mirror of
https://github.com/langgenius/dify.git
synced 2026-01-20 05:54:02 +00:00
Compare commits
79 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
9f637ead38 | ||
|
|
b521aafd26 | ||
|
|
a84e15b8cc | ||
|
|
0c330fc020 | ||
|
|
cfbb7bec58 | ||
|
|
3b357f51a6 | ||
|
|
09acf215f0 | ||
|
|
07dd8b94ed | ||
|
|
ef308fd121 | ||
|
|
fce64d760b | ||
|
|
f0c9bb7c91 | ||
|
|
d8672796b0 | ||
|
|
5929e84036 | ||
|
|
83063532a0 | ||
|
|
07279558a5 | ||
|
|
2166473852 | ||
|
|
44397e3062 | ||
|
|
883a0a0e6a | ||
|
|
b5ed81b349 | ||
|
|
625b0afa52 | ||
|
|
2660fbaa20 | ||
|
|
9e37702d24 | ||
|
|
bc11c6a7f2 | ||
|
|
10e9766fd3 | ||
|
|
6d24a2cb87 | ||
|
|
0a4dfaeaf9 | ||
|
|
c0a4fd145c | ||
|
|
70f16e1a0b | ||
|
|
cb27571e9f | ||
|
|
0518da5819 | ||
|
|
d2797abdb4 | ||
|
|
bf3ee660e0 | ||
|
|
68406b9906 | ||
|
|
6f7fd6613a | ||
|
|
6d5b386394 | ||
|
|
1ea18a2922 | ||
|
|
f8f4b961a1 | ||
|
|
57565db531 | ||
|
|
d844420c07 | ||
|
|
34634bddf1 | ||
|
|
c97b7f6748 | ||
|
|
76cc19f525 | ||
|
|
5baaebb3fd | ||
|
|
9d072920da | ||
|
|
965ca36525 | ||
|
|
b4988ce20c | ||
|
|
d3d617239f | ||
|
|
6c3b34a61d | ||
|
|
d76d1adb59 | ||
|
|
cadc6b171e | ||
|
|
fdae2a20ae | ||
|
|
45701a81e9 | ||
|
|
409e0c8e1c | ||
|
|
7076d41b29 | ||
|
|
5a6cb69951 | ||
|
|
11a75ee78a | ||
|
|
b9b692d71d | ||
|
|
d8f8afcbd0 | ||
|
|
8cb62ef31a | ||
|
|
bb5d5fc683 | ||
|
|
2fc0dcc10a | ||
|
|
9fd55157d6 | ||
|
|
6c384dba71 | ||
|
|
9730297381 | ||
|
|
99e80a8ed0 | ||
|
|
26fef2d481 | ||
|
|
c9e65f4221 | ||
|
|
20bd33fada | ||
|
|
bd0af2e921 | ||
|
|
4ab66299d4 | ||
|
|
42227f93c0 | ||
|
|
89fcf4ea7c | ||
|
|
3322710dac | ||
|
|
404bf11d8c | ||
|
|
60a2ecbd17 | ||
|
|
828822243a | ||
|
|
2068ae215e | ||
|
|
d4262ecceb | ||
|
|
8be7d8a635 |
@@ -30,7 +30,7 @@ from flask import Flask, Response, request
|
||||
from flask_cors import CORS
|
||||
from libs.passport import PassportService
|
||||
# DO NOT REMOVE BELOW
|
||||
from models import account, dataset, model, source, task, tool, web, tools
|
||||
from models import account, dataset, model, source, task, tool, tools, web
|
||||
from services.account_service import AccountService
|
||||
|
||||
# DO NOT REMOVE ABOVE
|
||||
|
||||
630
api/commands.py
630
api/commands.py
@@ -1,32 +1,20 @@
|
||||
import base64
|
||||
import datetime
|
||||
import json
|
||||
import math
|
||||
import random
|
||||
import secrets
|
||||
import string
|
||||
import threading
|
||||
import time
|
||||
import uuid
|
||||
|
||||
import click
|
||||
import qdrant_client
|
||||
from constants.languages import user_input_form_template
|
||||
from core.embedding.cached_embedding import CacheEmbedding
|
||||
from core.index.index import IndexBuilder
|
||||
from core.model_manager import ModelManager
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from extensions.ext_database import db
|
||||
from flask import Flask, current_app
|
||||
from flask import current_app
|
||||
from libs.helper import email as email_validate
|
||||
from libs.password import hash_password, password_pattern, valid_password
|
||||
from libs.rsa import generate_key_pair
|
||||
from models.account import InvitationCode, Tenant, TenantAccountJoin
|
||||
from models.dataset import Dataset, DatasetCollectionBinding, DatasetQuery, Document
|
||||
from models.model import Account, App, AppModelConfig, Message, MessageAnnotation, InstalledApp
|
||||
from models.provider import Provider, ProviderModel, ProviderQuotaType, ProviderType
|
||||
from qdrant_client.http.models import TextIndexParams, TextIndexType, TokenizerType
|
||||
from tqdm import tqdm
|
||||
from models.account import Tenant
|
||||
from models.dataset import Dataset
|
||||
from models.model import Account
|
||||
from models.provider import Provider, ProviderModel
|
||||
from werkzeug.exceptions import NotFound
|
||||
|
||||
|
||||
@@ -35,15 +23,22 @@ from werkzeug.exceptions import NotFound
|
||||
@click.option('--new-password', prompt=True, help='the new password.')
|
||||
@click.option('--password-confirm', prompt=True, help='the new password confirm.')
|
||||
def reset_password(email, new_password, password_confirm):
|
||||
"""
|
||||
Reset password of owner account
|
||||
Only available in SELF_HOSTED mode
|
||||
"""
|
||||
if str(new_password).strip() != str(password_confirm).strip():
|
||||
click.echo(click.style('sorry. The two passwords do not match.', fg='red'))
|
||||
return
|
||||
|
||||
account = db.session.query(Account). \
|
||||
filter(Account.email == email). \
|
||||
one_or_none()
|
||||
|
||||
if not account:
|
||||
click.echo(click.style('sorry. the account: [{}] not exist .'.format(email), fg='red'))
|
||||
return
|
||||
|
||||
try:
|
||||
valid_password(new_password)
|
||||
except:
|
||||
@@ -69,15 +64,22 @@ def reset_password(email, new_password, password_confirm):
|
||||
@click.option('--new-email', prompt=True, help='the new email.')
|
||||
@click.option('--email-confirm', prompt=True, help='the new email confirm.')
|
||||
def reset_email(email, new_email, email_confirm):
|
||||
"""
|
||||
Replace account email
|
||||
:return:
|
||||
"""
|
||||
if str(new_email).strip() != str(email_confirm).strip():
|
||||
click.echo(click.style('Sorry, new email and confirm email do not match.', fg='red'))
|
||||
return
|
||||
|
||||
account = db.session.query(Account). \
|
||||
filter(Account.email == email). \
|
||||
one_or_none()
|
||||
|
||||
if not account:
|
||||
click.echo(click.style('sorry. the account: [{}] not exist .'.format(email), fg='red'))
|
||||
return
|
||||
|
||||
try:
|
||||
email_validate(new_email)
|
||||
except:
|
||||
@@ -97,6 +99,11 @@ def reset_email(email, new_email, email_confirm):
|
||||
@click.confirmation_option(prompt=click.style('Are you sure you want to reset encrypt key pair?'
|
||||
' this operation cannot be rolled back!', fg='red'))
|
||||
def reset_encrypt_key_pair():
|
||||
"""
|
||||
Reset the encrypted key pair of workspace for encrypt LLM credentials.
|
||||
After the reset, all LLM credentials will become invalid, requiring re-entry.
|
||||
Only support SELF_HOSTED mode.
|
||||
"""
|
||||
if current_app.config['EDITION'] != 'SELF_HOSTED':
|
||||
click.echo(click.style('Sorry, only support SELF_HOSTED mode.', fg='red'))
|
||||
return
|
||||
@@ -116,201 +123,11 @@ def reset_encrypt_key_pair():
|
||||
'the asymmetric key pair of workspace {} has been reset.'.format(tenant.id), fg='green'))
|
||||
|
||||
|
||||
@click.command('generate-invitation-codes', help='Generate invitation codes.')
|
||||
@click.option('--batch', help='The batch of invitation codes.')
|
||||
@click.option('--count', prompt=True, help='Invitation codes count.')
|
||||
def generate_invitation_codes(batch, count):
|
||||
if not batch:
|
||||
now = datetime.datetime.now()
|
||||
batch = now.strftime('%Y%m%d%H%M%S')
|
||||
|
||||
if not count or int(count) <= 0:
|
||||
click.echo(click.style('sorry. the count must be greater than 0.', fg='red'))
|
||||
return
|
||||
|
||||
count = int(count)
|
||||
|
||||
click.echo('Start generate {} invitation codes for batch {}.'.format(count, batch))
|
||||
|
||||
codes = ''
|
||||
for i in range(count):
|
||||
code = generate_invitation_code()
|
||||
invitation_code = InvitationCode(
|
||||
code=code,
|
||||
batch=batch
|
||||
)
|
||||
db.session.add(invitation_code)
|
||||
click.echo(code)
|
||||
|
||||
codes += code + "\n"
|
||||
db.session.commit()
|
||||
|
||||
filename = 'storage/invitation-codes-{}.txt'.format(batch)
|
||||
|
||||
with open(filename, 'w') as f:
|
||||
f.write(codes)
|
||||
|
||||
click.echo(click.style(
|
||||
'Congratulations! Generated {} invitation codes for batch {} and saved to the file \'{}\''.format(count, batch,
|
||||
filename),
|
||||
fg='green'))
|
||||
|
||||
|
||||
def generate_invitation_code():
|
||||
code = generate_upper_string()
|
||||
while db.session.query(InvitationCode).filter(InvitationCode.code == code).count() > 0:
|
||||
code = generate_upper_string()
|
||||
|
||||
return code
|
||||
|
||||
|
||||
def generate_upper_string():
|
||||
letters_digits = string.ascii_uppercase + string.digits
|
||||
result = ""
|
||||
for i in range(8):
|
||||
result += random.choice(letters_digits)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
@click.command('recreate-all-dataset-indexes', help='Recreate all dataset indexes.')
|
||||
def recreate_all_dataset_indexes():
|
||||
click.echo(click.style('Start recreate all dataset indexes.', fg='green'))
|
||||
recreate_count = 0
|
||||
|
||||
page = 1
|
||||
while True:
|
||||
try:
|
||||
datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \
|
||||
.order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
|
||||
except NotFound:
|
||||
break
|
||||
|
||||
page += 1
|
||||
for dataset in datasets:
|
||||
try:
|
||||
click.echo('Recreating dataset index: {}'.format(dataset.id))
|
||||
index = IndexBuilder.get_index(dataset, 'high_quality')
|
||||
if index and index._is_origin():
|
||||
index.recreate_dataset(dataset)
|
||||
recreate_count += 1
|
||||
else:
|
||||
click.echo('passed.')
|
||||
except Exception as e:
|
||||
click.echo(
|
||||
click.style('Recreate dataset index error: {} {}'.format(e.__class__.__name__, str(e)), fg='red'))
|
||||
continue
|
||||
|
||||
click.echo(click.style('Congratulations! Recreate {} dataset indexes.'.format(recreate_count), fg='green'))
|
||||
|
||||
|
||||
@click.command('clean-unused-dataset-indexes', help='Clean unused dataset indexes.')
|
||||
def clean_unused_dataset_indexes():
|
||||
click.echo(click.style('Start clean unused dataset indexes.', fg='green'))
|
||||
clean_days = int(current_app.config.get('CLEAN_DAY_SETTING'))
|
||||
start_at = time.perf_counter()
|
||||
thirty_days_ago = datetime.datetime.now() - datetime.timedelta(days=clean_days)
|
||||
page = 1
|
||||
while True:
|
||||
try:
|
||||
datasets = db.session.query(Dataset).filter(Dataset.created_at < thirty_days_ago) \
|
||||
.order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
|
||||
except NotFound:
|
||||
break
|
||||
page += 1
|
||||
for dataset in datasets:
|
||||
dataset_query = db.session.query(DatasetQuery).filter(
|
||||
DatasetQuery.created_at > thirty_days_ago,
|
||||
DatasetQuery.dataset_id == dataset.id
|
||||
).all()
|
||||
if not dataset_query or len(dataset_query) == 0:
|
||||
documents = db.session.query(Document).filter(
|
||||
Document.dataset_id == dataset.id,
|
||||
Document.indexing_status == 'completed',
|
||||
Document.enabled == True,
|
||||
Document.archived == False,
|
||||
Document.updated_at > thirty_days_ago
|
||||
).all()
|
||||
if not documents or len(documents) == 0:
|
||||
try:
|
||||
# remove index
|
||||
vector_index = IndexBuilder.get_index(dataset, 'high_quality')
|
||||
kw_index = IndexBuilder.get_index(dataset, 'economy')
|
||||
# delete from vector index
|
||||
if vector_index:
|
||||
if dataset.collection_binding_id:
|
||||
vector_index.delete_by_group_id(dataset.id)
|
||||
else:
|
||||
if dataset.collection_binding_id:
|
||||
vector_index.delete_by_group_id(dataset.id)
|
||||
else:
|
||||
vector_index.delete()
|
||||
kw_index.delete()
|
||||
# update document
|
||||
update_params = {
|
||||
Document.enabled: False
|
||||
}
|
||||
|
||||
Document.query.filter_by(dataset_id=dataset.id).update(update_params)
|
||||
db.session.commit()
|
||||
click.echo(click.style('Cleaned unused dataset {} from db success!'.format(dataset.id),
|
||||
fg='green'))
|
||||
except Exception as e:
|
||||
click.echo(
|
||||
click.style('clean dataset index error: {} {}'.format(e.__class__.__name__, str(e)),
|
||||
fg='red'))
|
||||
end_at = time.perf_counter()
|
||||
click.echo(click.style('Cleaned unused dataset from db success latency: {}'.format(end_at - start_at), fg='green'))
|
||||
|
||||
|
||||
@click.command('sync-anthropic-hosted-providers', help='Sync anthropic hosted providers.')
|
||||
def sync_anthropic_hosted_providers():
|
||||
if not hosted_model_providers.anthropic:
|
||||
click.echo(click.style('Anthropic hosted provider is not configured.', fg='red'))
|
||||
return
|
||||
|
||||
click.echo(click.style('Start sync anthropic hosted providers.', fg='green'))
|
||||
count = 0
|
||||
|
||||
new_quota_limit = hosted_model_providers.anthropic.quota_limit
|
||||
|
||||
page = 1
|
||||
while True:
|
||||
try:
|
||||
providers = db.session.query(Provider).filter(
|
||||
Provider.provider_name == 'anthropic',
|
||||
Provider.provider_type == ProviderType.SYSTEM.value,
|
||||
Provider.quota_type == ProviderQuotaType.TRIAL.value,
|
||||
Provider.quota_limit != new_quota_limit
|
||||
).order_by(Provider.created_at.desc()).paginate(page=page, per_page=100)
|
||||
except NotFound:
|
||||
break
|
||||
|
||||
page += 1
|
||||
for provider in providers:
|
||||
try:
|
||||
click.echo('Syncing tenant anthropic hosted provider: {}, origin: limit {}, used {}'
|
||||
.format(provider.tenant_id, provider.quota_limit, provider.quota_used))
|
||||
original_quota_limit = provider.quota_limit
|
||||
division = math.ceil(new_quota_limit / 1000)
|
||||
|
||||
provider.quota_limit = new_quota_limit if original_quota_limit == 1000 \
|
||||
else original_quota_limit * division
|
||||
provider.quota_used = division * provider.quota_used
|
||||
db.session.commit()
|
||||
|
||||
count += 1
|
||||
except Exception as e:
|
||||
click.echo(click.style(
|
||||
'Sync tenant anthropic hosted provider error: {} {}'.format(e.__class__.__name__, str(e)),
|
||||
fg='red'))
|
||||
continue
|
||||
|
||||
click.echo(click.style('Congratulations! Synced {} anthropic hosted providers.'.format(count), fg='green'))
|
||||
|
||||
|
||||
@click.command('create-qdrant-indexes', help='Create qdrant indexes.')
|
||||
def create_qdrant_indexes():
|
||||
"""
|
||||
Migrate other vector database datas to Qdrant.
|
||||
"""
|
||||
click.echo(click.style('Start create qdrant indexes.', fg='green'))
|
||||
create_count = 0
|
||||
|
||||
@@ -339,26 +156,7 @@ def create_qdrant_indexes():
|
||||
|
||||
)
|
||||
except Exception:
|
||||
try:
|
||||
embedding_model = model_manager.get_default_model_instance(
|
||||
tenant_id=dataset.tenant_id,
|
||||
model_type=ModelType.TEXT_EMBEDDING,
|
||||
)
|
||||
dataset.embedding_model = embedding_model.model
|
||||
dataset.embedding_model_provider = embedding_model.provider
|
||||
except Exception:
|
||||
|
||||
provider = Provider(
|
||||
id='provider_id',
|
||||
tenant_id=dataset.tenant_id,
|
||||
provider_name='openai',
|
||||
provider_type=ProviderType.SYSTEM.value,
|
||||
encrypted_config=json.dumps({'openai_api_key': 'TEST'}),
|
||||
is_valid=True,
|
||||
)
|
||||
model_provider = OpenAIProvider(provider=provider)
|
||||
embedding_model = OpenAIEmbedding(name="text-embedding-ada-002",
|
||||
model_provider=model_provider)
|
||||
continue
|
||||
embeddings = CacheEmbedding(embedding_model)
|
||||
|
||||
from core.index.vector_index.qdrant_vector_index import QdrantConfig, QdrantVectorIndex
|
||||
@@ -393,380 +191,8 @@ def create_qdrant_indexes():
|
||||
click.echo(click.style('Congratulations! Create {} dataset indexes.'.format(create_count), fg='green'))
|
||||
|
||||
|
||||
@click.command('update-qdrant-indexes', help='Update qdrant indexes.')
|
||||
def update_qdrant_indexes():
|
||||
click.echo(click.style('Start Update qdrant indexes.', fg='green'))
|
||||
create_count = 0
|
||||
|
||||
page = 1
|
||||
while True:
|
||||
try:
|
||||
datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \
|
||||
.order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
|
||||
except NotFound:
|
||||
break
|
||||
|
||||
page += 1
|
||||
for dataset in datasets:
|
||||
if dataset.index_struct_dict:
|
||||
if dataset.index_struct_dict['type'] != 'qdrant':
|
||||
try:
|
||||
click.echo('Update dataset qdrant index: {}'.format(dataset.id))
|
||||
try:
|
||||
embedding_model = ModelFactory.get_embedding_model(
|
||||
tenant_id=dataset.tenant_id,
|
||||
model_provider_name=dataset.embedding_model_provider,
|
||||
model_name=dataset.embedding_model
|
||||
)
|
||||
except Exception:
|
||||
provider = Provider(
|
||||
id='provider_id',
|
||||
tenant_id=dataset.tenant_id,
|
||||
provider_name='openai',
|
||||
provider_type=ProviderType.CUSTOM.value,
|
||||
encrypted_config=json.dumps({'openai_api_key': 'TEST'}),
|
||||
is_valid=True,
|
||||
)
|
||||
model_provider = OpenAIProvider(provider=provider)
|
||||
embedding_model = OpenAIEmbedding(name="text-embedding-ada-002",
|
||||
model_provider=model_provider)
|
||||
embeddings = CacheEmbedding(embedding_model)
|
||||
|
||||
from core.index.vector_index.qdrant_vector_index import QdrantConfig, QdrantVectorIndex
|
||||
|
||||
index = QdrantVectorIndex(
|
||||
dataset=dataset,
|
||||
config=QdrantConfig(
|
||||
endpoint=current_app.config.get('QDRANT_URL'),
|
||||
api_key=current_app.config.get('QDRANT_API_KEY'),
|
||||
root_path=current_app.root_path
|
||||
),
|
||||
embeddings=embeddings
|
||||
)
|
||||
if index:
|
||||
index.update_qdrant_dataset(dataset)
|
||||
create_count += 1
|
||||
else:
|
||||
click.echo('passed.')
