mirror of
https://github.com/langgenius/dify.git
synced 2026-01-01 20:17:16 +00:00
Compare commits
127 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
1f5cc071f8 | ||
|
|
625e4c4c72 | ||
|
|
7850a28ec8 | ||
|
|
730d3a6d7c | ||
|
|
d6a44e9990 | ||
|
|
3069b5cf57 | ||
|
|
7873e455bb | ||
|
|
a651b73db0 | ||
|
|
d2ce4960f1 | ||
|
|
1af4ca344e | ||
|
|
fa837b2dfd | ||
|
|
824a71388a | ||
|
|
4585cffce1 | ||
|
|
13046709a9 | ||
|
|
9d221a5e19 | ||
|
|
77aef9ff1d | ||
|
|
503561f464 | ||
|
|
ada9d408ac | ||
|
|
3af65b2f45 | ||
|
|
369e1e6f58 | ||
|
|
fb49413a41 | ||
|
|
42dfde6546 | ||
|
|
c531b4a911 | ||
|
|
e4ed916baa | ||
|
|
4ec977eaba | ||
|
|
74f58f29f9 | ||
|
|
f97607370a | ||
|
|
850492dafa | ||
|
|
61c89a9168 | ||
|
|
49af18fbd6 | ||
|
|
6cd22f3bca | ||
|
|
a2e2f8a8c9 | ||
|
|
27e33fb15c | ||
|
|
55e6123db9 | ||
|
|
c828a5dfdf | ||
|
|
0603359e2d | ||
|
|
bb781764b8 | ||
|
|
29275c7447 | ||
|
|
4c1063e1c5 | ||
|
|
d6b9587a97 | ||
|
|
6fbaabc1bc | ||
|
|
a36117e12d | ||
|
|
e5efd09ebb | ||
|
|
ecc951609d | ||
|
|
063474f408 | ||
|
|
3dfbc348e3 | ||
|
|
9a4b53a212 | ||
|
|
03edfbe6f5 | ||
|
|
3d2cb25a67 | ||
|
|
6df14e50b2 | ||
|
|
008e0efeb0 | ||
|
|
128a66f7fe | ||
|
|
62406991df | ||
|
|
d1173a69f8 | ||
|
|
a0b0809b1c | ||
|
|
4c9ef6e830 | ||
|
|
0c96f0aa51 | ||
|
|
ac73763726 | ||
|
|
5ba19d64e9 | ||
|
|
fefbc43fb0 | ||
|
|
a8b837c4a9 | ||
|
|
02ff6cca70 | ||
|
|
ef47f68e4a | ||
|
|
2ef8b187fa | ||
|
|
b0927c39fb | ||
|
|
d0e0111f88 | ||
|
|
2328944987 | ||
|
|
cb1942c242 | ||
|
|
bf64ff215b | ||
|
|
68c7e68a8a | ||
|
|
91f70d0bd9 | ||
|
|
4669eb24be | ||
|
|
debe5953a8 | ||
|
|
1c7877b048 | ||
|
|
9ca2e2c968 | ||
|
|
f42ef0624d | ||
|
|
64baedb484 | ||
|
|
4638f99aaa | ||
|
|
aebe5fc68c | ||
|
|
1ecf70dca0 | ||
|
|
7c485f8bb8 | ||
|
|
21e9608b23 | ||
|
|
7f1b028840 | ||
|
|
bef83a4d2e | ||
|
|
8cc9e68363 | ||
|
|
d7aada38a1 | ||
|
|
4f69adc8ab | ||
|
|
52da5b16e7 | ||
|
|
11d09a92d0 | ||
|
|
c7eacd1aac | ||
|
|
a126d535cf | ||
|
|
3554a803e7 | ||
|
|
c66cecaa55 | ||
|
|
b37954b966 | ||
|
|
86f90fd9ff | ||
|
|
4c7beb9d7b | ||
|
|
3618a97c20 | ||
|
|
03fdf5e7f8 | ||
|
|
cae73b9a32 | ||
|
|
e34f04380d | ||
|
|
6df77038a2 | ||
|
|
45c0a44411 | ||
|
|
2d869d6831 | ||
|
|
eaa7e9b1f0 | ||
|
|
6e37750fbd | ||
|
|
8fd297f8b4 | ||
|
|
ddf6569dc5 | ||
|
|
97895ec41a | ||
|
|
6d56d5c1f6 | ||
|
|
6c2fa8defc | ||
|
|
c9f1e18df1 | ||
|
|
740fad06c1 | ||
|
|
0665268578 | ||
|
|
c8b9bdebfe | ||
|
|
a587f0d3f1 | ||
|
|
8c51d06222 | ||
|
|
b32a7713e0 | ||
|
|
831c5a93af | ||
|
|
1a8dcae10e | ||
|
|
8219f9e090 | ||
|
|
5ddb601e43 | ||
|
|
5541248264 | ||
|
|
b3cb97f0ad | ||
|
|
e75c33a561 | ||
|
|
483ead55d5 | ||
|
|
d63a5a1c3c | ||
|
|
e0a3307563 |
2
.github/workflows/build-push.yml
vendored
2
.github/workflows/build-push.yml
vendored
@@ -125,7 +125,7 @@ jobs:
|
||||
with:
|
||||
images: ${{ env[matrix.image_name_env] }}
|
||||
tags: |
|
||||
type=raw,value=latest,enable=${{ startsWith(github.ref, 'refs/tags/') }}
|
||||
type=raw,value=latest,enable=${{ startsWith(github.ref, 'refs/tags/') && !contains(github.ref, '-') }}
|
||||
type=ref,event=branch
|
||||
type=sha,enable=true,priority=100,prefix=,suffix=,format=long
|
||||
type=raw,value=${{ github.ref_name }},enable=${{ startsWith(github.ref, 'refs/tags/') }}
|
||||
|
||||
46
.github/workflows/web-tests.yml
vendored
Normal file
46
.github/workflows/web-tests.yml
vendored
Normal file
@@ -0,0 +1,46 @@
|
||||
name: Web Tests
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- web/**
|
||||
|
||||
concurrency:
|
||||
group: web-tests-${{ github.head_ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
test:
|
||||
name: Web Tests
|
||||
runs-on: ubuntu-latest
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ./web
|
||||
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Check changed files
|
||||
id: changed-files
|
||||
uses: tj-actions/changed-files@v45
|
||||
with:
|
||||
files: web/**
|
||||
|
||||
- name: Setup Node.js
|
||||
uses: actions/setup-node@v4
|
||||
if: steps.changed-files.outputs.any_changed == 'true'
|
||||
with:
|
||||
node-version: 20
|
||||
cache: yarn
|
||||
cache-dependency-path: ./web/package.json
|
||||
|
||||
- name: Install dependencies
|
||||
if: steps.changed-files.outputs.any_changed == 'true'
|
||||
run: yarn install --frozen-lockfile
|
||||
|
||||
- name: Run tests
|
||||
if: steps.changed-files.outputs.any_changed == 'true'
|
||||
run: yarn test
|
||||
@@ -162,6 +162,8 @@ PGVECTOR_PORT=5433
|
||||
PGVECTOR_USER=postgres
|
||||
PGVECTOR_PASSWORD=postgres
|
||||
PGVECTOR_DATABASE=postgres
|
||||
PGVECTOR_MIN_CONNECTION=1
|
||||
PGVECTOR_MAX_CONNECTION=5
|
||||
|
||||
# Tidb Vector configuration
|
||||
TIDB_VECTOR_HOST=xxx.eu-central-1.xxx.aws.tidbcloud.com
|
||||
|
||||
@@ -65,14 +65,12 @@
|
||||
|
||||
8. Start Dify [web](../web) service.
|
||||
9. Setup your application by visiting `http://localhost:3000`...
|
||||
10. If you need to debug local async processing, please start the worker service.
|
||||
10. If you need to handle and debug the async tasks (e.g. dataset importing and documents indexing), please start the worker service.
|
||||
|
||||
```bash
|
||||
poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion
|
||||
```
|
||||
|
||||
The started celery app handles the async tasks, e.g. dataset importing and documents indexing.
|
||||
|
||||
## Testing
|
||||
|
||||
1. Install dependencies for both the backend and the test environment
|
||||
|
||||
@@ -53,11 +53,9 @@ from services.account_service import AccountService
|
||||
|
||||
warnings.simplefilter("ignore", ResourceWarning)
|
||||
|
||||
# fix windows platform
|
||||
if os.name == "nt":
|
||||
os.system('tzutil /s "UTC"')
|
||||
else:
|
||||
os.environ["TZ"] = "UTC"
|
||||
os.environ["TZ"] = "UTC"
|
||||
# windows platform not support tzset
|
||||
if hasattr(time, "tzset"):
|
||||
time.tzset()
|
||||
|
||||
|
||||
|
||||
130
api/commands.py
130
api/commands.py
@@ -28,28 +28,28 @@ from services.account_service import RegisterService, TenantService
|
||||
|
||||
|
||||
@click.command("reset-password", help="Reset the account password.")
|
||||
@click.option("--email", prompt=True, help="The email address of the account whose password you need to reset")
|
||||
@click.option("--new-password", prompt=True, help="the new password.")
|
||||
@click.option("--password-confirm", prompt=True, help="the new password confirm.")
|
||||
@click.option("--email", prompt=True, help="Account email to reset password for")
|
||||
@click.option("--new-password", prompt=True, help="New password")
|
||||
@click.option("--password-confirm", prompt=True, help="Confirm new password")
|
||||
def reset_password(email, new_password, password_confirm):
|
||||
"""
|
||||
Reset password of owner account
|
||||
Only available in SELF_HOSTED mode
|
||||
"""
|
||||
if str(new_password).strip() != str(password_confirm).strip():
|
||||
click.echo(click.style("sorry. The two passwords do not match.", fg="red"))
|
||||
click.echo(click.style("Passwords do not match.", fg="red"))
|
||||
return
|
||||
|
||||
account = db.session.query(Account).filter(Account.email == email).one_or_none()
|
||||
|
||||
if not account:
|
||||
click.echo(click.style("sorry. the account: [{}] not exist .".format(email), fg="red"))
|
||||
click.echo(click.style("Account not found for email: {}".format(email), fg="red"))
|
||||
return
|
||||
|
||||
try:
|
||||
valid_password(new_password)
|
||||
except:
|
||||
click.echo(click.style("sorry. The passwords must match {} ".format(password_pattern), fg="red"))
|
||||
click.echo(click.style("Invalid password. Must match {}".format(password_pattern), fg="red"))
|
||||
return
|
||||
|
||||
# generate password salt
|
||||
@@ -62,37 +62,37 @@ def reset_password(email, new_password, password_confirm):
|
||||
account.password = base64_password_hashed
|
||||
account.password_salt = base64_salt
|
||||
db.session.commit()
|
||||
click.echo(click.style("Congratulations! Password has been reset.", fg="green"))
|
||||
click.echo(click.style("Password reset successfully.", fg="green"))
|
||||
|
||||
|
||||
@click.command("reset-email", help="Reset the account email.")
|
||||
@click.option("--email", prompt=True, help="The old email address of the account whose email you need to reset")
|
||||
@click.option("--new-email", prompt=True, help="the new email.")
|
||||
@click.option("--email-confirm", prompt=True, help="the new email confirm.")
|
||||
@click.option("--email", prompt=True, help="Current account email")
|
||||
@click.option("--new-email", prompt=True, help="New email")
|
||||
@click.option("--email-confirm", prompt=True, help="Confirm new email")
|
||||
def reset_email(email, new_email, email_confirm):
|
||||
"""
|
||||
Replace account email
|
||||
:return:
|
||||
"""
|
||||
if str(new_email).strip() != str(email_confirm).strip():
|
||||
click.echo(click.style("Sorry, new email and confirm email do not match.", fg="red"))
|
||||
click.echo(click.style("New emails do not match.", fg="red"))
|
||||
return
|
||||
|
||||
account = db.session.query(Account).filter(Account.email == email).one_or_none()
|
||||
|
||||
if not account:
|
||||
click.echo(click.style("sorry. the account: [{}] not exist .".format(email), fg="red"))
|
||||
click.echo(click.style("Account not found for email: {}".format(email), fg="red"))
|
||||
return
|
||||
|
||||
try:
|
||||
email_validate(new_email)
|
||||
except:
|
||||
click.echo(click.style("sorry. {} is not a valid email. ".format(email), fg="red"))
|
||||
click.echo(click.style("Invalid email: {}".format(new_email), fg="red"))
|
||||
return
|
||||
|
||||
account.email = new_email
|
||||
db.session.commit()
|
||||
click.echo(click.style("Congratulations!, email has been reset.", fg="green"))
|
||||
click.echo(click.style("Email updated successfully.", fg="green"))
|
||||
|
||||
|
||||
@click.command(
|
||||
@@ -104,7 +104,7 @@ def reset_email(email, new_email, email_confirm):
|
||||
)
|
||||
@click.confirmation_option(
|
||||
prompt=click.style(
|
||||
"Are you sure you want to reset encrypt key pair? this operation cannot be rolled back!", fg="red"
|
||||
"Are you sure you want to reset encrypt key pair? This operation cannot be rolled back!", fg="red"
|
||||
)
|
||||
)
|
||||
def reset_encrypt_key_pair():
|
||||
@@ -114,13 +114,13 @@ def reset_encrypt_key_pair():
|
||||
Only support SELF_HOSTED mode.
|
||||
"""
|
||||
if dify_config.EDITION != "SELF_HOSTED":
|
||||
click.echo(click.style("Sorry, only support SELF_HOSTED mode.", fg="red"))
|
||||
click.echo(click.style("This command is only for SELF_HOSTED installations.", fg="red"))
|
||||
return
|
||||
|
||||
tenants = db.session.query(Tenant).all()
|
||||
for tenant in tenants:
|
||||
if not tenant:
|
||||
click.echo(click.style("Sorry, no workspace found. Please enter /install to initialize.", fg="red"))
|
||||
click.echo(click.style("No workspaces found. Run /install first.", fg="red"))
|
||||
return
|
||||
|
||||
tenant.encrypt_public_key = generate_key_pair(tenant.id)
|
||||
@@ -137,7 +137,7 @@ def reset_encrypt_key_pair():
|
||||
)
|
||||
|
||||
|
||||
@click.command("vdb-migrate", help="migrate vector db.")
|
||||
@click.command("vdb-migrate", help="Migrate vector db.")
|
||||
@click.option("--scope", default="all", prompt=False, help="The scope of vector database to migrate, Default is All.")
|
||||
def vdb_migrate(scope: str):
|
||||
if scope in {"knowledge", "all"}:
|
||||
@@ -150,7 +150,7 @@ def migrate_annotation_vector_database():
|
||||
"""
|
||||
Migrate annotation datas to target vector database .
|
||||
"""
|
||||
click.echo(click.style("Start migrate annotation data.", fg="green"))
|
||||
click.echo(click.style("Starting annotation data migration.", fg="green"))
|
||||
create_count = 0
|
||||
skipped_count = 0
|
||||
total_count = 0
|
||||
@@ -174,14 +174,14 @@ def migrate_annotation_vector_database():
|
||||
f"Processing the {total_count} app {app.id}. " + f"{create_count} created, {skipped_count} skipped."
|
||||
)
|
||||
try:
|
||||
click.echo("Create app annotation index: {}".format(app.id))
|
||||
click.echo("Creating app annotation index: {}".format(app.id))
|
||||
app_annotation_setting = (
|
||||
db.session.query(AppAnnotationSetting).filter(AppAnnotationSetting.app_id == app.id).first()
|
||||
)
|
||||
|
||||
if not app_annotation_setting:
|
||||
skipped_count = skipped_count + 1
|
||||
click.echo("App annotation setting is disabled: {}".format(app.id))
|
||||
click.echo("App annotation setting disabled: {}".format(app.id))
|
||||
continue
|
||||
# get dataset_collection_binding info
|
||||
dataset_collection_binding = (
|
||||
@@ -190,7 +190,7 @@ def migrate_annotation_vector_database():
|
||||
.first()
|
||||
)
|
||||
if not dataset_collection_binding:
|
||||
click.echo("App annotation collection binding is not exist: {}".format(app.id))
|
||||
click.echo("App annotation collection binding not found: {}".format(app.id))
|
||||
continue
|
||||
annotations = db.session.query(MessageAnnotation).filter(MessageAnnotation.app_id == app.id).all()
|
||||
dataset = Dataset(
|
||||
@@ -211,11 +211,11 @@ def migrate_annotation_vector_database():
|
||||
documents.append(document)
|
||||
|
||||
vector = Vector(dataset, attributes=["doc_id", "annotation_id", "app_id"])
|
||||
click.echo(f"Start to migrate annotation, app_id: {app.id}.")
|
||||
click.echo(f"Migrating annotations for app: {app.id}.")
|
||||
|
||||
try:
|
||||
vector.delete()
|
||||
click.echo(click.style(f"Successfully delete vector index for app: {app.id}.", fg="green"))
|
||||
click.echo(click.style(f"Deleted vector index for app {app.id}.", fg="green"))
|
||||
except Exception as e:
|
||||
click.echo(click.style(f"Failed to delete vector index for app {app.id}.", fg="red"))
|
||||
raise e
|
||||
@@ -223,12 +223,12 @@ def migrate_annotation_vector_database():
|
||||
try:
|
||||
click.echo(
|
||||
click.style(
|
||||
f"Start to created vector index with {len(documents)} annotations for app {app.id}.",
|
||||
f"Creating vector index with {len(documents)} annotations for app {app.id}.",
|
||||
fg="green",
|
||||
)
|
||||
)
|
||||
vector.create(documents)
|
||||
click.echo(click.style(f"Successfully created vector index for app {app.id}.", fg="green"))
|
||||
click.echo(click.style(f"Created vector index for app {app.id}.", fg="green"))
|
||||
except Exception as e:
|
||||
click.echo(click.style(f"Failed to created vector index for app {app.id}.", fg="red"))
|
||||
raise e
|
||||
@@ -237,14 +237,14 @@ def migrate_annotation_vector_database():
|
||||
except Exception as e:
|
||||
click.echo(
|
||||
click.style(
|
||||
"Create app annotation index error: {} {}".format(e.__class__.__name__, str(e)), fg="red"
|
||||
"Error creating app annotation index: {} {}".format(e.__class__.__name__, str(e)), fg="red"
|
||||
)
|
||||
)
|
||||
continue
|
||||
|
||||
click.echo(
|
||||
click.style(
|
||||
f"Congratulations! Create {create_count} app annotation indexes, and skipped {skipped_count} apps.",
|
||||
f"Migration complete. Created {create_count} app annotation indexes. Skipped {skipped_count} apps.",
|
||||
fg="green",
|
||||
)
|
||||
)
|
||||
@@ -254,7 +254,7 @@ def migrate_knowledge_vector_database():
|
||||
"""
|
||||
Migrate vector database datas to target vector database .
|
||||
"""
|
||||
click.echo(click.style("Start migrate vector db.", fg="green"))
|
||||
click.echo(click.style("Starting vector database migration.", fg="green"))
|
||||
create_count = 0
|
||||
skipped_count = 0
|
||||
total_count = 0
|
||||
@@ -278,7 +278,7 @@ def migrate_knowledge_vector_database():
|
||||
f"Processing the {total_count} dataset {dataset.id}. {create_count} created, {skipped_count} skipped."
|
||||
)
|
||||
try:
|
||||
click.echo("Create dataset vdb index: {}".format(dataset.id))
|
||||
click.echo("Creating dataset vector database index: {}".format(dataset.id))
|
||||
if dataset.index_struct_dict:
|
||||
if dataset.index_struct_dict["type"] == vector_type:
|
||||
skipped_count = skipped_count + 1
|
||||
@@ -299,7 +299,7 @@ def migrate_knowledge_vector_database():
|
||||
if dataset_collection_binding:
|
||||
collection_name = dataset_collection_binding.collection_name
|
||||
else:
|
||||
raise ValueError("Dataset Collection Bindings is not exist!")
|
||||
raise ValueError("Dataset Collection Binding not found")
|
||||
else:
|
||||
dataset_id = dataset.id
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
@@ -351,14 +351,12 @@ def migrate_knowledge_vector_database():
|
||||
raise ValueError(f"Vector store {vector_type} is not supported.")
|
||||
|
||||
vector = Vector(dataset)
|
||||
click.echo(f"Start to migrate dataset {dataset.id}.")
|
||||
click.echo(f"Migrating dataset {dataset.id}.")
|
||||
|
||||
try:
|
||||
vector.delete()
|
||||
click.echo(
|
||||
click.style(
|
||||
f"Successfully delete vector index {collection_name} for dataset {dataset.id}.", fg="green"
|
||||
)
|
||||
click.style(f"Deleted vector index {collection_name} for dataset {dataset.id}.", fg="green")
|
||||
)
|
||||
except Exception as e:
|
||||
click.echo(
|
||||
@@ -410,15 +408,13 @@ def migrate_knowledge_vector_database():
|
||||
try:
|
||||
click.echo(
|
||||
click.style(
|
||||
f"Start to created vector index with {len(documents)} documents of {segments_count}"
|
||||
f"Creating vector index with {len(documents)} documents of {segments_count}"
|
||||
f" segments for dataset {dataset.id}.",
|
||||
fg="green",
|
||||
)
|
||||
)
|
||||
vector.create(documents)
|
||||
click.echo(
|
||||
click.style(f"Successfully created vector index for dataset {dataset.id}.", fg="green")
|
||||
)
|
||||
click.echo(click.style(f"Created vector index for dataset {dataset.id}.", fg="green"))
|
||||
except Exception as e:
|
||||
click.echo(click.style(f"Failed to created vector index for dataset {dataset.id}.", fg="red"))
|
||||
raise e
|
||||
@@ -429,13 +425,13 @@ def migrate_knowledge_vector_database():
|
||||
except Exception as e:
|
||||
db.session.rollback()
|
||||
click.echo(
|
||||
click.style("Create dataset index error: {} {}".format(e.__class__.__name__, str(e)), fg="red")
|
||||
click.style("Error creating dataset index: {} {}".format(e.__class__.__name__, str(e)), fg="red")
|
||||
)
|
||||
continue
|
||||
|
||||
click.echo(
|
||||
click.style(
|
||||
f"Congratulations! Create {create_count} dataset indexes, and skipped {skipped_count} datasets.", fg="green"
|
||||
f"Migration complete. Created {create_count} dataset indexes. Skipped {skipped_count} datasets.", fg="green"
|
||||
)
|
||||
)
|
||||
|
||||
@@ -445,7 +441,7 @@ def convert_to_agent_apps():
|
||||
"""
|
||||
Convert Agent Assistant to Agent App.
|
||||
"""
|
||||
click.echo(click.style("Start convert to agent apps.", fg="green"))
|
||||
click.echo(click.style("Starting convert to agent apps.", fg="green"))
|
||||
|
||||
proceeded_app_ids = []
|
||||
|
||||
@@ -496,23 +492,23 @@ def convert_to_agent_apps():
|
||||
except Exception as e:
|
||||
click.echo(click.style("Convert app error: {} {}".format(e.__class__.__name__, str(e)), fg="red"))
|
||||
|
||||
click.echo(click.style("Congratulations! Converted {} agent apps.".format(len(proceeded_app_ids)), fg="green"))
|
||||
click.echo(click.style("Conversion complete. Converted {} agent apps.".format(len(proceeded_app_ids)), fg="green"))
|
||||
|
||||
|
||||
@click.command("add-qdrant-doc-id-index", help="add qdrant doc_id index.")
|
||||
@click.option("--field", default="metadata.doc_id", prompt=False, help="index field , default is metadata.doc_id.")
|
||||
@click.command("add-qdrant-doc-id-index", help="Add Qdrant doc_id index.")
|
||||
@click.option("--field", default="metadata.doc_id", prompt=False, help="Index field , default is metadata.doc_id.")
