mirror of
https://github.com/langgenius/dify.git
synced 2026-01-19 21:44:07 +00:00
Compare commits
85 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
c038040e1b | ||
|
|
21450b8a51 | ||
|
|
5fc1bd026a | ||
|
|
d60f1a5601 | ||
|
|
da83f8403e | ||
|
|
4ff17af5de | ||
|
|
a9d1b4e6d7 | ||
|
|
66612075d2 | ||
|
|
b921c55677 | ||
|
|
bdc5e9ceb0 | ||
|
|
f2b2effc4b | ||
|
|
301e0496ff | ||
|
|
98660e1f97 | ||
|
|
6cf93379b3 | ||
|
|
8639abec97 | ||
|
|
d5361b8d09 | ||
|
|
6bfdfab6f3 | ||
|
|
bec998ab94 | ||
|
|
77636945fb | ||
|
|
fd5c45ae10 | ||
|
|
ad71386adf | ||
|
|
043517717e | ||
|
|
76c52300a2 | ||
|
|
dda32c6880 | ||
|
|
ac4bb5c35f | ||
|
|
a96cae4f44 | ||
|
|
7cb75cb2e7 | ||
|
|
0940084fd2 | ||
|
|
95ad06c8c3 | ||
|
|
3c13c4f3ee | ||
|
|
2fe938b7da | ||
|
|
784da52ea6 | ||
|
|
78524a56ed | ||
|
|
6c614f0c1f | ||
|
|
d42df4ed04 | ||
|
|
6d94126368 | ||
|
|
e0f72d2791 | ||
|
|
3e51710fe6 | ||
|
|
7bfdca7a53 | ||
|
|
48d5628fd4 | ||
|
|
c8fb619d37 | ||
|
|
57024614bd | ||
|
|
a31b502668 | ||
|
|
e58c3ac374 | ||
|
|
00f4e6ec44 | ||
|
|
6355e61eb8 | ||
|
|
27828f44b9 | ||
|
|
9525ca08b9 | ||
|
|
501caf0a69 | ||
|
|
c17baef172 | ||
|
|
21ade71bad | ||
|
|
23e02d8eb0 | ||
|
|
86286e1ac8 | ||
|
|
7bbe12b2bd | ||
|
|
e65a2a400d | ||
|
|
741079f317 | ||
|
|
0f5d4fd11b | ||
|
|
8eae206715 | ||
|
|
7434d44412 | ||
|
|
8394bbd47f | ||
|
|
14a2eeba0c | ||
|
|
a18dde9b0d | ||
|
|
8438d820ad | ||
|
|
e19ad023d2 | ||
|
|
0695f08f05 | ||
|
|
22ab4721e2 | ||
|
|
51f23c5dc2 | ||
|
|
1f48e3d44a | ||
|
|
0113627d7b | ||
|
|
0a5de0ff0b | ||
|
|
9c4bad8f1e | ||
|
|
c7783dbd6c | ||
|
|
ee9c7e204f | ||
|
|
483dcb6340 | ||
|
|
9ad7b65996 | ||
|
|
ec1659cba0 | ||
|
|
09a8db10d4 | ||
|
|
f3323beaca | ||
|
|
275973da8c | ||
|
|
e2c89a9487 | ||
|
|
869690c485 | ||
|
|
a3c7c07ecc | ||
|
|
dc8a8af117 | ||
|
|
6c28e1e69a | ||
|
|
0e1163f698 |
2
.github/workflows/style.yml
vendored
2
.github/workflows/style.yml
vendored
@@ -21,7 +21,7 @@ jobs:
|
||||
- name: Setup NodeJS
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: 18
|
||||
node-version: 20
|
||||
cache: yarn
|
||||
cache-dependency-path: ./web/package.json
|
||||
|
||||
|
||||
26
.github/workflows/tool-tests.yaml
vendored
Normal file
26
.github/workflows/tool-tests.yaml
vendored
Normal file
@@ -0,0 +1,26 @@
|
||||
name: Run Tool Pytest
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
|
||||
jobs:
|
||||
test:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: '3.10'
|
||||
cache: 'pip'
|
||||
cache-dependency-path: ./api/requirements.txt
|
||||
|
||||
- name: Install dependencies
|
||||
run: pip install -r ./api/requirements.txt
|
||||
|
||||
- name: Run pytest
|
||||
run: pytest ./api/tests/integration_tests/tools/test_all_provider.py
|
||||
@@ -12,7 +12,7 @@ In terms of licensing, please take a minute to read our short [License and Contr
|
||||
|
||||
### Feature requests:
|
||||
|
||||
* If you're opening a new feature request, we'd like you to explain what the proposed feature achieves, and include as much context as possible.
|
||||
* If you're opening a new feature request, we'd like you to explain what the proposed feature achieves, and include as much context as possible. [@perzeusss](https://github.com/perzeuss) has made a solid [Feature Request Copilot](https://udify.app/chat/MK2kVSnw1gakVwMX) that helps you draft out your needs. Feel free to give it a try.
|
||||
|
||||
* If you want to pick one up from the existing issues, simply drop a comment below it saying so.
|
||||
|
||||
@@ -91,6 +91,8 @@ To validate your set up, head over to [http://localhost:3000](http://localhost:3
|
||||
|
||||
If you are adding a model provider, [this guide](https://github.com/langgenius/dify/blob/main/api/core/model_runtime/README.md) is for you.
|
||||
|
||||
If you are adding a tool provider to Agent or Workflow, [this guide](./api/core/tools/README.md) is for you.
|
||||
|
||||
To help you quickly navigate where your contribution fits, a brief, annotated outline of Dify's backend & frontend is as follows:
|
||||
|
||||
### Backend
|
||||
|
||||
@@ -1,57 +1,155 @@
|
||||
# 贡献
|
||||
所以你想为 Dify 做贡献 - 这太棒了,我们迫不及待地想看到你的贡献。作为一家人员和资金有限的初创公司,我们有着雄心勃勃的目标,希望设计出最直观的工作流程来构建和管理 LLM 应用程序。社区的任何帮助都是宝贵的。
|
||||
|
||||
感谢您对 [Dify](https://dify.ai) 的兴趣,并希望您能够做出贡献!在开始之前,请先阅读[行为准则](https://github.com/langgenius/.github/blob/main/CODE_OF_CONDUCT.md)并查看[现有问题](https://github.com/langgenius/dify/issues)。
|
||||
本文档介绍了如何设置开发环境以构建和测试 [Dify](https://dify.ai)。
|
||||
考虑到我们的现状,我们需要灵活快速地交付,但我们也希望确保像你这样的贡献者在贡献过程中获得尽可能顺畅的体验。我们为此编写了这份贡献指南,旨在让你熟悉代码库和我们与贡献者的合作方式,以便你能快速进入有趣的部分。
|
||||
|
||||
### 安装依赖项
|
||||
这份指南,就像 Dify 本身一样,是一个不断改进的工作。如果有时它落后于实际项目,我们非常感谢你的理解,并欢迎任何反馈以供我们改进。
|
||||
|
||||
您需要在计算机上安装和配置以下依赖项才能构建 [Dify](https://dify.ai):
|
||||
在许可方面,请花一分钟阅读我们简短的[许可证和贡献者协议](./license)。社区还遵守[行为准则](https://github.com/langgenius/.github/blob/main/CODE_OF_CONDUCT.md)。
|
||||
|
||||
- [Git](http://git-scm.com/)
|
||||
- [Docker](https://www.docker.com/)
|
||||
- [Docker Compose](https://docs.docker.com/compose/install/)
|
||||
- [Node.js v18.x (LTS)](http://nodejs.org)
|
||||
- [npm](https://www.npmjs.com/) 版本 8.x.x 或 [Yarn](https://yarnpkg.com/)
|
||||
- [Python](https://www.python.org/) 版本 3.10.x
|
||||
## 在开始之前
|
||||
|
||||
## 本地开发
|
||||
[查找](https://github.com/langgenius/dify/issues?q=is:issue+is:closed)现有问题,或[创建](https://github.com/langgenius/dify/issues/new/choose)一个新问题。我们将问题分为两类:
|
||||
|
||||
要设置一个可工作的开发环境,只需 fork 项目的 git 存储库,并使用适当的软件包管理器安装后端和前端依赖项,然后创建并运行 docker-compose。
|
||||
### 功能请求:
|
||||
|
||||
### Fork存储库
|
||||
* 如果您要提出新的功能请求,请解释所提议的功能的目标,并尽可能提供详细的上下文。[@perzeusss](https://github.com/perzeuss)制作了一个很好的[功能请求助手](https://udify.app/chat/MK2kVSnw1gakVwMX),可以帮助您起草需求。随时尝试一下。
|
||||
|
||||
您需要 fork [Git 仓库](https://github.com/langgenius/dify)。
|
||||
* 如果您想从现有问题中选择一个,请在其下方留下评论表示您的意愿。
|
||||
|
||||
### 克隆存储库
|
||||
相关方向的团队成员将参与其中。如果一切顺利,他们将批准您开始编码。在此之前,请不要开始工作,以免我们提出更改导致您的工作付诸东流。
|
||||
|
||||
克隆您在 GitHub 上 fork 的仓库:
|
||||
根据所提议的功能所属的领域不同,您可能需要与不同的团队成员交流。以下是我们团队成员目前正在从事的各个领域的概述:
|
||||
|
||||
| Member | Scope |
|
||||
| ------------------------------------------------------------ | ---------------------------------------------------- |
|
||||
| [@yeuoly](https://github.com/Yeuoly) | Architecting Agents |
|
||||
| [@jyong](https://github.com/JohnJyong) | RAG pipeline design |
|
||||
| [@GarfieldDai](https://github.com/GarfieldDai) | Building workflow orchestrations |
|
||||
| [@iamjoel](https://github.com/iamjoel) & [@zxhlyh](https://github.com/zxhlyh) | Making our frontend a breeze to use |
|
||||
| [@guchenhe](https://github.com/guchenhe) & [@crazywoola](https://github.com/crazywoola) | Developer experience, points of contact for anything |
|
||||
| [@takatost](https://github.com/takatost) | Overall product direction and architecture |
|
||||
|
||||
How we prioritize:
|
||||
|
||||
| Feature Type | Priority |
|
||||
| ------------------------------------------------------------ | --------------- |
|
||||
| High-Priority Features as being labeled by a team member | High Priority |
|
||||
| Popular feature requests from our [community feedback board](https://feedback.dify.ai/) | Medium Priority |
|
||||
| Non-core features and minor enhancements | Low Priority |
|
||||
| Valuable but not immediate | Future-Feature |
|
||||
|
||||
### 其他任何事情(例如bug报告、性能优化、拼写错误更正):
|
||||
* 立即开始编码。
|
||||
|
||||
How we prioritize:
|
||||
|
||||
| Issue Type | Priority |
|
||||
| ------------------------------------------------------------ | --------------- |
|
||||
| Bugs in core functions (cannot login, applications not working, security loopholes) | Critical |
|
||||
| Non-critical bugs, performance boosts | Medium Priority |
|
||||
| Minor fixes (typos, confusing but working UI) | Low Priority |
|
||||
|
||||
|
||||
## 安装
|
||||
|
||||
以下是设置Dify进行开发的步骤:
|
||||
|
||||
### 1. Fork该仓库
|
||||
|
||||
### 2. 克隆仓库
|
||||
|
||||
从终端克隆fork的仓库:
|
||||
|
||||
```
|
||||
git clone git@github.com:<github_username>/dify.git
|
||||
```
|
||||
|
||||
### 安装后端
|