|
||||
except Exception as e:
|
||||
click.echo(
|
||||
click.style('Create dataset index error: {} {}'.format(e.__class__.__name__, str(e)),
|
||||
fg='red'))
|
||||
continue
|
||||
|
||||
click.echo(click.style('Congratulations! Update {} dataset indexes.'.format(create_count), fg='green'))
|
||||
|
||||
|
||||
@click.command('normalization-collections', help='restore all collections in one')
|
||||
def normalization_collections():
|
||||
click.echo(click.style('Start normalization collections.', fg='green'))
|
||||
normalization_count = []
|
||||
page = 1
|
||||
while True:
|
||||
try:
|
||||
datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \
|
||||
.order_by(Dataset.created_at.desc()).paginate(page=page, per_page=100)
|
||||
except NotFound:
|
||||
break
|
||||
datasets_result = datasets.items
|
||||
page += 1
|
||||
for i in range(0, len(datasets_result), 5):
|
||||
threads = []
|
||||
sub_datasets = datasets_result[i:i + 5]
|
||||
for dataset in sub_datasets:
|
||||
document_format_thread = threading.Thread(target=deal_dataset_vector, kwargs={
|
||||
'flask_app': current_app._get_current_object(),
|
||||
'dataset': dataset,
|
||||
'normalization_count': normalization_count
|
||||
})
|
||||
threads.append(document_format_thread)
|
||||
document_format_thread.start()
|
||||
for thread in threads:
|
||||
thread.join()
|
||||
|
||||
click.echo(click.style('Congratulations! restore {} dataset indexes.'.format(len(normalization_count)), fg='green'))
|
||||
|
||||
|
||||
@click.command('add-qdrant-full-text-index', help='add qdrant full text index')
|
||||
def add_qdrant_full_text_index():
|
||||
click.echo(click.style('Start add full text index.', fg='green'))
|
||||
binds = db.session.query(DatasetCollectionBinding).all()
|
||||
if binds and current_app.config['VECTOR_STORE'] == 'qdrant':
|
||||
qdrant_url = current_app.config['QDRANT_URL']
|
||||
qdrant_api_key = current_app.config['QDRANT_API_KEY']
|
||||
client = qdrant_client.QdrantClient(
|
||||
qdrant_url,
|
||||
api_key=qdrant_api_key, # For Qdrant Cloud, None for local instance
|
||||
)
|
||||
for bind in binds:
|
||||
try:
|
||||
text_index_params = TextIndexParams(
|
||||
type=TextIndexType.TEXT,
|
||||
tokenizer=TokenizerType.MULTILINGUAL,
|
||||
min_token_len=2,
|
||||
max_token_len=20,
|
||||
lowercase=True
|
||||
)
|
||||
client.create_payload_index(bind.collection_name, 'page_content',
|
||||
field_schema=text_index_params)
|
||||
except Exception as e:
|
||||
click.echo(
|
||||
click.style('Create full text index error: {} {}'.format(e.__class__.__name__, str(e)),
|
||||
fg='red'))
|
||||
click.echo(
|
||||
click.style(
|
||||
'Congratulations! add collection {} full text index successful.'.format(bind.collection_name),
|
||||
fg='green'))
|
||||
|
||||
|
||||
def deal_dataset_vector(flask_app: Flask, dataset: Dataset, normalization_count: list):
|
||||
with flask_app.app_context():
|
||||
try:
|
||||
click.echo('restore dataset index: {}'.format(dataset.id))
|
||||
try:
|
||||
embedding_model = ModelFactory.get_embedding_model(
|
||||
tenant_id=dataset.tenant_id,
|
||||
model_provider_name=dataset.embedding_model_provider,
|
||||
model_name=dataset.embedding_model
|
||||
)
|
||||
except Exception:
|
||||
provider = Provider(
|
||||
id='provider_id',
|
||||
tenant_id=dataset.tenant_id,
|
||||
provider_name='openai',
|
||||
provider_type=ProviderType.CUSTOM.value,
|
||||
encrypted_config=json.dumps({'openai_api_key': 'TEST'}),
|
||||
is_valid=True,
|
||||
)
|
||||
model_provider = OpenAIProvider(provider=provider)
|
||||
embedding_model = OpenAIEmbedding(name="text-embedding-ada-002",
|
||||
model_provider=model_provider)
|
||||
embeddings = CacheEmbedding(embedding_model)
|
||||
dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
|
||||
filter(DatasetCollectionBinding.provider_name == embedding_model.model_provider.provider_name,
|
||||
DatasetCollectionBinding.model_name == embedding_model.name). \
|
||||
order_by(DatasetCollectionBinding.created_at). \
|
||||
first()
|
||||
|
||||
if not dataset_collection_binding:
|
||||
dataset_collection_binding = DatasetCollectionBinding(
|
||||
provider_name=embedding_model.model_provider.provider_name,
|
||||
model_name=embedding_model.name,
|
||||
collection_name="Vector_index_" + str(uuid.uuid4()).replace("-", "_") + '_Node'
|
||||
)
|
||||
db.session.add(dataset_collection_binding)
|
||||
db.session.commit()
|
||||
|
||||
from core.index.vector_index.qdrant_vector_index import QdrantConfig, QdrantVectorIndex
|
||||
|
||||
index = QdrantVectorIndex(
|
||||
dataset=dataset,
|
||||
config=QdrantConfig(
|
||||
endpoint=current_app.config.get('QDRANT_URL'),
|
||||
api_key=current_app.config.get('QDRANT_API_KEY'),
|
||||
root_path=current_app.root_path
|
||||
),
|
||||
embeddings=embeddings
|
||||
)
|
||||
if index:
|
||||
# index.delete_by_group_id(dataset.id)
|
||||
index.restore_dataset_in_one(dataset, dataset_collection_binding)
|
||||
else:
|
||||
click.echo('passed.')
|
||||
normalization_count.append(1)
|
||||
except Exception as e:
|
||||
click.echo(
|
||||
click.style('Create dataset index error: {} {}'.format(e.__class__.__name__, str(e)),
|
||||
fg='red'))
|
||||
|
||||
|
||||
@click.command('update_app_model_configs', help='Migrate data to support paragraph variable.')
|
||||
@click.option("--batch-size", default=500, help="Number of records to migrate in each batch.")
|
||||
def update_app_model_configs(batch_size):
|
||||
pre_prompt_template = '{{default_input}}'
|
||||
|
||||
click.secho("Start migrate old data that the text generator can support paragraph variable.", fg='green')
|
||||
|
||||
total_records = db.session.query(AppModelConfig) \
|
||||
.join(App, App.app_model_config_id == AppModelConfig.id) \
|
||||
.filter(App.mode == 'completion') \
|
||||
.count()
|
||||
|
||||
if total_records == 0:
|
||||
click.secho("No data to migrate.", fg='green')
|
||||
return
|
||||
|
||||
num_batches = (total_records + batch_size - 1) // batch_size
|
||||
|
||||
with tqdm(total=total_records, desc="Migrating Data") as pbar:
|
||||
for i in range(num_batches):
|
||||
offset = i * batch_size
|
||||
limit = min(batch_size, total_records - offset)
|
||||
|
||||
click.secho(f"Fetching batch {i + 1}/{num_batches} from source database...", fg='green')
|
||||
|
||||
data_batch = db.session.query(AppModelConfig) \
|
||||
.join(App, App.app_model_config_id == AppModelConfig.id) \
|
||||
.filter(App.mode == 'completion') \
|
||||
.order_by(App.created_at) \
|
||||
.offset(offset).limit(limit).all()
|
||||
|
||||
if not data_batch:
|
||||
click.secho("No more data to migrate.", fg='green')
|
||||
break
|
||||
|
||||
try:
|
||||
click.secho(f"Migrating {len(data_batch)} records...", fg='green')
|
||||
for data in data_batch:
|
||||
# click.secho(f"Migrating data {data.id}, pre_prompt: {data.pre_prompt}, user_input_form: {data.user_input_form}", fg='green')
|
||||
|
||||
if data.pre_prompt is None:
|
||||
data.pre_prompt = pre_prompt_template
|
||||
else:
|
||||
if pre_prompt_template in data.pre_prompt:
|
||||
continue
|
||||
data.pre_prompt += pre_prompt_template
|
||||
|
||||
app_data = db.session.query(App) \
|
||||
.filter(App.id == data.app_id) \
|
||||
.one()
|
||||
|
||||
account_data = db.session.query(Account) \
|
||||
.join(TenantAccountJoin, Account.id == TenantAccountJoin.account_id) \
|
||||
.filter(TenantAccountJoin.role == 'owner') \
|
||||
.filter(TenantAccountJoin.tenant_id == app_data.tenant_id) \
|
||||
.one_or_none()
|
||||
|
||||
if not account_data:
|
||||
continue
|
||||
|
||||
if data.user_input_form is None or data.user_input_form == 'null':
|
||||
data.user_input_form = json.dumps(user_input_form_template[account_data.interface_language])
|
||||
else:
|
||||
raw_json_data = json.loads(data.user_input_form)
|
||||
raw_json_data.append(user_input_form_template[account_data.interface_language][0])
|
||||
data.user_input_form = json.dumps(raw_json_data)
|
||||
|
||||
# click.secho(f"Updated data {data.id}, pre_prompt: {data.pre_prompt}, user_input_form: {data.user_input_form}", fg='green')
|
||||
|
||||
db.session.commit()
|
||||
|
||||
except Exception as e:
|
||||
click.secho(f"Error while migrating data: {e}, app_id: {data.app_id}, app_model_config_id: {data.id}",
|
||||
fg='red')
|
||||
continue
|
||||
|
||||
click.secho(f"Successfully migrated batch {i + 1}/{num_batches}.", fg='green')
|
||||
|
||||
pbar.update(len(data_batch))
|
||||
|
||||
|
||||
@click.command('migrate_default_input_to_dataset_query_variable')
|
||||
@click.option("--batch-size", default=500, help="Number of records to migrate in each batch.")
|
||||
def migrate_default_input_to_dataset_query_variable(batch_size):
|
||||
click.secho("Starting...", fg='green')
|
||||
|
||||
total_records = db.session.query(AppModelConfig) \
|
||||
.join(App, App.app_model_config_id == AppModelConfig.id) \
|
||||
.filter(App.mode == 'completion') \
|
||||
.filter(AppModelConfig.dataset_query_variable == None) \
|
||||
.count()
|
||||
|
||||
if total_records == 0:
|
||||
click.secho("No data to migrate.", fg='green')
|
||||
return
|
||||
|
||||
num_batches = (total_records + batch_size - 1) // batch_size
|
||||
|
||||
with tqdm(total=total_records, desc="Migrating Data") as pbar:
|
||||
for i in range(num_batches):
|
||||
offset = i * batch_size
|
||||
limit = min(batch_size, total_records - offset)
|
||||
|
||||
click.secho(f"Fetching batch {i + 1}/{num_batches} from source database...", fg='green')
|
||||
|
||||
data_batch = db.session.query(AppModelConfig) \
|
||||
.join(App, App.app_model_config_id == AppModelConfig.id) \
|
||||
.filter(App.mode == 'completion') \
|
||||
.filter(AppModelConfig.dataset_query_variable == None) \
|
||||
.order_by(App.created_at) \
|
||||
.offset(offset).limit(limit).all()
|
||||
|
||||
if not data_batch:
|
||||
click.secho("No more data to migrate.", fg='green')
|
||||
break
|
||||
|
||||
try:
|
||||
click.secho(f"Migrating {len(data_batch)} records...", fg='green')
|
||||
for data in data_batch:
|
||||
config = AppModelConfig.to_dict(data)
|
||||
|
||||
tools = config["agent_mode"]["tools"]
|
||||
dataset_exists = "dataset" in str(tools)
|
||||
if not dataset_exists:
|
||||
continue
|
||||
|
||||
user_input_form = config.get("user_input_form", [])
|
||||
for form in user_input_form:
|
||||
paragraph = form.get('paragraph')
|
||||
if paragraph \
|
||||
and paragraph.get('variable') == 'query':
|
||||
data.dataset_query_variable = 'query'
|
||||
break
|
||||
|
||||
if paragraph \
|
||||
and paragraph.get('variable') == 'default_input':
|
||||
data.dataset_query_variable = 'default_input'
|
||||
break
|
||||
|
||||
db.session.commit()
|
||||
|
||||
except Exception as e:
|
||||
click.secho(f"Error while migrating data: {e}, app_id: {data.app_id}, app_model_config_id: {data.id}",
|
||||
fg='red')
|
||||
continue
|
||||
|
||||
click.secho(f"Successfully migrated batch {i + 1}/{num_batches}.", fg='green')
|
||||
|
||||
pbar.update(len(data_batch))
|
||||
|
||||
|
||||
@click.command('add-annotation-question-field-value', help='add annotation question value')
|
||||
def add_annotation_question_field_value():
|
||||
click.echo(click.style('Start add annotation question value.', fg='green'))
|
||||
message_annotations = db.session.query(MessageAnnotation).all()
|
||||
message_annotation_deal_count = 0
|
||||
if message_annotations:
|
||||
for message_annotation in message_annotations:
|
||||
try:
|
||||
if message_annotation.message_id and not message_annotation.question:
|
||||
message = db.session.query(Message).filter(
|
||||
Message.id == message_annotation.message_id
|
||||
).first()
|
||||
message_annotation.question = message.query
|
||||
db.session.add(message_annotation)
|
||||
db.session.commit()
|
||||
message_annotation_deal_count += 1
|
||||
except Exception as e:
|
||||
click.echo(
|
||||
click.style('Add annotation question value error: {} {}'.format(e.__class__.__name__, str(e)),
|
||||
fg='red'))
|
||||
click.echo(
|
||||
click.style(f'Congratulations! add annotation question value successful. Deal count {message_annotation_deal_count}', fg='green'))
|
||||
|
||||
|
||||
def register_commands(app):
|
||||
app.cli.add_command(reset_password)
|
||||
app.cli.add_command(reset_email)
|
||||
app.cli.add_command(generate_invitation_codes)
|
||||
app.cli.add_command(reset_encrypt_key_pair)
|
||||
app.cli.add_command(recreate_all_dataset_indexes)
|
||||
app.cli.add_command(sync_anthropic_hosted_providers)
|
||||
app.cli.add_command(clean_unused_dataset_indexes)
|
||||
app.cli.add_command(create_qdrant_indexes)
|
||||
app.cli.add_command(update_qdrant_indexes)
|
||||
app.cli.add_command(update_app_model_configs)
|
||||
app.cli.add_command(normalization_collections)
|
||||
app.cli.add_command(migrate_default_input_to_dataset_query_variable)
|
||||
app.cli.add_command(add_qdrant_full_text_index)
|
||||
app.cli.add_command(add_annotation_question_field_value)
|
||||
|
||||
@@ -40,17 +40,11 @@ DEFAULTS = {
|
||||
'HOSTED_OPENAI_QUOTA_LIMIT': 200,
|
||||
'HOSTED_OPENAI_TRIAL_ENABLED': 'False',
|
||||
'HOSTED_OPENAI_PAID_ENABLED': 'False',
|
||||
'HOSTED_OPENAI_PAID_INCREASE_QUOTA': 1,
|
||||
'HOSTED_OPENAI_PAID_MIN_QUANTITY': 1,
|
||||
'HOSTED_OPENAI_PAID_MAX_QUANTITY': 1,
|
||||
'HOSTED_AZURE_OPENAI_ENABLED': 'False',
|
||||
'HOSTED_AZURE_OPENAI_QUOTA_LIMIT': 200,
|
||||
'HOSTED_ANTHROPIC_QUOTA_LIMIT': 600000,
|
||||
'HOSTED_ANTHROPIC_TRIAL_ENABLED': 'False',
|
||||
'HOSTED_ANTHROPIC_PAID_ENABLED': 'False',
|
||||
'HOSTED_ANTHROPIC_PAID_INCREASE_QUOTA': 1,
|
||||
'HOSTED_ANTHROPIC_PAID_MIN_QUANTITY': 1,
|
||||
'HOSTED_ANTHROPIC_PAID_MAX_QUANTITY': 1,
|
||||
'HOSTED_MODERATION_ENABLED': 'False',
|
||||
'HOSTED_MODERATION_PROVIDERS': '',
|
||||
'CLEAN_DAY_SETTING': 30,
|
||||
@@ -93,7 +87,7 @@ class Config:
|
||||
# ------------------------
|
||||
# General Configurations.
|
||||
# ------------------------
|
||||
self.CURRENT_VERSION = "0.5.1"
|
||||
self.CURRENT_VERSION = "0.5.3"
|
||||
self.COMMIT_SHA = get_env('COMMIT_SHA')
|
||||
self.EDITION = "SELF_HOSTED"
|
||||
self.DEPLOY_ENV = get_env('DEPLOY_ENV')
|
||||
@@ -262,10 +256,6 @@ class Config:
|
||||
self.HOSTED_OPENAI_TRIAL_ENABLED = get_bool_env('HOSTED_OPENAI_TRIAL_ENABLED')
|
||||
self.HOSTED_OPENAI_QUOTA_LIMIT = int(get_env('HOSTED_OPENAI_QUOTA_LIMIT'))
|
||||
self.HOSTED_OPENAI_PAID_ENABLED = get_bool_env('HOSTED_OPENAI_PAID_ENABLED')
|
||||
self.HOSTED_OPENAI_PAID_STRIPE_PRICE_ID = get_env('HOSTED_OPENAI_PAID_STRIPE_PRICE_ID')
|
||||
self.HOSTED_OPENAI_PAID_INCREASE_QUOTA = int(get_env('HOSTED_OPENAI_PAID_INCREASE_QUOTA'))
|
||||
self.HOSTED_OPENAI_PAID_MIN_QUANTITY = int(get_env('HOSTED_OPENAI_PAID_MIN_QUANTITY'))
|
||||
self.HOSTED_OPENAI_PAID_MAX_QUANTITY = int(get_env('HOSTED_OPENAI_PAID_MAX_QUANTITY'))
|
||||
|
||||
self.HOSTED_AZURE_OPENAI_ENABLED = get_bool_env('HOSTED_AZURE_OPENAI_ENABLED')
|
||||
self.HOSTED_AZURE_OPENAI_API_KEY = get_env('HOSTED_AZURE_OPENAI_API_KEY')
|
||||
@@ -277,10 +267,6 @@ class Config:
|
||||
self.HOSTED_ANTHROPIC_TRIAL_ENABLED = get_bool_env('HOSTED_ANTHROPIC_TRIAL_ENABLED')
|
||||
self.HOSTED_ANTHROPIC_QUOTA_LIMIT = int(get_env('HOSTED_ANTHROPIC_QUOTA_LIMIT'))
|
||||
self.HOSTED_ANTHROPIC_PAID_ENABLED = get_bool_env('HOSTED_ANTHROPIC_PAID_ENABLED')
|
||||
self.HOSTED_ANTHROPIC_PAID_STRIPE_PRICE_ID = get_env('HOSTED_ANTHROPIC_PAID_STRIPE_PRICE_ID')
|
||||
self.HOSTED_ANTHROPIC_PAID_INCREASE_QUOTA = int(get_env('HOSTED_ANTHROPIC_PAID_INCREASE_QUOTA'))
|
||||
self.HOSTED_ANTHROPIC_PAID_MIN_QUANTITY = int(get_env('HOSTED_ANTHROPIC_PAID_MIN_QUANTITY'))
|
||||
self.HOSTED_ANTHROPIC_PAID_MAX_QUANTITY = int(get_env('HOSTED_ANTHROPIC_PAID_MAX_QUANTITY'))
|
||||
|
||||
self.HOSTED_MINIMAX_ENABLED = get_bool_env('HOSTED_MINIMAX_ENABLED')
|
||||
self.HOSTED_SPARK_ENABLED = get_bool_env('HOSTED_SPARK_ENABLED')
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
|
||||
import json
|
||||
|
||||
from models.model import AppModelConfig
|
||||
|
||||
languages = ['en-US', 'zh-Hans', 'pt-BR', 'es-ES', 'fr-FR', 'de-DE', 'ja-JP', 'ko-KR', 'ru-RU', 'it-IT']
|
||||
|
||||
@@ -11,13 +11,11 @@ from .app import (advanced_prompt_template, annotation, app, audio, completion,
|
||||
model_config, site, statistic)
|
||||
# Import auth controllers
|
||||
from .auth import activate, data_source_oauth, login, oauth
|
||||
# Import billing controllers
|
||||
from .billing import billing
|
||||
# Import datasets controllers
|
||||
from .datasets import data_source, datasets, datasets_document, datasets_segments, file, hit_testing
|
||||
# Import explore controllers
|
||||
from .explore import audio, completion, conversation, installed_app, message, parameter, recommended_app, saved_message
|
||||
# Import workspace controllers
|
||||
from .workspace import account, members, model_providers, models, tool_providers, workspace
|
||||
# Import billing controllers
|
||||
from .billing import billing
|
||||
# Import operation controllers
|
||||
from .operation import operation
|
||||
|
||||
@@ -1,12 +1,12 @@
|
||||
import os
|
||||
from functools import wraps
|
||||
|
||||
from constants.languages import supported_language
|
||||
from controllers.console import api
|
||||
from controllers.console.wraps import only_edition_cloud
|
||||
from extensions.ext_database import db
|
||||
from flask import request
|
||||
from flask_restful import Resource, reqparse
|
||||
from constants.languages import supported_language
|
||||
from models.model import App, InstalledApp, RecommendedApp
|
||||
from werkzeug.exceptions import NotFound, Unauthorized
|
||||
|
||||
|
||||
@@ -61,9 +61,7 @@ class BaseApiKeyListResource(Resource):
|
||||
resource_id = str(resource_id)
|
||||
_get_resource(resource_id, current_user.current_tenant_id,
|
||||
self.resource_model)
|
||||
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
current_key_count = db.session.query(ApiToken). \
|
||||
@@ -102,7 +100,7 @@ class BaseApiKeyResource(Resource):
|
||||
self.resource_model)
|
||||
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
key = db.session.query(ApiToken). \
|
||||
|
||||
@@ -21,7 +21,7 @@ class AnnotationReplyActionApi(Resource):
|
||||
@cloud_edition_billing_resource_check('annotation')
|
||||
def post(self, app_id, action):
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
app_id = str(app_id)
|
||||
@@ -45,7 +45,7 @@ class AppAnnotationSettingDetailApi(Resource):
|
||||
@account_initialization_required
|
||||
def get(self, app_id):
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
app_id = str(app_id)
|
||||
@@ -59,7 +59,7 @@ class AppAnnotationSettingUpdateApi(Resource):
|
||||
@account_initialization_required
|
||||
def post(self, app_id, annotation_setting_id):
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
app_id = str(app_id)
|
||||
@@ -80,7 +80,7 @@ class AnnotationReplyActionStatusApi(Resource):
|
||||
@cloud_edition_billing_resource_check('annotation')
|
||||
def get(self, app_id, job_id, action):
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
job_id = str(job_id)
|
||||
@@ -108,7 +108,7 @@ class AnnotationListApi(Resource):
|
||||
@account_initialization_required
|
||||
def get(self, app_id):
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
page = request.args.get('page', default=1, type=int)
|
||||
@@ -133,7 +133,7 @@ class AnnotationExportApi(Resource):
|
||||
@account_initialization_required
|
||||
def get(self, app_id):
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
app_id = str(app_id)
|
||||
@@ -152,7 +152,7 @@ class AnnotationCreateApi(Resource):
|
||||
@marshal_with(annotation_fields)
|
||||
def post(self, app_id):
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
app_id = str(app_id)
|
||||
@@ -172,7 +172,7 @@ class AnnotationUpdateDeleteApi(Resource):
|
||||
@marshal_with(annotation_fields)
|
||||
def post(self, app_id, annotation_id):
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
app_id = str(app_id)
|
||||
@@ -189,7 +189,7 @@ class AnnotationUpdateDeleteApi(Resource):
|
||||
@account_initialization_required
|
||||
def delete(self, app_id, annotation_id):
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
app_id = str(app_id)
|
||||
@@ -205,7 +205,7 @@ class AnnotationBatchImportApi(Resource):
|
||||
@cloud_edition_billing_resource_check('annotation')
|
||||
def post(self, app_id):
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
app_id = str(app_id)
|
||||
@@ -230,7 +230,7 @@ class AnnotationBatchImportStatusApi(Resource):
|
||||
@cloud_edition_billing_resource_check('annotation')
|
||||
def get(self, app_id, job_id):
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
job_id = str(job_id)
|
||||
@@ -257,7 +257,7 @@ class AnnotationHitHistoryListApi(Resource):
|
||||
@account_initialization_required
|
||||
def get(self, app_id, annotation_id):
|
||||
# The role of the current user in the table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
page = request.args.get('page', default=1, type=int)
|
||||
|
||||
@@ -3,8 +3,8 @@ import json
|
||||
import logging
|
||||
from datetime import datetime
|
||||
|
||||
from constants.model_template import model_templates
|
||||
from constants.languages import demo_model_templates, languages
|
||||
from constants.model_template import model_templates
|
||||
from controllers.console import api
|
||||
from controllers.console.app.error import AppNotFoundError, ProviderNotInitializeError
|
||||
from controllers.console.setup import setup_required
|
||||
@@ -26,6 +26,7 @@ from models.tools import ApiToolProvider
|
||||
from services.app_model_config_service import AppModelConfigService
|
||||
from werkzeug.exceptions import Forbidden
|
||||
|
||||
|
||||
def _get_app(app_id, tenant_id):
|
||||
app = db.session.query(App).filter(App.id == app_id, App.tenant_id == tenant_id).first()
|
||||
if not app:
|
||||
@@ -88,7 +89,7 @@ class AppListApi(Resource):
|
||||
args = parser.parse_args()
|
||||
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
try:
|
||||
@@ -107,20 +108,33 @@ class AppListApi(Resource):
|
||||
# validate config
|
||||
model_config_dict = args['model_config']
|
||||
|
||||
# get model provider
|
||||
model_manager = ModelManager()
|
||||
model_instance = model_manager.get_default_model_instance(
|
||||
tenant_id=current_user.current_tenant_id,
|
||||
model_type=ModelType.LLM
|
||||
# Get provider configurations
|
||||
provider_manager = ProviderManager()
|
||||
provider_configurations = provider_manager.get_configurations(current_user.current_tenant_id)
|
||||
|
||||
# get available models from provider_configurations
|
||||
available_models = provider_configurations.get_models(
|
||||
model_type=ModelType.LLM,
|
||||
only_active=True
|
||||
)
|
||||
|
||||
if not model_instance:
|
||||
raise ProviderNotInitializeError(
|
||||
f"No Default System Reasoning Model available. Please configure "
|
||||
f"in the Settings -> Model Provider.")