|
||||
def add_qdrant_doc_id_index(field: str):
|
||||
click.echo(click.style("Start add qdrant doc_id index.", fg="green"))
|
||||
click.echo(click.style("Starting Qdrant doc_id index creation.", fg="green"))
|
||||
vector_type = dify_config.VECTOR_STORE
|
||||
if vector_type != "qdrant":
|
||||
click.echo(click.style("Sorry, only support qdrant vector store.", fg="red"))
|
||||
click.echo(click.style("This command only supports Qdrant vector store.", fg="red"))
|
||||
return
|
||||
create_count = 0
|
||||
|
||||
try:
|
||||
bindings = db.session.query(DatasetCollectionBinding).all()
|
||||
if not bindings:
|
||||
click.echo(click.style("Sorry, no dataset collection bindings found.", fg="red"))
|
||||
click.echo(click.style("No dataset collection bindings found.", fg="red"))
|
||||
return
|
||||
import qdrant_client
|
||||
from qdrant_client.http.exceptions import UnexpectedResponse
|
||||
@@ -522,7 +518,7 @@ def add_qdrant_doc_id_index(field: str):
|
||||
|
||||
for binding in bindings:
|
||||
if dify_config.QDRANT_URL is None:
|
||||
raise ValueError("Qdrant url is required.")
|
||||
raise ValueError("Qdrant URL is required.")
|
||||
qdrant_config = QdrantConfig(
|
||||
endpoint=dify_config.QDRANT_URL,
|
||||
api_key=dify_config.QDRANT_API_KEY,
|
||||
@@ -539,41 +535,39 @@ def add_qdrant_doc_id_index(field: str):
|
||||
except UnexpectedResponse as e:
|
||||
# Collection does not exist, so return
|
||||
if e.status_code == 404:
|
||||
click.echo(
|
||||
click.style(f"Collection not found, collection_name:{binding.collection_name}.", fg="red")
|
||||
)
|
||||
click.echo(click.style(f"Collection not found: {binding.collection_name}.", fg="red"))
|
||||
continue
|
||||
# Some other error occurred, so re-raise the exception
|
||||
else:
|
||||
click.echo(
|
||||
click.style(
|
||||
f"Failed to create qdrant index, collection_name:{binding.collection_name}.", fg="red"
|
||||
f"Failed to create Qdrant index for collection: {binding.collection_name}.", fg="red"
|
||||
)
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
click.echo(click.style("Failed to create qdrant client.", fg="red"))
|
||||
click.echo(click.style("Failed to create Qdrant client.", fg="red"))
|
||||
|
||||
click.echo(click.style(f"Congratulations! Create {create_count} collection indexes.", fg="green"))
|
||||
click.echo(click.style(f"Index creation complete. Created {create_count} collection indexes.", fg="green"))
|
||||
|
||||
|
||||
@click.command("create-tenant", help="Create account and tenant.")
|
||||
@click.option("--email", prompt=True, help="The email address of the tenant account.")
|
||||
@click.option("--name", prompt=True, help="The workspace name of the tenant account.")
|
||||
@click.option("--email", prompt=True, help="Tenant account email.")
|
||||
@click.option("--name", prompt=True, help="Workspace name.")
|
||||
@click.option("--language", prompt=True, help="Account language, default: en-US.")
|
||||
def create_tenant(email: str, language: Optional[str] = None, name: Optional[str] = None):
|
||||
"""
|
||||
Create tenant account
|
||||
"""
|
||||
if not email:
|
||||
click.echo(click.style("Sorry, email is required.", fg="red"))
|
||||
click.echo(click.style("Email is required.", fg="red"))
|
||||
return
|
||||
|
||||
# Create account
|
||||
email = email.strip()
|
||||
|
||||
if "@" not in email:
|
||||
click.echo(click.style("Sorry, invalid email address.", fg="red"))
|
||||
click.echo(click.style("Invalid email address.", fg="red"))
|
||||
return
|
||||
|
||||
account_name = email.split("@")[0]
|
||||
@@ -593,19 +587,19 @@ def create_tenant(email: str, language: Optional[str] = None, name: Optional[str
|
||||
|
||||
click.echo(
|
||||
click.style(
|
||||
"Congratulations! Account and tenant created.\nAccount: {}\nPassword: {}".format(email, new_password),
|
||||
"Account and tenant created.\nAccount: {}\nPassword: {}".format(email, new_password),
|
||||
fg="green",
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
@click.command("upgrade-db", help="upgrade the database")
|
||||
@click.command("upgrade-db", help="Upgrade the database")
|
||||
def upgrade_db():
|
||||
click.echo("Preparing database migration...")
|
||||
lock = redis_client.lock(name="db_upgrade_lock", timeout=60)
|
||||
if lock.acquire(blocking=False):
|
||||
try:
|
||||
click.echo(click.style("Start database migration.", fg="green"))
|
||||
click.echo(click.style("Starting database migration.", fg="green"))
|
||||
|
||||
# run db migration
|
||||
import flask_migrate
|
||||
@@ -615,7 +609,7 @@ def upgrade_db():
|
||||
click.echo(click.style("Database migration successful!", fg="green"))
|
||||
|
||||
except Exception as e:
|
||||
logging.exception(f"Database migration failed, error: {e}")
|
||||
logging.exception(f"Database migration failed: {e}")
|
||||
finally:
|
||||
lock.release()
|
||||
else:
|
||||
@@ -627,7 +621,7 @@ def fix_app_site_missing():
|
||||
"""
|
||||
Fix app related site missing issue.
|
||||
"""
|
||||
click.echo(click.style("Start fix app related site missing issue.", fg="green"))
|
||||
click.echo(click.style("Starting fix for missing app-related sites.", fg="green"))
|
||||
|
||||
failed_app_ids = []
|
||||
while True:
|
||||
@@ -650,22 +644,22 @@ where sites.id is null limit 1000"""
|
||||
if tenant:
|
||||
accounts = tenant.get_accounts()
|
||||
if not accounts:
|
||||
print("Fix app {} failed.".format(app.id))
|
||||
print("Fix failed for app {}".format(app.id))
|
||||
continue
|
||||
|
||||
account = accounts[0]
|
||||
print("Fix app {} related site missing issue.".format(app.id))
|
||||
print("Fixing missing site for app {}".format(app.id))
|
||||
app_was_created.send(app, account=account)
|
||||
except Exception as e:
|
||||
failed_app_ids.append(app_id)
|
||||
click.echo(click.style("Fix app {} related site missing issue failed!".format(app_id), fg="red"))
|
||||
click.echo(click.style("Failed to fix missing site for app {}".format(app_id), fg="red"))
|
||||
logging.exception(f"Fix app related site missing issue failed, error: {e}")
|
||||
continue
|
||||
|
||||
if not processed_count:
|
||||
break
|
||||
|
||||
click.echo(click.style("Congratulations! Fix app related site missing issue successful!", fg="green"))
|
||||
click.echo(click.style("Fix for missing app-related sites completed successfully!", fg="green"))
|
||||
|
||||
|
||||
def register_commands(app):
|
||||
|
||||
@@ -4,30 +4,30 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class DeploymentConfig(BaseSettings):
|
||||
"""
|
||||
Deployment configs
|
||||
Configuration settings for application deployment
|
||||
"""
|
||||
|
||||
APPLICATION_NAME: str = Field(
|
||||
description="application name",
|
||||
description="Name of the application, used for identification and logging purposes",
|
||||
default="langgenius/dify",
|
||||
)
|
||||
|
||||
DEBUG: bool = Field(
|
||||
description="whether to enable debug mode.",
|
||||
description="Enable debug mode for additional logging and development features",
|
||||
default=False,
|
||||
)
|
||||
|
||||
TESTING: bool = Field(
|
||||
description="",
|
||||
description="Enable testing mode for running automated tests",
|
||||
default=False,
|
||||
)
|
||||
|
||||
EDITION: str = Field(
|
||||
description="deployment edition",
|
||||
description="Deployment edition of the application (e.g., 'SELF_HOSTED', 'CLOUD')",
|
||||
default="SELF_HOSTED",
|
||||
)
|
||||
|
||||
DEPLOY_ENV: str = Field(
|
||||
description="deployment environment, default to PRODUCTION.",
|
||||
description="Deployment environment (e.g., 'PRODUCTION', 'DEVELOPMENT'), default to PRODUCTION",
|
||||
default="PRODUCTION",
|
||||
)
|
||||
|
||||
@@ -4,17 +4,17 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class EnterpriseFeatureConfig(BaseSettings):
|
||||
"""
|
||||
Enterprise feature configs.
|
||||
Configuration for enterprise-level features.
|
||||
**Before using, please contact business@dify.ai by email to inquire about licensing matters.**
|
||||
"""
|
||||
|
||||
ENTERPRISE_ENABLED: bool = Field(
|
||||
description="whether to enable enterprise features."
|
||||
description="Enable or disable enterprise-level features."
|
||||
"Before using, please contact business@dify.ai by email to inquire about licensing matters.",
|
||||
default=False,
|
||||
)
|
||||
|
||||
CAN_REPLACE_LOGO: bool = Field(
|
||||
description="whether to allow replacing enterprise logo.",
|
||||
description="Allow customization of the enterprise logo.",
|
||||
default=False,
|
||||
)
|
||||
|
||||
@@ -6,30 +6,31 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class NotionConfig(BaseSettings):
|
||||
"""
|
||||
Notion integration configs
|
||||
Configuration settings for Notion integration
|
||||
"""
|
||||
|
||||
NOTION_CLIENT_ID: Optional[str] = Field(
|
||||
description="Notion client ID",
|
||||
description="Client ID for Notion API authentication. Required for OAuth 2.0 flow.",
|
||||
default=None,
|
||||
)
|
||||
|
||||
NOTION_CLIENT_SECRET: Optional[str] = Field(
|
||||
description="Notion client secret key",
|
||||
description="Client secret for Notion API authentication. Required for OAuth 2.0 flow.",
|
||||
default=None,
|
||||
)
|
||||
|
||||
NOTION_INTEGRATION_TYPE: Optional[str] = Field(
|
||||
description="Notion integration type, default to None, available values: internal.",
|
||||
description="Type of Notion integration."
|
||||
" Set to 'internal' for internal integrations, or None for public integrations.",
|
||||
default=None,
|
||||
)
|
||||
|
||||
NOTION_INTERNAL_SECRET: Optional[str] = Field(
|
||||
description="Notion internal secret key",
|
||||
description="Secret key for internal Notion integrations. Required when NOTION_INTEGRATION_TYPE is 'internal'.",
|
||||
default=None,
|
||||
)
|
||||
|
||||
NOTION_INTEGRATION_TOKEN: Optional[str] = Field(
|
||||
description="Notion integration token",
|
||||
description="Integration token for Notion API access. Used for direct API calls without OAuth flow.",
|
||||
default=None,
|
||||
)
|
||||
|
||||
@@ -6,20 +6,23 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class SentryConfig(BaseSettings):
|
||||
"""
|
||||
Sentry configs
|
||||
Configuration settings for Sentry error tracking and performance monitoring
|
||||
"""
|
||||
|
||||
SENTRY_DSN: Optional[str] = Field(
|
||||
description="Sentry DSN",
|
||||
description="Sentry Data Source Name (DSN)."
|
||||
" This is the unique identifier of your Sentry project, used to send events to the correct project.",
|
||||
default=None,
|
||||
)
|
||||
|
||||
SENTRY_TRACES_SAMPLE_RATE: NonNegativeFloat = Field(
|
||||
description="Sentry trace sample rate",
|
||||
description="Sample rate for Sentry performance monitoring traces."
|
||||
" Value between 0.0 and 1.0, where 1.0 means 100% of traces are sent to Sentry.",
|
||||
default=1.0,
|
||||
)
|
||||
|
||||
SENTRY_PROFILES_SAMPLE_RATE: NonNegativeFloat = Field(
|
||||
description="Sentry profiles sample rate",
|
||||
description="Sample rate for Sentry profiling."
|
||||
" Value between 0.0 and 1.0, where 1.0 means 100% of profiles are sent to Sentry.",
|
||||
default=1.0,
|
||||
)
|
||||
|
||||
@@ -8,145 +8,143 @@ from configs.feature.hosted_service import HostedServiceConfig
|
||||
|
||||
class SecurityConfig(BaseSettings):
|
||||
"""
|
||||
Secret Key configs
|
||||
Security-related configurations for the application
|
||||
"""
|
||||
|
||||
SECRET_KEY: Optional[str] = Field(
|
||||
description="Your App secret key will be used for securely signing the session cookie"
|
||||
description="Secret key for secure session cookie signing."
|
||||
"Make sure you are changing this key for your deployment with a strong key."
|
||||
"You can generate a strong key using `openssl rand -base64 42`."
|
||||
"Alternatively you can set it with `SECRET_KEY` environment variable.",
|
||||
"Generate a strong key using `openssl rand -base64 42` or set via the `SECRET_KEY` environment variable.",
|
||||
default=None,
|
||||
)
|
||||
|
||||
RESET_PASSWORD_TOKEN_EXPIRY_HOURS: PositiveInt = Field(
|
||||
description="Expiry time in hours for reset token",
|
||||
description="Duration in hours for which a password reset token remains valid",
|
||||
default=24,
|
||||
)
|
||||
|
||||
|
||||
class AppExecutionConfig(BaseSettings):
|
||||
"""
|
||||
App Execution configs
|
||||
Configuration parameters for application execution
|
||||
"""
|
||||
|
||||
APP_MAX_EXECUTION_TIME: PositiveInt = Field(
|
||||
description="execution timeout in seconds for app execution",
|
||||
description="Maximum allowed execution time for the application in seconds",
|
||||
default=1200,
|
||||
)
|
||||
APP_MAX_ACTIVE_REQUESTS: NonNegativeInt = Field(
|
||||
description="max active request per app, 0 means unlimited",
|
||||
description="Maximum number of concurrent active requests per app (0 for unlimited)",
|
||||
default=0,
|
||||
)
|
||||
|
||||
|
||||
class CodeExecutionSandboxConfig(BaseSettings):
|
||||
"""
|
||||
Code Execution Sandbox configs
|
||||
Configuration for the code execution sandbox environment
|
||||
"""
|
||||
|
||||
CODE_EXECUTION_ENDPOINT: HttpUrl = Field(
|
||||
description="endpoint URL of code execution service",
|
||||
description="URL endpoint for the code execution service",
|
||||
default="http://sandbox:8194",
|
||||
)
|
||||
|
||||
CODE_EXECUTION_API_KEY: str = Field(
|
||||
description="API key for code execution service",
|
||||
description="API key for accessing the code execution service",
|
||||
default="dify-sandbox",
|
||||
)
|
||||
|
||||
CODE_EXECUTION_CONNECT_TIMEOUT: Optional[float] = Field(
|
||||
description="connect timeout in seconds for code execution request",
|
||||
description="Connection timeout in seconds for code execution requests",
|
||||
default=10.0,
|
||||
)
|
||||
|
||||
CODE_EXECUTION_READ_TIMEOUT: Optional[float] = Field(
|
||||
description="read timeout in seconds for code execution request",
|
||||
description="Read timeout in seconds for code execution requests",
|
||||
default=60.0,
|
||||
)
|
||||
|
||||
CODE_EXECUTION_WRITE_TIMEOUT: Optional[float] = Field(
|
||||
description="write timeout in seconds for code execution request",
|
||||
description="Write timeout in seconds for code execution request",
|
||||
default=10.0,
|
||||
)
|
||||
|
||||
CODE_MAX_NUMBER: PositiveInt = Field(
|
||||
description="max depth for code execution",
|
||||
description="Maximum allowed numeric value in code execution",
|
||||
default=9223372036854775807,
|
||||
)
|
||||
|
||||
CODE_MIN_NUMBER: NegativeInt = Field(
|
||||
description="",
|
||||
description="Minimum allowed numeric value in code execution",
|
||||
default=-9223372036854775807,
|
||||
)
|
||||
|
||||
CODE_MAX_DEPTH: PositiveInt = Field(
|
||||
description="max depth for code execution",
|
||||
description="Maximum allowed depth for nested structures in code execution",
|
||||
default=5,
|
||||
)
|
||||
|
||||
CODE_MAX_PRECISION: PositiveInt = Field(
|
||||
description="max precision digits for float type in code execution",
|
||||
description="mMaximum number of decimal places for floating-point numbers in code execution",
|
||||
default=20,
|
||||
)
|
||||
|
||||
CODE_MAX_STRING_LENGTH: PositiveInt = Field(
|
||||
description="max string length for code execution",
|
||||
description="Maximum allowed length for strings in code execution",
|
||||
default=80000,
|
||||
)
|
||||
|
||||
CODE_MAX_STRING_ARRAY_LENGTH: PositiveInt = Field(
|
||||
description="",
|
||||
description="Maximum allowed length for string arrays in code execution",
|
||||
default=30,
|
||||
)
|
||||
|
||||
CODE_MAX_OBJECT_ARRAY_LENGTH: PositiveInt = Field(
|
||||
description="",
|
||||
description="Maximum allowed length for object arrays in code execution",
|
||||
default=30,
|
||||
)
|
||||
|
||||
CODE_MAX_NUMBER_ARRAY_LENGTH: PositiveInt = Field(
|
||||
description="",
|
||||
description="Maximum allowed length for numeric arrays in code execution",
|
||||
default=1000,
|
||||
)
|
||||
|
||||
|
||||
class EndpointConfig(BaseSettings):
|
||||
"""
|
||||
Module URL configs
|
||||
Configuration for various application endpoints and URLs
|
||||
"""
|
||||
|
||||
CONSOLE_API_URL: str = Field(
|
||||
description="The backend URL prefix of the console API."
|
||||
"used to concatenate the login authorization callback or notion integration callback.",
|
||||
description="Base URL for the console API,"
|
||||
"used for login authentication callback or notion integration callbacks",
|
||||
default="",
|
||||
)
|
||||
|
||||
CONSOLE_WEB_URL: str = Field(
|
||||
description="The front-end URL prefix of the console web."
|
||||
"used to concatenate some front-end addresses and for CORS configuration use.",
|
||||
description="Base URL for the console web interface," "used for frontend references and CORS configuration",
|
||||
default="",
|
||||
)
|
||||
|
||||
SERVICE_API_URL: str = Field(
|
||||
description="Service API Url prefix. used to display Service API Base Url to the front-end.",
|
||||
description="Base URL for the service API, displayed to users for API access",
|
||||
default="",
|
||||
)
|
||||
|
||||
APP_WEB_URL: str = Field(
|
||||
description="WebApp Url prefix. used to display WebAPP API Base Url to the front-end.",
|
||||
description="Base URL for the web application, used for frontend references",
|
||||
default="",
|
||||
)
|
||||
|
||||
|
||||
class FileAccessConfig(BaseSettings):
|
||||
"""
|
||||
File Access configs
|
||||
Configuration for file access and handling
|
||||
"""
|
||||
|
||||
FILES_URL: str = Field(
|
||||
description="File preview or download Url prefix."
|
||||
" used to display File preview or download Url to the front-end or as Multi-model inputs;"
|
||||
description="Base URL for file preview or download,"
|
||||
" used for frontend display and multi-model inputs"
|
||||
"Url is signed and has expiration time.",
|
||||
validation_alias=AliasChoices("FILES_URL", "CONSOLE_API_URL"),
|
||||
alias_priority=1,
|
||||
@@ -154,49 +152,49 @@ class FileAccessConfig(BaseSettings):
|
||||
)
|
||||
|
||||
FILES_ACCESS_TIMEOUT: int = Field(
|
||||
description="timeout in seconds for file accessing",
|
||||
description="Expiration time in seconds for file access URLs",
|
||||
default=300,
|
||||
)
|
||||
|
||||
|
||||
class FileUploadConfig(BaseSettings):
|
||||
"""
|
||||
File Uploading configs
|
||||
Configuration for file upload limitations
|
||||
"""
|
||||
|
||||
UPLOAD_FILE_SIZE_LIMIT: NonNegativeInt = Field(
|
||||
description="size limit in Megabytes for uploading files",
|
||||
description="Maximum allowed file size for uploads in megabytes",
|
||||
default=15,
|
||||
)
|
||||
|
||||
UPLOAD_FILE_BATCH_LIMIT: NonNegativeInt = Field(
|
||||
description="batch size limit for uploading files",
|
||||
description="Maximum number of files allowed in a single upload batch",
|
||||
default=5,
|
||||
)
|
||||
|
||||
UPLOAD_IMAGE_FILE_SIZE_LIMIT: NonNegativeInt = Field(
|
||||
description="image file size limit in Megabytes for uploading files",
|
||||
description="Maximum allowed image file size for uploads in megabytes",
|
||||
default=10,
|
||||
)
|
||||
|
||||
BATCH_UPLOAD_LIMIT: NonNegativeInt = Field(
|
||||
description="", # todo: to be clarified
|
||||
description="Maximum number of files allowed in a batch upload operation",
|
||||
default=20,
|
||||
)
|
||||
|
||||
|
||||
class HttpConfig(BaseSettings):
|
||||
"""
|
||||
HTTP configs
|
||||
HTTP-related configurations for the application
|
||||
"""
|
||||
|
||||
API_COMPRESSION_ENABLED: bool = Field(
|
||||
description="whether to enable HTTP response compression of gzip",
|
||||
description="Enable or disable gzip compression for HTTP responses",
|
||||
default=False,
|
||||
)
|
||||
|
||||
inner_CONSOLE_CORS_ALLOW_ORIGINS: str = Field(
|
||||
description="",
|
||||
description="Comma-separated list of allowed origins for CORS in the console",
|
||||
validation_alias=AliasChoices("CONSOLE_CORS_ALLOW_ORIGINS", "CONSOLE_WEB_URL"),
|
||||
default="",
|
||||
)
|
||||
@@ -218,359 +216,360 @@ class HttpConfig(BaseSettings):
|
||||
return self.inner_WEB_API_CORS_ALLOW_ORIGINS.split(",")
|
||||
|
||||
HTTP_REQUEST_MAX_CONNECT_TIMEOUT: Annotated[
|
||||
PositiveInt, Field(ge=10, description="connect timeout in seconds for HTTP request")
|
||||
PositiveInt, Field(ge=10, description="Maximum connection timeout in seconds for HTTP requests")
|
||||
] = 10
|
||||
|
||||
HTTP_REQUEST_MAX_READ_TIMEOUT: Annotated[
|
||||
PositiveInt, Field(ge=60, description="read timeout in seconds for HTTP request")
|
||||
PositiveInt, Field(ge=60, description="Maximum read timeout in seconds for HTTP requests")
|
||||
] = 60
|
||||
|
||||
HTTP_REQUEST_MAX_WRITE_TIMEOUT: Annotated[
|
||||
PositiveInt, Field(ge=10, description="read timeout in seconds for HTTP request")
|
||||
PositiveInt, Field(ge=10, description="Maximum write timeout in seconds for HTTP requests")
|
||||
] = 20
|
||||
|
||||
HTTP_REQUEST_NODE_MAX_BINARY_SIZE: PositiveInt = Field(
|
||||
description="",
|
||||
description="Maximum allowed size in bytes for binary data in HTTP requests",
|
||||
default=10 * 1024 * 1024,
|
||||
)
|
||||
|
||||
HTTP_REQUEST_NODE_MAX_TEXT_SIZE: PositiveInt = Field(
|
||||
description="",
|
||||
description="Maximum allowed size in bytes for text data in HTTP requests",
|
||||
default=1 * 1024 * 1024,
|
||||
)
|
||||
|
||||
SSRF_PROXY_HTTP_URL: Optional[str] = Field(
|
||||
description="HTTP URL for SSRF proxy",
|
||||
description="Proxy URL for HTTP requests to prevent Server-Side Request Forgery (SSRF)",
|
||||
default=None,
|
||||
)
|
||||
|
||||
SSRF_PROXY_HTTPS_URL: Optional[str] = Field(
|
||||
description="HTTPS URL for SSRF proxy",
|
||||
description="Proxy URL for HTTPS requests to prevent Server-Side Request Forgery (SSRF)",
|
||||
default=None,
|
||||
)
|
||||
|
||||
|
||||
class InnerAPIConfig(BaseSettings):
|
||||
"""
|
||||
Inner API configs
|
||||
Configuration for internal API functionality
|
||||
"""
|
||||
|
||||
INNER_API: bool = Field(
|
||||
description="whether to enable the inner API",
|
||||
description="Enable or disable the internal API",
|
||||
default=False,
|
||||
)
|
||||
|
||||
INNER_API_KEY: Optional[str] = Field(
|
||||
description="The inner API key is used to authenticate the inner API",
|
||||
description="API key for accessing the internal API",
|
||||
default=None,
|
||||
)
|
||||
|
||||
|
||||
class LoggingConfig(BaseSettings):
|
||||
"""
|
||||
Logging configs
|
||||
Configuration for application logging
|
||||
"""
|
||||
|
||||
LOG_LEVEL: str = Field(
|
||||
description="Log output level, default to INFO. It is recommended to set it to ERROR for production.",
|
||||
description="Logging level, default to INFO. Set to ERROR for production environments.",
|
||||
default="INFO",
|
||||
)
|
||||
|
||||
LOG_FILE: Optional[str] = Field(
|
||||
description="logging output file path",
|
||||
description="File path for log output.",
|
||||
default=None,
|
||||
)
|
||||
|
||||
LOG_FORMAT: str = Field(
|
||||
description="log format",
|
||||
description="Format string for log messages",
|
||||
default="%(asctime)s.%(msecs)03d %(levelname)s [%(threadName)s] [%(filename)s:%(lineno)d] - %(message)s",
|
||||
)
|
||||
|
||||
LOG_DATEFORMAT: Optional[str] = Field(
|
||||
description="log date format",
|
||||
description="Date format string for log timestamps",
|
||||
default=None,
|
||||
)
|
||||
|
||||
LOG_TZ: Optional[str] = Field(
|
||||
description="specify log timezone, eg: America/New_York",
|
||||
description="Timezone for log timestamps (e.g., 'America/New_York')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
|
||||
class ModelLoadBalanceConfig(BaseSettings):
|
||||
"""
|
||||
Model load balance configs
|
||||
Configuration for model load balancing
|
||||
"""
|
||||
|
||||
MODEL_LB_ENABLED: bool = Field(
|
||||
description="whether to enable model load balancing",
|
||||
description="Enable or disable load balancing for models",
|
||||
default=False,
|
||||
)
|
||||
|
||||
|
||||
class BillingConfig(BaseSettings):
|
||||
"""
|
||||
Platform Billing Configurations
|
||||
Configuration for platform billing features
|
||||
"""
|
||||
|
||||
BILLING_ENABLED: bool = Field(
|
||||
description="whether to enable billing",
|
||||
description="Enable or disable billing functionality",
|
||||
default=False,
|
||||
)
|
||||
|
||||
|
||||
class UpdateConfig(BaseSettings):
|
||||
"""
|
||||
Update configs
|
||||
Configuration for application update checks
|
||||
"""
|
||||
|
||||
CHECK_UPDATE_URL: str = Field(
|
||||
description="url for checking updates",
|
||||
description="URL to check for application updates",
|
||||
default="https://updates.dify.ai",
|
||||
)
|
||||
|
||||
|
||||
class WorkflowConfig(BaseSettings):
|
||||
"""
|
||||
Workflow feature configs
|
||||
Configuration for workflow execution
|
||||
"""
|
||||
|
||||
WORKFLOW_MAX_EXECUTION_STEPS: PositiveInt = Field(
|
||||
description="max execution steps in single workflow execution",
|
||||
description="Maximum number of steps allowed in a single workflow execution",
|
||||
default=500,
|
||||
)
|
||||
|
||||
WORKFLOW_MAX_EXECUTION_TIME: PositiveInt = Field(
|
||||
description="max execution time in seconds in single workflow execution",
|
||||
description="Maximum execution time in seconds for a single workflow",
|
||||
default=1200,
|
||||
)
|
||||
|
||||
WORKFLOW_CALL_MAX_DEPTH: PositiveInt = Field(
|
||||
description="max depth of calling in single workflow execution",
|
||||
description="Maximum allowed depth for nested workflow calls",
|
||||
default=5,
|
||||
)
|
||||
|
||||
MAX_VARIABLE_SIZE: PositiveInt = Field(
|
||||
description="The maximum size in bytes of a variable. default to 5KB.",
|
||||
description="Maximum size in bytes for a single variable in workflows. Default to 5KB.",
|
||||
default=5 * 1024,
|
||||
)
|
||||
|
||||
|
||||
class OAuthConfig(BaseSettings):
|
||||
"""
|
||||
oauth configs
|
||||
Configuration for OAuth authentication
|
||||
"""
|
||||
|
||||
OAUTH_REDIRECT_PATH: str = Field(
|
||||
description="redirect path for OAuth",
|
||||
description="Redirect path for OAuth authentication callbacks",
|
||||
default="/console/api/oauth/authorize",
|
||||
)
|
||||
|
||||
GITHUB_CLIENT_ID: Optional[str] = Field(
|
||||
description="GitHub client id for OAuth",
|
||||
description="GitHub OAuth client secret",
|
||||
default=None,
|
||||
)
|
||||
|
||||
GITHUB_CLIENT_SECRET: Optional[str] = Field(
|
||||
description="GitHub client secret key for OAuth",
|
||||
description="GitHub OAuth client secret",
|
||||
default=None,
|
||||
)
|
||||
|
||||
GOOGLE_CLIENT_ID: Optional[str] = Field(
|
||||
description="Google client id for OAuth",
|
||||
description="Google OAuth client ID",
|
||||
default=None,
|
||||
)
|
||||
|
||||
GOOGLE_CLIENT_SECRET: Optional[str] = Field(
|
||||
description="Google client secret key for OAuth",
|
||||
description="Google OAuth client secret",
|
||||
default=None,
|
||||
)
|
||||
|
||||
|
||||
class ModerationConfig(BaseSettings):
|
||||
"""
|
||||
Moderation in app configs.
