mirror of
https://github.com/langgenius/dify.git
synced 2026-01-06 22:45:58 +00:00
Compare commits
149 Commits
0.8.3
...
0.9.1-fix1
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
c2328cb676 | ||
|
|
36d3221a05 | ||
|
|
40f2e7d821 | ||
|
|
f45042aa8e | ||
|
|
2ab8bc679f | ||
|
|
2571b0c4e3 | ||
|
|
959a81a41b | ||
|
|
4480b469a6 | ||
|
|
fcfa1252a0 | ||
|
|
e1e2d0b364 | ||
|
|
9815a0911b | ||
|
|
dc5839b6bb | ||
|
|
4373777871 | ||
|
|
415d27c8bf | ||
|
|
5366820a2f | ||
|
|
5f8a27074e | ||
|
|
24ba9fdf6c | ||
|
|
824a0dd63e | ||
|
|
c2d606d587 | ||
|
|
2deaece7e2 | ||
|
|
0d84221b2c | ||
|
|
cdd7e55a88 | ||
|
|
1f5cc071f8 | ||
|
|
625e4c4c72 | ||
|
|
7850a28ec8 | ||
|
|
730d3a6d7c | ||
|
|
d6a44e9990 | ||
|
|
3069b5cf57 | ||
|
|
7873e455bb | ||
|
|
a651b73db0 | ||
|
|
d2ce4960f1 | ||
|
|
1af4ca344e | ||
|
|
fa837b2dfd | ||
|
|
824a71388a | ||
|
|
4585cffce1 | ||
|
|
13046709a9 | ||
|
|
9d221a5e19 | ||
|
|
77aef9ff1d | ||
|
|
503561f464 | ||
|
|
ada9d408ac | ||
|
|
3af65b2f45 | ||
|
|
369e1e6f58 | ||
|
|
fb49413a41 | ||
|
|
42dfde6546 | ||
|
|
c531b4a911 | ||
|
|
e4ed916baa | ||
|
|
4ec977eaba | ||
|
|
74f58f29f9 | ||
|
|
f97607370a | ||
|
|
850492dafa | ||
|
|
61c89a9168 | ||
|
|
49af18fbd6 | ||
|
|
6cd22f3bca | ||
|
|
a2e2f8a8c9 | ||
|
|
27e33fb15c | ||
|
|
55e6123db9 | ||
|
|
c828a5dfdf | ||
|
|
0603359e2d | ||
|
|
bb781764b8 | ||
|
|
29275c7447 | ||
|
|
4c1063e1c5 | ||
|
|
d6b9587a97 | ||
|
|
6fbaabc1bc | ||
|
|
a36117e12d | ||
|
|
e5efd09ebb | ||
|
|
ecc951609d | ||
|
|
063474f408 | ||
|
|
3dfbc348e3 | ||
|
|
9a4b53a212 | ||
|
|
03edfbe6f5 | ||
|
|
3d2cb25a67 | ||
|
|
6df14e50b2 | ||
|
|
008e0efeb0 | ||
|
|
128a66f7fe | ||
|
|
62406991df | ||
|
|
d1173a69f8 | ||
|
|
a0b0809b1c | ||
|
|
4c9ef6e830 | ||
|
|
0c96f0aa51 | ||
|
|
ac73763726 | ||
|
|
5ba19d64e9 | ||
|
|
fefbc43fb0 | ||
|
|
a8b837c4a9 | ||
|
|
02ff6cca70 | ||
|
|
ef47f68e4a | ||
|
|
2ef8b187fa | ||
|
|
b0927c39fb | ||
|
|
d0e0111f88 | ||
|
|
2328944987 | ||
|
|
cb1942c242 | ||
|
|
bf64ff215b | ||
|
|
68c7e68a8a | ||
|
|
91f70d0bd9 | ||
|
|
4669eb24be | ||
|
|
debe5953a8 | ||
|
|
1c7877b048 | ||
|
|
9ca2e2c968 | ||
|
|
f42ef0624d | ||
|
|
64baedb484 | ||
|
|
4638f99aaa | ||
|
|
aebe5fc68c | ||
|
|
1ecf70dca0 | ||
|
|
7c485f8bb8 | ||
|
|
21e9608b23 | ||
|
|
7f1b028840 | ||
|
|
bef83a4d2e | ||
|
|
8cc9e68363 | ||
|
|
d7aada38a1 | ||
|
|
4f69adc8ab | ||
|
|
52da5b16e7 | ||
|
|
11d09a92d0 | ||
|
|
c7eacd1aac | ||
|
|
a126d535cf | ||
|
|
3554a803e7 | ||
|
|
c66cecaa55 | ||
|
|
b37954b966 | ||
|
|
86f90fd9ff | ||
|
|
4c7beb9d7b | ||
|
|
3618a97c20 | ||
|
|
03fdf5e7f8 | ||
|
|
cae73b9a32 | ||
|
|
e34f04380d | ||
|
|
6df77038a2 | ||
|
|
45c0a44411 | ||
|
|
2d869d6831 | ||
|
|
eaa7e9b1f0 | ||
|
|
6e37750fbd | ||
|
|
8fd297f8b4 | ||
|
|
ddf6569dc5 | ||
|
|
97895ec41a | ||
|
|
6d56d5c1f6 | ||
|
|
6c2fa8defc | ||
|
|
c9f1e18df1 | ||
|
|
740fad06c1 | ||
|
|
0665268578 | ||
|
|
c8b9bdebfe | ||
|
|
a587f0d3f1 | ||
|
|
8c51d06222 | ||
|
|
b32a7713e0 | ||
|
|
831c5a93af | ||
|
|
1a8dcae10e | ||
|
|
8219f9e090 | ||
|
|
5ddb601e43 | ||
|
|
5541248264 | ||
|
|
b3cb97f0ad | ||
|
|
e75c33a561 | ||
|
|
483ead55d5 | ||
|
|
d63a5a1c3c | ||
|
|
e0a3307563 |
2
.github/workflows/build-push.yml
vendored
2
.github/workflows/build-push.yml
vendored
@@ -125,7 +125,7 @@ jobs:
|
||||
with:
|
||||
images: ${{ env[matrix.image_name_env] }}
|
||||
tags: |
|
||||
type=raw,value=latest,enable=${{ startsWith(github.ref, 'refs/tags/') }}
|
||||
type=raw,value=latest,enable=${{ startsWith(github.ref, 'refs/tags/') && !contains(github.ref, '-beta') }}
|
||||
type=ref,event=branch
|
||||
type=sha,enable=true,priority=100,prefix=,suffix=,format=long
|
||||
type=raw,value=${{ github.ref_name }},enable=${{ startsWith(github.ref, 'refs/tags/') }}
|
||||
|
||||
46
.github/workflows/web-tests.yml
vendored
Normal file
46
.github/workflows/web-tests.yml
vendored
Normal file
@@ -0,0 +1,46 @@
|
||||
name: Web Tests
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- web/**
|
||||
|
||||
concurrency:
|
||||
group: web-tests-${{ github.head_ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
test:
|
||||
name: Web Tests
|
||||
runs-on: ubuntu-latest
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ./web
|
||||
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Check changed files
|
||||
id: changed-files
|
||||
uses: tj-actions/changed-files@v45
|
||||
with:
|
||||
files: web/**
|
||||
|
||||
- name: Setup Node.js
|
||||
uses: actions/setup-node@v4
|
||||
if: steps.changed-files.outputs.any_changed == 'true'
|
||||
with:
|
||||
node-version: 20
|
||||
cache: yarn
|
||||
cache-dependency-path: ./web/package.json
|
||||
|
||||
- name: Install dependencies
|
||||
if: steps.changed-files.outputs.any_changed == 'true'
|
||||
run: yarn install --frozen-lockfile
|
||||
|
||||
- name: Run tests
|
||||
if: steps.changed-files.outputs.any_changed == 'true'
|
||||
run: yarn test
|
||||
@@ -68,7 +68,7 @@ DifyはオープンソースのLLMアプリケーション開発プラットフ
|
||||
プロンプトの作成、モデルパフォーマンスの比較が行え、チャットベースのアプリに音声合成などの機能も追加できます。
|
||||
|
||||
**4. RAGパイプライン**:
|
||||
ドキュメントの取り込みから検索までをカバーする広範なRAG機能ができます。ほかにもPDF、PPT、その他の一般的なドキュメントフォーマットからのテキスト抽出のサーポイントも提供します。
|
||||
ドキュメントの取り込みから検索までをカバーする広範なRAG機能ができます。ほかにもPDF、PPT、その他の一般的なドキュメントフォーマットからのテキスト抽出のサポートも提供します。
|
||||
|
||||
**5. エージェント機能**:
|
||||
LLM Function CallingやReActに基づくエージェントの定義が可能で、AIエージェント用のプリビルトまたはカスタムツールを追加できます。Difyには、Google検索、DALL·E、Stable Diffusion、WolframAlphaなどのAIエージェント用の50以上の組み込みツールが提供します。
|
||||
|
||||
@@ -39,7 +39,7 @@ DB_DATABASE=dify
|
||||
|
||||
# Storage configuration
|
||||
# use for store upload files, private keys...
|
||||
# storage type: local, s3, azure-blob, google-storage, tencent-cos, huawei-obs, volcengine-tos
|
||||
# storage type: local, s3, azure-blob, google-storage, tencent-cos, huawei-obs, volcengine-tos, baidu-obs
|
||||
STORAGE_TYPE=local
|
||||
STORAGE_LOCAL_PATH=storage
|
||||
S3_USE_AWS_MANAGED_IAM=false
|
||||
@@ -79,6 +79,12 @@ HUAWEI_OBS_SECRET_KEY=your-secret-key
|
||||
HUAWEI_OBS_ACCESS_KEY=your-access-key
|
||||
HUAWEI_OBS_SERVER=your-server-url
|
||||
|
||||
# Baidu OBS Storage Configuration
|
||||
BAIDU_OBS_BUCKET_NAME=your-bucket-name
|
||||
BAIDU_OBS_SECRET_KEY=your-secret-key
|
||||
BAIDU_OBS_ACCESS_KEY=your-access-key
|
||||
BAIDU_OBS_ENDPOINT=your-server-url
|
||||
|
||||
# OCI Storage configuration
|
||||
OCI_ENDPOINT=your-endpoint
|
||||
OCI_BUCKET_NAME=your-bucket-name
|
||||
@@ -162,6 +168,8 @@ PGVECTOR_PORT=5433
|
||||
PGVECTOR_USER=postgres
|
||||
PGVECTOR_PASSWORD=postgres
|
||||
PGVECTOR_DATABASE=postgres
|
||||
PGVECTOR_MIN_CONNECTION=1
|
||||
PGVECTOR_MAX_CONNECTION=5
|
||||
|
||||
# Tidb Vector configuration
|
||||
TIDB_VECTOR_HOST=xxx.eu-central-1.xxx.aws.tidbcloud.com
|
||||
|
||||
@@ -65,14 +65,12 @@
|
||||
|
||||
8. Start Dify [web](../web) service.
|
||||
9. Setup your application by visiting `http://localhost:3000`...
|
||||
10. If you need to debug local async processing, please start the worker service.
|
||||
10. If you need to handle and debug the async tasks (e.g. dataset importing and documents indexing), please start the worker service.
|
||||
|
||||
```bash
|
||||
poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion
|
||||
```
|
||||
|
||||
The started celery app handles the async tasks, e.g. dataset importing and documents indexing.
|
||||
|
||||
## Testing
|
||||
|
||||
1. Install dependencies for both the backend and the test environment
|
||||
|
||||
@@ -53,11 +53,9 @@ from services.account_service import AccountService
|
||||
|
||||
warnings.simplefilter("ignore", ResourceWarning)
|
||||
|
||||
# fix windows platform
|
||||
if os.name == "nt":
|
||||
os.system('tzutil /s "UTC"')
|
||||
else:
|
||||
os.environ["TZ"] = "UTC"
|
||||
os.environ["TZ"] = "UTC"
|
||||
# windows platform not support tzset
|
||||
if hasattr(time, "tzset"):
|
||||
time.tzset()
|
||||
|
||||
|
||||
|
||||
130
api/commands.py
130
api/commands.py
@@ -28,28 +28,28 @@ from services.account_service import RegisterService, TenantService
|
||||
|
||||
|
||||
@click.command("reset-password", help="Reset the account password.")
|
||||
@click.option("--email", prompt=True, help="The email address of the account whose password you need to reset")
|
||||
@click.option("--new-password", prompt=True, help="the new password.")
|
||||
@click.option("--password-confirm", prompt=True, help="the new password confirm.")
|
||||
@click.option("--email", prompt=True, help="Account email to reset password for")
|
||||
@click.option("--new-password", prompt=True, help="New password")
|
||||
@click.option("--password-confirm", prompt=True, help="Confirm new password")
|
||||
def reset_password(email, new_password, password_confirm):
|
||||
"""
|
||||
Reset password of owner account
|
||||
Only available in SELF_HOSTED mode
|
||||
"""
|
||||
if str(new_password).strip() != str(password_confirm).strip():
|
||||
click.echo(click.style("sorry. The two passwords do not match.", fg="red"))
|
||||
click.echo(click.style("Passwords do not match.", fg="red"))
|
||||
return
|
||||
|
||||
account = db.session.query(Account).filter(Account.email == email).one_or_none()
|
||||
|
||||
if not account:
|
||||
click.echo(click.style("sorry. the account: [{}] not exist .".format(email), fg="red"))
|
||||
click.echo(click.style("Account not found for email: {}".format(email), fg="red"))
|
||||
return
|
||||
|
||||
try:
|
||||
valid_password(new_password)
|
||||
except:
|
||||
click.echo(click.style("sorry. The passwords must match {} ".format(password_pattern), fg="red"))
|
||||
click.echo(click.style("Invalid password. Must match {}".format(password_pattern), fg="red"))
|
||||
return
|
||||
|
||||
# generate password salt
|
||||
@@ -62,37 +62,37 @@ def reset_password(email, new_password, password_confirm):
|
||||
account.password = base64_password_hashed
|
||||
account.password_salt = base64_salt
|
||||
db.session.commit()
|
||||
click.echo(click.style("Congratulations! Password has been reset.", fg="green"))
|
||||
click.echo(click.style("Password reset successfully.", fg="green"))
|
||||
|
||||
|
||||
@click.command("reset-email", help="Reset the account email.")
|
||||
@click.option("--email", prompt=True, help="The old email address of the account whose email you need to reset")
|
||||
@click.option("--new-email", prompt=True, help="the new email.")
|
||||
@click.option("--email-confirm", prompt=True, help="the new email confirm.")
|
||||
@click.option("--email", prompt=True, help="Current account email")
|
||||
@click.option("--new-email", prompt=True, help="New email")
|
||||
@click.option("--email-confirm", prompt=True, help="Confirm new email")
|
||||
def reset_email(email, new_email, email_confirm):
|
||||
"""
|
||||
Replace account email
|
||||
:return:
|
||||
"""
|
||||
if str(new_email).strip() != str(email_confirm).strip():
|
||||
click.echo(click.style("Sorry, new email and confirm email do not match.", fg="red"))
|
||||
click.echo(click.style("New emails do not match.", fg="red"))
|
||||
return
|
||||
|
||||
account = db.session.query(Account).filter(Account.email == email).one_or_none()
|
||||
|
||||
if not account:
|
||||
click.echo(click.style("sorry. the account: [{}] not exist .".format(email), fg="red"))
|
||||
click.echo(click.style("Account not found for email: {}".format(email), fg="red"))
|
||||
return
|
||||
|
||||
try:
|
||||
email_validate(new_email)
|
||||
except:
|
||||
click.echo(click.style("sorry. {} is not a valid email. ".format(email), fg="red"))
|
||||
click.echo(click.style("Invalid email: {}".format(new_email), fg="red"))
|
||||
return
|
||||
|
||||
account.email = new_email
|
||||
db.session.commit()
|
||||
click.echo(click.style("Congratulations!, email has been reset.", fg="green"))
|
||||
click.echo(click.style("Email updated successfully.", fg="green"))
|
||||
|
||||
|
||||
@click.command(
|
||||
@@ -104,7 +104,7 @@ def reset_email(email, new_email, email_confirm):
|
||||
)
|
||||
@click.confirmation_option(
|
||||
prompt=click.style(
|
||||
"Are you sure you want to reset encrypt key pair? this operation cannot be rolled back!", fg="red"
|
||||
"Are you sure you want to reset encrypt key pair? This operation cannot be rolled back!", fg="red"
|
||||
)
|
||||
)
|
||||
def reset_encrypt_key_pair():
|
||||
@@ -114,13 +114,13 @@ def reset_encrypt_key_pair():
|
||||
Only support SELF_HOSTED mode.
|
||||
"""
|
||||
if dify_config.EDITION != "SELF_HOSTED":
|
||||
click.echo(click.style("Sorry, only support SELF_HOSTED mode.", fg="red"))
|
||||
click.echo(click.style("This command is only for SELF_HOSTED installations.", fg="red"))
|
||||
return
|
||||
|
||||
tenants = db.session.query(Tenant).all()
|
||||
for tenant in tenants:
|
||||
if not tenant:
|
||||
click.echo(click.style("Sorry, no workspace found. Please enter /install to initialize.", fg="red"))
|
||||
click.echo(click.style("No workspaces found. Run /install first.", fg="red"))
|
||||
return
|
||||
|
||||
tenant.encrypt_public_key = generate_key_pair(tenant.id)
|
||||
@@ -137,7 +137,7 @@ def reset_encrypt_key_pair():
|
||||
)
|
||||
|
||||
|
||||
@click.command("vdb-migrate", help="migrate vector db.")
|
||||
@click.command("vdb-migrate", help="Migrate vector db.")
|
||||
@click.option("--scope", default="all", prompt=False, help="The scope of vector database to migrate, Default is All.")
|
||||
def vdb_migrate(scope: str):
|
||||
if scope in {"knowledge", "all"}:
|
||||
@@ -150,7 +150,7 @@ def migrate_annotation_vector_database():
|
||||
"""
|
||||
Migrate annotation datas to target vector database .
|
||||
"""
|
||||
click.echo(click.style("Start migrate annotation data.", fg="green"))
|
||||
click.echo(click.style("Starting annotation data migration.", fg="green"))
|
||||
create_count = 0
|
||||
skipped_count = 0
|
||||
total_count = 0
|
||||
@@ -174,14 +174,14 @@ def migrate_annotation_vector_database():
|
||||
f"Processing the {total_count} app {app.id}. " + f"{create_count} created, {skipped_count} skipped."
|
||||
)
|
||||
try:
|
||||
click.echo("Create app annotation index: {}".format(app.id))
|
||||
click.echo("Creating app annotation index: {}".format(app.id))
|
||||
app_annotation_setting = (
|
||||
db.session.query(AppAnnotationSetting).filter(AppAnnotationSetting.app_id == app.id).first()
|
||||
)
|
||||
|
||||
if not app_annotation_setting:
|
||||
skipped_count = skipped_count + 1
|
||||
click.echo("App annotation setting is disabled: {}".format(app.id))
|
||||
click.echo("App annotation setting disabled: {}".format(app.id))
|
||||
continue
|
||||
# get dataset_collection_binding info
|
||||
dataset_collection_binding = (
|
||||
@@ -190,7 +190,7 @@ def migrate_annotation_vector_database():
|
||||
.first()
|
||||
)
|
||||
if not dataset_collection_binding:
|
||||
click.echo("App annotation collection binding is not exist: {}".format(app.id))
|
||||
click.echo("App annotation collection binding not found: {}".format(app.id))
|
||||
continue
|
||||
annotations = db.session.query(MessageAnnotation).filter(MessageAnnotation.app_id == app.id).all()
|
||||
dataset = Dataset(
|
||||
@@ -211,11 +211,11 @@ def migrate_annotation_vector_database():
|
||||
documents.append(document)
|
||||
|
||||
vector = Vector(dataset, attributes=["doc_id", "annotation_id", "app_id"])
|
||||
click.echo(f"Start to migrate annotation, app_id: {app.id}.")
|
||||
click.echo(f"Migrating annotations for app: {app.id}.")
|
||||
|
||||
try:
|
||||
vector.delete()
|
||||
click.echo(click.style(f"Successfully delete vector index for app: {app.id}.", fg="green"))
|
||||
click.echo(click.style(f"Deleted vector index for app {app.id}.", fg="green"))
|
||||
except Exception as e:
|
||||
click.echo(click.style(f"Failed to delete vector index for app {app.id}.", fg="red"))
|
||||
raise e
|
||||
@@ -223,12 +223,12 @@ def migrate_annotation_vector_database():
|
||||
try:
|
||||
click.echo(
|
||||
click.style(
|
||||
f"Start to created vector index with {len(documents)} annotations for app {app.id}.",
|
||||
f"Creating vector index with {len(documents)} annotations for app {app.id}.",
|
||||
fg="green",
|
||||
)
|
||||
)
|
||||
vector.create(documents)
|
||||
click.echo(click.style(f"Successfully created vector index for app {app.id}.", fg="green"))
|
||||
click.echo(click.style(f"Created vector index for app {app.id}.", fg="green"))
|
||||
except Exception as e:
|
||||
click.echo(click.style(f"Failed to created vector index for app {app.id}.", fg="red"))
|
||||
raise e
|
||||
@@ -237,14 +237,14 @@ def migrate_annotation_vector_database():
|
||||
except Exception as e:
|
||||
click.echo(
|
||||
click.style(
|
||||
"Create app annotation index error: {} {}".format(e.__class__.__name__, str(e)), fg="red"
|
||||
"Error creating app annotation index: {} {}".format(e.__class__.__name__, str(e)), fg="red"
|
||||
)
|
||||
)
|
||||
continue
|
||||
|
||||
click.echo(
|
||||
click.style(
|
||||
f"Congratulations! Create {create_count} app annotation indexes, and skipped {skipped_count} apps.",
|
||||
f"Migration complete. Created {create_count} app annotation indexes. Skipped {skipped_count} apps.",
|
||||
fg="green",
|
||||
)
|
||||
)
|
||||
@@ -254,7 +254,7 @@ def migrate_knowledge_vector_database():
|
||||
"""
|
||||
Migrate vector database datas to target vector database .
|
||||
"""
|
||||
click.echo(click.style("Start migrate vector db.", fg="green"))
|
||||
click.echo(click.style("Starting vector database migration.", fg="green"))
|
||||
create_count = 0
|
||||
skipped_count = 0
|
||||
total_count = 0
|
||||
@@ -278,7 +278,7 @@ def migrate_knowledge_vector_database():
|
||||
f"Processing the {total_count} dataset {dataset.id}. {create_count} created, {skipped_count} skipped."
|
||||
)
|
||||
try:
|
||||
click.echo("Create dataset vdb index: {}".format(dataset.id))
|
||||
click.echo("Creating dataset vector database index: {}".format(dataset.id))
|
||||
if dataset.index_struct_dict:
|
||||
if dataset.index_struct_dict["type"] == vector_type:
|
||||
skipped_count = skipped_count + 1
|
||||
@@ -299,7 +299,7 @@ def migrate_knowledge_vector_database():
|
||||
if dataset_collection_binding:
|
||||
collection_name = dataset_collection_binding.collection_name
|
||||
else:
|
||||
raise ValueError("Dataset Collection Bindings is not exist!")
|
||||
raise ValueError("Dataset Collection Binding not found")
|
||||
else:
|
||||
dataset_id = dataset.id
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
@@ -351,14 +351,12 @@ def migrate_knowledge_vector_database():
|
||||
raise ValueError(f"Vector store {vector_type} is not supported.")
|
||||
|
||||
vector = Vector(dataset)
|
||||
click.echo(f"Start to migrate dataset {dataset.id}.")
|
||||
click.echo(f"Migrating dataset {dataset.id}.")