||||
### 3. 验证依赖项
|
||||
|
||||
要了解如何安装后端应用程序,请参阅[后端 README](api/README.md)。
|
||||
Dify 依赖以下工具和库:
|
||||
|
||||
### 安装前端
|
||||
- [Docker](https://www.docker.com/)
|
||||
- [Docker Compose](https://docs.docker.com/compose/install/)
|
||||
- [Node.js v18.x (LTS)](http://nodejs.org)
|
||||
- [npm](https://www.npmjs.com/) version 8.x.x or [Yarn](https://yarnpkg.com/)
|
||||
- [Python](https://www.python.org/) version 3.10.x
|
||||
|
||||
要了解如何安装前端应用程序,请参阅[前端 README](web/README.md)。
|
||||
### 4. 安装
|
||||
|
||||
### 在浏览器中访问 Dify
|
||||
Dify由后端和前端组成。通过`cd api/`导航到后端目录,然后按照[后端README](api/README.md)进行安装。在另一个终端中,通过`cd web/`导航到前端目录,然后按照[前端README](web/README.md)进行安装。
|
||||
|
||||
最后,您现在可以访问 [http://localhost:3000](http://localhost:3000) 在本地环境中查看 [Dify](https://dify.ai)。
|
||||
查看[安装常见问题解答](https://docs.dify.ai/getting-started/faq/install-faq)以获取常见问题列表和故障排除步骤。
|
||||
|
||||
## 创建拉取请求
|
||||
### 5. 在浏览器中访问Dify
|
||||
|
||||
在进行更改后,打开一个拉取请求(PR)。提交拉取请求后,Dify 团队/社区的其他人将与您一起审查它。
|
||||
为了验证您的设置,打开浏览器并访问[http://localhost:3000](http://localhost:3000)(默认或您自定义的URL和端口)。现在您应该看到Dify正在运行。
|
||||
|
||||
如果遇到问题,比如合并冲突或不知道如何打开拉取请求,请查看 GitHub 的[拉取请求教程](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests),了解如何解决合并冲突和其他问题。一旦您的 PR 被合并,您将自豪地被列为[贡献者表](https://github.com/langgenius/dify/graphs/contributors)中的一员。
|
||||
## 开发
|
||||
|
||||
## 社区渠道
|
||||
如果您要添加模型提供程序,请参考[此指南](https://github.com/langgenius/dify/blob/main/api/core/model_runtime/README.md)。
|
||||
|
||||
遇到困难了吗?有任何问题吗? 加入 [Discord Community Server](https://discord.gg/AhzKf7dNgk),我们将为您提供帮助。
|
||||
如果您要向Agent或Workflow添加工具提供程序,请参考[此指南](./api/core/tools/README.md)。
|
||||
|
||||
### 多语言支持
|
||||
为了帮助您快速了解您的贡献在哪个部分,以下是Dify后端和前端的简要注释大纲:
|
||||
|
||||
需要参与贡献翻译内容,请参阅[前端多语言翻译 README](web/i18n/README_CN.md)。
|
||||
### 后端
|
||||
|
||||
Dify的后端使用Python编写,使用[Flask](https://flask.palletsprojects.com/en/3.0.x/)框架。它使用[SQLAlchemy](https://www.sqlalchemy.org/)作为ORM,使用[Celery](https://docs.celeryq.dev/en/stable/getting-started/introduction.html)作为任务队列。授权逻辑通过Flask-login进行处理。
|
||||
|
||||
```
|
||||
[api/]
|
||||
├── constants // Constant settings used throughout code base.
|
||||
├── controllers // API route definitions and request handling logic.
|
||||
├── core // Core application orchestration, model integrations, and tools.
|
||||
├── docker // Docker & containerization related configurations.
|
||||
├── events // Event handling and processing
|
||||
├── extensions // Extensions with 3rd party frameworks/platforms.
|
||||
├── fields // field definitions for serialization/marshalling.
|
||||
├── libs // Reusable libraries and helpers.
|
||||
├── migrations // Scripts for database migration.
|
||||
├── models // Database models & schema definitions.
|
||||
├── services // Specifies business logic.
|
||||
├── storage // Private key storage.
|
||||
├── tasks // Handling of async tasks and background jobs.
|
||||
└── tests
|
||||
```
|
||||
|
||||
### 前端
|
||||
|
||||
该网站使用基于Typescript的[Next.js](https://nextjs.org/)模板进行引导,并使用[Tailwind CSS](https://tailwindcss.com/)进行样式设计。[React-i18next](https://react.i18next.com/)用于国际化。
|
||||
|
||||
```
|
||||
[web/]
|
||||
├── app // layouts, pages, and components
|
||||
│ ├── (commonLayout) // common layout used throughout the app
|
||||
│ ├── (shareLayout) // layouts specifically shared across token-specific sessions
|
||||
│ ├── activate // activate page
|
||||
│ ├── components // shared by pages and layouts
|
||||
│ ├── install // install page
|
||||
│ ├── signin // signin page
|
||||
│ └── styles // globally shared styles
|
||||
├── assets // Static assets
|
||||
├── bin // scripts ran at build step
|
||||
├── config // adjustable settings and options
|
||||
├── context // shared contexts used by different portions of the app
|
||||
├── dictionaries // Language-specific translate files
|
||||
├── docker // container configurations
|
||||
├── hooks // Reusable hooks
|
||||
├── i18n // Internationalization configuration
|
||||
├── models // describes data models & shapes of API responses
|
||||
├── public // meta assets like favicon
|
||||
├── service // specifies shapes of API actions
|
||||
├── test
|
||||
├── types // descriptions of function params and return values
|
||||
└── utils // Shared utility functions
|
||||
```
|
||||
|
||||
## 提交你的 PR
|
||||
|
||||
最后,是时候向我们的仓库提交一个拉取请求(PR)了。对于重要的功能,我们首先将它们合并到 `deploy/dev` 分支进行测试,然后再合并到 `main` 分支。如果你遇到合并冲突或者不知道如何提交拉取请求的问题,请查看 [GitHub 的拉取请求教程](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests)。
|
||||
|
||||
就是这样!一旦你的 PR 被合并,你将成为我们 [README](https://github.com/langgenius/dify/blob/main/README.md) 中的贡献者。
|
||||
|
||||
## 获取帮助
|
||||
|
||||
如果你在贡献过程中遇到困难或者有任何问题,可以通过相关的 GitHub 问题提出你的疑问,或者加入我们的 [Discord](https://discord.gg/AhzKf7dNgk) 进行快速交流。
|
||||
|
||||
@@ -1,55 +0,0 @@
|
||||
# コントリビュート
|
||||
|
||||
[Dify](https://dify.ai) に興味を持ち、貢献したいと思うようになったことに感謝します!始める前に、
|
||||
[行動規範](https://github.com/langgenius/.github/blob/main/CODE_OF_CONDUCT.md)を読み、
|
||||
[既存の問題](https://github.com/langgenius/langgenius-gateway/issues)をチェックしてください。
|
||||
本ドキュメントは、[Dify](https://dify.ai) をビルドしてテストするための開発環境の構築方法を説明するものです。
|
||||
|
||||
### 依存関係のインストール
|
||||
|
||||
[Dify](https://dify.ai)をビルドするには、お使いのマシンに以下の依存関係をインストールし、設定する必要があります:
|
||||
|
||||
- [Git](http://git-scm.com/)
|
||||
- [Docker](https://www.docker.com/)
|
||||
- [Docker Compose](https://docs.docker.com/compose/install/)
|
||||
- [Node.js v18.x (LTS)](http://nodejs.org)
|
||||
- [npm](https://www.npmjs.com/) バージョン 8.x.x もしくは [Yarn](https://yarnpkg.com/)
|
||||
- [Python](https://www.python.org/) バージョン 3.10.x
|
||||
|
||||
## ローカル開発
|
||||
|
||||
開発環境を構築するには、プロジェクトの git リポジトリをフォークし、適切なパッケージマネージャを使用してバックエンドとフロントエンドの依存関係をインストールし、docker-compose スタックを実行するように作成します。
|
||||
|
||||
### リポジトリのフォーク
|
||||
|
||||
[リポジトリ](https://github.com/langgenius/dify) をフォークする必要があります。
|
||||
|
||||
### リポジトリのクローン
|
||||
|
||||
GitHub でフォークしたリポジトリのクローンを作成する:
|
||||
|
||||
```
|
||||
git clone git@github.com:<github_username>/dify.git
|
||||
```
|
||||
|
||||
### バックエンドのインストール
|
||||
|
||||
バックエンドアプリケーションのインストール方法については、[Backend README](api/README.md) を参照してください。
|
||||
|
||||
### フロントエンドのインストール
|
||||
|
||||
フロントエンドアプリケーションのインストール方法については、[Frontend README](web/README.md) を参照してください。
|
||||
|
||||
### ブラウザで dify にアクセス
|
||||
|
||||
[Dify](https://dify.ai) をローカル環境で見ることができるようになりました [http://localhost:3000](http://localhost:3000)。
|
||||
|
||||
## プルリクエストの作成
|
||||
|
||||
変更後、プルリクエスト (PR) をオープンしてください。プルリクエストを提出すると、Dify チーム/コミュニティの他の人があなたと一緒にそれをレビューします。
|
||||
|
||||
マージコンフリクトなどの問題が発生したり、プルリクエストの開き方がわからなくなったりしませんでしたか? [GitHub's pull request tutorial](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests) で、マージコンフリクトやその他の問題を解決する方法をチェックしてみてください。あなたの PR がマージされると、[コントリビュータチャート](https://github.com/langgenius/langgenius-gateway/graphs/contributors)にコントリビュータとして誇らしげに掲載されます。
|
||||
|
||||
## コミュニティチャンネル
|
||||
|
||||
お困りですか?何か質問がありますか? [Discord Community サーバ](https://discord.gg/j3XRWSPBf7) に参加してください。私たちがお手伝いします!
|
||||
@@ -21,6 +21,11 @@
|
||||
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web"></a>
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<a href="https://dify.ai/blog/dify-ai-unveils-ai-agent-creating-gpts-and-assistants-with-various-llms" target="_blank">
|
||||
Dify.AI Unveils AI Agent: Creating GPTs and Assistants with Various LLMs
|
||||
</a>
|
||||
</p>
|
||||
|
||||
**Dify** is an LLM application development platform that has helped built over **100,000** applications. It integrates BaaS and LLMOps, covering the essential tech stack for building generative AI-native applications, including a built-in RAG engine. Dify allows you to **deploy your own version of Assistants API and GPTs, based on any LLMs.**
|
||||
|
||||
@@ -55,7 +60,8 @@ You can try out [Dify.AI Cloud](https://dify.ai) now. It provides all the capabi
|
||||
|
||||
**3. RAG Engine**: Includes various RAG capabilities based on full-text indexing or vector database embeddings, allowing direct upload of PDFs, TXTs, and other text formats.