|
||||
Configuration for content moderation
|
||||
"""
|
||||
|
||||
MODERATION_BUFFER_SIZE: PositiveInt = Field(
|
||||
description="buffer size for moderation",
|
||||
description="Size of the buffer for content moderation processing",
|
||||
default=300,
|
||||
)
|
||||
|
||||
|
||||
class ToolConfig(BaseSettings):
|
||||
"""
|
||||
Tool configs
|
||||
Configuration for tool management
|
||||
"""
|
||||
|
||||
TOOL_ICON_CACHE_MAX_AGE: PositiveInt = Field(
|
||||
description="max age in seconds for tool icon caching",
|
||||
description="Maximum age in seconds for caching tool icons",
|
||||
default=3600,
|
||||
)
|
||||
|
||||
|
||||
class MailConfig(BaseSettings):
|
||||
"""
|
||||
Mail Configurations
|
||||
Configuration for email services
|
||||
"""
|
||||
|
||||
MAIL_TYPE: Optional[str] = Field(
|
||||
description="Mail provider type name, default to None, available values are `smtp` and `resend`.",
|
||||
description="Email service provider type ('smtp' or 'resend'), default to None.",
|
||||
default=None,
|
||||
)
|
||||
|
||||
MAIL_DEFAULT_SEND_FROM: Optional[str] = Field(
|
||||
description="default email address for sending from ",
|
||||
description="Default email address to use as the sender",
|
||||
default=None,
|
||||
)
|
||||
|
||||
RESEND_API_KEY: Optional[str] = Field(
|
||||
description="API key for Resend",
|
||||
description="API key for Resend email service",
|
||||
default=None,
|
||||
)
|
||||
|
||||
RESEND_API_URL: Optional[str] = Field(
|
||||
description="API URL for Resend",
|
||||
description="API URL for Resend email service",
|
||||
default=None,
|
||||
)
|
||||
|
||||
SMTP_SERVER: Optional[str] = Field(
|
||||
description="smtp server host",
|
||||
description="SMTP server hostname",
|
||||
default=None,
|
||||
)
|
||||
|
||||
SMTP_PORT: Optional[int] = Field(
|
||||
description="smtp server port",
|
||||
description="SMTP server port number",
|
||||
default=465,
|
||||
)
|
||||
|
||||
SMTP_USERNAME: Optional[str] = Field(
|
||||
description="smtp server username",
|
||||
description="Username for SMTP authentication",
|
||||
default=None,
|
||||
)
|
||||
|
||||
SMTP_PASSWORD: Optional[str] = Field(
|
||||
description="smtp server password",
|
||||
description="Password for SMTP authentication",
|
||||
default=None,
|
||||
)
|
||||
|
||||
SMTP_USE_TLS: bool = Field(
|
||||
description="whether to use TLS connection to smtp server",
|
||||
description="Enable TLS encryption for SMTP connections",
|
||||
default=False,
|
||||
)
|
||||
|
||||
SMTP_OPPORTUNISTIC_TLS: bool = Field(
|
||||
description="whether to use opportunistic TLS connection to smtp server",
|
||||
description="Enable opportunistic TLS for SMTP connections",
|
||||
default=False,
|
||||
)
|
||||
|
||||
|
||||
class RagEtlConfig(BaseSettings):
|
||||
"""
|
||||
RAG ETL Configurations.
|
||||
Configuration for RAG ETL processes
|
||||
"""
|
||||
|
||||
ETL_TYPE: str = Field(
|
||||
description="RAG ETL type name, default to `dify`, available values are `dify` and `Unstructured`. ",
|
||||
description="RAG ETL type ('dify' or 'Unstructured'), default to 'dify'",
|
||||
default="dify",
|
||||
)
|
||||
|
||||
KEYWORD_DATA_SOURCE_TYPE: str = Field(
|
||||
description="source type for keyword data, default to `database`, available values are `database` .",
|
||||
description="Data source type for keyword extraction"
|
||||
" ('database' or other supported types), default to 'database'",
|
||||
default="database",
|
||||
)
|
||||
|
||||
UNSTRUCTURED_API_URL: Optional[str] = Field(
|
||||
description="API URL for Unstructured",
|
||||
description="API URL for Unstructured.io service",
|
||||
default=None,
|
||||
)
|
||||
|
||||
UNSTRUCTURED_API_KEY: Optional[str] = Field(
|
||||
description="API key for Unstructured",
|
||||
description="API key for Unstructured.io service",
|
||||
default=None,
|
||||
)
|
||||
|
||||
|
||||
class DataSetConfig(BaseSettings):
|
||||
"""
|
||||
Dataset configs
|
||||
Configuration for dataset management
|
||||
"""
|
||||
|
||||
CLEAN_DAY_SETTING: PositiveInt = Field(
|
||||
description="interval in days for cleaning up dataset",
|
||||
description="Interval in days for dataset cleanup operations",
|
||||
default=30,
|
||||
)
|
||||
|
||||
DATASET_OPERATOR_ENABLED: bool = Field(
|
||||
description="whether to enable dataset operator",
|
||||
description="Enable or disable dataset operator functionality",
|
||||
default=False,
|
||||
)
|
||||
|
||||
|
||||
class WorkspaceConfig(BaseSettings):
|
||||
"""
|
||||
Workspace configs
|
||||
Configuration for workspace management
|
||||
"""
|
||||
|
||||
INVITE_EXPIRY_HOURS: PositiveInt = Field(
|
||||
description="workspaces invitation expiration in hours",
|
||||
description="Expiration time in hours for workspace invitation links",
|
||||
default=72,
|
||||
)
|
||||
|
||||
|
||||
class IndexingConfig(BaseSettings):
|
||||
"""
|
||||
Indexing configs.
|
||||
Configuration for indexing operations
|
||||
"""
|
||||
|
||||
INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH: PositiveInt = Field(
|
||||
description="max segmentation token length for indexing",
|
||||
description="Maximum token length for text segmentation during indexing",
|
||||
default=1000,
|
||||
)
|
||||
|
||||
|
||||
class ImageFormatConfig(BaseSettings):
|
||||
MULTIMODAL_SEND_IMAGE_FORMAT: str = Field(
|
||||
description="multi model send image format, support base64, url, default is base64",
|
||||
description="Format for sending images in multimodal contexts ('base64' or 'url'), default is base64",
|
||||
default="base64",
|
||||
)
|
||||
|
||||
|
||||
class CeleryBeatConfig(BaseSettings):
|
||||
CELERY_BEAT_SCHEDULER_TIME: int = Field(
|
||||
description="the time of the celery scheduler, default to 1 day",
|
||||
description="Interval in days for Celery Beat scheduler execution, default to 1 day",
|
||||
default=1,
|
||||
)
|
||||
|
||||
|
||||
class PositionConfig(BaseSettings):
|
||||
POSITION_PROVIDER_PINS: str = Field(
|
||||
description="The heads of model providers",
|
||||
description="Comma-separated list of pinned model providers",
|
||||
default="",
|
||||
)
|
||||
|
||||
POSITION_PROVIDER_INCLUDES: str = Field(
|
||||
description="The included model providers",
|
||||
description="Comma-separated list of included model providers",
|
||||
default="",
|
||||
)
|
||||
|
||||
POSITION_PROVIDER_EXCLUDES: str = Field(
|
||||
description="The excluded model providers",
|
||||
description="Comma-separated list of excluded model providers",
|
||||
default="",
|
||||
)
|
||||
|
||||
POSITION_TOOL_PINS: str = Field(
|
||||
description="The heads of tools",
|
||||
description="Comma-separated list of pinned tools",
|
||||
default="",
|
||||
)
|
||||
|
||||
POSITION_TOOL_INCLUDES: str = Field(
|
||||
description="The included tools",
|
||||
description="Comma-separated list of included tools",
|
||||
default="",
|
||||
)
|
||||
|
||||
POSITION_TOOL_EXCLUDES: str = Field(
|
||||
description="The excluded tools",
|
||||
description="Comma-separated list of excluded tools",
|
||||
default="",
|
||||
)
|
||||
|
||||
|
||||
@@ -6,31 +6,31 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class HostedOpenAiConfig(BaseSettings):
|
||||
"""
|
||||
Hosted OpenAI service config
|
||||
Configuration for hosted OpenAI service
|
||||
"""
|
||||
|
||||
HOSTED_OPENAI_API_KEY: Optional[str] = Field(
|
||||
description="",
|
||||
description="API key for hosted OpenAI service",
|
||||
default=None,
|
||||
)
|
||||
|
||||
HOSTED_OPENAI_API_BASE: Optional[str] = Field(
|
||||
description="",
|
||||
description="Base URL for hosted OpenAI API",
|
||||
default=None,
|
||||
)
|
||||
|
||||
HOSTED_OPENAI_API_ORGANIZATION: Optional[str] = Field(
|
||||
description="",
|
||||
description="Organization ID for hosted OpenAI service",
|
||||
default=None,
|
||||
)
|
||||
|
||||
HOSTED_OPENAI_TRIAL_ENABLED: bool = Field(
|
||||
description="",
|
||||
description="Enable trial access to hosted OpenAI service",
|
||||
default=False,
|
||||
)
|
||||
|
||||
HOSTED_OPENAI_TRIAL_MODELS: str = Field(
|
||||
description="",
|
||||
description="Comma-separated list of available models for trial access",
|
||||
default="gpt-3.5-turbo,"
|
||||
"gpt-3.5-turbo-1106,"
|
||||
"gpt-3.5-turbo-instruct,"
|
||||
@@ -42,17 +42,17 @@ class HostedOpenAiConfig(BaseSettings):
|
||||
)
|
||||
|
||||
HOSTED_OPENAI_QUOTA_LIMIT: NonNegativeInt = Field(
|
||||
description="",
|
||||
description="Quota limit for hosted OpenAI service usage",
|
||||
default=200,
|
||||
)
|
||||
|
||||
HOSTED_OPENAI_PAID_ENABLED: bool = Field(
|
||||
description="",
|
||||
description="Enable paid access to hosted OpenAI service",
|
||||
default=False,
|
||||
)
|
||||
|
||||
HOSTED_OPENAI_PAID_MODELS: str = Field(
|
||||
description="",
|
||||
description="Comma-separated list of available models for paid access",
|
||||
default="gpt-4,"
|
||||
"gpt-4-turbo-preview,"
|
||||
"gpt-4-turbo-2024-04-09,"
|
||||
@@ -71,124 +71,122 @@ class HostedOpenAiConfig(BaseSettings):
|
||||
|
||||
class HostedAzureOpenAiConfig(BaseSettings):
|
||||
"""
|
||||
Hosted OpenAI service config
|
||||
Configuration for hosted Azure OpenAI service
|
||||
"""
|
||||
|
||||
HOSTED_AZURE_OPENAI_ENABLED: bool = Field(
|
||||
description="",
|
||||
description="Enable hosted Azure OpenAI service",
|
||||
default=False,
|
||||
)
|
||||
|
||||
HOSTED_AZURE_OPENAI_API_KEY: Optional[str] = Field(
|
||||
description="",
|
||||
description="API key for hosted Azure OpenAI service",
|
||||
default=None,
|
||||
)
|
||||
|
||||
HOSTED_AZURE_OPENAI_API_BASE: Optional[str] = Field(
|
||||
description="",
|
||||
description="Base URL for hosted Azure OpenAI API",
|
||||
default=None,
|
||||
)
|
||||
|
||||
HOSTED_AZURE_OPENAI_QUOTA_LIMIT: NonNegativeInt = Field(
|
||||
description="",
|
||||
description="Quota limit for hosted Azure OpenAI service usage",
|
||||
default=200,
|
||||
)
|
||||
|
||||
|
||||
class HostedAnthropicConfig(BaseSettings):
|
||||
"""
|
||||
Hosted Azure OpenAI service config
|
||||
Configuration for hosted Anthropic service
|
||||
"""
|
||||
|
||||
HOSTED_ANTHROPIC_API_BASE: Optional[str] = Field(
|
||||
description="",
|
||||
description="Base URL for hosted Anthropic API",
|
||||
default=None,
|
||||
)
|
||||
|
||||
HOSTED_ANTHROPIC_API_KEY: Optional[str] = Field(
|
||||
description="",
|
||||
description="API key for hosted Anthropic service",
|
||||
default=None,
|
||||
)
|
||||
|
||||
HOSTED_ANTHROPIC_TRIAL_ENABLED: bool = Field(
|
||||
description="",
|
||||
description="Enable trial access to hosted Anthropic service",
|
||||
default=False,
|
||||
)
|
||||
|
||||
HOSTED_ANTHROPIC_QUOTA_LIMIT: NonNegativeInt = Field(
|
||||
description="",
|
||||
description="Quota limit for hosted Anthropic service usage",
|
||||
default=600000,
|
||||
)
|
||||
|
||||
HOSTED_ANTHROPIC_PAID_ENABLED: bool = Field(
|
||||
description="",
|
||||
description="Enable paid access to hosted Anthropic service",
|
||||
default=False,
|
||||
)
|
||||
|
||||
|
||||
class HostedMinmaxConfig(BaseSettings):
|
||||
"""
|
||||
Hosted Minmax service config
|
||||
Configuration for hosted Minmax service
|
||||
"""
|
||||
|
||||
HOSTED_MINIMAX_ENABLED: bool = Field(
|
||||
description="",
|
||||
description="Enable hosted Minmax service",
|
||||
default=False,
|
||||
)
|
||||
|
||||
|
||||
class HostedSparkConfig(BaseSettings):
|
||||
"""
|
||||
Hosted Spark service config
|
||||
Configuration for hosted Spark service
|
||||
"""
|
||||
|
||||
HOSTED_SPARK_ENABLED: bool = Field(
|
||||
description="",
|
||||
description="Enable hosted Spark service",
|
||||
default=False,
|
||||
)
|
||||
|
||||
|
||||
class HostedZhipuAIConfig(BaseSettings):
|
||||
"""
|
||||
Hosted Minmax service config
|
||||
Configuration for hosted ZhipuAI service
|
||||
"""
|
||||
|
||||
HOSTED_ZHIPUAI_ENABLED: bool = Field(
|
||||
description="",
|
||||
description="Enable hosted ZhipuAI service",
|
||||
default=False,
|
||||
)
|
||||
|
||||
|
||||
class HostedModerationConfig(BaseSettings):
|
||||
"""
|
||||
Hosted Moderation service config
|
||||
Configuration for hosted Moderation service
|
||||
"""
|
||||
|
||||
HOSTED_MODERATION_ENABLED: bool = Field(
|
||||
description="",
|
||||
description="Enable hosted Moderation service",
|
||||
default=False,
|
||||
)
|
||||
|
||||
HOSTED_MODERATION_PROVIDERS: str = Field(
|
||||
description="",
|
||||
description="Comma-separated list of moderation providers",
|
||||
default="",
|
||||
)
|
||||
|
||||
|
||||
class HostedFetchAppTemplateConfig(BaseSettings):
|
||||
"""
|
||||
Hosted Moderation service config
|
||||
Configuration for fetching app templates
|
||||
"""
|
||||
|
||||
HOSTED_FETCH_APP_TEMPLATES_MODE: str = Field(
|
||||
description="the mode for fetching app templates,"
|
||||
" default to remote,"
|
||||
" available values: remote, db, builtin",
|
||||
description="Mode for fetching app templates: remote, db, or builtin" " default to remote,",
|
||||
default="remote",
|
||||
)
|
||||
|
||||
HOSTED_FETCH_APP_TEMPLATES_REMOTE_DOMAIN: str = Field(
|
||||
description="the domain for fetching remote app templates",
|
||||
description="Domain for fetching remote app templates",
|
||||
default="https://tmpl.dify.ai",
|
||||
)
|
||||
|
||||
|
||||
@@ -31,70 +31,71 @@ from configs.middleware.vdb.weaviate_config import WeaviateConfig
|
||||
|
||||
class StorageConfig(BaseSettings):
|
||||
STORAGE_TYPE: str = Field(
|
||||
description="storage type,"
|
||||
" default to `local`,"
|
||||
" available values are `local`, `s3`, `azure-blob`, `aliyun-oss`, `google-storage`.",
|
||||
description="Type of storage to use."
|
||||
" Options: 'local', 's3', 'azure-blob', 'aliyun-oss', 'google-storage'. Default is 'local'.",
|
||||
default="local",
|
||||
)
|
||||
|
||||
STORAGE_LOCAL_PATH: str = Field(
|
||||
description="local storage path",
|
||||
description="Path for local storage when STORAGE_TYPE is set to 'local'.",
|
||||
default="storage",
|
||||
)
|
||||
|
||||
|
||||
class VectorStoreConfig(BaseSettings):
|
||||
VECTOR_STORE: Optional[str] = Field(
|
||||
description="vector store type",
|
||||
description="Type of vector store to use for efficient similarity search."
|
||||
" Set to None if not using a vector store.",
|
||||
default=None,
|
||||
)
|
||||
|
||||
|
||||
class KeywordStoreConfig(BaseSettings):
|
||||
KEYWORD_STORE: str = Field(
|
||||
description="keyword store type",
|
||||
description="Method for keyword extraction and storage."
