{file = "httptools-0.6.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41965586b02715c3d83dd9153001f654e5b621de0c5255f5ef0635485212d0c0"},
{file = "httptools-0.6.2-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:93b1839d54b80a06a51a31b90d024a1770e250d00de57e7ae069bafba932f398"},
{file = "httptools-0.6.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:8fdb4634040d1dbde7e0b373e19668cdb61c0ee8690d3b4064ac748d85365bca"},
{file = "httptools-0.6.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:c30902f9b9da0d74668b6f71d7b57081a4879d9a5ea93d5922dbe15b15b3b24a"},
{file = "httptools-0.6.2-cp313-cp313-win_amd64.whl", hash = "sha256:cf61238811a75335751b4b17f8b221a35f93f2d57489296742adf98412d2a568"},
{file = "httptools-0.6.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:8d80878cb40ebf88a48839ff7206ceb62e4b54327e0c2f9f15ee12edbd8b907e"},
{file = "httptools-0.6.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5141ccc9dbd8cdc59d1e93e318d405477a940dc6ebadcb8d9f8da17d2812d353"},
{file = "httptools-0.6.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1bb67d47f045f56e9a5da4deccf710bdde21212e4b1f4776b7a542449f6a7682"},
{file = "httptools-0.6.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:76dcb8f5c866f1537ccbaad01ebb3611890d281ef8d25e050d1cc3d90fba6b3d"},
{file = "httptools-0.6.2-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:1b7bc59362143dc2d02896dde94004ef54ff1989ceedf4b389ad3b530f312364"},
{file = "httptools-0.6.2-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:c7a5715b1f46e9852442f496c0df2f8c393cc8f293f5396d2c8d95cac852fb51"},
{file = "httptools-0.6.2-cp38-cp38-win_amd64.whl", hash = "sha256:3f0246ca7f78fa8e3902ddb985b9f55509d417a862f4634a8fa63a7a496266c8"},
{file = "httptools-0.6.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:1099f73952e18c718ccaaf7a97ae58c94a91839c3d247c6184326f85a2eda7b4"},
{file = "httptools-0.6.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c3e45d004531330030f7d07abe4865bc17963b9989bc1941cebbf7224010fb82"},
{file = "httptools-0.6.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f4f2fea370361a90cb9330610a95303587eda9d1e69930dbbee9978eac1d5946"},
{file = "httptools-0.6.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f0481154c91725f7e7b729a535190388be6c7cbae3bbf0e793343ca386282312"},
{file = "httptools-0.6.2-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:d25f8fdbc6cc6561353c7a384d76295e6a85a4945115b8bc347855db150e8c77"},
{file = "httptools-0.6.2-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:054bdee08e4f7c15c186f6e7dbc8f0cf974b8dd1832b5f17f988faf8b12815c9"},
{file = "httptools-0.6.2-cp39-cp39-win_amd64.whl", hash = "sha256:4502620722b453c2c6306fad392c515dcb804dfa9c6d3b90d8926a07a7a01109"},
{file = "httptools-0.6.2.tar.gz", hash = "sha256:ae694efefcb61317c79b2fa1caebc122060992408e389bb00889567e463a47f1"},
]
[package.extras]
test = ["Cython (>=0.29.24,<0.30.0)"]
test = ["Cython (>=0.29.24)"]
[[package]]
name = "httpx"
@@ -4127,6 +4129,88 @@ MarkupSafe = ">=2.0"
[package.extras]
i18n = ["Babel (>=2.7)"]
[[package]]
name = "jiter"
version = "0.6.1"
description = "Fast iterable JSON parser."
optional = false
python-versions = ">=3.8"
files = [
{file = "jiter-0.6.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:d08510593cb57296851080018006dfc394070178d238b767b1879dc1013b106c"},
{file = "jiter-0.6.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:adef59d5e2394ebbad13b7ed5e0306cceb1df92e2de688824232a91588e77aa7"},
{file = "jiter-0.6.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b3e02f7a27f2bcc15b7d455c9df05df8ffffcc596a2a541eeda9a3110326e7a3"},
{file = "jiter-0.6.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ed69a7971d67b08f152c17c638f0e8c2aa207e9dd3a5fcd3cba294d39b5a8d2d"},
{file = "jiter-0.6.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b2019d966e98f7c6df24b3b8363998575f47d26471bfb14aade37630fae836a1"},
{file = "jiter-0.6.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:36c0b51a285b68311e207a76c385650322734c8717d16c2eb8af75c9d69506e7"},
{file = "jiter-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:220e0963b4fb507c525c8f58cde3da6b1be0bfddb7ffd6798fb8f2531226cdb1"},
{file = "jiter-0.6.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:aa25c7a9bf7875a141182b9c95aed487add635da01942ef7ca726e42a0c09058"},
{file = "jiter-0.6.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e90552109ca8ccd07f47ca99c8a1509ced93920d271bb81780a973279974c5ab"},
{file = "jiter-0.6.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:67723a011964971864e0b484b0ecfee6a14de1533cff7ffd71189e92103b38a8"},
{file = "jiter-0.6.1-cp310-none-win32.whl", hash = "sha256:33af2b7d2bf310fdfec2da0177eab2fedab8679d1538d5b86a633ebfbbac4edd"},
{file = "jiter-0.6.1-cp310-none-win_amd64.whl", hash = "sha256:7cea41c4c673353799906d940eee8f2d8fd1d9561d734aa921ae0f75cb9732f4"},
{file = "jiter-0.6.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:b03c24e7da7e75b170c7b2b172d9c5e463aa4b5c95696a368d52c295b3f6847f"},
{file = "jiter-0.6.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:47fee1be677b25d0ef79d687e238dc6ac91a8e553e1a68d0839f38c69e0ee491"},
{file = "jiter-0.6.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:25f0d2f6e01a8a0fb0eab6d0e469058dab2be46ff3139ed2d1543475b5a1d8e7"},
{file = "jiter-0.6.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:0b809e39e342c346df454b29bfcc7bca3d957f5d7b60e33dae42b0e5ec13e027"},
{file = "jiter-0.6.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e9ac7c2f092f231f5620bef23ce2e530bd218fc046098747cc390b21b8738a7a"},
{file = "jiter-0.6.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e51a2d80d5fe0ffb10ed2c82b6004458be4a3f2b9c7d09ed85baa2fbf033f54b"},
{file = "jiter-0.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3343d4706a2b7140e8bd49b6c8b0a82abf9194b3f0f5925a78fc69359f8fc33c"},
{file = "jiter-0.6.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:82521000d18c71e41c96960cb36e915a357bc83d63a8bed63154b89d95d05ad1"},
{file = "jiter-0.6.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:3c843e7c1633470708a3987e8ce617ee2979ee18542d6eb25ae92861af3f1d62"},
{file = "jiter-0.6.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:a2e861658c3fe849efc39b06ebb98d042e4a4c51a8d7d1c3ddc3b1ea091d0784"},
{file = "jiter-0.6.1-cp311-none-win32.whl", hash = "sha256:7d72fc86474862c9c6d1f87b921b70c362f2b7e8b2e3c798bb7d58e419a6bc0f"},
{file = "jiter-0.6.1-cp311-none-win_amd64.whl", hash = "sha256:3e36a320634f33a07794bb15b8da995dccb94f944d298c8cfe2bd99b1b8a574a"},
{file = "jiter-0.6.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:1fad93654d5a7dcce0809aff66e883c98e2618b86656aeb2129db2cd6f26f867"},
{file = "jiter-0.6.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4e6e340e8cd92edab7f6a3a904dbbc8137e7f4b347c49a27da9814015cc0420c"},
{file = "jiter-0.6.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:691352e5653af84ed71763c3c427cff05e4d658c508172e01e9c956dfe004aba"},
{file = "jiter-0.6.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:defee3949313c1f5b55e18be45089970cdb936eb2a0063f5020c4185db1b63c9"},
{file = "jiter-0.6.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:26d2bdd5da097e624081c6b5d416d3ee73e5b13f1703bcdadbb1881f0caa1933"},
{file = "jiter-0.6.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:18aa9d1626b61c0734b973ed7088f8a3d690d0b7f5384a5270cd04f4d9f26c86"},
{file = "jiter-0.6.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a3567c8228afa5ddcce950631c6b17397ed178003dc9ee7e567c4c4dcae9fa0"},
{file = "jiter-0.6.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e5c0507131c922defe3f04c527d6838932fcdfd69facebafd7d3574fa3395314"},
{file = "jiter-0.6.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:540fcb224d7dc1bcf82f90f2ffb652df96f2851c031adca3c8741cb91877143b"},
{file = "jiter-0.6.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:e7b75436d4fa2032b2530ad989e4cb0ca74c655975e3ff49f91a1a3d7f4e1df2"},
{file = "jiter-0.6.1-cp312-none-win32.whl", hash = "sha256:883d2ced7c21bf06874fdeecab15014c1c6d82216765ca6deef08e335fa719e0"},
{file = "jiter-0.6.1-cp312-none-win_amd64.whl", hash = "sha256:91e63273563401aadc6c52cca64a7921c50b29372441adc104127b910e98a5b6"},
{file = "jiter-0.6.1-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:852508a54fe3228432e56019da8b69208ea622a3069458252f725d634e955b31"},
{file = "jiter-0.6.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f491cc69ff44e5a1e8bc6bf2b94c1f98d179e1aaf4a554493c171a5b2316b701"},
{file = "jiter-0.6.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cc56c8f0b2a28ad4d8047f3ae62d25d0e9ae01b99940ec0283263a04724de1f3"},
{file = "jiter-0.6.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:51b58f7a0d9e084a43b28b23da2b09fc5e8df6aa2b6a27de43f991293cab85fd"},
{file = "jiter-0.6.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5f79ce15099154c90ef900d69c6b4c686b64dfe23b0114e0971f2fecd306ec6c"},
{file = "jiter-0.6.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:03a025b52009f47e53ea619175d17e4ded7c035c6fbd44935cb3ada11e1fd592"},
{file = "jiter-0.6.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c74a8d93718137c021d9295248a87c2f9fdc0dcafead12d2930bc459ad40f885"},
{file = "jiter-0.6.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:40b03b75f903975f68199fc4ec73d546150919cb7e534f3b51e727c4d6ccca5a"},
{file = "jiter-0.6.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:825651a3f04cf92a661d22cad61fc913400e33aa89b3e3ad9a6aa9dc8a1f5a71"},
{file = "jiter-0.6.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:928bf25eb69ddb292ab8177fe69d3fbf76c7feab5fce1c09265a7dccf25d3991"},
{file = "jiter-0.6.1-cp313-none-win32.whl", hash = "sha256:352cd24121e80d3d053fab1cc9806258cad27c53cad99b7a3cac57cf934b12e4"},
{file = "jiter-0.6.1-cp313-none-win_amd64.whl", hash = "sha256:be7503dd6f4bf02c2a9bacb5cc9335bc59132e7eee9d3e931b13d76fd80d7fda"},
{file = "jiter-0.6.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:31d8e00e1fb4c277df8ab6f31a671f509ebc791a80e5c61fdc6bc8696aaa297c"},
{file = "jiter-0.6.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:77c296d65003cd7ee5d7b0965f6acbe6cffaf9d1fa420ea751f60ef24e85fed5"},
{file = "jiter-0.6.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aeeb0c0325ef96c12a48ea7e23e2e86fe4838e6e0a995f464cf4c79fa791ceeb"},
{file = "jiter-0.6.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:a31c6fcbe7d6c25d6f1cc6bb1cba576251d32795d09c09961174fe461a1fb5bd"},
{file = "jiter-0.6.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:59e2b37f3b9401fc9e619f4d4badcab2e8643a721838bcf695c2318a0475ae42"},
{file = "jiter-0.6.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:bae5ae4853cb9644144e9d0755854ce5108d470d31541d83f70ca7ecdc2d1637"},
{file = "jiter-0.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9df588e9c830b72d8db1dd7d0175af6706b0904f682ea9b1ca8b46028e54d6e9"},
{file = "jiter-0.6.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:15f8395e835cf561c85c1adee72d899abf2733d9df72e9798e6d667c9b5c1f30"},
{file = "jiter-0.6.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:5a99d4e0b5fc3b05ea732d67eb2092fe894e95a90e6e413f2ea91387e228a307"},