|
||||
|
||||
try:
|
||||
vector.delete()
|
||||
click.echo(
|
||||
click.style(
|
||||
f"Successfully delete vector index {collection_name} for dataset {dataset.id}.", fg="green"
|
||||
)
|
||||
click.style(f"Deleted vector index {collection_name} for dataset {dataset.id}.", fg="green")
|
||||
)
|
||||
except Exception as e:
|
||||
click.echo(
|
||||
@@ -410,15 +408,13 @@ def migrate_knowledge_vector_database():
|
||||
try:
|
||||
click.echo(
|
||||
click.style(
|
||||
f"Start to created vector index with {len(documents)} documents of {segments_count}"
|
||||
f"Creating vector index with {len(documents)} documents of {segments_count}"
|
||||
f" segments for dataset {dataset.id}.",
|
||||
fg="green",
|
||||
)
|
||||
)
|
||||
vector.create(documents)
|
||||
click.echo(
|
||||
click.style(f"Successfully created vector index for dataset {dataset.id}.", fg="green")
|
||||
)
|
||||
click.echo(click.style(f"Created vector index for dataset {dataset.id}.", fg="green"))
|
||||
except Exception as e:
|
||||
click.echo(click.style(f"Failed to created vector index for dataset {dataset.id}.", fg="red"))
|
||||
raise e
|
||||
@@ -429,13 +425,13 @@ def migrate_knowledge_vector_database():
|
||||
except Exception as e:
|
||||
db.session.rollback()
|
||||
click.echo(
|
||||
click.style("Create dataset index error: {} {}".format(e.__class__.__name__, str(e)), fg="red")
|
||||
click.style("Error creating dataset index: {} {}".format(e.__class__.__name__, str(e)), fg="red")
|
||||
)
|
||||
continue
|
||||
|
||||
click.echo(
|
||||
click.style(
|
||||
f"Congratulations! Create {create_count} dataset indexes, and skipped {skipped_count} datasets.", fg="green"
|
||||
f"Migration complete. Created {create_count} dataset indexes. Skipped {skipped_count} datasets.", fg="green"
|
||||
)
|
||||
)
|
||||
|
||||
@@ -445,7 +441,7 @@ def convert_to_agent_apps():
|
||||
"""
|
||||
Convert Agent Assistant to Agent App.
|
||||
"""
|
||||
click.echo(click.style("Start convert to agent apps.", fg="green"))
|
||||
click.echo(click.style("Starting convert to agent apps.", fg="green"))
|
||||
|
||||
proceeded_app_ids = []
|
||||
|
||||
@@ -496,23 +492,23 @@ def convert_to_agent_apps():
|
||||
except Exception as e:
|
||||
click.echo(click.style("Convert app error: {} {}".format(e.__class__.__name__, str(e)), fg="red"))
|
||||
|
||||
click.echo(click.style("Congratulations! Converted {} agent apps.".format(len(proceeded_app_ids)), fg="green"))
|
||||
click.echo(click.style("Conversion complete. Converted {} agent apps.".format(len(proceeded_app_ids)), fg="green"))
|
||||
|
||||
|
||||
@click.command("add-qdrant-doc-id-index", help="add qdrant doc_id index.")
|
||||
@click.option("--field", default="metadata.doc_id", prompt=False, help="index field , default is metadata.doc_id.")
|
||||
@click.command("add-qdrant-doc-id-index", help="Add Qdrant doc_id index.")
|
||||
@click.option("--field", default="metadata.doc_id", prompt=False, help="Index field , default is metadata.doc_id.")
|
||||
def add_qdrant_doc_id_index(field: str):
|
||||
click.echo(click.style("Start add qdrant doc_id index.", fg="green"))
|
||||
click.echo(click.style("Starting Qdrant doc_id index creation.", fg="green"))
|
||||
vector_type = dify_config.VECTOR_STORE
|
||||
if vector_type != "qdrant":
|
||||
click.echo(click.style("Sorry, only support qdrant vector store.", fg="red"))
|
||||
click.echo(click.style("This command only supports Qdrant vector store.", fg="red"))
|
||||
return
|
||||
create_count = 0
|
||||
|
||||
try:
|
||||
bindings = db.session.query(DatasetCollectionBinding).all()
|
||||
if not bindings:
|
||||
click.echo(click.style("Sorry, no dataset collection bindings found.", fg="red"))
|
||||
click.echo(click.style("No dataset collection bindings found.", fg="red"))
|
||||
return
|
||||
import qdrant_client
|
||||
from qdrant_client.http.exceptions import UnexpectedResponse
|
||||
@@ -522,7 +518,7 @@ def add_qdrant_doc_id_index(field: str):
|
||||
|
||||
for binding in bindings:
|
||||
if dify_config.QDRANT_URL is None:
|
||||
raise ValueError("Qdrant url is required.")
|
||||
raise ValueError("Qdrant URL is required.")
|
||||
qdrant_config = QdrantConfig(
|
||||
endpoint=dify_config.QDRANT_URL,
|
||||
api_key=dify_config.QDRANT_API_KEY,
|
||||
@@ -539,41 +535,39 @@ def add_qdrant_doc_id_index(field: str):
|
||||
except UnexpectedResponse as e:
|
||||
# Collection does not exist, so return
|
||||
if e.status_code == 404:
|
||||
click.echo(
|
||||
click.style(f"Collection not found, collection_name:{binding.collection_name}.", fg="red")
|
||||
)
|
||||
click.echo(click.style(f"Collection not found: {binding.collection_name}.", fg="red"))
|
||||
continue
|
||||
# Some other error occurred, so re-raise the exception
|
||||
else:
|
||||
click.echo(
|
||||
click.style(
|
||||
f"Failed to create qdrant index, collection_name:{binding.collection_name}.", fg="red"
|
||||
f"Failed to create Qdrant index for collection: {binding.collection_name}.", fg="red"
|
||||
)
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
click.echo(click.style("Failed to create qdrant client.", fg="red"))
|
||||
click.echo(click.style("Failed to create Qdrant client.", fg="red"))
|
||||
|
||||
click.echo(click.style(f"Congratulations! Create {create_count} collection indexes.", fg="green"))
|
||||
click.echo(click.style(f"Index creation complete. Created {create_count} collection indexes.", fg="green"))
|
||||
|
||||
|
||||
@click.command("create-tenant", help="Create account and tenant.")
|
||||
@click.option("--email", prompt=True, help="The email address of the tenant account.")
|
||||
@click.option("--name", prompt=True, help="The workspace name of the tenant account.")
|
||||
@click.option("--email", prompt=True, help="Tenant account email.")
|
||||
@click.option("--name", prompt=True, help="Workspace name.")
|
||||
@click.option("--language", prompt=True, help="Account language, default: en-US.")
|
||||
def create_tenant(email: str, language: Optional[str] = None, name: Optional[str] = None):
|
||||
"""
|
||||
Create tenant account
|
||||
"""
|
||||
if not email:
|
||||
click.echo(click.style("Sorry, email is required.", fg="red"))
|
||||
click.echo(click.style("Email is required.", fg="red"))
|
||||
return
|
||||
|
||||
# Create account
|
||||
email = email.strip()
|
||||
|
||||
if "@" not in email:
|
||||
click.echo(click.style("Sorry, invalid email address.", fg="red"))
|
||||
click.echo(click.style("Invalid email address.", fg="red"))
|
||||
return
|
||||
|
||||
account_name = email.split("@")[0]
|
||||
@@ -593,19 +587,19 @@ def create_tenant(email: str, language: Optional[str] = None, name: Optional[str
|
||||
|
||||
click.echo(
|
||||
click.style(
|
||||
"Congratulations! Account and tenant created.\nAccount: {}\nPassword: {}".format(email, new_password),
|
||||
"Account and tenant created.\nAccount: {}\nPassword: {}".format(email, new_password),
|
||||
fg="green",
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
@click.command("upgrade-db", help="upgrade the database")
|
||||
@click.command("upgrade-db", help="Upgrade the database")
|
||||
def upgrade_db():
|
||||
click.echo("Preparing database migration...")
|
||||
lock = redis_client.lock(name="db_upgrade_lock", timeout=60)
|
||||
if lock.acquire(blocking=False):
|
||||
try:
|
||||
click.echo(click.style("Start database migration.", fg="green"))
|
||||
click.echo(click.style("Starting database migration.", fg="green"))
|
||||
|
||||
# run db migration
|
||||
import flask_migrate
|
||||
@@ -615,7 +609,7 @@ def upgrade_db():
|
||||
click.echo(click.style("Database migration successful!", fg="green"))
|
||||
|
||||
except Exception as e:
|
||||
logging.exception(f"Database migration failed, error: {e}")
|
||||
logging.exception(f"Database migration failed: {e}")
|
||||
finally:
|
||||
lock.release()
|
||||
else:
|
||||
@@ -627,7 +621,7 @@ def fix_app_site_missing():
|
||||
"""
|
||||
Fix app related site missing issue.
|
||||
"""
|
||||
click.echo(click.style("Start fix app related site missing issue.", fg="green"))
|
||||
click.echo(click.style("Starting fix for missing app-related sites.", fg="green"))
|
||||
|
||||
failed_app_ids = []
|
||||
while True:
|
||||
@@ -650,22 +644,22 @@ where sites.id is null limit 1000"""
|
||||
if tenant:
|
||||
accounts = tenant.get_accounts()
|
||||
if not accounts:
|
||||
print("Fix app {} failed.".format(app.id))
|
||||
print("Fix failed for app {}".format(app.id))
|
||||
continue
|
||||
|
||||
account = accounts[0]
|
||||
print("Fix app {} related site missing issue.".format(app.id))
|
||||
print("Fixing missing site for app {}".format(app.id))
|
||||
app_was_created.send(app, account=account)
|
||||
except Exception as e:
|
||||
failed_app_ids.append(app_id)
|
||||
click.echo(click.style("Fix app {} related site missing issue failed!".format(app_id), fg="red"))
|
||||
click.echo(click.style("Failed to fix missing site for app {}".format(app_id), fg="red"))
|
||||
logging.exception(f"Fix app related site missing issue failed, error: {e}")
|
||||
continue
|
||||
|
||||
if not processed_count:
|
||||
break
|
||||
|
||||
click.echo(click.style("Congratulations! Fix app related site missing issue successful!", fg="green"))
|
||||
click.echo(click.style("Fix for missing app-related sites completed successfully!", fg="green"))
|
||||
|
||||
|
||||
def register_commands(app):
|
||||
|
||||
@@ -4,30 +4,30 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class DeploymentConfig(BaseSettings):
|
||||
"""
|
||||
Deployment configs
|
||||
Configuration settings for application deployment
|
||||
"""
|
||||
|
||||
APPLICATION_NAME: str = Field(
|
||||
description="application name",
|
||||
description="Name of the application, used for identification and logging purposes",
|
||||
default="langgenius/dify",
|
||||
)
|
||||
|
||||
DEBUG: bool = Field(
|
||||
description="whether to enable debug mode.",
|
||||
description="Enable debug mode for additional logging and development features",
|
||||
default=False,
|
||||
)
|
||||
|
||||
TESTING: bool = Field(
|
||||
description="",
|
||||
description="Enable testing mode for running automated tests",
|
||||
default=False,
|
||||
)
|
||||
|
||||
EDITION: str = Field(
|
||||
description="deployment edition",
|
||||
description="Deployment edition of the application (e.g., 'SELF_HOSTED', 'CLOUD')",
|
||||
default="SELF_HOSTED",
|
||||
)
|
||||
|
||||
DEPLOY_ENV: str = Field(
|
||||
description="deployment environment, default to PRODUCTION.",
|
||||
description="Deployment environment (e.g., 'PRODUCTION', 'DEVELOPMENT'), default to PRODUCTION",
|
||||
default="PRODUCTION",
|
||||
)
|
||||
|
||||
@@ -4,17 +4,17 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class EnterpriseFeatureConfig(BaseSettings):
|
||||
"""
|
||||
Enterprise feature configs.
|
||||
Configuration for enterprise-level features.
|
||||
**Before using, please contact business@dify.ai by email to inquire about licensing matters.**
|
||||
"""
|
||||
|
||||
ENTERPRISE_ENABLED: bool = Field(
|
||||
description="whether to enable enterprise features."
|
||||
description="Enable or disable enterprise-level features."
|
||||
"Before using, please contact business@dify.ai by email to inquire about licensing matters.",
|
||||
default=False,
|
||||
)
|
||||
|
||||
CAN_REPLACE_LOGO: bool = Field(
|
||||
description="whether to allow replacing enterprise logo.",
|
||||
description="Allow customization of the enterprise logo.",
|
||||
default=False,
|
||||
)
|
||||
|
||||
@@ -6,30 +6,31 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class NotionConfig(BaseSettings):
|
||||
"""
|
||||
Notion integration configs
|
||||
Configuration settings for Notion integration
|
||||
"""
|
||||
|
||||
NOTION_CLIENT_ID: Optional[str] = Field(
|
||||
description="Notion client ID",
|
||||
description="Client ID for Notion API authentication. Required for OAuth 2.0 flow.",
|
||||
default=None,
|
||||
)
|
||||
|
||||
NOTION_CLIENT_SECRET: Optional[str] = Field(
|
||||
description="Notion client secret key",
|
||||
description="Client secret for Notion API authentication. Required for OAuth 2.0 flow.",
|
||||
default=None,
|
||||
)
|
||||
|
||||
NOTION_INTEGRATION_TYPE: Optional[str] = Field(
|
||||
description="Notion integration type, default to None, available values: internal.",
|
||||
description="Type of Notion integration."
|
||||
" Set to 'internal' for internal integrations, or None for public integrations.",
|
||||
default=None,
|
||||
)
|
||||
|
||||
NOTION_INTERNAL_SECRET: Optional[str] = Field(
|
||||
description="Notion internal secret key",
|
||||
description="Secret key for internal Notion integrations. Required when NOTION_INTEGRATION_TYPE is 'internal'.",
|
||||
default=None,
|
||||
)
|
||||
|
||||
NOTION_INTEGRATION_TOKEN: Optional[str] = Field(
|
||||
description="Notion integration token",
|
||||
description="Integration token for Notion API access. Used for direct API calls without OAuth flow.",
|
||||
default=None,
|
||||
)
|
||||
|
||||
@@ -6,20 +6,23 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class SentryConfig(BaseSettings):
|
||||
"""
|
||||
Sentry configs
|
||||
Configuration settings for Sentry error tracking and performance monitoring
|
||||
"""
|
||||
|
||||
SENTRY_DSN: Optional[str] = Field(
|
||||
description="Sentry DSN",
|
||||
description="Sentry Data Source Name (DSN)."
|
||||
" This is the unique identifier of your Sentry project, used to send events to the correct project.",
|
||||
default=None,
|
||||
)
|
||||
|
||||
SENTRY_TRACES_SAMPLE_RATE: NonNegativeFloat = Field(
|
||||
description="Sentry trace sample rate",
|
||||
description="Sample rate for Sentry performance monitoring traces."
|
||||
" Value between 0.0 and 1.0, where 1.0 means 100% of traces are sent to Sentry.",
|
||||
default=1.0,
|
||||
)
|
||||
|
||||
SENTRY_PROFILES_SAMPLE_RATE: NonNegativeFloat = Field(
|
||||
description="Sentry profiles sample rate",
|
||||
description="Sample rate for Sentry profiling."
|
||||
" Value between 0.0 and 1.0, where 1.0 means 100% of profiles are sent to Sentry.",
|
||||
default=1.0,
|
||||
)
|
||||
|
||||
@@ -8,145 +8,143 @@ from configs.feature.hosted_service import HostedServiceConfig
|
||||
|
||||
class SecurityConfig(BaseSettings):
|
||||
"""
|
||||
Secret Key configs
|
||||
Security-related configurations for the application
|
||||
"""
|
||||
|
||||
SECRET_KEY: Optional[str] = Field(
|
||||
description="Your App secret key will be used for securely signing the session cookie"
|
||||
description="Secret key for secure session cookie signing."
|
||||
"Make sure you are changing this key for your deployment with a strong key."
|
||||
"You can generate a strong key using `openssl rand -base64 42`."
|
||||
"Alternatively you can set it with `SECRET_KEY` environment variable.",
|
||||
"Generate a strong key using `openssl rand -base64 42` or set via the `SECRET_KEY` environment variable.",
|
||||
default=None,
|
||||
)
|
||||
|
||||
RESET_PASSWORD_TOKEN_EXPIRY_HOURS: PositiveInt = Field(
|
||||
description="Expiry time in hours for reset token",
|
||||
description="Duration in hours for which a password reset token remains valid",
|
||||
default=24,
|
||||
)
|
||||
|
||||
|
||||
class AppExecutionConfig(BaseSettings):
|
||||
"""
|
||||
App Execution configs
|
||||
Configuration parameters for application execution
|
||||
"""
|
||||
|
||||
APP_MAX_EXECUTION_TIME: PositiveInt = Field(
|
||||
description="execution timeout in seconds for app execution",
|
||||
description="Maximum allowed execution time for the application in seconds",
|
||||
default=1200,
|
||||
)
|
||||
APP_MAX_ACTIVE_REQUESTS: NonNegativeInt = Field(
|
||||
description="max active request per app, 0 means unlimited",
|
||||
description="Maximum number of concurrent active requests per app (0 for unlimited)",
|
||||
default=0,
|
||||
)
|
||||
|
||||
|
||||
class CodeExecutionSandboxConfig(BaseSettings):
|
||||
"""
|
||||
Code Execution Sandbox configs
|
||||
Configuration for the code execution sandbox environment
|
||||
"""
|
||||
|
||||
CODE_EXECUTION_ENDPOINT: HttpUrl = Field(
|
||||
description="endpoint URL of code execution service",
|
||||
description="URL endpoint for the code execution service",
|
||||
default="http://sandbox:8194",
|
||||
)
|
||||
|
||||
CODE_EXECUTION_API_KEY: str = Field(
|
||||
description="API key for code execution service",
|
||||
description="API key for accessing the code execution service",
|
||||
default="dify-sandbox",
|
||||
)
|
||||
|
||||
CODE_EXECUTION_CONNECT_TIMEOUT: Optional[float] = Field(
|
||||
description="connect timeout in seconds for code execution request",
|
||||
description="Connection timeout in seconds for code execution requests",
|
||||
default=10.0,
|
||||
)
|
||||
|
||||
CODE_EXECUTION_READ_TIMEOUT: Optional[float] = Field(
|
||||
description="read timeout in seconds for code execution request",
|
||||
description="Read timeout in seconds for code execution requests",
|
||||
default=60.0,
|
||||
)
|
||||
|
||||
CODE_EXECUTION_WRITE_TIMEOUT: Optional[float] = Field(
|
||||
description="write timeout in seconds for code execution request",
|
||||
description="Write timeout in seconds for code execution request",
|
||||
default=10.0,
|
||||
)
|
||||
|
||||
CODE_MAX_NUMBER: PositiveInt = Field(
|
||||
description="max depth for code execution",
|
||||
description="Maximum allowed numeric value in code execution",
|
||||
default=9223372036854775807,
|
||||
)
|
||||
|
||||
CODE_MIN_NUMBER: NegativeInt = Field(
|
||||
description="",
|
||||
description="Minimum allowed numeric value in code execution",
|
||||
default=-9223372036854775807,
|
||||
)
|
||||
|
||||
CODE_MAX_DEPTH: PositiveInt = Field(
|
||||
description="max depth for code execution",
|
||||
description="Maximum allowed depth for nested structures in code execution",
|
||||
default=5,
|
||||
)
|
||||
|
||||
CODE_MAX_PRECISION: PositiveInt = Field(
|
||||
description="max precision digits for float type in code execution",
|
||||
description="mMaximum number of decimal places for floating-point numbers in code execution",
|
||||
default=20,
|
||||
)
|
||||
|
||||
CODE_MAX_STRING_LENGTH: PositiveInt = Field(
|
||||
description="max string length for code execution",
|
||||
description="Maximum allowed length for strings in code execution",
|
||||
default=80000,
|
||||
)
|
||||
|
||||
CODE_MAX_STRING_ARRAY_LENGTH: PositiveInt = Field(
|
||||
description="",
|
||||
description="Maximum allowed length for string arrays in code execution",
|
||||
default=30,
|
||||
)
|
||||
|
||||
CODE_MAX_OBJECT_ARRAY_LENGTH: PositiveInt = Field(
|
||||
description="",
|
||||
description="Maximum allowed length for object arrays in code execution",
|
||||
default=30,
|
||||
)
|
||||
|
||||
CODE_MAX_NUMBER_ARRAY_LENGTH: PositiveInt = Field(
|
||||
description="",
|
||||
description="Maximum allowed length for numeric arrays in code execution",
|
||||
default=1000,
|
||||
)
|
||||
|
||||
|
||||
class EndpointConfig(BaseSettings):
|
||||
"""
|
||||
Module URL configs
|
||||
Configuration for various application endpoints and URLs
|
||||
"""
|
||||
|
||||
CONSOLE_API_URL: str = Field(
|
||||
description="The backend URL prefix of the console API."
|
||||
"used to concatenate the login authorization callback or notion integration callback.",
|
||||
description="Base URL for the console API,"
|
||||
"used for login authentication callback or notion integration callbacks",
|
||||
default="",
|
||||
)
|
||||
|
||||
CONSOLE_WEB_URL: str = Field(
|
||||
description="The front-end URL prefix of the console web."
|
||||
"used to concatenate some front-end addresses and for CORS configuration use.",
|
||||
description="Base URL for the console web interface," "used for frontend references and CORS configuration",
|
||||
default="",
|
||||
)
|
||||
|
||||
SERVICE_API_URL: str = Field(
|
||||
description="Service API Url prefix. used to display Service API Base Url to the front-end.",
|
||||
description="Base URL for the service API, displayed to users for API access",
|
||||
default="",
|
||||
)
|
||||
|
||||
APP_WEB_URL: str = Field(
|
||||
description="WebApp Url prefix. used to display WebAPP API Base Url to the front-end.",
|
||||
description="Base URL for the web application, used for frontend references",
|
||||
default="",
|
||||
)
|
||||
|
||||
|
||||
class FileAccessConfig(BaseSettings):
|
||||
"""
|
||||
File Access configs
|
||||
Configuration for file access and handling
|
||||
"""
|
||||
|
||||
FILES_URL: str = Field(
|
||||
description="File preview or download Url prefix."