|
||||
" Default is 'jieba', a Chinese text segmentation library.",
|
||||
default="jieba",
|
||||
)
|
||||
|
||||
|
||||
class DatabaseConfig:
|
||||
DB_HOST: str = Field(
|
||||
description="db host",
|
||||
description="Hostname or IP address of the database server.",
|
||||
default="localhost",
|
||||
)
|
||||
|
||||
DB_PORT: PositiveInt = Field(
|
||||
description="db port",
|
||||
description="Port number for database connection.",
|
||||
default=5432,
|
||||
)
|
||||
|
||||
DB_USERNAME: str = Field(
|
||||
description="db username",
|
||||
description="Username for database authentication.",
|
||||
default="postgres",
|
||||
)
|
||||
|
||||
DB_PASSWORD: str = Field(
|
||||
description="db password",
|
||||
description="Password for database authentication.",
|
||||
default="",
|
||||
)
|
||||
|
||||
DB_DATABASE: str = Field(
|
||||
description="db database",
|
||||
description="Name of the database to connect to.",
|
||||
default="dify",
|
||||
)
|
||||
|
||||
DB_CHARSET: str = Field(
|
||||
description="db charset",
|
||||
description="Character set for database connection.",
|
||||
default="",
|
||||
)
|
||||
|
||||
DB_EXTRAS: str = Field(
|
||||
description="db extras options. Example: keepalives_idle=60&keepalives=1",
|
||||
description="Additional database connection parameters. Example: 'keepalives_idle=60&keepalives=1'",
|
||||
default="",
|
||||
)
|
||||
|
||||
SQLALCHEMY_DATABASE_URI_SCHEME: str = Field(
|
||||
description="db uri scheme",
|
||||
description="Database URI scheme for SQLAlchemy connection.",
|
||||
default="postgresql",
|
||||
)
|
||||
|
||||
@@ -112,27 +113,27 @@ class DatabaseConfig:
|
||||
)
|
||||
|
||||
SQLALCHEMY_POOL_SIZE: NonNegativeInt = Field(
|
||||
description="pool size of SqlAlchemy",
|
||||
description="Maximum number of database connections in the pool.",
|
||||
default=30,
|
||||
)
|
||||
|
||||
SQLALCHEMY_MAX_OVERFLOW: NonNegativeInt = Field(
|
||||
description="max overflows for SqlAlchemy",
|
||||
description="Maximum number of connections that can be created beyond the pool_size.",
|
||||
default=10,
|
||||
)
|
||||
|
||||
SQLALCHEMY_POOL_RECYCLE: NonNegativeInt = Field(
|
||||
description="SqlAlchemy pool recycle",
|
||||
description="Number of seconds after which a connection is automatically recycled.",
|
||||
default=3600,
|
||||
)
|
||||
|
||||
SQLALCHEMY_POOL_PRE_PING: bool = Field(
|
||||
description="whether to enable pool pre-ping in SqlAlchemy",
|
||||
description="If True, enables connection pool pre-ping feature to check connections.",
|
||||
default=False,
|
||||
)
|
||||
|
||||
SQLALCHEMY_ECHO: bool | str = Field(
|
||||
description="whether to enable SqlAlchemy echo",
|
||||
description="If True, SQLAlchemy will log all SQL statements.",
|
||||
default=False,
|
||||
)
|
||||
|
||||
@@ -150,27 +151,27 @@ class DatabaseConfig:
|
||||
|
||||
class CeleryConfig(DatabaseConfig):
|
||||
CELERY_BACKEND: str = Field(
|
||||
description="Celery backend, available values are `database`, `redis`",
|
||||
description="Backend for Celery task results. Options: 'database', 'redis'.",
|
||||
default="database",
|
||||
)
|
||||
|
||||
CELERY_BROKER_URL: Optional[str] = Field(
|
||||
description="CELERY_BROKER_URL",
|
||||
description="URL of the message broker for Celery tasks.",
|
||||
default=None,
|
||||
)
|
||||
|
||||
CELERY_USE_SENTINEL: Optional[bool] = Field(
|
||||
description="Whether to use Redis Sentinel mode",
|
||||
description="Whether to use Redis Sentinel for high availability.",
|
||||
default=False,
|
||||
)
|
||||
|
||||
CELERY_SENTINEL_MASTER_NAME: Optional[str] = Field(
|
||||
description="Redis Sentinel master name",
|
||||
description="Name of the Redis Sentinel master.",
|
||||
default=None,
|
||||
)
|
||||
|
||||
CELERY_SENTINEL_SOCKET_TIMEOUT: Optional[PositiveFloat] = Field(
|
||||
description="Redis Sentinel socket timeout",
|
||||
description="Timeout for Redis Sentinel socket operations in seconds.",
|
||||
default=0.1,
|
||||
)
|
||||
|
||||
|
||||
26
api/configs/middleware/cache/redis_config.py
vendored
26
api/configs/middleware/cache/redis_config.py
vendored
@@ -6,65 +6,65 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class RedisConfig(BaseSettings):
|
||||
"""
|
||||
Redis configs
|
||||
Configuration settings for Redis connection
|
||||
"""
|
||||
|
||||
REDIS_HOST: str = Field(
|
||||
description="Redis host",
|
||||
description="Hostname or IP address of the Redis server",
|
||||
default="localhost",
|
||||
)
|
||||
|
||||
REDIS_PORT: PositiveInt = Field(
|
||||
description="Redis port",
|
||||
description="Port number on which the Redis server is listening",
|
||||
default=6379,
|
||||
)
|
||||
|
||||
REDIS_USERNAME: Optional[str] = Field(
|
||||
description="Redis username",
|
||||
description="Username for Redis authentication (if required)",
|
||||
default=None,
|
||||
)
|
||||
|
||||
REDIS_PASSWORD: Optional[str] = Field(
|
||||
description="Redis password",
|
||||
description="Password for Redis authentication (if required)",
|
||||
default=None,
|
||||
)
|
||||
|
||||
REDIS_DB: NonNegativeInt = Field(
|
||||
description="Redis database id, default to 0",
|
||||
description="Redis database number to use (0-15)",
|
||||
default=0,
|
||||
)
|
||||
|
||||
REDIS_USE_SSL: bool = Field(
|
||||
description="whether to use SSL for Redis connection",
|
||||
description="Enable SSL/TLS for the Redis connection",
|
||||
default=False,
|
||||
)
|
||||
|
||||
REDIS_USE_SENTINEL: Optional[bool] = Field(
|
||||
description="Whether to use Redis Sentinel mode",
|
||||
description="Enable Redis Sentinel mode for high availability",
|
||||
default=False,
|
||||
)
|
||||
|
||||
REDIS_SENTINELS: Optional[str] = Field(
|
||||
description="Redis Sentinel nodes",
|
||||
description="Comma-separated list of Redis Sentinel nodes (host:port)",
|
||||
default=None,
|
||||
)
|
||||
|
||||
REDIS_SENTINEL_SERVICE_NAME: Optional[str] = Field(
|
||||
description="Redis Sentinel service name",
|
||||
description="Name of the Redis Sentinel service to monitor",
|
||||
default=None,
|
||||
)
|
||||
|
||||
REDIS_SENTINEL_USERNAME: Optional[str] = Field(
|
||||
description="Redis Sentinel username",
|
||||
description="Username for Redis Sentinel authentication (if required)",
|
||||
default=None,
|
||||
)
|
||||
|
||||
REDIS_SENTINEL_PASSWORD: Optional[str] = Field(
|
||||
description="Redis Sentinel password",
|
||||
description="Password for Redis Sentinel authentication (if required)",
|
||||
default=None,
|
||||
)
|
||||
|
||||
REDIS_SENTINEL_SOCKET_TIMEOUT: Optional[PositiveFloat] = Field(
|
||||
description="Redis Sentinel socket timeout",
|
||||
description="Socket timeout in seconds for Redis Sentinel connections",
|
||||
default=0.1,
|
||||
)
|
||||
|
||||
@@ -6,40 +6,40 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class AliyunOSSStorageConfig(BaseSettings):
|
||||
"""
|
||||
Aliyun storage configs
|
||||
Configuration settings for Aliyun Object Storage Service (OSS)
|
||||
"""
|
||||
|
||||
ALIYUN_OSS_BUCKET_NAME: Optional[str] = Field(
|
||||
description="Aliyun OSS bucket name",
|
||||
description="Name of the Aliyun OSS bucket to store and retrieve objects",
|
||||
default=None,
|
||||
)
|
||||
|
||||
ALIYUN_OSS_ACCESS_KEY: Optional[str] = Field(
|
||||
description="Aliyun OSS access key",
|
||||
description="Access key ID for authenticating with Aliyun OSS",
|
||||
default=None,
|
||||
)
|
||||
|
||||
ALIYUN_OSS_SECRET_KEY: Optional[str] = Field(
|
||||
description="Aliyun OSS secret key",
|
||||
description="Secret access key for authenticating with Aliyun OSS",
|
||||
default=None,
|
||||
)
|
||||
|
||||
ALIYUN_OSS_ENDPOINT: Optional[str] = Field(
|
||||
description="Aliyun OSS endpoint URL",
|
||||
description="URL of the Aliyun OSS endpoint for your chosen region",
|
||||
default=None,
|
||||
)
|
||||
|
||||
ALIYUN_OSS_REGION: Optional[str] = Field(
|
||||
description="Aliyun OSS region",
|
||||
description="Aliyun OSS region where your bucket is located (e.g., 'oss-cn-hangzhou')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
ALIYUN_OSS_AUTH_VERSION: Optional[str] = Field(
|
||||
description="Aliyun OSS authentication version",
|
||||
description="Version of the authentication protocol to use with Aliyun OSS (e.g., 'v4')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
ALIYUN_OSS_PATH: Optional[str] = Field(
|
||||
description="Aliyun OSS path",
|
||||
description="Base path within the bucket to store objects (e.g., 'my-app-data/')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
@@ -6,40 +6,40 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class S3StorageConfig(BaseSettings):
|
||||
"""
|
||||
S3 storage configs
|
||||
Configuration settings for S3-compatible object storage
|
||||
"""
|
||||
|
||||
S3_ENDPOINT: Optional[str] = Field(
|
||||
description="S3 storage endpoint",
|
||||
description="URL of the S3-compatible storage endpoint (e.g., 'https://s3.amazonaws.com')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
S3_REGION: Optional[str] = Field(
|
||||
description="S3 storage region",
|
||||
description="Region where the S3 bucket is located (e.g., 'us-east-1')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
S3_BUCKET_NAME: Optional[str] = Field(
|
||||
description="S3 storage bucket name",
|
||||
description="Name of the S3 bucket to store and retrieve objects",
|
||||
default=None,
|
||||
)
|
||||
|
||||
S3_ACCESS_KEY: Optional[str] = Field(
|
||||
description="S3 storage access key",
|
||||
description="Access key ID for authenticating with the S3 service",
|
||||
default=None,
|
||||
)
|
||||
|
||||
S3_SECRET_KEY: Optional[str] = Field(
|
||||
description="S3 storage secret key",
|
||||
description="Secret access key for authenticating with the S3 service",
|
||||
default=None,
|
||||
)
|
||||
|
||||
S3_ADDRESS_STYLE: str = Field(
|
||||
description="S3 storage address style",
|
||||
description="S3 addressing style: 'auto', 'path', or 'virtual'",
|
||||
default="auto",
|
||||
)
|
||||
|
||||
S3_USE_AWS_MANAGED_IAM: bool = Field(
|
||||
description="whether to use aws managed IAM for S3",
|
||||
description="Use AWS managed IAM roles for authentication instead of access/secret keys",
|
||||
default=False,
|
||||
)
|
||||
|
||||
@@ -6,25 +6,25 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class AzureBlobStorageConfig(BaseSettings):
|
||||
"""
|
||||
Azure Blob storage configs
|
||||
Configuration settings for Azure Blob Storage
|
||||
"""
|
||||
|
||||
AZURE_BLOB_ACCOUNT_NAME: Optional[str] = Field(
|
||||
description="Azure Blob account name",
|
||||
description="Name of the Azure Storage account (e.g., 'mystorageaccount')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
AZURE_BLOB_ACCOUNT_KEY: Optional[str] = Field(
|
||||
description="Azure Blob account key",
|
||||
description="Access key for authenticating with the Azure Storage account",
|
||||
default=None,
|
||||
)
|
||||
|
||||
AZURE_BLOB_CONTAINER_NAME: Optional[str] = Field(
|
||||
description="Azure Blob container name",
|
||||
description="Name of the Azure Blob container to store and retrieve objects",
|
||||
default=None,
|
||||
)
|
||||
|
||||
AZURE_BLOB_ACCOUNT_URL: Optional[str] = Field(
|
||||
description="Azure Blob account URL",
|
||||
description="URL of the Azure Blob storage endpoint (e.g., 'https://mystorageaccount.blob.core.windows.net')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
@@ -6,15 +6,15 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class GoogleCloudStorageConfig(BaseSettings):
|
||||
"""
|
||||
Google Cloud storage configs
|
||||
Configuration settings for Google Cloud Storage
|
||||
"""
|
||||
|
||||
GOOGLE_STORAGE_BUCKET_NAME: Optional[str] = Field(
|
||||
description="Google Cloud storage bucket name",
|
||||
description="Name of the Google Cloud Storage bucket to store and retrieve objects (e.g., 'my-gcs-bucket')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
GOOGLE_STORAGE_SERVICE_ACCOUNT_JSON_BASE64: Optional[str] = Field(
|
||||
description="Google Cloud storage service account json base64",
|
||||
description="Base64-encoded JSON key file for Google Cloud service account authentication",
|
||||
default=None,
|
||||
)
|
||||
|
||||
@@ -5,25 +5,25 @@ from pydantic import BaseModel, Field
|
||||
|
||||
class HuaweiCloudOBSStorageConfig(BaseModel):
|
||||
"""
|
||||
Huawei Cloud OBS storage configs
|
||||
Configuration settings for Huawei Cloud Object Storage Service (OBS)
|
||||
"""
|
||||
|
||||
HUAWEI_OBS_BUCKET_NAME: Optional[str] = Field(
|
||||
description="Huawei Cloud OBS bucket name",
|
||||
description="Name of the Huawei Cloud OBS bucket to store and retrieve objects (e.g., 'my-obs-bucket')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
HUAWEI_OBS_ACCESS_KEY: Optional[str] = Field(
|
||||
description="Huawei Cloud OBS Access key",
|
||||
description="Access Key ID for authenticating with Huawei Cloud OBS",
|
||||
default=None,
|
||||
)
|
||||
|
||||
HUAWEI_OBS_SECRET_KEY: Optional[str] = Field(
|
||||
description="Huawei Cloud OBS Secret key",
|
||||
description="Secret Access Key for authenticating with Huawei Cloud OBS",
|
||||
default=None,
|
||||
)
|
||||
|
||||
HUAWEI_OBS_SERVER: Optional[str] = Field(
|
||||
description="Huawei Cloud OBS server URL",
|
||||
description="Endpoint URL for Huawei Cloud OBS (e.g., 'https://obs.cn-north-4.myhuaweicloud.com')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
@@ -6,30 +6,30 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class OCIStorageConfig(BaseSettings):
|
||||
"""
|
||||
OCI storage configs
|
||||
Configuration settings for Oracle Cloud Infrastructure (OCI) Object Storage
|
||||
"""
|
||||
|
||||
OCI_ENDPOINT: Optional[str] = Field(
|
||||
description="OCI storage endpoint",
|
||||
description="URL of the OCI Object Storage endpoint (e.g., 'https://objectstorage.us-phoenix-1.oraclecloud.com')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
OCI_REGION: Optional[str] = Field(
|
||||
description="OCI storage region",
|
||||
description="OCI region where the bucket is located (e.g., 'us-phoenix-1')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
OCI_BUCKET_NAME: Optional[str] = Field(
|
||||
description="OCI storage bucket name",
|
||||
description="Name of the OCI Object Storage bucket to store and retrieve objects (e.g., 'my-oci-bucket')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
OCI_ACCESS_KEY: Optional[str] = Field(
|
||||
description="OCI storage access key",
|
||||
description="Access key (also known as API key) for authenticating with OCI Object Storage",
|
||||
default=None,
|
||||
)
|
||||
|
||||
OCI_SECRET_KEY: Optional[str] = Field(
|
||||
description="OCI storage secret key",
|
||||
description="Secret key associated with the access key for authenticating with OCI Object Storage",
|
||||
default=None,
|
||||
)
|
||||
|
||||
@@ -6,30 +6,30 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class TencentCloudCOSStorageConfig(BaseSettings):
|
||||
"""
|
||||
Tencent Cloud COS storage configs
|
||||
Configuration settings for Tencent Cloud Object Storage (COS)
|
||||
"""
|
||||
|
||||
TENCENT_COS_BUCKET_NAME: Optional[str] = Field(
|
||||
description="Tencent Cloud COS bucket name",
|
||||
description="Name of the Tencent Cloud COS bucket to store and retrieve objects",
|
||||
default=None,
|
||||
)
|
||||
|
||||
TENCENT_COS_REGION: Optional[str] = Field(
|
||||
description="Tencent Cloud COS region",
|
||||
description="Tencent Cloud region where the COS bucket is located (e.g., 'ap-guangzhou')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
TENCENT_COS_SECRET_ID: Optional[str] = Field(
|
||||
description="Tencent Cloud COS secret id",
|
||||
description="SecretId for authenticating with Tencent Cloud COS (part of API credentials)",
|
||||
default=None,
|
||||
)
|
||||
|
||||
TENCENT_COS_SECRET_KEY: Optional[str] = Field(
|
||||
description="Tencent Cloud COS secret key",
|
||||
description="SecretKey for authenticating with Tencent Cloud COS (part of API credentials)",
|
||||
default=None,
|
||||
)
|
||||
|
||||
TENCENT_COS_SCHEME: Optional[str] = Field(
|
||||
description="Tencent Cloud COS scheme",
|
||||
description="Protocol scheme for COS requests: 'https' (recommended) or 'http'",
|
||||
default=None,
|
||||
)
|
||||
|
||||
@@ -5,30 +5,30 @@ from pydantic import BaseModel, Field
|
||||
|
||||
class VolcengineTOSStorageConfig(BaseModel):
|
||||
"""
|
||||
Volcengine tos storage configs
|
||||
Configuration settings for Volcengine Tinder Object Storage (TOS)
|
||||
"""
|
||||
|
||||
VOLCENGINE_TOS_BUCKET_NAME: Optional[str] = Field(
|
||||
description="Volcengine TOS Bucket Name",
|
||||
description="Name of the Volcengine TOS bucket to store and retrieve objects (e.g., 'my-tos-bucket')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
VOLCENGINE_TOS_ACCESS_KEY: Optional[str] = Field(
|
||||
description="Volcengine TOS Access Key",
|
||||
description="Access Key ID for authenticating with Volcengine TOS",
|
||||
default=None,
|
||||
)
|
||||
|
||||
VOLCENGINE_TOS_SECRET_KEY: Optional[str] = Field(
|
||||
description="Volcengine TOS Secret Key",
|
||||
description="Secret Access Key for authenticating with Volcengine TOS",
|
||||
default=None,
|
||||
)
|
||||
|
||||
VOLCENGINE_TOS_ENDPOINT: Optional[str] = Field(
|
||||
description="Volcengine TOS Endpoint URL",
|
||||
description="URL of the Volcengine TOS endpoint (e.g., 'https://tos-cn-beijing.volces.com')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
VOLCENGINE_TOS_REGION: Optional[str] = Field(
|
||||
description="Volcengine TOS Region",
|
||||
description="Volcengine region where the TOS bucket is located (e.g., 'cn-beijing')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
@@ -5,33 +5,38 @@ from pydantic import BaseModel, Field
|
||||
|
||||
class AnalyticdbConfig(BaseModel):
|
||||
"""
|
||||
Configuration for connecting to AnalyticDB.
|
||||
Configuration for connecting to Alibaba Cloud AnalyticDB for PostgreSQL.
|
||||
Refer to the following documentation for details on obtaining credentials:
|
||||
https://www.alibabacloud.com/help/en/analyticdb-for-postgresql/getting-started/create-an-instance-instances-with-vector-engine-optimization-enabled
|
||||
"""
|
||||
|
||||
ANALYTICDB_KEY_ID: Optional[str] = Field(
|
||||
default=None, description="The Access Key ID provided by Alibaba Cloud for authentication."
|
||||
default=None, description="The Access Key ID provided by Alibaba Cloud for API authentication."
|
||||
)
|
||||
ANALYTICDB_KEY_SECRET: Optional[str] = Field(
|
||||
default=None, description="The Secret Access Key corresponding to the Access Key ID for secure access."
|
||||
default=None, description="The Secret Access Key corresponding to the Access Key ID for secure API access."
|
||||
)
|
||||
ANALYTICDB_REGION_ID: Optional[str] = Field(
|
||||
default=None, description="The region where the AnalyticDB instance is deployed (e.g., 'cn-hangzhou')."
|
||||
default=None,
|
||||
description="The region where the AnalyticDB instance is deployed (e.g., 'cn-hangzhou', 'ap-southeast-1').",
|
||||
)
|
||||
ANALYTICDB_INSTANCE_ID: Optional[str] = Field(
|
||||
default=None,
|
||||
description="The unique identifier of the AnalyticDB instance you want to connect to (e.g., 'gp-ab123456')..",
|
||||
description="The unique identifier of the AnalyticDB instance you want to connect to.",
|
||||
)
|
||||
ANALYTICDB_ACCOUNT: Optional[str] = Field(
|
||||
default=None, description="The account name used to log in to the AnalyticDB instance."
|
||||
default=None,
|
||||
description="The account name used to log in to the AnalyticDB instance"
|
||||
" (usually the initial account created with the instance).",
|
||||
)
|
||||
ANALYTICDB_PASSWORD: Optional[str] = Field(
|
||||
default=None, description="The password associated with the AnalyticDB account for authentication."
|
||||
default=None, description="The password associated with the AnalyticDB account for database authentication."
|
||||
)
|
||||
ANALYTICDB_NAMESPACE: Optional[str] = Field(
|
||||
default=None, description="The namespace within AnalyticDB for schema isolation."
|
||||
default=None, description="The namespace within AnalyticDB for schema isolation (if using namespace feature)."
|
||||
)
|
||||
ANALYTICDB_NAMESPACE_PASSWORD: Optional[str] = Field(
|
||||
default=None, description="The password for accessing the specified namespace within the AnalyticDB instance."