|
||||
|
||||
**4. Agents**: A Function Calling based Agent framework that allows users to configure what they see is what they get. Dify includes basic plugin capabilities like Google Search.
|
||||
**4. AI Agent**: Based on Function Calling and ReAct, the Agent inference framework allows users to customize tools, what you see is what you get. Dify provides more than a dozen built-in tool calling capabilities, such as Google Search, DELL·E, Stable Diffusion, WolframAlpha, etc.
|
||||
|
||||
|
||||
**5. Continuous Operations**: Monitor and analyze application logs and performance, continuously improving Prompts, datasets, or models using production data.
|
||||
|
||||
|
||||
@@ -21,6 +21,12 @@
|
||||
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web"></a>
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<a href="https://mp.weixin.qq.com/s/TnyfIuH-tPi9o1KNjwVArw" target="_blank">
|
||||
Dify 发布 AI Agent 能力:基于不同的大型语言模型构建 GPTs 和 Assistants
|
||||
</a>
|
||||
</p>
|
||||
|
||||
Dify 是一个 LLM 应用开发平台,已经有超过 10 万个应用基于 Dify.AI 构建。它融合了 Backend as Service 和 LLMOps 的理念,涵盖了构建生成式 AI 原生应用所需的核心技术栈,包括一个内置 RAG 引擎。使用 Dify,你可以基于任何模型自部署类似 Assistants API 和 GPTs 的能力。
|
||||
|
||||

|
||||
@@ -53,7 +59,7 @@ Dify 具有模型中立性,相较 LangChain 等硬编码开发库 Dify 是一
|
||||
|
||||
**3. RAG引擎**:包括各种基于全文索引或向量数据库嵌入的 RAG 能力,允许直接上传 PDF、TXT 等各种文本格式。
|
||||
|
||||
**4. Agent**:基于函数调用的 Agent框架,允许用户自定义配置,所见即所得。Dify 提供了基本的插件能力,如谷歌搜索。
|
||||
**4. AI Agent**:基于 Function Calling 和 ReAct 的 Agent 推理框架,允许用户自定义工具,所见即所得。Dify 提供了十多种内置工具调用能力,如谷歌搜索、DELL·E、Stable Diffusion、WolframAlpha 等。
|
||||
|
||||
**5. 持续运营**:监控和分析应用日志和性能,使用生产数据持续改进 Prompt、数据集或模型。
|
||||
|
||||
|
||||
@@ -21,6 +21,12 @@
|
||||
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web"></a>
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<a href="https://dify.ai/blog/dify-ai-unveils-ai-agent-creating-gpts-and-assistants-with-various-llms" target="_blank">
|
||||
Dify.AI Unveils AI Agent: Creating GPTs and Assistants with Various LLMs
|
||||
</a>
|
||||
</p>
|
||||
|
||||
**Dify** es una plataforma de desarrollo de aplicaciones para modelos de lenguaje de gran tamaño (LLM) que ya ha visto la creación de más de **100,000** aplicaciones basadas en Dify.AI. Integra los conceptos de Backend como Servicio y LLMOps, cubriendo el conjunto de tecnologías esenciales requerido para construir aplicaciones nativas de inteligencia artificial generativa, incluyendo un motor RAG incorporado. Con Dify, **puedes auto-desplegar capacidades similares a las de Assistants API y GPTs basadas en cualquier LLM.**
|
||||
|
||||

|
||||
@@ -52,7 +58,7 @@ Dify se caracteriza por su neutralidad de modelo y es un conjunto tecnológico c
|
||||
|
||||
**3. Motor RAG**: Incluye varias capacidades RAG basadas en indexación de texto completo o incrustaciones de base de datos vectoriales, permitiendo la carga directa de PDFs, TXTs y otros formatos de texto.
|
||||
|
||||
**4. Agentes**: Un marco de Agentes basado en Llamadas de Función que permite a los usuarios configurar lo que ven es lo que obtienen. Dify incluye capacidades básicas de plugins como la Búsqueda de Google.
|
||||
**4. Agente de IA**: Basado en la llamada de funciones y ReAct, el marco de inferencia del Agente permite a los usuarios personalizar las herramientas, lo que ves es lo que obtienes. Dify proporciona más de una docena de capacidades de llamada de herramientas incorporadas, como Búsqueda de Google, DELL·E, Difusión Estable, WolframAlpha, etc.
|
||||
|
||||
**5. Operaciones Continuas**: Monitorear y analizar registros de aplicaciones y rendimiento, mejorando continuamente Prompts, conjuntos de datos o modelos usando datos de producción.
|
||||
|
||||
|
||||
@@ -21,6 +21,13 @@
|
||||
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web"></a>
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<a href="https://dify.ai/blog/dify-ai-unveils-ai-agent-creating-gpts-and-assistants-with-various-llms" target="_blank">
|
||||
Dify.AI Unveils AI Agent: Creating GPTs and Assistants with Various LLMs
|
||||
</a>
|
||||
</p>
|
||||
|
||||
|
||||
**Dify** est une plateforme de développement d'applications LLM qui a déjà vu plus de **100,000** applications construites sur Dify.AI. Elle intègre les concepts de Backend as a Service et LLMOps, couvrant la pile technologique de base requise pour construire des applications natives d'IA générative, y compris un moteur RAG intégré. Avec Dify, **vous pouvez auto-déployer des capacités similaires aux API Assistants et GPT basées sur n'importe quels LLM.**
|
||||
|
||||

|
||||
@@ -52,7 +59,7 @@ Dify présente une neutralité de modèle et est une pile technologique complèt
|
||||
|
||||
**3\. Moteur RAG**: Comprend diverses capacités RAG basées sur l'indexation de texte intégral ou les embeddings de base de données vectorielles, permettant le chargement direct de PDF, TXT et autres formats de texte.
|
||||
|
||||
**4\. Agents**: Un framework d'agents basé sur l'appel de fonctions qui permet aux utilisateurs de configurer ce qu'ils voient est ce qu'ils obtiennent. Dify comprend des capacités de plug-in de base comme Google Search.
|
||||
**4\. AI Agent**: Basé sur l'appel de fonction et ReAct, le framework d'inférence de l'Agent permet aux utilisateurs de personnaliser les outils, ce que vous voyez est ce que vous obtenez. Dify propose plus d'une douzaine de capacités d'appel d'outils intégrées, telles que la recherche Google, DELL·E, Diffusion Stable, WolframAlpha, etc.
|
||||
|
||||
**5\. Opérations continues**: Surveillez et analysez les journaux et les performances des applications, améliorez en continu les invites, les datasets ou les modèles à l'aide de données de production.
|
||||
|
||||
|
||||
@@ -21,6 +21,13 @@
|
||||
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web"></a>
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<a href="https://dify.ai/blog/dify-ai-unveils-ai-agent-creating-gpts-and-assistants-with-various-llms" target="_blank">
|
||||
Dify.AI Unveils AI Agent: Creating GPTs and Assistants with Various LLMs
|
||||
</a>
|
||||
</p>
|
||||
|
||||
|
||||
"Difyは、既にDify.AI上で10万以上のアプリケーションが構築されているLLMアプリケーション開発プラットフォームです。バックエンド・アズ・ア・サービスとLLMOpsの概念を統合し、組み込みのRAGエンジンを含む、生成AIネイティブアプリケーションを構築するためのコアテックスタックをカバーしています。Difyを使用すると、どのLLMに基づいても、Assistants APIやGPTのような機能を自己デプロイすることができます。"
|
||||
|
||||
Please note that translating complex technical terms can sometimes result in slight variations in meaning due to differences in language nuances.
|
||||
@@ -54,7 +61,7 @@ Difyはモデルニュートラルであり、LangChainのようなハードコ
|
||||
|
||||
**3\. RAGエンジン**: フルテキストインデックスまたはベクトルデータベース埋め込みに基づくさまざまなRAG機能を含み、PDF、TXT、その他のテキストフォーマットの直接アップロードを可能にします。
|
||||
|
||||
**4\. エージェント**: ユーザーが sees what they get を設定できる関数呼び出しベースのエージェントフレームワーク。 Difyには、Google検索などの基本的なプラグイン機能が含まれています。
|
||||
**4. AIエージェント**: 関数呼び出しとReActに基づくAgent推論フレームワークにより、ユーザーはツールをカスタマイズすることができます。Difyは、Google検索、DELL·E、Stable Diffusion、WolframAlphaなど、十数種類の組み込みツール呼び出し機能を提供しています。
|
||||
|
||||
**5\. 継続的運用**: アプリケーションログとパフォーマンスを監視および分析し、運用データを使用してプロンプト、データセット、またはモデルを継続的に改善します。
|
||||
|
||||
|
||||
@@ -52,7 +52,7 @@ Dify Daq rIn neutrality 'ej Hoch, LangChain tInHar HubwI'. maH Daqbe'law' Qawqar
|
||||
|
||||
**3. RAG Engine**: RAG vaD tIqpu' lo'taH indexing qor neH vector database wa' embeddings wIj, PDFs, TXTs, 'ej ghojmoHmoH HIq qorlIj je upload.
|
||||
|
||||
**4. jenSuvpu'**: jenbe' SuDqang naQ moDwu' jenSuvpu' porgh cha'logh choHvam. Dify Google Search Hur vItlhutlh plugin choH.
|
||||
**4. AI Agent**: Function Calling 'ej ReAct Daq Hurmey, Agent inference framework Hoch users customize tools, vaj 'oH QaQ. Dify Hoch loS ghaH 'ej wa'vatlh built-in tool calling capabilities, Google Search, DELL·E, Stable Diffusion, WolframAlpha, 'ej.
|
||||
|
||||
**5. QaS muDHa'wI': cha'logh wa' pIq mI' logs 'ej quv yIn, vItlhutlh tIq 'e'wIj lo'taHmoHmoH Prompts, vItlhutlh, Hurmey ghaH production data jatlh.