|
||||
else:
|
||||
model_config_dict["model"]["provider"] = model_instance.provider
|
||||
model_config_dict["model"]["name"] = model_instance.model
|
||||
# check if model is available
|
||||
available_models_names = [f'{model.provider.provider}.{model.model}' for model in available_models]
|
||||
provider_model = f"{model_config_dict['model']['provider']}.{model_config_dict['model']['name']}"
|
||||
if provider_model not in available_models_names:
|
||||
model_manager = ModelManager()
|
||||
model_instance = model_manager.get_default_model_instance(
|
||||
tenant_id=current_user.current_tenant_id,
|
||||
model_type=ModelType.LLM
|
||||
)
|
||||
|
||||
if not model_instance:
|
||||
raise ProviderNotInitializeError(
|
||||
f"No Default System Reasoning Model available. Please configure "
|
||||
f"in the Settings -> Model Provider.")
|
||||
else:
|
||||
model_config_dict["model"]["provider"] = model_instance.provider
|
||||
model_config_dict["model"]["name"] = model_instance.model
|
||||
|
||||
model_configuration = AppModelConfigService.validate_configuration(
|
||||
tenant_id=current_user.current_tenant_id,
|
||||
@@ -237,7 +251,7 @@ class AppApi(Resource):
|
||||
"""Delete app"""
|
||||
app_id = str(app_id)
|
||||
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
app = _get_app(app_id, current_user.current_tenant_id)
|
||||
|
||||
@@ -157,7 +157,7 @@ class MessageAnnotationApi(Resource):
|
||||
@marshal_with(annotation_fields)
|
||||
def post(self, app_id):
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
app_id = str(app_id)
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
from constants.languages import supported_language
|
||||
from controllers.console import api
|
||||
from controllers.console.app import _get_app
|
||||
from controllers.console.setup import setup_required
|
||||
@@ -7,7 +8,6 @@ from extensions.ext_database import db
|
||||
from fields.app_fields import app_site_fields
|
||||
from flask_login import current_user
|
||||
from flask_restful import Resource, marshal_with, reqparse
|
||||
from constants.languages import supported_language
|
||||
from libs.login import login_required
|
||||
from models.model import Site
|
||||
from werkzeug.exceptions import Forbidden, NotFound
|
||||
@@ -42,7 +42,7 @@ class AppSite(Resource):
|
||||
app_model = _get_app(app_id)
|
||||
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
site = db.session.query(Site). \
|
||||
@@ -88,7 +88,7 @@ class AppSiteAccessTokenReset(Resource):
|
||||
app_model = _get_app(app_id)
|
||||
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
site = db.session.query(Site).filter(Site.app_id == app_model.id).first()
|
||||
|
||||
@@ -2,12 +2,12 @@ import base64
|
||||
import secrets
|
||||
from datetime import datetime
|
||||
|
||||
from constants.languages import supported_language
|
||||
from controllers.console import api
|
||||
from controllers.console.error import AlreadyActivateError
|
||||
from extensions.ext_database import db
|
||||
from flask_restful import Resource, reqparse
|
||||
from libs.helper import email, str_len, timezone
|
||||
from constants.languages import supported_language
|
||||
from libs.password import hash_password, valid_password
|
||||
from models.account import AccountStatus, Tenant
|
||||
from services.account_service import RegisterService
|
||||
|
||||
@@ -30,7 +30,7 @@ def get_oauth_providers():
|
||||
class OAuthDataSource(Resource):
|
||||
def get(self, provider: str):
|
||||
# The role of the current user in the table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
OAUTH_DATASOURCE_PROVIDERS = get_oauth_providers()
|
||||
with current_app.app_context():
|
||||
|
||||
@@ -20,7 +20,7 @@ class Subscription(Resource):
|
||||
parser.add_argument('interval', type=str, required=True, location='args', choices=['month', 'year'])
|
||||
args = parser.parse_args()
|
||||
|
||||
BillingService.is_tenant_owner(current_user)
|
||||
BillingService.is_tenant_owner_or_admin(current_user)
|
||||
|
||||
return BillingService.get_subscription(args['plan'],
|
||||
args['interval'],
|
||||
@@ -35,8 +35,8 @@ class Invoices(Resource):
|
||||
@account_initialization_required
|
||||
@only_edition_cloud
|
||||
def get(self):
|
||||
BillingService.is_tenant_owner(current_user)
|
||||
return BillingService.get_invoices(current_user.email)
|
||||
BillingService.is_tenant_owner_or_admin(current_user)
|
||||
return BillingService.get_invoices(current_user.email, current_user.current_tenant_id)
|
||||
|
||||
|
||||
api.add_resource(Subscription, '/billing/subscription')
|
||||
|
||||
@@ -103,7 +103,7 @@ class DatasetListApi(Resource):
|
||||
args = parser.parse_args()
|
||||
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
try:
|
||||
@@ -187,7 +187,7 @@ class DatasetApi(Resource):
|
||||
args = parser.parse_args()
|
||||
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
dataset = DatasetService.update_dataset(
|
||||
@@ -205,7 +205,7 @@ class DatasetApi(Resource):
|
||||
dataset_id_str = str(dataset_id)
|
||||
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
if DatasetService.delete_dataset(dataset_id_str, current_user):
|
||||
@@ -391,7 +391,7 @@ class DatasetApiKeyApi(Resource):
|
||||
@marshal_with(api_key_fields)
|
||||
def post(self):
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
current_key_count = db.session.query(ApiToken). \
|
||||
@@ -425,7 +425,7 @@ class DatasetApiDeleteApi(Resource):
|
||||
api_key_id = str(api_key_id)
|
||||
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
key = db.session.query(ApiToken). \
|
||||
|
||||
@@ -204,7 +204,7 @@ class DatasetDocumentListApi(Resource):
|
||||
raise NotFound('Dataset not found.')
|
||||
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
try:
|
||||
@@ -256,7 +256,7 @@ class DatasetInitApi(Resource):
|
||||
@cloud_edition_billing_resource_check('vector_space')
|
||||
def post(self):
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
@@ -599,7 +599,7 @@ class DocumentProcessingApi(DocumentResource):
|
||||
document = self.get_document(dataset_id, document_id)
|
||||
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
if action == "pause":
|
||||
@@ -663,7 +663,7 @@ class DocumentMetadataApi(DocumentResource):
|
||||
doc_metadata = req_data.get('doc_metadata')
|
||||
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
if doc_type is None or doc_metadata is None:
|
||||
@@ -710,7 +710,7 @@ class DocumentStatusApi(DocumentResource):
|
||||
document = self.get_document(dataset_id, document_id)
|
||||
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
indexing_cache_key = 'document_{}_indexing'.format(document.id)
|
||||
|
||||
@@ -123,7 +123,7 @@ class DatasetDocumentSegmentApi(Resource):
|
||||
# check user's model setting
|
||||
DatasetService.check_dataset_model_setting(dataset)
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
try:
|
||||
@@ -219,7 +219,7 @@ class DatasetDocumentSegmentAddApi(Resource):
|
||||
if not document:
|
||||
raise NotFound('Document not found.')
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
# check embedding model setting
|
||||
if dataset.indexing_technique == 'high_quality':
|
||||
@@ -298,7 +298,7 @@ class DatasetDocumentSegmentUpdateApi(Resource):
|
||||
if not segment:
|
||||
raise NotFound('Segment not found.')
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
try:
|
||||
DatasetService.check_dataset_permission(dataset, current_user)
|
||||
@@ -342,7 +342,7 @@ class DatasetDocumentSegmentUpdateApi(Resource):
|
||||
if not segment:
|
||||
raise NotFound('Segment not found.')
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
try:
|
||||
DatasetService.check_dataset_permission(dataset, current_user)
|
||||
|
||||
@@ -9,7 +9,7 @@ from flask import current_app, request
|
||||
from flask_login import current_user
|
||||
from flask_restful import Resource, marshal_with
|
||||
from libs.login import login_required
|
||||
from services.file_service import FileService, ALLOWED_EXTENSIONS, UNSTRUSTURED_ALLOWED_EXTENSIONS
|
||||
from services.file_service import ALLOWED_EXTENSIONS, UNSTRUSTURED_ALLOWED_EXTENSIONS, FileService
|
||||
|
||||
PREVIEW_WORDS_LIMIT = 3000
|
||||
|
||||
|
||||
@@ -13,6 +13,16 @@ class NotSetupError(BaseHTTPException):
|
||||
"Please proceed with the initialization and installation process first."
|
||||
code = 401
|
||||
|
||||
class NotInitValidateError(BaseHTTPException):
|
||||
error_code = 'not_init_validated'
|
||||
description = "Init validation has not been completed yet. " \
|
||||
"Please proceed with the init validation process first."
|
||||
code = 401
|
||||
|
||||
class InitValidateFailedError(BaseHTTPException):
|
||||
error_code = 'init_validate_failed'
|
||||
description = "Init validation failed. Please check the password and try again."
|
||||
code = 401
|
||||
|
||||
class AccountNotLinkTenantError(BaseHTTPException):
|
||||
error_code = 'account_not_link_tenant'
|
||||
|
||||
@@ -17,9 +17,9 @@ from core.model_runtime.errors.invoke import InvokeError
|
||||
from fields.message_fields import message_infinite_scroll_pagination_fields
|
||||
from flask import Response, stream_with_context
|
||||
from flask_login import current_user
|
||||
from flask_restful import marshal_with, reqparse, fields
|
||||
from flask_restful import fields, marshal_with, reqparse
|
||||
from flask_restful.inputs import int_range
|
||||
from libs.helper import uuid_value, TimestampField
|
||||
from libs.helper import TimestampField, uuid_value
|
||||
from services.completion_service import CompletionService
|
||||
from services.errors.app import MoreLikeThisDisabledError
|
||||
from services.errors.conversation import ConversationNotExistsError
|
||||
|
||||
@@ -3,12 +3,12 @@ import json
|
||||
|
||||
from controllers.console import api
|
||||
from controllers.console.explore.wraps import InstalledAppResource
|
||||
from extensions.ext_database import db
|
||||
from flask import current_app
|
||||
from flask_restful import fields, marshal_with
|
||||
from models.model import InstalledApp, AppModelConfig
|
||||
from models.model import AppModelConfig, InstalledApp
|
||||
from models.tools import ApiToolProvider
|
||||
|
||||
from extensions.ext_database import db
|
||||
|
||||
class AppParameterApi(InstalledAppResource):
|
||||
"""Resource for app variables."""
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
from constants.languages import languages
|
||||
from controllers.console import api
|
||||
from controllers.console.app.error import AppNotFoundError
|
||||
from controllers.console.wraps import account_initialization_required
|
||||
@@ -9,7 +10,6 @@ from libs.login import login_required
|
||||
from models.model import App, InstalledApp, RecommendedApp
|
||||
from services.account_service import TenantService
|
||||
from sqlalchemy import and_
|
||||
from constants.languages import languages
|
||||
|
||||
app_fields = {
|
||||
'id': fields.String,
|
||||
|
||||
@@ -3,10 +3,12 @@ from flask_restful import Resource
|
||||
from services.feature_service import FeatureService
|
||||
|
||||
from . import api
|
||||
from .wraps import cloud_utm_record
|
||||
|
||||
|
||||
class FeatureApi(Resource):
|
||||
|
||||
@cloud_utm_record
|
||||
def get(self):
|
||||
return FeatureService.get_features(current_user.current_tenant_id).dict()
|
||||
|
||||
|
||||
48
api/controllers/console/init_validate.py
Normal file
48
api/controllers/console/init_validate.py
Normal file
@@ -0,0 +1,48 @@
|
||||
import os
|
||||
|
||||
from flask import current_app, session
|
||||
from flask_restful import Resource, reqparse
|
||||
from libs.helper import str_len
|
||||
from models.model import DifySetup
|
||||
from services.account_service import TenantService
|
||||
|
||||
from . import api
|
||||
from .error import AlreadySetupError, InitValidateFailedError
|
||||
from .wraps import only_edition_self_hosted
|
||||
|
||||
|
||||
class InitValidateAPI(Resource):
|
||||
|
||||
def get(self):
|
||||
init_status = get_init_validate_status()
|
||||
if init_status:
|
||||
return { 'status': 'finished' }
|
||||
return {'status': 'not_started' }
|
||||
|
||||
@only_edition_self_hosted
|
||||
def post(self):
|
||||
# is tenant created
|
||||
tenant_count = TenantService.get_tenant_count()
|
||||
if tenant_count > 0:
|
||||
raise AlreadySetupError()
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('password', type=str_len(30),
|
||||
required=True, location='json')
|
||||
input_password = parser.parse_args()['password']
|
||||
|
||||
if input_password != os.environ.get('INIT_PASSWORD'):
|
||||
session['is_init_validated'] = False
|
||||
raise InitValidateFailedError()
|
||||
|
||||
session['is_init_validated'] = True
|
||||
return {'result': 'success'}, 201
|
||||
|
||||
def get_init_validate_status():
|
||||
if current_app.config['EDITION'] == 'SELF_HOSTED':
|
||||
if os.environ.get('INIT_PASSWORD'):
|
||||
return session.get('is_init_validated') or DifySetup.query.first()
|
||||
|
||||
return True
|
||||
|
||||
api.add_resource(InitValidateAPI, '/init')
|
||||
@@ -1,30 +0,0 @@
|
||||
from flask_login import current_user
|
||||
from flask_restful import Resource, reqparse
|
||||
|
||||
from controllers.console import api
|
||||
from controllers.console.setup import setup_required
|
||||
from controllers.console.wraps import account_initialization_required, only_edition_cloud
|
||||
from libs.login import login_required
|
||||
from services.operation_service import OperationService
|
||||
|
||||
|
||||
class TenantUtm(Resource):
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
@only_edition_cloud
|
||||
def post(self):
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('utm_source', type=str, required=True)
|
||||
parser.add_argument('utm_medium', type=str, required=True)
|
||||
parser.add_argument('utm_campaign', type=str, required=False, default='')
|
||||
parser.add_argument('utm_content', type=str, required=False, default='')
|
||||
parser.add_argument('utm_term', type=str, required=False, default='')
|
||||
args = parser.parse_args()
|
||||
|
||||
return OperationService.record_utm(current_user.current_tenant_id, args)
|
||||
|
||||
|
||||
api.add_resource(TenantUtm, '/operation/utm')
|
||||
@@ -10,7 +10,8 @@ from models.model import DifySetup
|
||||
from services.account_service import AccountService, RegisterService, TenantService
|
||||
|
||||
from . import api
|
||||
from .error import AlreadySetupError, NotSetupError
|
||||
from .error import AlreadySetupError, NotInitValidateError, NotSetupError
|
||||
from .init_validate import get_init_validate_status
|
||||
from .wraps import only_edition_self_hosted
|
||||
|
||||
|
||||
@@ -24,7 +25,7 @@ class SetupApi(Resource):
|
||||
'step': 'finished',
|
||||
'setup_at': setup_status.setup_at.isoformat()
|
||||
}
|
||||
return {'step': 'not_start'}
|
||||
return {'step': 'not_started'}
|
||||
return {'step': 'finished'}
|
||||
|
||||
@only_edition_self_hosted
|
||||
@@ -37,6 +38,9 @@ class SetupApi(Resource):
|
||||
tenant_count = TenantService.get_tenant_count()
|
||||
if tenant_count > 0:
|
||||
raise AlreadySetupError()
|
||||
|
||||
if not get_init_validate_status():
|
||||
raise NotInitValidateError()
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('email', type=email,
|
||||
@@ -71,7 +75,10 @@ def setup_required(view):
|
||||
@wraps(view)
|
||||
def decorated(*args, **kwargs):
|
||||
# check setup
|
||||
if not get_setup_status():
|
||||
if not get_init_validate_status():
|
||||
raise NotInitValidateError()
|
||||
|
||||
elif not get_setup_status():
|
||||
raise NotSetupError()
|
||||
|
||||
return view(*args, **kwargs)
|
||||
|
||||
@@ -2,6 +2,7 @@
|
||||
from datetime import datetime
|
||||
|
||||
import pytz
|
||||
from constants.languages import supported_language
|
||||
from controllers.console import api
|
||||
from controllers.console.setup import setup_required
|
||||
from controllers.console.workspace.error import (AccountAlreadyInitedError, CurrentPasswordIncorrectError,
|
||||
@@ -12,7 +13,6 @@ from flask import current_app, request
|
||||
from flask_login import current_user
|
||||
from flask_restful import Resource, fields, marshal_with, reqparse
|
||||
from libs.helper import TimestampField, timezone
|
||||
from constants.languages import supported_language
|
||||
from libs.login import login_required
|
||||
from models.account import AccountIntegrate, InvitationCode
|
||||
from services.account_service import AccountService
|
||||
|
||||
@@ -1,13 +1,12 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
from flask import current_app
|
||||
from flask_login import current_user
|
||||
from flask_restful import Resource, abort, fields, marshal_with, reqparse
|
||||
|
||||
import services
|
||||
from controllers.console import api
|
||||
from controllers.console.setup import setup_required
|
||||
from controllers.console.wraps import account_initialization_required, cloud_edition_billing_resource_check
|
||||
from extensions.ext_database import db
|
||||
from flask import current_app
|
||||
from flask_login import current_user
|
||||
from flask_restful import Resource, abort, fields, marshal_with, reqparse
|
||||
from libs.helper import TimestampField
|
||||
from libs.login import login_required
|
||||
from models.account import Account
|
||||
@@ -52,10 +51,12 @@ class MemberInviteEmailApi(Resource):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('emails', type=str, required=True, location='json', action='append')
|
||||
parser.add_argument('role', type=str, required=True, default='admin', location='json')
|
||||
parser.add_argument('language', type=str, required=False, location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
invitee_emails = args['emails']
|
||||
invitee_role = args['role']
|
||||
interface_language = args['language']
|
||||
if invitee_role not in ['admin', 'normal']:
|
||||
return {'code': 'invalid-role', 'message': 'Invalid role'}, 400
|
||||
|
||||
@@ -64,8 +65,7 @@ class MemberInviteEmailApi(Resource):
|
||||
console_web_url = current_app.config.get("CONSOLE_WEB_URL")
|
||||
for invitee_email in invitee_emails:
|
||||
try:
|
||||
token = RegisterService.invite_new_member(inviter.current_tenant, invitee_email, role=invitee_role,
|
||||
inviter=inviter)
|
||||
token = RegisterService.invite_new_member(inviter.current_tenant, invitee_email, interface_language, role=invitee_role, inviter=inviter)
|
||||
invitation_results.append({
|
||||
'status': 'success',
|
||||
'email': invitee_email,
|
||||
|
||||
@@ -98,7 +98,7 @@ class ModelProviderApi(Resource):
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self, provider: str):
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
@@ -122,7 +122,7 @@ class ModelProviderApi(Resource):
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def delete(self, provider: str):
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
model_provider_service = ModelProviderService()
|
||||
@@ -159,7 +159,7 @@ class PreferredProviderTypeUpdateApi(Resource):
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self, provider: str):
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
tenant_id = current_user.current_tenant_id
|
||||
@@ -186,10 +186,11 @@ class ModelProviderPaymentCheckoutUrlApi(Resource):
|
||||
def get(self, provider: str):
|
||||
if provider != 'anthropic':
|
||||
raise ValueError(f'provider name {provider} is invalid')
|
||||
|
||||
BillingService.is_tenant_owner_or_admin(current_user)
|
||||
data = BillingService.get_model_provider_payment_link(provider_name=provider,
|
||||
tenant_id=current_user.current_tenant_id,
|
||||
account_id=current_user.id)
|
||||
account_id=current_user.id,
|
||||
prefilled_email=current_user.email)
|
||||
return data
|
||||
|
||||
|
||||
|
||||
@@ -1,18 +1,16 @@
|
||||
import io
|
||||
import json
|
||||
|
||||
from libs.login import login_required
|
||||
from flask_login import current_user
|
||||
from flask_restful import Resource, reqparse
|
||||
from flask import send_file
|
||||
from werkzeug.exceptions import Forbidden
|
||||
|
||||
from controllers.console import api
|
||||
from controllers.console.setup import setup_required
|
||||
from controllers.console.wraps import account_initialization_required
|
||||
|
||||
from flask import send_file
|
||||
from flask_login import current_user
|
||||
from flask_restful import Resource, reqparse
|
||||
from libs.login import login_required
|
||||
from services.tools_manage_service import ToolManageService
|
||||
from werkzeug.exceptions import Forbidden
|
||||
|
||||
import io
|
||||
|
||||
class ToolProviderListApi(Resource):
|
||||
@setup_required
|
||||
@@ -43,7 +41,7 @@ class ToolBuiltinProviderDeleteApi(Resource):
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self, provider):
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
user_id = current_user.id
|
||||
@@ -60,7 +58,7 @@ class ToolBuiltinProviderUpdateApi(Resource):
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self, provider):