|
||||
default=None,
|
||||
description="The password for accessing the specified namespace within the AnalyticDB instance"
|
||||
" (if namespace feature is enabled).",
|
||||
)
|
||||
|
||||
@@ -6,35 +6,35 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class ChromaConfig(BaseSettings):
|
||||
"""
|
||||
Chroma configs
|
||||
Configuration settings for Chroma vector database
|
||||
"""
|
||||
|
||||
CHROMA_HOST: Optional[str] = Field(
|
||||
description="Chroma host",
|
||||
description="Hostname or IP address of the Chroma server (e.g., 'localhost' or '192.168.1.100')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
CHROMA_PORT: PositiveInt = Field(
|
||||
description="Chroma port",
|
||||
description="Port number on which the Chroma server is listening (default is 8000)",
|
||||
default=8000,
|
||||
)
|
||||
|
||||
CHROMA_TENANT: Optional[str] = Field(
|
||||
description="Chroma database",
|
||||
description="Tenant identifier for multi-tenancy support in Chroma",
|
||||
default=None,
|
||||
)
|
||||
|
||||
CHROMA_DATABASE: Optional[str] = Field(
|
||||
description="Chroma database",
|
||||
description="Name of the Chroma database to connect to",
|
||||
default=None,
|
||||
)
|
||||
|
||||
CHROMA_AUTH_PROVIDER: Optional[str] = Field(
|
||||
description="Chroma authentication provider",
|
||||
description="Authentication provider for Chroma (e.g., 'basic', 'token', or a custom provider)",
|
||||
default=None,
|
||||
)
|
||||
|
||||
CHROMA_AUTH_CREDENTIALS: Optional[str] = Field(
|
||||
description="Chroma authentication credentials",
|
||||
description="Authentication credentials for Chroma (format depends on the auth provider)",
|
||||
default=None,
|
||||
)
|
||||
|
||||
@@ -6,25 +6,25 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class ElasticsearchConfig(BaseSettings):
|
||||
"""
|
||||
Elasticsearch configs
|
||||
Configuration settings for Elasticsearch
|
||||
"""
|
||||
|
||||
ELASTICSEARCH_HOST: Optional[str] = Field(
|
||||
description="Elasticsearch host",
|
||||
description="Hostname or IP address of the Elasticsearch server (e.g., 'localhost' or '192.168.1.100')",
|
||||
default="127.0.0.1",
|
||||
)
|
||||
|
||||
ELASTICSEARCH_PORT: PositiveInt = Field(
|
||||
description="Elasticsearch port",
|
||||
description="Port number on which the Elasticsearch server is listening (default is 9200)",
|
||||
default=9200,
|
||||
)
|
||||
|
||||
ELASTICSEARCH_USERNAME: Optional[str] = Field(
|
||||
description="Elasticsearch username",
|
||||
description="Username for authenticating with Elasticsearch (default is 'elastic')",
|
||||
default="elastic",
|
||||
)
|
||||
|
||||
ELASTICSEARCH_PASSWORD: Optional[str] = Field(
|
||||
description="Elasticsearch password",
|
||||
description="Password for authenticating with Elasticsearch (default is 'elastic')",
|
||||
default="elastic",
|
||||
)
|
||||
|
||||
@@ -6,30 +6,30 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class MilvusConfig(BaseSettings):
|
||||
"""
|
||||
Milvus configs
|
||||
Configuration settings for Milvus vector database
|
||||
"""
|
||||
|
||||
MILVUS_URI: Optional[str] = Field(
|
||||
description="Milvus uri",
|
||||
description="URI for connecting to the Milvus server (e.g., 'http://localhost:19530' or 'https://milvus-instance.example.com:19530')",
|
||||
default="http://127.0.0.1:19530",
|
||||
)
|
||||
|
||||
MILVUS_TOKEN: Optional[str] = Field(
|
||||
description="Milvus token",
|
||||
description="Authentication token for Milvus, if token-based authentication is enabled",
|
||||
default=None,
|
||||
)
|
||||
|
||||
MILVUS_USER: Optional[str] = Field(
|
||||
description="Milvus user",
|
||||
description="Username for authenticating with Milvus, if username/password authentication is enabled",
|
||||
default=None,
|
||||
)
|
||||
|
||||
MILVUS_PASSWORD: Optional[str] = Field(
|
||||
description="Milvus password",
|
||||
description="Password for authenticating with Milvus, if username/password authentication is enabled",
|
||||
default=None,
|
||||
)
|
||||
|
||||
MILVUS_DATABASE: str = Field(
|
||||
description="Milvus database, default to `default`",
|
||||
description="Name of the Milvus database to connect to (default is 'default')",
|
||||
default="default",
|
||||
)
|
||||
|
||||
@@ -3,35 +3,35 @@ from pydantic import BaseModel, Field, PositiveInt
|
||||
|
||||
class MyScaleConfig(BaseModel):
|
||||
"""
|
||||
MyScale configs
|
||||
Configuration settings for MyScale vector database
|
||||
"""
|
||||
|
||||
MYSCALE_HOST: str = Field(
|
||||
description="MyScale host",
|
||||
description="Hostname or IP address of the MyScale server (e.g., 'localhost' or 'myscale.example.com')",
|
||||
default="localhost",
|
||||
)
|
||||
|
||||
MYSCALE_PORT: PositiveInt = Field(
|
||||
description="MyScale port",
|
||||
description="Port number on which the MyScale server is listening (default is 8123)",
|
||||
default=8123,
|
||||
)
|
||||
|
||||
MYSCALE_USER: str = Field(
|
||||
description="MyScale user",
|
||||
description="Username for authenticating with MyScale (default is 'default')",
|
||||
default="default",
|
||||
)
|
||||
|
||||
MYSCALE_PASSWORD: str = Field(
|
||||
description="MyScale password",
|
||||
description="Password for authenticating with MyScale (default is an empty string)",
|
||||
default="",
|
||||
)
|
||||
|
||||
MYSCALE_DATABASE: str = Field(
|
||||
description="MyScale database name",
|
||||
description="Name of the MyScale database to connect to (default is 'default')",
|
||||
default="default",
|
||||
)
|
||||
|
||||
MYSCALE_FTS_PARAMS: str = Field(
|
||||
description="MyScale fts index parameters",
|
||||
description="Additional parameters for MyScale Full Text Search index)",
|
||||
default="",
|
||||
)
|
||||
|
||||
@@ -6,30 +6,30 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class OpenSearchConfig(BaseSettings):
|
||||
"""
|
||||
OpenSearch configs
|
||||
Configuration settings for OpenSearch
|
||||
"""
|
||||
|
||||
OPENSEARCH_HOST: Optional[str] = Field(
|
||||
description="OpenSearch host",
|
||||
description="Hostname or IP address of the OpenSearch server (e.g., 'localhost' or 'opensearch.example.com')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
OPENSEARCH_PORT: PositiveInt = Field(
|
||||
description="OpenSearch port",
|
||||
description="Port number on which the OpenSearch server is listening (default is 9200)",
|
||||
default=9200,
|
||||
)
|
||||
|
||||
OPENSEARCH_USER: Optional[str] = Field(
|
||||
description="OpenSearch user",
|
||||
description="Username for authenticating with OpenSearch",
|
||||
default=None,
|
||||
)
|
||||
|
||||
OPENSEARCH_PASSWORD: Optional[str] = Field(
|
||||
description="OpenSearch password",
|
||||
description="Password for authenticating with OpenSearch",
|
||||
default=None,
|
||||
)
|
||||
|
||||
OPENSEARCH_SECURE: bool = Field(
|
||||
description="whether to use SSL connection for OpenSearch",
|
||||
description="Whether to use SSL/TLS encrypted connection for OpenSearch (True for HTTPS, False for HTTP)",
|
||||
default=False,
|
||||
)
|
||||
|
||||
@@ -6,30 +6,30 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class OracleConfig(BaseSettings):
|
||||
"""
|
||||
ORACLE configs
|
||||
Configuration settings for Oracle database
|
||||
"""
|
||||
|
||||
ORACLE_HOST: Optional[str] = Field(
|
||||
description="ORACLE host",
|
||||
description="Hostname or IP address of the Oracle database server (e.g., 'localhost' or 'oracle.example.com')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
ORACLE_PORT: Optional[PositiveInt] = Field(
|
||||
description="ORACLE port",
|
||||
description="Port number on which the Oracle database server is listening (default is 1521)",
|
||||
default=1521,
|
||||
)
|
||||
|
||||
ORACLE_USER: Optional[str] = Field(
|
||||
description="ORACLE user",
|
||||
description="Username for authenticating with the Oracle database",
|
||||
default=None,
|
||||
)
|
||||
|
||||
ORACLE_PASSWORD: Optional[str] = Field(
|
||||
description="ORACLE password",
|
||||
description="Password for authenticating with the Oracle database",
|
||||
default=None,
|
||||
)
|
||||
|
||||
ORACLE_DATABASE: Optional[str] = Field(
|
||||
description="ORACLE database",
|
||||
description="Name of the Oracle database or service to connect to (e.g., 'ORCL' or 'pdborcl')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
@@ -6,30 +6,40 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class PGVectorConfig(BaseSettings):
|
||||
"""
|
||||
PGVector configs
|
||||
Configuration settings for PGVector (PostgreSQL with vector extension)
|
||||
"""
|
||||
|
||||
PGVECTOR_HOST: Optional[str] = Field(
|
||||
description="PGVector host",
|
||||
description="Hostname or IP address of the PostgreSQL server with PGVector extension (e.g., 'localhost')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
PGVECTOR_PORT: Optional[PositiveInt] = Field(
|
||||
description="PGVector port",
|
||||
description="Port number on which the PostgreSQL server is listening (default is 5433)",
|
||||
default=5433,
|
||||
)
|
||||
|
||||
PGVECTOR_USER: Optional[str] = Field(
|
||||
description="PGVector user",
|
||||
description="Username for authenticating with the PostgreSQL database",
|
||||
default=None,
|
||||
)
|
||||
|
||||
PGVECTOR_PASSWORD: Optional[str] = Field(
|
||||
description="PGVector password",
|
||||
description="Password for authenticating with the PostgreSQL database",
|
||||
default=None,
|
||||
)
|
||||
|
||||
PGVECTOR_DATABASE: Optional[str] = Field(
|
||||
description="PGVector database",
|
||||
description="Name of the PostgreSQL database to connect to",
|
||||
default=None,
|
||||
)
|
||||
|
||||
PGVECTOR_MIN_CONNECTION: PositiveInt = Field(
|
||||
description="Min connection of the PostgreSQL database",
|
||||
default=1,
|
||||
)
|
||||
|
||||
PGVECTOR_MAX_CONNECTION: PositiveInt = Field(
|
||||
description="Max connection of the PostgreSQL database",
|
||||
default=5,
|
||||
)
|
||||
|
||||
@@ -6,30 +6,30 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class PGVectoRSConfig(BaseSettings):
|
||||
"""
|
||||
PGVectoRS configs
|
||||
Configuration settings for PGVecto.RS (Rust-based vector extension for PostgreSQL)
|
||||
"""
|
||||
|
||||
PGVECTO_RS_HOST: Optional[str] = Field(
|
||||
description="PGVectoRS host",
|
||||
description="Hostname or IP address of the PostgreSQL server with PGVecto.RS extension (e.g., 'localhost')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
PGVECTO_RS_PORT: Optional[PositiveInt] = Field(
|
||||
description="PGVectoRS port",
|
||||
description="Port number on which the PostgreSQL server with PGVecto.RS is listening (default is 5431)",
|
||||
default=5431,
|
||||
)
|
||||
|
||||
PGVECTO_RS_USER: Optional[str] = Field(
|
||||
description="PGVectoRS user",
|
||||
description="Username for authenticating with the PostgreSQL database using PGVecto.RS",
|
||||
default=None,
|
||||
)
|
||||
|
||||
PGVECTO_RS_PASSWORD: Optional[str] = Field(
|
||||
description="PGVectoRS password",
|
||||
description="Password for authenticating with the PostgreSQL database using PGVecto.RS",
|
||||
default=None,
|
||||
)
|
||||
|
||||
PGVECTO_RS_DATABASE: Optional[str] = Field(
|
||||
description="PGVectoRS database",
|
||||
description="Name of the PostgreSQL database with PGVecto.RS extension to connect to",
|
||||
default=None,
|
||||
)
|
||||
|
||||
@@ -6,30 +6,30 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class QdrantConfig(BaseSettings):
|
||||
"""
|
||||
Qdrant configs
|
||||
Configuration settings for Qdrant vector database
|
||||
"""
|
||||
|
||||
QDRANT_URL: Optional[str] = Field(
|
||||
description="Qdrant url",
|
||||
description="URL of the Qdrant server (e.g., 'http://localhost:6333' or 'https://qdrant.example.com')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
QDRANT_API_KEY: Optional[str] = Field(
|
||||
description="Qdrant api key",
|
||||
description="API key for authenticating with the Qdrant server",
|
||||
default=None,
|
||||
)
|
||||
|
||||
QDRANT_CLIENT_TIMEOUT: NonNegativeInt = Field(
|
||||
description="Qdrant client timeout in seconds",
|
||||
description="Timeout in seconds for Qdrant client operations (default is 20 seconds)",
|
||||
default=20,
|
||||
)
|
||||
|
||||
QDRANT_GRPC_ENABLED: bool = Field(
|
||||
description="whether enable grpc support for Qdrant connection",
|
||||
description="Whether to enable gRPC support for Qdrant connection (True for gRPC, False for HTTP)",
|
||||
default=False,
|
||||
)
|
||||
|
||||
QDRANT_GRPC_PORT: PositiveInt = Field(
|
||||
description="Qdrant grpc port",
|
||||
description="Port number for gRPC connection to Qdrant server (default is 6334)",
|
||||
default=6334,
|
||||
)
|
||||
|
||||
@@ -6,30 +6,30 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class RelytConfig(BaseSettings):
|
||||
"""
|
||||
Relyt configs
|
||||
Configuration settings for Relyt database
|
||||
"""
|
||||
|
||||
RELYT_HOST: Optional[str] = Field(
|
||||
description="Relyt host",
|
||||
description="Hostname or IP address of the Relyt server (e.g., 'localhost' or 'relyt.example.com')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
RELYT_PORT: PositiveInt = Field(
|
||||
description="Relyt port",
|
||||
description="Port number on which the Relyt server is listening (default is 9200)",
|
||||
default=9200,
|
||||
)
|
||||
|
||||
RELYT_USER: Optional[str] = Field(
|
||||
description="Relyt user",
|
||||
description="Username for authenticating with the Relyt database",
|
||||
default=None,
|
||||
)
|
||||
|
||||
RELYT_PASSWORD: Optional[str] = Field(
|
||||
description="Relyt password",
|
||||
description="Password for authenticating with the Relyt database",
|
||||
default=None,
|
||||
)
|
||||
|
||||
RELYT_DATABASE: Optional[str] = Field(
|
||||
description="Relyt database",
|
||||
description="Name of the Relyt database to connect to (default is 'default')",
|
||||
default="default",
|
||||
)
|
||||
|
||||
@@ -6,45 +6,45 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class TencentVectorDBConfig(BaseSettings):
|
||||
"""
|
||||
Tencent Vector configs
|
||||
Configuration settings for Tencent Vector Database
|
||||
"""
|
||||
|
||||
TENCENT_VECTOR_DB_URL: Optional[str] = Field(
|
||||
description="Tencent Vector URL",
|
||||
description="URL of the Tencent Vector Database service (e.g., 'https://vectordb.tencentcloudapi.com')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
TENCENT_VECTOR_DB_API_KEY: Optional[str] = Field(
|
||||
description="Tencent Vector API key",
|
||||
description="API key for authenticating with the Tencent Vector Database service",
|
||||
default=None,
|
||||
)
|
||||
|
||||
TENCENT_VECTOR_DB_TIMEOUT: PositiveInt = Field(
|
||||
description="Tencent Vector timeout in seconds",
|
||||
description="Timeout in seconds for Tencent Vector Database operations (default is 30 seconds)",
|
||||
default=30,
|
||||
)
|
||||
|
||||
TENCENT_VECTOR_DB_USERNAME: Optional[str] = Field(
|
||||
description="Tencent Vector username",
|
||||
description="Username for authenticating with the Tencent Vector Database (if required)",
|
||||
default=None,
|
||||
)
|
||||
|
||||
TENCENT_VECTOR_DB_PASSWORD: Optional[str] = Field(
|
||||
description="Tencent Vector password",
|
||||
description="Password for authenticating with the Tencent Vector Database (if required)",
|
||||
default=None,
|
||||
)
|
||||
|
||||
TENCENT_VECTOR_DB_SHARD: PositiveInt = Field(
|
||||
description="Tencent Vector sharding number",
|
||||
description="Number of shards for the Tencent Vector Database (default is 1)",
|
||||
default=1,
|
||||
)
|
||||
|
||||
TENCENT_VECTOR_DB_REPLICAS: NonNegativeInt = Field(
|
||||
description="Tencent Vector replicas",
|
||||
description="Number of replicas for the Tencent Vector Database (default is 2)",
|
||||
default=2,
|
||||
)
|
||||
|
||||
TENCENT_VECTOR_DB_DATABASE: Optional[str] = Field(
|
||||
description="Tencent Vector Database",
|
||||
description="Name of the specific Tencent Vector Database to connect to",
|
||||
default=None,
|
||||
)
|
||||
|
||||
@@ -6,30 +6,30 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class TiDBVectorConfig(BaseSettings):
|
||||
"""
|
||||
TiDB Vector configs
|
||||
Configuration settings for TiDB Vector database
|
||||
"""
|
||||
|
||||
TIDB_VECTOR_HOST: Optional[str] = Field(
|
||||
description="TiDB Vector host",
|
||||
description="Hostname or IP address of the TiDB Vector server (e.g., 'localhost' or 'tidb.example.com')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
TIDB_VECTOR_PORT: Optional[PositiveInt] = Field(
|
||||
description="TiDB Vector port",
|
||||
description="Port number on which the TiDB Vector server is listening (default is 4000)",
|
||||
default=4000,
|
||||
)
|
||||
|
||||
TIDB_VECTOR_USER: Optional[str] = Field(
|
||||
description="TiDB Vector user",
|
||||
description="Username for authenticating with the TiDB Vector database",
|
||||
default=None,
|
||||
)
|
||||
|
||||
TIDB_VECTOR_PASSWORD: Optional[str] = Field(
|
||||
description="TiDB Vector password",
|
||||
description="Password for authenticating with the TiDB Vector database",
|
||||
default=None,
|
||||
)
|
||||
|
||||
TIDB_VECTOR_DATABASE: Optional[str] = Field(
|
||||
description="TiDB Vector database",
|
||||
description="Name of the TiDB Vector database to connect to",
|
||||
default=None,
|
||||
)
|
||||
|
||||
@@ -6,25 +6,25 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class WeaviateConfig(BaseSettings):
|
||||
"""
|
||||
Weaviate configs
|
||||
Configuration settings for Weaviate vector database
|
||||
"""
|
||||
|
||||
WEAVIATE_ENDPOINT: Optional[str] = Field(
|
||||
description="Weaviate endpoint URL",
|
||||
description="URL of the Weaviate server (e.g., 'http://localhost:8080' or 'https://weaviate.example.com')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
WEAVIATE_API_KEY: Optional[str] = Field(
|
||||
description="Weaviate API key",
|
||||
description="API key for authenticating with the Weaviate server",
|
||||
default=None,
|
||||
)
|
||||
|
||||
WEAVIATE_GRPC_ENABLED: bool = Field(
|
||||
description="whether to enable gRPC for Weaviate connection",
|
||||
description="Whether to enable gRPC for Weaviate connection (True for gRPC, False for HTTP)",
|
||||
default=True,
|
||||
)
|
||||
|
||||
WEAVIATE_BATCH_SIZE: PositiveInt = Field(
|
||||
description="Weaviate batch size",
|
||||
description="Number of objects to be processed in a single batch operation (default is 100)",
|
||||
default=100,
|
||||
)
|
||||
|
||||
@@ -9,7 +9,7 @@ class PackagingInfo(BaseSettings):
|
||||
|
||||
CURRENT_VERSION: str = Field(
|
||||
description="Dify version",
|
||||
default="0.8.3",
|
||||
default="0.9.1",
|
||||
)
|
||||
|
||||
COMMIT_SHA: str = Field(
|
||||
|
||||
@@ -1 +1,2 @@
|
||||
HIDDEN_VALUE = "[__HIDDEN__]"
|
||||
UUID_NIL = "00000000-0000-0000-0000-000000000000"
|
||||
|
||||
@@ -37,7 +37,16 @@ from .auth import activate, data_source_bearer_auth, data_source_oauth, forgot_p
|
||||
from .billing import billing
|
||||
|
||||
# Import datasets controllers
|
||||
from .datasets import data_source, datasets, datasets_document, datasets_segments, file, hit_testing, website
|
||||
from .datasets import (
|
||||
data_source,
|
||||
datasets,
|
||||
datasets_document,
|
||||
datasets_segments,
|
||||
external,
|
||||
file,
|
||||
hit_testing,
|
||||
website,
|
||||
)
|
||||
|
||||
# Import explore controllers
|
||||
from .explore import (
|
||||
|
||||
@@ -109,6 +109,7 @@ class ChatMessageApi(Resource):
|
||||
parser.add_argument("files", type=list, required=False, location="json")
|
||||
parser.add_argument("model_config", type=dict, required=True, location="json")
|
||||
parser.add_argument("conversation_id", type=uuid_value, location="json")
|
||||
parser.add_argument("parent_message_id", type=uuid_value, required=False, location="json")
|
||||
parser.add_argument("response_mode", type=str, choices=["blocking", "streaming"], location="json")
|
||||
parser.add_argument("retriever_from", type=str, required=False, default="dev", location="json")
|
||||
args = parser.parse_args()
|
||||
|
||||
@@ -105,8 +105,6 @@ class ChatMessageListApi(Resource):
|
||||
if rest_count > 0:
|
||||
has_more = True
|
||||
|
||||
history_messages = list(reversed(history_messages))
|
||||
|
||||
return InfiniteScrollPagination(data=history_messages, limit=args["limit"], has_more=has_more)
|
||||
|
||||
|
||||
|
||||
@@ -166,6 +166,8 @@ class AdvancedChatDraftWorkflowRunApi(Resource):
|
||||
parser.add_argument("query", type=str, required=True, location="json", default="")
|
||||
parser.add_argument("files", type=list, location="json")
|
||||
parser.add_argument("conversation_id", type=uuid_value, location="json")
|
||||
parser.add_argument("parent_message_id", type=uuid_value, required=False, location="json")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
try:
|
||||
|
||||
@@ -49,7 +49,7 @@ class DatasetListApi(Resource):
|
||||
page = request.args.get("page", default=1, type=int)
|
||||
limit = request.args.get("limit", default=20, type=int)
|
||||
ids = request.args.getlist("ids")
|
||||
provider = request.args.get("provider", default="vendor")
|
||||
# provider = request.args.get("provider", default="vendor")
|
||||
search = request.args.get("keyword", default=None, type=str)
|
||||
tag_ids = request.args.getlist("tag_ids")
|
||||
|
||||
@@ -57,7 +57,7 @@ class DatasetListApi(Resource):
|
||||
datasets, total = DatasetService.get_datasets_by_ids(ids, current_user.current_tenant_id)
|
||||
else:
|
||||
datasets, total = DatasetService.get_datasets(
|
||||
page, limit, provider, current_user.current_tenant_id, current_user, search, tag_ids
|
||||
page, limit, current_user.current_tenant_id, current_user, search, tag_ids
|
||||
)
|
||||
|
||||
# check embedding setting
|
||||
@@ -110,6 +110,26 @@ class DatasetListApi(Resource):
|
||||
nullable=True,
|
||||
help="Invalid indexing technique.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"external_knowledge_api_id",
|
||||
type=str,
|
||||
nullable=True,
|
||||
required=False,
|
||||
)
|
||||
parser.add_argument(
|
||||
"provider",
|
||||
type=str,
|
||||
nullable=True,
|
||||
choices=Dataset.PROVIDER_LIST,
|
||||
required=False,
|
||||
default="vendor",
|
||||
)
|
||||
parser.add_argument(
|
||||
"external_knowledge_id",
|
||||
type=str,
|
||||
nullable=True,
|
||||
required=False,
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
# The role of the current user in the ta table must be admin, owner, or editor, or dataset_operator
|
||||
@@ -123,6 +143,9 @@ class DatasetListApi(Resource):
|
||||
indexing_technique=args["indexing_technique"],
|
||||
account=current_user,
|
||||
permission=DatasetPermissionEnum.ONLY_ME,
|
||||
provider=args["provider"],
|
||||
external_knowledge_api_id=args["external_knowledge_api_id"],
|
||||
external_knowledge_id=args["external_knowledge_id"],
|
||||
)
|
||||
except services.errors.dataset.DatasetNameDuplicateError:
|
||||
raise DatasetNameDuplicateError()
|
||||
@@ -211,6 +234,33 @@ class DatasetApi(Resource):
|
||||
)
|
||||
parser.add_argument("retrieval_model", type=dict, location="json", help="Invalid retrieval model.")
|
||||
parser.add_argument("partial_member_list", type=list, location="json", help="Invalid parent user list.")
|
||||
|
||||
parser.add_argument(
|
||||
"external_retrieval_model",
|
||||
type=dict,
|
||||
required=False,
|
||||
nullable=True,
|
||||
location="json",
|
||||
help="Invalid external retrieval model.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"external_knowledge_id",
|
||||
type=str,
|
||||
required=False,
|
||||
nullable=True,
|
||||
location="json",
|
||||
help="Invalid external knowledge id.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"external_knowledge_api_id",
|
||||
type=str,
|
||||
required=False,
|
||||
nullable=True,
|
||||
location="json",
|
||||
help="Invalid external knowledge api id.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
data = request.get_json()
|
||||
|
||||
@@ -563,10 +613,10 @@ class DatasetRetrievalSettingApi(Resource):
|
||||
case (
|
||||
VectorType.MILVUS
|
||||
| VectorType.RELYT
|
||||
| VectorType.PGVECTOR
|
||||
| VectorType.TIDB_VECTOR
|
||||
| VectorType.CHROMA
|
||||
| VectorType.TENCENT
|
||||
| VectorType.PGVECTO_RS
|
||||
):
|
||||
return {"retrieval_method": [RetrievalMethod.SEMANTIC_SEARCH.value]}
|
||||
case (
|
||||
@@ -577,6 +627,7 @@ class DatasetRetrievalSettingApi(Resource):
|
||||
| VectorType.MYSCALE
|
||||
| VectorType.ORACLE
|
||||
| VectorType.ELASTICSEARCH
|
||||
| VectorType.PGVECTOR
|
||||
):
|
||||
return {
|
||||
"retrieval_method": [
|
||||
|
||||
239
api/controllers/console/datasets/external.py
Normal file
239
api/controllers/console/datasets/external.py
Normal file
@@ -0,0 +1,239 @@
|
||||
from flask import request
|
||||
from flask_login import current_user
|
||||
from flask_restful import Resource, marshal, reqparse
|
||||
from werkzeug.exceptions import Forbidden, InternalServerError, NotFound
|
||||
|
||||
import services
|
||||
from controllers.console import api
|
||||
from controllers.console.datasets.error import DatasetNameDuplicateError
|
||||
from controllers.console.setup import setup_required
|
||||
from controllers.console.wraps import account_initialization_required
|
||||
from fields.dataset_fields import dataset_detail_fields
|
||||
from libs.login import login_required
|
||||
from services.dataset_service import DatasetService
|
||||
from services.external_knowledge_service import ExternalDatasetService
|
||||
from services.hit_testing_service import HitTestingService
|
||||
|
||||
|
||||
def _validate_name(name):
|
||||
if not name or len(name) < 1 or len(name) > 100:
|
||||
raise ValueError("Name must be between 1 to 100 characters.")