{file = "jiter-0.6.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:a311df1fa6be0ccd64c12abcd85458383d96e542531bafbfc0a16ff6feda588f"},
{file = "jiter-0.6.1-cp38-none-win32.whl", hash = "sha256:81116a6c272a11347b199f0e16b6bd63f4c9d9b52bc108991397dd80d3c78aba"},
{file = "jiter-0.6.1-cp38-none-win_amd64.whl", hash = "sha256:13f9084e3e871a7c0b6e710db54444088b1dd9fbefa54d449b630d5e73bb95d0"},
{file = "jiter-0.6.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:f1c53615fcfec3b11527c08d19cff6bc870da567ce4e57676c059a3102d3a082"},
{file = "jiter-0.6.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f791b6a4da23238c17a81f44f5b55d08a420c5692c1fda84e301a4b036744eb1"},
{file = "jiter-0.6.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8c97e90fec2da1d5f68ef121444c2c4fa72eabf3240829ad95cf6bbeca42a301"},
{file = "jiter-0.6.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:3cbc1a66b4e41511209e97a2866898733c0110b7245791ac604117b7fb3fedb7"},
{file = "jiter-0.6.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e4e85f9e12cd8418ab10e1fcf0e335ae5bb3da26c4d13a0fd9e6a17a674783b6"},
{file = "jiter-0.6.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:08be33db6dcc374c9cc19d3633af5e47961a7b10d4c61710bd39e48d52a35824"},
{file = "jiter-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:677be9550004f5e010d673d3b2a2b815a8ea07a71484a57d3f85dde7f14cf132"},
{file = "jiter-0.6.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e8bd065be46c2eecc328e419d6557bbc37844c88bb07b7a8d2d6c91c7c4dedc9"},
{file = "jiter-0.6.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:bd95375ce3609ec079a97c5d165afdd25693302c071ca60c7ae1cf826eb32022"},
{file = "jiter-0.6.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:db459ed22d0208940d87f614e1f0ea5a946d29a3cfef71f7e1aab59b6c6b2afb"},
{file = "jiter-0.6.1-cp39-none-win32.whl", hash = "sha256:d71c962f0971347bd552940ab96aa42ceefcd51b88c4ced8a27398182efa8d80"},
{file = "jiter-0.6.1-cp39-none-win_amd64.whl", hash = "sha256:d465db62d2d10b489b7e7a33027c4ae3a64374425d757e963f86df5b5f2e7fc5"},
{file = "jiter-0.6.1.tar.gz", hash = "sha256:e19cd21221fc139fb032e4112986656cb2739e9fe6d84c13956ab30ccc7d4449"},
]
[[package]]
name = "jmespath"
version = "0.10.0"
@@ -4451,13 +4535,13 @@ openai = ["openai (>=0.27.8)"]
[[package]]
name = "langsmith"
version = "0.1.134"
version = "0.1.135"
description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform."
optional = false
python-versions = "<4.0,>=3.8.1"
files = [
{file = "langsmith-0.1.134-py3-none-any.whl", hash = "sha256:ada98ad80ef38807725f32441a472da3dd28394010877751f48f458d3289da04"},
{file = "langsmith-0.1.134.tar.gz", hash = "sha256:23abee3b508875a0e63c602afafffc02442a19cfd88f9daae05b3e9054fd6b61"},
{file = "langsmith-0.1.135-py3-none-any.whl", hash = "sha256:b1d1ca3bad483a4239745c57e9b9157b4d099fbf3149be21e3d112c94ede06ac"},
{file = "langsmith-0.1.135.tar.gz", hash = "sha256:7abed7e141386af99a2177f0b3600b124ae3ad1b482879ba0724ce92ef998a11"},
]
[package.dependencies]
@@ -5678,23 +5762,24 @@ sympy = "*"
[[package]]
name = "openai"
version = "1.29.0"
version = "1.51.2"
description = "The official Python library for the openai API"
optional = false
python-versions = ">=3.7.1"
files = [
{file = "openai-1.29.0-py3-none-any.whl", hash = "sha256:c61cd12376c84362d406341f9e2f9a9d6b81c082b133b44484dc0f43954496b1"},
{file = "openai-1.29.0.tar.gz", hash = "sha256:d5a769f485610cff8bae14343fa45a8b1d346be3d541fa5b28ccd040dbc8baf8"},
{file = "openai-1.51.2-py3-none-any.whl", hash = "sha256:5c5954711cba931423e471c37ff22ae0fd3892be9b083eee36459865fbbb83fa"},
{file = "openai-1.51.2.tar.gz", hash = "sha256:c6a51fac62a1ca9df85a522e462918f6bb6bc51a8897032217e453a0730123a6"},
]
[package.dependencies]
anyio = ">=3.5.0,<5"
distro = ">=1.7.0,<2"
httpx = ">=0.23.0,<1"
jiter = ">=0.4.0,<1"
pydantic = ">=1.9.0,<3"
sniffio = "*"
tqdm = ">4"
typing-extensions = ">=4.7,<5"
typing-extensions = ">=4.11,<5"
[package.extras]
datalib = ["numpy (>=1)", "pandas (>=1.2.3)", "pandas-stubs (>=1.1.0.11)"]
@@ -7049,13 +7134,13 @@ tests = ["coverage[toml] (==5.0.4)", "pytest (>=6.0.0,<7.0.0)"]
[[package]]
name = "pymilvus"
version = "2.4.7"
version = "2.4.8"
description = "Python Sdk for Milvus"
optional = false
python-versions = ">=3.8"
files = [
{file = "pymilvus-2.4.7-py3-none-any.whl", hash = "sha256:1e5d377bd40fa7eb459d3958dbd96201758f5cf997d41eb3d2d169d0b7fa462e"},
{file = "pymilvus-2.4.7.tar.gz", hash = "sha256:9ef460b940782a42e1b7b8ae0da03d8cc02d9d80044d13f4b689a7c935ec7aa7"},
{file = "pymilvus-2.4.8-py3-none-any.whl", hash = "sha256:5824f8ef4ecb14cfd4b205bf976aa52576c3a83c3cd848d21c8f5f9bb99b29e1"},
{file = "pymilvus-2.4.8.tar.gz", hash = "sha256:0ddd18a060635fc8f1d1ab5635d9cc340ef29a97783b73db186df6334fa31ee2"},
]
[package.dependencies]
@@ -7134,13 +7219,13 @@ files = [
[[package]]
name = "pyparsing"
version = "3.1.4"
version = "3.2.0"
description = "pyparsing module - Classes and methods to define and execute parsing grammars"
optional = false
python-versions = ">=3.6.8"
python-versions = ">=3.9"
files = [
{file = "pyparsing-3.1.4-py3-none-any.whl", hash = "sha256:a6a7ee4235a3f944aa1fa2249307708f893fe5717dc603503c6c7969c070fb7c"},
{file = "pyparsing-3.1.4.tar.gz", hash = "sha256:f86ec8d1a83f11977c9a6ea7598e8c27fc5cddfa5b07ea2241edbbde1d7bc032"},
{file = "pyparsing-3.2.0-py3-none-any.whl", hash = "sha256:93d9577b88da0bbea8cc8334ee8b918ed014968fd2ec383e868fb8afb1ccef84"},
{file = "pyparsing-3.2.0.tar.gz", hash = "sha256:cbf74e27246d595d9a74b186b810f6fbb86726dbf3b9532efb343f6d7294fe9c"},
]
[package.extras]
@@ -7496,29 +7581,29 @@ files = [
[[package]]
name = "pywin32"
version = "307"
version = "308"
description = "Python for Window Extensions"
optional = false
python-versions = "*"
files = [
{file = "pywin32-307-cp310-cp310-win32.whl", hash = "sha256:f8f25d893c1e1ce2d685ef6d0a481e87c6f510d0f3f117932781f412e0eba31b"},
{file = "pywin32-307-cp310-cp310-win_amd64.whl", hash = "sha256:36e650c5e5e6b29b5d317385b02d20803ddbac5d1031e1f88d20d76676dd103d"},
{file = "pywin32-307-cp310-cp310-win_arm64.whl", hash = "sha256:0c12d61e0274e0c62acee79e3e503c312426ddd0e8d4899c626cddc1cafe0ff4"},
{file = "pywin32-307-cp311-cp311-win32.whl", hash = "sha256:fec5d27cc893178fab299de911b8e4d12c5954e1baf83e8a664311e56a272b75"},
{file = "pywin32-307-cp311-cp311-win_amd64.whl", hash = "sha256:987a86971753ed7fdd52a7fb5747aba955b2c7fbbc3d8b76ec850358c1cc28c3"},
{file = "pywin32-307-cp311-cp311-win_arm64.whl", hash = "sha256:fd436897c186a2e693cd0437386ed79f989f4d13d6f353f8787ecbb0ae719398"},
{file = "pywin32-307-cp312-cp312-win32.whl", hash = "sha256:07649ec6b01712f36debf39fc94f3d696a46579e852f60157a729ac039df0815"},
{file = "pywin32-307-cp312-cp312-win_amd64.whl", hash = "sha256:00d047992bb5dcf79f8b9b7c81f72e0130f9fe4b22df613f755ab1cc021d8347"},
{file = "pywin32-307-cp312-cp312-win_arm64.whl", hash = "sha256:b53658acbfc6a8241d72cc09e9d1d666be4e6c99376bc59e26cdb6223c4554d2"},
{file = "pywin32-307-cp313-cp313-win32.whl", hash = "sha256:ea4d56e48dc1ab2aa0a5e3c0741ad6e926529510516db7a3b6981a1ae74405e5"},
{file = "pywin32-307-cp313-cp313-win_amd64.whl", hash = "sha256:576d09813eaf4c8168d0bfd66fb7cb3b15a61041cf41598c2db4a4583bf832d2"},
{file = "pywin32-307-cp313-cp313-win_arm64.whl", hash = "sha256:b30c9bdbffda6a260beb2919f918daced23d32c79109412c2085cbc513338a0a"},
{file = "pywin32-307-cp37-cp37m-win32.whl", hash = "sha256:5101472f5180c647d4525a0ed289ec723a26231550dbfd369ec19d5faf60e511"},
{file = "pywin32-307-cp37-cp37m-win_amd64.whl", hash = "sha256:05de55a7c110478dc4b202230e98af5e0720855360d2b31a44bb4e296d795fba"},
{file = "pywin32-307-cp38-cp38-win32.whl", hash = "sha256:13d059fb7f10792542082f5731d5d3d9645320fc38814759313e5ee97c3fac01"},
{file = "pywin32-307-cp38-cp38-win_amd64.whl", hash = "sha256:7e0b2f93769d450a98ac7a31a087e07b126b6d571e8b4386a5762eb85325270b"},
{file = "pywin32-307-cp39-cp39-win32.whl", hash = "sha256:55ee87f2f8c294e72ad9d4261ca423022310a6e79fb314a8ca76ab3f493854c6"},
{file = "pywin32-307-cp39-cp39-win_amd64.whl", hash = "sha256:e9d5202922e74985b037c9ef46778335c102b74b95cec70f629453dbe7235d87"},
{file = "pywin32-308-cp310-cp310-win32.whl", hash = "sha256:796ff4426437896550d2981b9c2ac0ffd75238ad9ea2d3bfa67a1abd546d262e"},
{file = "pywin32-308-cp310-cp310-win_amd64.whl", hash = "sha256:4fc888c59b3c0bef905ce7eb7e2106a07712015ea1c8234b703a088d46110e8e"},
{file = "pywin32-308-cp310-cp310-win_arm64.whl", hash = "sha256:a5ab5381813b40f264fa3495b98af850098f814a25a63589a8e9eb12560f450c"},
{file = "pywin32-308-cp311-cp311-win32.whl", hash = "sha256:5d8c8015b24a7d6855b1550d8e660d8daa09983c80e5daf89a273e5c6fb5095a"},
{file = "pywin32-308-cp311-cp311-win_amd64.whl", hash = "sha256:575621b90f0dc2695fec346b2d6302faebd4f0f45c05ea29404cefe35d89442b"},
{file = "pywin32-308-cp311-cp311-win_arm64.whl", hash = "sha256:100a5442b7332070983c4cd03f2e906a5648a5104b8a7f50175f7906efd16bb6"},
{file = "pywin32-308-cp312-cp312-win32.whl", hash = "sha256:587f3e19696f4bf96fde9d8a57cec74a57021ad5f204c9e627e15c33ff568897"},
{file = "pywin32-308-cp312-cp312-win_amd64.whl", hash = "sha256:00b3e11ef09ede56c6a43c71f2d31857cf7c54b0ab6e78ac659497abd2834f47"},
{file = "pywin32-308-cp312-cp312-win_arm64.whl", hash = "sha256:9b4de86c8d909aed15b7011182c8cab38c8850de36e6afb1f0db22b8959e3091"},
{file = "pywin32-308-cp313-cp313-win32.whl", hash = "sha256:1c44539a37a5b7b21d02ab34e6a4d314e0788f1690d65b48e9b0b89f31abbbed"},
{file = "pywin32-308-cp313-cp313-win_amd64.whl", hash = "sha256:fd380990e792eaf6827fcb7e187b2b4b1cede0585e3d0c9e84201ec27b9905e4"},
{file = "pywin32-308-cp313-cp313-win_arm64.whl", hash = "sha256:ef313c46d4c18dfb82a2431e3051ac8f112ccee1a34f29c263c583c568db63cd"},
{file = "pywin32-308-cp37-cp37m-win32.whl", hash = "sha256:1f696ab352a2ddd63bd07430080dd598e6369152ea13a25ebcdd2f503a38f1ff"},
{file = "pywin32-308-cp37-cp37m-win_amd64.whl", hash = "sha256:13dcb914ed4347019fbec6697a01a0aec61019c1046c2b905410d197856326a6"},
{file = "pywin32-308-cp38-cp38-win32.whl", hash = "sha256:5794e764ebcabf4ff08c555b31bd348c9025929371763b2183172ff4708152f0"},
{file = "pywin32-308-cp38-cp38-win_amd64.whl", hash = "sha256:3b92622e29d651c6b783e368ba7d6722b1634b8e70bd376fd7610fe1992e19de"},
{file = "pywin32-308-cp39-cp39-win32.whl", hash = "sha256:7873ca4dc60ab3287919881a7d4f88baee4a6e639aa6962de25a98ba6b193341"},
{file = "pywin32-308-cp39-cp39-win_amd64.whl", hash = "sha256:71b3322d949b4cc20776436a9c9ba0eeedcbc9c650daa536df63f0ff111bb920"},
]
[[package]]
@@ -8877,13 +8962,13 @@ doc = ["sphinx"]
[[package]]
name = "starlette"
version = "0.38.6"
version = "0.39.2"
description = "The little ASGI library that shines."
optional = false
python-versions = ">=3.8"
files = [
{file = "starlette-0.38.6-py3-none-any.whl", hash = "sha256:4517a1409e2e73ee4951214ba012052b9e16f60e90d73cfb06192c19203bbb05"},
{file = "starlette-0.38.6.tar.gz", hash = "sha256:863a1588f5574e70a821dadefb41e4881ea451a47a3cd1b4df359d4ffefe5ead"},
{file = "starlette-0.39.2-py3-none-any.whl", hash = "sha256:134dd6deb655a9775991d352312d53f1879775e5cc8a481f966e83416a2c3f71"},
{file = "starlette-0.39.2.tar.gz", hash = "sha256:caaa3b87ef8518ef913dac4f073dea44e85f73343ad2bdc17941931835b2a26a"},
]
[package.dependencies]
@@ -9046,13 +9131,13 @@ test = ["pytest", "tornado (>=4.5)", "typeguard"]