|
||||
" used to display File preview or download Url to the front-end or as Multi-model inputs;"
|
||||
description="Base URL for file preview or download,"
|
||||
" used for frontend display and multi-model inputs"
|
||||
"Url is signed and has expiration time.",
|
||||
validation_alias=AliasChoices("FILES_URL", "CONSOLE_API_URL"),
|
||||
alias_priority=1,
|
||||
@@ -154,49 +152,49 @@ class FileAccessConfig(BaseSettings):
|
||||
)
|
||||
|
||||
FILES_ACCESS_TIMEOUT: int = Field(
|
||||
description="timeout in seconds for file accessing",
|
||||
description="Expiration time in seconds for file access URLs",
|
||||
default=300,
|
||||
)
|
||||
|
||||
|
||||
class FileUploadConfig(BaseSettings):
|
||||
"""
|
||||
File Uploading configs
|
||||
Configuration for file upload limitations
|
||||
"""
|
||||
|
||||
UPLOAD_FILE_SIZE_LIMIT: NonNegativeInt = Field(
|
||||
description="size limit in Megabytes for uploading files",
|
||||
description="Maximum allowed file size for uploads in megabytes",
|
||||
default=15,
|
||||
)
|
||||
|
||||
UPLOAD_FILE_BATCH_LIMIT: NonNegativeInt = Field(
|
||||
description="batch size limit for uploading files",
|
||||
description="Maximum number of files allowed in a single upload batch",
|
||||
default=5,
|
||||
)
|
||||
|
||||
UPLOAD_IMAGE_FILE_SIZE_LIMIT: NonNegativeInt = Field(
|
||||
description="image file size limit in Megabytes for uploading files",
|
||||
description="Maximum allowed image file size for uploads in megabytes",
|
||||
default=10,
|
||||
)
|
||||
|
||||
BATCH_UPLOAD_LIMIT: NonNegativeInt = Field(
|
||||
description="", # todo: to be clarified
|
||||
description="Maximum number of files allowed in a batch upload operation",
|
||||
default=20,
|
||||
)
|
||||
|
||||
|
||||
class HttpConfig(BaseSettings):
|
||||
"""
|
||||
HTTP configs
|
||||
HTTP-related configurations for the application
|
||||
"""
|
||||
|
||||
API_COMPRESSION_ENABLED: bool = Field(
|
||||
description="whether to enable HTTP response compression of gzip",
|
||||
description="Enable or disable gzip compression for HTTP responses",
|
||||
default=False,
|
||||
)
|
||||
|
||||
inner_CONSOLE_CORS_ALLOW_ORIGINS: str = Field(
|
||||
description="",
|
||||
description="Comma-separated list of allowed origins for CORS in the console",
|
||||
validation_alias=AliasChoices("CONSOLE_CORS_ALLOW_ORIGINS", "CONSOLE_WEB_URL"),
|
||||
default="",
|
||||
)
|
||||
@@ -218,359 +216,360 @@ class HttpConfig(BaseSettings):
|
||||
return self.inner_WEB_API_CORS_ALLOW_ORIGINS.split(",")
|
||||
|
||||
HTTP_REQUEST_MAX_CONNECT_TIMEOUT: Annotated[
|
||||
PositiveInt, Field(ge=10, description="connect timeout in seconds for HTTP request")
|
||||
PositiveInt, Field(ge=10, description="Maximum connection timeout in seconds for HTTP requests")
|
||||
] = 10
|
||||
|
||||
HTTP_REQUEST_MAX_READ_TIMEOUT: Annotated[
|
||||
PositiveInt, Field(ge=60, description="read timeout in seconds for HTTP request")
|
||||
PositiveInt, Field(ge=60, description="Maximum read timeout in seconds for HTTP requests")
|
||||
] = 60
|
||||
|
||||
HTTP_REQUEST_MAX_WRITE_TIMEOUT: Annotated[
|
||||
PositiveInt, Field(ge=10, description="read timeout in seconds for HTTP request")
|
||||
PositiveInt, Field(ge=10, description="Maximum write timeout in seconds for HTTP requests")
|
||||
] = 20
|
||||
|
||||
HTTP_REQUEST_NODE_MAX_BINARY_SIZE: PositiveInt = Field(
|
||||
description="",
|
||||
description="Maximum allowed size in bytes for binary data in HTTP requests",
|
||||
default=10 * 1024 * 1024,
|
||||
)
|
||||
|
||||
HTTP_REQUEST_NODE_MAX_TEXT_SIZE: PositiveInt = Field(
|
||||
description="",
|
||||
description="Maximum allowed size in bytes for text data in HTTP requests",
|
||||
default=1 * 1024 * 1024,
|
||||
)
|
||||
|
||||
SSRF_PROXY_HTTP_URL: Optional[str] = Field(
|
||||
description="HTTP URL for SSRF proxy",
|
||||
description="Proxy URL for HTTP requests to prevent Server-Side Request Forgery (SSRF)",
|
||||
default=None,
|
||||
)
|
||||
|
||||
SSRF_PROXY_HTTPS_URL: Optional[str] = Field(
|
||||
description="HTTPS URL for SSRF proxy",
|
||||
description="Proxy URL for HTTPS requests to prevent Server-Side Request Forgery (SSRF)",
|
||||
default=None,
|
||||
)
|
||||
|
||||
|
||||
class InnerAPIConfig(BaseSettings):
|
||||
"""
|
||||
Inner API configs
|
||||
Configuration for internal API functionality
|
||||
"""
|
||||
|
||||
INNER_API: bool = Field(
|
||||
description="whether to enable the inner API",
|
||||
description="Enable or disable the internal API",
|
||||
default=False,
|
||||
)
|
||||
|
||||
INNER_API_KEY: Optional[str] = Field(
|
||||
description="The inner API key is used to authenticate the inner API",
|
||||
description="API key for accessing the internal API",
|
||||
default=None,
|
||||
)
|
||||
|
||||
|
||||
class LoggingConfig(BaseSettings):
|
||||
"""
|
||||
Logging configs
|
||||
Configuration for application logging
|
||||
"""
|
||||
|
||||
LOG_LEVEL: str = Field(
|
||||
description="Log output level, default to INFO. It is recommended to set it to ERROR for production.",
|
||||
description="Logging level, default to INFO. Set to ERROR for production environments.",
|
||||
default="INFO",
|
||||
)
|
||||
|
||||
LOG_FILE: Optional[str] = Field(
|
||||
description="logging output file path",
|
||||
description="File path for log output.",
|
||||
default=None,
|
||||
)
|
||||
|
||||
LOG_FORMAT: str = Field(
|
||||
description="log format",
|
||||
description="Format string for log messages",
|
||||
default="%(asctime)s.%(msecs)03d %(levelname)s [%(threadName)s] [%(filename)s:%(lineno)d] - %(message)s",
|
||||
)
|
||||
|
||||
LOG_DATEFORMAT: Optional[str] = Field(
|
||||
description="log date format",
|
||||
description="Date format string for log timestamps",
|
||||
default=None,
|
||||
)
|
||||
|
||||
LOG_TZ: Optional[str] = Field(
|
||||
description="specify log timezone, eg: America/New_York",
|
||||
description="Timezone for log timestamps (e.g., 'America/New_York')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
|
||||
class ModelLoadBalanceConfig(BaseSettings):
|
||||
"""
|
||||
Model load balance configs
|
||||
Configuration for model load balancing
|
||||
"""
|
||||
|
||||
MODEL_LB_ENABLED: bool = Field(
|
||||
description="whether to enable model load balancing",
|
||||
description="Enable or disable load balancing for models",
|
||||
default=False,
|
||||
)
|
||||
|
||||
|
||||
class BillingConfig(BaseSettings):
|
||||
"""
|
||||
Platform Billing Configurations
|
||||
Configuration for platform billing features
|
||||
"""
|
||||
|
||||
BILLING_ENABLED: bool = Field(
|
||||
description="whether to enable billing",
|
||||
description="Enable or disable billing functionality",
|
||||
default=False,
|
||||
)
|
||||
|
||||
|
||||
class UpdateConfig(BaseSettings):
|
||||
"""
|
||||
Update configs
|
||||
Configuration for application update checks
|
||||
"""
|
||||
|
||||
CHECK_UPDATE_URL: str = Field(
|
||||
description="url for checking updates",
|
||||
description="URL to check for application updates",
|
||||
default="https://updates.dify.ai",
|
||||
)
|
||||
|
||||
|
||||
class WorkflowConfig(BaseSettings):
|
||||
"""
|
||||
Workflow feature configs
|
||||
Configuration for workflow execution
|
||||
"""
|
||||
|
||||
WORKFLOW_MAX_EXECUTION_STEPS: PositiveInt = Field(
|
||||
description="max execution steps in single workflow execution",
|
||||
description="Maximum number of steps allowed in a single workflow execution",
|
||||
default=500,
|
||||
)
|
||||
|
||||
WORKFLOW_MAX_EXECUTION_TIME: PositiveInt = Field(
|
||||
description="max execution time in seconds in single workflow execution",
|
||||
description="Maximum execution time in seconds for a single workflow",
|
||||
default=1200,
|
||||
)
|
||||
|
||||
WORKFLOW_CALL_MAX_DEPTH: PositiveInt = Field(
|
||||
description="max depth of calling in single workflow execution",
|
||||
description="Maximum allowed depth for nested workflow calls",
|
||||
default=5,
|
||||
)
|
||||
|
||||
MAX_VARIABLE_SIZE: PositiveInt = Field(
|
||||
description="The maximum size in bytes of a variable. default to 5KB.",
|
||||
description="Maximum size in bytes for a single variable in workflows. Default to 5KB.",
|
||||
default=5 * 1024,
|
||||
)
|
||||
|
||||
|
||||
class OAuthConfig(BaseSettings):
|
||||
"""
|
||||
oauth configs
|
||||
Configuration for OAuth authentication
|
||||
"""
|
||||
|
||||
OAUTH_REDIRECT_PATH: str = Field(
|
||||
description="redirect path for OAuth",
|
||||
description="Redirect path for OAuth authentication callbacks",
|
||||
default="/console/api/oauth/authorize",
|
||||
)
|
||||
|
||||
GITHUB_CLIENT_ID: Optional[str] = Field(
|
||||
description="GitHub client id for OAuth",
|
||||
description="GitHub OAuth client secret",
|
||||
default=None,
|
||||
)
|
||||
|
||||
GITHUB_CLIENT_SECRET: Optional[str] = Field(
|
||||
description="GitHub client secret key for OAuth",
|
||||
description="GitHub OAuth client secret",
|
||||
default=None,
|
||||
)
|
||||
|
||||
GOOGLE_CLIENT_ID: Optional[str] = Field(
|
||||
description="Google client id for OAuth",
|
||||
description="Google OAuth client ID",
|
||||
default=None,
|
||||
)
|
||||
|
||||
GOOGLE_CLIENT_SECRET: Optional[str] = Field(
|
||||
description="Google client secret key for OAuth",
|
||||
description="Google OAuth client secret",
|
||||
default=None,
|
||||
)
|
||||
|
||||
|
||||
class ModerationConfig(BaseSettings):
|
||||
"""
|
||||
Moderation in app configs.
|
||||
Configuration for content moderation
|
||||
"""
|
||||
|
||||
MODERATION_BUFFER_SIZE: PositiveInt = Field(
|
||||
description="buffer size for moderation",
|
||||
description="Size of the buffer for content moderation processing",
|
||||
default=300,
|
||||
)
|
||||
|
||||
|
||||
class ToolConfig(BaseSettings):
|
||||
"""
|
||||
Tool configs
|
||||
Configuration for tool management
|
||||
"""
|
||||
|
||||
TOOL_ICON_CACHE_MAX_AGE: PositiveInt = Field(
|
||||
description="max age in seconds for tool icon caching",
|
||||
description="Maximum age in seconds for caching tool icons",
|
||||
default=3600,
|
||||
)
|
||||
|
||||
|
||||
class MailConfig(BaseSettings):
|
||||
"""
|
||||
Mail Configurations
|
||||
Configuration for email services
|
||||
"""
|
||||
|
||||
MAIL_TYPE: Optional[str] = Field(
|
||||
description="Mail provider type name, default to None, available values are `smtp` and `resend`.",
|
||||
description="Email service provider type ('smtp' or 'resend'), default to None.",
|
||||
default=None,
|
||||
)
|
||||
|
||||
MAIL_DEFAULT_SEND_FROM: Optional[str] = Field(
|
||||
description="default email address for sending from ",
|
||||
description="Default email address to use as the sender",
|
||||
default=None,
|
||||
)
|
||||
|
||||
RESEND_API_KEY: Optional[str] = Field(
|
||||
description="API key for Resend",
|
||||
description="API key for Resend email service",
|
||||
default=None,
|
||||
)
|
||||
|
||||
RESEND_API_URL: Optional[str] = Field(
|
||||
description="API URL for Resend",
|
||||
description="API URL for Resend email service",
|
||||
default=None,
|
||||
)
|
||||
|
||||
SMTP_SERVER: Optional[str] = Field(
|
||||
description="smtp server host",
|
||||
description="SMTP server hostname",
|
||||
default=None,
|
||||
)
|
||||
|
||||
SMTP_PORT: Optional[int] = Field(
|
||||
description="smtp server port",
|
||||
description="SMTP server port number",
|
||||
default=465,
|
||||
)
|
||||
|
||||
SMTP_USERNAME: Optional[str] = Field(
|
||||
description="smtp server username",
|
||||
description="Username for SMTP authentication",
|
||||
default=None,
|
||||
)
|
||||
|
||||
SMTP_PASSWORD: Optional[str] = Field(
|
||||
description="smtp server password",
|
||||
description="Password for SMTP authentication",
|
||||
default=None,
|
||||
)
|
||||
|
||||
SMTP_USE_TLS: bool = Field(
|
||||
description="whether to use TLS connection to smtp server",
|
||||
description="Enable TLS encryption for SMTP connections",
|
||||
default=False,
|
||||
)
|
||||
|
||||
SMTP_OPPORTUNISTIC_TLS: bool = Field(
|
||||
description="whether to use opportunistic TLS connection to smtp server",
|
||||
description="Enable opportunistic TLS for SMTP connections",
|
||||
default=False,
|
||||
)
|
||||
|
||||
|
||||
class RagEtlConfig(BaseSettings):
|
||||
"""
|
||||
RAG ETL Configurations.
|
||||
Configuration for RAG ETL processes
|
||||
"""
|
||||
|
||||
ETL_TYPE: str = Field(
|
||||
description="RAG ETL type name, default to `dify`, available values are `dify` and `Unstructured`. ",
|
||||
description="RAG ETL type ('dify' or 'Unstructured'), default to 'dify'",
|
||||
default="dify",
|
||||
)
|
||||
|
||||
KEYWORD_DATA_SOURCE_TYPE: str = Field(
|
||||
description="source type for keyword data, default to `database`, available values are `database` .",
|
||||
description="Data source type for keyword extraction"
|
||||
" ('database' or other supported types), default to 'database'",
|
||||
default="database",
|
||||
)
|
||||
|
||||
UNSTRUCTURED_API_URL: Optional[str] = Field(
|
||||
description="API URL for Unstructured",
|
||||
description="API URL for Unstructured.io service",
|
||||
default=None,
|
||||
)
|
||||
|
||||
UNSTRUCTURED_API_KEY: Optional[str] = Field(
|
||||
description="API key for Unstructured",
|
||||
description="API key for Unstructured.io service",
|
||||
default=None,
|
||||
)
|
||||
|
||||
|
||||
class DataSetConfig(BaseSettings):
|
||||
"""
|
||||
Dataset configs
|
||||
Configuration for dataset management
|
||||
"""
|
||||
|
||||
CLEAN_DAY_SETTING: PositiveInt = Field(
|
||||
description="interval in days for cleaning up dataset",
|
||||
description="Interval in days for dataset cleanup operations",
|
||||
default=30,
|
||||
)
|
||||
|
||||
DATASET_OPERATOR_ENABLED: bool = Field(
|
||||
description="whether to enable dataset operator",
|
||||
description="Enable or disable dataset operator functionality",
|
||||
default=False,
|
||||
)
|
||||
|
||||
|
||||
class WorkspaceConfig(BaseSettings):
|
||||
"""
|
||||
Workspace configs
|
||||
Configuration for workspace management
|
||||
"""
|
||||
|
||||
INVITE_EXPIRY_HOURS: PositiveInt = Field(
|
||||
description="workspaces invitation expiration in hours",
|
||||
description="Expiration time in hours for workspace invitation links",
|
||||
default=72,
|
||||
)
|
||||
|
||||
|
||||
class IndexingConfig(BaseSettings):
|
||||
"""
|
||||
Indexing configs.
|
||||
Configuration for indexing operations
|
||||
"""
|
||||
|
||||
INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH: PositiveInt = Field(
|
||||
description="max segmentation token length for indexing",
|
||||
description="Maximum token length for text segmentation during indexing",
|
||||
default=1000,
|
||||
)
|
||||
|
||||
|
||||
class ImageFormatConfig(BaseSettings):
|
||||
MULTIMODAL_SEND_IMAGE_FORMAT: str = Field(
|
||||
description="multi model send image format, support base64, url, default is base64",
|
||||
description="Format for sending images in multimodal contexts ('base64' or 'url'), default is base64",
|
||||
default="base64",
|
||||
)
|
||||
|
||||
|
||||
class CeleryBeatConfig(BaseSettings):
|
||||
CELERY_BEAT_SCHEDULER_TIME: int = Field(
|
||||
description="the time of the celery scheduler, default to 1 day",
|
||||
description="Interval in days for Celery Beat scheduler execution, default to 1 day",
|
||||
default=1,
|
||||
)
|
||||
|
||||
|
||||
class PositionConfig(BaseSettings):
|
||||
POSITION_PROVIDER_PINS: str = Field(
|
||||
description="The heads of model providers",
|
||||
description="Comma-separated list of pinned model providers",
|
||||
default="",
|
||||
)
|
||||
|
||||
POSITION_PROVIDER_INCLUDES: str = Field(
|
||||
description="The included model providers",
|
||||
description="Comma-separated list of included model providers",
|
||||
default="",
|
||||
)
|
||||
|
||||
POSITION_PROVIDER_EXCLUDES: str = Field(
|
||||
description="The excluded model providers",
|
||||
description="Comma-separated list of excluded model providers",
|
||||
default="",
|
||||
)
|
||||
|
||||
POSITION_TOOL_PINS: str = Field(
|
||||
description="The heads of tools",
|
||||
description="Comma-separated list of pinned tools",
|
||||
default="",
|
||||
)
|
||||
|
||||
POSITION_TOOL_INCLUDES: str = Field(
|
||||
description="The included tools",
|
||||
description="Comma-separated list of included tools",
|
||||
default="",
|
||||
)
|
||||
|
||||
POSITION_TOOL_EXCLUDES: str = Field(
|
||||
description="The excluded tools",
|
||||
description="Comma-separated list of excluded tools",
|
||||
default="",
|
||||
)
|
||||
|
||||
|
||||
@@ -6,31 +6,31 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class HostedOpenAiConfig(BaseSettings):
|
||||
"""
|
||||
Hosted OpenAI service config
|
||||
Configuration for hosted OpenAI service
|
||||
"""
|
||||
|
||||
HOSTED_OPENAI_API_KEY: Optional[str] = Field(
|
||||
description="",
|
||||
description="API key for hosted OpenAI service",
|
||||
default=None,
|
||||
)
|
||||
|
||||
HOSTED_OPENAI_API_BASE: Optional[str] = Field(
|
||||
description="",
|
||||
description="Base URL for hosted OpenAI API",
|
||||
default=None,
|
||||
)
|
||||
|
||||
HOSTED_OPENAI_API_ORGANIZATION: Optional[str] = Field(
|
||||
description="",
|
||||
description="Organization ID for hosted OpenAI service",
|
||||
default=None,
|
||||
)
|
||||
|
||||
HOSTED_OPENAI_TRIAL_ENABLED: bool = Field(
|
||||
description="",
|
||||
description="Enable trial access to hosted OpenAI service",
|
||||
default=False,
|
||||
)
|
||||
|
||||
HOSTED_OPENAI_TRIAL_MODELS: str = Field(
|
||||
description="",
|
||||
description="Comma-separated list of available models for trial access",
|
||||
default="gpt-3.5-turbo,"
|
||||
"gpt-3.5-turbo-1106,"
|
||||
"gpt-3.5-turbo-instruct,"
|
||||
@@ -42,17 +42,17 @@ class HostedOpenAiConfig(BaseSettings):
|
||||
)
|
||||
|
||||
HOSTED_OPENAI_QUOTA_LIMIT: NonNegativeInt = Field(
|
||||
description="",
|
||||
description="Quota limit for hosted OpenAI service usage",
|
||||
default=200,
|
||||
)
|
||||
|
||||
HOSTED_OPENAI_PAID_ENABLED: bool = Field(
|
||||
description="",
|
||||
description="Enable paid access to hosted OpenAI service",
|
||||
default=False,
|
||||
)
|
||||
|
||||
HOSTED_OPENAI_PAID_MODELS: str = Field(
|
||||
description="",
|
||||
description="Comma-separated list of available models for paid access",
|
||||
default="gpt-4,"
|
||||
"gpt-4-turbo-preview,"
|
||||
"gpt-4-turbo-2024-04-09,"
|
||||
@@ -71,124 +71,122 @@ class HostedOpenAiConfig(BaseSettings):
|
||||
|
||||
class HostedAzureOpenAiConfig(BaseSettings):
|
||||
"""
|
||||
Hosted OpenAI service config
|
||||
Configuration for hosted Azure OpenAI service
|
||||
"""
|
||||
|
||||
HOSTED_AZURE_OPENAI_ENABLED: bool = Field(
|
||||
description="",
|
||||
description="Enable hosted Azure OpenAI service",
|
||||
default=False,
|
||||
)
|
||||
|
||||
HOSTED_AZURE_OPENAI_API_KEY: Optional[str] = Field(
|
||||
description="",
|
||||
description="API key for hosted Azure OpenAI service",
|
||||
default=None,
|
||||
)
|
||||
|
||||
HOSTED_AZURE_OPENAI_API_BASE: Optional[str] = Field(
|
||||
description="",
|
||||
description="Base URL for hosted Azure OpenAI API",
|
||||
default=None,
|
||||
)
|
||||
|
||||
HOSTED_AZURE_OPENAI_QUOTA_LIMIT: NonNegativeInt = Field(
|
||||
description="",
|
||||
description="Quota limit for hosted Azure OpenAI service usage",
|
||||
default=200,
|
||||
)
|
||||
|
||||
|
||||
class HostedAnthropicConfig(BaseSettings):
|
||||
"""
|
||||
Hosted Azure OpenAI service config
|
||||
Configuration for hosted Anthropic service
|
||||
"""
|
||||
|
||||
HOSTED_ANTHROPIC_API_BASE: Optional[str] = Field(
|
||||
description="",
|
||||
description="Base URL for hosted Anthropic API",
|
||||
default=None,
|
||||
)
|
||||
|
||||
HOSTED_ANTHROPIC_API_KEY: Optional[str] = Field(
|
||||
description="",
|
||||
description="API key for hosted Anthropic service",
|
||||
default=None,
|
||||
)
|
||||
|
||||
HOSTED_ANTHROPIC_TRIAL_ENABLED: bool = Field(
|
||||
description="",
|
||||
description="Enable trial access to hosted Anthropic service",
|
||||
default=False,
|
||||
)
|
||||
|
||||
HOSTED_ANTHROPIC_QUOTA_LIMIT: NonNegativeInt = Field(
|
||||
description="",
|
||||
description="Quota limit for hosted Anthropic service usage",
|
||||
default=600000,
|
||||
)
|
||||
|
||||
HOSTED_ANTHROPIC_PAID_ENABLED: bool = Field(
|
||||
description="",
|
||||
description="Enable paid access to hosted Anthropic service",
|
||||
default=False,
|
||||
)
|
||||
|
||||
|
||||
class HostedMinmaxConfig(BaseSettings):
|
||||
"""
|
||||
Hosted Minmax service config
|
||||
Configuration for hosted Minmax service
|
||||
"""
|
||||
|
||||
HOSTED_MINIMAX_ENABLED: bool = Field(
|
||||
description="",
|
||||
description="Enable hosted Minmax service",
|
||||
default=False,
|
||||
)
|
||||
|
||||
|
||||
class HostedSparkConfig(BaseSettings):
|
||||
"""
|
||||
Hosted Spark service config
|
||||
Configuration for hosted Spark service
|
||||
"""
|
||||
|
||||
HOSTED_SPARK_ENABLED: bool = Field(
|
||||
description="",
|
||||
description="Enable hosted Spark service",
|
||||
default=False,
|
||||
)
|
||||
|
||||
|
||||
class HostedZhipuAIConfig(BaseSettings):
|
||||
"""
|
||||
Hosted Minmax service config
|
||||
Configuration for hosted ZhipuAI service
|
||||
"""
|
||||
|
||||
HOSTED_ZHIPUAI_ENABLED: bool = Field(
|
||||
description="",
|
||||
description="Enable hosted ZhipuAI service",
|
||||
default=False,
|
||||
)
|
||||
|
||||
|
||||
class HostedModerationConfig(BaseSettings):
|
||||
"""
|
||||
Hosted Moderation service config
|
||||
Configuration for hosted Moderation service
|
||||
"""
|
||||
|
||||
HOSTED_MODERATION_ENABLED: bool = Field(
|
||||
description="",
|
||||
description="Enable hosted Moderation service",
|
||||
default=False,
|
||||
)
|
||||
|
||||
HOSTED_MODERATION_PROVIDERS: str = Field(
|
||||
description="",
|
||||
description="Comma-separated list of moderation providers",
|
||||
default="",
|
||||
)
|
||||
|
||||
|
||||
class HostedFetchAppTemplateConfig(BaseSettings):
|
||||
"""
|
||||
Hosted Moderation service config
|
||||
Configuration for fetching app templates
|
||||
"""
|
||||
|
||||
HOSTED_FETCH_APP_TEMPLATES_MODE: str = Field(
|
||||
description="the mode for fetching app templates,"
|
||||
" default to remote,"
|
||||
" available values: remote, db, builtin",
|
||||
description="Mode for fetching app templates: remote, db, or builtin" " default to remote,",
|
||||
default="remote",
|
||||
)
|
||||
|
||||
HOSTED_FETCH_APP_TEMPLATES_REMOTE_DOMAIN: str = Field(
|
||||
description="the domain for fetching remote app templates",
|
||||
description="Domain for fetching remote app templates",
|
||||
default="https://tmpl.dify.ai",
|
||||
)
|
||||
|
||||
|
||||
@@ -8,6 +8,7 @@ from configs.middleware.cache.redis_config import RedisConfig
|
||||
from configs.middleware.storage.aliyun_oss_storage_config import AliyunOSSStorageConfig
|
||||
from configs.middleware.storage.amazon_s3_storage_config import S3StorageConfig
|
||||
from configs.middleware.storage.azure_blob_storage_config import AzureBlobStorageConfig
|
||||
from configs.middleware.storage.baidu_obs_storage_config import BaiduOBSStorageConfig
|
||||
from configs.middleware.storage.google_cloud_storage_config import GoogleCloudStorageConfig
|
||||
from configs.middleware.storage.huawei_obs_storage_config import HuaweiCloudOBSStorageConfig
|
||||
from configs.middleware.storage.oci_storage_config import OCIStorageConfig
|
||||
@@ -31,70 +32,71 @@ from configs.middleware.vdb.weaviate_config import WeaviateConfig
|
||||
|
||||
class StorageConfig(BaseSettings):
|
||||
STORAGE_TYPE: str = Field(
|
||||
description="storage type,"
|
||||
" default to `local`,"
|
||||
" available values are `local`, `s3`, `azure-blob`, `aliyun-oss`, `google-storage`.",
|
||||
description="Type of storage to use."