|
||||
return name
|
||||
|
||||
|
||||
def _validate_description_length(description):
|
||||
if description and len(description) > 400:
|
||||
raise ValueError("Description cannot exceed 400 characters.")
|
||||
return description
|
||||
|
||||
|
||||
class ExternalApiTemplateListApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def get(self):
|
||||
page = request.args.get("page", default=1, type=int)
|
||||
limit = request.args.get("limit", default=20, type=int)
|
||||
search = request.args.get("keyword", default=None, type=str)
|
||||
|
||||
external_knowledge_apis, total = ExternalDatasetService.get_external_knowledge_apis(
|
||||
page, limit, current_user.current_tenant_id, search
|
||||
)
|
||||
response = {
|
||||
"data": [item.to_dict() for item in external_knowledge_apis],
|
||||
"has_more": len(external_knowledge_apis) == limit,
|
||||
"limit": limit,
|
||||
"total": total,
|
||||
"page": page,
|
||||
}
|
||||
return response, 200
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument(
|
||||
"name",
|
||||
nullable=False,
|
||||
required=True,
|
||||
help="Name is required. Name must be between 1 to 100 characters.",
|
||||
type=_validate_name,
|
||||
)
|
||||
parser.add_argument(
|
||||
"settings",
|
||||
type=dict,
|
||||
location="json",
|
||||
nullable=False,
|
||||
required=True,
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
ExternalDatasetService.validate_api_list(args["settings"])
|
||||
|
||||
# The role of the current user in the ta table must be admin, owner, or editor, or dataset_operator
|
||||
if not current_user.is_dataset_editor:
|
||||
raise Forbidden()
|
||||
|
||||
try:
|
||||
external_knowledge_api = ExternalDatasetService.create_external_knowledge_api(
|
||||
tenant_id=current_user.current_tenant_id, user_id=current_user.id, args=args
|
||||
)
|
||||
except services.errors.dataset.DatasetNameDuplicateError:
|
||||
raise DatasetNameDuplicateError()
|
||||
|
||||
return external_knowledge_api.to_dict(), 201
|
||||
|
||||
|
||||
class ExternalApiTemplateApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def get(self, external_knowledge_api_id):
|
||||
external_knowledge_api_id = str(external_knowledge_api_id)
|
||||
external_knowledge_api = ExternalDatasetService.get_external_knowledge_api(external_knowledge_api_id)
|
||||
if external_knowledge_api is None:
|
||||
raise NotFound("API template not found.")
|
||||
|
||||
return external_knowledge_api.to_dict(), 200
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def patch(self, external_knowledge_api_id):
|
||||
external_knowledge_api_id = str(external_knowledge_api_id)
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument(
|
||||
"name",
|
||||
nullable=False,
|
||||
required=True,
|
||||
help="type is required. Name must be between 1 to 100 characters.",
|
||||
type=_validate_name,
|
||||
)
|
||||
parser.add_argument(
|
||||
"settings",
|
||||
type=dict,
|
||||
location="json",
|
||||
nullable=False,
|
||||
required=True,
|
||||
)
|
||||
args = parser.parse_args()
|
||||
ExternalDatasetService.validate_api_list(args["settings"])
|
||||
|
||||
external_knowledge_api = ExternalDatasetService.update_external_knowledge_api(
|
||||
tenant_id=current_user.current_tenant_id,
|
||||
user_id=current_user.id,
|
||||
external_knowledge_api_id=external_knowledge_api_id,
|
||||
args=args,
|
||||
)
|
||||
|
||||
return external_knowledge_api.to_dict(), 200
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def delete(self, external_knowledge_api_id):
|
||||
external_knowledge_api_id = str(external_knowledge_api_id)
|
||||
|
||||
# The role of the current user in the ta table must be admin, owner, or editor
|
||||
if not current_user.is_editor or current_user.is_dataset_operator:
|
||||
raise Forbidden()
|
||||
|
||||
ExternalDatasetService.delete_external_knowledge_api(current_user.current_tenant_id, external_knowledge_api_id)
|
||||
return {"result": "success"}, 200
|
||||
|
||||
|
||||
class ExternalApiUseCheckApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def get(self, external_knowledge_api_id):
|
||||
external_knowledge_api_id = str(external_knowledge_api_id)
|
||||
|
||||
external_knowledge_api_is_using, count = ExternalDatasetService.external_knowledge_api_use_check(
|
||||
external_knowledge_api_id
|
||||
)
|
||||
return {"is_using": external_knowledge_api_is_using, "count": count}, 200
|
||||
|
||||
|
||||
class ExternalDatasetCreateApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self):
|
||||
# The role of the current user in the ta table must be admin, owner, or editor
|
||||
if not current_user.is_editor:
|
||||
raise Forbidden()
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument("external_knowledge_api_id", type=str, required=True, nullable=False, location="json")
|
||||
parser.add_argument("external_knowledge_id", type=str, required=True, nullable=False, location="json")
|
||||
parser.add_argument(
|
||||
"name",
|
||||
nullable=False,
|
||||
required=True,
|
||||
help="name is required. Name must be between 1 to 100 characters.",
|
||||
type=_validate_name,
|
||||
)
|
||||
parser.add_argument("description", type=str, required=False, nullable=True, location="json")
|
||||
parser.add_argument("external_retrieval_model", type=dict, required=False, location="json")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# The role of the current user in the ta table must be admin, owner, or editor, or dataset_operator
|
||||
if not current_user.is_dataset_editor:
|
||||
raise Forbidden()
|
||||
|
||||
try:
|
||||
dataset = ExternalDatasetService.create_external_dataset(
|
||||
tenant_id=current_user.current_tenant_id,
|
||||
user_id=current_user.id,
|
||||
args=args,
|
||||
)
|
||||
except services.errors.dataset.DatasetNameDuplicateError:
|
||||
raise DatasetNameDuplicateError()
|
||||
|
||||
return marshal(dataset, dataset_detail_fields), 201
|
||||
|
||||
|
||||
class ExternalKnowledgeHitTestingApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self, dataset_id):
|
||||
dataset_id_str = str(dataset_id)
|
||||
dataset = DatasetService.get_dataset(dataset_id_str)
|
||||
if dataset is None:
|
||||
raise NotFound("Dataset not found.")
|
||||
|
||||
try:
|
||||
DatasetService.check_dataset_permission(dataset, current_user)
|
||||
except services.errors.account.NoPermissionError as e:
|
||||
raise Forbidden(str(e))
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument("query", type=str, location="json")
|
||||
parser.add_argument("external_retrieval_model", type=dict, required=False, location="json")
|
||||
args = parser.parse_args()
|
||||
|
||||
HitTestingService.hit_testing_args_check(args)
|
||||
|
||||
try:
|
||||
response = HitTestingService.external_retrieve(
|
||||
dataset=dataset,
|
||||
query=args["query"],
|
||||
account=current_user,
|
||||
external_retrieval_model=args["external_retrieval_model"],
|
||||
)
|
||||
|
||||
return response
|
||||
except Exception as e:
|
||||
raise InternalServerError(str(e))
|
||||
|
||||
|
||||
api.add_resource(ExternalKnowledgeHitTestingApi, "/datasets/<uuid:dataset_id>/external-hit-testing")
|
||||
api.add_resource(ExternalDatasetCreateApi, "/datasets/external")
|
||||
api.add_resource(ExternalApiTemplateListApi, "/datasets/external-knowledge-api")
|
||||
api.add_resource(ExternalApiTemplateApi, "/datasets/external-knowledge-api/<uuid:external_knowledge_api_id>")
|
||||
api.add_resource(ExternalApiUseCheckApi, "/datasets/external-knowledge-api/<uuid:external_knowledge_api_id>/use-check")
|
||||
@@ -47,6 +47,7 @@ class HitTestingApi(Resource):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument("query", type=str, location="json")
|
||||
parser.add_argument("retrieval_model", type=dict, required=False, location="json")
|
||||
parser.add_argument("external_retrieval_model", type=dict, required=False, location="json")
|
||||
args = parser.parse_args()
|
||||
|
||||
HitTestingService.hit_testing_args_check(args)
|
||||
@@ -57,6 +58,7 @@ class HitTestingApi(Resource):
|
||||
query=args["query"],
|
||||
account=current_user,
|
||||
retrieval_model=args["retrieval_model"],
|
||||
external_retrieval_model=args["external_retrieval_model"],
|
||||
limit=10,
|
||||
)
|
||||
|
||||
|
||||
@@ -14,7 +14,9 @@ class WebsiteCrawlApi(Resource):
|
||||
@account_initialization_required
|
||||
def post(self):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument("provider", type=str, choices=["firecrawl"], required=True, nullable=True, location="json")
|
||||
parser.add_argument(
|
||||
"provider", type=str, choices=["firecrawl", "jinareader"], required=True, nullable=True, location="json"
|
||||
)
|
||||
parser.add_argument("url", type=str, required=True, nullable=True, location="json")
|
||||
parser.add_argument("options", type=dict, required=True, nullable=True, location="json")
|
||||
args = parser.parse_args()
|
||||
@@ -33,7 +35,7 @@ class WebsiteCrawlStatusApi(Resource):
|
||||
@account_initialization_required
|
||||
def get(self, job_id: str):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument("provider", type=str, choices=["firecrawl"], required=True, location="args")
|
||||
parser.add_argument("provider", type=str, choices=["firecrawl", "jinareader"], required=True, location="args")
|
||||
args = parser.parse_args()
|
||||
# get crawl status
|
||||
try:
|
||||
|
||||
@@ -100,6 +100,7 @@ class ChatApi(InstalledAppResource):
|
||||
parser.add_argument("query", type=str, required=True, location="json")
|
||||
parser.add_argument("files", type=list, required=False, location="json")
|
||||
parser.add_argument("conversation_id", type=uuid_value, location="json")
|
||||
parser.add_argument("parent_message_id", type=uuid_value, required=False, location="json")
|
||||
parser.add_argument("retriever_from", type=str, required=False, default="explore_app", location="json")
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
@@ -51,7 +51,7 @@ class MessageListApi(InstalledAppResource):
|
||||
|
||||
try:
|
||||
return MessageService.pagination_by_first_id(
|
||||
app_model, current_user, args["conversation_id"], args["first_id"], args["limit"]
|
||||
app_model, current_user, args["conversation_id"], args["first_id"], args["limit"], "desc"
|
||||
)
|
||||
except services.errors.conversation.ConversationNotExistsError:
|
||||
raise NotFound("Conversation Not Exists.")
|
||||
|
||||
@@ -38,11 +38,52 @@ class VersionApi(Resource):
|
||||
return result
|
||||
|
||||
content = json.loads(response.content)
|
||||
result["version"] = content["version"]
|
||||
result["release_date"] = content["releaseDate"]
|
||||
result["release_notes"] = content["releaseNotes"]
|
||||
result["can_auto_update"] = content["canAutoUpdate"]
|
||||
if _has_new_version(latest_version=content["version"], current_version=f"{args.get('current_version')}"):
|
||||
result["version"] = content["version"]
|
||||
result["release_date"] = content["releaseDate"]
|
||||
result["release_notes"] = content["releaseNotes"]
|
||||
result["can_auto_update"] = content["canAutoUpdate"]
|
||||
return result
|
||||
|
||||
|
||||
def _has_new_version(*, latest_version: str, current_version: str) -> bool:
|
||||
def parse_version(version: str) -> tuple:
|
||||
# Split version into parts and pre-release suffix if any
|
||||
parts = version.split("-")
|
||||
version_parts = parts[0].split(".")
|
||||
pre_release = parts[1] if len(parts) > 1 else None
|
||||
|
||||
# Validate version format
|
||||
if len(version_parts) != 3:
|
||||
raise ValueError(f"Invalid version format: {version}")
|
||||
|
||||
try:
|
||||
# Convert version parts to integers
|
||||
major, minor, patch = map(int, version_parts)
|
||||
return (major, minor, patch, pre_release)
|
||||
except ValueError:
|
||||
raise ValueError(f"Invalid version format: {version}")
|
||||
|
||||
latest = parse_version(latest_version)
|
||||
current = parse_version(current_version)
|
||||
|
||||
# Compare major, minor, and patch versions
|
||||
for latest_part, current_part in zip(latest[:3], current[:3]):
|
||||
if latest_part > current_part:
|
||||
return True
|
||||
elif latest_part < current_part:
|
||||
return False
|
||||
|
||||
# If versions are equal, check pre-release suffixes
|
||||
if latest[3] is None and current[3] is not None:
|
||||
return True
|
||||
elif latest[3] is not None and current[3] is None:
|
||||
return False
|
||||
elif latest[3] is not None and current[3] is not None:
|
||||
# Simple string comparison for pre-release versions
|
||||
return latest[3] > current[3]
|
||||
|
||||
return False
|
||||
|
||||
|
||||
api.add_resource(VersionApi, "/version")
|
||||
|
||||
@@ -72,8 +72,9 @@ class DefaultModelApi(Resource):
|
||||
provider=model_setting["provider"],
|
||||
model=model_setting["model"],
|
||||
)
|
||||
except Exception:
|
||||
logging.warning(f"{model_setting['model_type']} save error")
|
||||
except Exception as ex:
|
||||
logging.exception(f"{model_setting['model_type']} save error: {ex}")
|
||||
raise ex
|
||||
|
||||
return {"result": "success"}
|
||||
|
||||
|
||||
@@ -54,6 +54,7 @@ class MessageListApi(Resource):
|
||||
message_fields = {
|
||||
"id": fields.String,
|
||||
"conversation_id": fields.String,
|
||||
"parent_message_id": fields.String,
|
||||
"inputs": fields.Raw,
|
||||
"query": fields.String,
|
||||
"answer": fields.String(attribute="re_sign_file_url_answer"),
|
||||
|
||||
@@ -28,11 +28,11 @@ class DatasetListApi(DatasetApiResource):
|
||||
|
||||
page = request.args.get("page", default=1, type=int)
|
||||
limit = request.args.get("limit", default=20, type=int)
|
||||
provider = request.args.get("provider", default="vendor")
|
||||
# provider = request.args.get("provider", default="vendor")
|
||||
search = request.args.get("keyword", default=None, type=str)
|
||||
tag_ids = request.args.getlist("tag_ids")
|
||||
|
||||
datasets, total = DatasetService.get_datasets(page, limit, provider, tenant_id, current_user, search, tag_ids)
|
||||
datasets, total = DatasetService.get_datasets(page, limit, tenant_id, current_user, search, tag_ids)
|
||||
# check embedding setting
|
||||
provider_manager = ProviderManager()
|
||||
configurations = provider_manager.get_configurations(tenant_id=current_user.current_tenant_id)
|
||||
@@ -82,6 +82,26 @@ class DatasetListApi(DatasetApiResource):
|
||||
required=False,
|
||||
nullable=False,
|
||||
)
|
||||
parser.add_argument(
|
||||
"external_knowledge_api_id",
|
||||
type=str,
|
||||
nullable=True,
|
||||
required=False,
|
||||
default="_validate_name",
|
||||
)
|
||||
parser.add_argument(
|
||||
"provider",
|
||||
type=str,
|
||||
nullable=True,
|
||||
required=False,
|
||||
default="vendor",
|
||||
)
|
||||
parser.add_argument(
|
||||
"external_knowledge_id",
|
||||
type=str,
|
||||
nullable=True,
|
||||
required=False,
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
try:
|
||||
@@ -91,6 +111,9 @@ class DatasetListApi(DatasetApiResource):
|
||||
indexing_technique=args["indexing_technique"],
|
||||
account=current_user,
|
||||
permission=args["permission"],
|
||||
provider=args["provider"],
|
||||
external_knowledge_api_id=args["external_knowledge_api_id"],
|
||||
external_knowledge_id=args["external_knowledge_id"],
|
||||
)
|
||||
except services.errors.dataset.DatasetNameDuplicateError:
|
||||
raise DatasetNameDuplicateError()
|
||||
|
||||
@@ -96,6 +96,7 @@ class ChatApi(WebApiResource):
|
||||
parser.add_argument("files", type=list, required=False, location="json")
|
||||
parser.add_argument("response_mode", type=str, choices=["blocking", "streaming"], location="json")
|
||||
parser.add_argument("conversation_id", type=uuid_value, location="json")
|
||||
parser.add_argument("parent_message_id", type=uuid_value, required=False, location="json")
|
||||
parser.add_argument("retriever_from", type=str, required=False, default="web_app", location="json")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
@@ -57,6 +57,7 @@ class MessageListApi(WebApiResource):
|
||||
message_fields = {
|
||||
"id": fields.String,
|
||||
"conversation_id": fields.String,
|
||||
"parent_message_id": fields.String,
|
||||
"inputs": fields.Raw,
|
||||
"query": fields.String,
|
||||
"answer": fields.String(attribute="re_sign_file_url_answer"),
|
||||
@@ -89,7 +90,7 @@ class MessageListApi(WebApiResource):
|
||||
|
||||
try:
|
||||
return MessageService.pagination_by_first_id(
|
||||
app_model, end_user, args["conversation_id"], args["first_id"], args["limit"]
|
||||
app_model, end_user, args["conversation_id"], args["first_id"], args["limit"], "desc"
|
||||
)
|
||||
except services.errors.conversation.ConversationNotExistsError:
|
||||
raise NotFound("Conversation Not Exists.")
|
||||
|
||||
@@ -32,6 +32,7 @@ from core.model_runtime.entities.message_entities import (
|
||||
from core.model_runtime.entities.model_entities import ModelFeature
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||
from core.prompt.utils.extract_thread_messages import extract_thread_messages
|
||||
from core.tools.entities.tool_entities import (
|
||||
ToolParameter,
|
||||
ToolRuntimeVariablePool,
|
||||
@@ -441,10 +442,12 @@ class BaseAgentRunner(AppRunner):
|
||||
.filter(
|
||||
Message.conversation_id == self.message.conversation_id,
|
||||
)
|
||||
.order_by(Message.created_at.asc())
|
||||
.order_by(Message.created_at.desc())
|
||||
.all()
|
||||
)
|
||||
|
||||
messages = list(reversed(extract_thread_messages(messages)))
|
||||
|
||||
for message in messages:
|
||||
if message.id == self.message.id:
|
||||
continue
|
||||
|
||||
@@ -121,6 +121,7 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
|
||||
inputs=conversation.inputs if conversation else self._get_cleaned_inputs(inputs, app_config),
|
||||
query=query,
|
||||
files=file_objs,
|
||||
parent_message_id=args.get("parent_message_id"),
|
||||
user_id=user.id,
|
||||
stream=stream,
|
||||
invoke_from=invoke_from,
|
||||
|
||||
@@ -231,7 +231,8 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
|
||||
except Exception as e:
|
||||
logger.error(e)
|
||||
break
|
||||
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
|
||||
if tts_publisher:
|
||||
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
|
||||
|
||||
def _process_stream_response(
|
||||
self,
|
||||
|
||||
@@ -127,6 +127,7 @@ class AgentChatAppGenerator(MessageBasedAppGenerator):
|
||||
inputs=conversation.inputs if conversation else self._get_cleaned_inputs(inputs, app_config),
|
||||
query=query,
|
||||
files=file_objs,
|
||||
parent_message_id=args.get("parent_message_id"),
|
||||
user_id=user.id,
|
||||
stream=stream,
|
||||
invoke_from=invoke_from,
|
||||
|
||||
@@ -75,10 +75,10 @@ class AppGenerateResponseConverter(ABC):
|
||||
:return:
|
||||
"""
|
||||
# show_retrieve_source
|
||||
updated_resources = []
|
||||
if "retriever_resources" in metadata:
|
||||
metadata["retriever_resources"] = []
|
||||
for resource in metadata["retriever_resources"]:
|
||||
metadata["retriever_resources"].append(
|
||||
updated_resources.append(
|
||||
{
|
||||
"segment_id": resource["segment_id"],
|
||||
"position": resource["position"],
|
||||
@@ -87,6 +87,7 @@ class AppGenerateResponseConverter(ABC):
|
||||
"content": resource["content"],
|
||||
}
|
||||
)
|
||||
metadata["retriever_resources"] = updated_resources
|
||||
|
||||
# show annotation reply
|
||||
if "annotation_reply" in metadata:
|
||||
|
||||
@@ -309,7 +309,7 @@ class AppRunner:
|
||||
if not prompt_messages:
|
||||
prompt_messages = result.prompt_messages
|
||||
|
||||
if not usage and result.delta.usage:
|
||||
if result.delta.usage:
|
||||
usage = result.delta.usage
|
||||
|
||||
if not usage:
|
||||
|
||||
@@ -128,6 +128,7 @@ class ChatAppGenerator(MessageBasedAppGenerator):
|
||||
inputs=conversation.inputs if conversation else self._get_cleaned_inputs(inputs, app_config),
|
||||
query=query,
|
||||
files=file_objs,
|
||||
parent_message_id=args.get("parent_message_id"),
|
||||
user_id=user.id,
|
||||
stream=stream,
|
||||
invoke_from=invoke_from,
|
||||
|
||||
@@ -218,6 +218,7 @@ class MessageBasedAppGenerator(BaseAppGenerator):
|
||||
answer_tokens=0,
|
||||
answer_unit_price=0,
|
||||
answer_price_unit=0,
|
||||
parent_message_id=getattr(application_generate_entity, "parent_message_id", None),
|
||||
provider_response_latency=0,
|
||||
total_price=0,
|
||||
currency="USD",
|
||||
|
||||
@@ -212,7 +212,8 @@ class WorkflowAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCycleMa
|
||||
except Exception as e:
|
||||
logger.error(e)
|
||||
break
|
||||
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
|
||||
if tts_publisher:
|
||||
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
|
||||
|
||||
def _process_stream_response(
|
||||
self,
|
||||
|
||||
@@ -122,6 +122,7 @@ class ChatAppGenerateEntity(EasyUIBasedAppGenerateEntity):
|
||||
"""
|
||||
|
||||
conversation_id: Optional[str] = None
|
||||
parent_message_id: Optional[str] = None
|
||||
|
||||
|
||||
class CompletionAppGenerateEntity(EasyUIBasedAppGenerateEntity):
|
||||
@@ -138,6 +139,7 @@ class AgentChatAppGenerateEntity(EasyUIBasedAppGenerateEntity):
|
||||
"""
|
||||
|
||||
conversation_id: Optional[str] = None
|
||||
parent_message_id: Optional[str] = None
|
||||
|
||||
|
||||
class AdvancedChatAppGenerateEntity(AppGenerateEntity):
|
||||
@@ -149,6 +151,7 @@ class AdvancedChatAppGenerateEntity(AppGenerateEntity):
|
||||
app_config: WorkflowUIBasedAppConfig
|
||||
|
||||
conversation_id: Optional[str] = None
|
||||
parent_message_id: Optional[str] = None
|
||||
query: str
|
||||
|
||||
class SingleIterationRunEntity(BaseModel):
|
||||
|
||||
@@ -1,2 +1,2 @@
|
||||
class VariableError(Exception):
|
||||
class VariableError(ValueError):
|
||||
pass
|
||||
|
||||
@@ -248,7 +248,8 @@ class EasyUIBasedGenerateTaskPipeline(BasedGenerateTaskPipeline, MessageCycleMan
|
||||
else:
|
||||
start_listener_time = time.time()
|
||||
yield MessageAudioStreamResponse(audio=audio.audio, task_id=task_id)
|
||||
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
|
||||
if publisher:
|
||||
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
|
||||
|
||||
def _process_stream_response(
|
||||
self, publisher: AppGeneratorTTSPublisher, trace_manager: Optional[TraceQueueManager] = None
|
||||
|
||||
@@ -59,7 +59,7 @@ class DatasetIndexToolCallbackHandler:
|
||||
for item in resource:
|
||||
dataset_retriever_resource = DatasetRetrieverResource(
|
||||
message_id=self._message_id,
|
||||
position=item.get("position"),
|
||||
position=item.get("position") or 0,
|
||||
dataset_id=item.get("dataset_id"),
|
||||
dataset_name=item.get("dataset_name"),
|
||||
document_id=item.get("document_id"),
|
||||
|
||||
@@ -5,6 +5,7 @@ from typing import Optional, cast
|
||||
import numpy as np
|
||||
from sqlalchemy.exc import IntegrityError
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.model_entities import ModelPropertyKey
|
||||
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
|
||||
@@ -56,7 +57,9 @@ class CacheEmbedding(Embeddings):
|
||||
for i in range(0, len(embedding_queue_texts), max_chunks):
|
||||
batch_texts = embedding_queue_texts[i : i + max_chunks]
|
||||
|
||||
embedding_result = self._model_instance.invoke_text_embedding(texts=batch_texts, user=self._user)
|
||||
embedding_result = self._model_instance.invoke_text_embedding(
|
||||
texts=batch_texts, user=self._user, input_type=EmbeddingInputType.DOCUMENT
|
||||
)
|
||||
|
||||
for vector in embedding_result.embeddings:
|
||||
try:
|
||||
@@ -100,7 +103,9 @@ class CacheEmbedding(Embeddings):
|
||||
redis_client.expire(embedding_cache_key, 600)
|
||||
return list(np.frombuffer(base64.b64decode(embedding), dtype="float"))
|
||||
try:
|
||||
embedding_result = self._model_instance.invoke_text_embedding(texts=[text], user=self._user)
|
||||
embedding_result = self._model_instance.invoke_text_embedding(
|
||||
texts=[text], user=self._user, input_type=EmbeddingInputType.QUERY
|
||||
)
|
||||
|
||||
embedding_results = embedding_result.embeddings[0]
|
||||
embedding_results = (embedding_results / np.linalg.norm(embedding_results)).tolist()
|
||||
|
||||
10
api/core/embedding/embedding_constant.py
Normal file
10
api/core/embedding/embedding_constant.py
Normal file
@@ -0,0 +1,10 @@
|
||||
from enum import Enum
|
||||
|
||||
|
||||
class EmbeddingInputType(Enum):
|
||||
"""
|
||||
Enum for embedding input type.