[[package]]
name = "tencentcloud-sdk-python-common"
version = "3.0.1247"
version = "3.0.1250"
description = "Tencent Cloud Common SDK for Python"
optional = false
python-versions = "*"
files = [
{file = "tencentcloud-sdk-python-common-3.0.1247.tar.gz", hash = "sha256:1467ac3eaaa5b5d299570ba781903debc4be32dbb3f0f39929a357531ab89170"},
{file = "tencentcloud_sdk_python_common-3.0.1247-py2.py3-none-any.whl", hash = "sha256:9829d2299c85a2494d6d816247345e98abd2f936cd309e1f67847243f5235091"},
{file = "tencentcloud-sdk-python-common-3.0.1250.tar.gz", hash = "sha256:97c15c3f2ffbde60550656eab3e9337d9e0ec8958a533f223c5d5caa2762b6e9"},
{file = "tencentcloud_sdk_python_common-3.0.1250-py2.py3-none-any.whl", hash = "sha256:e369dee2d920ee365a8e2d314d563d243f2e73f5bc6bd2886f96534c9d00c3a7"},
]
[package.dependencies]
@@ -9060,17 +9145,17 @@ requests = ">=2.16.0"
[[package]]
name = "tencentcloud-sdk-python-hunyuan"
version = "3.0.1247"
version = "3.0.1250"
description = "Tencent Cloud Hunyuan SDK for Python"
optional = false
python-versions = "*"
files = [
{file = "tencentcloud-sdk-python-hunyuan-3.0.1247.tar.gz", hash = "sha256:85b7332ec55f891a3b4d776e6b30ee2a44cc08c70b689615805aadff6e424fdd"},
{file = "tencentcloud_sdk_python_hunyuan-3.0.1247-py2.py3-none-any.whl", hash = "sha256:69fdb886616e53ce02e848e5a1a8b36922db731457b07365f230ffb0aa472b5b"},
{file = "tencentcloud-sdk-python-hunyuan-3.0.1250.tar.gz", hash = "sha256:ac95085edee2a95c69326b2fd6a0f61116fc5d214d5c8cf14a1b42bbb262dba8"},
{file = "tencentcloud_sdk_python_hunyuan-3.0.1250-py2.py3-none-any.whl", hash = "sha256:caac95c47348639452a78d39cdcb87257f97cec3b52398e3be97a5b8c4c5e496"},
]
[package.dependencies]
tencentcloud-sdk-python-common = "3.0.1247"
tencentcloud-sdk-python-common = "3.0.1250"
[[package]]
name = "threadpoolctl"
@@ -9102,47 +9187,42 @@ client = ["SQLAlchemy (>=1.4,<3)"]
[[package]]
name = "tiktoken"
version = "0.7.0"
version = "0.8.0"
description = "tiktoken is a fast BPE tokeniser for use with OpenAI's models"
optional = false
python-versions = ">=3.8"
python-versions = ">=3.9"
files = [
{file = "tiktoken-0.7.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:485f3cc6aba7c6b6ce388ba634fbba656d9ee27f766216f45146beb4ac18b25f"},
{file = "tiktoken-0.7.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e54be9a2cd2f6d6ffa3517b064983fb695c9a9d8aa7d574d1ef3c3f931a99225"},
{file = "tiktoken-0.7.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79383a6e2c654c6040e5f8506f3750db9ddd71b550c724e673203b4f6b4b4590"},
{file = "tiktoken-0.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d4511c52caacf3c4981d1ae2df85908bd31853f33d30b345c8b6830763f769c"},
{file = "tiktoken-0.7.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:13c94efacdd3de9aff824a788353aa5749c0faee1fbe3816df365ea450b82311"},
{file = "tiktoken-0.7.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:8e58c7eb29d2ab35a7a8929cbeea60216a4ccdf42efa8974d8e176d50c9a3df5"},
{file = "tiktoken-0.7.0-cp310-cp310-win_amd64.whl", hash = "sha256:21a20c3bd1dd3e55b91c1331bf25f4af522c525e771691adbc9a69336fa7f702"},
{file = "tiktoken-0.7.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:10c7674f81e6e350fcbed7c09a65bca9356eaab27fb2dac65a1e440f2bcfe30f"},
{file = "tiktoken-0.7.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:084cec29713bc9d4189a937f8a35dbdfa785bd1235a34c1124fe2323821ee93f"},
{file = "tiktoken-0.7.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:811229fde1652fedcca7c6dfe76724d0908775b353556d8a71ed74d866f73f7b"},
{file = "tiktoken-0.7.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:86b6e7dc2e7ad1b3757e8a24597415bafcfb454cebf9a33a01f2e6ba2e663992"},
{file = "tiktoken-0.7.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:1063c5748be36344c7e18c7913c53e2cca116764c2080177e57d62c7ad4576d1"},
{file = "tiktoken-0.7.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:20295d21419bfcca092644f7e2f2138ff947a6eb8cfc732c09cc7d76988d4a89"},
{file = "tiktoken-0.7.0-cp311-cp311-win_amd64.whl", hash = "sha256:959d993749b083acc57a317cbc643fb85c014d055b2119b739487288f4e5d1cb"},
{file = "tiktoken-0.7.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:71c55d066388c55a9c00f61d2c456a6086673ab7dec22dd739c23f77195b1908"},
{file = "tiktoken-0.7.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:09ed925bccaa8043e34c519fbb2f99110bd07c6fd67714793c21ac298e449410"},
{file = "tiktoken-0.7.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:03c6c40ff1db0f48a7b4d2dafeae73a5607aacb472fa11f125e7baf9dce73704"},
{file = "tiktoken-0.7.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d20b5c6af30e621b4aca094ee61777a44118f52d886dbe4f02b70dfe05c15350"},
{file = "tiktoken-0.7.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:d427614c3e074004efa2f2411e16c826f9df427d3c70a54725cae860f09e4bf4"},
{file = "tiktoken-0.7.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:8c46d7af7b8c6987fac9b9f61041b452afe92eb087d29c9ce54951280f899a97"},
{file = "tiktoken-0.7.0-cp312-cp312-win_amd64.whl", hash = "sha256:0bc603c30b9e371e7c4c7935aba02af5994a909fc3c0fe66e7004070858d3f8f"},
{file = "tiktoken-0.7.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:2398fecd38c921bcd68418675a6d155fad5f5e14c2e92fcf5fe566fa5485a858"},
{file = "tiktoken-0.7.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:8f5f6afb52fb8a7ea1c811e435e4188f2bef81b5e0f7a8635cc79b0eef0193d6"},
{file = "tiktoken-0.7.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:861f9ee616766d736be4147abac500732b505bf7013cfaf019b85892637f235e"},
{file = "tiktoken-0.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:54031f95c6939f6b78122c0aa03a93273a96365103793a22e1793ee86da31685"},
{file = "tiktoken-0.7.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:fffdcb319b614cf14f04d02a52e26b1d1ae14a570f90e9b55461a72672f7b13d"},
{file = "tiktoken-0.7.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:c72baaeaefa03ff9ba9688624143c858d1f6b755bb85d456d59e529e17234769"},
{file = "tiktoken-0.7.0-cp38-cp38-win_amd64.whl", hash = "sha256:131b8aeb043a8f112aad9f46011dced25d62629091e51d9dc1adbf4a1cc6aa98"},
{file = "tiktoken-0.7.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cabc6dc77460df44ec5b879e68692c63551ae4fae7460dd4ff17181df75f1db7"},
{file = "tiktoken-0.7.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:8d57f29171255f74c0aeacd0651e29aa47dff6f070cb9f35ebc14c82278f3b25"},
{file = "tiktoken-0.7.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2ee92776fdbb3efa02a83f968c19d4997a55c8e9ce7be821ceee04a1d1ee149c"},
{file = "tiktoken-0.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e215292e99cb41fbc96988ef62ea63bb0ce1e15f2c147a61acc319f8b4cbe5bf"},
{file = "tiktoken-0.7.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:8a81bac94769cab437dd3ab0b8a4bc4e0f9cf6835bcaa88de71f39af1791727a"},
{file = "tiktoken-0.7.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:d6d73ea93e91d5ca771256dfc9d1d29f5a554b83821a1dc0891987636e0ae226"},
{file = "tiktoken-0.7.0-cp39-cp39-win_amd64.whl", hash = "sha256:2bcb28ddf79ffa424f171dfeef9a4daff61a94c631ca6813f43967cb263b83b9"},
{file = "tiktoken-0.7.0.tar.gz", hash = "sha256:1077266e949c24e0291f6c350433c6f0971365ece2b173a23bc3b9f9defef6b6"},
{file = "tiktoken-0.8.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:b07e33283463089c81ef1467180e3e00ab00d46c2c4bbcef0acab5f771d6695e"},
{file = "tiktoken-0.8.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9269348cb650726f44dd3bbb3f9110ac19a8dcc8f54949ad3ef652ca22a38e21"},
{file = "tiktoken-0.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:25e13f37bc4ef2d012731e93e0fef21dc3b7aea5bb9009618de9a4026844e560"},
{file = "tiktoken-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f13d13c981511331eac0d01a59b5df7c0d4060a8be1e378672822213da51e0a2"},
{file = "tiktoken-0.8.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:6b2ddbc79a22621ce8b1166afa9f9a888a664a579350dc7c09346a3b5de837d9"},
{file = "tiktoken-0.8.0-cp310-cp310-win_amd64.whl", hash = "sha256:d8c2d0e5ba6453a290b86cd65fc51fedf247e1ba170191715b049dac1f628005"},
{file = "tiktoken-0.8.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:d622d8011e6d6f239297efa42a2657043aaed06c4f68833550cac9e9bc723ef1"},
{file = "tiktoken-0.8.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2efaf6199717b4485031b4d6edb94075e4d79177a172f38dd934d911b588d54a"},
{file = "tiktoken-0.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5637e425ce1fc49cf716d88df3092048359a4b3bbb7da762840426e937ada06d"},
{file = "tiktoken-0.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9fb0e352d1dbe15aba082883058b3cce9e48d33101bdaac1eccf66424feb5b47"},
{file = "tiktoken-0.8.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:56edfefe896c8f10aba372ab5706b9e3558e78db39dd497c940b47bf228bc419"},
{file = "tiktoken-0.8.0-cp311-cp311-win_amd64.whl", hash = "sha256:326624128590def898775b722ccc327e90b073714227175ea8febbc920ac0a99"},
{file = "tiktoken-0.8.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:881839cfeae051b3628d9823b2e56b5cc93a9e2efb435f4cf15f17dc45f21586"},
{file = "tiktoken-0.8.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:fe9399bdc3f29d428f16a2f86c3c8ec20be3eac5f53693ce4980371c3245729b"},
{file = "tiktoken-0.8.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9a58deb7075d5b69237a3ff4bb51a726670419db6ea62bdcd8bd80c78497d7ab"},
{file = "tiktoken-0.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2908c0d043a7d03ebd80347266b0e58440bdef5564f84f4d29fb235b5df3b04"},
{file = "tiktoken-0.8.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:294440d21a2a51e12d4238e68a5972095534fe9878be57d905c476017bff99fc"},
{file = "tiktoken-0.8.0-cp312-cp312-win_amd64.whl", hash = "sha256:d8f3192733ac4d77977432947d563d7e1b310b96497acd3c196c9bddb36ed9db"},
{file = "tiktoken-0.8.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:02be1666096aff7da6cbd7cdaa8e7917bfed3467cd64b38b1f112e96d3b06a24"},
{file = "tiktoken-0.8.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:c94ff53c5c74b535b2cbf431d907fc13c678bbd009ee633a2aca269a04389f9a"},
{file = "tiktoken-0.8.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b231f5e8982c245ee3065cd84a4712d64692348bc609d84467c57b4b72dcbc5"},
{file = "tiktoken-0.8.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4177faa809bd55f699e88c96d9bb4635d22e3f59d635ba6fd9ffedf7150b9953"},
{file = "tiktoken-0.8.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:5376b6f8dc4753cd81ead935c5f518fa0fbe7e133d9e25f648d8c4dabdd4bad7"},
{file = "tiktoken-0.8.0-cp313-cp313-win_amd64.whl", hash = "sha256:18228d624807d66c87acd8f25fc135665617cab220671eb65b50f5d70fa51f69"},
{file = "tiktoken-0.8.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:7e17807445f0cf1f25771c9d86496bd8b5c376f7419912519699f3cc4dc5c12e"},
{file = "tiktoken-0.8.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:886f80bd339578bbdba6ed6d0567a0d5c6cfe198d9e587ba6c447654c65b8edc"},
{file = "tiktoken-0.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6adc8323016d7758d6de7313527f755b0fc6c72985b7d9291be5d96d73ecd1e1"},
{file = "tiktoken-0.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b591fb2b30d6a72121a80be24ec7a0e9eb51c5500ddc7e4c2496516dd5e3816b"},