|
||||
|
||||
|
||||
@@ -15,7 +15,6 @@ CONSOLE_WEB_URL=http://127.0.0.1:3000
|
||||
SERVICE_API_URL=http://127.0.0.1:5001
|
||||
|
||||
# Web APP base URL
|
||||
APP_API_URL=http://127.0.0.1:5001
|
||||
APP_WEB_URL=http://127.0.0.1:3000
|
||||
|
||||
# Files URL
|
||||
|
||||
@@ -1,17 +1,20 @@
|
||||
# packages install stage
|
||||
FROM python:3.10-slim AS base
|
||||
# base image
|
||||
FROM python:3.10-slim-bookworm AS base
|
||||
|
||||
LABEL maintainer="takatost@gmail.com"
|
||||
|
||||
# install packages
|
||||
FROM base as packages
|
||||
|
||||
RUN apt-get update \
|
||||
&& apt-get install -y --no-install-recommends gcc g++ python3-dev libc-dev libffi-dev
|
||||
&& apt-get install -y --no-install-recommends gcc g++ libc-dev libffi-dev libgmp-dev libmpfr-dev libmpc-dev
|
||||
|
||||
COPY requirements.txt /requirements.txt
|
||||
|
||||
RUN pip install --prefix=/pkg -r requirements.txt
|
||||
|
||||
# build stage
|
||||
FROM python:3.10-slim AS builder
|
||||
# production stage
|
||||
FROM base AS production
|
||||
|
||||
ENV FLASK_APP app.py
|
||||
ENV EDITION SELF_HOSTED
|
||||
@@ -19,19 +22,21 @@ ENV DEPLOY_ENV PRODUCTION
|
||||
ENV CONSOLE_API_URL http://127.0.0.1:5001
|
||||
ENV CONSOLE_WEB_URL http://127.0.0.1:3000
|
||||
ENV SERVICE_API_URL http://127.0.0.1:5001
|
||||
ENV APP_API_URL http://127.0.0.1:5001
|
||||
ENV APP_WEB_URL http://127.0.0.1:3000
|
||||
|
||||
EXPOSE 5001
|
||||
|
||||
# set timezone
|
||||
ENV TZ UTC
|
||||
|
||||
WORKDIR /app/api
|
||||
|
||||
RUN apt-get update \
|
||||
&& apt-get install -y --no-install-recommends bash curl wget vim nodejs \
|
||||
&& apt-get install -y --no-install-recommends curl wget vim nodejs ffmpeg libgmp-dev libmpfr-dev libmpc-dev \
|
||||
&& apt-get autoremove \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
COPY --from=base /pkg /usr/local
|
||||
COPY --from=packages /pkg /usr/local
|
||||
COPY . /app/api/
|
||||
|
||||
COPY docker/entrypoint.sh /entrypoint.sh
|
||||
|
||||
@@ -30,7 +30,7 @@ from flask import Flask, Response, request
|
||||
from flask_cors import CORS
|
||||
from libs.passport import PassportService
|
||||
# DO NOT REMOVE BELOW
|
||||
from models import account, dataset, model, source, task, tool, web
|
||||
from models import account, dataset, model, source, task, tool, web, tools
|
||||
from services.account_service import AccountService
|
||||
|
||||
# DO NOT REMOVE ABOVE
|
||||
@@ -124,6 +124,7 @@ def load_user_from_request(request_from_flask_login):
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
@login_manager.unauthorized_handler
|
||||
def unauthorized_handler():
|
||||
"""Handle unauthorized requests."""
|
||||
|
||||
@@ -11,6 +11,7 @@ import uuid
|
||||
|
||||
import click
|
||||
import qdrant_client
|
||||
from constants.languages import user_input_form_template
|
||||
from core.embedding.cached_embedding import CacheEmbedding
|
||||
from core.index.index import IndexBuilder
|
||||
from core.model_manager import ModelManager
|
||||
@@ -22,7 +23,7 @@ from libs.password import hash_password, password_pattern, valid_password
|
||||
from libs.rsa import generate_key_pair
|
||||
from models.account import InvitationCode, Tenant, TenantAccountJoin
|
||||
from models.dataset import Dataset, DatasetCollectionBinding, DatasetQuery, Document
|
||||
from models.model import Account, App, AppModelConfig, Message, MessageAnnotation
|
||||
from models.model import Account, App, AppModelConfig, Message, MessageAnnotation, InstalledApp
|
||||
from models.provider import Provider, ProviderModel, ProviderQuotaType, ProviderType
|
||||
from qdrant_client.http.models import TextIndexParams, TextIndexType, TokenizerType
|
||||
from tqdm import tqdm
|
||||
@@ -583,28 +584,6 @@ def deal_dataset_vector(flask_app: Flask, dataset: Dataset, normalization_count:
|
||||
@click.option("--batch-size", default=500, help="Number of records to migrate in each batch.")
|
||||
def update_app_model_configs(batch_size):
|
||||
pre_prompt_template = '{{default_input}}'
|
||||
user_input_form_template = {
|
||||
"en-US": [
|
||||
{
|
||||
"paragraph": {
|
||||
"label": "Query",
|
||||
"variable": "default_input",
|
||||
"required": False,
|
||||
"default": ""
|
||||
}
|
||||
}
|
||||
],
|
||||
"zh-Hans": [
|
||||
{
|
||||
"paragraph": {
|
||||
"label": "查询内容",
|
||||
"variable": "default_input",
|
||||
"required": False,
|
||||
"default": ""
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
click.secho("Start migrate old data that the text generator can support paragraph variable.", fg='green')
|
||||
|
||||
|
||||
@@ -22,7 +22,6 @@ DEFAULTS = {
|
||||
'CONSOLE_API_URL': 'https://cloud.dify.ai',
|
||||
'SERVICE_API_URL': 'https://api.dify.ai',
|
||||
'APP_WEB_URL': 'https://udify.app',
|
||||
'APP_API_URL': 'https://udify.app',
|
||||
'FILES_URL': '',
|
||||
'STORAGE_TYPE': 'local',
|
||||
'STORAGE_LOCAL_PATH': 'storage',
|
||||
@@ -94,7 +93,7 @@ class Config:
|
||||
# ------------------------
|
||||
# General Configurations.
|
||||
# ------------------------
|
||||
self.CURRENT_VERSION = "0.4.8"
|
||||
self.CURRENT_VERSION = "0.5.1"
|
||||
self.COMMIT_SHA = get_env('COMMIT_SHA')
|
||||
self.EDITION = "SELF_HOSTED"
|
||||
self.DEPLOY_ENV = get_env('DEPLOY_ENV')
|
||||
@@ -103,35 +102,25 @@ class Config:
|
||||
|
||||
# The backend URL prefix of the console API.
|
||||
# used to concatenate the login authorization callback or notion integration callback.
|
||||
self.CONSOLE_API_URL = get_env('CONSOLE_URL') if get_env('CONSOLE_URL') else get_env('CONSOLE_API_URL')
|
||||
self.CONSOLE_API_URL = get_env('CONSOLE_API_URL')
|
||||
|
||||
# The front-end URL prefix of the console web.
|
||||
# used to concatenate some front-end addresses and for CORS configuration use.
|
||||
self.CONSOLE_WEB_URL = get_env('CONSOLE_URL') if get_env('CONSOLE_URL') else get_env('CONSOLE_WEB_URL')
|
||||
|
||||
# WebApp API backend Url prefix.
|
||||
# used to declare the back-end URL for the front-end API.
|
||||
self.APP_API_URL = get_env('APP_URL') if get_env('APP_URL') else get_env('APP_API_URL')
|
||||
self.CONSOLE_WEB_URL = get_env('CONSOLE_WEB_URL')
|
||||
|
||||
# WebApp Url prefix.
|
||||
# used to display WebAPP API Base Url to the front-end.
|
||||
self.APP_WEB_URL = get_env('APP_URL') if get_env('APP_URL') else get_env('APP_WEB_URL')
|
||||
self.APP_WEB_URL = get_env('APP_WEB_URL')
|
||||
|
||||
# Service API Url prefix.
|
||||
# used to display Service API Base Url to the front-end.
|
||||
self.SERVICE_API_URL = get_env('API_URL') if get_env('API_URL') else get_env('SERVICE_API_URL')
|
||||
self.SERVICE_API_URL = get_env('SERVICE_API_URL')
|
||||
|
||||
# File preview or download Url prefix.
|
||||
# used to display File preview or download Url to the front-end or as Multi-model inputs;
|
||||
# Url is signed and has expiration time.
|
||||
self.FILES_URL = get_env('FILES_URL') if get_env('FILES_URL') else self.CONSOLE_API_URL
|
||||
|
||||
# Fallback Url prefix.
|
||||
# Will be deprecated in the future.
|
||||
self.CONSOLE_URL = get_env('CONSOLE_URL')
|
||||
self.API_URL = get_env('API_URL')
|
||||
self.APP_URL = get_env('APP_URL')
|
||||
|
||||
# Your App secret key will be used for securely signing the session cookie
|
||||
# Make sure you are changing this key for your deployment with a strong key.
|
||||
# You can generate a strong key using `openssl rand -base64 42`.
|
||||
|
||||
326
api/constants/languages.py
Normal file
326
api/constants/languages.py
Normal file
@@ -0,0 +1,326 @@
|
||||
|
||||
import json
|
||||
from models.model import AppModelConfig
|
||||
|
||||
languages = ['en-US', 'zh-Hans', 'pt-BR', 'es-ES', 'fr-FR', 'de-DE', 'ja-JP', 'ko-KR', 'ru-RU', 'it-IT']
|
||||
|
||||
language_timezone_mapping = {
|
||||
'en-US': 'America/New_York',
|
||||
'zh-Hans': 'Asia/Shanghai',
|
||||
'pt-BR': 'America/Sao_Paulo',
|
||||
'es-ES': 'Europe/Madrid',
|
||||
'fr-FR': 'Europe/Paris',
|
||||
'de-DE': 'Europe/Berlin',
|
||||
'ja-JP': 'Asia/Tokyo',
|
||||
'ko-KR': 'Asia/Seoul',
|
||||
'ru-RU': 'Europe/Moscow',
|
||||
'it-IT': 'Europe/Rome',
|
||||
}
|
||||
|
||||
def supported_language(lang):
|
||||
if lang in languages:
|
||||
return lang
|
||||
|
||||
error = ('{lang} is not a valid language.'