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
user_id = current_user.id
|
||||
@@ -90,7 +88,7 @@ class ToolApiProviderAddApi(Resource):
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self):
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
user_id = current_user.id
|
||||
@@ -159,7 +157,7 @@ class ToolApiProviderUpdateApi(Resource):
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self):
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
user_id = current_user.id
|
||||
@@ -171,8 +169,8 @@ class ToolApiProviderUpdateApi(Resource):
|
||||
parser.add_argument('schema', type=str, required=True, nullable=False, location='json')
|
||||
parser.add_argument('provider', type=str, required=True, nullable=False, location='json')
|
||||
parser.add_argument('original_provider', type=str, required=True, nullable=False, location='json')
|
||||
parser.add_argument('icon', type=str, required=True, nullable=False, location='json')
|
||||
parser.add_argument('privacy_policy', type=str, required=True, nullable=False, location='json')
|
||||
parser.add_argument('icon', type=dict, required=True, nullable=False, location='json')
|
||||
parser.add_argument('privacy_policy', type=str, required=True, nullable=True, location='json')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
@@ -193,7 +191,7 @@ class ToolApiProviderDeleteApi(Resource):
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self):
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
if not current_user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
user_id = current_user.id
|
||||
|
||||
@@ -1,10 +1,12 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
import json
|
||||
from functools import wraps
|
||||
|
||||
from controllers.console.workspace.error import AccountNotInitializedError
|
||||
from flask import abort, current_app
|
||||
from flask import abort, current_app, request
|
||||
from flask_login import current_user
|
||||
from services.feature_service import FeatureService
|
||||
from services.operation_service import OperationService
|
||||
|
||||
|
||||
def account_initialization_required(view):
|
||||
@@ -73,3 +75,20 @@ def cloud_edition_billing_resource_check(resource: str,
|
||||
return decorated
|
||||
return interceptor
|
||||
|
||||
|
||||
def cloud_utm_record(view):
|
||||
@wraps(view)
|
||||
def decorated(*args, **kwargs):
|
||||
try:
|
||||
features = FeatureService.get_features(current_user.current_tenant_id)
|
||||
|
||||
if features.billing.enabled:
|
||||
utm_info = request.cookies.get('utm_info')
|
||||
|
||||
if utm_info:
|
||||
utm_info = json.loads(utm_info)
|
||||
OperationService.record_utm(current_user.current_tenant_id, utm_info)
|
||||
except Exception as e:
|
||||
pass
|
||||
return view(*args, **kwargs)
|
||||
return decorated
|
||||
|
||||
@@ -6,5 +6,4 @@ bp = Blueprint('files', __name__)
|
||||
api = ExternalApi(bp)
|
||||
|
||||
|
||||
from . import image_preview
|
||||
from . import tool_files
|
||||
from . import image_preview, tool_files
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
from controllers.files import api
|
||||
from core.tools.tool_file_manager import ToolFileManager
|
||||
from flask import Response
|
||||
from flask_restful import Resource, reqparse
|
||||
from libs.exception import BaseHTTPException
|
||||
from werkzeug.exceptions import NotFound, Forbidden
|
||||
from werkzeug.exceptions import Forbidden, NotFound
|
||||
|
||||
from core.tools.tool_file_manager import ToolFileManager
|
||||
|
||||
class ToolFilePreviewApi(Resource):
|
||||
def get(self, file_id, extension):
|
||||
|
||||
@@ -1,15 +1,14 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
import json
|
||||
|
||||
from controllers.service_api import api
|
||||
from controllers.service_api.wraps import AppApiResource
|
||||
from extensions.ext_database import db
|
||||
from flask import current_app
|
||||
from flask_restful import fields, marshal_with
|
||||
from models.model import App, AppModelConfig
|
||||
from models.tools import ApiToolProvider
|
||||
|
||||
import json
|
||||
|
||||
from extensions.ext_database import db
|
||||
|
||||
|
||||
class AppParameterApi(AppApiResource):
|
||||
"""Resource for app variables."""
|
||||
|
||||
@@ -13,7 +13,7 @@ from core.application_queue_manager import ApplicationQueueManager
|
||||
from core.entities.application_entities import InvokeFrom
|
||||
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
|
||||
from core.model_runtime.errors.invoke import InvokeError
|
||||
from flask import Response, stream_with_context, request
|
||||
from flask import Response, stream_with_context
|
||||
from flask_restful import reqparse
|
||||
from libs.helper import uuid_value
|
||||
from services.completion_service import CompletionService
|
||||
@@ -75,18 +75,22 @@ class CompletionApi(AppApiResource):
|
||||
|
||||
|
||||
class CompletionStopApi(AppApiResource):
|
||||
def post(self, app_model, _, task_id):
|
||||
def post(self, app_model, end_user, task_id):
|
||||
if app_model.mode != 'completion':
|
||||
raise AppUnavailableError()
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('user', required=True, nullable=False, type=str, location='json')
|
||||
if end_user is None:
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('user', required=True, nullable=False, type=str, location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
args = parser.parse_args()
|
||||
user = args.get('user')
|
||||
if user is not None:
|
||||
end_user = create_or_update_end_user_for_user_id(app_model, user)
|
||||
else:
|
||||
raise ValueError("arg user muse be input.")
|
||||
|
||||
end_user_id = args.get('user')
|
||||
|
||||
ApplicationQueueManager.set_stop_flag(task_id, InvokeFrom.SERVICE_API, end_user_id)
|
||||
ApplicationQueueManager.set_stop_flag(task_id, InvokeFrom.SERVICE_API, end_user.id)
|
||||
|
||||
return {'result': 'success'}, 200
|
||||
|
||||
@@ -146,13 +150,22 @@ class ChatApi(AppApiResource):
|
||||
|
||||
|
||||
class ChatStopApi(AppApiResource):
|
||||
def post(self, app_model, _, task_id):
|
||||
def post(self, app_model, end_user, task_id):
|
||||
if app_model.mode != 'chat':
|
||||
raise NotChatAppError()
|
||||
|
||||
end_user_id = request.get_json().get('user')
|
||||
if end_user is None:
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('user', required=True, nullable=False, type=str, location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
ApplicationQueueManager.set_stop_flag(task_id, InvokeFrom.SERVICE_API, end_user_id)
|
||||
user = args.get('user')
|
||||
if user is not None:
|
||||
end_user = create_or_update_end_user_for_user_id(app_model, user)
|
||||
else:
|
||||
raise ValueError("arg user muse be input.")
|
||||
|
||||
ApplicationQueueManager.set_stop_flag(task_id, InvokeFrom.SERVICE_API, end_user.id)
|
||||
|
||||
return {'result': 'success'}, 200
|
||||
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
from models.dataset import Dataset
|
||||
import services.dataset_service
|
||||
from controllers.service_api import api
|
||||
from controllers.service_api.dataset.error import DatasetNameDuplicateError
|
||||
@@ -9,6 +8,7 @@ from fields.dataset_fields import dataset_detail_fields
|
||||
from flask import request
|
||||
from flask_restful import marshal, reqparse
|
||||
from libs.login import current_user
|
||||
from models.dataset import Dataset
|
||||
from services.dataset_service import DatasetService
|
||||
|
||||
|
||||
|
||||
@@ -1,8 +1,7 @@
|
||||
from controllers.service_api import api
|
||||
from flask import current_app
|
||||
from flask_restful import Resource
|
||||
|
||||
from controllers.service_api import api
|
||||
|
||||
|
||||
class IndexApi(Resource):
|
||||
def get(self):
|
||||
|
||||
@@ -76,7 +76,7 @@ def validate_dataset_token(view=None):
|
||||
.filter(Tenant.id == api_token.tenant_id) \
|
||||
.filter(TenantAccountJoin.tenant_id == Tenant.id) \
|
||||
.filter(TenantAccountJoin.role.in_(['owner'])) \
|
||||
.one_or_none()
|
||||
.one_or_none() # TODO: only owner information is required, so only one is returned.
|
||||
if tenant_account_join:
|
||||
tenant, ta = tenant_account_join
|
||||
account = Account.query.filter_by(id=ta.account_id).first()
|
||||
@@ -86,9 +86,9 @@ def validate_dataset_token(view=None):
|
||||
current_app.login_manager._update_request_context_with_user(account)
|
||||
user_logged_in.send(current_app._get_current_object(), user=_get_user())
|
||||
else:
|
||||
raise Unauthorized("Tenant owner account is not exist.")
|
||||
raise Unauthorized("Tenant owner account does not exist.")
|
||||
else:
|
||||
raise Unauthorized("Tenant is not exist.")
|
||||
raise Unauthorized("Tenant does not exist.")
|
||||
return view(api_token.tenant_id, *args, **kwargs)
|
||||
return decorated
|
||||
|
||||
|
||||
@@ -1,15 +1,14 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
import json
|
||||
|
||||
from controllers.web import api
|
||||
from controllers.web.wraps import WebApiResource
|
||||
from extensions.ext_database import db
|
||||
from flask import current_app
|
||||
from flask_restful import fields, marshal_with
|
||||
from models.model import App, AppModelConfig
|
||||
from models.tools import ApiToolProvider
|
||||
|
||||
from extensions.ext_database import db
|
||||
|
||||
import json
|
||||
|
||||
|
||||
class AppParameterApi(WebApiResource):
|
||||
"""Resource for app variables."""
|
||||
|
||||
@@ -2,8 +2,13 @@ import time
|
||||
from typing import Generator, List, Optional, Tuple, Union, cast
|
||||
|
||||
from core.application_queue_manager import ApplicationQueueManager, PublishFrom
|
||||
from core.entities.application_entities import AppOrchestrationConfigEntity, ModelConfigEntity, \
|
||||
PromptTemplateEntity, ExternalDataVariableEntity, ApplicationGenerateEntity, InvokeFrom
|
||||
from core.entities.application_entities import (ApplicationGenerateEntity, AppOrchestrationConfigEntity,
|
||||
ExternalDataVariableEntity, InvokeFrom, ModelConfigEntity,
|
||||
PromptTemplateEntity)
|
||||
from core.features.annotation_reply import AnnotationReplyFeature
|
||||
from core.features.external_data_fetch import ExternalDataFetchFeature
|
||||
from core.features.hosting_moderation import HostingModerationFeature
|
||||
from core.features.moderation import ModerationFeature
|
||||
from core.file.file_obj import FileObj
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
|
||||
@@ -11,12 +16,9 @@ from core.model_runtime.entities.message_entities import AssistantPromptMessage,
|
||||
from core.model_runtime.entities.model_entities import ModelPropertyKey
|
||||
from core.model_runtime.errors.invoke import InvokeBadRequestError
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.features.hosting_moderation import HostingModerationFeature
|
||||
from core.features.moderation import ModerationFeature
|
||||
from core.features.external_data_fetch import ExternalDataFetchFeature
|
||||
from core.features.annotation_reply import AnnotationReplyFeature
|
||||
from core.prompt.prompt_transform import PromptTransform
|
||||
from models.model import App, MessageAnnotation, Message
|
||||
from models.model import App, Message, MessageAnnotation
|
||||
|
||||
|
||||
class AppRunner:
|
||||
def get_pre_calculate_rest_tokens(self, app_record: App,
|
||||
|
||||
@@ -3,19 +3,19 @@ import logging
|
||||
from typing import cast
|
||||
|
||||
from core.app_runner.app_runner import AppRunner
|
||||
from core.application_queue_manager import ApplicationQueueManager, PublishFrom
|
||||
from core.entities.application_entities import AgentEntity, ApplicationGenerateEntity, ModelConfigEntity
|
||||
from core.features.assistant_cot_runner import AssistantCotApplicationRunner
|
||||
from core.features.assistant_fc_runner import AssistantFunctionCallApplicationRunner
|
||||
from core.entities.application_entities import ApplicationGenerateEntity, ModelConfigEntity, \
|
||||
AgentEntity
|
||||
from core.application_queue_manager import ApplicationQueueManager, PublishFrom
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.llm_entities import LLMUsage
|
||||
from core.model_runtime.entities.model_entities import ModelFeature
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.moderation.base import ModerationException
|
||||
from core.tools.entities.tool_entities import ToolRuntimeVariablePool
|
||||
from extensions.ext_database import db
|
||||
from models.model import Conversation, Message, App, MessageChain, MessageAgentThought
|
||||
from models.model import App, Conversation, Message, MessageAgentThought, MessageChain
|
||||
from models.tools import ToolConversationVariables
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -169,7 +169,7 @@ class AssistantApplicationRunner(AppRunner):
|
||||
# load tool variables
|
||||
tool_conversation_variables = self._load_tool_variables(conversation_id=conversation.id,
|
||||
user_id=application_generate_entity.user_id,
|
||||
tanent_id=application_generate_entity.tenant_id)
|
||||
tenant_id=application_generate_entity.tenant_id)
|
||||
|
||||
# convert db variables to tool variables
|
||||
tool_variables = self._convert_db_variables_to_tool_variables(tool_conversation_variables)
|
||||
@@ -194,6 +194,13 @@ class AssistantApplicationRunner(AppRunner):
|
||||
memory=memory,
|
||||
)
|
||||
|
||||
# change function call strategy based on LLM model
|
||||
llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
|
||||
model_schema = llm_model.get_model_schema(model_instance.model, model_instance.credentials)
|
||||
|
||||
if set([ModelFeature.MULTI_TOOL_CALL, ModelFeature.TOOL_CALL]).intersection(model_schema.features or []):
|
||||
agent_entity.strategy = AgentEntity.Strategy.FUNCTION_CALLING
|
||||
|
||||
# start agent runner
|
||||
if agent_entity.strategy == AgentEntity.Strategy.CHAIN_OF_THOUGHT:
|
||||
assistant_cot_runner = AssistantCotApplicationRunner(
|
||||
@@ -209,9 +216,9 @@ class AssistantApplicationRunner(AppRunner):
|
||||
prompt_messages=prompt_message,
|
||||
variables_pool=tool_variables,
|
||||
db_variables=tool_conversation_variables,
|
||||
model_instance=model_instance
|
||||
)
|
||||
invoke_result = assistant_cot_runner.run(
|
||||
model_instance=model_instance,
|
||||
conversation=conversation,
|
||||
message=message,
|
||||
query=query,
|
||||
@@ -229,10 +236,10 @@ class AssistantApplicationRunner(AppRunner):
|
||||
memory=memory,
|
||||
prompt_messages=prompt_message,
|
||||
variables_pool=tool_variables,
|
||||
db_variables=tool_conversation_variables
|
||||
db_variables=tool_conversation_variables,
|
||||
model_instance=model_instance
|
||||
)
|
||||
invoke_result = assistant_fc_runner.run(
|
||||
model_instance=model_instance,
|
||||
conversation=conversation,
|
||||
message=message,
|
||||
query=query,
|
||||
@@ -246,13 +253,13 @@ class AssistantApplicationRunner(AppRunner):
|
||||
agent=True
|
||||
)
|
||||
|
||||
def _load_tool_variables(self, conversation_id: str, user_id: str, tanent_id: str) -> ToolConversationVariables:
|
||||
def _load_tool_variables(self, conversation_id: str, user_id: str, tenant_id: str) -> ToolConversationVariables:
|
||||
"""
|
||||
load tool variables from database
|
||||
"""
|
||||
tool_variables: ToolConversationVariables = db.session.query(ToolConversationVariables).filter(
|
||||
ToolConversationVariables.conversation_id == conversation_id,
|
||||
ToolConversationVariables.tenant_id == tanent_id
|
||||
ToolConversationVariables.tenant_id == tenant_id
|
||||
).first()
|
||||
|
||||
if tool_variables:
|
||||
@@ -263,7 +270,7 @@ class AssistantApplicationRunner(AppRunner):
|
||||
tool_variables = ToolConversationVariables(
|
||||
conversation_id=conversation_id,
|
||||
user_id=user_id,
|
||||
tenant_id=tanent_id,
|
||||
tenant_id=tenant_id,
|
||||
variables_str='[]',
|
||||
)
|
||||
db.session.add(tool_variables)
|
||||
|
||||
@@ -4,8 +4,7 @@ from typing import Optional
|
||||
from core.app_runner.app_runner import AppRunner
|
||||
from core.application_queue_manager import ApplicationQueueManager, PublishFrom
|
||||
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
|
||||
from core.entities.application_entities import (ApplicationGenerateEntity, DatasetEntity,
|
||||
InvokeFrom, ModelConfigEntity)
|
||||
from core.entities.application_entities import ApplicationGenerateEntity, DatasetEntity, InvokeFrom, ModelConfigEntity
|
||||
from core.features.dataset_retrieval import DatasetRetrievalFeature
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_manager import ModelInstance
|
||||
|
||||
@@ -6,21 +6,21 @@ from typing import Generator, Optional, Union, cast
|
||||
from core.app_runner.moderation_handler import ModerationRule, OutputModerationHandler
|
||||
from core.application_queue_manager import ApplicationQueueManager, PublishFrom
|
||||
from core.entities.application_entities import ApplicationGenerateEntity, InvokeFrom
|
||||
from core.entities.queue_entities import (AnnotationReplyEvent, QueueAgentThoughtEvent, QueueErrorEvent,
|
||||
QueueMessageEndEvent, QueueMessageEvent, QueueMessageReplaceEvent,
|
||||
QueuePingEvent, QueueRetrieverResourcesEvent, QueueStopEvent,
|
||||
QueueMessageFileEvent, QueueAgentMessageEvent)
|
||||
from core.errors.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
|
||||
from core.entities.queue_entities import (AnnotationReplyEvent, QueueAgentMessageEvent, QueueAgentThoughtEvent,
|
||||
QueueErrorEvent, QueueMessageEndEvent, QueueMessageEvent,
|
||||
QueueMessageFileEvent, QueueMessageReplaceEvent, QueuePingEvent,
|
||||
QueueRetrieverResourcesEvent, QueueStopEvent)
|
||||
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
|
||||
from core.model_runtime.entities.message_entities import (AssistantPromptMessage, ImagePromptMessageContent,
|
||||
PromptMessage, PromptMessageContentType, PromptMessageRole,
|
||||
TextPromptMessageContent)
|
||||
from core.model_runtime.errors.invoke import InvokeAuthorizationError, InvokeError
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.tools.tool_file_manager import ToolFileManager
|
||||
from core.tools.tool_manager import ToolManager
|
||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||
from core.prompt.prompt_template import PromptTemplateParser
|
||||
from core.tools.tool_file_manager import ToolFileManager
|
||||
from core.tools.tool_manager import ToolManager
|
||||
from events.message_event import message_was_created
|
||||
from extensions.ext_database import db
|
||||
from models.model import Conversation, Message, MessageAgentThought, MessageFile
|
||||
|
||||
@@ -9,11 +9,12 @@ from core.app_runner.basic_app_runner import BasicApplicationRunner
|
||||
from core.app_runner.generate_task_pipeline import GenerateTaskPipeline
|
||||
from core.application_queue_manager import ApplicationQueueManager, ConversationTaskStoppedException, PublishFrom
|
||||
from core.entities.application_entities import (AdvancedChatPromptTemplateEntity,
|
||||
AdvancedCompletionPromptTemplateEntity, AgentEntity, AgentToolEntity,
|
||||
ApplicationGenerateEntity, AppOrchestrationConfigEntity, DatasetEntity,
|
||||
AdvancedCompletionPromptTemplateEntity, AgentEntity, AgentPromptEntity,
|
||||
AgentToolEntity, ApplicationGenerateEntity,
|
||||
AppOrchestrationConfigEntity, DatasetEntity,
|
||||
DatasetRetrieveConfigEntity, ExternalDataVariableEntity,
|
||||
FileUploadEntity, InvokeFrom, ModelConfigEntity, PromptTemplateEntity,
|
||||
SensitiveWordAvoidanceEntity, AgentPromptEntity)
|
||||
SensitiveWordAvoidanceEntity)
|
||||
from core.entities.model_entities import ModelStatus
|
||||
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
|
||||
from core.file.file_obj import FileObj
|
||||
|
||||
@@ -4,10 +4,10 @@ from enum import Enum
|
||||
from typing import Any, Generator
|
||||
|
||||
from core.entities.application_entities import InvokeFrom
|
||||
from core.entities.queue_entities import (AnnotationReplyEvent, AppQueueEvent, QueueAgentThoughtEvent, QueueErrorEvent,
|
||||
QueueMessage, QueueMessageEndEvent, QueueMessageEvent,
|
||||
QueueMessageReplaceEvent, QueuePingEvent, QueueRetrieverResourcesEvent,
|
||||
QueueStopEvent, QueueMessageFileEvent, QueueAgentMessageEvent)
|
||||
from core.entities.queue_entities import (AnnotationReplyEvent, AppQueueEvent, QueueAgentMessageEvent,
|
||||
QueueAgentThoughtEvent, QueueErrorEvent, QueueMessage, QueueMessageEndEvent,
|
||||
QueueMessageEvent, QueueMessageFileEvent, QueueMessageReplaceEvent,
|
||||
QueuePingEvent, QueueRetrieverResourcesEvent, QueueStopEvent)
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.model import MessageAgentThought, MessageFile
|
||||
|
||||
@@ -1,9 +1,10 @@
|
||||
import os
|
||||
from typing import Any, Dict, Optional, Union
|
||||
from pydantic import BaseModel
|
||||
|
||||
from langchain.callbacks.base import BaseCallbackHandler
|
||||
from langchain.input import print_text
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class DifyAgentCallbackHandler(BaseCallbackHandler, BaseModel):
|
||||
"""Callback Handler that prints to std out."""