{file = "tiktoken-0.8.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:845287b9798e476b4d762c3ebda5102be87ca26e5d2c9854002825d60cdb815d"},
{file = "tiktoken-0.8.0-cp39-cp39-win_amd64.whl", hash = "sha256:1473cfe584252dc3fa62adceb5b1c763c1874e04511b197da4e6de51d6ce5a02"},
{file = "tiktoken-0.8.0.tar.gz", hash = "sha256:9ccbb2740f24542534369c5635cfd9b2b3c2490754a78ac8831d99f89f94eeb2"},
]
[package.dependencies]
@@ -9748,47 +9828,54 @@ standard = ["colorama (>=0.4)", "httptools (>=0.5.0)", "python-dotenv (>=0.13)",
[[package]]
name = "uvloop"
version = "0.20.0"
version = "0.21.0"
description = "Fast implementation of asyncio event loop on top of libuv"
optional = false
python-versions = ">=3.8.0"
files = [
{file = "uvloop-0.20.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:9ebafa0b96c62881d5cafa02d9da2e44c23f9f0cd829f3a32a6aff771449c996"},
{file = "uvloop-0.20.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:35968fc697b0527a06e134999eef859b4034b37aebca537daeb598b9d45a137b"},
{file = "uvloop-0.20.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b16696f10e59d7580979b420eedf6650010a4a9c3bd8113f24a103dfdb770b10"},
{file = "uvloop-0.20.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9b04d96188d365151d1af41fa2d23257b674e7ead68cfd61c725a422764062ae"},
{file = "uvloop-0.20.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:94707205efbe809dfa3a0d09c08bef1352f5d3d6612a506f10a319933757c006"},
{file = "uvloop-0.20.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:89e8d33bb88d7263f74dc57d69f0063e06b5a5ce50bb9a6b32f5fcbe655f9e73"},
{file = "uvloop-0.20.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:e50289c101495e0d1bb0bfcb4a60adde56e32f4449a67216a1ab2750aa84f037"},
{file = "uvloop-0.20.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:e237f9c1e8a00e7d9ddaa288e535dc337a39bcbf679f290aee9d26df9e72bce9"},
{file = "uvloop-0.20.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:746242cd703dc2b37f9d8b9f173749c15e9a918ddb021575a0205ec29a38d31e"},
{file = "uvloop-0.20.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:82edbfd3df39fb3d108fc079ebc461330f7c2e33dbd002d146bf7c445ba6e756"},
{file = "uvloop-0.20.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:80dc1b139516be2077b3e57ce1cb65bfed09149e1d175e0478e7a987863b68f0"},
{file = "uvloop-0.20.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:4f44af67bf39af25db4c1ac27e82e9665717f9c26af2369c404be865c8818dcf"},
{file = "uvloop-0.20.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:4b75f2950ddb6feed85336412b9a0c310a2edbcf4cf931aa5cfe29034829676d"},
{file = "uvloop-0.20.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:77fbc69c287596880ecec2d4c7a62346bef08b6209749bf6ce8c22bbaca0239e"},
{file = "uvloop-0.20.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6462c95f48e2d8d4c993a2950cd3d31ab061864d1c226bbf0ee2f1a8f36674b9"},
{file = "uvloop-0.20.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:649c33034979273fa71aa25d0fe120ad1777c551d8c4cd2c0c9851d88fcb13ab"},
{file = "uvloop-0.20.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:3a609780e942d43a275a617c0839d85f95c334bad29c4c0918252085113285b5"},
{file = "uvloop-0.20.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:aea15c78e0d9ad6555ed201344ae36db5c63d428818b4b2a42842b3870127c00"},
{file = "uvloop-0.20.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:f0e94b221295b5e69de57a1bd4aeb0b3a29f61be6e1b478bb8a69a73377db7ba"},
{file = "uvloop-0.20.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:fee6044b64c965c425b65a4e17719953b96e065c5b7e09b599ff332bb2744bdf"},
{file = "uvloop-0.20.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:265a99a2ff41a0fd56c19c3838b29bf54d1d177964c300dad388b27e84fd7847"},
{file = "uvloop-0.20.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b10c2956efcecb981bf9cfb8184d27d5d64b9033f917115a960b83f11bfa0d6b"},
{file = "uvloop-0.20.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:e7d61fe8e8d9335fac1bf8d5d82820b4808dd7a43020c149b63a1ada953d48a6"},
{file = "uvloop-0.20.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:2beee18efd33fa6fdb0976e18475a4042cd31c7433c866e8a09ab604c7c22ff2"},
{file = "uvloop-0.20.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:d8c36fdf3e02cec92aed2d44f63565ad1522a499c654f07935c8f9d04db69e95"},
{file = "uvloop-0.20.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a0fac7be202596c7126146660725157d4813aa29a4cc990fe51346f75ff8fde7"},
{file = "uvloop-0.20.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9d0fba61846f294bce41eb44d60d58136090ea2b5b99efd21cbdf4e21927c56a"},
{file = "uvloop-0.20.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95720bae002ac357202e0d866128eb1ac82545bcf0b549b9abe91b5178d9b541"},
{file = "uvloop-0.20.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:36c530d8fa03bfa7085af54a48f2ca16ab74df3ec7108a46ba82fd8b411a2315"},
{file = "uvloop-0.20.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:e97152983442b499d7a71e44f29baa75b3b02e65d9c44ba53b10338e98dedb66"},
{file = "uvloop-0.20.0.tar.gz", hash = "sha256:4603ca714a754fc8d9b197e325db25b2ea045385e8a3ad05d3463de725fdf469"},
{file = "uvloop-0.21.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:ec7e6b09a6fdded42403182ab6b832b71f4edaf7f37a9a0e371a01db5f0cb45f"},
{file = "uvloop-0.21.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:196274f2adb9689a289ad7d65700d37df0c0930fd8e4e743fa4834e850d7719d"},
{file = "uvloop-0.21.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f38b2e090258d051d68a5b14d1da7203a3c3677321cf32a95a6f4db4dd8b6f26"},
{file = "uvloop-0.21.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:87c43e0f13022b998eb9b973b5e97200c8b90823454d4bc06ab33829e09fb9bb"},
{file = "uvloop-0.21.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:10d66943def5fcb6e7b37310eb6b5639fd2ccbc38df1177262b0640c3ca68c1f"},
{file = "uvloop-0.21.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:67dd654b8ca23aed0a8e99010b4c34aca62f4b7fce88f39d452ed7622c94845c"},
{file = "uvloop-0.21.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:c0f3fa6200b3108919f8bdabb9a7f87f20e7097ea3c543754cabc7d717d95cf8"},
{file = "uvloop-0.21.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0878c2640cf341b269b7e128b1a5fed890adc4455513ca710d77d5e93aa6d6a0"},
{file = "uvloop-0.21.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b9fb766bb57b7388745d8bcc53a359b116b8a04c83a2288069809d2b3466c37e"},
{file = "uvloop-0.21.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8a375441696e2eda1c43c44ccb66e04d61ceeffcd76e4929e527b7fa401b90fb"},
{file = "uvloop-0.21.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:baa0e6291d91649c6ba4ed4b2f982f9fa165b5bbd50a9e203c416a2797bab3c6"},
{file = "uvloop-0.21.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:4509360fcc4c3bd2c70d87573ad472de40c13387f5fda8cb58350a1d7475e58d"},
{file = "uvloop-0.21.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:359ec2c888397b9e592a889c4d72ba3d6befba8b2bb01743f72fffbde663b59c"},
{file = "uvloop-0.21.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:f7089d2dc73179ce5ac255bdf37c236a9f914b264825fdaacaded6990a7fb4c2"},
{file = "uvloop-0.21.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:baa4dcdbd9ae0a372f2167a207cd98c9f9a1ea1188a8a526431eef2f8116cc8d"},
{file = "uvloop-0.21.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:86975dca1c773a2c9864f4c52c5a55631038e387b47eaf56210f873887b6c8dc"},
{file = "uvloop-0.21.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:461d9ae6660fbbafedd07559c6a2e57cd553b34b0065b6550685f6653a98c1cb"},
{file = "uvloop-0.21.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:183aef7c8730e54c9a3ee3227464daed66e37ba13040bb3f350bc2ddc040f22f"},
{file = "uvloop-0.21.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:bfd55dfcc2a512316e65f16e503e9e450cab148ef11df4e4e679b5e8253a5281"},
{file = "uvloop-0.21.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:787ae31ad8a2856fc4e7c095341cccc7209bd657d0e71ad0dc2ea83c4a6fa8af"},
{file = "uvloop-0.21.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5ee4d4ef48036ff6e5cfffb09dd192c7a5027153948d85b8da7ff705065bacc6"},
{file = "uvloop-0.21.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3df876acd7ec037a3d005b3ab85a7e4110422e4d9c1571d4fc89b0fc41b6816"},
{file = "uvloop-0.21.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:bd53ecc9a0f3d87ab847503c2e1552b690362e005ab54e8a48ba97da3924c0dc"},
{file = "uvloop-0.21.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:a5c39f217ab3c663dc699c04cbd50c13813e31d917642d459fdcec07555cc553"},
{file = "uvloop-0.21.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:17df489689befc72c39a08359efac29bbee8eee5209650d4b9f34df73d22e414"},
{file = "uvloop-0.21.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:bc09f0ff191e61c2d592a752423c767b4ebb2986daa9ed62908e2b1b9a9ae206"},
{file = "uvloop-0.21.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f0ce1b49560b1d2d8a2977e3ba4afb2414fb46b86a1b64056bc4ab929efdafbe"},
{file = "uvloop-0.21.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e678ad6fe52af2c58d2ae3c73dc85524ba8abe637f134bf3564ed07f555c5e79"},
{file = "uvloop-0.21.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:460def4412e473896ef179a1671b40c039c7012184b627898eea5072ef6f017a"},
{file = "uvloop-0.21.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:10da8046cc4a8f12c91a1c39d1dd1585c41162a15caaef165c2174db9ef18bdc"},
{file = "uvloop-0.21.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c097078b8031190c934ed0ebfee8cc5f9ba9642e6eb88322b9958b649750f72b"},
{file = "uvloop-0.21.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:46923b0b5ee7fc0020bef24afe7836cb068f5050ca04caf6b487c513dc1a20b2"},
{file = "uvloop-0.21.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:53e420a3afe22cdcf2a0f4846e377d16e718bc70103d7088a4f7623567ba5fb0"},
{file = "uvloop-0.21.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:88cb67cdbc0e483da00af0b2c3cdad4b7c61ceb1ee0f33fe00e09c81e3a6cb75"},
{file = "uvloop-0.21.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:221f4f2a1f46032b403bf3be628011caf75428ee3cc204a22addf96f586b19fd"},
{file = "uvloop-0.21.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:2d1f581393673ce119355d56da84fe1dd9d2bb8b3d13ce792524e1607139feff"},
{file = "uvloop-0.21.0.tar.gz", hash = "sha256:3bf12b0fda68447806a7ad847bfa591613177275d35b6724b1ee573faa3704e3"},
]
[package.extras]
dev = ["Cython (>=3.0,<4.0)", "setuptools (>=60)"]
docs = ["Sphinx (>=4.1.2,<4.2.0)", "sphinx-rtd-theme (>=0.5.2,<0.6.0)", "sphinxcontrib-asyncio (>=0.3.0,<0.4.0)"]
test = ["Cython (>=0.29.36,<0.30.0)", "aiohttp (==3.9.0b0)", "aiohttp (>=3.8.1)", "flake8 (>=5.0,<6.0)", "mypy (>=0.800)", "psutil", "pyOpenSSL (>=23.0.0,<23.1.0)", "pycodestyle (>=2.9.0,<2.10.0)"]
test = ["aiohttp (>=3.10.5)", "flake8 (>=5.0,<6.0)", "mypy (>=0.800)", "psutil", "pyOpenSSL (>=23.0.0,<23.1.0)", "pycodestyle (>=2.9.0,<2.10.0)"]
[[package]]
name = "validators"
@@ -10697,4 +10784,4 @@ cffi = ["cffi (>=1.11)"]
[metadata]
lock-version = "2.0"
python-versions = ">=3.10,<3.13"
content-hash = "75a7e7eab36b9386c11a3e9808da28102ad20a43a0e8ae08c37594ecf50da02b"
content-hash = "51f048197baebf9ffdc393e5990b9a90185bc5ff515b8b5d2d9b72de900cf6e2"