|
||||
.format(lang=lang))
|
||||
raise ValueError(error)
|
||||
|
||||
user_input_form_template = {
|
||||
"en-US": [
|
||||
{
|
||||
"paragraph": {
|
||||
"label": "Query",
|
||||
"variable": "default_input",
|
||||
"required": False,
|
||||
"default": ""
|
||||
}
|
||||
}
|
||||
],
|
||||
"zh-Hans": [
|
||||
{
|
||||
"paragraph": {
|
||||
"label": "查询内容",
|
||||
"variable": "default_input",
|
||||
"required": False,
|
||||
"default": ""
|
||||
}
|
||||
}
|
||||
],
|
||||
"pt-BR": [
|
||||
{
|
||||
"paragraph": {
|
||||
"label": "Consulta",
|
||||
"variable": "default_input",
|
||||
"required": False,
|
||||
"default": ""
|
||||
}
|
||||
}
|
||||
],
|
||||
"es-ES": [
|
||||
{
|
||||
"paragraph": {
|
||||
"label": "Consulta",
|
||||
"variable": "default_input",
|
||||
"required": False,
|
||||
"default": ""
|
||||
}
|
||||
}
|
||||
],
|
||||
}
|
||||
|
||||
demo_model_templates = {
|
||||
'en-US': [
|
||||
{
|
||||
'name': 'Translation Assistant',
|
||||
'icon': '',
|
||||
'icon_background': '',
|
||||
'description': 'A multilingual translator that provides translation capabilities in multiple languages, translating user input into the language they need.',
|
||||
'mode': 'completion',
|
||||
'model_config': AppModelConfig(
|
||||
provider='openai',
|
||||
model_id='gpt-3.5-turbo-instruct',
|
||||
configs={
|
||||
'prompt_template': "Please translate the following text into {{target_language}}:\n",
|
||||
'prompt_variables': [
|
||||
{
|
||||
"key": "target_language",
|
||||
"name": "Target Language",
|
||||
"description": "The language you want to translate into.",
|
||||
"type": "select",
|
||||
"default": "Chinese",
|
||||
'options': [
|
||||
'Chinese',
|
||||
'English',
|
||||
'Japanese',
|
||||
'French',
|
||||
'Russian',
|
||||
'German',
|
||||
'Spanish',
|
||||
'Korean',
|
||||
'Italian',
|
||||
]
|
||||
}
|
||||
],
|
||||
'completion_params': {
|
||||
'max_token': 1000,
|
||||
'temperature': 0,
|
||||
'top_p': 0,
|
||||
'presence_penalty': 0.1,
|
||||
'frequency_penalty': 0.1,
|
||||
}
|
||||
},
|
||||
opening_statement='',
|
||||
suggested_questions=None,
|
||||
pre_prompt="Please translate the following text into {{target_language}}:\n{{query}}\ntranslate:",
|
||||
model=json.dumps({
|
||||
"provider": "openai",
|
||||
"name": "gpt-3.5-turbo-instruct",
|
||||
"mode": "completion",
|
||||
"completion_params": {
|
||||
"max_tokens": 1000,
|
||||
"temperature": 0,
|
||||
"top_p": 0,
|
||||
"presence_penalty": 0.1,
|
||||
"frequency_penalty": 0.1
|
||||
}
|
||||
}),
|
||||
user_input_form=json.dumps([
|
||||
{
|
||||
"select": {
|
||||
"label": "Target Language",
|
||||
"variable": "target_language",
|
||||
"description": "The language you want to translate into.",
|
||||
"default": "Chinese",
|
||||
"required": True,
|
||||
'options': [
|
||||
'Chinese',
|
||||
'English',
|
||||
'Japanese',
|
||||
'French',
|
||||
'Russian',
|
||||
'German',
|
||||
'Spanish',
|
||||
'Korean',
|
||||
'Italian',
|
||||
]
|
||||
}
|
||||
},{
|
||||
"paragraph": {
|
||||
"label": "Query",
|
||||
"variable": "query",
|
||||
"required": True,
|
||||
"default": ""
|
||||
}
|
||||
}
|
||||
])
|
||||
)
|
||||
},
|
||||
{
|
||||
'name': 'AI Front-end Interviewer',
|
||||
'icon': '',
|
||||
'icon_background': '',
|
||||
'description': 'A simulated front-end interviewer that tests the skill level of front-end development through questioning.',
|
||||
'mode': 'chat',
|
||||
'model_config': AppModelConfig(
|
||||
provider='openai',
|
||||
model_id='gpt-3.5-turbo',
|
||||
configs={
|
||||
'introduction': 'Hi, welcome to our interview. I am the interviewer for this technology company, and I will test your web front-end development skills. Next, I will ask you some technical questions. Please answer them as thoroughly as possible. ',
|
||||
'prompt_template': "You will play the role of an interviewer for a technology company, examining the user's web front-end development skills and posing 5-10 sharp technical questions.\n\nPlease note:\n- Only ask one question at a time.\n- After the user answers a question, ask the next question directly, without trying to correct any mistakes made by the candidate.\n- If you think the user has not answered correctly for several consecutive questions, ask fewer questions.\n- After asking the last question, you can ask this question: Why did you leave your last job? After the user answers this question, please express your understanding and support.\n",
|
||||
'prompt_variables': [],
|
||||
'completion_params': {
|
||||
'max_token': 300,
|
||||
'temperature': 0.8,
|
||||
'top_p': 0.9,
|
||||
'presence_penalty': 0.1,
|
||||
'frequency_penalty': 0.1,
|
||||
}
|
||||
},
|
||||
opening_statement='Hi, welcome to our interview. I am the interviewer for this technology company, and I will test your web front-end development skills. Next, I will ask you some technical questions. Please answer them as thoroughly as possible. ',
|
||||
suggested_questions=None,
|
||||
pre_prompt="You will play the role of an interviewer for a technology company, examining the user's web front-end development skills and posing 5-10 sharp technical questions.\n\nPlease note:\n- Only ask one question at a time.\n- After the user answers a question, ask the next question directly, without trying to correct any mistakes made by the candidate.\n- If you think the user has not answered correctly for several consecutive questions, ask fewer questions.\n- After asking the last question, you can ask this question: Why did you leave your last job? After the user answers this question, please express your understanding and support.\n",
|
||||
model=json.dumps({
|
||||
"provider": "openai",
|
||||
"name": "gpt-3.5-turbo",
|
||||
"mode": "chat",
|
||||
"completion_params": {
|
||||
"max_tokens": 300,
|
||||
"temperature": 0.8,
|
||||
"top_p": 0.9,
|
||||
"presence_penalty": 0.1,
|
||||
"frequency_penalty": 0.1
|
||||
}
|
||||
}),
|
||||
user_input_form=None
|
||||
)
|
||||
}
|
||||
],
|
||||
|
||||
'zh-Hans': [
|
||||
{
|
||||
'name': '翻译助手',
|
||||
'icon': '',
|
||||
'icon_background': '',
|
||||
'description': '一个多语言翻译器,提供多种语言翻译能力,将用户输入的文本翻译成他们需要的语言。',
|
||||
'mode': 'completion',
|
||||
'model_config': AppModelConfig(
|
||||
provider='openai',
|
||||
model_id='gpt-3.5-turbo-instruct',
|
||||
configs={
|
||||
'prompt_template': "请将以下文本翻译为{{target_language}}:\n",
|
||||
'prompt_variables': [
|
||||
{
|
||||
"key": "target_language",
|
||||
"name": "目标语言",
|
||||
"description": "翻译的目标语言",
|
||||
"type": "select",
|
||||
"default": "中文",
|
||||
"options": [
|
||||
"中文",
|
||||
"英文",
|
||||
"日语",
|
||||
"法语",
|
||||
"俄语",
|
||||
"德语",
|
||||
"西班牙语",
|
||||
"韩语",
|
||||
"意大利语",
|
||||
]
|
||||
}
|
||||
],
|
||||
'completion_params': {
|
||||
'max_token': 1000,
|
||||
'temperature': 0,
|
||||
'top_p': 0,
|
||||
'presence_penalty': 0.1,
|
||||
'frequency_penalty': 0.1,
|
||||
}
|
||||
},
|
||||
opening_statement='',
|
||||
suggested_questions=None,
|
||||
pre_prompt="请将以下文本翻译为{{target_language}}:\n{{query}}\n翻译:",
|
||||
model=json.dumps({
|
||||
"provider": "openai",
|
||||
"name": "gpt-3.5-turbo-instruct",
|
||||
"mode": "completion",
|
||||
"completion_params": {
|
||||
"max_tokens": 1000,
|
||||
"temperature": 0,
|
||||
"top_p": 0,
|
||||
"presence_penalty": 0.1,
|
||||
"frequency_penalty": 0.1
|
||||
}
|
||||
}),
|
||||
user_input_form=json.dumps([
|
||||
{
|
||||
"select": {
|
||||
"label": "目标语言",
|
||||
"variable": "target_language",
|
||||
"description": "翻译的目标语言",
|
||||
"default": "中文",
|
||||
"required": True,
|
||||
'options': [
|
||||
"中文",
|
||||
"英文",
|
||||
"日语",
|
||||
"法语",
|
||||
"俄语",
|
||||
"德语",
|
||||
"西班牙语",
|
||||
"韩语",
|
||||
"意大利语",
|
||||
]
|
||||
}
|
||||
},{
|
||||
"paragraph": {
|
||||
"label": "文本内容",
|
||||
"variable": "query",
|
||||
"required": True,
|
||||
"default": ""
|
||||
}
|
||||
}
|
||||
])
|
||||
)
|
||||
},
|
||||
{
|
||||
'name': 'AI 前端面试官',
|
||||
'icon': '',
|
||||
'icon_background': '',
|
||||
'description': '一个模拟的前端面试官,通过提问的方式对前端开发的技能水平进行检验。',
|
||||
'mode': 'chat',
|
||||
'model_config': AppModelConfig(
|
||||
provider='openai',
|
||||
model_id='gpt-3.5-turbo',
|
||||
configs={
|
||||
'introduction': '你好,欢迎来参加我们的面试,我是这家科技公司的面试官,我将考察你的 Web 前端开发技能。接下来我会向您提出一些技术问题,请您尽可能详尽地回答。',
|
||||
'prompt_template': "你将扮演一个科技公司的面试官,考察用户作为候选人的 Web 前端开发水平,提出 5-10 个犀利的技术问题。\n\n请注意:\n- 每次只问一个问题\n- 用户回答问题后请直接问下一个问题,而不要试图纠正候选人的错误;\n- 如果你认为用户连续几次回答的都不对,就少问一点;\n- 问完最后一个问题后,你可以问这样一个问题:上一份工作为什么离职?用户回答该问题后,请表示理解与支持。\n",
|
||||
'prompt_variables': [],
|
||||
'completion_params': {
|
||||
'max_token': 300,
|
||||
'temperature': 0.8,
|
||||
'top_p': 0.9,
|
||||
'presence_penalty': 0.1,
|
||||
'frequency_penalty': 0.1,
|
||||
}
|
||||
},
|
||||
opening_statement='你好,欢迎来参加我们的面试,我是这家科技公司的面试官,我将考察你的 Web 前端开发技能。接下来我会向您提出一些技术问题,请您尽可能详尽地回答。',
|
||||
suggested_questions=None,
|
||||
pre_prompt="你将扮演一个科技公司的面试官,考察用户作为候选人的 Web 前端开发水平,提出 5-10 个犀利的技术问题。\n\n请注意:\n- 每次只问一个问题\n- 用户回答问题后请直接问下一个问题,而不要试图纠正候选人的错误;\n- 如果你认为用户连续几次回答的都不对,就少问一点;\n- 问完最后一个问题后,你可以问这样一个问题:上一份工作为什么离职?用户回答该问题后,请表示理解与支持。\n",
|
||||
model=json.dumps({
|
||||
"provider": "openai",
|
||||
"name": "gpt-3.5-turbo",
|
||||
"mode": "chat",
|
||||
"completion_params": {
|
||||
"max_tokens": 300,
|
||||
"temperature": 0.8,
|
||||
"top_p": 0.9,
|
||||
"presence_penalty": 0.1,
|
||||
"frequency_penalty": 0.1
|
||||
}
|
||||
}),
|
||||
user_input_form=None
|
||||
)
|
||||
}
|
||||
],
|
||||
|
||||
}
|
||||
@@ -96,258 +96,3 @@ model_templates = {
|
||||
}
|
||||
|
||||
|
||||
demo_model_templates = {