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import logging
|
||||
from typing import List
|
||||
|
||||
from langchain.document_loaders.base import BaseLoader
|
||||
from langchain.schema import Document
|
||||
|
||||
|
||||
@@ -8,9 +8,8 @@ from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.model_entities import ModelPropertyKey
|
||||
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
|
||||
from extensions.ext_database import db
|
||||
from langchain.embeddings.base import Embeddings
|
||||
|
||||
from extensions.ext_redis import redis_client
|
||||
from langchain.embeddings.base import Embeddings
|
||||
from libs import helper
|
||||
from models.dataset import Embedding
|
||||
from sqlalchemy.exc import IntegrityError
|
||||
|
||||
@@ -1,12 +1,11 @@
|
||||
from enum import Enum
|
||||
from typing import Optional, Any, cast, Literal, Union
|
||||
|
||||
from pydantic import BaseModel
|
||||
from typing import Any, Literal, Optional, Union, cast
|
||||
|
||||
from core.entities.provider_configuration import ProviderModelBundle
|
||||
from core.file.file_obj import FileObj
|
||||
from core.model_runtime.entities.message_entities import PromptMessageRole
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class ModelConfigEntity(BaseModel):
|
||||
|
||||
@@ -9,6 +9,7 @@ from pydantic import BaseModel
|
||||
class QuotaUnit(Enum):
|
||||
TIMES = 'times'
|
||||
TOKENS = 'tokens'
|
||||
CREDITS = 'credits'
|
||||
|
||||
|
||||
class SystemConfigurationStatus(Enum):
|
||||
|
||||
@@ -1,27 +1,26 @@
|
||||
import logging
|
||||
from typing import cast, Optional, List
|
||||
|
||||
from langchain import WikipediaAPIWrapper
|
||||
from langchain.callbacks.base import BaseCallbackHandler
|
||||
from langchain.tools import BaseTool, WikipediaQueryRun, Tool
|
||||
from pydantic import BaseModel, Field
|
||||
from typing import List, Optional, cast
|
||||
|
||||
from core.agent.agent.agent_llm_callback import AgentLLMCallback
|
||||
from core.agent.agent_executor import PlanningStrategy, AgentConfiguration, AgentExecutor
|
||||
from core.agent.agent_executor import AgentConfiguration, AgentExecutor, PlanningStrategy
|
||||
from core.application_queue_manager import ApplicationQueueManager
|
||||
from core.callback_handler.agent_loop_gather_callback_handler import AgentLoopGatherCallbackHandler
|
||||
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
|
||||
from core.callback_handler.std_out_callback_handler import DifyStdOutCallbackHandler
|
||||
from core.entities.application_entities import ModelConfigEntity, InvokeFrom, \
|
||||
AgentEntity, AgentToolEntity, AppOrchestrationConfigEntity
|
||||
from core.entities.application_entities import (AgentEntity, AgentToolEntity, AppOrchestrationConfigEntity, InvokeFrom,
|
||||
ModelConfigEntity)
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_runtime.entities.model_entities import ModelFeature, ModelType
|
||||
from core.model_runtime.model_providers import model_provider_factory
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.tools.tool.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
|
||||
from extensions.ext_database import db
|
||||
from langchain import WikipediaAPIWrapper
|
||||
from langchain.callbacks.base import BaseCallbackHandler
|
||||
from langchain.tools import BaseTool, Tool, WikipediaQueryRun
|
||||
from models.dataset import Dataset
|
||||
from models.model import Message
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@@ -1,34 +1,32 @@
|
||||
import logging
|
||||
import json
|
||||
|
||||
from typing import Optional, List, Tuple, Union
|
||||
import logging
|
||||
from datetime import datetime
|
||||
from mimetypes import guess_extension
|
||||
from typing import List, Optional, Tuple, Union, cast
|
||||
|
||||
from core.app_runner.app_runner import AppRunner
|
||||
from extensions.ext_database import db
|
||||
|
||||
from models.model import MessageAgentThought, Message, MessageFile
|
||||
from models.tools import ToolConversationVariables
|
||||
|
||||
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolInvokeMessageBinary, \
|
||||
ToolRuntimeVariablePool, ToolParamter
|
||||
from core.tools.tool.tool import Tool
|
||||
from core.tools.tool_manager import ToolManager
|
||||
from core.tools.tool_file_manager import ToolFileManager
|
||||
from core.tools.tool.dataset_retriever_tool import DatasetRetrieverTool
|
||||
from core.app_runner.app_runner import AppRunner
|
||||
from core.application_queue_manager import ApplicationQueueManager
|
||||
from core.callback_handler.agent_tool_callback_handler import DifyAgentCallbackHandler
|
||||
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
|
||||
from core.entities.application_entities import ModelConfigEntity, AgentEntity, AgentToolEntity
|
||||
from core.application_queue_manager import ApplicationQueueManager
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.entities.application_entities import ModelConfigEntity, \
|
||||
AgentEntity, AppOrchestrationConfigEntity, ApplicationGenerateEntity, InvokeFrom
|
||||
from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageTool
|
||||
from core.model_runtime.entities.llm_entities import LLMUsage
|
||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||
from core.entities.application_entities import (AgentEntity, AgentToolEntity, ApplicationGenerateEntity,
|
||||
AppOrchestrationConfigEntity, InvokeFrom, ModelConfigEntity)
|
||||
from core.file.message_file_parser import FileTransferMethod
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.llm_entities import LLMUsage
|
||||
from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageTool
|
||||
from core.model_runtime.entities.model_entities import ModelFeature
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||
from core.tools.entities.tool_entities import (ToolInvokeMessage, ToolInvokeMessageBinary, ToolParameter,
|
||||
ToolRuntimeVariablePool)
|
||||
from core.tools.tool.dataset_retriever_tool import DatasetRetrieverTool
|
||||
from core.tools.tool.tool import Tool
|
||||
from core.tools.tool_file_manager import ToolFileManager
|
||||
from core.tools.tool_manager import ToolManager
|
||||
from extensions.ext_database import db
|
||||
from models.model import Message, MessageAgentThought, MessageFile
|
||||
from models.tools import ToolConversationVariables
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -45,6 +43,7 @@ class BaseAssistantApplicationRunner(AppRunner):
|
||||
prompt_messages: Optional[List[PromptMessage]] = None,
|
||||
variables_pool: Optional[ToolRuntimeVariablePool] = None,
|
||||
db_variables: Optional[ToolConversationVariables] = None,
|
||||
model_instance: ModelInstance = None
|
||||
) -> None:
|
||||
"""
|
||||
Agent runner
|
||||
@@ -71,6 +70,7 @@ class BaseAssistantApplicationRunner(AppRunner):
|
||||
self.history_prompt_messages = prompt_messages
|
||||
self.variables_pool = variables_pool
|
||||
self.db_variables_pool = db_variables
|
||||
self.model_instance = model_instance
|
||||
|
||||
# init callback
|
||||
self.agent_callback = DifyAgentCallbackHandler()
|
||||
@@ -95,9 +95,17 @@ class BaseAssistantApplicationRunner(AppRunner):
|
||||
MessageAgentThought.message_id == self.message.id,
|
||||
).count()
|
||||
|
||||
def _repacket_app_orchestration_config(self, app_orchestration_config: AppOrchestrationConfigEntity) -> AppOrchestrationConfigEntity:
|
||||
# check if model supports stream tool call
|
||||
llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
|
||||
model_schema = llm_model.get_model_schema(model_instance.model, model_instance.credentials)
|
||||
if model_schema and ModelFeature.STREAM_TOOL_CALL in (model_schema.features or []):
|
||||
self.stream_tool_call = True
|
||||
else:
|
||||
self.stream_tool_call = False
|
||||
|
||||
def _repack_app_orchestration_config(self, app_orchestration_config: AppOrchestrationConfigEntity) -> AppOrchestrationConfigEntity:
|
||||
"""
|
||||
Repacket app orchestration config
|
||||
Repack app orchestration config
|
||||
"""
|
||||
if app_orchestration_config.prompt_template.simple_prompt_template is None:
|
||||
app_orchestration_config.prompt_template.simple_prompt_template = ''
|
||||
@@ -113,7 +121,7 @@ class BaseAssistantApplicationRunner(AppRunner):
|
||||
if response.type == ToolInvokeMessage.MessageType.TEXT:
|
||||
result += response.message
|
||||
elif response.type == ToolInvokeMessage.MessageType.LINK:
|
||||
result += f"result link: {response.message}. please dirct user to check it."
|
||||
result += f"result link: {response.message}. please tell user to check it."
|
||||
elif response.type == ToolInvokeMessage.MessageType.IMAGE_LINK or \
|
||||
response.type == ToolInvokeMessage.MessageType.IMAGE:
|
||||
result += f"image has been created and sent to user already, you should tell user to check it now."
|
||||
@@ -128,7 +136,7 @@ class BaseAssistantApplicationRunner(AppRunner):
|
||||
"""
|
||||
tool_entity = ToolManager.get_tool_runtime(
|
||||
provider_type=tool.provider_type, provider_name=tool.provider_id, tool_name=tool.tool_name,
|
||||
tanent_id=self.application_generate_entity.tenant_id,
|
||||
tenant_id=self.application_generate_entity.tenant_id,
|
||||
agent_callback=self.agent_callback
|
||||
)
|
||||
tool_entity.load_variables(self.variables_pool)
|
||||
@@ -172,20 +180,20 @@ class BaseAssistantApplicationRunner(AppRunner):
|
||||
for parameter in parameters:
|
||||
parameter_type = 'string'
|
||||
enum = []
|
||||
if parameter.type == ToolParamter.ToolParameterType.STRING:
|
||||
if parameter.type == ToolParameter.ToolParameterType.STRING:
|
||||
parameter_type = 'string'
|
||||
elif parameter.type == ToolParamter.ToolParameterType.BOOLEAN:
|
||||
elif parameter.type == ToolParameter.ToolParameterType.BOOLEAN:
|
||||
parameter_type = 'boolean'
|
||||
elif parameter.type == ToolParamter.ToolParameterType.NUMBER:
|
||||
elif parameter.type == ToolParameter.ToolParameterType.NUMBER:
|
||||
parameter_type = 'number'
|
||||
elif parameter.type == ToolParamter.ToolParameterType.SELECT:
|
||||
elif parameter.type == ToolParameter.ToolParameterType.SELECT:
|
||||
for option in parameter.options:
|
||||
enum.append(option.value)
|
||||
parameter_type = 'string'
|
||||
else:
|
||||
raise ValueError(f"parameter type {parameter.type} is not supported")
|
||||
|
||||
if parameter.form == ToolParamter.ToolParameterForm.FORM:
|
||||
if parameter.form == ToolParameter.ToolParameterForm.FORM:
|
||||
# get tool parameter from form
|
||||
tool_parameter_config = tool.tool_parameters.get(parameter.name)
|
||||
if not tool_parameter_config:
|
||||
@@ -194,7 +202,7 @@ class BaseAssistantApplicationRunner(AppRunner):
|
||||
if not tool_parameter_config and parameter.required:
|
||||
raise ValueError(f"tool parameter {parameter.name} not found in tool config")
|
||||
|
||||
if parameter.type == ToolParamter.ToolParameterType.SELECT:
|
||||
if parameter.type == ToolParameter.ToolParameterType.SELECT:
|
||||
# check if tool_parameter_config in options
|
||||
options = list(map(lambda x: x.value, parameter.options))
|
||||
if tool_parameter_config not in options:
|
||||
@@ -202,7 +210,7 @@ class BaseAssistantApplicationRunner(AppRunner):
|
||||
|
||||
# convert tool parameter config to correct type
|
||||
try:
|
||||
if parameter.type == ToolParamter.ToolParameterType.NUMBER:
|
||||
if parameter.type == ToolParameter.ToolParameterType.NUMBER:
|
||||
# check if tool parameter is integer
|
||||
if isinstance(tool_parameter_config, int):
|
||||
tool_parameter_config = tool_parameter_config
|
||||
@@ -213,11 +221,11 @@ class BaseAssistantApplicationRunner(AppRunner):
|
||||
tool_parameter_config = float(tool_parameter_config)
|
||||
else:
|
||||
tool_parameter_config = int(tool_parameter_config)
|
||||
elif parameter.type == ToolParamter.ToolParameterType.BOOLEAN:
|
||||
elif parameter.type == ToolParameter.ToolParameterType.BOOLEAN:
|
||||
tool_parameter_config = bool(tool_parameter_config)
|
||||
elif parameter.type not in [ToolParamter.ToolParameterType.SELECT, ToolParamter.ToolParameterType.STRING]:
|
||||
elif parameter.type not in [ToolParameter.ToolParameterType.SELECT, ToolParameter.ToolParameterType.STRING]:
|
||||
tool_parameter_config = str(tool_parameter_config)
|
||||
elif parameter.type == ToolParamter.ToolParameterType:
|
||||
elif parameter.type == ToolParameter.ToolParameterType:
|
||||
tool_parameter_config = str(tool_parameter_config)
|
||||
except Exception as e:
|
||||
raise ValueError(f"tool parameter {parameter.name} value {tool_parameter_config} is not correct type")
|
||||
@@ -225,7 +233,7 @@ class BaseAssistantApplicationRunner(AppRunner):
|
||||
# save tool parameter to tool entity memory
|
||||
runtime_parameters[parameter.name] = tool_parameter_config
|
||||
|
||||
elif parameter.form == ToolParamter.ToolParameterForm.LLM:
|
||||
elif parameter.form == ToolParameter.ToolParameterForm.LLM:
|
||||
message_tool.parameters['properties'][parameter.name] = {
|
||||
"type": parameter_type,
|
||||
"description": parameter.llm_description or '',
|
||||
@@ -279,20 +287,20 @@ class BaseAssistantApplicationRunner(AppRunner):
|
||||
for parameter in tool_runtime_parameters:
|
||||
parameter_type = 'string'
|
||||
enum = []
|
||||
if parameter.type == ToolParamter.ToolParameterType.STRING:
|
||||
if parameter.type == ToolParameter.ToolParameterType.STRING:
|
||||
parameter_type = 'string'
|
||||
elif parameter.type == ToolParamter.ToolParameterType.BOOLEAN:
|
||||
elif parameter.type == ToolParameter.ToolParameterType.BOOLEAN:
|
||||
parameter_type = 'boolean'
|
||||
elif parameter.type == ToolParamter.ToolParameterType.NUMBER:
|
||||
elif parameter.type == ToolParameter.ToolParameterType.NUMBER:
|
||||
parameter_type = 'number'
|
||||
elif parameter.type == ToolParamter.ToolParameterType.SELECT:
|
||||
elif parameter.type == ToolParameter.ToolParameterType.SELECT:
|
||||
for option in parameter.options:
|
||||
enum.append(option.value)
|
||||
parameter_type = 'string'
|
||||
else:
|
||||
raise ValueError(f"parameter type {parameter.type} is not supported")
|
||||
|
||||
if parameter.form == ToolParamter.ToolParameterForm.LLM:
|
||||
if parameter.form == ToolParameter.ToolParameterForm.LLM:
|
||||
prompt_tool.parameters['properties'][parameter.name] = {
|
||||
"type": parameter_type,
|
||||
"description": parameter.llm_description or '',
|
||||
|
||||
@@ -1,27 +1,23 @@
|
||||
import json
|
||||
import logging
|
||||
import re
|
||||
from typing import Literal, Union, Generator, Dict, List
|
||||
from typing import Dict, Generator, List, Literal, Union
|
||||
|
||||
from core.entities.application_entities import AgentPromptEntity, AgentScratchpadUnit
|
||||
from core.application_queue_manager import PublishFrom
|
||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||
from core.model_runtime.entities.message_entities import PromptMessageTool, PromptMessage, \
|
||||
UserPromptMessage, SystemPromptMessage, AssistantPromptMessage
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMUsage, LLMResultChunk, LLMResultChunkDelta
|
||||
from core.model_manager import ModelInstance
|
||||
|
||||
from core.tools.errors import ToolInvokeError, ToolNotFoundError, \
|
||||
ToolNotSupportedError, ToolProviderNotFoundError, ToolParamterValidationError, \
|
||||
ToolProviderCredentialValidationError
|
||||
|
||||
from core.entities.application_entities import AgentPromptEntity, AgentScratchpadUnit
|
||||
from core.features.assistant_base_runner import BaseAssistantApplicationRunner
|
||||
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
|
||||
from core.model_runtime.entities.message_entities import (AssistantPromptMessage, PromptMessage, PromptMessageTool,
|
||||
SystemPromptMessage, UserPromptMessage)
|
||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||
from core.tools.errors import (ToolInvokeError, ToolNotFoundError, ToolNotSupportedError, ToolParameterValidationError,
|
||||
ToolProviderCredentialValidationError, ToolProviderNotFoundError)
|
||||
from models.model import Conversation, Message
|
||||
|
||||
|
||||
class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
|
||||
def run(self, model_instance: ModelInstance,
|
||||
conversation: Conversation,
|
||||
def run(self, conversation: Conversation,
|
||||
message: Message,
|
||||
query: str,
|
||||
) -> Union[Generator, LLMResult]:
|
||||
@@ -29,7 +25,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
|
||||
Run Cot agent application
|
||||
"""
|
||||
app_orchestration_config = self.app_orchestration_config
|
||||
self._repacket_app_orchestration_config(app_orchestration_config)
|
||||
self._repack_app_orchestration_config(app_orchestration_config)
|
||||
|
||||
agent_scratchpad: List[AgentScratchpadUnit] = []
|
||||
|
||||
@@ -72,7 +68,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
|
||||
}
|
||||
final_answer = ''
|
||||
|
||||
def increse_usage(final_llm_usage_dict: Dict[str, LLMUsage], usage: LLMUsage):
|
||||
def increase_usage(final_llm_usage_dict: Dict[str, LLMUsage], usage: LLMUsage):
|
||||
if not final_llm_usage_dict['usage']:
|
||||
final_llm_usage_dict['usage'] = usage
|
||||
else:
|
||||
@@ -82,6 +78,8 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
|
||||
llm_usage.prompt_price += usage.prompt_price
|
||||
llm_usage.completion_price += usage.completion_price
|
||||
|
||||
model_instance = self.model_instance
|
||||
|
||||
while function_call_state and iteration_step <= max_iteration_steps:
|
||||
# continue to run until there is not any tool call
|
||||
function_call_state = False
|
||||
@@ -104,7 +102,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
|
||||
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
|
||||
|
||||
# update prompt messages
|
||||
prompt_messages = self._originze_cot_prompt_messages(
|
||||
prompt_messages = self._organize_cot_prompt_messages(
|
||||
mode=app_orchestration_config.model_config.mode,
|
||||
prompt_messages=prompt_messages,
|
||||
tools=prompt_messages_tools,
|
||||
@@ -137,7 +135,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
|
||||
|
||||
# get llm usage
|
||||
if llm_result.usage:
|
||||
increse_usage(llm_usage, llm_result.usage)
|
||||
increase_usage(llm_usage, llm_result.usage)
|
||||
|
||||
# publish agent thought if it's first iteration
|
||||
if iteration_step == 1:
|
||||
@@ -207,7 +205,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
|
||||
try:
|
||||
tool_response = tool_instance.invoke(
|
||||
user_id=self.user_id,
|
||||
tool_paramters=tool_call_args if isinstance(tool_call_args, dict) else json.loads(tool_call_args)
|
||||
tool_parameters=tool_call_args if isinstance(tool_call_args, dict) else json.loads(tool_call_args)
|
||||
)
|
||||
# transform tool response to llm friendly response
|
||||
tool_response = self.transform_tool_invoke_messages(tool_response)
|
||||
@@ -225,15 +223,15 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
|
||||
|
||||
message_file_ids = [message_file.id for message_file, _ in message_files]
|
||||
except ToolProviderCredentialValidationError as e:
|
||||
error_response = f"Plese check your tool provider credentials"
|
||||
error_response = f"Please check your tool provider credentials"
|
||||
except (
|
||||
ToolNotFoundError, ToolNotSupportedError, ToolProviderNotFoundError
|
||||
) as e:
|
||||
error_response = f"there is not a tool named {tool_call_name}"
|
||||
except (
|
||||
ToolParamterValidationError
|
||||
ToolParameterValidationError
|
||||
) as e:
|
||||
error_response = f"tool paramters validation error: {e}, please check your tool paramters"
|
||||
error_response = f"tool parameters validation error: {e}, please check your tool parameters"
|
||||
except ToolInvokeError as e:
|
||||
error_response = f"tool invoke error: {e}"
|
||||
except Exception as e:
|
||||
@@ -390,7 +388,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
|
||||
# remove Action: xxx from agent thought
|
||||
agent_thought = re.sub(r'Action:.*', '', agent_thought, flags=re.IGNORECASE)
|
||||
|
||||
if action_name and action_input:
|
||||
if action_name and action_input is not None:
|
||||
return AgentScratchpadUnit(
|
||||
agent_response=content,
|
||||
thought=agent_thought,
|
||||
@@ -468,7 +466,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
|
||||
if not next_iteration.find("{{observation}}") >= 0:
|
||||
raise ValueError("{{observation}} is required in next_iteration")
|
||||
|
||||
def _convert_strachpad_list_to_str(self, agent_scratchpad: List[AgentScratchpadUnit]) -> str:
|
||||
def _convert_scratchpad_list_to_str(self, agent_scratchpad: List[AgentScratchpadUnit]) -> str:
|
||||
"""
|
||||
convert agent scratchpad list to str
|
||||
"""
|
||||
@@ -480,7 +478,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
|
||||
|
||||
return result
|
||||
|
||||
def _originze_cot_prompt_messages(self, mode: Literal["completion", "chat"],
|
||||
def _organize_cot_prompt_messages(self, mode: Literal["completion", "chat"],
|
||||
prompt_messages: List[PromptMessage],
|
||||
tools: List[PromptMessageTool],
|
||||
agent_scratchpad: List[AgentScratchpadUnit],
|
||||
@@ -489,7 +487,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
|
||||
input: str,
|
||||
) -> List[PromptMessage]:
|
||||
"""
|
||||
originze chain of thought prompt messages, a standard prompt message is like:
|
||||
organize chain of thought prompt messages, a standard prompt message is like:
|
||||
Respond to the human as helpfully and accurately as possible.