|
||||
"""
|
||||
|
||||
DOCUMENT = "document"
|
||||
QUERY = "query"
|
||||
@@ -119,7 +119,7 @@ class ProviderConfiguration(BaseModel):
|
||||
credentials = model_configuration.credentials
|
||||
break
|
||||
|
||||
if self.custom_configuration.provider:
|
||||
if not credentials and self.custom_configuration.provider:
|
||||
credentials = self.custom_configuration.provider.credentials
|
||||
|
||||
return credentials
|
||||
|
||||
@@ -47,6 +47,8 @@ class LLMGenerator:
|
||||
)
|
||||
answer = response.message.content
|
||||
cleaned_answer = re.sub(r"^.*(\{.*\}).*$", r"\1", answer, flags=re.DOTALL)
|
||||
if cleaned_answer is None:
|
||||
return ""
|
||||
result_dict = json.loads(cleaned_answer)
|
||||
answer = result_dict["Your Output"]
|
||||
name = answer.strip()
|
||||
|
||||
@@ -65,7 +65,6 @@ SUGGESTED_QUESTIONS_AFTER_ANSWER_INSTRUCTION_PROMPT = (
|
||||
"Please help me predict the three most likely questions that human would ask, "
|
||||
"and keeping each question under 20 characters.\n"
|
||||
"MAKE SURE your output is the SAME language as the Assistant's latest response"
|
||||
"(if the main response is written in Chinese, then the language of your output must be using Chinese.)!\n"
|
||||
"The output must be an array in JSON format following the specified schema:\n"
|
||||
'["question1","question2","question3"]\n'
|
||||
)
|
||||
|
||||
@@ -11,6 +11,7 @@ from core.model_runtime.entities.message_entities import (
|
||||
TextPromptMessageContent,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.prompt.utils.extract_thread_messages import extract_thread_messages
|
||||
from extensions.ext_database import db
|
||||
from models.model import AppMode, Conversation, Message, MessageFile
|
||||
from models.workflow import WorkflowRun
|
||||
@@ -33,8 +34,17 @@ class TokenBufferMemory:
|
||||
|
||||
# fetch limited messages, and return reversed
|
||||
query = (
|
||||
db.session.query(Message.id, Message.query, Message.answer, Message.created_at, Message.workflow_run_id)
|
||||
.filter(Message.conversation_id == self.conversation.id, Message.answer != "")
|
||||
db.session.query(
|
||||
Message.id,
|
||||
Message.query,
|
||||
Message.answer,
|
||||
Message.created_at,
|
||||
Message.workflow_run_id,
|
||||
Message.parent_message_id,
|
||||
)
|
||||
.filter(
|
||||
Message.conversation_id == self.conversation.id,
|
||||
)
|
||||
.order_by(Message.created_at.desc())
|
||||
)
|
||||
|
||||
@@ -45,7 +55,12 @@ class TokenBufferMemory:
|
||||
|
||||
messages = query.limit(message_limit).all()
|
||||
|
||||
messages = list(reversed(messages))
|
||||
# instead of all messages from the conversation, we only need to extract messages
|
||||
# that belong to the thread of last message
|
||||
thread_messages = extract_thread_messages(messages)
|
||||
thread_messages.pop(0)
|
||||
messages = list(reversed(thread_messages))
|
||||
|
||||
message_file_parser = MessageFileParser(tenant_id=app_record.tenant_id, app_id=app_record.id)
|
||||
prompt_messages = []
|
||||
for message in messages:
|
||||
|
||||
@@ -3,6 +3,7 @@ import os
|
||||
from collections.abc import Callable, Generator, Sequence
|
||||
from typing import IO, Optional, Union, cast
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.provider_configuration import ProviderConfiguration, ProviderModelBundle
|
||||
from core.entities.provider_entities import ModelLoadBalancingConfiguration
|
||||
from core.errors.error import ProviderTokenNotInitError
|
||||
@@ -158,12 +159,15 @@ class ModelInstance:
|
||||
tools=tools,
|
||||
)
|
||||
|
||||
def invoke_text_embedding(self, texts: list[str], user: Optional[str] = None) -> TextEmbeddingResult:
|
||||
def invoke_text_embedding(
|
||||
self, texts: list[str], user: Optional[str] = None, input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT
|
||||
) -> TextEmbeddingResult:
|
||||
"""
|
||||
Invoke large language model
|
||||
|
||||
:param texts: texts to embed
|
||||
:param user: unique user id
|
||||
:param input_type: input type
|
||||
:return: embeddings result
|
||||
"""
|
||||
if not isinstance(self.model_type_instance, TextEmbeddingModel):
|
||||
@@ -176,6 +180,7 @@ class ModelInstance:
|
||||
credentials=self.credentials,
|
||||
texts=texts,
|
||||
user=user,
|
||||
input_type=input_type,
|
||||
)
|
||||
|
||||
def get_text_embedding_num_tokens(self, texts: list[str]) -> int:
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Optional
|
||||
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk
|
||||
@@ -13,7 +14,7 @@ _TEXT_COLOR_MAPPING = {
|
||||
}
|
||||
|
||||
|
||||
class Callback:
|
||||
class Callback(ABC):
|
||||
"""
|
||||
Base class for callbacks.
|
||||
Only for LLM.
|
||||
@@ -21,6 +22,7 @@ class Callback:
|
||||
|
||||
raise_error: bool = False
|
||||
|
||||
@abstractmethod
|
||||
def on_before_invoke(
|
||||
self,
|
||||
llm_instance: AIModel,
|
||||
@@ -48,6 +50,7 @@ class Callback:
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
def on_new_chunk(
|
||||
self,
|
||||
llm_instance: AIModel,
|
||||
@@ -77,6 +80,7 @@ class Callback:
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
def on_after_invoke(
|
||||
self,
|
||||
llm_instance: AIModel,
|
||||
@@ -106,6 +110,7 @@ class Callback:
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
def on_invoke_error(
|
||||
self,
|
||||
llm_instance: AIModel,
|
||||
|
||||
@@ -0,0 +1,310 @@
|
||||
## Custom Integration of Pre-defined Models
|
||||
|
||||
### Introduction
|
||||
|
||||
After completing the vendors integration, the next step is to connect the vendor's models. To illustrate the entire connection process, we will use Xinference as an example to demonstrate a complete vendor integration.
|
||||
|
||||
It is important to note that for custom models, each model connection requires a complete vendor credential.
|
||||
|
||||
Unlike pre-defined models, a custom vendor integration always includes the following two parameters, which do not need to be defined in the vendor YAML file.
|
||||
|
||||

|
||||
|
||||
As mentioned earlier, vendors do not need to implement validate_provider_credential. The runtime will automatically call the corresponding model layer's validate_credentials to validate the credentials based on the model type and name selected by the user.
|
||||
|
||||
### Writing the Vendor YAML
|
||||
|
||||
First, we need to identify the types of models supported by the vendor we are integrating.
|
||||
|
||||
Currently supported model types are as follows:
|
||||
|
||||
- `llm` Text Generation Models
|
||||
|
||||
- `text_embedding` Text Embedding Models
|
||||
|
||||
- `rerank` Rerank Models
|
||||
|
||||
- `speech2text` Speech-to-Text
|
||||
|
||||
- `tts` Text-to-Speech
|
||||
|
||||
- `moderation` Moderation
|
||||
|
||||
Xinference supports LLM, Text Embedding, and Rerank. So we will start by writing xinference.yaml.
|
||||
|
||||
```yaml
|
||||
provider: xinference #Define the vendor identifier
|
||||
label: # Vendor display name, supports both en_US (English) and zh_Hans (Simplified Chinese). If zh_Hans is not set, it will use en_US by default.
|
||||
en_US: Xorbits Inference
|
||||
icon_small: # Small icon, refer to other vendors' icons stored in the _assets directory within the vendor implementation directory; follows the same language policy as the label
|
||||
en_US: icon_s_en.svg
|
||||
icon_large: # Large icon
|
||||
en_US: icon_l_en.svg
|
||||
help: # Help information
|
||||
title:
|
||||
en_US: How to deploy Xinference
|
||||
zh_Hans: 如何部署 Xinference
|
||||
url:
|
||||
en_US: https://github.com/xorbitsai/inference
|
||||
supported_model_types: # Supported model types. Xinference supports LLM, Text Embedding, and Rerank
|
||||
- llm
|
||||
- text-embedding
|
||||
- rerank
|
||||
configurate_methods: # Since Xinference is a locally deployed vendor with no predefined models, users need to deploy whatever models they need according to Xinference documentation. Thus, it only supports custom models.
|
||||
- customizable-model
|
||||
provider_credential_schema:
|
||||
credential_form_schemas:
|
||||
```
|
||||
|
||||
|
||||
Then, we need to determine what credentials are required to define a model in Xinference.
|
||||
|
||||
- Since it supports three different types of models, we need to specify the model_type to denote the model type. Here is how we can define it:
|
||||
|
||||
```yaml
|
||||
provider_credential_schema:
|
||||
credential_form_schemas:
|
||||
- variable: model_type
|
||||
type: select
|
||||
label:
|
||||
en_US: Model type
|
||||
zh_Hans: 模型类型
|
||||
required: true
|
||||
options:
|
||||
- value: text-generation
|
||||
label:
|
||||
en_US: Language Model
|
||||
zh_Hans: 语言模型
|
||||
- value: embeddings
|
||||
label:
|
||||
en_US: Text Embedding
|
||||
- value: reranking
|
||||
label:
|
||||
en_US: Rerank
|
||||
```
|
||||
|
||||
- Next, each model has its own model_name, so we need to define that here:
|
||||
|
||||
```yaml
|
||||
- variable: model_name
|
||||
type: text-input
|
||||
label:
|
||||
en_US: Model name
|
||||
zh_Hans: 模型名称
|
||||
required: true
|
||||
placeholder:
|
||||
zh_Hans: 填写模型名称
|
||||
en_US: Input model name
|
||||
```
|
||||
|
||||
- Specify the Xinference local deployment address:
|
||||
|
||||
```yaml
|
||||
- variable: server_url
|
||||
label:
|
||||
zh_Hans: 服务器URL
|
||||
en_US: Server url
|
||||
type: text-input
|
||||
required: true
|
||||
placeholder:
|
||||
zh_Hans: 在此输入Xinference的服务器地址,如 https://example.com/xxx
|
||||
en_US: Enter the url of your Xinference, for example https://example.com/xxx
|
||||
```
|
||||
|
||||
- Each model has a unique model_uid, so we also need to define that here:
|
||||
|
||||
```yaml
|
||||
- variable: model_uid
|
||||
label:
|
||||
zh_Hans: 模型UID
|
||||
en_US: Model uid
|
||||
type: text-input
|
||||
required: true
|
||||
placeholder:
|
||||
zh_Hans: 在此输入您的Model UID
|
||||
en_US: Enter the model uid
|
||||
```
|
||||
|
||||
Now, we have completed the basic definition of the vendor.
|
||||
|
||||
### Writing the Model Code
|
||||
|
||||
Next, let's take the `llm` type as an example and write `xinference.llm.llm.py`.
|
||||
|
||||
In `llm.py`, create a Xinference LLM class, we name it `XinferenceAILargeLanguageModel` (this can be arbitrary), inheriting from the `__base.large_language_model.LargeLanguageModel` base class, and implement the following methods:
|
||||
|
||||
- LLM Invocation
|
||||
|
||||
Implement the core method for LLM invocation, supporting both stream and synchronous responses.
|
||||
|
||||
```python
|
||||
def _invoke(self, model: str, credentials: dict,
|
||||
prompt_messages: list[PromptMessage], model_parameters: dict,
|
||||
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
|
||||
stream: bool = True, user: Optional[str] = None) \
|
||||
-> Union[LLMResult, Generator]:
|
||||
"""
|
||||
Invoke large language model
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param prompt_messages: prompt messages
|
||||
:param model_parameters: model parameters
|
||||
:param tools: tools for tool usage
|
||||
:param stop: stop words
|
||||
:param stream: is the response a stream
|
||||
:param user: unique user id
|
||||
:return: full response or stream response chunk generator result
|
||||
"""
|
||||
```
|
||||
|
||||
When implementing, ensure to use two functions to return data separately for synchronous and stream responses. This is important because Python treats functions containing the `yield` keyword as generator functions, mandating them to return `Generator` types. Here’s an example (note that the example uses simplified parameters; in real implementation, use the parameter list as defined above):
|
||||
|
||||
```python
|
||||
def _invoke(self, stream: bool, **kwargs) \
|
||||
-> Union[LLMResult, Generator]:
|
||||
if stream:
|
||||
return self._handle_stream_response(**kwargs)
|
||||
return self._handle_sync_response(**kwargs)
|
||||
|
||||
def _handle_stream_response(self, **kwargs) -> Generator:
|
||||
for chunk in response:
|
||||
yield chunk
|
||||
def _handle_sync_response(self, **kwargs) -> LLMResult:
|
||||
return LLMResult(**response)
|
||||
```
|
||||
|
||||
- Pre-compute Input Tokens
|
||||
|
||||
If the model does not provide an interface for pre-computing tokens, you can return 0 directly.
|
||||
|
||||
```python
|
||||
def get_num_tokens(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],tools: Optional[list[PromptMessageTool]] = None) -> int:
|
||||
"""
|
||||
Get number of tokens for given prompt messages
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param prompt_messages: prompt messages
|
||||
:param tools: tools for tool usage
|
||||
:return: token count
|
||||
"""
|
||||
```
|
||||
|
||||
|
||||
Sometimes, you might not want to return 0 directly. In such cases, you can use `self._get_num_tokens_by_gpt2(text: str)` to get pre-computed tokens. This method is provided by the `AIModel` base class, and it uses GPT2's Tokenizer for calculation. However, it should be noted that this is only a substitute and may not be fully accurate.
|
||||
|
||||
- Model Credentials Validation
|
||||
|
||||
Similar to vendor credentials validation, this method validates individual model credentials.
|
||||
|
||||
```python
|
||||
def validate_credentials(self, model: str, credentials: dict) -> None:
|
||||
"""
|
||||
Validate model credentials
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:return: None
|
||||
"""
|
||||
```
|
||||
|
||||
- Model Parameter Schema
|
||||
|
||||
Unlike custom types, since the YAML file does not define which parameters a model supports, we need to dynamically generate the model parameter schema.
|
||||
|
||||
For instance, Xinference supports `max_tokens`, `temperature`, and `top_p` parameters.
|
||||
|
||||
However, some vendors may support different parameters for different models. For example, the `OpenLLM` vendor supports `top_k`, but not all models provided by this vendor support `top_k`. Let's say model A supports `top_k` but model B does not. In such cases, we need to dynamically generate the model parameter schema, as illustrated below:
|
||||
|
||||
```python
|
||||
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
|
||||
"""
|
||||
used to define customizable model schema
|
||||
"""
|
||||
rules = [
|
||||
ParameterRule(
|
||||
name='temperature', type=ParameterType.FLOAT,
|
||||
use_template='temperature',
|
||||
label=I18nObject(
|
||||
zh_Hans='温度', en_US='Temperature'
|
||||
)
|
||||
),
|
||||
ParameterRule(
|
||||
name='top_p', type=ParameterType.FLOAT,
|
||||
use_template='top_p',
|
||||
label=I18nObject(
|
||||
zh_Hans='Top P', en_US='Top P'
|
||||
)
|
||||
),
|
||||
ParameterRule(
|
||||
name='max_tokens', type=ParameterType.INT,
|
||||
use_template='max_tokens',
|
||||
min=1,
|
||||
default=512,
|
||||
label=I18nObject(
|
||||
zh_Hans='最大生成长度', en_US='Max Tokens'
|
||||
)
|
||||
)
|
||||
]
|
||||
|
||||
# if model is A, add top_k to rules
|
||||
if model == 'A':
|
||||
rules.append(
|
||||
ParameterRule(
|
||||
name='top_k', type=ParameterType.INT,
|
||||
use_template='top_k',
|
||||
min=1,
|
||||
default=50,
|
||||
label=I18nObject(
|
||||
zh_Hans='Top K', en_US='Top K'
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
"""
|
||||
some NOT IMPORTANT code here
|
||||
"""
|
||||
|
||||
entity = AIModelEntity(
|
||||
model=model,
|
||||
label=I18nObject(
|
||||
en_US=model
|
||||
),
|
||||
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
|
||||
model_type=model_type,
|
||||
model_properties={
|
||||
ModelPropertyKey.MODE: ModelType.LLM,
|
||||
},
|
||||
parameter_rules=rules
|
||||
)
|
||||
|
||||
return entity
|
||||
```
|
||||
|
||||
- Exception Error Mapping
|
||||
|
||||
When a model invocation error occurs, it should be mapped to the runtime's specified `InvokeError` type, enabling Dify to handle different errors appropriately.
|
||||
|
||||
Runtime Errors:
|
||||
|
||||
- `InvokeConnectionError` Connection error during invocation
|
||||
- `InvokeServerUnavailableError` Service provider unavailable
|
||||
- `InvokeRateLimitError` Rate limit reached
|
||||
- `InvokeAuthorizationError` Authorization failure
|
||||
- `InvokeBadRequestError` Invalid request parameters
|
||||
|
||||
```python
|
||||
@property
|
||||
def _invoke_error_mapping(self) -> dict[type[InvokeError], list[type[Exception]]]:
|
||||
"""
|
||||
Map model invoke error to unified error
|
||||
The key is the error type thrown to the caller
|
||||
The value is the error type thrown by the model,
|
||||
which needs to be converted into a unified error type for the caller.
|
||||
|
||||
:return: Invoke error mapping
|
||||
"""
|
||||
```
|
||||
|
||||
For interface method details, see: [Interfaces](./interfaces.md). For specific implementations, refer to: [llm.py](https://github.com/langgenius/dify-runtime/blob/main/lib/model_providers/anthropic/llm/llm.py).
|
||||
BIN
api/core/model_runtime/docs/en_US/images/index/image-1.png
Normal file
BIN
api/core/model_runtime/docs/en_US/images/index/image-1.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 230 KiB |
BIN
api/core/model_runtime/docs/en_US/images/index/image-2.png
Normal file
BIN
api/core/model_runtime/docs/en_US/images/index/image-2.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 205 KiB |
BIN
api/core/model_runtime/docs/en_US/images/index/image-3.png
Normal file
BIN
api/core/model_runtime/docs/en_US/images/index/image-3.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 44 KiB |
BIN
api/core/model_runtime/docs/en_US/images/index/image.png
Normal file
BIN
api/core/model_runtime/docs/en_US/images/index/image.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 262 KiB |
173
api/core/model_runtime/docs/en_US/predefined_model_scale_out.md
Normal file
173
api/core/model_runtime/docs/en_US/predefined_model_scale_out.md
Normal file
@@ -0,0 +1,173 @@
|
||||
## Predefined Model Integration
|
||||
|
||||
After completing the vendor integration, the next step is to integrate the models from the vendor.
|
||||
|
||||
First, we need to determine the type of model to be integrated and create the corresponding model type `module` under the respective vendor's directory.
|
||||
|
||||
Currently supported model types are:
|
||||
|
||||
- `llm` Text Generation Model
|
||||
- `text_embedding` Text Embedding Model
|
||||
- `rerank` Rerank Model
|
||||
- `speech2text` Speech-to-Text
|
||||
- `tts` Text-to-Speech
|
||||
- `moderation` Moderation
|
||||
|
||||
Continuing with `Anthropic` as an example, `Anthropic` only supports LLM, so create a `module` named `llm` under `model_providers.anthropic`.
|
||||
|
||||
For predefined models, we first need to create a YAML file named after the model under the `llm` `module`, such as `claude-2.1.yaml`.
|
||||
|
||||
### Prepare Model YAML
|
||||
|
||||
```yaml
|
||||
model: claude-2.1 # Model identifier
|
||||
# Display name of the model, which can be set to en_US English or zh_Hans Chinese. If zh_Hans is not set, it will default to en_US.
|
||||
# This can also be omitted, in which case the model identifier will be used as the label
|
||||
label:
|
||||
en_US: claude-2.1
|
||||
model_type: llm # Model type, claude-2.1 is an LLM
|
||||
features: # Supported features, agent-thought supports Agent reasoning, vision supports image understanding
|
||||
- agent-thought
|
||||
model_properties: # Model properties
|
||||
mode: chat # LLM mode, complete for text completion models, chat for conversation models
|
||||
context_size: 200000 # Maximum context size
|
||||
parameter_rules: # Parameter rules for the model call; only LLM requires this
|
||||
- name: temperature # Parameter variable name
|
||||
# Five default configuration templates are provided: temperature/top_p/max_tokens/presence_penalty/frequency_penalty
|
||||
# The template variable name can be set directly in use_template, which will use the default configuration in entities.defaults.PARAMETER_RULE_TEMPLATE
|
||||
# Additional configuration parameters will override the default configuration if set
|
||||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label: # Display name of the parameter
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int # Parameter type, supports float/int/string/boolean
|
||||
help: # Help information, describing the parameter's function
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false # Whether the parameter is mandatory; can be omitted
|
||||
- name: max_tokens_to_sample
|
||||
use_template: max_tokens
|
||||
default: 4096 # Default value of the parameter
|
||||
min: 1 # Minimum value of the parameter, applicable to float/int only
|
||||
max: 4096 # Maximum value of the parameter, applicable to float/int only
|
||||
pricing: # Pricing information
|
||||
input: '8.00' # Input unit price, i.e., prompt price
|
||||
output: '24.00' # Output unit price, i.e., response content price
|
||||
unit: '0.000001' # Price unit, meaning the above prices are per 100K
|
||||
currency: USD # Price currency
|
||||
```
|
||||
|
||||
It is recommended to prepare all model configurations before starting the implementation of the model code.
|
||||
|
||||
You can also refer to the YAML configuration information under the corresponding model type directories of other vendors in the `model_providers` directory. For the complete YAML rules, refer to: [Schema](schema.md#aimodelentity).
|
||||
|
||||
### Implement the Model Call Code
|
||||
|
||||
Next, create a Python file named `llm.py` under the `llm` `module` to write the implementation code.
|
||||
|
||||
Create an Anthropic LLM class named `AnthropicLargeLanguageModel` (or any other name), inheriting from the `__base.large_language_model.LargeLanguageModel` base class, and implement the following methods:
|
||||
|
||||
- LLM Call
|
||||
|
||||
Implement the core method for calling the LLM, supporting both streaming and synchronous responses.