View File

@@ -86,10 +86,19 @@ ignore = [
]
"tests/*" = [
"F811", # redefined-while-unused
"F401", # unused-import
"PT001", # missing-function-docstring
"PT004", # missing-parameter-docstring
]
"core/rag/extractor/word_extractor.py" = [
"RUF100", # Unused `noqa` directive
]
"core/tools/provider/builtin/gitlab/tools/gitlab_commits.py" = [
"PLR1714", # Consider merging multiple comparisons
]
[tool.ruff.lint.pyflakes]
allowed-unused-imports=[
extend-generics=[
"_pytest.monkeypatch",
"tests.integration_tests",
]
@@ -149,7 +158,7 @@ nomic = "~3.1.2"
novita-client = "~0.5.7"
numpy = "~1.26.4"
oci = "~2.135.1"
openai = "~1.29.0"
openai = "~1.51.2"
openpyxl = "~3.1.5"
pandas = { version = "~2.2.2", extras = ["performance", "excel"] }
psycopg2-binary = "~2.9.6"
@@ -172,7 +181,7 @@ scikit-learn = "~1.5.1"
sentry-sdk = { version = "~1.44.1", extras = ["flask"] }
sqlalchemy = "~2.0.29"
tencentcloud-sdk-python-hunyuan = "~3.0.1158"
tiktoken = "~0.7.0"
tiktoken = "~0.8.0"
tokenizers = "~0.15.0"
transformers = "~4.35.0"
unstructured = { version = "~0.10.27", extras = ["docx", "epub", "md", "msg", "ppt", "pptx"] }

View File

@@ -1,15 +1,25 @@
from services.auth.firecrawl import FirecrawlAuth
from services.auth.jina import JinaAuth
from services.auth.api_key_auth_base import ApiKeyAuthBase
from services.auth.auth_type import AuthType
class ApiKeyAuthFactory:
def __init__(self, provider: str, credentials: dict):
if provider == "firecrawl":
self.auth = FirecrawlAuth(credentials)
elif provider == "jinareader":
self.auth = JinaAuth(credentials)
else:
raise ValueError("Invalid provider")
auth_factory = self.get_apikey_auth_factory(provider)
self.auth = auth_factory(credentials)
def validate_credentials(self):
return self.auth.validate_credentials()
@staticmethod
def get_apikey_auth_factory(provider: str) -> type[ApiKeyAuthBase]:
match provider:
case AuthType.FIRECRAWL:
from services.auth.firecrawl.firecrawl import FirecrawlAuth
return FirecrawlAuth
case AuthType.JINA:
from services.auth.jina.jina import JinaAuth
return JinaAuth
case _:
raise ValueError("Invalid provider")

View File

@@ -0,0 +1,6 @@
from enum import Enum
class AuthType(str, Enum):
FIRECRAWL = "firecrawl"
JINA = "jinareader"

View File

View File

View File

@@ -41,6 +41,8 @@ class MockModerationClass:
"sexual/minors": False,
"violence": False,
"violence/graphic": False,
"illicit": False,
"illicit/violent": False,
}
moderation_categories_scores = {
"harassment": 1.0,
@@ -54,13 +56,30 @@ class MockModerationClass:
"sexual/minors": 1.0,
"violence": 1.0,
"violence/graphic": 1.0,
"illicit": 1.0,
"illicit/violent": 1.0,
}
category_applied_input_types = {
"sexual": ["text", "image"],
"hate": ["text"],
"harassment": ["text"],
"self-harm": ["text", "image"],
"sexual/minors": ["text"],
"hate/threatening": ["text"],
"violence/graphic": ["text", "image"],
"self-harm/intent": ["text", "image"],
"self-harm/instructions": ["text", "image"],
"harassment/threatening": ["text"],
"violence": ["text", "image"],
"illicit": ["text"],
"illicit/violent": ["text"],
}
result.append(
Moderation(
flagged=True,
categories=Categories(**moderation_categories),
category_scores=CategoryScores(**moderation_categories_scores),
category_applied_input_types=category_applied_input_types,
)
)
else:
@@ -76,6 +95,8 @@ class MockModerationClass:
"sexual/minors": False,
"violence": False,
"violence/graphic": False,
"illicit": False,
"illicit/violent": False,
}
moderation_categories_scores = {
"harassment": 0.0,
@@ -89,12 +110,30 @@ class MockModerationClass:
"sexual/minors": 0.0,
"violence": 0.0,
"violence/graphic": 0.0,
"illicit": 0.0,
"illicit/violent": 0.0,
}
category_applied_input_types = {
"sexual": ["text", "image"],
"hate": ["text"],
"harassment": ["text"],
"self-harm": ["text", "image"],
"sexual/minors": ["text"],
"hate/threatening": ["text"],
"violence/graphic": ["text", "image"],
"self-harm/intent": ["text", "image"],
"self-harm/instructions": ["text", "image"],
"harassment/threatening": ["text"],
"violence": ["text", "image"],
"illicit": ["text"],
"illicit/violent": ["text"],
}
result.append(
Moderation(
flagged=False,
categories=Categories(**moderation_categories),
category_scores=CategoryScores(**moderation_categories_scores),
category_applied_input_types=category_applied_input_types,
)
)