|
||||
|
||||
{{instruction}}
|
||||
@@ -527,7 +525,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
|
||||
.replace("{{tools}}", tools_str) \
|
||||
.replace("{{tool_names}}", tool_names)
|
||||
|
||||
# originze prompt messages
|
||||
# organize prompt messages
|
||||
if mode == "chat":
|
||||
# override system message
|
||||
overrided = False
|
||||
@@ -558,7 +556,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
|
||||
return prompt_messages
|
||||
elif mode == "completion":
|
||||
# parse agent scratchpad
|
||||
agent_scratchpad_str = self._convert_strachpad_list_to_str(agent_scratchpad)
|
||||
agent_scratchpad_str = self._convert_scratchpad_list_to_str(agent_scratchpad)
|
||||
# parse prompt messages
|
||||
return [UserPromptMessage(
|
||||
content=first_prompt.replace("{{instruction}}", instruction)
|
||||
|
||||
@@ -1,27 +1,21 @@
|
||||
import json
|
||||
import logging
|
||||
from typing import Any, Dict, Generator, List, Tuple, Union
|
||||
|
||||
from typing import Union, Generator, Dict, Any, Tuple, List
|
||||
|
||||
from core.model_runtime.entities.message_entities import PromptMessage, UserPromptMessage,\
|
||||
SystemPromptMessage, AssistantPromptMessage, ToolPromptMessage, PromptMessageTool
|
||||
from core.model_runtime.entities.llm_entities import LLMResultChunk, LLMResult, LLMUsage
|
||||
from core.model_manager import ModelInstance
|
||||
from core.application_queue_manager import PublishFrom
|
||||
|
||||
from core.tools.errors import ToolInvokeError, ToolNotFoundError, \
|
||||
ToolNotSupportedError, ToolProviderNotFoundError, ToolParamterValidationError, \
|
||||
ToolProviderCredentialValidationError
|
||||
|
||||
from core.features.assistant_base_runner import BaseAssistantApplicationRunner
|
||||
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
|
||||
from core.model_runtime.entities.message_entities import (AssistantPromptMessage, PromptMessage, PromptMessageTool,
|
||||
SystemPromptMessage, ToolPromptMessage, UserPromptMessage)
|
||||
from core.tools.errors import (ToolInvokeError, ToolNotFoundError, ToolNotSupportedError, ToolParameterValidationError,
|
||||
ToolProviderCredentialValidationError, ToolProviderNotFoundError)
|
||||
from models.model import Conversation, Message, MessageAgentThought
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
|
||||
def run(self, model_instance: ModelInstance,
|
||||
conversation: Conversation,
|
||||
def run(self, conversation: Conversation,
|
||||
message: Message,
|
||||
query: str,
|
||||
) -> Generator[LLMResultChunk, None, None]:
|
||||
@@ -81,6 +75,8 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
|
||||
llm_usage.prompt_price += usage.prompt_price
|
||||
llm_usage.completion_price += usage.completion_price
|
||||
|
||||
model_instance = self.model_instance
|
||||
|
||||
while function_call_state and iteration_step <= max_iteration_steps:
|
||||
function_call_state = False
|
||||
|
||||
@@ -96,17 +92,16 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
|
||||
tool_input='',
|
||||
messages_ids=message_file_ids
|
||||
)
|
||||
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
|
||||
|
||||
# recale llm max tokens
|
||||
self.recale_llm_max_tokens(self.model_config, prompt_messages)
|
||||
# invoke model
|
||||
chunks: Generator[LLMResultChunk, None, None] = model_instance.invoke_llm(
|
||||
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm(
|
||||
prompt_messages=prompt_messages,
|
||||
model_parameters=app_orchestration_config.model_config.parameters,
|
||||
tools=prompt_messages_tools,
|
||||
stop=app_orchestration_config.model_config.stop,
|
||||
stream=True,
|
||||
stream=self.stream_tool_call,
|
||||
user=self.user_id,
|
||||
callbacks=[],
|
||||
)
|
||||
@@ -122,11 +117,45 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
|
||||
|
||||
current_llm_usage = None
|
||||
|
||||
for chunk in chunks:
|
||||
if self.stream_tool_call:
|
||||
is_first_chunk = True
|
||||
for chunk in chunks:
|
||||
if is_first_chunk:
|
||||
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
|
||||
is_first_chunk = False
|
||||
# check if there is any tool call
|
||||
if self.check_tool_calls(chunk):
|
||||
function_call_state = True
|
||||
tool_calls.extend(self.extract_tool_calls(chunk))
|
||||
tool_call_names = ';'.join([tool_call[1] for tool_call in tool_calls])
|
||||
try:
|
||||
tool_call_inputs = json.dumps({
|
||||
tool_call[1]: tool_call[2] for tool_call in tool_calls
|
||||
}, ensure_ascii=False)
|
||||
except json.JSONDecodeError as e:
|
||||
# ensure ascii to avoid encoding error
|
||||
tool_call_inputs = json.dumps({
|
||||
tool_call[1]: tool_call[2] for tool_call in tool_calls
|
||||
})
|
||||
|
||||
if chunk.delta.message and chunk.delta.message.content:
|
||||
if isinstance(chunk.delta.message.content, list):
|
||||
for content in chunk.delta.message.content:
|
||||
response += content.data
|
||||
else:
|
||||
response += chunk.delta.message.content
|
||||
|
||||
if chunk.delta.usage:
|
||||
increase_usage(llm_usage, chunk.delta.usage)
|
||||
current_llm_usage = chunk.delta.usage
|
||||
|
||||
yield chunk
|
||||
else:
|
||||
result: LLMResult = chunks
|
||||
# check if there is any tool call
|
||||
if self.check_tool_calls(chunk):
|
||||
if self.check_blocking_tool_calls(result):
|
||||
function_call_state = True
|
||||
tool_calls.extend(self.extract_tool_calls(chunk))
|
||||
tool_calls.extend(self.extract_blocking_tool_calls(result))
|
||||
tool_call_names = ';'.join([tool_call[1] for tool_call in tool_calls])
|
||||
try:
|
||||
tool_call_inputs = json.dumps({
|
||||
@@ -138,18 +167,46 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
|
||||
tool_call[1]: tool_call[2] for tool_call in tool_calls
|
||||
})
|
||||
|
||||
if chunk.delta.message and chunk.delta.message.content:
|
||||
if isinstance(chunk.delta.message.content, list):
|
||||
for content in chunk.delta.message.content:
|
||||
if result.usage:
|
||||
increase_usage(llm_usage, result.usage)
|
||||
current_llm_usage = result.usage
|
||||
|
||||
if result.message and result.message.content:
|
||||
if isinstance(result.message.content, list):
|
||||
for content in result.message.content:
|
||||
response += content.data
|
||||
else:
|
||||
response += chunk.delta.message.content
|
||||
response += result.message.content
|
||||
|
||||
if chunk.delta.usage:
|
||||
increase_usage(llm_usage, chunk.delta.usage)
|
||||
current_llm_usage = chunk.delta.usage
|
||||
if not result.message.content:
|
||||
result.message.content = ''
|
||||
|
||||
yield chunk
|
||||
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
|
||||
|
||||
yield LLMResultChunk(
|
||||
model=model_instance.model,
|
||||
prompt_messages=result.prompt_messages,
|
||||
system_fingerprint=result.system_fingerprint,
|
||||
delta=LLMResultChunkDelta(
|
||||
index=0,
|
||||
message=result.message,
|
||||
usage=result.usage,
|
||||
)
|
||||
)
|
||||
|
||||
if tool_calls:
|
||||
prompt_messages.append(AssistantPromptMessage(
|
||||
content='',
|
||||
name='',
|
||||
tool_calls=[AssistantPromptMessage.ToolCall(
|
||||
id=tool_call[0],
|
||||
type='function',
|
||||
function=AssistantPromptMessage.ToolCall.ToolCallFunction(
|
||||
name=tool_call[1],
|
||||
arguments=json.dumps(tool_call[2], ensure_ascii=False)
|
||||
)
|
||||
) for tool_call in tool_calls]
|
||||
))
|
||||
|
||||
# save thought
|
||||
self.save_agent_thought(
|
||||
@@ -167,6 +224,12 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
|
||||
|
||||
final_answer += response + '\n'
|
||||
|
||||
# update prompt messages
|
||||
if response.strip():
|
||||
prompt_messages.append(AssistantPromptMessage(
|
||||
content=response,
|
||||
))
|
||||
|
||||
# call tools
|
||||
tool_responses = []
|
||||
for tool_call_id, tool_call_name, tool_call_args in tool_calls:
|
||||
@@ -184,7 +247,7 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
|
||||
try:
|
||||
tool_invoke_message = tool_instance.invoke(
|
||||
user_id=self.user_id,
|
||||
tool_paramters=tool_call_args,
|
||||
tool_parameters=tool_call_args,
|
||||
)
|
||||
# transform tool invoke message to get LLM friendly message
|
||||
tool_invoke_message = self.transform_tool_invoke_messages(tool_invoke_message)
|
||||
@@ -203,15 +266,15 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
|
||||
message_file_ids.append(message_file.id)
|
||||
|
||||
except ToolProviderCredentialValidationError as e:
|
||||
error_response = f"Plese check your tool provider credentials"
|
||||
error_response = f"Please check your tool provider credentials"
|
||||
except (
|
||||
ToolNotFoundError, ToolNotSupportedError, ToolProviderNotFoundError
|
||||
) as e:
|
||||
error_response = f"there is not a tool named {tool_call_name}"
|
||||
except (
|
||||
ToolParamterValidationError
|
||||
ToolParameterValidationError
|
||||
) as e:
|
||||
error_response = f"tool paramters validation error: {e}, please check your tool paramters"
|
||||
error_response = f"tool parameters validation error: {e}, please check your tool parameters"
|
||||
except ToolInvokeError as e:
|
||||
error_response = f"tool invoke error: {e}"
|
||||
except Exception as e:
|
||||
@@ -256,12 +319,6 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
|
||||
)
|
||||
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
|
||||
|
||||
# update prompt messages
|
||||
if response.strip():
|
||||
prompt_messages.append(AssistantPromptMessage(
|
||||
content=response,
|
||||
))
|
||||
|
||||
# update prompt tool
|
||||
for prompt_tool in prompt_messages_tools:
|
||||
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
|
||||
@@ -287,6 +344,14 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
|
||||
if llm_result_chunk.delta.message.tool_calls:
|
||||
return True
|
||||
return False
|
||||
|
||||
def check_blocking_tool_calls(self, llm_result: LLMResult) -> bool:
|
||||
"""
|
||||
Check if there is any blocking tool call in llm result
|
||||
"""
|
||||
if llm_result.message.tool_calls:
|
||||
return True
|
||||
return False
|
||||
|
||||
def extract_tool_calls(self, llm_result_chunk: LLMResultChunk) -> Union[None, List[Tuple[str, str, Dict[str, Any]]]]:
|
||||
"""
|
||||
@@ -304,6 +369,23 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
|
||||
))
|
||||
|
||||
return tool_calls
|
||||
|
||||
def extract_blocking_tool_calls(self, llm_result: LLMResult) -> Union[None, List[Tuple[str, str, Dict[str, Any]]]]:
|
||||
"""
|
||||
Extract blocking tool calls from llm result
|
||||
|
||||
Returns:
|
||||
List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
|
||||
"""
|
||||
tool_calls = []
|
||||
for prompt_message in llm_result.message.tool_calls:
|
||||
tool_calls.append((
|
||||
prompt_message.id,
|
||||
prompt_message.function.name,
|
||||
json.loads(prompt_message.function.arguments),
|
||||
))
|
||||
|
||||
return tool_calls
|
||||
|
||||
def organize_prompt_messages(self, prompt_template: str,
|
||||
query: str = None,
|
||||
|
||||
@@ -1,11 +1,11 @@
|
||||
from typing import Dict, List, Optional, Union
|
||||
|
||||
import requests
|
||||
from core.file.file_obj import FileObj, FileTransferMethod, FileType, FileBelongsTo
|
||||
from services.file_service import IMAGE_EXTENSIONS
|
||||
from core.file.file_obj import FileBelongsTo, FileObj, FileTransferMethod, FileType
|
||||
from extensions.ext_database import db
|
||||
from models.account import Account
|
||||
from models.model import AppModelConfig, EndUser, MessageFile, UploadFile
|
||||
from services.file_service import IMAGE_EXTENSIONS
|
||||
|
||||
|
||||
class MessageFileParser:
|
||||
|
||||
@@ -2,7 +2,7 @@ from typing import Optional
|
||||
|
||||
from core.entities.provider_entities import QuotaUnit, RestrictModel
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from flask import Flask, Config
|
||||
from flask import Config, Flask
|
||||
from models.provider import ProviderQuotaType
|
||||
from pydantic import BaseModel
|
||||
|
||||
@@ -20,10 +20,6 @@ class TrialHostingQuota(HostingQuota):
|
||||
|
||||
class PaidHostingQuota(HostingQuota):
|
||||
quota_type: ProviderQuotaType = ProviderQuotaType.PAID
|
||||
stripe_price_id: str = None
|
||||
increase_quota: int = 1
|
||||
min_quantity: int = 20
|
||||
max_quantity: int = 100
|
||||
|
||||
|
||||
class FreeHostingQuota(HostingQuota):
|
||||
@@ -102,7 +98,7 @@ class HostingConfiguration:
|
||||
)
|
||||
|
||||
def init_openai(self, app_config: Config) -> HostingProvider:
|
||||
quota_unit = QuotaUnit.TIMES
|
||||
quota_unit = QuotaUnit.CREDITS
|
||||
quotas = []
|
||||
|
||||
if app_config.get("HOSTED_OPENAI_TRIAL_ENABLED"):
|
||||
@@ -114,6 +110,8 @@ class HostingConfiguration:
|
||||
RestrictModel(model="gpt-3.5-turbo-1106", model_type=ModelType.LLM),
|
||||
RestrictModel(model="gpt-3.5-turbo-instruct", model_type=ModelType.LLM),
|
||||
RestrictModel(model="gpt-3.5-turbo-16k", model_type=ModelType.LLM),
|
||||
RestrictModel(model="gpt-3.5-turbo-16k-0613", model_type=ModelType.LLM),
|
||||
RestrictModel(model="gpt-3.5-turbo-0613", model_type=ModelType.LLM),
|
||||
RestrictModel(model="text-davinci-003", model_type=ModelType.LLM),
|
||||
RestrictModel(model="whisper-1", model_type=ModelType.SPEECH2TEXT),
|
||||
]
|
||||
@@ -122,10 +120,20 @@ class HostingConfiguration:
|
||||
|
||||
if app_config.get("HOSTED_OPENAI_PAID_ENABLED"):
|
||||
paid_quota = PaidHostingQuota(
|
||||
stripe_price_id=app_config.get("HOSTED_OPENAI_PAID_STRIPE_PRICE_ID"),
|
||||
increase_quota=int(app_config.get("HOSTED_OPENAI_PAID_INCREASE_QUOTA", "1")),
|
||||
min_quantity=int(app_config.get("HOSTED_OPENAI_PAID_MIN_QUANTITY", "1")),
|
||||
max_quantity=int(app_config.get("HOSTED_OPENAI_PAID_MAX_QUANTITY", "1"))
|
||||
restrict_models=[
|
||||
RestrictModel(model="gpt-4", model_type=ModelType.LLM),
|
||||
RestrictModel(model="gpt-4-turbo-preview", model_type=ModelType.LLM),
|
||||
RestrictModel(model="gpt-4-32k", model_type=ModelType.LLM),
|
||||
RestrictModel(model="gpt-4-1106-preview", model_type=ModelType.LLM),
|
||||
RestrictModel(model="gpt-3.5-turbo", model_type=ModelType.LLM),
|
||||
RestrictModel(model="gpt-3.5-turbo-16k", model_type=ModelType.LLM),
|
||||
RestrictModel(model="gpt-3.5-turbo-16k-0613", model_type=ModelType.LLM),
|
||||
RestrictModel(model="gpt-3.5-turbo-1106", model_type=ModelType.LLM),
|
||||
RestrictModel(model="gpt-4-0125-preview", model_type=ModelType.LLM),
|
||||
RestrictModel(model="gpt-3.5-turbo-0613", model_type=ModelType.LLM),
|
||||
RestrictModel(model="gpt-3.5-turbo-instruct", model_type=ModelType.LLM),
|
||||
RestrictModel(model="text-davinci-003", model_type=ModelType.LLM),
|
||||
]
|
||||
)
|
||||
quotas.append(paid_quota)
|
||||
|
||||
@@ -164,12 +172,7 @@ class HostingConfiguration:
|
||||
quotas.append(trial_quota)
|
||||
|
||||
if app_config.get("HOSTED_ANTHROPIC_PAID_ENABLED"):
|
||||
paid_quota = PaidHostingQuota(
|
||||
stripe_price_id=app_config.get("HOSTED_ANTHROPIC_PAID_STRIPE_PRICE_ID"),
|
||||
increase_quota=int(app_config.get("HOSTED_ANTHROPIC_PAID_INCREASE_QUOTA", "1000000")),
|
||||
min_quantity=int(app_config.get("HOSTED_ANTHROPIC_PAID_MIN_QUANTITY", "20")),
|
||||
max_quantity=int(app_config.get("HOSTED_ANTHROPIC_PAID_MAX_QUANTITY", "100"))
|
||||
)
|
||||
paid_quota = PaidHostingQuota()
|
||||
quotas.append(paid_quota)
|
||||
|
||||
if len(quotas) > 0:
|
||||
|
||||
@@ -13,7 +13,7 @@ from core.docstore.dataset_docstore import DatasetDocumentStore
|
||||
from core.errors.error import ProviderTokenNotInitError
|
||||
from core.generator.llm_generator import LLMGenerator
|
||||
from core.index.index import IndexBuilder
|
||||
from core.model_manager import ModelManager, ModelInstance
|
||||
from core.model_manager import ModelInstance, ModelManager
|
||||
from core.model_runtime.entities.model_entities import ModelType, PriceType
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
|
||||
@@ -562,7 +562,7 @@ class IndexingRunner:
|
||||
|
||||
character_splitter = FixedRecursiveCharacterTextSplitter.from_encoder(
|
||||
chunk_size=segmentation["max_tokens"],
|
||||
chunk_overlap=0,
|
||||
chunk_overlap=segmentation.get('chunk_overlap', 0),
|
||||
fixed_separator=separator,
|
||||
separators=["\n\n", "。", ".", " ", ""],
|
||||
embedding_model_instance=embedding_model_instance
|
||||
@@ -571,7 +571,7 @@ class IndexingRunner:
|
||||
# Automatic segmentation
|
||||
character_splitter = EnhanceRecursiveCharacterTextSplitter.from_encoder(
|
||||
chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'],
|
||||
chunk_overlap=0,
|
||||
chunk_overlap=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['chunk_overlap'],
|
||||
separators=["\n\n", "。", ".", " ", ""],
|
||||
embedding_model_instance=embedding_model_instance
|
||||
)
|
||||
|
||||
@@ -12,8 +12,8 @@ from core.model_runtime.model_providers.__base.large_language_model import Large
|
||||
from core.model_runtime.model_providers.__base.moderation_model import ModerationModel
|
||||
from core.model_runtime.model_providers.__base.rerank_model import RerankModel
|
||||
from core.model_runtime.model_providers.__base.speech2text_model import Speech2TextModel
|
||||
from core.model_runtime.model_providers.__base.tts_model import TTSModel
|
||||
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
|
||||
from core.model_runtime.model_providers.__base.tts_model import TTSModel
|
||||
from core.provider_manager import ProviderManager
|
||||
|
||||
|
||||
|
||||
@@ -78,6 +78,7 @@ class ModelFeature(Enum):
|
||||
MULTI_TOOL_CALL = "multi-tool-call"
|
||||
AGENT_THOUGHT = "agent-thought"
|
||||
VISION = "vision"
|
||||
STREAM_TOOL_CALL = "stream-tool-call"
|
||||
|
||||
|
||||
class DefaultParameterName(Enum):
|
||||
|