|
||||
" Options: 'local', 's3', 'azure-blob', 'aliyun-oss', 'google-storage'. Default is 'local'.",
|
||||
default="local",
|
||||
)
|
||||
|
||||
STORAGE_LOCAL_PATH: str = Field(
|
||||
description="local storage path",
|
||||
description="Path for local storage when STORAGE_TYPE is set to 'local'.",
|
||||
default="storage",
|
||||
)
|
||||
|
||||
|
||||
class VectorStoreConfig(BaseSettings):
|
||||
VECTOR_STORE: Optional[str] = Field(
|
||||
description="vector store type",
|
||||
description="Type of vector store to use for efficient similarity search."
|
||||
" Set to None if not using a vector store.",
|
||||
default=None,
|
||||
)
|
||||
|
||||
|
||||
class KeywordStoreConfig(BaseSettings):
|
||||
KEYWORD_STORE: str = Field(
|
||||
description="keyword store type",
|
||||
description="Method for keyword extraction and storage."
|
||||
" Default is 'jieba', a Chinese text segmentation library.",
|
||||
default="jieba",
|
||||
)
|
||||
|
||||
|
||||
class DatabaseConfig:
|
||||
DB_HOST: str = Field(
|
||||
description="db host",
|
||||
description="Hostname or IP address of the database server.",
|
||||
default="localhost",
|
||||
)
|
||||
|
||||
DB_PORT: PositiveInt = Field(
|
||||
description="db port",
|
||||
description="Port number for database connection.",
|
||||
default=5432,
|
||||
)
|
||||
|
||||
DB_USERNAME: str = Field(
|
||||
description="db username",
|
||||
description="Username for database authentication.",
|
||||
default="postgres",
|
||||
)
|
||||
|
||||
DB_PASSWORD: str = Field(
|
||||
description="db password",
|
||||
description="Password for database authentication.",
|
||||
default="",
|
||||
)
|
||||
|
||||
DB_DATABASE: str = Field(
|
||||
description="db database",
|
||||
description="Name of the database to connect to.",
|
||||
default="dify",
|
||||
)
|
||||
|
||||
DB_CHARSET: str = Field(
|
||||
description="db charset",
|
||||
description="Character set for database connection.",
|
||||
default="",
|
||||
)
|
||||
|
||||
DB_EXTRAS: str = Field(
|
||||
description="db extras options. Example: keepalives_idle=60&keepalives=1",
|
||||
description="Additional database connection parameters. Example: 'keepalives_idle=60&keepalives=1'",
|
||||
default="",
|
||||
)
|
||||
|
||||
SQLALCHEMY_DATABASE_URI_SCHEME: str = Field(
|
||||
description="db uri scheme",
|
||||
description="Database URI scheme for SQLAlchemy connection.",
|
||||
default="postgresql",
|
||||
)
|
||||
|
||||
@@ -112,27 +114,27 @@ class DatabaseConfig:
|
||||
)
|
||||
|
||||
SQLALCHEMY_POOL_SIZE: NonNegativeInt = Field(
|
||||
description="pool size of SqlAlchemy",
|
||||
description="Maximum number of database connections in the pool.",
|
||||
default=30,
|
||||
)
|
||||
|
||||
SQLALCHEMY_MAX_OVERFLOW: NonNegativeInt = Field(
|
||||
description="max overflows for SqlAlchemy",
|
||||
description="Maximum number of connections that can be created beyond the pool_size.",
|
||||
default=10,
|
||||
)
|
||||
|
||||
SQLALCHEMY_POOL_RECYCLE: NonNegativeInt = Field(
|
||||
description="SqlAlchemy pool recycle",
|
||||
description="Number of seconds after which a connection is automatically recycled.",
|
||||
default=3600,
|
||||
)
|
||||
|
||||
SQLALCHEMY_POOL_PRE_PING: bool = Field(
|
||||
description="whether to enable pool pre-ping in SqlAlchemy",
|
||||
description="If True, enables connection pool pre-ping feature to check connections.",
|
||||
default=False,
|
||||
)
|
||||
|
||||
SQLALCHEMY_ECHO: bool | str = Field(
|
||||
description="whether to enable SqlAlchemy echo",
|
||||
description="If True, SQLAlchemy will log all SQL statements.",
|
||||
default=False,
|
||||
)
|
||||
|
||||
@@ -150,27 +152,27 @@ class DatabaseConfig:
|
||||
|
||||
class CeleryConfig(DatabaseConfig):
|
||||
CELERY_BACKEND: str = Field(
|
||||
description="Celery backend, available values are `database`, `redis`",
|
||||
description="Backend for Celery task results. Options: 'database', 'redis'.",
|
||||
default="database",
|
||||
)
|
||||
|
||||
CELERY_BROKER_URL: Optional[str] = Field(
|
||||
description="CELERY_BROKER_URL",
|
||||
description="URL of the message broker for Celery tasks.",
|
||||
default=None,
|
||||
)
|
||||
|
||||
CELERY_USE_SENTINEL: Optional[bool] = Field(
|
||||
description="Whether to use Redis Sentinel mode",
|
||||
description="Whether to use Redis Sentinel for high availability.",
|
||||
default=False,
|
||||
)
|
||||
|
||||
CELERY_SENTINEL_MASTER_NAME: Optional[str] = Field(
|
||||
description="Redis Sentinel master name",
|
||||
description="Name of the Redis Sentinel master.",
|
||||
default=None,
|
||||
)
|
||||
|
||||
CELERY_SENTINEL_SOCKET_TIMEOUT: Optional[PositiveFloat] = Field(
|
||||
description="Redis Sentinel socket timeout",
|
||||
description="Timeout for Redis Sentinel socket operations in seconds.",
|
||||
default=0.1,
|
||||
)
|
||||
|
||||
@@ -199,12 +201,13 @@ class MiddlewareConfig(
|
||||
StorageConfig,
|
||||
AliyunOSSStorageConfig,
|
||||
AzureBlobStorageConfig,
|
||||
BaiduOBSStorageConfig,
|
||||
GoogleCloudStorageConfig,
|
||||
TencentCloudCOSStorageConfig,
|
||||
HuaweiCloudOBSStorageConfig,
|
||||
VolcengineTOSStorageConfig,
|
||||
S3StorageConfig,
|
||||
OCIStorageConfig,
|
||||
S3StorageConfig,
|
||||
TencentCloudCOSStorageConfig,
|
||||
VolcengineTOSStorageConfig,
|
||||
# configs of vdb and vdb providers
|
||||
VectorStoreConfig,
|
||||
AnalyticdbConfig,
|
||||
|
||||
26
api/configs/middleware/cache/redis_config.py
vendored
26
api/configs/middleware/cache/redis_config.py
vendored
@@ -6,65 +6,65 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class RedisConfig(BaseSettings):
|
||||
"""
|
||||
Redis configs
|
||||
Configuration settings for Redis connection
|
||||
"""
|
||||
|
||||
REDIS_HOST: str = Field(
|
||||
description="Redis host",
|
||||
description="Hostname or IP address of the Redis server",
|
||||
default="localhost",
|
||||
)
|
||||
|
||||
REDIS_PORT: PositiveInt = Field(
|
||||
description="Redis port",
|
||||
description="Port number on which the Redis server is listening",
|
||||
default=6379,
|
||||
)
|
||||
|
||||
REDIS_USERNAME: Optional[str] = Field(
|
||||
description="Redis username",
|
||||
description="Username for Redis authentication (if required)",
|
||||
default=None,
|
||||
)
|
||||
|
||||
REDIS_PASSWORD: Optional[str] = Field(
|
||||
description="Redis password",
|
||||
description="Password for Redis authentication (if required)",
|
||||
default=None,
|
||||
)
|
||||
|
||||
REDIS_DB: NonNegativeInt = Field(
|
||||
description="Redis database id, default to 0",
|
||||
description="Redis database number to use (0-15)",
|
||||
default=0,
|
||||
)
|
||||
|
||||
REDIS_USE_SSL: bool = Field(
|
||||
description="whether to use SSL for Redis connection",
|
||||
description="Enable SSL/TLS for the Redis connection",
|
||||
default=False,
|
||||
)
|
||||
|
||||
REDIS_USE_SENTINEL: Optional[bool] = Field(
|
||||
description="Whether to use Redis Sentinel mode",
|
||||
description="Enable Redis Sentinel mode for high availability",
|
||||
default=False,
|
||||
)
|
||||
|
||||
REDIS_SENTINELS: Optional[str] = Field(
|
||||
description="Redis Sentinel nodes",
|
||||
description="Comma-separated list of Redis Sentinel nodes (host:port)",
|
||||
default=None,
|
||||
)
|
||||
|
||||
REDIS_SENTINEL_SERVICE_NAME: Optional[str] = Field(
|
||||
description="Redis Sentinel service name",
|
||||
description="Name of the Redis Sentinel service to monitor",
|
||||
default=None,
|
||||
)
|
||||
|
||||
REDIS_SENTINEL_USERNAME: Optional[str] = Field(
|
||||
description="Redis Sentinel username",
|
||||
description="Username for Redis Sentinel authentication (if required)",
|
||||
default=None,
|
||||
)
|
||||
|
||||
REDIS_SENTINEL_PASSWORD: Optional[str] = Field(
|
||||
description="Redis Sentinel password",
|
||||
description="Password for Redis Sentinel authentication (if required)",
|
||||
default=None,
|
||||
)
|
||||
|
||||
REDIS_SENTINEL_SOCKET_TIMEOUT: Optional[PositiveFloat] = Field(
|
||||
description="Redis Sentinel socket timeout",
|
||||
description="Socket timeout in seconds for Redis Sentinel connections",
|
||||
default=0.1,
|
||||
)
|
||||
|
||||
@@ -6,40 +6,40 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class AliyunOSSStorageConfig(BaseSettings):
|
||||
"""
|
||||
Aliyun storage configs
|
||||
Configuration settings for Aliyun Object Storage Service (OSS)
|
||||
"""
|
||||
|
||||
ALIYUN_OSS_BUCKET_NAME: Optional[str] = Field(
|
||||
description="Aliyun OSS bucket name",
|
||||
description="Name of the Aliyun OSS bucket to store and retrieve objects",
|
||||
default=None,
|
||||
)
|
||||
|
||||
ALIYUN_OSS_ACCESS_KEY: Optional[str] = Field(
|
||||
description="Aliyun OSS access key",
|
||||
description="Access key ID for authenticating with Aliyun OSS",
|
||||
default=None,
|
||||
)
|
||||
|
||||
ALIYUN_OSS_SECRET_KEY: Optional[str] = Field(
|
||||
description="Aliyun OSS secret key",
|
||||
description="Secret access key for authenticating with Aliyun OSS",
|
||||
default=None,
|
||||
)
|
||||
|
||||
ALIYUN_OSS_ENDPOINT: Optional[str] = Field(
|
||||
description="Aliyun OSS endpoint URL",
|
||||
description="URL of the Aliyun OSS endpoint for your chosen region",
|
||||
default=None,
|
||||
)
|
||||
|
||||
ALIYUN_OSS_REGION: Optional[str] = Field(
|
||||
description="Aliyun OSS region",
|
||||
description="Aliyun OSS region where your bucket is located (e.g., 'oss-cn-hangzhou')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
ALIYUN_OSS_AUTH_VERSION: Optional[str] = Field(
|
||||
description="Aliyun OSS authentication version",
|
||||
description="Version of the authentication protocol to use with Aliyun OSS (e.g., 'v4')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
ALIYUN_OSS_PATH: Optional[str] = Field(
|
||||
description="Aliyun OSS path",
|
||||
description="Base path within the bucket to store objects (e.g., 'my-app-data/')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
@@ -6,40 +6,40 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class S3StorageConfig(BaseSettings):
|
||||
"""
|
||||
S3 storage configs
|
||||
Configuration settings for S3-compatible object storage
|
||||
"""
|
||||
|
||||
S3_ENDPOINT: Optional[str] = Field(
|
||||
description="S3 storage endpoint",
|
||||
description="URL of the S3-compatible storage endpoint (e.g., 'https://s3.amazonaws.com')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
S3_REGION: Optional[str] = Field(
|
||||
description="S3 storage region",
|
||||
description="Region where the S3 bucket is located (e.g., 'us-east-1')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
S3_BUCKET_NAME: Optional[str] = Field(
|
||||
description="S3 storage bucket name",
|
||||
description="Name of the S3 bucket to store and retrieve objects",
|
||||
default=None,
|
||||
)
|
||||
|
||||
S3_ACCESS_KEY: Optional[str] = Field(
|
||||
description="S3 storage access key",
|
||||
description="Access key ID for authenticating with the S3 service",
|
||||
default=None,
|
||||
)
|
||||
|
||||
S3_SECRET_KEY: Optional[str] = Field(
|
||||
description="S3 storage secret key",
|
||||
description="Secret access key for authenticating with the S3 service",
|
||||
default=None,
|
||||
)
|
||||
|
||||
S3_ADDRESS_STYLE: str = Field(
|
||||
description="S3 storage address style",
|
||||
description="S3 addressing style: 'auto', 'path', or 'virtual'",
|
||||
default="auto",
|
||||
)
|
||||
|
||||
S3_USE_AWS_MANAGED_IAM: bool = Field(
|
||||
description="whether to use aws managed IAM for S3",
|
||||
description="Use AWS managed IAM roles for authentication instead of access/secret keys",
|
||||
default=False,
|
||||
)
|
||||
|
||||
@@ -6,25 +6,25 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class AzureBlobStorageConfig(BaseSettings):
|
||||
"""
|
||||
Azure Blob storage configs
|
||||
Configuration settings for Azure Blob Storage
|
||||
"""
|
||||
|
||||
AZURE_BLOB_ACCOUNT_NAME: Optional[str] = Field(
|
||||
description="Azure Blob account name",
|
||||
description="Name of the Azure Storage account (e.g., 'mystorageaccount')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
AZURE_BLOB_ACCOUNT_KEY: Optional[str] = Field(
|
||||
description="Azure Blob account key",
|
||||
description="Access key for authenticating with the Azure Storage account",
|
||||
default=None,
|
||||
)
|
||||
|
||||
AZURE_BLOB_CONTAINER_NAME: Optional[str] = Field(
|
||||
description="Azure Blob container name",
|
||||
description="Name of the Azure Blob container to store and retrieve objects",
|
||||
default=None,
|
||||
)
|
||||
|
||||
AZURE_BLOB_ACCOUNT_URL: Optional[str] = Field(
|
||||
description="Azure Blob account URL",
|
||||
description="URL of the Azure Blob storage endpoint (e.g., 'https://mystorageaccount.blob.core.windows.net')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
29
api/configs/middleware/storage/baidu_obs_storage_config.py
Normal file
29
api/configs/middleware/storage/baidu_obs_storage_config.py
Normal file
@@ -0,0 +1,29 @@
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class BaiduOBSStorageConfig(BaseModel):
|
||||
"""
|
||||
Configuration settings for Baidu Object Storage Service (OBS)
|
||||
"""
|
||||
|
||||
BAIDU_OBS_BUCKET_NAME: Optional[str] = Field(
|
||||
description="Name of the Baidu OBS bucket to store and retrieve objects (e.g., 'my-obs-bucket')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
BAIDU_OBS_ACCESS_KEY: Optional[str] = Field(
|
||||
description="Access Key ID for authenticating with Baidu OBS",
|
||||
default=None,
|
||||
)
|
||||
|
||||
BAIDU_OBS_SECRET_KEY: Optional[str] = Field(
|
||||
description="Secret Access Key for authenticating with Baidu OBS",
|
||||
default=None,
|
||||
)
|
||||
|
||||
BAIDU_OBS_ENDPOINT: Optional[str] = Field(
|
||||
description="URL of the Baidu OSS endpoint for your chosen region (e.g., 'https://.bj.bcebos.com')",
|
||||
default=None,
|
||||
)
|
||||
@@ -6,15 +6,15 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class GoogleCloudStorageConfig(BaseSettings):
|
||||
"""
|
||||
Google Cloud storage configs
|
||||
Configuration settings for Google Cloud Storage
|
||||
"""
|
||||
|
||||
GOOGLE_STORAGE_BUCKET_NAME: Optional[str] = Field(
|
||||
description="Google Cloud storage bucket name",
|
||||
description="Name of the Google Cloud Storage bucket to store and retrieve objects (e.g., 'my-gcs-bucket')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
GOOGLE_STORAGE_SERVICE_ACCOUNT_JSON_BASE64: Optional[str] = Field(
|
||||
description="Google Cloud storage service account json base64",
|
||||
description="Base64-encoded JSON key file for Google Cloud service account authentication",
|
||||
default=None,
|
||||
)
|
||||
|
||||
@@ -5,25 +5,25 @@ from pydantic import BaseModel, Field
|
||||
|
||||
class HuaweiCloudOBSStorageConfig(BaseModel):
|
||||
"""
|
||||
Huawei Cloud OBS storage configs
|
||||
Configuration settings for Huawei Cloud Object Storage Service (OBS)
|
||||
"""
|
||||
|
||||
HUAWEI_OBS_BUCKET_NAME: Optional[str] = Field(
|
||||
description="Huawei Cloud OBS bucket name",
|
||||
description="Name of the Huawei Cloud OBS bucket to store and retrieve objects (e.g., 'my-obs-bucket')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
HUAWEI_OBS_ACCESS_KEY: Optional[str] = Field(
|
||||
description="Huawei Cloud OBS Access key",
|
||||
description="Access Key ID for authenticating with Huawei Cloud OBS",
|
||||
default=None,
|
||||
)
|
||||
|
||||
HUAWEI_OBS_SECRET_KEY: Optional[str] = Field(
|
||||
description="Huawei Cloud OBS Secret key",
|
||||
description="Secret Access Key for authenticating with Huawei Cloud OBS",
|
||||
default=None,
|
||||
)
|
||||
|
||||
HUAWEI_OBS_SERVER: Optional[str] = Field(
|
||||
description="Huawei Cloud OBS server URL",
|
||||
description="Endpoint URL for Huawei Cloud OBS (e.g., 'https://obs.cn-north-4.myhuaweicloud.com')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
@@ -6,30 +6,30 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class OCIStorageConfig(BaseSettings):
|
||||
"""
|
||||
OCI storage configs
|
||||
Configuration settings for Oracle Cloud Infrastructure (OCI) Object Storage
|
||||
"""
|
||||
|
||||
OCI_ENDPOINT: Optional[str] = Field(
|
||||
description="OCI storage endpoint",
|
||||
description="URL of the OCI Object Storage endpoint (e.g., 'https://objectstorage.us-phoenix-1.oraclecloud.com')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
OCI_REGION: Optional[str] = Field(
|
||||
description="OCI storage region",
|
||||
description="OCI region where the bucket is located (e.g., 'us-phoenix-1')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
OCI_BUCKET_NAME: Optional[str] = Field(
|
||||
description="OCI storage bucket name",
|
||||
description="Name of the OCI Object Storage bucket to store and retrieve objects (e.g., 'my-oci-bucket')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
OCI_ACCESS_KEY: Optional[str] = Field(
|
||||
description="OCI storage access key",
|
||||
description="Access key (also known as API key) for authenticating with OCI Object Storage",
|
||||
default=None,
|
||||
)
|
||||
|
||||
OCI_SECRET_KEY: Optional[str] = Field(
|
||||
description="OCI storage secret key",
|
||||
description="Secret key associated with the access key for authenticating with OCI Object Storage",
|
||||
default=None,
|
||||
)
|
||||
|
||||
@@ -6,30 +6,30 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class TencentCloudCOSStorageConfig(BaseSettings):
|
||||
"""
|
||||
Tencent Cloud COS storage configs
|
||||
Configuration settings for Tencent Cloud Object Storage (COS)
|
||||
"""
|
||||
|
||||
TENCENT_COS_BUCKET_NAME: Optional[str] = Field(
|
||||
description="Tencent Cloud COS bucket name",
|
||||
description="Name of the Tencent Cloud COS bucket to store and retrieve objects",
|
||||
default=None,
|
||||
)
|
||||
|
||||
TENCENT_COS_REGION: Optional[str] = Field(
|
||||
description="Tencent Cloud COS region",
|
||||
description="Tencent Cloud region where the COS bucket is located (e.g., 'ap-guangzhou')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
TENCENT_COS_SECRET_ID: Optional[str] = Field(
|
||||
description="Tencent Cloud COS secret id",
|
||||
description="SecretId for authenticating with Tencent Cloud COS (part of API credentials)",
|
||||
default=None,
|
||||
)
|
||||
|
||||
TENCENT_COS_SECRET_KEY: Optional[str] = Field(
|
||||
description="Tencent Cloud COS secret key",
|
||||
description="SecretKey for authenticating with Tencent Cloud COS (part of API credentials)",
|
||||
default=None,
|
||||
)
|
||||
|
||||
TENCENT_COS_SCHEME: Optional[str] = Field(
|
||||
description="Tencent Cloud COS scheme",
|
||||
description="Protocol scheme for COS requests: 'https' (recommended) or 'http'",
|
||||
default=None,
|
||||
)
|
||||
|
||||
@@ -5,30 +5,30 @@ from pydantic import BaseModel, Field
|
||||
|
||||
class VolcengineTOSStorageConfig(BaseModel):
|
||||
"""
|
||||
Volcengine tos storage configs
|
||||
Configuration settings for Volcengine Tinder Object Storage (TOS)
|
||||
"""
|
||||
|
||||
VOLCENGINE_TOS_BUCKET_NAME: Optional[str] = Field(
|
||||
description="Volcengine TOS Bucket Name",
|
||||
description="Name of the Volcengine TOS bucket to store and retrieve objects (e.g., 'my-tos-bucket')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
VOLCENGINE_TOS_ACCESS_KEY: Optional[str] = Field(
|
||||
description="Volcengine TOS Access Key",
|
||||
description="Access Key ID for authenticating with Volcengine TOS",
|
||||
default=None,
|
||||
)
|
||||
|
||||
VOLCENGINE_TOS_SECRET_KEY: Optional[str] = Field(
|
||||
description="Volcengine TOS Secret Key",
|
||||
description="Secret Access Key for authenticating with Volcengine TOS",
|
||||
default=None,
|
||||
)
|
||||
|
||||
VOLCENGINE_TOS_ENDPOINT: Optional[str] = Field(
|
||||
description="Volcengine TOS Endpoint URL",
|
||||
description="URL of the Volcengine TOS endpoint (e.g., 'https://tos-cn-beijing.volces.com')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
VOLCENGINE_TOS_REGION: Optional[str] = Field(
|
||||
description="Volcengine TOS Region",
|
||||
description="Volcengine region where the TOS bucket is located (e.g., 'cn-beijing')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
@@ -5,33 +5,38 @@ from pydantic import BaseModel, Field
|
||||
|
||||
class AnalyticdbConfig(BaseModel):
|
||||
"""
|
||||
Configuration for connecting to AnalyticDB.
|
||||
Configuration for connecting to Alibaba Cloud AnalyticDB for PostgreSQL.
|
||||
Refer to the following documentation for details on obtaining credentials:
|
||||
https://www.alibabacloud.com/help/en/analyticdb-for-postgresql/getting-started/create-an-instance-instances-with-vector-engine-optimization-enabled
|
||||
"""
|
||||
|
||||
ANALYTICDB_KEY_ID: Optional[str] = Field(
|
||||
default=None, description="The Access Key ID provided by Alibaba Cloud for authentication."
|
||||
default=None, description="The Access Key ID provided by Alibaba Cloud for API authentication."
|
||||
)
|
||||
ANALYTICDB_KEY_SECRET: Optional[str] = Field(
|
||||
default=None, description="The Secret Access Key corresponding to the Access Key ID for secure access."
|
||||
default=None, description="The Secret Access Key corresponding to the Access Key ID for secure API access."
|
||||
)
|
||||
ANALYTICDB_REGION_ID: Optional[str] = Field(
|
||||
default=None, description="The region where the AnalyticDB instance is deployed (e.g., 'cn-hangzhou')."