View File

@@ -1,4 +1,5 @@
import os
from unittest.mock import MagicMock
import pytest
from _pytest.monkeypatch import MonkeyPatch
@@ -10,26 +11,31 @@ from pymochow.model.table import Table
from requests.adapters import HTTPAdapter
class AttrDict(dict):
def __getattr__(self, item):
return self.get(item)
class MockBaiduVectorDBClass:
def mock_vector_db_client(
self,
config=None,
adapter: HTTPAdapter = None,
):
self._conn = None
self._config = None
self.conn = MagicMock()
self._config = MagicMock()
def list_databases(self, config=None) -> list[Database]:
return [
Database(
conn=self._conn,
conn=self.conn,
database_name="dify",
config=self._config,
)
]
def create_database(self, database_name: str, config=None) -> Database:
return Database(conn=self._conn, database_name=database_name, config=config)
return Database(conn=self.conn, database_name=database_name, config=config)
def list_table(self, config=None) -> list[Table]:
return []
@@ -88,16 +94,18 @@ class MockBaiduVectorDBClass:
read_consistency=ReadConsistency.EVENTUAL,
config=None,
):
return {
"row": {
"id": "doc_id_001",
"vector": [0.23432432, 0.8923744, 0.89238432],
"text": "text",
"metadata": {"doc_id": "doc_id_001"},
},
"code": 0,
"msg": "Success",
}
return AttrDict(
{
"row": {
"id": primary_key.get("id"),
"vector": [0.23432432, 0.8923744, 0.89238432],
"text": "text",
"metadata": '{"doc_id": "doc_id_001"}',
},
"code": 0,
"msg": "Success",
}
)
def delete(self, primary_key=None, partition_key=None, filter=None, config=None):
return {"code": 0, "msg": "Success"}
@@ -111,22 +119,24 @@ class MockBaiduVectorDBClass:
read_consistency=ReadConsistency.EVENTUAL,
config=None,
):
return {
"rows": [
{
"row": {
"id": "doc_id_001",
"vector": [0.23432432, 0.8923744, 0.89238432],
"text": "text",
"metadata": {"doc_id": "doc_id_001"},
},
"distance": 0.1,
"score": 0.5,
}
],
"code": 0,
"msg": "Success",
}
return AttrDict(
{
"rows": [
{
"row": {
"id": "doc_id_001",
"vector": [0.23432432, 0.8923744, 0.89238432],
"text": "text",
"metadata": '{"doc_id": "doc_id_001"}',
},
"distance": 0.1,
"score": 0.5,
}
],
"code": 0,
"msg": "Success",
}
)
MOCK = os.getenv("MOCK_SWITCH", "false").lower() == "true"
@@ -146,6 +156,7 @@ def setup_baiduvectordb_mock(request, monkeypatch: MonkeyPatch):
monkeypatch.setattr(Table, "rebuild_index", MockBaiduVectorDBClass.rebuild_index)
monkeypatch.setattr(Table, "describe_index", MockBaiduVectorDBClass.describe_index)
monkeypatch.setattr(Table, "delete", MockBaiduVectorDBClass.delete)
monkeypatch.setattr(Table, "query", MockBaiduVectorDBClass.query)
monkeypatch.setattr(Table, "search", MockBaiduVectorDBClass.search)
yield

View File

@@ -4,9 +4,6 @@ from core.rag.datasource.vdb.baidu.baidu_vector import BaiduConfig, BaiduVector
from tests.integration_tests.vdb.__mock.baiduvectordb import setup_baiduvectordb_mock
from tests.integration_tests.vdb.test_vector_store import AbstractVectorTest, get_example_text, setup_mock_redis
mock_client = MagicMock()
mock_client.list_databases.return_value = [{"name": "test"}]
class BaiduVectorTest(AbstractVectorTest):
def __init__(self):

View File

@@ -8,4 +8,5 @@ pytest api/tests/integration_tests/vdb/chroma \
api/tests/integration_tests/vdb/qdrant \
api/tests/integration_tests/vdb/weaviate \
api/tests/integration_tests/vdb/elasticsearch \
api/tests/integration_tests/vdb/vikingdb
api/tests/integration_tests/vdb/vikingdb \
api/tests/integration_tests/vdb/baidu

View File

@@ -58,7 +58,7 @@ DEBUG=false
# which is convenient for debugging.
FLASK_DEBUG=false
# A secretkey that is used for securely signing the session cookie
# A secretkey that is used for securely signing the session cookie
# and encrypting sensitive information on the database.
# You can generate a strong key using `openssl rand -base64 42`.
SECRET_KEY=sk-9f73s3ljTXVcMT3Blb3ljTqtsKiGHXVcMT3BlbkFJLK7U
@@ -366,8 +366,8 @@ SUPABASE_URL=your-server-url
# Vector Database Configuration
# ------------------------------
# The type of vector store to use.
# Supported values are `weaviate`, `qdrant`, `milvus`, `myscale`, `relyt`, `pgvector`, `pgvecto-rs`, ``chroma`, `opensearch`, `tidb_vector`, `oracle`, `tencent`, `elasticsearch`, `analyticdb`.
# The type of vector store to use.
# Supported values are `weaviate`, `qdrant`, `milvus`, `myscale`, `relyt`, `pgvector`, `pgvecto-rs`, `chroma`, `opensearch`, `tidb_vector`, `oracle`, `tencent`, `elasticsearch`, `analyticdb`, `vikingdb`.
VECTOR_STORE=weaviate
# The Weaviate endpoint URL. Only available when VECTOR_STORE is `weaviate`.
@@ -492,6 +492,15 @@ BAIDU_VECTOR_DB_DATABASE=dify
BAIDU_VECTOR_DB_SHARD=1
BAIDU_VECTOR_DB_REPLICAS=3
# VikingDB configurations, only available when VECTOR_STORE is `vikingdb`
VIKINGDB_ACCESS_KEY=your-ak
VIKINGDB_SECRET_KEY=your-sk
VIKINGDB_REGION=cn-shanghai
VIKINGDB_HOST=api-vikingdb.xxx.volces.com
VIKINGDB_SCHEMA=http
VIKINGDB_CONNECTION_TIMEOUT=30
VIKINGDB_SOCKET_TIMEOUT=30
# ------------------------------
# Knowledge Configuration
# ------------------------------
@@ -668,7 +677,7 @@ SANDBOX_PORT=8194
# Environment Variables for weaviate Service
# (only used when VECTOR_STORE is weaviate)
# ------------------------------
WEAVIATE_PERSISTENCE_DATA_PATH='/var/lib/weaviate'
WEAVIATE_PERSISTENCE_DATA_PATH=/var/lib/weaviate
WEAVIATE_QUERY_DEFAULTS_LIMIT=25
WEAVIATE_AUTHENTICATION_ANONYMOUS_ACCESS_ENABLED=true
WEAVIATE_DEFAULT_VECTORIZER_MODULE=none
@@ -829,4 +838,4 @@ POSITION_PROVIDER_PINS=
POSITION_PROVIDER_INCLUDES=
POSITION_PROVIDER_EXCLUDES=
# CSP https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
CSP_WHITELIST=
CSP_WHITELIST=

View File

@@ -1 +1 @@
from dify_client.client import ChatClient, CompletionClient, DifyClient
from dify_client.client import ChatClient, CompletionClient, DifyClient

View File

@@ -9,10 +9,15 @@ class DifyClient:
self.base_url = base_url
def _send_request(self, method, endpoint, json=None, params=None, stream=False):
headers = {"Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json"}
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json",
}
url = f"{self.base_url}{endpoint}"
response = requests.request(method, url, json=json, params=params, headers=headers, stream=stream)
response = requests.request(
method, url, json=json, params=params, headers=headers, stream=stream
)
return response
@@ -20,7 +25,9 @@ class DifyClient:
headers = {"Authorization": f"Bearer {self.api_key}"}
url = f"{self.base_url}{endpoint}"
response = requests.request(method, url, data=data, headers=headers, files=files)
response = requests.request(
method, url, data=data, headers=headers, files=files
)
return response
@@ -34,7 +41,9 @@ class DifyClient:
def file_upload(self, user, files):
data = {"user": user}
return self._send_request_with_files("POST", "/files/upload", data=data, files=files)
return self._send_request_with_files(
"POST", "/files/upload", data=data, files=files
)
def text_to_audio(self, text: str, user: str, streaming: bool = False):
data = {"text": text, "user": user, "streaming": streaming}
@@ -47,25 +56,52 @@ class DifyClient:
class CompletionClient(DifyClient):
def create_completion_message(self, inputs, response_mode, user, files=None):
data = {"inputs": inputs, "response_mode": response_mode, "user": user, "files": files}
data = {
"inputs": inputs,
"response_mode": response_mode,
"user": user,
"files": files,
}
return self._send_request(
"POST", "/completion-messages", data, stream=True if response_mode == "streaming" else False
"POST",
"/completion-messages",
data,
stream=True if response_mode == "streaming" else False,
)
class ChatClient(DifyClient):
def create_chat_message(self, inputs, query, user, response_mode="blocking", conversation_id=None, files=None):
data = {"inputs": inputs, "query": query, "user": user, "response_mode": response_mode, "files": files}
def create_chat_message(
self,
inputs,
query,
user,
response_mode="blocking",
conversation_id=None,
files=None,
):
data = {
"inputs": inputs,
"query": query,
"user": user,
"response_mode": response_mode,
"files": files,
}
if conversation_id:
data["conversation_id"] = conversation_id
return self._send_request(
"POST", "/chat-messages", data, stream=True if response_mode == "streaming" else False
"POST",
"/chat-messages",
data,
stream=True if response_mode == "streaming" else False,
)
def get_suggested(self, message_id, user: str):
params = {"user": user}
return self._send_request("GET", f"/messages/{message_id}/suggested", params=params)
return self._send_request(
"GET", f"/messages/{message_id}/suggested", params=params
)
def stop_message(self, task_id, user):
data = {"user": user}
@@ -75,7 +111,9 @@ class ChatClient(DifyClient):
params = {"user": user, "last_id": last_id, "limit": limit, "pinned": pinned}
return self._send_request("GET", "/conversations", params=params)
def get_conversation_messages(self, user, conversation_id=None, first_id=None, limit=None):
def get_conversation_messages(
self, user, conversation_id=None, first_id=None, limit=None
):
params = {"user": user}
if conversation_id:
@@ -87,9 +125,13 @@ class ChatClient(DifyClient):
return self._send_request("GET", "/messages", params=params)
def rename_conversation(self, conversation_id, name, auto_generate: bool, user: str):
def rename_conversation(
self, conversation_id, name, auto_generate: bool, user: str
):
data = {"name": name, "auto_generate": auto_generate, "user": user}
return self._send_request("POST", f"/conversations/{conversation_id}/name", data)
return self._send_request(
"POST", f"/conversations/{conversation_id}/name", data
)
def delete_conversation(self, conversation_id, user):
data = {"user": user}
@@ -102,7 +144,9 @@ class ChatClient(DifyClient):
class WorkflowClient(DifyClient):
def run(self, inputs: dict, response_mode: str = "streaming", user: str = "abc-123"):
def run(
self, inputs: dict, response_mode: str = "streaming", user: str = "abc-123"
):
data = {"inputs": inputs, "response_mode": response_mode, "user": user}
return self._send_request("POST", "/workflows/run", data)
@@ -115,7 +159,9 @@ class WorkflowClient(DifyClient):
class KnowledgeBaseClient(DifyClient):
def __init__(self, api_key, base_url: str = "https://api.dify.ai/v1", dataset_id: str = None):
def __init__(
self, api_key, base_url: str = "https://api.dify.ai/v1", dataset_id: str = None
):
"""
Construct a KnowledgeBaseClient object.
@@ -137,7 +183,9 @@ class KnowledgeBaseClient(DifyClient):
return self._send_request("POST", "/datasets", {"name": name}, **kwargs)
def list_datasets(self, page: int = 1, page_size: int = 20, **kwargs):
return self._send_request("GET", f"/datasets?page={page}&limit={page_size}", **kwargs)
return self._send_request(
"GET", f"/datasets?page={page}&limit={page_size}", **kwargs
)
def create_document_by_text(self, name, text, extra_params: dict = None, **kwargs):
"""
@@ -165,13 +213,20 @@ class KnowledgeBaseClient(DifyClient):
}
:return: Response from the API
"""
data = {"indexing_technique": "high_quality", "process_rule": {"mode": "automatic"}, "name": name, "text": text}
data = {
"indexing_technique": "high_quality",
"process_rule": {"mode": "automatic"},
"name": name,
"text": text,
}
if extra_params is not None and isinstance(extra_params, dict):
data.update(extra_params)
url = f"/datasets/{self._get_dataset_id()}/document/create_by_text"
return self._send_request("POST", url, json=data, **kwargs)
def update_document_by_text(self, document_id, name, text, extra_params: dict = None, **kwargs):
def update_document_by_text(
self, document_id, name, text, extra_params: dict = None, **kwargs
):
"""
Update a document by text.
@@ -201,10 +256,14 @@ class KnowledgeBaseClient(DifyClient):
data = {"name": name, "text": text}
if extra_params is not None and isinstance(extra_params, dict):
data.update(extra_params)
url = f"/datasets/{self._get_dataset_id()}/documents/{document_id}/update_by_text"
url = (
f"/datasets/{self._get_dataset_id()}/documents/{document_id}/update_by_text"
)
return self._send_request("POST", url, json=data, **kwargs)
def create_document_by_file(self, file_path, original_document_id=None, extra_params: dict = None):
def create_document_by_file(
self, file_path, original_document_id=None, extra_params: dict = None
):
"""
Create a document by file.
@@ -231,15 +290,22 @@ class KnowledgeBaseClient(DifyClient):
:return: Response from the API
"""
files = {"file": open(file_path, "rb")}
data = {"process_rule": {"mode": "automatic"}, "indexing_technique": "high_quality"}
data = {
"process_rule": {"mode": "automatic"},
"indexing_technique": "high_quality",
}
if extra_params is not None and isinstance(extra_params, dict):
data.update(extra_params)
if original_document_id is not None:
data["original_document_id"] = original_document_id
url = f"/datasets/{self._get_dataset_id()}/document/create_by_file"
return self._send_request_with_files("POST", url, {"data": json.dumps(data)}, files)
return self._send_request_with_files(
"POST", url, {"data": json.dumps(data)}, files
)
def update_document_by_file(self, document_id, file_path, extra_params: dict = None):
def update_document_by_file(
self, document_id, file_path, extra_params: dict = None
):
"""
Update a document by file.
@@ -269,8 +335,12 @@ class KnowledgeBaseClient(DifyClient):
data = {}
if extra_params is not None and isinstance(extra_params, dict):
data.update(extra_params)
url = f"/datasets/{self._get_dataset_id()}/documents/{document_id}/update_by_file"
return self._send_request_with_files("POST", url, {"data": json.dumps(data)}, files)
url = (
f"/datasets/{self._get_dataset_id()}/documents/{document_id}/update_by_file"
)
return self._send_request_with_files(
"POST", url, {"data": json.dumps(data)}, files
)
def batch_indexing_status(self, batch_id: str, **kwargs):
"""
@@ -301,7 +371,9 @@ class KnowledgeBaseClient(DifyClient):
url = f"/datasets/{self._get_dataset_id()}/documents/{document_id}"
return self._send_request("DELETE", url)
def list_documents(self, page: int = None, page_size: int = None, keyword: str = None, **kwargs):
def list_documents(
self, page: int = None, page_size: int = None, keyword: str = None, **kwargs
):
"""
Get a list of documents in this dataset.
@@ -329,7 +401,9 @@ class KnowledgeBaseClient(DifyClient):
url = f"/datasets/{self._get_dataset_id()}/documents/{document_id}/segments"
return self._send_request("POST", url, json=data, **kwargs)
def query_segments(self, document_id, keyword: str = None, status: str = None, **kwargs):
def query_segments(
self, document_id, keyword: str = None, status: str = None, **kwargs
):
"""
Query segments in this document.