||||
@@ -1,13 +1,12 @@
|
||||
import uuid
|
||||
import hashlib
|
||||
import subprocess
|
||||
import uuid
|
||||
from abc import abstractmethod
|
||||
from typing import Optional
|
||||
|
||||
from core.model_runtime.entities.model_entities import ModelPropertyKey, ModelType
|
||||
from core.model_runtime.errors.invoke import InvokeBadRequestError
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.model_runtime.model_providers.__base.ai_model import AIModel
|
||||
from core.model_runtime.entities.model_entities import ModelPropertyKey
|
||||
|
||||
|
||||
class TTSModel(AIModel):
|
||||
|
||||
@@ -36,6 +36,7 @@ LLM_BASE_MODELS = [
|
||||
features=[
|
||||
ModelFeature.AGENT_THOUGHT,
|
||||
ModelFeature.MULTI_TOOL_CALL,
|
||||
ModelFeature.STREAM_TOOL_CALL,
|
||||
],
|
||||
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
|
||||
model_properties={
|
||||
@@ -80,6 +81,7 @@ LLM_BASE_MODELS = [
|
||||
features=[
|
||||
ModelFeature.AGENT_THOUGHT,
|
||||
ModelFeature.MULTI_TOOL_CALL,
|
||||
ModelFeature.STREAM_TOOL_CALL,
|
||||
],
|
||||
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
|
||||
model_properties={
|
||||
@@ -124,6 +126,7 @@ LLM_BASE_MODELS = [
|
||||
features=[
|
||||
ModelFeature.AGENT_THOUGHT,
|
||||
ModelFeature.MULTI_TOOL_CALL,
|
||||
ModelFeature.STREAM_TOOL_CALL,
|
||||
],
|
||||
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
|
||||
model_properties={
|
||||
@@ -198,6 +201,7 @@ LLM_BASE_MODELS = [
|
||||
features=[
|
||||
ModelFeature.AGENT_THOUGHT,
|
||||
ModelFeature.MULTI_TOOL_CALL,
|
||||
ModelFeature.STREAM_TOOL_CALL,
|
||||
],
|
||||
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
|
||||
model_properties={
|
||||
@@ -272,6 +276,7 @@ LLM_BASE_MODELS = [
|
||||
features=[
|
||||
ModelFeature.AGENT_THOUGHT,
|
||||
ModelFeature.MULTI_TOOL_CALL,
|
||||
ModelFeature.STREAM_TOOL_CALL,
|
||||
],
|
||||
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
|
||||
model_properties={
|
||||
|
||||
@@ -324,6 +324,7 @@ class AzureOpenAILargeLanguageModel(_CommonAzureOpenAI, LargeLanguageModel):
|
||||
tools: Optional[list[PromptMessageTool]] = None) -> Generator:
|
||||
index = 0
|
||||
full_assistant_content = ''
|
||||
delta_assistant_message_function_call_storage: ChoiceDeltaFunctionCall = None
|
||||
real_model = model
|
||||
system_fingerprint = None
|
||||
completion = ''
|
||||
@@ -333,12 +334,32 @@ class AzureOpenAILargeLanguageModel(_CommonAzureOpenAI, LargeLanguageModel):
|
||||
|
||||
delta = chunk.choices[0]
|
||||
|
||||
if delta.finish_reason is None and (delta.delta.content is None or delta.delta.content == ''):
|
||||
if delta.finish_reason is None and (delta.delta.content is None or delta.delta.content == '') and \
|
||||
delta.delta.function_call is None:
|
||||
continue
|
||||
|
||||
|
||||
# assistant_message_tool_calls = delta.delta.tool_calls
|
||||
assistant_message_function_call = delta.delta.function_call
|
||||
|
||||
# extract tool calls from response
|
||||
if delta_assistant_message_function_call_storage is not None:
|
||||
# handle process of stream function call
|
||||
if assistant_message_function_call:
|
||||
# message has not ended ever
|
||||
delta_assistant_message_function_call_storage.arguments += assistant_message_function_call.arguments
|
||||
continue
|
||||
else:
|
||||
# message has ended
|
||||
assistant_message_function_call = delta_assistant_message_function_call_storage
|
||||
delta_assistant_message_function_call_storage = None
|
||||
else:
|
||||
if assistant_message_function_call:
|
||||
# start of stream function call
|
||||
delta_assistant_message_function_call_storage = assistant_message_function_call
|
||||
if delta_assistant_message_function_call_storage.arguments is None:
|
||||
delta_assistant_message_function_call_storage.arguments = ''
|
||||
continue
|
||||
|
||||
# extract tool calls from response
|
||||
# tool_calls = self._extract_response_tool_calls(assistant_message_tool_calls)
|
||||
function_call = self._extract_response_function_call(assistant_message_function_call)
|
||||
@@ -489,7 +510,7 @@ class AzureOpenAILargeLanguageModel(_CommonAzureOpenAI, LargeLanguageModel):
|
||||
else:
|
||||
raise ValueError(f"Got unknown type {message}")
|
||||
|
||||
if message.name is not None:
|
||||
if message.name:
|
||||
message_dict["name"] = message.name
|
||||
|
||||
return message_dict
|
||||
@@ -586,7 +607,6 @@ class AzureOpenAILargeLanguageModel(_CommonAzureOpenAI, LargeLanguageModel):
|
||||
num_tokens = 0
|
||||
for tool in tools:
|
||||
num_tokens += len(encoding.encode('type'))
|
||||
num_tokens += len(encoding.encode(tool.get("type")))
|
||||
num_tokens += len(encoding.encode('function'))
|
||||
|
||||
# calculate num tokens for function object
|
||||
|
||||
@@ -8,9 +8,9 @@ model_properties:
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
- name: topP
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: topK
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top K
|
||||
|
||||
@@ -8,9 +8,9 @@ model_properties:
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
- name: topP
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: topK
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top K
|
||||
|
||||
@@ -8,9 +8,9 @@ model_properties:
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
- name: topP
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: topK
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top K
|
||||
|
||||
@@ -1,15 +1,14 @@
|
||||
import json
|
||||
import logging
|
||||
from typing import Generator, List, Optional, Union
|
||||
|
||||
import boto3
|
||||
from botocore.exceptions import ClientError, EndpointConnectionError, NoRegionError, ServiceNotInRegionError, UnknownServiceError
|
||||
from botocore.config import Config
|
||||
import json
|
||||
|
||||
from botocore.exceptions import (ClientError, EndpointConnectionError, NoRegionError, ServiceNotInRegionError,
|
||||
UnknownServiceError)
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
|
||||
|
||||
from core.model_runtime.entities.message_entities import (AssistantPromptMessage, PromptMessage,
|
||||
PromptMessageTool, SystemPromptMessage, UserPromptMessage)
|
||||
from core.model_runtime.entities.message_entities import (AssistantPromptMessage, PromptMessage, PromptMessageTool,
|
||||
SystemPromptMessage, UserPromptMessage)
|
||||
from core.model_runtime.errors.invoke import (InvokeAuthorizationError, InvokeBadRequestError, InvokeConnectionError,
|
||||
InvokeError, InvokeRateLimitError, InvokeServerUnavailableError)
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
@@ -250,9 +249,12 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
||||
invoke = runtime_client.invoke_model
|
||||
|
||||
try:
|
||||
body_jsonstr=json.dumps(payload)
|
||||
response = invoke(
|
||||
body=json.dumps(payload),
|
||||
modelId=model,
|
||||
contentType="application/json",
|
||||
accept= "*/*",
|
||||
body=body_jsonstr
|
||||
)
|
||||
except ClientError as ex:
|
||||
error_code = ex.response['Error']['Code']
|
||||
@@ -385,7 +387,6 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
||||
if not chunk:
|
||||
exception_name = next(iter(event))
|
||||
full_ex_msg = f"{exception_name}: {event[exception_name]['message']}"
|
||||
|
||||
raise self._map_client_to_invoke_error(exception_name, full_ex_msg)
|
||||
|
||||
payload = json.loads(chunk.get('bytes').decode())
|
||||
@@ -396,7 +397,7 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
||||
finish_reason = payload.get("completion_reason")
|
||||
|
||||
elif model_prefix == "anthropic":
|
||||
content_delta = payload
|
||||
content_delta = payload.get("completion")
|
||||
finish_reason = payload.get("stop_reason")
|
||||
|
||||
elif model_prefix == "cohere":
|
||||
@@ -410,12 +411,12 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
||||
else:
|
||||
raise ValueError(f"Got unknown model prefix {model_prefix} when handling stream response")
|
||||
|
||||
index += 1
|
||||
|
||||
# transform assistant message to prompt message
|
||||
assistant_prompt_message = AssistantPromptMessage(
|
||||
content = content_delta if content_delta else '',
|
||||
)
|
||||
|
||||
index += 1
|
||||
|
||||
if not finish_reason:
|
||||
yield LLMResultChunk(
|
||||
model=model,
|
||||
|
||||
@@ -5,7 +5,8 @@ from typing import Generator, List, Optional, cast
|
||||
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
|
||||
from core.model_runtime.entities.message_entities import (AssistantPromptMessage, PromptMessage, PromptMessageFunction,
|
||||
PromptMessageTool, SystemPromptMessage, UserPromptMessage)
|
||||
PromptMessageTool, SystemPromptMessage, ToolPromptMessage,
|
||||
UserPromptMessage)
|
||||
from core.model_runtime.errors.invoke import (InvokeAuthorizationError, InvokeBadRequestError, InvokeConnectionError,
|
||||
InvokeError, InvokeRateLimitError, InvokeServerUnavailableError)
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
@@ -194,6 +195,10 @@ class ChatGLMLargeLanguageModel(LargeLanguageModel):
|
||||
elif isinstance(message, SystemPromptMessage):
|
||||
message = cast(SystemPromptMessage, message)
|
||||
message_dict = {"role": "system", "content": message.content}
|
||||
elif isinstance(message, ToolPromptMessage):
|
||||
# check if last message is user message
|
||||
message = cast(ToolPromptMessage, message)
|
||||
message_dict = {"role": "function", "content": message.content}
|
||||
else:
|
||||
raise ValueError(f"Unknown message type {type(message)}")
|
||||
|
||||
|
||||
@@ -1,19 +1,18 @@
|
||||
import logging
|
||||
from typing import Generator, List, Optional, Union, cast, Tuple
|
||||
from typing import Generator, List, Optional, Tuple, Union, cast
|
||||
|
||||
import cohere
|
||||
from cohere.responses import Chat, Generations
|
||||
from cohere.responses.chat import StreamingChat, StreamTextGeneration, StreamEnd
|
||||
from cohere.responses.generation import StreamingText, StreamingGenerations
|
||||
|
||||
from cohere.responses.chat import StreamEnd, StreamingChat, StreamTextGeneration
|
||||
from cohere.responses.generation import StreamingGenerations, StreamingText
|
||||
from core.model_runtime.entities.llm_entities import LLMMode, LLMResult, LLMResultChunk, LLMResultChunkDelta
|
||||
from core.model_runtime.entities.message_entities import (AssistantPromptMessage, PromptMessage,
|
||||
PromptMessageContentType, SystemPromptMessage,
|
||||
TextPromptMessageContent, UserPromptMessage,
|
||||
PromptMessageTool)
|
||||
PromptMessageContentType, PromptMessageTool,
|
||||
SystemPromptMessage, TextPromptMessageContent,
|
||||
UserPromptMessage)
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, I18nObject, ModelType
|
||||
from core.model_runtime.errors.invoke import InvokeConnectionError, InvokeServerUnavailableError, InvokeError, \
|
||||
InvokeRateLimitError, InvokeAuthorizationError, InvokeBadRequestError
|
||||
from core.model_runtime.errors.invoke import (InvokeAuthorizationError, InvokeBadRequestError, InvokeConnectionError,
|
||||
InvokeError, InvokeRateLimitError, InvokeServerUnavailableError)
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
|
||||
|
||||
@@ -4,11 +4,10 @@ from typing import Optional, Tuple
|
||||
import cohere
|
||||
import numpy as np
|
||||
from cohere.responses import Tokens
|
||||
|
||||
from core.model_runtime.entities.model_entities import PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.invoke import InvokeConnectionError, InvokeServerUnavailableError, InvokeRateLimitError, \
|
||||
InvokeAuthorizationError, InvokeBadRequestError, InvokeError
|
||||
from core.model_runtime.errors.invoke import (InvokeAuthorizationError, InvokeBadRequestError, InvokeConnectionError,
|
||||
InvokeError, InvokeRateLimitError, InvokeServerUnavailableError)
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
|
||||
|
||||
|
||||
@@ -4,6 +4,8 @@ label:
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
- tool-call
|
||||
- stream-tool-call
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 16384
|
||||
|
||||
@@ -4,6 +4,8 @@ label:
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
- tool-call
|
||||
- stream-tool-call
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 32768
|
||||
|
||||
@@ -16,7 +16,7 @@ class MinimaxChatCompletion(object):
|
||||
"""
|
||||
def generate(self, model: str, api_key: str, group_id: str,
|
||||
prompt_messages: List[MinimaxMessage], model_parameters: dict,
|
||||
tools: Dict[str, Any], stop: List[str] | None, stream: bool, user: str) \
|
||||
tools: List[Dict[str, Any]], stop: List[str] | None, stream: bool, user: str) \
|
||||
-> Union[MinimaxMessage, Generator[MinimaxMessage, None, None]]:
|
||||
"""
|
||||
generate chat completion
|
||||
@@ -162,7 +162,6 @@ class MinimaxChatCompletion(object):
|
||||
continue
|
||||
|
||||
for choice in choices:
|
||||
print(choice)
|
||||
message = choice['delta']
|
||||
yield MinimaxMessage(
|
||||
content=message,
|
||||
|
||||
@@ -17,7 +17,7 @@ class MinimaxChatCompletionPro(object):
|
||||
"""
|
||||
def generate(self, model: str, api_key: str, group_id: str,
|
||||
prompt_messages: List[MinimaxMessage], model_parameters: dict,
|
||||
tools: Dict[str, Any], stop: List[str] | None, stream: bool, user: str) \
|
||||
tools: List[Dict[str, Any]], stop: List[str] | None, stream: bool, user: str) \
|
||||
-> Union[MinimaxMessage, Generator[MinimaxMessage, None, None]]:
|
||||
"""
|
||||
generate chat completion
|
||||
@@ -82,6 +82,10 @@ class MinimaxChatCompletionPro(object):
|
||||
**extra_kwargs
|
||||
}
|
||||
|
||||
if tools:
|
||||
body['functions'] = tools
|
||||
body['function_call'] = { 'type': 'auto' }
|
||||
|
||||
try:
|
||||
response = post(
|
||||
url=url, data=dumps(body), headers=headers, stream=stream, timeout=(10, 300))
|
||||
@@ -135,6 +139,7 @@ class MinimaxChatCompletionPro(object):
|
||||
"""
|
||||
handle stream chat generate response
|
||||
"""
|
||||
function_call_storage = None
|
||||
for line in response.iter_lines():
|
||||
if not line:
|
||||
continue
|
||||
@@ -148,7 +153,7 @@ class MinimaxChatCompletionPro(object):
|
||||
msg = data['base_resp']['status_msg']
|
||||
self._handle_error(code, msg)
|
||||
|
||||
if data['reply']:
|
||||
if data['reply'] or 'usage' in data and data['usage']:
|
||||
total_tokens = data['usage']['total_tokens']
|
||||
message = MinimaxMessage(
|
||||
role=MinimaxMessage.Role.ASSISTANT.value,
|
||||
@@ -160,6 +165,12 @@ class MinimaxChatCompletionPro(object):
|
||||
'total_tokens': total_tokens
|
||||
}
|
||||
message.stop_reason = data['choices'][0]['finish_reason']
|
||||
|
||||
if function_call_storage:
|
||||
function_call_message = MinimaxMessage(content='', role=MinimaxMessage.Role.ASSISTANT.value)
|
||||
function_call_message.function_call = function_call_storage
|
||||
yield function_call_message
|
||||
|
||||
yield message
|
||||
return
|
||||
|
||||
@@ -168,11 +179,28 @@ class MinimaxChatCompletionPro(object):
|
||||
continue
|
||||
|
||||
for choice in choices:
|
||||
message = choice['messages'][0]['text']
|
||||
if not message:
|
||||
continue
|
||||
message = choice['messages'][0]
|
||||
|
||||
if 'function_call' in message:
|
||||
if not function_call_storage:
|
||||
function_call_storage = message['function_call']
|
||||
if 'arguments' not in function_call_storage or not function_call_storage['arguments']:
|
||||
function_call_storage['arguments'] = ''
|
||||
continue
|
||||
else:
|
||||
function_call_storage['arguments'] += message['function_call']['arguments']
|
||||
continue
|
||||
else:
|
||||
if function_call_storage:
|
||||
message['function_call'] = function_call_storage
|
||||
function_call_storage = None
|
||||
|
||||
yield MinimaxMessage(
|
||||
content=message,
|
||||
role=MinimaxMessage.Role.ASSISTANT.value
|
||||
)
|
||||
minimax_message = MinimaxMessage(content='', role=MinimaxMessage.Role.ASSISTANT.value)
|
||||
|
||||
if 'function_call' in message:
|
||||
minimax_message.function_call = message['function_call']
|
||||
|
||||
if 'text' in message:
|
||||
minimax_message.content = message['text']
|
||||
|
||||
yield minimax_message
|
||||
@@ -2,7 +2,7 @@ from typing import Generator, List
|
||||
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
|
||||
from core.model_runtime.entities.message_entities import (AssistantPromptMessage, PromptMessage, PromptMessageTool,
|
||||
SystemPromptMessage, UserPromptMessage)
|
||||
SystemPromptMessage, ToolPromptMessage, UserPromptMessage)
|
||||
from core.model_runtime.errors.invoke import (InvokeAuthorizationError, InvokeBadRequestError, InvokeConnectionError,
|
||||
InvokeError, InvokeRateLimitError, InvokeServerUnavailableError)
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
@@ -84,6 +84,13 @@ class MinimaxLargeLanguageModel(LargeLanguageModel):
|
||||
"""
|
||||
client: MinimaxChatCompletionPro = self.model_apis[model]()
|
||||
|
||||
if tools:
|
||||
tools = [{
|
||||
"name": tool.name,
|
||||
"description": tool.description,
|
||||
"parameters": tool.parameters
|
||||
} for tool in tools]
|
||||
|
||||
response = client.generate(
|
||||
model=model,
|
||||
api_key=credentials['minimax_api_key'],
|
||||
@@ -109,7 +116,19 @@ class MinimaxLargeLanguageModel(LargeLanguageModel):
|
||||
elif isinstance(prompt_message, UserPromptMessage):
|
||||
return MinimaxMessage(role=MinimaxMessage.Role.USER.value, content=prompt_message.content)
|
||||
elif isinstance(prompt_message, AssistantPromptMessage):
|
||||
if prompt_message.tool_calls:
|
||||
message = MinimaxMessage(
|
||||
role=MinimaxMessage.Role.ASSISTANT.value,
|
||||
content=''
|
||||
)
|
||||
message.function_call={
|
||||