|
||||
'en-US': [
|
||||
{
|
||||
'name': 'Translation Assistant',
|
||||
'icon': '',
|
||||
'icon_background': '',
|
||||
'description': 'A multilingual translator that provides translation capabilities in multiple languages, translating user input into the language they need.',
|
||||
'mode': 'completion',
|
||||
'model_config': AppModelConfig(
|
||||
provider='openai',
|
||||
model_id='gpt-3.5-turbo-instruct',
|
||||
configs={
|
||||
'prompt_template': "Please translate the following text into {{target_language}}:\n",
|
||||
'prompt_variables': [
|
||||
{
|
||||
"key": "target_language",
|
||||
"name": "Target Language",
|
||||
"description": "The language you want to translate into.",
|
||||
"type": "select",
|
||||
"default": "Chinese",
|
||||
'options': [
|
||||
'Chinese',
|
||||
'English',
|
||||
'Japanese',
|
||||
'French',
|
||||
'Russian',
|
||||
'German',
|
||||
'Spanish',
|
||||
'Korean',
|
||||
'Italian',
|
||||
]
|
||||
}
|
||||
],
|
||||
'completion_params': {
|
||||
'max_token': 1000,
|
||||
'temperature': 0,
|
||||
'top_p': 0,
|
||||
'presence_penalty': 0.1,
|
||||
'frequency_penalty': 0.1,
|
||||
}
|
||||
},
|
||||
opening_statement='',
|
||||
suggested_questions=None,
|
||||
pre_prompt="Please translate the following text into {{target_language}}:\n{{query}}\ntranslate:",
|
||||
model=json.dumps({
|
||||
"provider": "openai",
|
||||
"name": "gpt-3.5-turbo-instruct",
|
||||
"mode": "completion",
|
||||
"completion_params": {
|
||||
"max_tokens": 1000,
|
||||
"temperature": 0,
|
||||
"top_p": 0,
|
||||
"presence_penalty": 0.1,
|
||||
"frequency_penalty": 0.1
|
||||
}
|
||||
}),
|
||||
user_input_form=json.dumps([
|
||||
{
|
||||
"select": {
|
||||
"label": "Target Language",
|
||||
"variable": "target_language",
|
||||
"description": "The language you want to translate into.",
|
||||
"default": "Chinese",
|
||||
"required": True,
|
||||
'options': [
|
||||
'Chinese',
|
||||
'English',
|
||||
'Japanese',
|
||||
'French',
|
||||
'Russian',
|
||||
'German',
|
||||
'Spanish',
|
||||
'Korean',
|
||||
'Italian',
|
||||
]
|
||||
}
|
||||
},{
|
||||
"paragraph": {
|
||||
"label": "Query",
|
||||
"variable": "query",
|
||||
"required": True,
|
||||
"default": ""
|
||||
}
|
||||
}
|
||||
])
|
||||
)
|
||||
},
|
||||
{
|
||||
'name': 'AI Front-end Interviewer',
|
||||
'icon': '',
|
||||
'icon_background': '',
|
||||
'description': 'A simulated front-end interviewer that tests the skill level of front-end development through questioning.',
|
||||
'mode': 'chat',
|
||||
'model_config': AppModelConfig(
|
||||
provider='openai',
|
||||
model_id='gpt-3.5-turbo',
|
||||
configs={
|
||||
'introduction': 'Hi, welcome to our interview. I am the interviewer for this technology company, and I will test your web front-end development skills. Next, I will ask you some technical questions. Please answer them as thoroughly as possible. ',
|
||||
'prompt_template': "You will play the role of an interviewer for a technology company, examining the user's web front-end development skills and posing 5-10 sharp technical questions.\n\nPlease note:\n- Only ask one question at a time.\n- After the user answers a question, ask the next question directly, without trying to correct any mistakes made by the candidate.\n- If you think the user has not answered correctly for several consecutive questions, ask fewer questions.\n- After asking the last question, you can ask this question: Why did you leave your last job? After the user answers this question, please express your understanding and support.\n",
|
||||
'prompt_variables': [],
|
||||
'completion_params': {
|
||||
'max_token': 300,
|
||||
'temperature': 0.8,
|
||||
'top_p': 0.9,
|
||||
'presence_penalty': 0.1,
|
||||
'frequency_penalty': 0.1,
|
||||
}
|
||||
},
|
||||
opening_statement='Hi, welcome to our interview. I am the interviewer for this technology company, and I will test your web front-end development skills. Next, I will ask you some technical questions. Please answer them as thoroughly as possible. ',
|
||||
suggested_questions=None,
|
||||
pre_prompt="You will play the role of an interviewer for a technology company, examining the user's web front-end development skills and posing 5-10 sharp technical questions.\n\nPlease note:\n- Only ask one question at a time.\n- After the user answers a question, ask the next question directly, without trying to correct any mistakes made by the candidate.\n- If you think the user has not answered correctly for several consecutive questions, ask fewer questions.\n- After asking the last question, you can ask this question: Why did you leave your last job? After the user answers this question, please express your understanding and support.\n",
|
||||
model=json.dumps({
|
||||
"provider": "openai",
|
||||
"name": "gpt-3.5-turbo",
|
||||
"mode": "chat",
|
||||
"completion_params": {
|
||||
"max_tokens": 300,
|
||||
"temperature": 0.8,
|
||||
"top_p": 0.9,
|
||||
"presence_penalty": 0.1,
|
||||
"frequency_penalty": 0.1
|
||||
}
|
||||
}),
|
||||
user_input_form=None
|
||||
)
|
||||
}
|
||||
],
|
||||
|
||||
'zh-Hans': [
|
||||
{
|
||||
'name': '翻译助手',
|
||||
'icon': '',
|
||||
'icon_background': '',
|
||||
'description': '一个多语言翻译器,提供多种语言翻译能力,将用户输入的文本翻译成他们需要的语言。',
|
||||
'mode': 'completion',
|
||||
'model_config': AppModelConfig(
|
||||
provider='openai',
|
||||
model_id='gpt-3.5-turbo-instruct',
|
||||
configs={
|
||||
'prompt_template': "请将以下文本翻译为{{target_language}}:\n",
|
||||
'prompt_variables': [
|
||||
{
|
||||
"key": "target_language",
|
||||
"name": "目标语言",
|
||||
"description": "翻译的目标语言",
|
||||
"type": "select",
|
||||
"default": "中文",
|
||||
"options": [
|
||||
"中文",
|
||||
"英文",
|
||||
"日语",
|
||||
"法语",
|
||||
"俄语",
|
||||
"德语",
|
||||
"西班牙语",
|
||||
"韩语",
|
||||
"意大利语",
|
||||
]
|
||||
}
|
||||
],
|
||||
'completion_params': {
|
||||
'max_token': 1000,
|
||||
'temperature': 0,
|
||||
'top_p': 0,
|
||||
'presence_penalty': 0.1,
|
||||
'frequency_penalty': 0.1,
|
||||
}
|
||||
},
|
||||
opening_statement='',
|
||||
suggested_questions=None,
|
||||
pre_prompt="请将以下文本翻译为{{target_language}}:\n{{query}}\n翻译:",
|
||||
model=json.dumps({
|
||||
"provider": "openai",
|
||||
"name": "gpt-3.5-turbo-instruct",
|
||||
"mode": "completion",
|
||||
"completion_params": {
|
||||
"max_tokens": 1000,
|
||||
"temperature": 0,
|
||||
"top_p": 0,
|
||||
"presence_penalty": 0.1,
|
||||
"frequency_penalty": 0.1
|
||||
}
|
||||
}),
|
||||
user_input_form=json.dumps([
|
||||
{
|
||||
"select": {
|
||||
"label": "目标语言",
|
||||
"variable": "target_language",
|
||||
"description": "翻译的目标语言",
|
||||
"default": "中文",
|
||||
"required": True,
|
||||
'options': [
|
||||
"中文",
|
||||
"英文",
|
||||
"日语",
|
||||
"法语",
|
||||
"俄语",
|
||||
"德语",
|
||||
"西班牙语",
|
||||
"韩语",
|
||||
"意大利语",
|
||||
]
|
||||
}
|
||||
},{
|
||||
"paragraph": {
|
||||
"label": "文本内容",
|
||||
"variable": "query",
|
||||
"required": True,
|
||||
"default": ""
|
||||
}
|
||||
}
|
||||
])
|
||||
)
|
||||
},
|
||||
{
|
||||
'name': 'AI 前端面试官',
|
||||
'icon': '',
|
||||
'icon_background': '',
|
||||
'description': '一个模拟的前端面试官,通过提问的方式对前端开发的技能水平进行检验。',
|
||||
'mode': 'chat',
|
||||
'model_config': AppModelConfig(
|
||||
provider='openai',
|
||||
model_id='gpt-3.5-turbo',
|
||||
configs={
|
||||
'introduction': '你好,欢迎来参加我们的面试,我是这家科技公司的面试官,我将考察你的 Web 前端开发技能。接下来我会向您提出一些技术问题,请您尽可能详尽地回答。',
|
||||
'prompt_template': "你将扮演一个科技公司的面试官,考察用户作为候选人的 Web 前端开发水平,提出 5-10 个犀利的技术问题。\n\n请注意:\n- 每次只问一个问题\n- 用户回答问题后请直接问下一个问题,而不要试图纠正候选人的错误;\n- 如果你认为用户连续几次回答的都不对,就少问一点;\n- 问完最后一个问题后,你可以问这样一个问题:上一份工作为什么离职?用户回答该问题后,请表示理解与支持。\n",
|
||||
'prompt_variables': [],
|
||||
'completion_params': {
|
||||
'max_token': 300,
|
||||
'temperature': 0.8,
|
||||
'top_p': 0.9,
|
||||
'presence_penalty': 0.1,
|
||||
'frequency_penalty': 0.1,
|
||||
}
|
||||
},
|
||||
opening_statement='你好,欢迎来参加我们的面试,我是这家科技公司的面试官,我将考察你的 Web 前端开发技能。接下来我会向您提出一些技术问题,请您尽可能详尽地回答。',
|
||||
suggested_questions=None,
|
||||
pre_prompt="你将扮演一个科技公司的面试官,考察用户作为候选人的 Web 前端开发水平,提出 5-10 个犀利的技术问题。\n\n请注意:\n- 每次只问一个问题\n- 用户回答问题后请直接问下一个问题,而不要试图纠正候选人的错误;\n- 如果你认为用户连续几次回答的都不对,就少问一点;\n- 问完最后一个问题后,你可以问这样一个问题:上一份工作为什么离职?用户回答该问题后,请表示理解与支持。\n",
|
||||
model=json.dumps({
|
||||
"provider": "openai",
|
||||
"name": "gpt-3.5-turbo",
|
||||
"mode": "chat",
|
||||
"completion_params": {
|
||||
"max_tokens": 300,
|
||||
"temperature": 0.8,
|
||||
"top_p": 0.9,
|
||||
"presence_penalty": 0.1,
|
||||
"frequency_penalty": 0.1
|
||||
}
|
||||
}),
|
||||
user_input_form=None
|
||||
)
|
||||
}
|
||||
],
|
||||
}
|
||||
|
||||
@@ -11,12 +11,13 @@ from .app import (advanced_prompt_template, annotation, app, audio, completion,
|
||||
model_config, site, statistic)
|
||||
# Import auth controllers
|
||||
from .auth import activate, data_source_oauth, login, oauth
|
||||
from .billing import billing
|
||||
# Import datasets controllers
|
||||
from .datasets import data_source, datasets, datasets_document, datasets_segments, file, hit_testing
|
||||
# Import explore controllers
|
||||
from .explore import audio, completion, conversation, installed_app, message, parameter, recommended_app, saved_message
|
||||
# Import universal chat controllers
|
||||
from .universal_chat import audio, chat, conversation, message, parameter
|
||||
# Import workspace controllers
|
||||
from .workspace import account, members, model_providers, models, tool_providers, workspace
|
||||
# Import billing controllers
|
||||
from .billing import billing
|
||||
# Import operation controllers
|
||||