|
||||
default=None,
|
||||
description="The region where the AnalyticDB instance is deployed (e.g., 'cn-hangzhou', 'ap-southeast-1').",
|
||||
)
|
||||
ANALYTICDB_INSTANCE_ID: Optional[str] = Field(
|
||||
default=None,
|
||||
description="The unique identifier of the AnalyticDB instance you want to connect to (e.g., 'gp-ab123456')..",
|
||||
description="The unique identifier of the AnalyticDB instance you want to connect to.",
|
||||
)
|
||||
ANALYTICDB_ACCOUNT: Optional[str] = Field(
|
||||
default=None, description="The account name used to log in to the AnalyticDB instance."
|
||||
default=None,
|
||||
description="The account name used to log in to the AnalyticDB instance"
|
||||
" (usually the initial account created with the instance).",
|
||||
)
|
||||
ANALYTICDB_PASSWORD: Optional[str] = Field(
|
||||
default=None, description="The password associated with the AnalyticDB account for authentication."
|
||||
default=None, description="The password associated with the AnalyticDB account for database authentication."
|
||||
)
|
||||
ANALYTICDB_NAMESPACE: Optional[str] = Field(
|
||||
default=None, description="The namespace within AnalyticDB for schema isolation."
|
||||
default=None, description="The namespace within AnalyticDB for schema isolation (if using namespace feature)."
|
||||
)
|
||||
ANALYTICDB_NAMESPACE_PASSWORD: Optional[str] = Field(
|
||||
default=None, description="The password for accessing the specified namespace within the AnalyticDB instance."
|
||||
default=None,
|
||||
description="The password for accessing the specified namespace within the AnalyticDB instance"
|
||||
" (if namespace feature is enabled).",
|
||||
)
|
||||
|
||||
@@ -6,35 +6,35 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class ChromaConfig(BaseSettings):
|
||||
"""
|
||||
Chroma configs
|
||||
Configuration settings for Chroma vector database
|
||||
"""
|
||||
|
||||
CHROMA_HOST: Optional[str] = Field(
|
||||
description="Chroma host",
|
||||
description="Hostname or IP address of the Chroma server (e.g., 'localhost' or '192.168.1.100')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
CHROMA_PORT: PositiveInt = Field(
|
||||
description="Chroma port",
|
||||
description="Port number on which the Chroma server is listening (default is 8000)",
|
||||
default=8000,
|
||||
)
|
||||
|
||||
CHROMA_TENANT: Optional[str] = Field(
|
||||
description="Chroma database",
|
||||
description="Tenant identifier for multi-tenancy support in Chroma",
|
||||
default=None,
|
||||
)
|
||||
|
||||
CHROMA_DATABASE: Optional[str] = Field(
|
||||
description="Chroma database",
|
||||
description="Name of the Chroma database to connect to",
|
||||
default=None,
|
||||
)
|
||||
|
||||
CHROMA_AUTH_PROVIDER: Optional[str] = Field(
|
||||
description="Chroma authentication provider",
|
||||
description="Authentication provider for Chroma (e.g., 'basic', 'token', or a custom provider)",
|
||||
default=None,
|
||||
)
|
||||
|
||||
CHROMA_AUTH_CREDENTIALS: Optional[str] = Field(
|
||||
description="Chroma authentication credentials",
|
||||
description="Authentication credentials for Chroma (format depends on the auth provider)",
|
||||
default=None,
|
||||
)
|
||||
|
||||
@@ -6,25 +6,25 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class ElasticsearchConfig(BaseSettings):
|
||||
"""
|
||||
Elasticsearch configs
|
||||
Configuration settings for Elasticsearch
|
||||
"""
|
||||
|
||||
ELASTICSEARCH_HOST: Optional[str] = Field(
|
||||
description="Elasticsearch host",
|
||||
description="Hostname or IP address of the Elasticsearch server (e.g., 'localhost' or '192.168.1.100')",
|
||||
default="127.0.0.1",
|
||||
)
|
||||
|
||||
ELASTICSEARCH_PORT: PositiveInt = Field(
|
||||
description="Elasticsearch port",
|
||||
description="Port number on which the Elasticsearch server is listening (default is 9200)",
|
||||
default=9200,
|
||||
)
|
||||
|
||||
ELASTICSEARCH_USERNAME: Optional[str] = Field(
|
||||
description="Elasticsearch username",
|
||||
description="Username for authenticating with Elasticsearch (default is 'elastic')",
|
||||
default="elastic",
|
||||
)
|
||||
|
||||
ELASTICSEARCH_PASSWORD: Optional[str] = Field(
|
||||
description="Elasticsearch password",
|
||||
description="Password for authenticating with Elasticsearch (default is 'elastic')",
|
||||
default="elastic",
|
||||
)
|
||||
|
||||
@@ -6,30 +6,30 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class MilvusConfig(BaseSettings):
|
||||
"""
|
||||
Milvus configs
|
||||
Configuration settings for Milvus vector database
|
||||
"""
|
||||
|
||||
MILVUS_URI: Optional[str] = Field(
|
||||
description="Milvus uri",
|
||||
description="URI for connecting to the Milvus server (e.g., 'http://localhost:19530' or 'https://milvus-instance.example.com:19530')",
|
||||
default="http://127.0.0.1:19530",
|
||||
)
|
||||
|
||||
MILVUS_TOKEN: Optional[str] = Field(
|
||||
description="Milvus token",
|
||||
description="Authentication token for Milvus, if token-based authentication is enabled",
|
||||
default=None,
|
||||
)
|
||||
|
||||
MILVUS_USER: Optional[str] = Field(
|
||||
description="Milvus user",
|
||||
description="Username for authenticating with Milvus, if username/password authentication is enabled",
|
||||
default=None,
|
||||
)
|
||||
|
||||
MILVUS_PASSWORD: Optional[str] = Field(
|
||||
description="Milvus password",
|
||||
description="Password for authenticating with Milvus, if username/password authentication is enabled",
|
||||
default=None,
|
||||
)
|
||||
|
||||
MILVUS_DATABASE: str = Field(
|
||||
description="Milvus database, default to `default`",
|
||||
description="Name of the Milvus database to connect to (default is 'default')",
|
||||
default="default",
|
||||
)
|
||||
|
||||
@@ -3,35 +3,35 @@ from pydantic import BaseModel, Field, PositiveInt
|
||||
|
||||
class MyScaleConfig(BaseModel):
|
||||
"""
|
||||
MyScale configs
|
||||
Configuration settings for MyScale vector database
|
||||
"""
|
||||
|
||||
MYSCALE_HOST: str = Field(
|
||||
description="MyScale host",
|
||||
description="Hostname or IP address of the MyScale server (e.g., 'localhost' or 'myscale.example.com')",
|
||||
default="localhost",
|
||||
)
|
||||
|
||||
MYSCALE_PORT: PositiveInt = Field(
|
||||
description="MyScale port",
|
||||
description="Port number on which the MyScale server is listening (default is 8123)",
|
||||
default=8123,
|
||||
)
|
||||
|
||||
MYSCALE_USER: str = Field(
|
||||
description="MyScale user",
|
||||
description="Username for authenticating with MyScale (default is 'default')",
|
||||
default="default",
|
||||
)
|
||||
|
||||
MYSCALE_PASSWORD: str = Field(
|
||||
description="MyScale password",
|
||||
description="Password for authenticating with MyScale (default is an empty string)",
|
||||
default="",
|
||||
)
|
||||
|
||||
MYSCALE_DATABASE: str = Field(
|
||||
description="MyScale database name",
|
||||
description="Name of the MyScale database to connect to (default is 'default')",
|
||||
default="default",
|
||||
)
|
||||
|
||||
MYSCALE_FTS_PARAMS: str = Field(
|
||||
description="MyScale fts index parameters",
|
||||
description="Additional parameters for MyScale Full Text Search index)",
|
||||
default="",
|
||||
)
|
||||
|
||||
@@ -6,30 +6,30 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class OpenSearchConfig(BaseSettings):
|
||||
"""
|
||||
OpenSearch configs
|
||||
Configuration settings for OpenSearch
|
||||
"""
|
||||
|
||||
OPENSEARCH_HOST: Optional[str] = Field(
|
||||
description="OpenSearch host",
|
||||
description="Hostname or IP address of the OpenSearch server (e.g., 'localhost' or 'opensearch.example.com')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
OPENSEARCH_PORT: PositiveInt = Field(
|
||||
description="OpenSearch port",
|
||||
description="Port number on which the OpenSearch server is listening (default is 9200)",
|
||||
default=9200,
|
||||
)
|
||||
|
||||
OPENSEARCH_USER: Optional[str] = Field(
|
||||
description="OpenSearch user",
|
||||
description="Username for authenticating with OpenSearch",
|
||||
default=None,
|
||||
)
|
||||
|
||||
OPENSEARCH_PASSWORD: Optional[str] = Field(
|
||||
description="OpenSearch password",
|
||||
description="Password for authenticating with OpenSearch",
|
||||
default=None,
|
||||
)
|
||||
|
||||
OPENSEARCH_SECURE: bool = Field(
|
||||
description="whether to use SSL connection for OpenSearch",
|
||||
description="Whether to use SSL/TLS encrypted connection for OpenSearch (True for HTTPS, False for HTTP)",
|
||||
default=False,
|
||||
)
|
||||
|
||||
@@ -6,30 +6,30 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class OracleConfig(BaseSettings):
|
||||
"""
|
||||
ORACLE configs
|
||||
Configuration settings for Oracle database
|
||||
"""
|
||||
|
||||
ORACLE_HOST: Optional[str] = Field(
|
||||
description="ORACLE host",
|
||||
description="Hostname or IP address of the Oracle database server (e.g., 'localhost' or 'oracle.example.com')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
ORACLE_PORT: Optional[PositiveInt] = Field(
|
||||
description="ORACLE port",
|
||||
description="Port number on which the Oracle database server is listening (default is 1521)",
|
||||
default=1521,
|
||||
)
|
||||
|
||||
ORACLE_USER: Optional[str] = Field(
|
||||
description="ORACLE user",
|
||||
description="Username for authenticating with the Oracle database",
|
||||
default=None,
|
||||
)
|
||||
|
||||
ORACLE_PASSWORD: Optional[str] = Field(
|
||||
description="ORACLE password",
|
||||
description="Password for authenticating with the Oracle database",
|
||||
default=None,
|
||||
)
|
||||
|
||||
ORACLE_DATABASE: Optional[str] = Field(
|
||||
description="ORACLE database",
|
||||
description="Name of the Oracle database or service to connect to (e.g., 'ORCL' or 'pdborcl')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
@@ -6,30 +6,40 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class PGVectorConfig(BaseSettings):
|
||||
"""
|
||||
PGVector configs
|
||||
Configuration settings for PGVector (PostgreSQL with vector extension)
|
||||
"""
|
||||
|
||||
PGVECTOR_HOST: Optional[str] = Field(
|
||||
description="PGVector host",
|
||||
description="Hostname or IP address of the PostgreSQL server with PGVector extension (e.g., 'localhost')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
PGVECTOR_PORT: Optional[PositiveInt] = Field(
|
||||
description="PGVector port",
|
||||
description="Port number on which the PostgreSQL server is listening (default is 5433)",
|
||||
default=5433,
|
||||
)
|
||||
|
||||
PGVECTOR_USER: Optional[str] = Field(
|
||||
description="PGVector user",
|
||||
description="Username for authenticating with the PostgreSQL database",
|
||||
default=None,
|
||||
)
|
||||
|
||||
PGVECTOR_PASSWORD: Optional[str] = Field(
|
||||
description="PGVector password",
|
||||
description="Password for authenticating with the PostgreSQL database",
|
||||
default=None,
|
||||
)
|
||||
|
||||
PGVECTOR_DATABASE: Optional[str] = Field(
|
||||
description="PGVector database",
|
||||
description="Name of the PostgreSQL database to connect to",
|
||||
default=None,
|
||||
)
|
||||
|
||||
PGVECTOR_MIN_CONNECTION: PositiveInt = Field(
|
||||
description="Min connection of the PostgreSQL database",
|
||||
default=1,
|
||||
)
|
||||
|
||||
PGVECTOR_MAX_CONNECTION: PositiveInt = Field(
|
||||
description="Max connection of the PostgreSQL database",
|
||||
default=5,
|
||||
)
|
||||
|
||||
@@ -6,30 +6,30 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class PGVectoRSConfig(BaseSettings):
|
||||
"""
|
||||
PGVectoRS configs
|
||||
Configuration settings for PGVecto.RS (Rust-based vector extension for PostgreSQL)
|
||||
"""
|
||||
|
||||
PGVECTO_RS_HOST: Optional[str] = Field(
|
||||
description="PGVectoRS host",
|
||||
description="Hostname or IP address of the PostgreSQL server with PGVecto.RS extension (e.g., 'localhost')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
PGVECTO_RS_PORT: Optional[PositiveInt] = Field(
|
||||
description="PGVectoRS port",
|
||||
description="Port number on which the PostgreSQL server with PGVecto.RS is listening (default is 5431)",
|
||||
default=5431,
|
||||
)
|
||||
|
||||
PGVECTO_RS_USER: Optional[str] = Field(
|
||||
description="PGVectoRS user",
|
||||
description="Username for authenticating with the PostgreSQL database using PGVecto.RS",
|
||||
default=None,
|
||||
)
|
||||
|
||||
PGVECTO_RS_PASSWORD: Optional[str] = Field(
|
||||
description="PGVectoRS password",
|
||||
description="Password for authenticating with the PostgreSQL database using PGVecto.RS",
|
||||
default=None,
|
||||
)
|
||||
|
||||
PGVECTO_RS_DATABASE: Optional[str] = Field(
|
||||
description="PGVectoRS database",
|
||||
description="Name of the PostgreSQL database with PGVecto.RS extension to connect to",
|
||||
default=None,
|
||||
)
|
||||
|
||||
@@ -6,30 +6,30 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class QdrantConfig(BaseSettings):
|
||||
"""
|
||||
Qdrant configs
|
||||
Configuration settings for Qdrant vector database
|
||||
"""
|
||||
|
||||
QDRANT_URL: Optional[str] = Field(
|
||||
description="Qdrant url",
|
||||
description="URL of the Qdrant server (e.g., 'http://localhost:6333' or 'https://qdrant.example.com')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
QDRANT_API_KEY: Optional[str] = Field(
|
||||
description="Qdrant api key",
|
||||
description="API key for authenticating with the Qdrant server",
|
||||
default=None,
|
||||
)
|
||||
|
||||
QDRANT_CLIENT_TIMEOUT: NonNegativeInt = Field(
|
||||
description="Qdrant client timeout in seconds",
|
||||
description="Timeout in seconds for Qdrant client operations (default is 20 seconds)",
|
||||
default=20,
|
||||
)
|
||||
|
||||
QDRANT_GRPC_ENABLED: bool = Field(
|
||||
description="whether enable grpc support for Qdrant connection",
|
||||
description="Whether to enable gRPC support for Qdrant connection (True for gRPC, False for HTTP)",
|
||||
default=False,
|
||||
)
|
||||
|
||||
QDRANT_GRPC_PORT: PositiveInt = Field(
|
||||
description="Qdrant grpc port",
|
||||
description="Port number for gRPC connection to Qdrant server (default is 6334)",
|
||||
default=6334,
|
||||
)
|
||||
|
||||
@@ -6,30 +6,30 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class RelytConfig(BaseSettings):
|
||||
"""
|
||||
Relyt configs
|
||||
Configuration settings for Relyt database
|
||||
"""
|
||||
|
||||
RELYT_HOST: Optional[str] = Field(
|
||||
description="Relyt host",
|
||||
description="Hostname or IP address of the Relyt server (e.g., 'localhost' or 'relyt.example.com')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
RELYT_PORT: PositiveInt = Field(
|
||||
description="Relyt port",
|
||||
description="Port number on which the Relyt server is listening (default is 9200)",
|
||||
default=9200,
|
||||
)
|
||||
|
||||
RELYT_USER: Optional[str] = Field(
|
||||
description="Relyt user",
|
||||
description="Username for authenticating with the Relyt database",
|
||||
default=None,
|
||||
)
|
||||
|
||||
RELYT_PASSWORD: Optional[str] = Field(
|
||||
description="Relyt password",
|
||||
description="Password for authenticating with the Relyt database",
|
||||
default=None,
|
||||
)
|
||||
|
||||
RELYT_DATABASE: Optional[str] = Field(
|
||||
description="Relyt database",
|
||||
description="Name of the Relyt database to connect to (default is 'default')",
|
||||
default="default",
|
||||
)
|
||||
|
||||
@@ -6,45 +6,45 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class TencentVectorDBConfig(BaseSettings):
|
||||
"""
|
||||
Tencent Vector configs
|
||||
Configuration settings for Tencent Vector Database
|
||||
"""
|
||||
|
||||
TENCENT_VECTOR_DB_URL: Optional[str] = Field(
|
||||
description="Tencent Vector URL",
|
||||
description="URL of the Tencent Vector Database service (e.g., 'https://vectordb.tencentcloudapi.com')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
TENCENT_VECTOR_DB_API_KEY: Optional[str] = Field(
|
||||
description="Tencent Vector API key",
|
||||
description="API key for authenticating with the Tencent Vector Database service",
|
||||
default=None,
|
||||
)
|
||||
|
||||
TENCENT_VECTOR_DB_TIMEOUT: PositiveInt = Field(
|
||||
description="Tencent Vector timeout in seconds",
|
||||
description="Timeout in seconds for Tencent Vector Database operations (default is 30 seconds)",
|
||||
default=30,
|
||||
)
|
||||
|
||||
TENCENT_VECTOR_DB_USERNAME: Optional[str] = Field(
|
||||
description="Tencent Vector username",
|
||||
description="Username for authenticating with the Tencent Vector Database (if required)",
|
||||
default=None,
|
||||
)
|
||||
|
||||
TENCENT_VECTOR_DB_PASSWORD: Optional[str] = Field(
|
||||
description="Tencent Vector password",
|
||||
description="Password for authenticating with the Tencent Vector Database (if required)",
|
||||
default=None,
|
||||
)
|
||||
|
||||
TENCENT_VECTOR_DB_SHARD: PositiveInt = Field(
|
||||
description="Tencent Vector sharding number",
|
||||
description="Number of shards for the Tencent Vector Database (default is 1)",
|
||||
default=1,
|
||||
)
|
||||
|
||||
TENCENT_VECTOR_DB_REPLICAS: NonNegativeInt = Field(
|
||||
description="Tencent Vector replicas",
|
||||
description="Number of replicas for the Tencent Vector Database (default is 2)",
|
||||
default=2,
|
||||
)
|
||||
|
||||
TENCENT_VECTOR_DB_DATABASE: Optional[str] = Field(
|
||||
description="Tencent Vector Database",
|
||||
description="Name of the specific Tencent Vector Database to connect to",
|
||||
default=None,
|
||||
)
|
||||
|
||||
@@ -6,30 +6,30 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class TiDBVectorConfig(BaseSettings):
|
||||
"""
|
||||
TiDB Vector configs
|
||||
Configuration settings for TiDB Vector database
|
||||
"""
|
||||
|
||||
TIDB_VECTOR_HOST: Optional[str] = Field(
|
||||
description="TiDB Vector host",
|
||||
description="Hostname or IP address of the TiDB Vector server (e.g., 'localhost' or 'tidb.example.com')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
TIDB_VECTOR_PORT: Optional[PositiveInt] = Field(
|
||||
description="TiDB Vector port",
|
||||
description="Port number on which the TiDB Vector server is listening (default is 4000)",
|
||||
default=4000,
|
||||
)
|
||||
|
||||
TIDB_VECTOR_USER: Optional[str] = Field(
|
||||
description="TiDB Vector user",
|
||||
description="Username for authenticating with the TiDB Vector database",
|
||||
default=None,
|
||||
)
|
||||
|
||||
TIDB_VECTOR_PASSWORD: Optional[str] = Field(
|
||||
description="TiDB Vector password",
|
||||
description="Password for authenticating with the TiDB Vector database",
|
||||
default=None,
|
||||
)
|
||||
|
||||
TIDB_VECTOR_DATABASE: Optional[str] = Field(
|
||||
description="TiDB Vector database",
|
||||
description="Name of the TiDB Vector database to connect to",
|
||||
default=None,
|
||||
)
|
||||
|
||||
@@ -6,25 +6,25 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class WeaviateConfig(BaseSettings):
|
||||
"""
|
||||
Weaviate configs
|
||||
Configuration settings for Weaviate vector database
|
||||
"""
|
||||
|
||||
WEAVIATE_ENDPOINT: Optional[str] = Field(
|
||||
description="Weaviate endpoint URL",
|
||||
description="URL of the Weaviate server (e.g., 'http://localhost:8080' or 'https://weaviate.example.com')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
WEAVIATE_API_KEY: Optional[str] = Field(
|
||||
description="Weaviate API key",
|
||||
description="API key for authenticating with the Weaviate server",
|
||||
default=None,
|
||||
)
|
||||
|
||||
WEAVIATE_GRPC_ENABLED: bool = Field(
|
||||
description="whether to enable gRPC for Weaviate connection",
|
||||
description="Whether to enable gRPC for Weaviate connection (True for gRPC, False for HTTP)",
|
||||
default=True,
|
||||
)
|
||||
|
||||
WEAVIATE_BATCH_SIZE: PositiveInt = Field(
|
||||
description="Weaviate batch size",
|
||||
description="Number of objects to be processed in a single batch operation (default is 100)",
|
||||
default=100,
|
||||
)
|
||||
|
||||
@@ -9,7 +9,7 @@ class PackagingInfo(BaseSettings):
|
||||
|
||||
CURRENT_VERSION: str = Field(
|
||||
description="Dify version",
|
||||
default="0.8.3",
|
||||
default="0.9.1-fix1",
|
||||
)
|
||||
|
||||
COMMIT_SHA: str = Field(
|
||||
|
||||
@@ -1 +1,2 @@
|
||||
HIDDEN_VALUE = "[__HIDDEN__]"
|
||||
UUID_NIL = "00000000-0000-0000-0000-000000000000"
|
||||
|
||||
@@ -37,7 +37,16 @@ from .auth import activate, data_source_bearer_auth, data_source_oauth, forgot_p
|
||||
from .billing import billing
|
||||
|
||||
# Import datasets controllers
|
||||
from .datasets import data_source, datasets, datasets_document, datasets_segments, file, hit_testing, website
|
||||
from .datasets import (
|
||||
data_source,
|
||||
datasets,
|
||||
datasets_document,
|
||||
datasets_segments,
|
||||
external,
|
||||
file,
|
||||
hit_testing,
|
||||
website,
|
||||
)
|
||||
|
||||
# Import explore controllers
|
||||
from .explore import (
|
||||
|
||||
@@ -109,6 +109,7 @@ class ChatMessageApi(Resource):
|
||||
parser.add_argument("files", type=list, required=False, location="json")
|
||||
parser.add_argument("model_config", type=dict, required=True, location="json")
|
||||
parser.add_argument("conversation_id", type=uuid_value, location="json")
|
||||
parser.add_argument("parent_message_id", type=uuid_value, required=False, location="json")
|
||||
parser.add_argument("response_mode", type=str, choices=["blocking", "streaming"], location="json")
|
||||
parser.add_argument("retriever_from", type=str, required=False, default="dev", location="json")
|
||||
args = parser.parse_args()
|
||||
|
||||
@@ -105,8 +105,6 @@ class ChatMessageListApi(Resource):
|
||||
if rest_count > 0:
|
||||
has_more = True
|
||||
|
||||
history_messages = list(reversed(history_messages))
|
||||
|
||||
return InfiniteScrollPagination(data=history_messages, limit=args["limit"], has_more=has_more)
|
||||
|
||||
|
||||
|
||||
@@ -166,6 +166,8 @@ class AdvancedChatDraftWorkflowRunApi(Resource):
|
||||
parser.add_argument("query", type=str, required=True, location="json", default="")
|
||||
parser.add_argument("files", type=list, location="json")
|
||||
parser.add_argument("conversation_id", type=uuid_value, location="json")
|
||||
parser.add_argument("parent_message_id", type=uuid_value, required=False, location="json")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
try:
|
||||
|
||||
@@ -49,7 +49,7 @@ class DatasetListApi(Resource):
|
||||
page = request.args.get("page", default=1, type=int)
|
||||
limit = request.args.get("limit", default=20, type=int)
|
||||
ids = request.args.getlist("ids")
|
||||
provider = request.args.get("provider", default="vendor")
|
||||
# provider = request.args.get("provider", default="vendor")
|
||||
search = request.args.get("keyword", default=None, type=str)
|
||||
tag_ids = request.args.getlist("tag_ids")
|
||||
|
||||
@@ -57,7 +57,7 @@ class DatasetListApi(Resource):
|
||||
datasets, total = DatasetService.get_datasets_by_ids(ids, current_user.current_tenant_id)
|
||||
else:
|
||||
datasets, total = DatasetService.get_datasets(
|
||||
page, limit, provider, current_user.current_tenant_id, current_user, search, tag_ids
|
||||
page, limit, current_user.current_tenant_id, current_user, search, tag_ids
|
||||
)
|
||||
|
||||
# check embedding setting
|
||||
@@ -110,6 +110,26 @@ class DatasetListApi(Resource):
|
||||
nullable=True,
|
||||
help="Invalid indexing technique.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"external_knowledge_api_id",
|
||||
type=str,
|
||||
nullable=True,
|
||||
required=False,
|
||||
)
|
||||
parser.add_argument(
|
||||
"provider",
|
||||
type=str,
|
||||
nullable=True,
|
||||
choices=Dataset.PROVIDER_LIST,
|
||||
required=False,
|
||||
default="vendor",
|
||||
)
|
||||
parser.add_argument(
|
||||
"external_knowledge_id",
|
||||
type=str,
|
||||
nullable=True,
|
||||
required=False,
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
# The role of the current user in the ta table must be admin, owner, or editor, or dataset_operator
|
||||
@@ -123,6 +143,9 @@ class DatasetListApi(Resource):
|
||||
indexing_technique=args["indexing_technique"],
|
||||
account=current_user,
|
||||
permission=DatasetPermissionEnum.ONLY_ME,
|
||||
provider=args["provider"],
|
||||
external_knowledge_api_id=args["external_knowledge_api_id"],
|
||||
external_knowledge_id=args["external_knowledge_id"],
|
||||
)
|
||||
except services.errors.dataset.DatasetNameDuplicateError:
|
||||
raise DatasetNameDuplicateError()
|
||||
@@ -211,6 +234,33 @@ class DatasetApi(Resource):
|
||||
)
|
||||
parser.add_argument("retrieval_model", type=dict, location="json", help="Invalid retrieval model.")