'name': prompt_message.tool_calls[0].function.name,
|
||||
'arguments': prompt_message.tool_calls[0].function.arguments
|
||||
}
|
||||
return message
|
||||
return MinimaxMessage(role=MinimaxMessage.Role.ASSISTANT.value, content=prompt_message.content)
|
||||
elif isinstance(prompt_message, ToolPromptMessage):
|
||||
return MinimaxMessage(role=MinimaxMessage.Role.FUNCTION.value, content=prompt_message.content)
|
||||
else:
|
||||
raise NotImplementedError(f'Prompt message type {type(prompt_message)} is not supported')
|
||||
|
||||
@@ -151,6 +170,28 @@ class MinimaxLargeLanguageModel(LargeLanguageModel):
|
||||
finish_reason=message.stop_reason if message.stop_reason else None,
|
||||
),
|
||||
)
|
||||
elif message.function_call:
|
||||
if 'name' not in message.function_call or 'arguments' not in message.function_call:
|
||||
continue
|
||||
|
||||
yield LLMResultChunk(
|
||||
model=model,
|
||||
prompt_messages=prompt_messages,
|
||||
delta=LLMResultChunkDelta(
|
||||
index=0,
|
||||
message=AssistantPromptMessage(
|
||||
content='',
|
||||
tool_calls=[AssistantPromptMessage.ToolCall(
|
||||
id='',
|
||||
type='function',
|
||||
function=AssistantPromptMessage.ToolCall.ToolCallFunction(
|
||||
name=message.function_call['name'],
|
||||
arguments=message.function_call['arguments']
|
||||
)
|
||||
)]
|
||||
),
|
||||
),
|
||||
)
|
||||
else:
|
||||
yield LLMResultChunk(
|
||||
model=model,
|
||||
|
||||
@@ -7,13 +7,23 @@ class MinimaxMessage:
|
||||
USER = 'USER'
|
||||
ASSISTANT = 'BOT'
|
||||
SYSTEM = 'SYSTEM'
|
||||
FUNCTION = 'FUNCTION'
|
||||
|
||||
role: str = Role.USER.value
|
||||
content: str
|
||||
usage: Dict[str, int] = None
|
||||
stop_reason: str = ''
|
||||
function_call: Dict[str, Any] = None
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
if self.function_call and self.role == MinimaxMessage.Role.ASSISTANT.value:
|
||||
return {
|
||||
'sender_type': 'BOT',
|
||||
'sender_name': '专家',
|
||||
'text': '',
|
||||
'function_call': self.function_call
|
||||
}
|
||||
|
||||
return {
|
||||
'sender_type': self.role,
|
||||
'sender_name': '我' if self.role == 'USER' else '专家',
|
||||
|
||||
@@ -2,21 +2,20 @@ import json
|
||||
import logging
|
||||
import re
|
||||
from decimal import Decimal
|
||||
from typing import Optional, Generator, Union, List, cast
|
||||
from typing import Generator, List, Optional, Union, cast
|
||||
from urllib.parse import urljoin
|
||||
|
||||
import requests
|
||||
|
||||
from core.model_runtime.entities.message_entities import PromptMessageTool, PromptMessage, AssistantPromptMessage, \
|
||||
UserPromptMessage, PromptMessageContentType, ImagePromptMessageContent, \
|
||||
TextPromptMessageContent, SystemPromptMessage
|
||||
from core.model_runtime.entities.model_entities import I18nObject, ModelType, \
|
||||
PriceConfig, AIModelEntity, FetchFrom, ModelPropertyKey, ParameterRule, ParameterType, DefaultParameterName, \
|
||||
ModelFeature
|
||||
from core.model_runtime.entities.llm_entities import LLMMode, LLMResult, \
|
||||
LLMResultChunk, LLMResultChunkDelta
|
||||
from core.model_runtime.errors.invoke import InvokeError, InvokeAuthorizationError, InvokeBadRequestError, \
|
||||
InvokeRateLimitError, InvokeServerUnavailableError, InvokeConnectionError
|
||||
from core.model_runtime.entities.llm_entities import LLMMode, LLMResult, LLMResultChunk, LLMResultChunkDelta
|
||||
from core.model_runtime.entities.message_entities import (AssistantPromptMessage, ImagePromptMessageContent,
|
||||
PromptMessage, PromptMessageContentType, PromptMessageTool,
|
||||
SystemPromptMessage, TextPromptMessageContent,
|
||||
UserPromptMessage)
|
||||
from core.model_runtime.entities.model_entities import (AIModelEntity, DefaultParameterName, FetchFrom, I18nObject,
|
||||
ModelFeature, ModelPropertyKey, ModelType, ParameterRule,
|
||||
ParameterType, PriceConfig)
|
||||
from core.model_runtime.errors.invoke import (InvokeAuthorizationError, InvokeBadRequestError, InvokeConnectionError,
|
||||
InvokeError, InvokeRateLimitError, InvokeServerUnavailableError)
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
|
||||
|
||||
@@ -11,7 +11,7 @@ help:
|
||||
en_US: How to integrate with Ollama
|
||||
zh_Hans: 如何集成 Ollama
|
||||
url:
|
||||
en_US: https://docs.dify.ai/advanced/model-configuration/ollama
|
||||
en_US: https://docs.dify.ai/tutorials/model-configuration/ollama
|
||||
supported_model_types:
|
||||
- llm
|
||||
- text-embedding
|
||||
|
||||
@@ -1,19 +1,18 @@
|
||||
import json
|
||||
import logging
|
||||
import time
|
||||
from decimal import Decimal
|
||||
from typing import Optional
|
||||
from urllib.parse import urljoin
|
||||
import requests
|
||||
import json
|
||||
|
||||
import numpy as np
|
||||
|
||||
import requests
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.model_entities import PriceType, ModelPropertyKey, ModelType, AIModelEntity, FetchFrom, \
|
||||
PriceConfig
|
||||
from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult, EmbeddingUsage
|
||||
from core.model_runtime.errors.invoke import InvokeError, InvokeAuthorizationError, InvokeBadRequestError, \
|
||||
InvokeRateLimitError, InvokeServerUnavailableError, InvokeConnectionError
|
||||
from core.model_runtime.entities.model_entities import (AIModelEntity, FetchFrom, ModelPropertyKey, ModelType,
|
||||
PriceConfig, PriceType)
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.invoke import (InvokeAuthorizationError, InvokeBadRequestError, InvokeConnectionError,
|
||||
InvokeError, InvokeRateLimitError, InvokeServerUnavailableError)
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
|
||||
|
||||
|
||||
@@ -1,6 +1,8 @@
|
||||
- gpt-4
|
||||
- gpt-4-turbo-preview
|
||||
- gpt-4-32k
|
||||
- gpt-4-1106-preview
|
||||
- gpt-4-0125-preview
|
||||
- gpt-4-vision-preview
|
||||
- gpt-3.5-turbo
|
||||
- gpt-3.5-turbo-16k
|
||||
|
||||
@@ -6,6 +6,7 @@ model_type: llm
|
||||
features:
|
||||
- multi-tool-call
|
||||
- agent-thought
|
||||
- stream-tool-call
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 4096
|
||||
|
||||
@@ -6,6 +6,7 @@ model_type: llm
|
||||
features:
|
||||
- multi-tool-call
|
||||
- agent-thought
|
||||
- stream-tool-call
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 16385
|
||||
|
||||
@@ -6,6 +6,7 @@ model_type: llm
|
||||
features:
|
||||
- multi-tool-call
|
||||
- agent-thought
|
||||
- stream-tool-call
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 16385
|
||||
|
||||
@@ -6,6 +6,7 @@ model_type: llm
|
||||
features:
|
||||
- multi-tool-call
|
||||
- agent-thought
|
||||
- stream-tool-call
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 16385
|
||||
|
||||
@@ -6,6 +6,7 @@ model_type: llm
|
||||
features:
|
||||
- multi-tool-call
|
||||
- agent-thought
|
||||
- stream-tool-call
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 4096
|
||||
|
||||
@@ -0,0 +1,59 @@
|
||||
model: gpt-4-0125-preview
|
||||
label:
|
||||
zh_Hans: gpt-4-0125-preview
|
||||
en_US: gpt-4-0125-preview
|
||||
model_type: llm
|
||||
features:
|
||||
- multi-tool-call
|
||||
- agent-thought
|
||||
- stream-tool-call
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 128000
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
default: 512
|
||||
min: 1
|
||||
max: 4096
|
||||
- name: seed
|
||||
label:
|
||||
zh_Hans: 种子
|
||||
en_US: Seed
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 如果指定,模型将尽最大努力进行确定性采样,使得重复的具有相同种子和参数的请求应该返回相同的结果。不能保证确定性,您应该参考 system_fingerprint
|
||||
响应参数来监视变化。
|
||||
en_US: If specified, model will make a best effort to sample deterministically,
|
||||
such that repeated requests with the same seed and parameters should return
|
||||
the same result. Determinism is not guaranteed, and you should refer to the
|
||||
system_fingerprint response parameter to monitor changes in the backend.
|
||||
required: false
|
||||
precision: 2
|
||||
min: 0
|
||||
max: 1
|
||||
- name: response_format
|
||||
label:
|
||||
zh_Hans: 回复格式
|
||||
en_US: response_format
|
||||
type: string
|
||||
help:
|
||||
zh_Hans: 指定模型必须输出的格式
|
||||
en_US: specifying the format that the model must output
|
||||
required: false
|
||||
options:
|
||||
- text
|
||||
- json_object
|
||||
pricing:
|
||||
input: '0.01'
|
||||
output: '0.03'
|
||||
unit: '0.001'
|
||||
currency: USD
|
||||
@@ -6,6 +6,7 @@ model_type: llm
|
||||
features:
|
||||
- multi-tool-call
|
||||
- agent-thought
|
||||
- stream-tool-call
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 128000
|
||||
|
||||
@@ -6,6 +6,7 @@ model_type: llm
|
||||
features:
|
||||
- multi-tool-call
|
||||
- agent-thought
|
||||
- stream-tool-call
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 32768
|
||||
|
||||
@@ -0,0 +1,59 @@
|
||||
model: gpt-4-turbo-preview
|
||||
label:
|
||||
zh_Hans: gpt-4-turbo-preview
|
||||
en_US: gpt-4-turbo-preview
|
||||
model_type: llm
|
||||
features:
|
||||
- multi-tool-call
|
||||
- agent-thought
|
||||
- stream-tool-call
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 128000
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
default: 512
|
||||
min: 1
|
||||
max: 4096
|
||||
- name: seed
|
||||
label:
|
||||
zh_Hans: 种子
|
||||
en_US: Seed
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 如果指定,模型将尽最大努力进行确定性采样,使得重复的具有相同种子和参数的请求应该返回相同的结果。不能保证确定性,您应该参考 system_fingerprint
|
||||
响应参数来监视变化。
|
||||
en_US: If specified, model will make a best effort to sample deterministically,
|
||||
such that repeated requests with the same seed and parameters should return
|
||||
the same result. Determinism is not guaranteed, and you should refer to the
|
||||
system_fingerprint response parameter to monitor changes in the backend.
|
||||
required: false
|
||||
precision: 2
|
||||
min: 0
|
||||
max: 1
|
||||
- name: response_format
|
||||
label:
|
||||
zh_Hans: 回复格式
|
||||
en_US: response_format
|
||||
type: string
|
||||
help:
|
||||
zh_Hans: 指定模型必须输出的格式
|
||||
en_US: specifying the format that the model must output
|
||||
required: false
|
||||
options:
|
||||
- text
|
||||
- json_object
|
||||
pricing:
|
||||
input: '0.01'
|
||||
output: '0.03'
|
||||
unit: '0.001'
|
||||
currency: USD
|
||||
@@ -6,6 +6,7 @@ model_type: llm
|
||||
features:
|
||||
- multi-tool-call
|
||||
- agent-thought
|
||||
- stream-tool-call
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 8192
|
||||
|
||||
@@ -671,7 +671,7 @@ class OpenAILargeLanguageModel(_CommonOpenAI, LargeLanguageModel):
|
||||
else:
|
||||
raise ValueError(f"Got unknown type {message}")
|
||||
|
||||
if message.name is not None:
|
||||
if message.name:
|
||||
message_dict["name"] = message.name
|
||||
|
||||
return message_dict
|
||||
|
||||
@@ -26,3 +26,4 @@ pricing:
|
||||
output: '0.002'
|
||||
unit: '0.001'
|
||||
currency: USD
|
||||
deprecated: true
|
||||
|
||||
@@ -0,0 +1,9 @@
|
||||
model: text-embedding-3-large
|
||||
model_type: text-embedding
|
||||
model_properties:
|
||||
context_size: 8191
|
||||
max_chunks: 32
|
||||
pricing:
|
||||
input: '0.00013'
|
||||
unit: '0.001'
|
||||
currency: USD
|
||||
@@ -0,0 +1,9 @@
|
||||
model: text-embedding-3-small
|
||||
model_type: text-embedding
|
||||
model_properties:
|
||||
context_size: 8191
|
||||
max_chunks: 32
|
||||
pricing:
|
||||
input: '0.00002'
|
||||
unit: '0.001'
|
||||
currency: USD
|
||||
@@ -1,16 +1,15 @@
|
||||
import concurrent.futures
|
||||
from functools import reduce
|
||||
from io import BytesIO
|
||||
from typing import Optional
|
||||
from functools import reduce
|
||||
from pydub import AudioSegment
|
||||
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.errors.invoke import InvokeBadRequestError
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.__base.tts_model import TTSModel
|
||||
from core.model_runtime.model_providers.openai._common import _CommonOpenAI
|
||||
|
||||
from flask import Response, stream_with_context
|
||||
from openai import OpenAI
|
||||
import concurrent.futures
|
||||
from pydub import AudioSegment
|
||||
|
||||
|
||||
class OpenAIText2SpeechModel(_CommonOpenAI, TTSModel):
|
||||
|
||||
@@ -372,15 +372,9 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
|
||||
|
||||
if 'delta' in choice:
|
||||
delta = choice['delta']
|
||||
if delta.get('content') is None or delta.get('content') == '':
|
||||
if finish_reason is not None:
|
||||
yield create_final_llm_result_chunk(
|
||||
index=chunk_index,
|
||||
message=AssistantPromptMessage(content=choice.get('text', '')),
|
||||
finish_reason=finish_reason
|
||||
)
|
||||
else:
|
||||
continue
|
||||
delta_content = delta.get('content')
|
||||
if delta_content is None or delta_content == '':
|
||||
continue
|
||||
|
||||
assistant_message_tool_calls = delta.get('tool_calls', None)
|
||||
# assistant_message_function_call = delta.delta.function_call
|
||||
@@ -393,11 +387,11 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
|
||||
|
||||
# transform assistant message to prompt message
|
||||
assistant_prompt_message = AssistantPromptMessage(
|
||||
content=delta.get('content', ''),
|
||||
content=delta_content,
|
||||
tool_calls=tool_calls if assistant_message_tool_calls else []
|
||||
)
|
||||
|
||||
full_assistant_content += delta.get('content', '')
|
||||
full_assistant_content += delta_content
|
||||
elif 'text' in choice:
|
||||
choice_text = choice.get('text', '')
|
||||
if choice_text == '':
|
||||
|
||||
@@ -41,7 +41,7 @@ class OpenLLMGenerate(object):
|
||||
if not server_url:
|
||||
raise InvalidAuthenticationError('Invalid server URL')
|
||||
|
||||
defautl_llm_config = {
|
||||
default_llm_config = {
|
||||
"max_new_tokens": 128,
|
||||
"min_length": 0,
|
||||
"early_stopping": False,
|
||||
@@ -75,19 +75,19 @@ class OpenLLMGenerate(object):
|
||||
}
|
||||
|
||||
if 'max_tokens' in model_parameters and type(model_parameters['max_tokens']) == int:
|
||||
defautl_llm_config['max_new_tokens'] = model_parameters['max_tokens']
|
||||
default_llm_config['max_new_tokens'] = model_parameters['max_tokens']
|
||||
|
||||
if 'temperature' in model_parameters and type(model_parameters['temperature']) == float:
|
||||
defautl_llm_config['temperature'] = model_parameters['temperature']
|
||||
default_llm_config['temperature'] = model_parameters['temperature']
|
||||
|
||||
if 'top_p' in model_parameters and type(model_parameters['top_p']) == float:
|
||||
defautl_llm_config['top_p'] = model_parameters['top_p']
|
||||
default_llm_config['top_p'] = model_parameters['top_p']
|
||||
|
||||
if 'top_k' in model_parameters and type(model_parameters['top_k']) == int:
|
||||
defautl_llm_config['top_k'] = model_parameters['top_k']
|
||||
default_llm_config['top_k'] = model_parameters['top_k']
|
||||
|
||||
if 'use_cache' in model_parameters and type(model_parameters['use_cache']) == bool:
|
||||
defautl_llm_config['use_cache'] = model_parameters['use_cache']
|
||||
default_llm_config['use_cache'] = model_parameters['use_cache']
|
||||
|
||||
headers = {
|
||||
'Content-Type': 'application/json',
|
||||
@@ -104,7 +104,7 @@ class OpenLLMGenerate(object):
|
||||
data = {
|
||||
'stop': stop if stop else [],
|
||||
'prompt': '\n'.join([message.content for message in prompt_messages]),
|
||||
'llm_config': defautl_llm_config,
|
||||
'llm_config': default_llm_config,
|
||||
}
|
||||
|
||||
try:
|
||||
|
||||
@@ -35,6 +35,10 @@ class SparkLLMClient:
|
||||
'spark-3': {
|
||||
'version': 'v3.1',
|
||||
'chat_domain': 'generalv3'
|
||||
},
|
||||
'spark-3.5': {
|
||||
'version': 'v3.5',
|
||||
'chat_domain': 'generalv3.5'
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -0,0 +1,4 @@
|
||||
- spark-3.5
|
||||
- spark-3
|
||||
- spark-1.5
|
||||
- spark-2
|
||||
@@ -0,0 +1,33 @@
|
||||
model: spark-3.5
|
||||
label:
|
||||
en_US: Spark V3.5
|
||||
model_type: llm
|
||||
model_properties:
|
||||
mode: chat
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
default: 0.5
|
||||
help:
|
||||
zh_Hans: 核采样阈值。用于决定结果随机性,取值越高随机性越强即相同的问题得到的不同答案的可能性越高。
|
||||
en_US: Kernel sampling threshold. Used to determine the randomness of the results. The higher the value, the stronger the randomness, that is, the higher the possibility of getting different answers to the same question.
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
default: 2048
|
||||
min: 1
|
||||
max: 8192
|
||||
help:
|
||||
zh_Hans: 模型回答的tokens的最大长度。
|
||||
en_US: 模型回答的tokens的最大长度。
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
default: 4
|
||||
min: 1
|
||||
max: 6
|
||||
help:
|
||||
zh_Hans: 从 k 个候选中随机选择⼀个(⾮等概率)。
|
||||
en_US: Randomly select one from k candidates (non-equal probability).
|
||||
required: false
|
||||
@@ -16,26 +16,5 @@ class SparkProvider(ModelProvider):
|
||||
|
||||
:param credentials: provider credentials, credentials form defined in `provider_credential_schema`.
|
||||
"""
|
||||
try:
|
||||
model_instance = self.get_model_instance(ModelType.LLM)
|
||||
|
||||
model_instance.validate_credentials(
|
||||
model='spark-1.5',
|
||||
credentials=credentials
|
||||
)
|
||||
except CredentialsValidateFailedError as ex:
|
||||
try:
|
||||
model_instance = self.get_model_instance(ModelType.LLM)
|
||||
|
||||
model_instance.validate_credentials(
|
||||
model='spark-3',
|
||||
credentials=credentials
|
||||
)
|
||||
except CredentialsValidateFailedError as ex:
|
||||
raise ex
|
||||
except Exception as ex:
|
||||
logger.exception(f'{self.get_provider_schema().provider} credentials validate failed')
|
||||
raise ex
|
||||
except Exception as ex:
|
||||
logger.exception(f'{self.get_provider_schema().provider} credentials validate failed')
|
||||
raise ex
|
||||
# ignore credentials validation because every model has their own spark quota pool
|
||||
pass
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user