View File

@@ -12,17 +12,15 @@ setup(
long_description=long_description,
long_description_content_type="text/markdown",
url="https://github.com/langgenius/dify",
license='MIT',
packages=['dify_client'],
license="MIT",
packages=["dify_client"],
classifiers=[
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
],
python_requires=">=3.6",
install_requires=[
"requests"
],
keywords='dify nlp ai language-processing',
install_requires=["requests"],
keywords="dify nlp ai language-processing",
include_package_data=True,
)

View File

@@ -2,7 +2,12 @@ import os
import time
import unittest
from dify_client.client import ChatClient, CompletionClient, DifyClient, KnowledgeBaseClient
from dify_client.client import (
ChatClient,
CompletionClient,
DifyClient,
KnowledgeBaseClient,
)
API_KEY = os.environ.get("API_KEY")
APP_ID = os.environ.get("APP_ID")
@@ -13,7 +18,9 @@ FILE_PATH_BASE = os.path.dirname(__file__)
class TestKnowledgeBaseClient(unittest.TestCase):
def setUp(self):
self.knowledge_base_client = KnowledgeBaseClient(API_KEY, base_url=API_BASE_URL)
self.README_FILE_PATH = os.path.abspath(os.path.join(FILE_PATH_BASE, "../README.md"))
self.README_FILE_PATH = os.path.abspath(
os.path.join(FILE_PATH_BASE, "../README.md")
)
self.dataset_id = None
self.document_id = None
self.segment_id = None
@@ -21,7 +28,9 @@ class TestKnowledgeBaseClient(unittest.TestCase):
def _get_dataset_kb_client(self):
self.assertIsNotNone(self.dataset_id)
return KnowledgeBaseClient(API_KEY, base_url=API_BASE_URL, dataset_id=self.dataset_id)
return KnowledgeBaseClient(
API_KEY, base_url=API_BASE_URL, dataset_id=self.dataset_id
)
def test_001_create_dataset(self):
response = self.knowledge_base_client.create_dataset(name="test_dataset")
@@ -67,7 +76,9 @@ class TestKnowledgeBaseClient(unittest.TestCase):
def _test_004_update_document_by_text(self):
client = self._get_dataset_kb_client()
self.assertIsNotNone(self.document_id)
response = client.update_document_by_text(self.document_id, "test_document_updated", "test_text_updated")
response = client.update_document_by_text(
self.document_id, "test_document_updated", "test_text_updated"
)
data = response.json()
self.assertIn("document", data)
self.assertIn("batch", data)
@@ -82,7 +93,9 @@ class TestKnowledgeBaseClient(unittest.TestCase):
def _test_006_update_document_by_file(self):
client = self._get_dataset_kb_client()
self.assertIsNotNone(self.document_id)
response = client.update_document_by_file(self.document_id, self.README_FILE_PATH)
response = client.update_document_by_file(
self.document_id, self.README_FILE_PATH
)
data = response.json()
self.assertIn("document", data)
self.assertIn("batch", data)
@@ -112,9 +125,9 @@ class TestKnowledgeBaseClient(unittest.TestCase):
def _test_010_add_segments(self):
client = self._get_dataset_kb_client()
response = client.add_segments(self.document_id, [
{"content": "test text segment 1"}
])
response = client.add_segments(
self.document_id, [{"content": "test text segment 1"}]
)
data = response.json()
self.assertIn("data", data)
self.assertGreater(len(data["data"]), 0)
@@ -131,9 +144,11 @@ class TestKnowledgeBaseClient(unittest.TestCase):
def _test_012_update_document_segment(self):
client = self._get_dataset_kb_client()
self.assertIsNotNone(self.segment_id)
response = client.update_document_segment(self.document_id, self.segment_id,
{"content": "test text segment 1 updated"}
)
response = client.update_document_segment(
self.document_id,
self.segment_id,
{"content": "test text segment 1 updated"},
)
data = response.json()
self.assertIn("data", data)
self.assertGreater(len(data["data"]), 0)
@@ -159,29 +174,37 @@ class TestChatClient(unittest.TestCase):
self.chat_client = ChatClient(API_KEY)
def test_create_chat_message(self):
response = self.chat_client.create_chat_message({}, "Hello, World!", "test_user")
response = self.chat_client.create_chat_message(
{}, "Hello, World!", "test_user"
)
self.assertIn("answer", response.text)
def test_create_chat_message_with_vision_model_by_remote_url(self):
files = [{
"type": "image",
"transfer_method": "remote_url",
"url": "your_image_url"
}]
response = self.chat_client.create_chat_message({}, "Describe the picture.", "test_user", files=files)
files = [
{"type": "image", "transfer_method": "remote_url", "url": "your_image_url"}
]
response = self.chat_client.create_chat_message(
{}, "Describe the picture.", "test_user", files=files
)
self.assertIn("answer", response.text)
def test_create_chat_message_with_vision_model_by_local_file(self):
files = [{
"type": "image",
"transfer_method": "local_file",
"upload_file_id": "your_file_id"
}]
response = self.chat_client.create_chat_message({}, "Describe the picture.", "test_user", files=files)
files = [
{
"type": "image",
"transfer_method": "local_file",
"upload_file_id": "your_file_id",
}
]
response = self.chat_client.create_chat_message(
{}, "Describe the picture.", "test_user", files=files
)
self.assertIn("answer", response.text)
def test_get_conversation_messages(self):
response = self.chat_client.get_conversation_messages("test_user", "your_conversation_id")
response = self.chat_client.get_conversation_messages(
"test_user", "your_conversation_id"
)
self.assertIn("answer", response.text)
def test_get_conversations(self):
@@ -194,28 +217,31 @@ class TestCompletionClient(unittest.TestCase):
self.completion_client = CompletionClient(API_KEY)
def test_create_completion_message(self):
response = self.completion_client.create_completion_message({"query": "What's the weather like today?"},
"blocking", "test_user")
response = self.completion_client.create_completion_message(
{"query": "What's the weather like today?"}, "blocking", "test_user"
)
self.assertIn("answer", response.text)
def test_create_completion_message_with_vision_model_by_remote_url(self):
files = [{
"type": "image",
"transfer_method": "remote_url",
"url": "your_image_url"
}]
files = [
{"type": "image", "transfer_method": "remote_url", "url": "your_image_url"}
]
response = self.completion_client.create_completion_message(
{"query": "Describe the picture."}, "blocking", "test_user", files)
{"query": "Describe the picture."}, "blocking", "test_user", files
)
self.assertIn("answer", response.text)
def test_create_completion_message_with_vision_model_by_local_file(self):
files = [{
"type": "image",
"transfer_method": "local_file",
"upload_file_id": "your_file_id"
}]
files = [
{
"type": "image",
"transfer_method": "local_file",
"upload_file_id": "your_file_id",
}
]
response = self.completion_client.create_completion_message(
{"query": "Describe the picture."}, "blocking", "test_user", files)
{"query": "Describe the picture."}, "blocking", "test_user", files
)
self.assertIn("answer", response.text)
@@ -224,7 +250,9 @@ class TestDifyClient(unittest.TestCase):
self.dify_client = DifyClient(API_KEY)
def test_message_feedback(self):
response = self.dify_client.message_feedback("your_message_id", 'like', "test_user")
response = self.dify_client.message_feedback(
"your_message_id", "like", "test_user"
)
self.assertIn("success", response.text)
def test_get_application_parameters(self):
@@ -237,9 +265,7 @@ class TestDifyClient(unittest.TestCase):
mime_type = "image/jpeg"
with open(file_path, "rb") as file:
files = {
"file": (file_name, file, mime_type)
}
files = {"file": (file_name, file, mime_type)}
response = self.dify_client.file_upload("test_user", files)
self.assertIn("name", response.text)

View File

@@ -1,7 +1,8 @@
{
"extends": [
"next",
"@antfu"
"@antfu",
"plugin:storybook/recommended"
],
"rules": {
"@typescript-eslint/consistent-type-definitions": [

3
web/.gitignore vendored
View File

@@ -49,4 +49,5 @@ package-lock.json
# pmpm
pnpm-lock.yaml
.favorites.json
.favorites.json
*storybook.log

19
web/.storybook/main.ts Normal file
View File

@@ -0,0 +1,19 @@
import type { StorybookConfig } from '@storybook/nextjs'
const config: StorybookConfig = {
// stories: ['../stories/**/*.mdx', '../stories/**/*.stories.@(js|jsx|mjs|ts|tsx)'],
stories: ['../app/components/**/*.stories.@(js|jsx|mjs|ts|tsx)'],
addons: [
'@storybook/addon-onboarding',
'@storybook/addon-links',
'@storybook/addon-essentials',
'@chromatic-com/storybook',
'@storybook/addon-interactions',
],
framework: {
name: '@storybook/nextjs',
options: {},
},
staticDirs: ['../public'],
}
export default config

View File

@@ -0,0 +1,37 @@
import React from 'react'
import type { Preview } from '@storybook/react'
import { withThemeByDataAttribute } from '@storybook/addon-themes';
import I18nServer from '../app/components/i18n-server'
import '../app/styles/globals.css'
import '../app/styles/markdown.scss'
import './storybook.css'
export const decorators = [
withThemeByDataAttribute({
themes: {
light: 'light',
dark: 'dark',
},
defaultTheme: 'light',
attributeName: 'data-theme',
}),
Story => {
return <I18nServer>
<Story />
</I18nServer>
}
];
const preview: Preview = {
parameters: {
controls: {
matchers: {
color: /(background|color)$/i,
date: /Date$/i,
},
},
},
}
export default preview