from .operation import operation
|
||||
|
||||
@@ -6,7 +6,7 @@ from controllers.console.wraps import only_edition_cloud
|
||||
from extensions.ext_database import db
|
||||
from flask import request
|
||||
from flask_restful import Resource, reqparse
|
||||
from libs.helper import supported_language
|
||||
from constants.languages import supported_language
|
||||
from models.model import App, InstalledApp, RecommendedApp
|
||||
from werkzeug.exceptions import NotFound, Unauthorized
|
||||
|
||||
|
||||
@@ -3,7 +3,8 @@ import json
|
||||
import logging
|
||||
from datetime import datetime
|
||||
|
||||
from constants.model_template import demo_model_templates, model_templates
|
||||
from constants.model_template import model_templates
|
||||
from constants.languages import demo_model_templates, languages
|
||||
from controllers.console import api
|
||||
from controllers.console.app.error import AppNotFoundError, ProviderNotInitializeError
|
||||
from controllers.console.setup import setup_required
|
||||
@@ -16,14 +17,15 @@ from events.app_event import app_was_created, app_was_deleted
|
||||
from extensions.ext_database import db
|
||||
from fields.app_fields import (app_detail_fields, app_detail_fields_with_site, app_pagination_fields,
|
||||
template_list_fields)
|
||||
from flask import current_app
|
||||
from flask_login import current_user
|
||||
from flask_restful import Resource, abort, inputs, marshal_with, reqparse
|
||||
from libs.login import login_required
|
||||
from models.model import App, AppModelConfig, Site
|
||||
from models.tools import ApiToolProvider
|
||||
from services.app_model_config_service import AppModelConfigService
|
||||
from werkzeug.exceptions import Forbidden
|
||||
|
||||
|
||||
def _get_app(app_id, tenant_id):
|
||||
app = db.session.query(App).filter(App.id == app_id, App.tenant_id == tenant_id).first()
|
||||
if not app:
|
||||
@@ -42,14 +44,31 @@ class AppListApi(Resource):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('page', type=inputs.int_range(1, 99999), required=False, default=1, location='args')
|
||||
parser.add_argument('limit', type=inputs.int_range(1, 100), required=False, default=20, location='args')
|
||||
parser.add_argument('mode', type=str, choices=['chat', 'completion', 'all'], default='all', location='args', required=False)
|
||||
parser.add_argument('name', type=str, location='args', required=False)
|
||||
args = parser.parse_args()
|
||||
|
||||
filters = [
|
||||
App.tenant_id == current_user.current_tenant_id,
|
||||
App.is_universal == False
|
||||
]
|
||||
|
||||
if args['mode'] == 'completion':
|
||||
filters.append(App.mode == 'completion')
|
||||
elif args['mode'] == 'chat':
|
||||
filters.append(App.mode == 'chat')
|
||||
else:
|
||||
pass
|
||||
|
||||
if 'name' in args and args['name']:
|
||||
filters.append(App.name.ilike(f'%{args["name"]}%'))
|
||||
|
||||
app_models = db.paginate(
|
||||
db.select(App).where(App.tenant_id == current_user.current_tenant_id,
|
||||
App.is_universal == False).order_by(App.created_at.desc()),
|
||||
db.select(App).where(*filters).order_by(App.created_at.desc()),
|
||||
page=args['page'],
|
||||
per_page=args['limit'],
|
||||
error_out=False)
|
||||
error_out=False
|
||||
)
|
||||
|
||||
return app_models
|
||||
|
||||
@@ -62,7 +81,7 @@ class AppListApi(Resource):
|
||||
"""Create app"""
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('name', type=str, required=True, location='json')
|
||||
parser.add_argument('mode', type=str, choices=['completion', 'chat'], location='json')
|
||||
parser.add_argument('mode', type=str, choices=['completion', 'chat', 'assistant'], location='json')
|
||||
parser.add_argument('icon', type=str, location='json')
|
||||
parser.add_argument('icon_background', type=str, location='json')
|
||||
parser.add_argument('model_config', type=dict, location='json')
|
||||
@@ -178,7 +197,7 @@ class AppListApi(Resource):
|
||||
app_was_created.send(app)
|
||||
|
||||
return app, 201
|
||||
|
||||
|
||||
|
||||
class AppTemplateApi(Resource):
|
||||
|
||||
@@ -193,7 +212,7 @@ class AppTemplateApi(Resource):
|
||||
|
||||
templates = demo_model_templates.get(interface_language)
|
||||
if not templates:
|
||||
templates = demo_model_templates.get('en-US')
|
||||
templates = demo_model_templates.get(languages[0])
|
||||
|
||||
return {'data': templates}
|
||||
|
||||
|
||||
@@ -32,9 +32,9 @@ class ChatMessageAudioApi(Resource):
|
||||
file = request.files['file']
|
||||
|
||||
try:
|
||||
response = AudioService.transcript(
|
||||
response = AudioService.transcript_asr(
|
||||
tenant_id=app_model.tenant_id,
|
||||
file=file,
|
||||
file=file
|
||||
)
|
||||
|
||||
return response
|
||||
@@ -62,6 +62,48 @@ class ChatMessageAudioApi(Resource):
|
||||
except Exception as e:
|
||||
logging.exception("internal server error.")
|
||||
raise InternalServerError()
|
||||
|
||||
|
||||
api.add_resource(ChatMessageAudioApi, '/apps/<uuid:app_id>/audio-to-text')
|
||||
|
||||
class ChatMessageTextApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self, app_id):
|
||||
app_id = str(app_id)
|
||||
app_model = _get_app(app_id, None)
|
||||
try:
|
||||
response = AudioService.transcript_tts(
|
||||
tenant_id=app_model.tenant_id,
|
||||
text=request.form['text'],
|
||||
streaming=False
|
||||
)
|
||||
|
||||
return {'data': response.data.decode('latin1')}
|
||||
except services.errors.app_model_config.AppModelConfigBrokenError:
|
||||
logging.exception("App model config broken.")
|
||||
raise AppUnavailableError()
|
||||
except NoAudioUploadedServiceError:
|
||||
raise NoAudioUploadedError()
|
||||
except AudioTooLargeServiceError as e:
|
||||
raise AudioTooLargeError(str(e))
|
||||
except UnsupportedAudioTypeServiceError:
|
||||
raise UnsupportedAudioTypeError()
|
||||
except ProviderNotSupportSpeechToTextServiceError:
|
||||
raise ProviderNotSupportSpeechToTextError()
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
except QuotaExceededError:
|
||||
raise ProviderQuotaExceededError()
|
||||
except ModelCurrentlyNotSupportError:
|
||||
raise ProviderModelCurrentlyNotSupportError()
|
||||
except InvokeError as e:
|
||||
raise CompletionRequestError(e.description)
|
||||
except ValueError as e:
|
||||
raise e
|
||||
except Exception as e:
|
||||
logging.exception("internal server error.")
|
||||
raise InternalServerError()
|
||||
|
||||
|
||||
api.add_resource(ChatMessageAudioApi, '/apps/<uuid:app_id>/audio-to-text')
|
||||
api.add_resource(ChatMessageTextApi, '/apps/<uuid:app_id>/text-to-audio')
|
||||
|
||||
@@ -7,7 +7,7 @@ from extensions.ext_database import db
|
||||
from fields.app_fields import app_site_fields
|
||||
from flask_login import current_user
|
||||
from flask_restful import Resource, marshal_with, reqparse
|
||||
from libs.helper import supported_language
|
||||
from constants.languages import supported_language
|
||||
from libs.login import login_required
|
||||
from models.model import Site
|
||||
from werkzeug.exceptions import Forbidden, NotFound
|
||||
|
||||
@@ -6,7 +6,8 @@ from controllers.console import api
|
||||
from controllers.console.error import AlreadyActivateError
|
||||
from extensions.ext_database import db
|
||||
from flask_restful import Resource, reqparse
|
||||
from libs.helper import email, str_len, supported_language, timezone
|
||||
from libs.helper import email, str_len, timezone
|
||||
from constants.languages import supported_language
|
||||
from libs.password import hash_password, valid_password
|
||||
from models.account import AccountStatus, Tenant
|
||||
from services.account_service import RegisterService
|
||||
|
||||
@@ -3,6 +3,7 @@ from datetime import datetime
|
||||
from typing import Optional
|
||||
|
||||
import requests
|
||||
from constants.languages import languages
|
||||
from extensions.ext_database import db
|
||||
from flask import current_app, redirect, request
|
||||
from flask_restful import Resource
|
||||
@@ -106,11 +107,11 @@ def _generate_account(provider: str, user_info: OAuthUserInfo):
|
||||
)
|
||||
|
||||
# Set interface language
|
||||
preferred_lang = request.accept_languages.best_match(['zh', 'en'])
|
||||
if preferred_lang == 'zh':
|
||||
interface_language = 'zh-Hans'
|
||||
preferred_lang = request.accept_languages.best_match(languages)
|
||||
if preferred_lang and preferred_lang in languages:
|
||||
interface_language = preferred_lang
|
||||
else:
|
||||
interface_language = 'en-US'
|
||||
interface_language = languages[0]
|
||||
account.interface_language = interface_language
|
||||
db.session.commit()
|
||||
|
||||
|
||||
@@ -19,7 +19,7 @@ from flask import current_app, request
|
||||
from flask_login import current_user
|
||||
from flask_restful import Resource, marshal, marshal_with, reqparse
|
||||
from libs.login import login_required
|
||||
from models.dataset import Document, DocumentSegment
|
||||
from models.dataset import Dataset, Document, DocumentSegment
|
||||
from models.model import ApiToken, UploadFile
|
||||
from services.dataset_service import DatasetService, DocumentService
|
||||
from werkzeug.exceptions import Forbidden, NotFound
|
||||
@@ -97,7 +97,8 @@ class DatasetListApi(Resource):
|
||||
help='type is required. Name must be between 1 to 40 characters.',
|
||||
type=_validate_name)
|
||||
parser.add_argument('indexing_technique', type=str, location='json',
|
||||
choices=('high_quality', 'economy'),
|
||||
choices=Dataset.INDEXING_TECHNIQUE_LIST,
|
||||
nullable=True,
|
||||
help='Invalid indexing technique.')