|
||||
|
||||
```python
|
||||
def _invoke(self, model: str, credentials: dict,
|
||||
prompt_messages: list[PromptMessage], model_parameters: dict,
|
||||
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
|
||||
stream: bool = True, user: Optional[str] = None) \
|
||||
-> Union[LLMResult, Generator]:
|
||||
"""
|
||||
Invoke large language model
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param prompt_messages: prompt messages
|
||||
:param model_parameters: model parameters
|
||||
:param tools: tools for tool calling
|
||||
:param stop: stop words
|
||||
:param stream: is stream response
|
||||
:param user: unique user id
|
||||
:return: full response or stream response chunk generator result
|
||||
"""
|
||||
```
|
||||
|
||||
Ensure to use two functions for returning data, one for synchronous returns and the other for streaming returns, because Python identifies functions containing the `yield` keyword as generator functions, fixing the return type to `Generator`. Thus, synchronous and streaming returns need to be implemented separately, as shown below (note that the example uses simplified parameters, for actual implementation follow the above parameter list):
|
||||
|
||||
```python
|
||||
def _invoke(self, stream: bool, **kwargs) \
|
||||
-> Union[LLMResult, Generator]:
|
||||
if stream:
|
||||
return self._handle_stream_response(**kwargs)
|
||||
return self._handle_sync_response(**kwargs)
|
||||
|
||||
def _handle_stream_response(self, **kwargs) -> Generator:
|
||||
for chunk in response:
|
||||
yield chunk
|
||||
def _handle_sync_response(self, **kwargs) -> LLMResult:
|
||||
return LLMResult(**response)
|
||||
```
|
||||
|
||||
- Pre-compute Input Tokens
|
||||
|
||||
If the model does not provide an interface to precompute tokens, return 0 directly.
|
||||
|
||||
```python
|
||||
def get_num_tokens(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],
|
||||
tools: Optional[list[PromptMessageTool]] = None) -> int:
|
||||
"""
|
||||
Get number of tokens for given prompt messages
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param prompt_messages: prompt messages
|
||||
:param tools: tools for tool calling
|
||||
:return:
|
||||
"""
|
||||
```
|
||||
|
||||
- Validate Model Credentials
|
||||
|
||||
Similar to vendor credential validation, but specific to a single model.
|
||||
|
||||
```python
|
||||
def validate_credentials(self, model: str, credentials: dict) -> None:
|
||||
"""
|
||||
Validate model credentials
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:return:
|
||||
"""
|
||||
```
|
||||
|
||||
- Map Invoke Errors
|
||||
|
||||
When a model call fails, map it to a specific `InvokeError` type as required by Runtime, allowing Dify to handle different errors accordingly.
|
||||
|
||||
Runtime Errors:
|
||||
|
||||
- `InvokeConnectionError` Connection error
|
||||
|
||||
- `InvokeServerUnavailableError` Service provider unavailable
|
||||
- `InvokeRateLimitError` Rate limit reached
|
||||
- `InvokeAuthorizationError` Authorization failed
|
||||
- `InvokeBadRequestError` Parameter error
|
||||
|
||||
```python
|
||||
@property
|
||||
def _invoke_error_mapping(self) -> dict[type[InvokeError], list[type[Exception]]]:
|
||||
"""
|
||||
Map model invoke error to unified error
|
||||
The key is the error type thrown to the caller
|
||||
The value is the error type thrown by the model,
|
||||
which needs to be converted into a unified error type for the caller.
|
||||
|
||||
:return: Invoke error mapping
|
||||
"""
|
||||
```
|
||||
|
||||
For interface method explanations, see: [Interfaces](./interfaces.md). For detailed implementation, refer to: [llm.py](https://github.com/langgenius/dify-runtime/blob/main/lib/model_providers/anthropic/llm/llm.py).
|
||||
@@ -58,7 +58,7 @@ provider_credential_schema: # Provider credential rules, as Anthropic only supp
|
||||
en_US: Enter your API URL
|
||||
```
|
||||
|
||||
You can also refer to the YAML configuration information under other provider directories in `model_providers`. The complete YAML rules are available at: [Schema](schema.md#Provider).
|
||||
You can also refer to the YAML configuration information under other provider directories in `model_providers`. The complete YAML rules are available at: [Schema](schema.md#provider).
|
||||
|
||||
### Implementing Provider Code
|
||||
|
||||
|
||||
@@ -62,7 +62,7 @@ pricing: # 价格信息
|
||||
|
||||
建议将所有模型配置都准备完毕后再开始模型代码的实现。
|
||||
|
||||
同样,也可以参考 `model_providers` 目录下其他供应商对应模型类型目录下的 YAML 配置信息,完整的 YAML 规则见:[Schema](schema.md#AIModel)。
|
||||
同样,也可以参考 `model_providers` 目录下其他供应商对应模型类型目录下的 YAML 配置信息,完整的 YAML 规则见:[Schema](schema.md#aimodelentity)。
|
||||
|
||||
### 实现模型调用代码
|
||||
|
||||
|
||||
@@ -117,7 +117,7 @@ model_credential_schema:
|
||||
en_US: Enter your API Base
|
||||
```
|
||||
|
||||
也可以参考 `model_providers` 目录下其他供应商目录下的 YAML 配置信息,完整的 YAML 规则见:[Schema](schema.md#Provider)。
|
||||
也可以参考 `model_providers` 目录下其他供应商目录下的 YAML 配置信息,完整的 YAML 规则见:[Schema](schema.md#provider)。
|
||||
|
||||
#### 实现供应商代码
|
||||
|
||||
|
||||
@@ -4,6 +4,7 @@ from typing import Optional
|
||||
|
||||
from pydantic import ConfigDict
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import ModelPropertyKey, ModelType
|
||||
from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult
|
||||
from core.model_runtime.model_providers.__base.ai_model import AIModel
|
||||
@@ -20,35 +21,47 @@ class TextEmbeddingModel(AIModel):
|
||||
model_config = ConfigDict(protected_namespaces=())
|
||||
|
||||
def invoke(
|
||||
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
|
||||
self,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
texts: list[str],
|
||||
user: Optional[str] = None,
|
||||
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
|
||||
) -> TextEmbeddingResult:
|
||||
"""
|
||||
Invoke large language model
|
||||
Invoke text embedding model
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param texts: texts to embed
|
||||
:param user: unique user id
|
||||
:param input_type: input type
|
||||
:return: embeddings result
|
||||
"""
|
||||
self.started_at = time.perf_counter()
|
||||
|
||||
try:
|
||||
return self._invoke(model, credentials, texts, user)
|
||||
return self._invoke(model, credentials, texts, user, input_type)
|
||||
except Exception as e:
|
||||
raise self._transform_invoke_error(e)
|
||||
|
||||
@abstractmethod
|
||||
def _invoke(
|
||||
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
|
||||
self,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
texts: list[str],
|
||||
user: Optional[str] = None,
|
||||
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
|
||||
) -> TextEmbeddingResult:
|
||||
"""
|
||||
Invoke large language model
|
||||
Invoke text embedding model
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param texts: texts to embed
|
||||
:param user: unique user id
|
||||
:param input_type: input type
|
||||
:return: embeddings result
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@@ -37,3 +37,7 @@
|
||||
- siliconflow
|
||||
- perfxcloud
|
||||
- zhinao
|
||||
- fireworks
|
||||
- mixedbread
|
||||
- nomic
|
||||
- voyage
|
||||
|
||||
@@ -7,6 +7,7 @@ import numpy as np
|
||||
import tiktoken
|
||||
from openai import AzureOpenAI
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity, PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
@@ -17,8 +18,23 @@ from core.model_runtime.model_providers.azure_openai._constant import EMBEDDING_
|
||||
|
||||
class AzureOpenAITextEmbeddingModel(_CommonAzureOpenAI, TextEmbeddingModel):
|
||||
def _invoke(
|
||||
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
|
||||
self,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
texts: list[str],
|
||||
user: Optional[str] = None,
|
||||
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
|
||||
) -> TextEmbeddingResult:
|
||||
"""
|
||||
Invoke text embedding model
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param texts: texts to embed
|
||||
:param user: unique user id
|
||||
:param input_type: input type
|
||||
:return: embeddings result
|
||||
"""
|
||||
base_model_name = credentials["base_model_name"]
|
||||
credentials_kwargs = self._to_credential_kwargs(credentials)
|
||||
client = AzureOpenAI(**credentials_kwargs)
|
||||
|
||||
@@ -4,6 +4,7 @@ from typing import Optional
|
||||
|
||||
from requests import post
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.invoke import (
|
||||
@@ -35,7 +36,12 @@ class BaichuanTextEmbeddingModel(TextEmbeddingModel):
|
||||
api_base: str = "http://api.baichuan-ai.com/v1/embeddings"
|
||||
|
||||
def _invoke(
|
||||
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
|
||||
self,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
texts: list[str],
|
||||
user: Optional[str] = None,
|
||||
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
|
||||
) -> TextEmbeddingResult:
|
||||
"""
|
||||
Invoke text embedding model
|
||||
@@ -44,6 +50,7 @@ class BaichuanTextEmbeddingModel(TextEmbeddingModel):
|
||||
:param credentials: model credentials
|
||||
:param texts: texts to embed
|
||||
:param user: unique user id
|
||||
:param input_type: input type
|
||||
:return: embeddings result
|
||||
"""
|
||||
api_key = credentials["api_key"]
|
||||
|
||||
@@ -6,6 +6,8 @@
|
||||
- anthropic.claude-v2:1
|
||||
- anthropic.claude-3-sonnet-v1:0
|
||||
- anthropic.claude-3-haiku-v1:0
|
||||
- ai21.jamba-1-5-large-v1:0
|
||||
- ai21.jamba-1-5-mini-v1:0
|
||||
- cohere.command-light-text-v14
|
||||
- cohere.command-text-v14
|
||||
- cohere.command-r-plus-v1.0
|
||||
@@ -15,6 +17,10 @@
|
||||
- meta.llama3-1-405b-instruct-v1:0
|
||||
- meta.llama3-8b-instruct-v1:0
|
||||
- meta.llama3-70b-instruct-v1:0
|
||||
- us.meta.llama3-2-1b-instruct-v1:0
|
||||
- us.meta.llama3-2-3b-instruct-v1:0
|
||||
- us.meta.llama3-2-11b-instruct-v1:0
|
||||
- us.meta.llama3-2-90b-instruct-v1:0
|
||||
- meta.llama2-13b-chat-v1
|
||||
- meta.llama2-70b-chat-v1
|
||||
- mistral.mistral-large-2407-v1:0
|
||||
|
||||
@@ -0,0 +1,26 @@
|
||||
model: ai21.jamba-1-5-large-v1:0
|
||||
label:
|
||||
en_US: Jamba 1.5 Large
|
||||
model_type: llm
|
||||
model_properties:
|
||||
mode: completion
|
||||
context_size: 256000
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
default: 1
|
||||
min: 0.0
|
||||
max: 2.0
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: max_gen_len
|
||||
use_template: max_tokens
|
||||
required: true
|
||||
default: 4096
|
||||
min: 1
|
||||
max: 4096
|
||||
pricing:
|
||||
input: '0.002'
|
||||
output: '0.008'
|
||||
unit: '0.001'
|
||||
currency: USD
|
||||
@@ -0,0 +1,26 @@
|
||||
model: ai21.jamba-1-5-mini-v1:0
|
||||
label:
|
||||
en_US: Jamba 1.5 Mini
|
||||
model_type: llm
|
||||
model_properties:
|
||||
mode: completion
|
||||
context_size: 256000
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
default: 1
|
||||
min: 0.0
|
||||
max: 2.0
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: max_gen_len
|
||||
use_template: max_tokens
|
||||
required: true
|
||||
default: 4096
|
||||
min: 1
|
||||
max: 4096
|
||||
pricing:
|
||||
input: '0.0002'
|
||||
output: '0.0004'
|
||||
unit: '0.001'
|
||||
currency: USD
|
||||
@@ -63,6 +63,7 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
||||
{"prefix": "us.anthropic.claude-3", "support_system_prompts": True, "support_tool_use": True},
|
||||
{"prefix": "eu.anthropic.claude-3", "support_system_prompts": True, "support_tool_use": True},
|
||||
{"prefix": "anthropic.claude-3", "support_system_prompts": True, "support_tool_use": True},
|
||||
{"prefix": "us.meta.llama3-2", "support_system_prompts": True, "support_tool_use": True},
|
||||
{"prefix": "meta.llama", "support_system_prompts": True, "support_tool_use": False},
|
||||
{"prefix": "mistral.mistral-7b-instruct", "support_system_prompts": False, "support_tool_use": False},
|
||||
{"prefix": "mistral.mixtral-8x7b-instruct", "support_system_prompts": False, "support_tool_use": False},
|
||||
@@ -70,6 +71,7 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
||||
{"prefix": "mistral.mistral-small", "support_system_prompts": True, "support_tool_use": True},
|
||||
{"prefix": "cohere.command-r", "support_system_prompts": True, "support_tool_use": True},
|
||||
{"prefix": "amazon.titan", "support_system_prompts": False, "support_tool_use": False},
|
||||
{"prefix": "ai21.jamba-1-5", "support_system_prompts": True, "support_tool_use": False},
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
|
||||
@@ -0,0 +1,29 @@
|
||||
model: us.meta.llama3-2-11b-instruct-v1:0
|
||||
label:
|
||||
en_US: US Meta Llama 3.2 11B Instruct
|
||||
model_type: llm
|
||||
features:
|
||||
- vision
|
||||
- tool-call
|
||||
model_properties:
|
||||
mode: completion
|
||||
context_size: 128000
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
default: 0.5
|
||||
min: 0.0
|
||||
max: 1
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: max_gen_len
|
||||
use_template: max_tokens
|
||||
required: true
|
||||
default: 512
|
||||
min: 1
|
||||
max: 2048
|
||||
pricing:
|
||||
input: '0.00035'
|
||||
output: '0.00035'
|
||||
unit: '0.001'
|
||||
currency: USD
|
||||
@@ -0,0 +1,26 @@
|
||||
model: us.meta.llama3-2-1b-instruct-v1:0
|
||||
label:
|
||||
en_US: US Meta Llama 3.2 1B Instruct
|
||||
model_type: llm
|
||||
model_properties:
|
||||
mode: completion
|
||||
context_size: 128000
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
default: 0.5
|
||||
min: 0.0
|
||||
max: 1
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: max_gen_len
|
||||
use_template: max_tokens
|
||||
required: true
|
||||
default: 512
|
||||
min: 1
|
||||
max: 2048
|
||||
pricing:
|
||||
input: '0.0001'
|
||||
output: '0.0001'
|
||||
unit: '0.001'
|
||||
currency: USD
|
||||
@@ -0,0 +1,26 @@
|
||||
model: us.meta.llama3-2-3b-instruct-v1:0
|
||||
label:
|
||||
en_US: US Meta Llama 3.2 3B Instruct
|
||||
model_type: llm
|
||||
model_properties:
|
||||
mode: completion
|
||||
context_size: 128000
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
default: 0.5
|
||||
min: 0.0
|
||||
max: 1
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: max_gen_len
|
||||
use_template: max_tokens
|
||||
required: true
|
||||
default: 512
|
||||
min: 1
|
||||
max: 2048
|
||||
pricing:
|
||||
input: '0.00015'
|
||||
output: '0.00015'
|
||||
unit: '0.001'
|
||||
currency: USD
|
||||
@@ -0,0 +1,31 @@
|
||||
model: us.meta.llama3-2-90b-instruct-v1:0
|
||||
label:
|
||||
en_US: US Meta Llama 3.2 90B Instruct
|
||||
model_type: llm
|
||||
features:
|
||||
- tool-call
|
||||
model_properties:
|
||||
mode: completion
|
||||
context_size: 128000
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
default: 0.5
|
||||
min: 0.0
|
||||
max: 1
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
default: 0.9
|
||||
min: 0
|
||||
max: 1
|
||||
- name: max_gen_len
|
||||
use_template: max_tokens
|
||||
required: true
|
||||
default: 512
|
||||
min: 1
|
||||
max: 2048
|
||||
pricing:
|
||||
input: '0.002'
|
||||
output: '0.002'
|
||||
unit: '0.001'
|
||||
currency: USD
|
||||
@@ -13,6 +13,7 @@ from botocore.exceptions import (
|
||||
UnknownServiceError,
|
||||
)
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.invoke import (
|
||||
@@ -30,7 +31,12 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
class BedrockTextEmbeddingModel(TextEmbeddingModel):
|
||||
def _invoke(
|
||||
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
|
||||
self,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
texts: list[str],
|
||||
user: Optional[str] = None,
|
||||
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
|
||||
) -> TextEmbeddingResult:
|
||||
"""
|
||||
Invoke text embedding model
|
||||
@@ -39,6 +45,7 @@ class BedrockTextEmbeddingModel(TextEmbeddingModel):
|
||||
:param credentials: model credentials
|
||||
:param texts: texts to embed
|
||||
:param user: unique user id
|
||||
:param input_type: input type
|
||||
:return: embeddings result
|
||||
"""
|
||||
client_config = Config(region_name=credentials["aws_region"])
|
||||
|
||||
@@ -5,6 +5,7 @@ import cohere
|
||||
import numpy as np
|
||||
from cohere.core import RequestOptions
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.invoke import (
|
||||
@@ -25,7 +26,12 @@ class CohereTextEmbeddingModel(TextEmbeddingModel):
|
||||
"""
|
||||
|
||||
def _invoke(
|
||||
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
|
||||
self,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
texts: list[str],
|
||||
user: Optional[str] = None,
|
||||
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
|
||||
) -> TextEmbeddingResult:
|
||||
"""
|
||||
Invoke text embedding model
|
||||
@@ -34,6 +40,7 @@ class CohereTextEmbeddingModel(TextEmbeddingModel):
|
||||
:param credentials: model credentials
|
||||
:param texts: texts to embed
|
||||
:param user: unique user id
|
||||
:param input_type: input type
|
||||
:return: embeddings result
|
||||
"""
|
||||
# get model properties
|
||||
|
||||
@@ -0,0 +1,3 @@
|
||||
<svg width="130" role="graphics-symbol" aria-label="Fireworks AI Home" viewBox="0 0 835 130" xmlns="http://www.w3.org/2000/svg">
|
||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M112.65 0L91.33 51.09L69.99 0H56.3L79.69 55.85C81.63 60.51 86.18 63.52 91.25 63.52C96.32 63.52 100.86 60.51 102.81 55.87L126.34 0H112.65ZM121.76 77.84L160.76 38.41L155.44 25.86L112.84 69.01C109.28 72.62 108.26 77.94 110.23 82.6C112.19 87.22 116.72 90.21 121.77 90.21L121.79 90.23L182.68 90.08L177.36 77.53L121.77 77.84H121.76ZM21.92 38.38L27.24 25.83L69.84 68.98C73.4 72.58 74.43 77.92 72.45 82.57C70.49 87.2 65.94 90.18 60.91 90.18L0.02 90.04L0 90.06L5.32 77.51L60.91 77.82L21.92 38.38Z" fill="#6720FF"></path>
|
||||
<path d="M231.32 85.2198L231.33 85.2298H241.8V49.1698H275.62V39.8198H241.8V16.3598H279V7.00977H231.32V85.2198Z" class="fill-black dark:fill-white"></path><path d="M299.68 28.73H289.86V85.22H299.68V28.73Z" class="fill-black dark:fill-white"></path><path d="M324.58 36.2198H324.59C324.37 36.7598 324.16 37.0898 323.5 37.0898C322.95 37.0898 322.74 36.8798 322.74 36.3398V28.7298H312.92V85.2198H322.72V53.1598C322.72 42.3098 327.75 38.0698 337.24 38.0698H345.1V28.5098H338.77C331.03 28.5098 327.1 30.7898 324.58 36.2198Z" class="fill-black dark:fill-white"></path><path d="M377.76 78.3996C367.23 78.3996 359.37 72.4196 358.71 59.7196H404.6V54.2796C404.6 38.5296 395 27.1196 377.53 27.1196C360.06 27.1196 348.93 38.5296 348.93 56.9896C348.93 75.4496 359.73 86.8596 377.74 86.8596C395.75 86.8596 403.15 75.8996 404.81 67.3196H394.57C392.98 73.7396 388.29 78.3996 377.76 78.3996ZM377.53 35.5696C387.91 35.5696 394.33 41.1196 394.78 51.5496H358.98C360.61 40.8896 368.14 35.5696 377.53 35.5696Z" class="fill-black dark:fill-white"></path><path d="M474.29 74.68C474.05 75.66 473.75 75.99 472.97 75.99C472.19 75.99 471.86 75.66 471.65 74.68L460.73 28.73H443.81L432.89 74.68C432.65 75.66 432.35 75.99 431.57 75.99C430.79 75.99 430.46 75.66 430.25 74.68L419.33 28.73H409.73V30.91H409.79L423.11 85.22H439.97L451.22 37.85C451.43 37.08 451.64 36.87 452.3 36.87C452.84 36.87 453.17 37.1 453.38 37.85L464.63 85.22H481.49L494.81 30.91V28.73H485.21L474.29 74.68Z" class="fill-black dark:fill-white"></path><path d="M529.05 27.1099C512.56 27.1099 499.47 37.4199 499.47 56.9799C499.47 76.5399 512.55 86.8499 529.05 86.8499C545.55 86.8499 558.64 76.5399 558.64 56.9799C558.64 37.4199 545.54 27.1099 529.05 27.1099ZM529.07 78.1599C517.61 78.1599 509.42 70.5699 509.42 56.9799C509.42 43.3899 517.61 35.7999 529.07 35.7999C540.53 35.7999 548.72 43.4099 548.72 56.9799C548.72 70.5499 540.53 78.1599 529.07 78.1599Z" class="fill-black dark:fill-white"></path><path d="M580.68 36.2198C580.47 36.7598 580.26 37.0898 579.6 37.0898C579.05 37.0898 578.841 36.8798 578.841 36.3398V28.7298H569.021V85.2098H578.82V53.1598C578.82 42.3098 583.851 38.0698 593.341 38.0698H601.201V28.5098H594.87C587.13 28.5098 583.2 30.7898 580.68 36.2198Z" class="fill-black dark:fill-white"></path><path d="M618.591 55.0198V7.00977H608.771V85.2698H618.591V67.2298L629.24 58.1498L650.42 85.2498H661.16V83.0698L636.49 51.9398L661.16 30.9098V28.7298H648.54L618.591 55.0198Z" class="fill-black dark:fill-white"></path><path d="M695.19 52.8899L687.12 51.3699C679.38 49.8999 675.99 48.2799 675.99 43.5999C675.99 38.9199 679.82 35.4499 688.98 35.4499C698.14 35.4499 703.38 38.9399 704.14 46.6499H714.14C713.03 32.8799 702.34 27.1299 688.94 27.1299C675.54 27.1299 666.13 32.8899 666.13 43.7399C666.13 54.5899 673.83 58.3499 684.91 60.4099L692.98 61.9299C700.84 63.3999 704.77 65.0899 704.77 69.9699C704.77 74.8499 700.83 78.4899 691.35 78.4899C681.87 78.4899 675.58 74.5799 674.82 67.0799H664.83C665.76 80.5499 676.73 86.8499 691.36 86.8499C705.99 86.8499 714.61 80.6099 714.61 69.4099C714.61 58.2099 705.55 54.8399 695.19 52.8899Z" class="fill-black dark:fill-white"></path><path d="M834.64 7.00977H823.63V85.2698H834.64V7.00977Z" class="fill-black dark:fill-white"></path><path d="M770.23 7.77L739.71 83.8398V85.2698H750.61L758.34 64.8398H795.08L802.81 85.2698H814.04V83.8598L783.3 7.00977H770.23ZM761.97 55.3798L775.09 21.0098H775.08C775.3 20.4198 775.87 20.0298 776.5 20.0298H777.04C777.67 20.0298 778.24 20.4198 778.46 21.0098L791.48 55.3798H761.97Z" class="fill-black dark:fill-white"></path><path d="M299.68 7.00977H289.86V18.5298H299.68V7.00977Z" class="fill-black dark:fill-white"></path></svg>
|
||||
|
After Width: | Height: | Size: 4.2 KiB |
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user