View File

@@ -0,0 +1,6 @@
html,
body {
max-width: unset;
overflow: auto;
user-select: text;
}

View File

@@ -74,6 +74,18 @@ If you want to customize the host and port:
npm run start --port=3001 --host=0.0.0.0
```
## Storybook
This project uses [Storybook](https://storybook.js.org/) for UI component development.
To start the storybook server, run:
```bash
yarn storybook
```
Open [http://localhost:6006](http://localhost:6006) with your browser to see the result.
## Lint Code
If your IDE is VSCode, rename `web/.vscode/settings.example.json` to `web/.vscode/settings.json` for lint code setting.

View File

@@ -1050,6 +1050,151 @@ import { Row, Col, Properties, Property, Heading, SubProperty, Paragraph } from
---
<Heading
url='/datasets/{dataset_id}/hit_testing'
method='POST'
title='Dataset hit testing'
name='#dataset_hit_testing'
/>
<Row>
<Col>
### Path
<Properties>
<Property name='dataset_id' type='string' key='dataset_id'>
Dataset ID
</Property>
</Properties>
### Request Body
<Properties>
<Property name='query' type='string' key='query'>
retrieval keywordc
</Property>
<Property name='retrieval_model' type='object' key='retrieval_model'>
retrieval keyword(Optional, if not filled, it will be recalled according to the default method)
- <code>search_method</code> (text) Search method: One of the following four keywords is required
- <code>keyword_search</code> Keyword search
- <code>semantic_search</code> Semantic search
- <code>full_text_search</code> Full-text search
- <code>hybrid_search</code> Hybrid search
- <code>reranking_enable</code> (bool) Whether to enable reranking, optional, required if the search mode is semantic_search or hybrid_search
- <code>reranking_mode</code> (object) Rerank model configuration, optional, required if reranking is enabled
- <code>reranking_provider_name</code> (string) Rerank model provider
- <code>reranking_model_name</code> (string) Rerank model name
- <code>weights</code> (double) Semantic search weight setting in hybrid search mode
- <code>top_k</code> (integer) Number of results to return, optional
- <code>score_threshold_enabled</code> (bool) Whether to enable score threshold
- <code>score_threshold</code> (double) Score threshold
</Property>
<Property name='external_retrieval_model' type='object' key='external_retrieval_model'>
Unused field
</Property>
</Properties>
</Col>
<Col sticky>
<CodeGroup
title="Request"
tag="POST"
label="/datasets/{dataset_id}/hit_testing"
targetCode={`curl --location --request GET '${props.apiBaseUrl}/datasets/{dataset_id}/hit_testing' \\\n--header 'Authorization: Bearer {api_key}'\\\n--header 'Content-Type: application/json'\\\n--data-raw '{
"query": "test",
"retrieval_model": {
"search_method": "keyword_search",
"reranking_enable": false,
"reranking_mode": null,
"reranking_model": {
"reranking_provider_name": "",
"reranking_model_name": ""
},
"weights": null,
"top_k": 1,
"score_threshold_enabled": false,
"score_threshold": null
}
}'`}
>
```bash {{ title: 'cURL' }}
curl --location --request POST '${props.apiBaseUrl}/datasets/{dataset_id}/hit_testing' \
--header 'Authorization: Bearer {api_key}' \
--header 'Content-Type: application/json' \
--data-raw '{
"query": "test",
"retrieval_model": {
"search_method": "keyword_search",
"reranking_enable": false,
"reranking_mode": null,
"reranking_model": {
"reranking_provider_name": "",
"reranking_model_name": ""
},
"weights": null,
"top_k": 2,
"score_threshold_enabled": false,
"score_threshold": null
}
}'
```
</CodeGroup>
<CodeGroup title="Response">
```json {{ title: 'Response' }}
{
"query": {
"content": "test"
},
"records": [
{
"segment": {
"id": "7fa6f24f-8679-48b3-bc9d-bdf28d73f218",
"position": 1,
"document_id": "a8c6c36f-9f5d-4d7a-8472-f5d7b75d71d2",
"content": "Operation guide",
"answer": null,
"word_count": 847,
"tokens": 280,
"keywords": [
"install",
"java",
"base",
"scripts",
"jdk",
"manual",
"internal",
"opens",
"add",
"vmoptions"
],
"index_node_id": "39dd8443-d960-45a8-bb46-7275ad7fbc8e",
"index_node_hash": "0189157697b3c6a418ccf8264a09699f25858975578f3467c76d6bfc94df1d73",
"hit_count": 0,
"enabled": true,
"disabled_at": null,
"disabled_by": null,
"status": "completed",
"created_by": "dbcb1ab5-90c8-41a7-8b78-73b235eb6f6f",
"created_at": 1728734540,
"indexing_at": 1728734552,
"completed_at": 1728734584,
"error": null,
"stopped_at": null,
"document": {
"id": "a8c6c36f-9f5d-4d7a-8472-f5d7b75d71d2",
"data_source_type": "upload_file",
"name": "readme.txt",
"doc_type": null
}
},
"score": 3.730463140527718e-05,
"tsne_position": null
}
]
}
```
</CodeGroup>
</Col>
</Row>
---
<Row>
<Col>
### Error message

View File

@@ -1049,6 +1049,152 @@ import { Row, Col, Properties, Property, Heading, SubProperty, Paragraph } from
</Col>
</Row>
---
<Heading
url='/datasets/{dataset_id}/hit_testing'
method='POST'
title='知识库召回测试'
name='#dataset_hit_testing'
/>
<Row>
<Col>
### Path
<Properties>
<Property name='dataset_id' type='string' key='dataset_id'>
知识库 ID
</Property>
</Properties>
### Request Body
<Properties>
<Property name='query' type='string' key='query'>
召回关键词
</Property>
<Property name='retrieval_model' type='object' key='retrieval_model'>
召回参数(选填,如不填,按照默认方式召回)
- <code>search_method</code> (text) 检索方法:以下三个关键字之一,必填
- <code>keyword_search</code> 关键字检索
- <code>semantic_search</code> 语义检索
- <code>full_text_search</code> 全文检索
- <code>hybrid_search</code> 混合检索
- <code>reranking_enable</code> (bool) 是否启用 Reranking非必填如果检索模式为semantic_search模式或者hybrid_search则传值
- <code>reranking_mode</code> (object) Rerank模型配置非必填如果启用了 reranking 则传值
- <code>reranking_provider_name</code> (string) Rerank 模型提供商
- <code>reranking_model_name</code> (string) Rerank 模型名称
- <code>weights</code> (double) 混合检索模式下语意检索的权重设置
- <code>top_k</code> (integer) 返回结果数量,非必填
- <code>score_threshold_enabled</code> (bool) 是否开启Score阈值
- <code>score_threshold</code> (double) Score阈值
</Property>
<Property name='external_retrieval_model' type='object' key='external_retrieval_model'>
未启用字段
</Property>
</Properties>
</Col>
<Col sticky>
<CodeGroup
title="Request"
tag="POST"
label="/datasets/{dataset_id}/hit_testing"
targetCode={`curl --location --request GET '${props.apiBaseUrl}/datasets/{dataset_id}/hit_testing' \\\n--header 'Authorization: Bearer {api_key}'\\\n--header 'Content-Type: application/json'\\\n--data-raw '{
"query": "test",
"retrieval_model": {
"search_method": "keyword_search",
"reranking_enable": false,
"reranking_mode": null,
"reranking_model": {
"reranking_provider_name": "",
"reranking_model_name": ""
},
"weights": null,
"top_k": 1,
"score_threshold_enabled": false,
"score_threshold": null
}
}'`}
>
```bash {{ title: 'cURL' }}
curl --location --request POST '${props.apiBaseUrl}/datasets/{dataset_id}/hit_testing' \
--header 'Authorization: Bearer {api_key}' \
--header 'Content-Type: application/json' \
--data-raw '{
"query": "test",
"retrieval_model": {
"search_method": "keyword_search",
"reranking_enable": false,
"reranking_mode": null,
"reranking_model": {
"reranking_provider_name": "",
"reranking_model_name": ""
},
"weights": null,
"top_k": 2,
"score_threshold_enabled": false,
"score_threshold": null
}
}'
```
</CodeGroup>
<CodeGroup title="Response">
```json {{ title: 'Response' }}
{
"query": {
"content": "test"
},
"records": [
{
"segment": {
"id": "7fa6f24f-8679-48b3-bc9d-bdf28d73f218",
"position": 1,
"document_id": "a8c6c36f-9f5d-4d7a-8472-f5d7b75d71d2",
"content": "Operation guide",
"answer": null,
"word_count": 847,
"tokens": 280,
"keywords": [
"install",
"java",
"base",
"scripts",
"jdk",
"manual",
"internal",
"opens",
"add",
"vmoptions"
],
"index_node_id": "39dd8443-d960-45a8-bb46-7275ad7fbc8e",
"index_node_hash": "0189157697b3c6a418ccf8264a09699f25858975578f3467c76d6bfc94df1d73",
"hit_count": 0,
"enabled": true,
"disabled_at": null,
"disabled_by": null,
"status": "completed",
"created_by": "dbcb1ab5-90c8-41a7-8b78-73b235eb6f6f",
"created_at": 1728734540,
"indexing_at": 1728734552,
"completed_at": 1728734584,
"error": null,
"stopped_at": null,
"document": {
"id": "a8c6c36f-9f5d-4d7a-8472-f5d7b75d71d2",
"data_source_type": "upload_file",
"name": "readme.txt",
"doc_type": null
}
},
"score": 3.730463140527718e-05,
"tsne_position": null
}
]
}
```
</CodeGroup>
</Col>
</Row>
---
<Row>

View File

@@ -0,0 +1,107 @@
import type { Meta, StoryObj } from '@storybook/react'
import { fn } from '@storybook/test'
import { RocketLaunchIcon } from '@heroicons/react/20/solid'
import { Button } from '.'
const meta = {
title: 'Base/Button',
component: Button,
parameters: {
layout: 'centered',
},
tags: ['autodocs'],
argTypes: {
loading: { control: 'boolean' },
variant: {
control: 'select',
options: ['primary', 'warning', 'secondary', 'secondary-accent', 'ghost', 'ghost-accent', 'tertiary'],
},
},
args: {
variant: 'ghost',
onClick: fn(),
children: 'adsf',
},
} satisfies Meta<typeof Button>
export default meta
type Story = StoryObj<typeof meta>
export const Default: Story = {
args: {
variant: 'primary',
loading: false,
children: 'Primary Button',
},
}
export const Secondary: Story = {
args: {
variant: 'secondary',
children: 'Secondary Button',
},
}
export const SecondaryAccent: Story = {
args: {
variant: 'secondary-accent',
children: 'Secondary Accent Button',
},
}
export const Ghost: Story = {
args: {
variant: 'ghost',
children: 'Ghost Button',
},
}
export const GhostAccent: Story = {
args: {
variant: 'ghost-accent',
children: 'Ghost Accent Button',
},
}
export const Tertiary: Story = {
args: {
variant: 'tertiary',
children: 'Tertiary Button',
},
}
export const Warning: Story = {
args: {
variant: 'warning',
children: 'Warning Button',
},
}
export const Disabled: Story = {
args: {
variant: 'primary',
disabled: true,
children: 'Disabled Button',
},
}
export const Loading: Story = {
args: {
variant: 'primary',
loading: true,
children: 'Loading Button',
},
}
export const WithIcon: Story = {
args: {
variant: 'primary',
children: (
<>
<RocketLaunchIcon className="h-4 w-4 mr-1.5 stroke-[1.8px]" />
Launch
</>
),
},
}

View File

@@ -28,6 +28,8 @@ const HeaderInMobile = () => {
className='mr-2'
size='tiny'
icon={appData?.site.icon}
iconType={appData?.site.icon_type}
imageUrl={appData?.site.icon_url}
background={appData?.site.icon_background}
/>
<div className='py-1 text-base font-semibold text-gray-800 truncate'>

Some files were not shown because too many files have changed in this diff Show More