|
||||
parser.add_argument("partial_member_list", type=list, location="json", help="Invalid parent user list.")
|
||||
|
||||
parser.add_argument(
|
||||
"external_retrieval_model",
|
||||
type=dict,
|
||||
required=False,
|
||||
nullable=True,
|
||||
location="json",
|
||||
help="Invalid external retrieval model.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"external_knowledge_id",
|
||||
type=str,
|
||||
required=False,
|
||||
nullable=True,
|
||||
location="json",
|
||||
help="Invalid external knowledge id.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"external_knowledge_api_id",
|
||||
type=str,
|
||||
required=False,
|
||||
nullable=True,
|
||||
location="json",
|
||||
help="Invalid external knowledge api id.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
data = request.get_json()
|
||||
|
||||
@@ -563,10 +613,10 @@ class DatasetRetrievalSettingApi(Resource):
|
||||
case (
|
||||
VectorType.MILVUS
|
||||
| VectorType.RELYT
|
||||
| VectorType.PGVECTOR
|
||||
| VectorType.TIDB_VECTOR
|
||||
| VectorType.CHROMA
|
||||
| VectorType.TENCENT
|
||||
| VectorType.PGVECTO_RS
|
||||
):
|
||||
return {"retrieval_method": [RetrievalMethod.SEMANTIC_SEARCH.value]}
|
||||
case (
|
||||
@@ -577,6 +627,7 @@ class DatasetRetrievalSettingApi(Resource):
|
||||
| VectorType.MYSCALE
|
||||
| VectorType.ORACLE
|
||||
| VectorType.ELASTICSEARCH
|
||||
| VectorType.PGVECTOR
|
||||
):
|
||||
return {
|
||||
"retrieval_method": [
|
||||
|
||||
239
api/controllers/console/datasets/external.py
Normal file
239
api/controllers/console/datasets/external.py
Normal file
@@ -0,0 +1,239 @@
|
||||
from flask import request
|
||||
from flask_login import current_user
|
||||
from flask_restful import Resource, marshal, reqparse
|
||||
from werkzeug.exceptions import Forbidden, InternalServerError, NotFound
|
||||
|
||||
import services
|
||||
from controllers.console import api
|
||||
from controllers.console.datasets.error import DatasetNameDuplicateError
|
||||
from controllers.console.setup import setup_required
|
||||
from controllers.console.wraps import account_initialization_required
|
||||
from fields.dataset_fields import dataset_detail_fields
|
||||
from libs.login import login_required
|
||||
from services.dataset_service import DatasetService
|
||||
from services.external_knowledge_service import ExternalDatasetService
|
||||
from services.hit_testing_service import HitTestingService
|
||||
|
||||
|
||||
def _validate_name(name):
|
||||
if not name or len(name) < 1 or len(name) > 100:
|
||||
raise ValueError("Name must be between 1 to 100 characters.")
|
||||
return name
|
||||
|
||||
|
||||
def _validate_description_length(description):
|
||||
if description and len(description) > 400:
|
||||
raise ValueError("Description cannot exceed 400 characters.")
|
||||
return description
|
||||
|
||||
|
||||
class ExternalApiTemplateListApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def get(self):
|
||||
page = request.args.get("page", default=1, type=int)
|
||||
limit = request.args.get("limit", default=20, type=int)
|
||||
search = request.args.get("keyword", default=None, type=str)
|
||||
|
||||
external_knowledge_apis, total = ExternalDatasetService.get_external_knowledge_apis(
|
||||
page, limit, current_user.current_tenant_id, search
|
||||
)
|
||||
response = {
|
||||
"data": [item.to_dict() for item in external_knowledge_apis],
|
||||
"has_more": len(external_knowledge_apis) == limit,
|
||||
"limit": limit,
|
||||
"total": total,
|
||||
"page": page,
|
||||
}
|
||||
return response, 200
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument(
|
||||
"name",
|
||||
nullable=False,
|
||||
required=True,
|
||||
help="Name is required. Name must be between 1 to 100 characters.",
|
||||
type=_validate_name,
|
||||
)
|
||||
parser.add_argument(
|
||||
"settings",
|
||||
type=dict,
|
||||
location="json",
|
||||
nullable=False,
|
||||
required=True,
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
ExternalDatasetService.validate_api_list(args["settings"])
|
||||
|
||||
# The role of the current user in the ta table must be admin, owner, or editor, or dataset_operator
|
||||
if not current_user.is_dataset_editor:
|
||||
raise Forbidden()
|
||||
|
||||
try:
|
||||
external_knowledge_api = ExternalDatasetService.create_external_knowledge_api(
|
||||
tenant_id=current_user.current_tenant_id, user_id=current_user.id, args=args
|
||||
)
|
||||
except services.errors.dataset.DatasetNameDuplicateError:
|
||||
raise DatasetNameDuplicateError()
|
||||
|
||||
return external_knowledge_api.to_dict(), 201
|
||||
|
||||
|
||||
class ExternalApiTemplateApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def get(self, external_knowledge_api_id):
|
||||
external_knowledge_api_id = str(external_knowledge_api_id)
|
||||
external_knowledge_api = ExternalDatasetService.get_external_knowledge_api(external_knowledge_api_id)
|
||||
if external_knowledge_api is None:
|
||||
raise NotFound("API template not found.")
|
||||
|
||||
return external_knowledge_api.to_dict(), 200
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def patch(self, external_knowledge_api_id):
|
||||
external_knowledge_api_id = str(external_knowledge_api_id)
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument(
|
||||
"name",
|
||||
nullable=False,
|
||||
required=True,
|
||||
help="type is required. Name must be between 1 to 100 characters.",
|
||||
type=_validate_name,
|
||||
)
|
||||
parser.add_argument(
|
||||
"settings",
|
||||
type=dict,
|
||||
location="json",
|
||||
nullable=False,
|
||||
required=True,
|
||||
)
|
||||
args = parser.parse_args()
|
||||
ExternalDatasetService.validate_api_list(args["settings"])
|
||||
|
||||
external_knowledge_api = ExternalDatasetService.update_external_knowledge_api(
|
||||
tenant_id=current_user.current_tenant_id,
|
||||
user_id=current_user.id,
|
||||
external_knowledge_api_id=external_knowledge_api_id,
|
||||
args=args,
|
||||
)
|
||||
|
||||
return external_knowledge_api.to_dict(), 200
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def delete(self, external_knowledge_api_id):
|
||||
external_knowledge_api_id = str(external_knowledge_api_id)
|
||||
|
||||
# The role of the current user in the ta table must be admin, owner, or editor
|
||||
if not current_user.is_editor or current_user.is_dataset_operator:
|
||||
raise Forbidden()
|
||||
|
||||
ExternalDatasetService.delete_external_knowledge_api(current_user.current_tenant_id, external_knowledge_api_id)
|
||||
return {"result": "success"}, 200
|
||||
|
||||
|
||||
class ExternalApiUseCheckApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def get(self, external_knowledge_api_id):
|
||||
external_knowledge_api_id = str(external_knowledge_api_id)
|
||||
|
||||
external_knowledge_api_is_using, count = ExternalDatasetService.external_knowledge_api_use_check(
|
||||
external_knowledge_api_id
|
||||
)
|
||||
return {"is_using": external_knowledge_api_is_using, "count": count}, 200
|
||||
|
||||
|
||||
class ExternalDatasetCreateApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self):
|
||||
# The role of the current user in the ta table must be admin, owner, or editor
|
||||
if not current_user.is_editor:
|
||||
raise Forbidden()
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument("external_knowledge_api_id", type=str, required=True, nullable=False, location="json")
|
||||
parser.add_argument("external_knowledge_id", type=str, required=True, nullable=False, location="json")
|
||||
parser.add_argument(
|
||||
"name",
|
||||
nullable=False,
|
||||
required=True,
|
||||
help="name is required. Name must be between 1 to 100 characters.",
|
||||
type=_validate_name,
|
||||
)
|
||||
parser.add_argument("description", type=str, required=False, nullable=True, location="json")
|
||||
parser.add_argument("external_retrieval_model", type=dict, required=False, location="json")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# The role of the current user in the ta table must be admin, owner, or editor, or dataset_operator
|
||||
if not current_user.is_dataset_editor:
|
||||
raise Forbidden()
|
||||
|
||||
try:
|
||||
dataset = ExternalDatasetService.create_external_dataset(
|
||||
tenant_id=current_user.current_tenant_id,
|
||||
user_id=current_user.id,
|
||||
args=args,
|
||||
)
|
||||
except services.errors.dataset.DatasetNameDuplicateError:
|
||||
raise DatasetNameDuplicateError()
|
||||
|
||||
return marshal(dataset, dataset_detail_fields), 201
|
||||
|
||||
|
||||
class ExternalKnowledgeHitTestingApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self, dataset_id):
|
||||
dataset_id_str = str(dataset_id)
|
||||
dataset = DatasetService.get_dataset(dataset_id_str)
|
||||
if dataset is None:
|
||||
raise NotFound("Dataset not found.")
|
||||
|
||||
try:
|
||||
DatasetService.check_dataset_permission(dataset, current_user)
|
||||
except services.errors.account.NoPermissionError as e:
|
||||
raise Forbidden(str(e))
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument("query", type=str, location="json")
|
||||
parser.add_argument("external_retrieval_model", type=dict, required=False, location="json")
|
||||
args = parser.parse_args()
|
||||
|
||||
HitTestingService.hit_testing_args_check(args)
|
||||
|
||||
try:
|
||||
response = HitTestingService.external_retrieve(
|
||||
dataset=dataset,
|
||||
query=args["query"],
|
||||
account=current_user,
|
||||
external_retrieval_model=args["external_retrieval_model"],
|
||||
)
|
||||
|
||||
return response
|
||||
except Exception as e:
|
||||
raise InternalServerError(str(e))
|
||||
|
||||
|
||||
api.add_resource(ExternalKnowledgeHitTestingApi, "/datasets/<uuid:dataset_id>/external-hit-testing")
|
||||
api.add_resource(ExternalDatasetCreateApi, "/datasets/external")
|
||||
api.add_resource(ExternalApiTemplateListApi, "/datasets/external-knowledge-api")
|
||||
api.add_resource(ExternalApiTemplateApi, "/datasets/external-knowledge-api/<uuid:external_knowledge_api_id>")
|
||||
api.add_resource(ExternalApiUseCheckApi, "/datasets/external-knowledge-api/<uuid:external_knowledge_api_id>/use-check")
|
||||
@@ -47,6 +47,7 @@ class HitTestingApi(Resource):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument("query", type=str, location="json")
|
||||
parser.add_argument("retrieval_model", type=dict, required=False, location="json")
|
||||
parser.add_argument("external_retrieval_model", type=dict, required=False, location="json")
|
||||
args = parser.parse_args()
|
||||
|
||||
HitTestingService.hit_testing_args_check(args)
|
||||
@@ -57,6 +58,7 @@ class HitTestingApi(Resource):
|
||||
query=args["query"],
|
||||
account=current_user,
|
||||
retrieval_model=args["retrieval_model"],
|
||||
external_retrieval_model=args["external_retrieval_model"],
|
||||
limit=10,
|
||||
)
|
||||
|
||||
|
||||
@@ -14,7 +14,9 @@ class WebsiteCrawlApi(Resource):
|
||||
@account_initialization_required
|
||||
def post(self):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument("provider", type=str, choices=["firecrawl"], required=True, nullable=True, location="json")
|
||||
parser.add_argument(
|
||||
"provider", type=str, choices=["firecrawl", "jinareader"], required=True, nullable=True, location="json"
|
||||
)
|
||||
parser.add_argument("url", type=str, required=True, nullable=True, location="json")
|
||||
parser.add_argument("options", type=dict, required=True, nullable=True, location="json")
|
||||
args = parser.parse_args()
|
||||
@@ -33,7 +35,7 @@ class WebsiteCrawlStatusApi(Resource):
|
||||
@account_initialization_required
|
||||
def get(self, job_id: str):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument("provider", type=str, choices=["firecrawl"], required=True, location="args")
|
||||
parser.add_argument("provider", type=str, choices=["firecrawl", "jinareader"], required=True, location="args")
|
||||
args = parser.parse_args()
|
||||
# get crawl status
|
||||
try:
|
||||
|
||||
@@ -100,6 +100,7 @@ class ChatApi(InstalledAppResource):
|
||||
parser.add_argument("query", type=str, required=True, location="json")
|
||||
parser.add_argument("files", type=list, required=False, location="json")
|
||||
parser.add_argument("conversation_id", type=uuid_value, location="json")
|
||||
parser.add_argument("parent_message_id", type=uuid_value, required=False, location="json")
|
||||
parser.add_argument("retriever_from", type=str, required=False, default="explore_app", location="json")
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
@@ -51,7 +51,7 @@ class MessageListApi(InstalledAppResource):
|
||||
|
||||
try:
|
||||
return MessageService.pagination_by_first_id(
|
||||
app_model, current_user, args["conversation_id"], args["first_id"], args["limit"]
|
||||
app_model, current_user, args["conversation_id"], args["first_id"], args["limit"], "desc"
|
||||
)
|
||||
except services.errors.conversation.ConversationNotExistsError:
|
||||
raise NotFound("Conversation Not Exists.")
|
||||
|
||||
@@ -38,11 +38,52 @@ class VersionApi(Resource):
|
||||
return result
|
||||
|
||||
content = json.loads(response.content)
|
||||
result["version"] = content["version"]
|
||||
result["release_date"] = content["releaseDate"]
|
||||
result["release_notes"] = content["releaseNotes"]
|
||||
result["can_auto_update"] = content["canAutoUpdate"]
|
||||
if _has_new_version(latest_version=content["version"], current_version=f"{args.get('current_version')}"):
|
||||
result["version"] = content["version"]
|
||||
result["release_date"] = content["releaseDate"]
|
||||
result["release_notes"] = content["releaseNotes"]
|
||||
result["can_auto_update"] = content["canAutoUpdate"]
|
||||
return result
|
||||
|
||||
|
||||
def _has_new_version(*, latest_version: str, current_version: str) -> bool:
|
||||
def parse_version(version: str) -> tuple:
|
||||
# Split version into parts and pre-release suffix if any
|
||||
parts = version.split("-")
|
||||
version_parts = parts[0].split(".")
|
||||
pre_release = parts[1] if len(parts) > 1 else None
|
||||
|
||||
# Validate version format
|
||||
if len(version_parts) != 3:
|
||||
raise ValueError(f"Invalid version format: {version}")
|
||||
|
||||
try:
|
||||
# Convert version parts to integers
|
||||
major, minor, patch = map(int, version_parts)
|
||||
return (major, minor, patch, pre_release)
|
||||
except ValueError:
|
||||
raise ValueError(f"Invalid version format: {version}")
|
||||
|
||||
latest = parse_version(latest_version)
|
||||
current = parse_version(current_version)
|
||||
|
||||
# Compare major, minor, and patch versions
|
||||
for latest_part, current_part in zip(latest[:3], current[:3]):
|
||||
if latest_part > current_part:
|
||||
return True
|
||||
elif latest_part < current_part:
|
||||
return False
|
||||
|
||||
# If versions are equal, check pre-release suffixes
|
||||
if latest[3] is None and current[3] is not None:
|
||||
return True
|
||||
elif latest[3] is not None and current[3] is None:
|
||||
return False
|
||||
elif latest[3] is not None and current[3] is not None:
|
||||
# Simple string comparison for pre-release versions
|
||||
return latest[3] > current[3]
|
||||
|
||||
return False
|
||||
|
||||
|
||||
api.add_resource(VersionApi, "/version")
|
||||
|
||||
@@ -72,8 +72,9 @@ class DefaultModelApi(Resource):
|
||||
provider=model_setting["provider"],
|
||||
model=model_setting["model"],
|
||||
)
|
||||
except Exception:
|
||||
logging.warning(f"{model_setting['model_type']} save error")
|
||||
except Exception as ex:
|
||||
logging.exception(f"{model_setting['model_type']} save error: {ex}")
|
||||
raise ex
|
||||
|
||||
return {"result": "success"}
|
||||
|
||||
|
||||
7
api/controllers/files/error.py
Normal file
7
api/controllers/files/error.py
Normal file
@@ -0,0 +1,7 @@
|
||||
from libs.exception import BaseHTTPException
|
||||
|
||||
|
||||
class UnsupportedFileTypeError(BaseHTTPException):
|
||||
error_code = "unsupported_file_type"
|
||||
description = "File type not allowed."
|
||||
code = 415
|
||||
@@ -4,7 +4,7 @@ from werkzeug.exceptions import NotFound
|
||||
|
||||
import services
|
||||
from controllers.files import api
|
||||
from libs.exception import BaseHTTPException
|
||||
from controllers.files.error import UnsupportedFileTypeError
|
||||
from services.account_service import TenantService
|
||||
from services.file_service import FileService
|
||||
|
||||
@@ -50,9 +50,3 @@ class WorkspaceWebappLogoApi(Resource):
|
||||
|
||||
api.add_resource(ImagePreviewApi, "/files/<uuid:file_id>/image-preview")
|
||||
api.add_resource(WorkspaceWebappLogoApi, "/files/workspaces/<uuid:workspace_id>/webapp-logo")
|
||||
|
||||
|
||||
class UnsupportedFileTypeError(BaseHTTPException):
|
||||
error_code = "unsupported_file_type"
|
||||
description = "File type not allowed."
|
||||
code = 415
|
||||
|
||||
@@ -3,8 +3,8 @@ from flask_restful import Resource, reqparse
|
||||
from werkzeug.exceptions import Forbidden, NotFound
|
||||
|
||||
from controllers.files import api
|
||||
from controllers.files.error import UnsupportedFileTypeError
|
||||
from core.tools.tool_file_manager import ToolFileManager
|
||||
from libs.exception import BaseHTTPException
|
||||
|
||||
|
||||
class ToolFilePreviewApi(Resource):
|
||||
@@ -43,9 +43,3 @@ class ToolFilePreviewApi(Resource):
|
||||
|
||||
|
||||
api.add_resource(ToolFilePreviewApi, "/files/tools/<uuid:file_id>.<string:extension>")
|
||||
|
||||
|
||||
class UnsupportedFileTypeError(BaseHTTPException):
|
||||
error_code = "unsupported_file_type"
|
||||
description = "File type not allowed."
|
||||
code = 415
|
||||
|
||||
@@ -4,6 +4,7 @@ from flask_restful import Resource, reqparse
|
||||
from werkzeug.exceptions import InternalServerError, NotFound
|
||||
|
||||
import services
|
||||
from constants import UUID_NIL
|
||||
from controllers.service_api import api
|
||||
from controllers.service_api.app.error import (
|
||||
AppUnavailableError,
|
||||
@@ -107,6 +108,7 @@ class ChatApi(Resource):
|
||||
parser.add_argument("conversation_id", type=uuid_value, location="json")
|
||||
parser.add_argument("retriever_from", type=str, required=False, default="dev", location="json")
|
||||
parser.add_argument("auto_generate_name", type=bool, required=False, default=True, location="json")
|
||||
parser.add_argument("parent_message_id", type=uuid_value, required=False, default=UUID_NIL, location="json")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
@@ -54,6 +54,7 @@ class MessageListApi(Resource):
|
||||
message_fields = {
|
||||
"id": fields.String,
|
||||
"conversation_id": fields.String,
|
||||
"parent_message_id": fields.String,
|
||||
"inputs": fields.Raw,
|
||||
"query": fields.String,
|
||||
"answer": fields.String(attribute="re_sign_file_url_answer"),
|
||||
|
||||
@@ -28,11 +28,11 @@ class DatasetListApi(DatasetApiResource):
|
||||
|
||||
page = request.args.get("page", default=1, type=int)
|
||||
limit = request.args.get("limit", default=20, type=int)
|
||||
provider = request.args.get("provider", default="vendor")
|
||||
# provider = request.args.get("provider", default="vendor")
|
||||
search = request.args.get("keyword", default=None, type=str)
|
||||
tag_ids = request.args.getlist("tag_ids")
|
||||
|
||||
datasets, total = DatasetService.get_datasets(page, limit, provider, tenant_id, current_user, search, tag_ids)
|
||||
datasets, total = DatasetService.get_datasets(page, limit, tenant_id, current_user, search, tag_ids)
|
||||
# check embedding setting
|
||||
provider_manager = ProviderManager()
|
||||
configurations = provider_manager.get_configurations(tenant_id=current_user.current_tenant_id)
|
||||
@@ -82,6 +82,26 @@ class DatasetListApi(DatasetApiResource):
|
||||
required=False,
|
||||
nullable=False,
|
||||
)
|
||||
parser.add_argument(
|
||||
"external_knowledge_api_id",
|
||||
type=str,
|
||||
nullable=True,
|
||||
required=False,
|
||||
default="_validate_name",
|
||||
)
|
||||
parser.add_argument(
|
||||
"provider",
|
||||
type=str,
|
||||
nullable=True,
|
||||
required=False,
|
||||
default="vendor",
|
||||
)
|
||||
parser.add_argument(
|
||||
"external_knowledge_id",
|
||||
type=str,
|
||||
nullable=True,
|
||||
required=False,
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
try:
|
||||
@@ -91,6 +111,9 @@ class DatasetListApi(DatasetApiResource):
|
||||
indexing_technique=args["indexing_technique"],
|
||||
account=current_user,
|
||||
permission=args["permission"],
|
||||
provider=args["provider"],
|
||||
external_knowledge_api_id=args["external_knowledge_api_id"],
|
||||
external_knowledge_id=args["external_knowledge_id"],
|
||||
)
|
||||
except services.errors.dataset.DatasetNameDuplicateError:
|
||||
raise DatasetNameDuplicateError()
|
||||
|
||||
@@ -96,6 +96,7 @@ class ChatApi(WebApiResource):
|
||||
parser.add_argument("files", type=list, required=False, location="json")
|
||||
parser.add_argument("response_mode", type=str, choices=["blocking", "streaming"], location="json")
|
||||
parser.add_argument("conversation_id", type=uuid_value, location="json")
|
||||
parser.add_argument("parent_message_id", type=uuid_value, required=False, location="json")
|
||||
parser.add_argument("retriever_from", type=str, required=False, default="web_app", location="json")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
@@ -57,6 +57,7 @@ class MessageListApi(WebApiResource):
|
||||
message_fields = {
|
||||
"id": fields.String,
|
||||
"conversation_id": fields.String,
|
||||
"parent_message_id": fields.String,
|
||||
"inputs": fields.Raw,
|
||||
"query": fields.String,
|
||||
"answer": fields.String(attribute="re_sign_file_url_answer"),
|
||||
@@ -89,7 +90,7 @@ class MessageListApi(WebApiResource):
|
||||
|
||||
try:
|
||||
return MessageService.pagination_by_first_id(
|
||||
app_model, end_user, args["conversation_id"], args["first_id"], args["limit"]
|
||||
app_model, end_user, args["conversation_id"], args["first_id"], args["limit"], "desc"
|
||||
)
|
||||
except services.errors.conversation.ConversationNotExistsError:
|
||||
raise NotFound("Conversation Not Exists.")
|
||||
|
||||
@@ -32,6 +32,7 @@ from core.model_runtime.entities.message_entities import (
|
||||
from core.model_runtime.entities.model_entities import ModelFeature
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||
from core.prompt.utils.extract_thread_messages import extract_thread_messages
|
||||
from core.tools.entities.tool_entities import (
|
||||
ToolParameter,
|
||||
ToolRuntimeVariablePool,
|
||||
@@ -441,10 +442,12 @@ class BaseAgentRunner(AppRunner):
|
||||
.filter(
|
||||
Message.conversation_id == self.message.conversation_id,
|
||||
)
|
||||
.order_by(Message.created_at.asc())
|
||||
.order_by(Message.created_at.desc())
|
||||
.all()
|
||||
)
|
||||
|
||||
messages = list(reversed(extract_thread_messages(messages)))
|
||||
|
||||
for message in messages:
|
||||
if message.id == self.message.id:
|
||||
continue
|
||||
|
||||
@@ -14,7 +14,7 @@ class CotAgentOutputParser:
|
||||
) -> Generator[Union[str, AgentScratchpadUnit.Action], None, None]:
|
||||
def parse_action(json_str):
|
||||
try:
|
||||
action = json.loads(json_str)
|
||||
action = json.loads(json_str, strict=False)
|
||||
action_name = None
|
||||
action_input = None
|
||||
|
||||
|
||||
@@ -121,6 +121,7 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
|
||||
inputs=conversation.inputs if conversation else self._get_cleaned_inputs(inputs, app_config),
|
||||
query=query,
|
||||
files=file_objs,
|
||||
parent_message_id=args.get("parent_message_id"),
|
||||
user_id=user.id,
|
||||
stream=stream,
|
||||
invoke_from=invoke_from,
|
||||
|
||||
@@ -231,7 +231,8 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
|
||||
except Exception as e:
|
||||
logger.error(e)
|
||||
break
|
||||
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
|
||||
if tts_publisher:
|
||||
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
|
||||
|
||||
def _process_stream_response(
|
||||
self,
|
||||
|
||||
@@ -127,6 +127,7 @@ class AgentChatAppGenerator(MessageBasedAppGenerator):
|
||||
inputs=conversation.inputs if conversation else self._get_cleaned_inputs(inputs, app_config),
|
||||
query=query,
|
||||
files=file_objs,
|
||||
parent_message_id=args.get("parent_message_id"),
|
||||
user_id=user.id,
|
||||
stream=stream,
|
||||
invoke_from=invoke_from,
|
||||
|
||||
@@ -75,10 +75,10 @@ class AppGenerateResponseConverter(ABC):
|
||||
:return:
|
||||
"""
|
||||
# show_retrieve_source
|
||||
updated_resources = []
|
||||
if "retriever_resources" in metadata:
|
||||
metadata["retriever_resources"] = []
|
||||
for resource in metadata["retriever_resources"]:
|
||||
metadata["retriever_resources"].append(
|
||||
updated_resources.append(
|
||||
{
|
||||
"segment_id": resource["segment_id"],
|
||||
"position": resource["position"],
|
||||
@@ -87,6 +87,7 @@ class AppGenerateResponseConverter(ABC):
|
||||
"content": resource["content"],
|
||||
}
|
||||
)
|
||||
metadata["retriever_resources"] = updated_resources
|
||||
|
||||
# show annotation reply
|
||||
if "annotation_reply" in metadata:
|
||||
|
||||
@@ -309,7 +309,7 @@ class AppRunner:
|
||||
if not prompt_messages:
|
||||
prompt_messages = result.prompt_messages
|
||||
|
||||
if not usage and result.delta.usage:
|
||||
if result.delta.usage:
|
||||
usage = result.delta.usage
|
||||
|
||||
if not usage:
|
||||
|
||||
@@ -128,6 +128,7 @@ class ChatAppGenerator(MessageBasedAppGenerator):
|
||||
inputs=conversation.inputs if conversation else self._get_cleaned_inputs(inputs, app_config),
|
||||
query=query,
|
||||
files=file_objs,
|
||||
parent_message_id=args.get("parent_message_id"),
|
||||
user_id=user.id,
|
||||
stream=stream,
|
||||
invoke_from=invoke_from,
|
||||
|
||||
@@ -218,6 +218,7 @@ class MessageBasedAppGenerator(BaseAppGenerator):
|
||||
answer_tokens=0,
|
||||
answer_unit_price=0,
|
||||
answer_price_unit=0,
|
||||
parent_message_id=getattr(application_generate_entity, "parent_message_id", None),
|
||||
provider_response_latency=0,
|
||||
total_price=0,
|
||||
currency="USD",
|
||||
|
||||
@@ -212,7 +212,8 @@ class WorkflowAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCycleMa
|
||||
except Exception as e:
|
||||
logger.error(e)
|
||||
break
|
||||
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
|
||||
if tts_publisher:
|
||||
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
|
||||
|
||||
def _process_stream_response(
|
||||
self,
|
||||
|
||||
@@ -122,6 +122,7 @@ class ChatAppGenerateEntity(EasyUIBasedAppGenerateEntity):
|
||||
"""
|
||||
|
||||
conversation_id: Optional[str] = None
|
||||
parent_message_id: Optional[str] = None
|
||||
|
||||
|
||||
class CompletionAppGenerateEntity(EasyUIBasedAppGenerateEntity):
|
||||
@@ -138,6 +139,7 @@ class AgentChatAppGenerateEntity(EasyUIBasedAppGenerateEntity):
|
||||
"""
|
||||
|
||||
conversation_id: Optional[str] = None
|
||||
parent_message_id: Optional[str] = None
|
||||
|
||||
|
||||
class AdvancedChatAppGenerateEntity(AppGenerateEntity):
|
||||
@@ -149,6 +151,7 @@ class AdvancedChatAppGenerateEntity(AppGenerateEntity):
|
||||
app_config: WorkflowUIBasedAppConfig
|
||||
|
||||
conversation_id: Optional[str] = None
|
||||
parent_message_id: Optional[str] = None
|
||||
query: str
|
||||
|
||||
class SingleIterationRunEntity(BaseModel):
|
||||
|
||||
@@ -1,2 +1,2 @@
|
||||
class VariableError(Exception):
|
||||
class VariableError(ValueError):
|
||||
pass
|
||||
|
||||
@@ -248,7 +248,8 @@ class EasyUIBasedGenerateTaskPipeline(BasedGenerateTaskPipeline, MessageCycleMan
|
||||
else:
|
||||
start_listener_time = time.time()
|
||||
yield MessageAudioStreamResponse(audio=audio.audio, task_id=task_id)
|
||||
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
|
||||
if publisher:
|
||||
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
|
||||
|
||||
def _process_stream_response(
|
||||
self, publisher: AppGeneratorTTSPublisher, trace_manager: Optional[TraceQueueManager] = None
|
||||
|
||||
@@ -44,7 +44,6 @@ class DatasetIndexToolCallbackHandler:
|
||||
DocumentSegment.index_node_id == document.metadata["doc_id"]
|
||||
)
|
||||
|
||||
# if 'dataset_id' in document.metadata:
|
||||
if "dataset_id" in document.metadata:
|
||||
query = query.filter(DocumentSegment.dataset_id == document.metadata["dataset_id"])
|
||||
|
||||
@@ -59,7 +58,7 @@ class DatasetIndexToolCallbackHandler:
|
||||
for item in resource:
|
||||
dataset_retriever_resource = DatasetRetrieverResource(
|
||||
message_id=self._message_id,
|
||||
position=item.get("position"),
|
||||
position=item.get("position") or 0,
|
||||
dataset_id=item.get("dataset_id"),
|
||||
dataset_name=item.get("dataset_name"),
|
||||
document_id=item.get("document_id"),
|
||||
|
||||
@@ -5,6 +5,7 @@ from typing import Optional, cast
|
||||
import numpy as np
|
||||
from sqlalchemy.exc import IntegrityError
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.model_entities import ModelPropertyKey
|
||||
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
|
||||
@@ -56,7 +57,9 @@ class CacheEmbedding(Embeddings):
|
||||
for i in range(0, len(embedding_queue_texts), max_chunks):
|
||||
batch_texts = embedding_queue_texts[i : i + max_chunks]
|
||||
|
||||
embedding_result = self._model_instance.invoke_text_embedding(texts=batch_texts, user=self._user)
|
||||
embedding_result = self._model_instance.invoke_text_embedding(
|
||||
texts=batch_texts, user=self._user, input_type=EmbeddingInputType.DOCUMENT
|
||||
)
|
||||
|
||||
for vector in embedding_result.embeddings:
|
||||
try:
|
||||
@@ -100,7 +103,9 @@ class CacheEmbedding(Embeddings):
|
||||
redis_client.expire(embedding_cache_key, 600)
|
||||
return list(np.frombuffer(base64.b64decode(embedding), dtype="float"))
|
||||
try:
|
||||
embedding_result = self._model_instance.invoke_text_embedding(texts=[text], user=self._user)
|
||||
embedding_result = self._model_instance.invoke_text_embedding(
|
||||
texts=[text], user=self._user, input_type=EmbeddingInputType.QUERY
|
||||
)
|
||||
|
||||
embedding_results = embedding_result.embeddings[0]
|
||||
embedding_results = (embedding_results / np.linalg.norm(embedding_results)).tolist()
|
||||
|
||||
10
api/core/embedding/embedding_constant.py
Normal file
10
api/core/embedding/embedding_constant.py
Normal file
@@ -0,0 +1,10 @@
|
||||
from enum import Enum
|
||||
|
||||
|
||||
class EmbeddingInputType(Enum):
|
||||
"""
|
||||
Enum for embedding input type.
|
||||
"""
|
||||
|
||||
DOCUMENT = "document"
|
||||
QUERY = "query"
|
||||
@@ -119,7 +119,7 @@ class ProviderConfiguration(BaseModel):
|
||||
credentials = model_configuration.credentials
|
||||
break
|
||||
|
||||
if self.custom_configuration.provider:
|
||||
if not credentials and self.custom_configuration.provider:
|
||||
credentials = self.custom_configuration.provider.credentials
|
||||
|
||||
return credentials
|
||||
|
||||
@@ -47,6 +47,8 @@ class LLMGenerator:
|
||||
)
|
||||
answer = response.message.content
|
||||
cleaned_answer = re.sub(r"^.*(\{.*\}).*$", r"\1", answer, flags=re.DOTALL)
|
||||
if cleaned_answer is None:
|
||||
return ""
|
||||
result_dict = json.loads(cleaned_answer)
|
||||
answer = result_dict["Your Output"]
|
||||
name = answer.strip()
|
||||
|
||||
@@ -65,7 +65,6 @@ SUGGESTED_QUESTIONS_AFTER_ANSWER_INSTRUCTION_PROMPT = (
|
||||
"Please help me predict the three most likely questions that human would ask, "
|
||||
"and keeping each question under 20 characters.\n"
|
||||
"MAKE SURE your output is the SAME language as the Assistant's latest response"
|
||||
"(if the main response is written in Chinese, then the language of your output must be using Chinese.)!\n"
|
||||
"The output must be an array in JSON format following the specified schema:\n"
|
||||
'["question1","question2","question3"]\n'
|
||||
)
|
||||
|
||||
@@ -11,6 +11,7 @@ from core.model_runtime.entities.message_entities import (
|
||||
TextPromptMessageContent,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.prompt.utils.extract_thread_messages import extract_thread_messages
|
||||
from extensions.ext_database import db
|
||||
from models.model import AppMode, Conversation, Message, MessageFile
|
||||
from models.workflow import WorkflowRun
|
||||
@@ -33,8 +34,17 @@ class TokenBufferMemory:
|
||||
|
||||
# fetch limited messages, and return reversed
|
||||
query = (
|
||||
db.session.query(Message.id, Message.query, Message.answer, Message.created_at, Message.workflow_run_id)
|
||||
.filter(Message.conversation_id == self.conversation.id, Message.answer != "")
|
||||
db.session.query(
|
||||
Message.id,
|
||||
Message.query,
|
||||
Message.answer,
|
||||
Message.created_at,
|
||||
Message.workflow_run_id,
|
||||
Message.parent_message_id,
|
||||
)
|
||||
.filter(
|
||||
Message.conversation_id == self.conversation.id,
|
||||
)
|
||||
.order_by(Message.created_at.desc())
|
||||
)
|
||||
|
||||
@@ -45,7 +55,12 @@ class TokenBufferMemory:
|
||||
|
||||
messages = query.limit(message_limit).all()
|
||||
|
||||
messages = list(reversed(messages))
|
||||
# instead of all messages from the conversation, we only need to extract messages
|
||||
# that belong to the thread of last message
|
||||
thread_messages = extract_thread_messages(messages)
|
||||
thread_messages.pop(0)
|
||||
messages = list(reversed(thread_messages))
|
||||
|
||||
message_file_parser = MessageFileParser(tenant_id=app_record.tenant_id, app_id=app_record.id)
|
||||
prompt_messages = []
|
||||
for message in messages:
|
||||
|
||||
@@ -3,6 +3,7 @@ import os
|
||||
from collections.abc import Callable, Generator, Sequence
|
||||
from typing import IO, Optional, Union, cast
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.provider_configuration import ProviderConfiguration, ProviderModelBundle
|
||||
from core.entities.provider_entities import ModelLoadBalancingConfiguration
|
||||
from core.errors.error import ProviderTokenNotInitError
|
||||
@@ -158,12 +159,15 @@ class ModelInstance:
|
||||
tools=tools,
|
||||
)
|
||||
|
||||
def invoke_text_embedding(self, texts: list[str], user: Optional[str] = None) -> TextEmbeddingResult:
|
||||
def invoke_text_embedding(
|
||||
self, texts: list[str], user: Optional[str] = None, input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT
|
||||
) -> TextEmbeddingResult:
|
||||
"""
|
||||
Invoke large language model
|
||||
|
||||
:param texts: texts to embed
|
||||
:param user: unique user id
|
||||
:param input_type: input type
|
||||
:return: embeddings result
|
||||
"""
|
||||
if not isinstance(self.model_type_instance, TextEmbeddingModel):
|
||||
@@ -176,6 +180,7 @@ class ModelInstance:
|
||||
credentials=self.credentials,
|
||||
texts=texts,
|
||||
user=user,
|
||||
input_type=input_type,
|
||||
)
|
||||
|
||||
def get_text_embedding_num_tokens(self, texts: list[str]) -> int:
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Optional
|
||||
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk
|
||||
@@ -13,7 +14,7 @@ _TEXT_COLOR_MAPPING = {
|
||||
}
|
||||
|
||||
|
||||
class Callback:
|
||||
class Callback(ABC):
|
||||
"""
|
||||
Base class for callbacks.
|
||||
Only for LLM.
|
||||
@@ -21,6 +22,7 @@ class Callback:
|
||||
|
||||
raise_error: bool = False
|
||||
|
||||
@abstractmethod
|
||||
def on_before_invoke(
|
||||
self,
|
||||
llm_instance: AIModel,
|
||||
@@ -48,6 +50,7 @@ class Callback:
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
def on_new_chunk(
|
||||
self,
|
||||
llm_instance: AIModel,
|
||||
@@ -77,6 +80,7 @@ class Callback:
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
def on_after_invoke(
|
||||
self,
|
||||
llm_instance: AIModel,
|
||||
@@ -106,6 +110,7 @@ class Callback:
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
def on_invoke_error(
|
||||
self,
|
||||
llm_instance: AIModel,
|
||||
|
||||
@@ -0,0 +1,310 @@
|
||||
## Custom Integration of Pre-defined Models
|
||||
|
||||
### Introduction
|
||||
|
||||
After completing the vendors integration, the next step is to connect the vendor's models. To illustrate the entire connection process, we will use Xinference as an example to demonstrate a complete vendor integration.
|
||||
|
||||
It is important to note that for custom models, each model connection requires a complete vendor credential.
|
||||
|
||||
Unlike pre-defined models, a custom vendor integration always includes the following two parameters, which do not need to be defined in the vendor YAML file.
|
||||
|
||||

|
||||
|
||||
As mentioned earlier, vendors do not need to implement validate_provider_credential. The runtime will automatically call the corresponding model layer's validate_credentials to validate the credentials based on the model type and name selected by the user.
|
||||
|
||||
### Writing the Vendor YAML
|
||||
|
||||
First, we need to identify the types of models supported by the vendor we are integrating.
|
||||
|
||||
Currently supported model types are as follows:
|
||||
|
||||
- `llm` Text Generation Models
|
||||
|
||||
- `text_embedding` Text Embedding Models
|
||||
|
||||
- `rerank` Rerank Models
|
||||
|
||||
- `speech2text` Speech-to-Text
|
||||
|
||||
- `tts` Text-to-Speech
|
||||
|
||||
- `moderation` Moderation
|
||||
|
||||
Xinference supports LLM, Text Embedding, and Rerank. So we will start by writing xinference.yaml.
|
||||
|
||||
```yaml
|
||||
provider: xinference #Define the vendor identifier
|
||||
label: # Vendor display name, supports both en_US (English) and zh_Hans (Simplified Chinese). If zh_Hans is not set, it will use en_US by default.
|
||||
en_US: Xorbits Inference
|
||||
icon_small: # Small icon, refer to other vendors' icons stored in the _assets directory within the vendor implementation directory; follows the same language policy as the label
|
||||
en_US: icon_s_en.svg
|
||||
icon_large: # Large icon
|
||||
en_US: icon_l_en.svg
|
||||
help: # Help information
|
||||
title:
|
||||
en_US: How to deploy Xinference
|
||||
zh_Hans: 如何部署 Xinference
|
||||
url:
|
||||
en_US: https://github.com/xorbitsai/inference
|
||||
supported_model_types: # Supported model types. Xinference supports LLM, Text Embedding, and Rerank
|
||||
- llm
|
||||
- text-embedding
|
||||
- rerank
|
||||
configurate_methods: # Since Xinference is a locally deployed vendor with no predefined models, users need to deploy whatever models they need according to Xinference documentation. Thus, it only supports custom models.
|
||||
- customizable-model
|
||||
provider_credential_schema:
|
||||
credential_form_schemas:
|
||||
```
|
||||
|
||||
|
||||
Then, we need to determine what credentials are required to define a model in Xinference.
|
||||
|
||||
- Since it supports three different types of models, we need to specify the model_type to denote the model type. Here is how we can define it:
|
||||
|
||||
```yaml
|
||||
provider_credential_schema:
|
||||
credential_form_schemas:
|
||||
- variable: model_type
|
||||
type: select
|
||||
label:
|
||||
en_US: Model type
|
||||
zh_Hans: 模型类型
|
||||
required: true
|
||||
options:
|
||||
- value: text-generation
|
||||
label:
|
||||
en_US: Language Model
|
||||
zh_Hans: 语言模型
|
||||
- value: embeddings
|
||||
label:
|
||||
en_US: Text Embedding
|
||||
- value: reranking
|
||||
label:
|
||||
en_US: Rerank
|
||||
```
|
||||
|
||||
- Next, each model has its own model_name, so we need to define that here:
|
||||
|
||||
```yaml
|
||||
- variable: model_name
|
||||
type: text-input
|
||||
label:
|
||||
en_US: Model name
|
||||
zh_Hans: 模型名称
|
||||
required: true
|
||||
placeholder:
|
||||
zh_Hans: 填写模型名称
|
||||
en_US: Input model name
|
||||
```
|
||||
|
||||
- Specify the Xinference local deployment address:
|
||||
|
||||
```yaml
|
||||
- variable: server_url
|
||||
label:
|
||||
zh_Hans: 服务器URL
|
||||
en_US: Server url
|
||||
type: text-input
|
||||
required: true
|
||||
placeholder:
|
||||
zh_Hans: 在此输入Xinference的服务器地址,如 https://example.com/xxx
|
||||
en_US: Enter the url of your Xinference, for example https://example.com/xxx
|
||||
```
|
||||
|
||||
- Each model has a unique model_uid, so we also need to define that here:
|
||||
|
||||
```yaml
|
||||
- variable: model_uid
|
||||
label:
|
||||
zh_Hans: 模型UID
|
||||
en_US: Model uid
|
||||
type: text-input
|
||||
required: true
|
||||
placeholder:
|
||||
zh_Hans: 在此输入您的Model UID
|
||||
en_US: Enter the model uid
|
||||
```
|
||||
|
||||
Now, we have completed the basic definition of the vendor.
|
||||
|
||||
### Writing the Model Code
|
||||
|
||||
Next, let's take the `llm` type as an example and write `xinference.llm.llm.py`.
|
||||
|
||||
In `llm.py`, create a Xinference LLM class, we name it `XinferenceAILargeLanguageModel` (this can be arbitrary), inheriting from the `__base.large_language_model.LargeLanguageModel` base class, and implement the following methods:
|
||||
|
||||
- LLM Invocation
|
||||
|
||||
Implement the core method for LLM invocation, supporting both stream and synchronous responses.
|
||||
|
||||
```python
|
||||
def _invoke(self, model: str, credentials: dict,
|
||||
prompt_messages: list[PromptMessage], model_parameters: dict,
|
||||
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
|
||||
stream: bool = True, user: Optional[str] = None) \
|
||||
-> Union[LLMResult, Generator]:
|
||||
"""
|
||||
Invoke large language model
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param prompt_messages: prompt messages
|
||||
:param model_parameters: model parameters
|
||||
:param tools: tools for tool usage
|
||||
:param stop: stop words
|
||||
:param stream: is the response a stream
|
||||
:param user: unique user id
|
||||
:return: full response or stream response chunk generator result
|
||||
"""
|
||||
```
|
||||
|
||||
When implementing, ensure to use two functions to return data separately for synchronous and stream responses. This is important because Python treats functions containing the `yield` keyword as generator functions, mandating them to return `Generator` types. Here’s an example (note that the example uses simplified parameters; in real implementation, use the parameter list as defined above):
|
||||
|
||||
```python
|
||||
def _invoke(self, stream: bool, **kwargs) \
|
||||
-> Union[LLMResult, Generator]:
|
||||
if stream:
|
||||
return self._handle_stream_response(**kwargs)
|
||||
return self._handle_sync_response(**kwargs)
|
||||
|
||||
def _handle_stream_response(self, **kwargs) -> Generator:
|
||||
for chunk in response:
|
||||
yield chunk
|
||||
def _handle_sync_response(self, **kwargs) -> LLMResult:
|
||||
return LLMResult(**response)
|
||||
```
|
||||
|
||||
- Pre-compute Input Tokens
|
||||
|
||||
If the model does not provide an interface for pre-computing tokens, you can return 0 directly.
|
||||
|
||||
```python
|
||||
def get_num_tokens(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],tools: Optional[list[PromptMessageTool]] = None) -> int:
|
||||
"""
|
||||
Get number of tokens for given prompt messages
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param prompt_messages: prompt messages
|
||||
:param tools: tools for tool usage
|
||||
:return: token count
|
||||
"""
|
||||
```
|
||||
|
||||
|
||||
Sometimes, you might not want to return 0 directly. In such cases, you can use `self._get_num_tokens_by_gpt2(text: str)` to get pre-computed tokens. This method is provided by the `AIModel` base class, and it uses GPT2's Tokenizer for calculation. However, it should be noted that this is only a substitute and may not be fully accurate.
|
||||
|
||||
- Model Credentials Validation
|
||||
|
||||
Similar to vendor credentials validation, this method validates individual model credentials.
|
||||
|
||||
```python
|
||||
def validate_credentials(self, model: str, credentials: dict) -> None:
|
||||
"""
|
||||
Validate model credentials
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:return: None
|
||||
"""
|
||||
```
|
||||
|
||||
- Model Parameter Schema
|
||||
|
||||
Unlike custom types, since the YAML file does not define which parameters a model supports, we need to dynamically generate the model parameter schema.
|
||||
|
||||
For instance, Xinference supports `max_tokens`, `temperature`, and `top_p` parameters.
|
||||
|
||||
However, some vendors may support different parameters for different models. For example, the `OpenLLM` vendor supports `top_k`, but not all models provided by this vendor support `top_k`. Let's say model A supports `top_k` but model B does not. In such cases, we need to dynamically generate the model parameter schema, as illustrated below:
|
||||
|
||||
```python
|
||||
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
|
||||
"""
|
||||
used to define customizable model schema
|
||||
"""
|
||||
rules = [
|
||||
ParameterRule(
|
||||
name='temperature', type=ParameterType.FLOAT,
|
||||
use_template='temperature',
|
||||
label=I18nObject(
|
||||
zh_Hans='温度', en_US='Temperature'
|
||||
)
|
||||
),
|
||||
ParameterRule(
|
||||
name='top_p', type=ParameterType.FLOAT,
|
||||
use_template='top_p',
|
||||
label=I18nObject(
|
||||
zh_Hans='Top P', en_US='Top P'
|
||||
)
|
||||
),
|
||||
ParameterRule(
|
||||
name='max_tokens', type=ParameterType.INT,
|
||||
use_template='max_tokens',
|
||||
min=1,
|
||||
default=512,
|
||||
label=I18nObject(
|
||||
zh_Hans='最大生成长度', en_US='Max Tokens'
|
||||
)
|
||||
)
|
||||
]
|
||||
|
||||
# if model is A, add top_k to rules
|
||||
if model == 'A':
|
||||
rules.append(
|
||||
ParameterRule(
|
||||
name='top_k', type=ParameterType.INT,
|
||||
use_template='top_k',
|
||||
min=1,
|
||||
default=50,
|
||||
label=I18nObject(
|
||||
zh_Hans='Top K', en_US='Top K'
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
"""
|
||||
some NOT IMPORTANT code here
|
||||
"""
|
||||
|
||||
entity = AIModelEntity(
|
||||
model=model,
|
||||
label=I18nObject(
|
||||
en_US=model
|
||||
),
|
||||
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
|
||||
model_type=model_type,
|
||||
model_properties={
|
||||
ModelPropertyKey.MODE: ModelType.LLM,
|
||||
},
|
||||
parameter_rules=rules
|
||||
)
|
||||
|
||||
return entity
|
||||
```
|
||||
|
||||
- Exception Error Mapping
|
||||
|
||||
When a model invocation error occurs, it should be mapped to the runtime's specified `InvokeError` type, enabling Dify to handle different errors appropriately.
|
||||
|
||||
Runtime Errors:
|
||||
|
||||
- `InvokeConnectionError` Connection error during invocation
|
||||
- `InvokeServerUnavailableError` Service provider unavailable
|
||||
- `InvokeRateLimitError` Rate limit reached
|
||||
- `InvokeAuthorizationError` Authorization failure
|
||||
- `InvokeBadRequestError` Invalid request parameters
|
||||
|
||||
```python
|
||||
@property
|
||||
def _invoke_error_mapping(self) -> dict[type[InvokeError], list[type[Exception]]]:
|
||||
"""
|
||||
Map model invoke error to unified error
|
||||
The key is the error type thrown to the caller
|
||||
The value is the error type thrown by the model,
|
||||
which needs to be converted into a unified error type for the caller.
|
||||
|
||||
:return: Invoke error mapping
|
||||
"""
|
||||
```
|
||||
|
||||
For interface method details, see: [Interfaces](./interfaces.md). For specific implementations, refer to: [llm.py](https://github.com/langgenius/dify-runtime/blob/main/lib/model_providers/anthropic/llm/llm.py).
|
||||
BIN
api/core/model_runtime/docs/en_US/images/index/image-1.png
Normal file
BIN
api/core/model_runtime/docs/en_US/images/index/image-1.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 230 KiB |
BIN
api/core/model_runtime/docs/en_US/images/index/image-2.png
Normal file
BIN
api/core/model_runtime/docs/en_US/images/index/image-2.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 205 KiB |
BIN
api/core/model_runtime/docs/en_US/images/index/image-3.png
Normal file
BIN
api/core/model_runtime/docs/en_US/images/index/image-3.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 44 KiB |
BIN
api/core/model_runtime/docs/en_US/images/index/image.png
Normal file
BIN
api/core/model_runtime/docs/en_US/images/index/image.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 262 KiB |
173
api/core/model_runtime/docs/en_US/predefined_model_scale_out.md
Normal file
173
api/core/model_runtime/docs/en_US/predefined_model_scale_out.md
Normal file
@@ -0,0 +1,173 @@
|
||||
## Predefined Model Integration
|
||||
|
||||
After completing the vendor integration, the next step is to integrate the models from the vendor.
|
||||
|
||||
First, we need to determine the type of model to be integrated and create the corresponding model type `module` under the respective vendor's directory.
|
||||
|
||||
Currently supported model types are:
|
||||
|
||||
- `llm` Text Generation Model
|
||||
- `text_embedding` Text Embedding Model
|
||||
- `rerank` Rerank Model
|
||||
- `speech2text` Speech-to-Text
|
||||
- `tts` Text-to-Speech
|
||||
- `moderation` Moderation
|
||||
|
||||
Continuing with `Anthropic` as an example, `Anthropic` only supports LLM, so create a `module` named `llm` under `model_providers.anthropic`.
|
||||
|
||||
For predefined models, we first need to create a YAML file named after the model under the `llm` `module`, such as `claude-2.1.yaml`.
|
||||
|
||||
### Prepare Model YAML
|
||||
|
||||
```yaml
|
||||
model: claude-2.1 # Model identifier
|
||||
# Display name of the model, which can be set to en_US English or zh_Hans Chinese. If zh_Hans is not set, it will default to en_US.
|
||||
# This can also be omitted, in which case the model identifier will be used as the label
|
||||
label:
|
||||
en_US: claude-2.1
|
||||
model_type: llm # Model type, claude-2.1 is an LLM
|
||||
features: # Supported features, agent-thought supports Agent reasoning, vision supports image understanding
|
||||
- agent-thought
|
||||
model_properties: # Model properties
|
||||
mode: chat # LLM mode, complete for text completion models, chat for conversation models
|
||||
context_size: 200000 # Maximum context size
|
||||
parameter_rules: # Parameter rules for the model call; only LLM requires this
|
||||
- name: temperature # Parameter variable name
|
||||
# Five default configuration templates are provided: temperature/top_p/max_tokens/presence_penalty/frequency_penalty
|
||||
# The template variable name can be set directly in use_template, which will use the default configuration in entities.defaults.PARAMETER_RULE_TEMPLATE
|
||||
# Additional configuration parameters will override the default configuration if set
|
||||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label: # Display name of the parameter
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int # Parameter type, supports float/int/string/boolean
|
||||
help: # Help information, describing the parameter's function
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false # Whether the parameter is mandatory; can be omitted
|
||||
- name: max_tokens_to_sample
|
||||
use_template: max_tokens
|
||||
default: 4096 # Default value of the parameter
|
||||
min: 1 # Minimum value of the parameter, applicable to float/int only
|
||||
max: 4096 # Maximum value of the parameter, applicable to float/int only
|
||||
pricing: # Pricing information
|
||||
input: '8.00' # Input unit price, i.e., prompt price
|
||||
output: '24.00' # Output unit price, i.e., response content price
|
||||
unit: '0.000001' # Price unit, meaning the above prices are per 100K
|
||||
currency: USD # Price currency
|
||||
```
|
||||
|
||||
It is recommended to prepare all model configurations before starting the implementation of the model code.
|
||||
|
||||
You can also refer to the YAML configuration information under the corresponding model type directories of other vendors in the `model_providers` directory. For the complete YAML rules, refer to: [Schema](schema.md#aimodelentity).
|
||||
|
||||
### Implement the Model Call Code
|
||||
|
||||
Next, create a Python file named `llm.py` under the `llm` `module` to write the implementation code.
|
||||
|
||||
Create an Anthropic LLM class named `AnthropicLargeLanguageModel` (or any other name), inheriting from the `__base.large_language_model.LargeLanguageModel` base class, and implement the following methods:
|
||||
|
||||
- LLM Call
|
||||
|
||||
Implement the core method for calling the LLM, supporting both streaming and synchronous responses.
|
||||
|
||||
```python
|
||||
def _invoke(self, model: str, credentials: dict,
|
||||
prompt_messages: list[PromptMessage], model_parameters: dict,
|
||||
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
|
||||
stream: bool = True, user: Optional[str] = None) \
|
||||
-> Union[LLMResult, Generator]:
|
||||
"""
|
||||
Invoke large language model
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param prompt_messages: prompt messages
|
||||
:param model_parameters: model parameters
|
||||
:param tools: tools for tool calling
|
||||
:param stop: stop words
|
||||
:param stream: is stream response
|
||||
:param user: unique user id
|
||||
:return: full response or stream response chunk generator result
|
||||
"""
|
||||
```
|
||||
|
||||
Ensure to use two functions for returning data, one for synchronous returns and the other for streaming returns, because Python identifies functions containing the `yield` keyword as generator functions, fixing the return type to `Generator`. Thus, synchronous and streaming returns need to be implemented separately, as shown below (note that the example uses simplified parameters, for actual implementation follow the above parameter list):
|
||||
|
||||
```python
|
||||
def _invoke(self, stream: bool, **kwargs) \
|
||||
-> Union[LLMResult, Generator]:
|
||||
if stream:
|
||||
return self._handle_stream_response(**kwargs)
|
||||
return self._handle_sync_response(**kwargs)
|
||||
|
||||
def _handle_stream_response(self, **kwargs) -> Generator:
|
||||
for chunk in response:
|
||||
yield chunk
|
||||
def _handle_sync_response(self, **kwargs) -> LLMResult:
|
||||
return LLMResult(**response)
|
||||
```
|
||||
|
||||
- Pre-compute Input Tokens
|
||||
|
||||
If the model does not provide an interface to precompute tokens, return 0 directly.
|
||||
|
||||
```python
|
||||
def get_num_tokens(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],
|
||||
tools: Optional[list[PromptMessageTool]] = None) -> int:
|
||||
"""
|
||||
Get number of tokens for given prompt messages
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param prompt_messages: prompt messages
|
||||
:param tools: tools for tool calling
|
||||
:return:
|
||||
"""
|
||||
```
|
||||
|
||||
- Validate Model Credentials
|
||||
|
||||
Similar to vendor credential validation, but specific to a single model.
|
||||
|
||||
```python
|
||||
def validate_credentials(self, model: str, credentials: dict) -> None:
|
||||
"""
|
||||
Validate model credentials
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:return:
|
||||
"""
|
||||
```
|
||||
|
||||
- Map Invoke Errors
|
||||
|
||||
When a model call fails, map it to a specific `InvokeError` type as required by Runtime, allowing Dify to handle different errors accordingly.
|
||||
|
||||
Runtime Errors:
|
||||
|
||||
- `InvokeConnectionError` Connection error
|
||||
|
||||
- `InvokeServerUnavailableError` Service provider unavailable
|
||||
- `InvokeRateLimitError` Rate limit reached
|
||||
- `InvokeAuthorizationError` Authorization failed
|
||||
- `InvokeBadRequestError` Parameter error
|
||||
|
||||
```python
|
||||
@property
|
||||
def _invoke_error_mapping(self) -> dict[type[InvokeError], list[type[Exception]]]:
|
||||
"""
|
||||
Map model invoke error to unified error
|
||||
The key is the error type thrown to the caller
|
||||
The value is the error type thrown by the model,
|
||||
which needs to be converted into a unified error type for the caller.
|
||||
|
||||
:return: Invoke error mapping
|
||||
"""
|
||||
```
|
||||
|
||||
For interface method explanations, see: [Interfaces](./interfaces.md). For detailed implementation, refer to: [llm.py](https://github.com/langgenius/dify-runtime/blob/main/lib/model_providers/anthropic/llm/llm.py).
|
||||
@@ -58,7 +58,7 @@ provider_credential_schema: # Provider credential rules, as Anthropic only supp
|
||||
en_US: Enter your API URL
|
||||
```
|
||||
|
||||
You can also refer to the YAML configuration information under other provider directories in `model_providers`. The complete YAML rules are available at: [Schema](schema.md#Provider).
|
||||
You can also refer to the YAML configuration information under other provider directories in `model_providers`. The complete YAML rules are available at: [Schema](schema.md#provider).
|
||||
|
||||
### Implementing Provider Code
|
||||
|
||||
|
||||
@@ -62,7 +62,7 @@ pricing: # 价格信息
|
||||
|
||||
建议将所有模型配置都准备完毕后再开始模型代码的实现。
|
||||
|
||||
同样,也可以参考 `model_providers` 目录下其他供应商对应模型类型目录下的 YAML 配置信息,完整的 YAML 规则见:[Schema](schema.md#AIModel)。
|
||||
同样,也可以参考 `model_providers` 目录下其他供应商对应模型类型目录下的 YAML 配置信息,完整的 YAML 规则见:[Schema](schema.md#aimodelentity)。
|
||||
|
||||
### 实现模型调用代码
|
||||
|
||||
|
||||
@@ -117,7 +117,7 @@ model_credential_schema:
|
||||
en_US: Enter your API Base
|
||||
```
|
||||
|
||||
也可以参考 `model_providers` 目录下其他供应商目录下的 YAML 配置信息,完整的 YAML 规则见:[Schema](schema.md#Provider)。
|
||||
也可以参考 `model_providers` 目录下其他供应商目录下的 YAML 配置信息,完整的 YAML 规则见:[Schema](schema.md#provider)。
|
||||
|
||||
#### 实现供应商代码
|
||||
|
||||
|
||||
@@ -4,6 +4,7 @@ from typing import Optional
|
||||
|
||||
from pydantic import ConfigDict
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import ModelPropertyKey, ModelType
|
||||
from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult
|
||||
from core.model_runtime.model_providers.__base.ai_model import AIModel
|
||||
@@ -20,35 +21,47 @@ class TextEmbeddingModel(AIModel):
|
||||
model_config = ConfigDict(protected_namespaces=())
|
||||
|
||||
def invoke(
|
||||
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
|
||||
self,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
texts: list[str],
|
||||
user: Optional[str] = None,
|
||||
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
|
||||
) -> TextEmbeddingResult:
|
||||
"""
|
||||
Invoke large language model
|
||||
Invoke text embedding model
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param texts: texts to embed
|
||||
:param user: unique user id
|
||||
:param input_type: input type
|
||||
:return: embeddings result
|
||||
"""
|
||||
self.started_at = time.perf_counter()
|
||||
|
||||
try:
|
||||
return self._invoke(model, credentials, texts, user)
|
||||
return self._invoke(model, credentials, texts, user, input_type)
|
||||
except Exception as e:
|
||||
raise self._transform_invoke_error(e)
|
||||
|
||||
@abstractmethod
|
||||
def _invoke(
|
||||
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
|
||||
self,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
texts: list[str],
|
||||
user: Optional[str] = None,
|
||||
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
|
||||
) -> TextEmbeddingResult:
|
||||
"""
|
||||
Invoke large language model
|
||||
Invoke text embedding model
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param texts: texts to embed
|
||||
:param user: unique user id
|
||||
:param input_type: input type
|
||||
:return: embeddings result
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@@ -37,3 +37,7 @@
|
||||
- siliconflow
|
||||
- perfxcloud
|
||||
- zhinao
|
||||
- fireworks
|
||||
- mixedbread
|
||||
- nomic
|
||||
- voyage
|
||||
|
||||
@@ -7,6 +7,7 @@ import numpy as np
|
||||
import tiktoken
|
||||
from openai import AzureOpenAI
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity, PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
@@ -17,8 +18,23 @@ from core.model_runtime.model_providers.azure_openai._constant import EMBEDDING_
|
||||
|
||||
class AzureOpenAITextEmbeddingModel(_CommonAzureOpenAI, TextEmbeddingModel):
|
||||
def _invoke(
|
||||
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
|
||||
self,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
texts: list[str],
|
||||
user: Optional[str] = None,
|
||||
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
|
||||
) -> TextEmbeddingResult:
|
||||
"""
|
||||
Invoke text embedding model
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param texts: texts to embed
|
||||
:param user: unique user id
|
||||
:param input_type: input type
|
||||
:return: embeddings result
|
||||
"""
|
||||
base_model_name = credentials["base_model_name"]
|
||||
credentials_kwargs = self._to_credential_kwargs(credentials)
|
||||
client = AzureOpenAI(**credentials_kwargs)
|
||||
|
||||
@@ -4,6 +4,7 @@ from typing import Optional
|
||||
|
||||
from requests import post
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.invoke import (
|
||||
@@ -35,7 +36,12 @@ class BaichuanTextEmbeddingModel(TextEmbeddingModel):
|
||||
api_base: str = "http://api.baichuan-ai.com/v1/embeddings"
|
||||
|
||||
def _invoke(
|
||||
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
|
||||
self,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
texts: list[str],
|
||||
user: Optional[str] = None,
|
||||
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
|
||||
) -> TextEmbeddingResult:
|
||||
"""
|
||||
Invoke text embedding model
|
||||
@@ -44,6 +50,7 @@ class BaichuanTextEmbeddingModel(TextEmbeddingModel):
|
||||
:param credentials: model credentials
|
||||
:param texts: texts to embed
|
||||
:param user: unique user id
|
||||
:param input_type: input type
|
||||
:return: embeddings result
|
||||
"""
|
||||
api_key = credentials["api_key"]
|
||||
|
||||
@@ -50,34 +50,62 @@ provider_credential_schema:
|
||||
label:
|
||||
en_US: US East (N. Virginia)
|
||||
zh_Hans: 美国东部 (弗吉尼亚北部)
|
||||
- value: us-east-2
|
||||
label:
|
||||
en_US: US East (Ohio)
|
||||
zh_Hans: 美国东部 (弗吉尼亚北部)
|
||||
- value: us-west-2
|
||||
label:
|
||||
en_US: US West (Oregon)
|
||||
zh_Hans: 美国西部 (俄勒冈州)
|
||||
- value: ap-south-1
|
||||
label:
|
||||
en_US: Asia Pacific (Mumbai)
|
||||
zh_Hans: 亚太地区(孟买)
|
||||
- value: ap-southeast-1
|
||||
label:
|
||||
en_US: Asia Pacific (Singapore)
|
||||
zh_Hans: 亚太地区 (新加坡)
|
||||
- value: ap-northeast-1
|
||||
label:
|
||||
en_US: Asia Pacific (Tokyo)
|
||||
zh_Hans: 亚太地区 (东京)
|
||||
- value: eu-central-1
|
||||
label:
|
||||
en_US: Europe (Frankfurt)
|
||||
zh_Hans: 欧洲 (法兰克福)
|
||||
- value: eu-west-2
|
||||
label:
|
||||
en_US: Eu west London (London)
|
||||
zh_Hans: 欧洲西部 (伦敦)
|
||||
- value: us-gov-west-1
|
||||
label:
|
||||
en_US: AWS GovCloud (US-West)
|
||||
zh_Hans: AWS GovCloud (US-West)
|
||||
- value: ap-southeast-2
|
||||
label:
|
||||
en_US: Asia Pacific (Sydney)
|
||||
zh_Hans: 亚太地区 (悉尼)
|
||||
- value: ap-northeast-1
|
||||
label:
|
||||
en_US: Asia Pacific (Tokyo)
|
||||
zh_Hans: 亚太地区 (东京)
|
||||
- value: ap-northeast-2
|
||||
label:
|
||||
en_US: Asia Pacific (Seoul)
|
||||
zh_Hans: 亚太地区(首尔)
|
||||
- value: ca-central-1
|
||||
label:
|
||||
en_US: Canada (Central)
|
||||
zh_Hans: 加拿大(中部)
|
||||
- value: eu-central-1
|
||||
label:
|
||||
en_US: Europe (Frankfurt)
|
||||
zh_Hans: 欧洲 (法兰克福)
|
||||
- value: eu-west-1
|
||||
label:
|
||||
en_US: Europe (Ireland)
|
||||
zh_Hans: 欧洲(爱尔兰)
|
||||
- value: eu-west-2
|
||||
label:
|
||||
en_US: Europe (London)
|
||||
zh_Hans: 欧洲西部 (伦敦)
|
||||
- value: eu-west-3
|
||||
label:
|
||||
en_US: Europe (Paris)
|
||||
zh_Hans: 欧洲(巴黎)
|
||||
- value: sa-east-1
|
||||
label:
|
||||
en_US: South America (São Paulo)
|
||||
zh_Hans: 南美洲(圣保罗)
|
||||
- value: us-gov-west-1
|
||||
label:
|
||||
en_US: AWS GovCloud (US-West)
|
||||
zh_Hans: AWS GovCloud (US-West)
|
||||
- variable: model_for_validation
|
||||
required: false
|
||||
label:
|
||||
|
||||
@@ -6,6 +6,8 @@
|
||||
- anthropic.claude-v2:1
|
||||
- anthropic.claude-3-sonnet-v1:0
|
||||
- anthropic.claude-3-haiku-v1:0
|
||||
- ai21.jamba-1-5-large-v1:0
|
||||
- ai21.jamba-1-5-mini-v1:0
|
||||
- cohere.command-light-text-v14
|
||||
- cohere.command-text-v14
|
||||
- cohere.command-r-plus-v1.0
|
||||
@@ -15,6 +17,10 @@
|
||||
- meta.llama3-1-405b-instruct-v1:0
|
||||
- meta.llama3-8b-instruct-v1:0
|
||||
- meta.llama3-70b-instruct-v1:0
|
||||
- us.meta.llama3-2-1b-instruct-v1:0
|
||||
- us.meta.llama3-2-3b-instruct-v1:0
|
||||
- us.meta.llama3-2-11b-instruct-v1:0
|
||||
- us.meta.llama3-2-90b-instruct-v1:0
|
||||
- meta.llama2-13b-chat-v1
|
||||
- meta.llama2-70b-chat-v1
|
||||
- mistral.mistral-large-2407-v1:0
|
||||
|
||||
@@ -0,0 +1,26 @@
|
||||
model: ai21.jamba-1-5-large-v1:0
|
||||
label:
|
||||
en_US: Jamba 1.5 Large
|
||||
model_type: llm
|
||||
model_properties:
|
||||
mode: completion
|
||||
context_size: 256000
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
default: 1
|
||||
min: 0.0
|
||||
max: 2.0
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: max_gen_len
|
||||
use_template: max_tokens
|
||||
required: true
|
||||
default: 4096
|
||||
min: 1
|
||||
max: 4096
|
||||
pricing:
|
||||
input: '0.002'
|
||||
output: '0.008'
|
||||
unit: '0.001'
|
||||
currency: USD
|
||||
@@ -0,0 +1,26 @@
|
||||
model: ai21.jamba-1-5-mini-v1:0
|
||||
label:
|
||||
en_US: Jamba 1.5 Mini
|
||||
model_type: llm
|
||||
model_properties:
|
||||
mode: completion
|
||||
context_size: 256000
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
default: 1
|
||||
min: 0.0
|
||||
max: 2.0
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: max_gen_len
|
||||
use_template: max_tokens
|
||||
required: true
|
||||
default: 4096
|
||||
min: 1
|
||||
max: 4096
|
||||
pricing:
|
||||
input: '0.0002'
|
||||
output: '0.0004'
|
||||
unit: '0.001'
|
||||
currency: USD
|
||||
@@ -63,6 +63,7 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
||||
{"prefix": "us.anthropic.claude-3", "support_system_prompts": True, "support_tool_use": True},
|
||||
{"prefix": "eu.anthropic.claude-3", "support_system_prompts": True, "support_tool_use": True},
|
||||
{"prefix": "anthropic.claude-3", "support_system_prompts": True, "support_tool_use": True},
|
||||
{"prefix": "us.meta.llama3-2", "support_system_prompts": True, "support_tool_use": True},
|
||||
{"prefix": "meta.llama", "support_system_prompts": True, "support_tool_use": False},
|
||||
{"prefix": "mistral.mistral-7b-instruct", "support_system_prompts": False, "support_tool_use": False},
|
||||
{"prefix": "mistral.mixtral-8x7b-instruct", "support_system_prompts": False, "support_tool_use": False},
|
||||
@@ -70,6 +71,7 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
||||
{"prefix": "mistral.mistral-small", "support_system_prompts": True, "support_tool_use": True},
|
||||
{"prefix": "cohere.command-r", "support_system_prompts": True, "support_tool_use": True},
|
||||
{"prefix": "amazon.titan", "support_system_prompts": False, "support_tool_use": False},
|
||||
{"prefix": "ai21.jamba-1-5", "support_system_prompts": True, "support_tool_use": False},
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user