|
||||
args = parser.parse_args()
|
||||
|
||||
@@ -177,8 +178,9 @@ class DatasetApi(Resource):
|
||||
location='json', store_missing=False,
|
||||
type=_validate_description_length)
|
||||
parser.add_argument('indexing_technique', type=str, location='json',
|
||||
choices=('high_quality', 'economy'),
|
||||
help='Invalid indexing technique.')
|
||||
choices=Dataset.INDEXING_TECHNIQUE_LIST,
|
||||
nullable=True,
|
||||
help='Invalid indexing technique.')
|
||||
parser.add_argument('permission', type=str, location='json', choices=(
|
||||
'only_me', 'all_team_members'), help='Invalid permission.')
|
||||
parser.add_argument('retrieval_model', type=dict, location='json', help='Invalid retrieval model.')
|
||||
@@ -256,7 +258,9 @@ class DatasetIndexingEstimateApi(Resource):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('info_list', type=dict, required=True, nullable=True, location='json')
|
||||
parser.add_argument('process_rule', type=dict, required=True, nullable=True, location='json')
|
||||
parser.add_argument('indexing_technique', type=str, required=True, nullable=True, location='json')
|
||||
parser.add_argument('indexing_technique', type=str, required=True,
|
||||
choices=Dataset.INDEXING_TECHNIQUE_LIST,
|
||||
nullable=True, location='json')
|
||||
parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
|
||||
parser.add_argument('dataset_id', type=str, required=False, nullable=False, location='json')
|
||||
parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False,
|
||||
|
||||
@@ -9,7 +9,7 @@ from flask import current_app, request
|
||||
from flask_login import current_user
|
||||
from flask_restful import Resource, marshal_with
|
||||
from libs.login import login_required
|
||||
from services.file_service import FileService
|
||||
from services.file_service import FileService, ALLOWED_EXTENSIONS, UNSTRUSTURED_ALLOWED_EXTENSIONS
|
||||
|
||||
PREVIEW_WORDS_LIMIT = 3000
|
||||
|
||||
@@ -71,11 +71,7 @@ class FileSupportTypeApi(Resource):
|
||||
@account_initialization_required
|
||||
def get(self):
|
||||
etl_type = current_app.config['ETL_TYPE']
|
||||
if etl_type == 'Unstructured':
|
||||
allowed_extensions = ['txt', 'markdown', 'md', 'pdf', 'html', 'htm', 'xlsx',
|
||||
'docx', 'csv', 'eml', 'msg', 'pptx', 'ppt', 'xml']
|
||||
else:
|
||||
allowed_extensions = ['txt', 'markdown', 'md', 'pdf', 'html', 'htm', 'xlsx', 'docx', 'csv']
|
||||
allowed_extensions = UNSTRUSTURED_ALLOWED_EXTENSIONS if etl_type == 'Unstructured' else ALLOWED_EXTENSIONS
|
||||
return {'allowed_extensions': allowed_extensions}
|
||||
|
||||
|
||||
|
||||
@@ -29,9 +29,10 @@ class ChatAudioApi(InstalledAppResource):
|
||||
file = request.files['file']
|
||||
|
||||
try:
|
||||
response = AudioService.transcript(
|
||||
response = AudioService.transcript_asr(
|
||||
tenant_id=app_model.tenant_id,
|
||||
file=file,
|
||||
end_user=None
|
||||
)
|
||||
|
||||
return response
|
||||
@@ -59,6 +60,48 @@ class ChatAudioApi(InstalledAppResource):
|
||||
except Exception as e:
|
||||
logging.exception("internal server error.")
|
||||
raise InternalServerError()
|
||||
|
||||
|
||||
api.add_resource(ChatAudioApi, '/installed-apps/<uuid:installed_app_id>/audio-to-text', endpoint='installed_app_audio')
|
||||
|
||||
class ChatTextApi(InstalledAppResource):
|
||||
def post(self, installed_app):
|
||||
app_model = installed_app.app
|
||||
app_model_config: AppModelConfig = app_model.app_model_config
|
||||
|
||||
if not app_model_config.text_to_speech_dict['enabled']:
|
||||
raise AppUnavailableError()
|
||||
|
||||
try:
|
||||
response = AudioService.transcript_tts(
|
||||
tenant_id=app_model.tenant_id,
|
||||
text=request.form['text'],
|
||||
streaming=False
|
||||
)
|
||||
return {'data': response.data.decode('latin1')}
|
||||
except services.errors.app_model_config.AppModelConfigBrokenError:
|
||||
logging.exception("App model config broken.")
|
||||
raise AppUnavailableError()
|
||||
except NoAudioUploadedServiceError:
|
||||
raise NoAudioUploadedError()
|
||||
except AudioTooLargeServiceError as e:
|
||||
raise AudioTooLargeError(str(e))
|
||||
except UnsupportedAudioTypeServiceError:
|
||||
raise UnsupportedAudioTypeError()
|
||||
except ProviderNotSupportSpeechToTextServiceError:
|
||||
raise ProviderNotSupportSpeechToTextError()
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
except QuotaExceededError:
|
||||
raise ProviderQuotaExceededError()
|
||||
except ModelCurrentlyNotSupportError:
|
||||
raise ProviderModelCurrentlyNotSupportError()
|
||||
except InvokeError as e:
|
||||
raise CompletionRequestError(e.description)
|
||||
except ValueError as e:
|
||||
raise e
|
||||
except Exception as e:
|
||||
logging.exception("internal server error.")
|
||||
raise InternalServerError()
|
||||
|
||||
|
||||
api.add_resource(ChatAudioApi, '/installed-apps/<uuid:installed_app_id>/audio-to-text', endpoint='installed_app_audio')
|
||||
api.add_resource(ChatTextApi, '/installed-apps/<uuid:installed_app_id>/text-to-audio', endpoint='installed_app_text')
|
||||
|
||||
@@ -33,8 +33,9 @@ class InstalledAppsListApi(Resource):
|
||||
'app_owner_tenant_id': installed_app.app_owner_tenant_id,
|
||||
'is_pinned': installed_app.is_pinned,
|
||||
'last_used_at': installed_app.last_used_at,
|
||||
"editable": current_user.role in ["owner", "admin"],
|
||||
"uninstallable": current_tenant_id == installed_app.app_owner_tenant_id
|
||||
'editable': current_user.role in ["owner", "admin"],
|
||||
'uninstallable': current_tenant_id == installed_app.app_owner_tenant_id,
|
||||
'is_agent': installed_app.is_agent
|
||||
}
|
||||
for installed_app in installed_apps
|
||||
]
|
||||
|
||||
@@ -17,9 +17,9 @@ from core.model_runtime.errors.invoke import InvokeError
|
||||
from fields.message_fields import message_infinite_scroll_pagination_fields
|
||||
from flask import Response, stream_with_context
|
||||
from flask_login import current_user
|
||||
from flask_restful import marshal_with, reqparse
|
||||
from flask_restful import marshal_with, reqparse, fields
|
||||
from flask_restful.inputs import int_range
|
||||
from libs.helper import uuid_value
|
||||
from libs.helper import uuid_value, TimestampField
|
||||
from services.completion_service import CompletionService
|
||||
from services.errors.app import MoreLikeThisDisabledError
|
||||
from services.errors.conversation import ConversationNotExistsError
|
||||
@@ -29,7 +29,6 @@ from werkzeug.exceptions import InternalServerError, NotFound
|
||||
|
||||
|
||||
class MessageListApi(InstalledAppResource):
|
||||
|
||||
@marshal_with(message_infinite_scroll_pagination_fields)
|
||||
def get(self, installed_app):
|
||||
app_model = installed_app.app
|
||||
@@ -51,7 +50,6 @@ class MessageListApi(InstalledAppResource):
|
||||
except services.errors.message.FirstMessageNotExistsError:
|
||||
raise NotFound("First Message Not Exists.")
|
||||
|
||||
|
||||
class MessageFeedbackApi(InstalledAppResource):
|
||||
def post(self, installed_app, message_id):
|
||||
app_model = installed_app.app
|
||||
|
||||
@@ -1,10 +1,14 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
import json
|
||||
|
||||
from controllers.console import api
|
||||
from controllers.console.explore.wraps import InstalledAppResource
|
||||
from flask import current_app
|
||||
from flask_restful import fields, marshal_with
|
||||
from models.model import InstalledApp
|
||||
from models.model import InstalledApp, AppModelConfig
|
||||
from models.tools import ApiToolProvider
|
||||
|
||||
from extensions.ext_database import db
|
||||
|
||||
class AppParameterApi(InstalledAppResource):
|
||||
"""Resource for app variables."""
|
||||
@@ -27,6 +31,7 @@ class AppParameterApi(InstalledAppResource):
|
||||
'suggested_questions': fields.Raw,
|
||||
'suggested_questions_after_answer': fields.Raw,
|
||||
'speech_to_text': fields.Raw,
|
||||
'text_to_speech': fields.Raw,
|
||||
'retriever_resource': fields.Raw,
|
||||
'annotation_reply': fields.Raw,
|
||||
'more_like_this': fields.Raw,
|
||||
@@ -47,6 +52,7 @@ class AppParameterApi(InstalledAppResource):
|
||||
'suggested_questions': app_model_config.suggested_questions_list,
|
||||
'suggested_questions_after_answer': app_model_config.suggested_questions_after_answer_dict,
|
||||
'speech_to_text': app_model_config.speech_to_text_dict,
|
||||
'text_to_speech': app_model_config.text_to_speech_dict,
|
||||
'retriever_resource': app_model_config.retriever_resource_dict,
|
||||
'annotation_reply': app_model_config.annotation_reply_dict,
|
||||
'more_like_this': app_model_config.more_like_this_dict,
|
||||
@@ -58,5 +64,42 @@ class AppParameterApi(InstalledAppResource):
|
||||
}
|
||||
}
|
||||
|
||||
class ExploreAppMetaApi(InstalledAppResource):
|
||||
def get(self, installed_app: InstalledApp):
|
||||
"""Get app meta"""
|
||||
app_model_config: AppModelConfig = installed_app.app.app_model_config
|
||||
|
||||
agent_config = app_model_config.agent_mode_dict or {}
|
||||
meta = {
|
||||
'tool_icons': {}
|
||||
}
|
||||
|
||||
# get all tools
|
||||
tools = agent_config.get('tools', [])
|
||||
url_prefix = (current_app.config.get("CONSOLE_API_URL")
|
||||
+ f"/console/api/workspaces/current/tool-provider/builtin/")
|
||||
for tool in tools:
|
||||
keys = list(tool.keys())
|
||||
if len(keys) >= 4:
|
||||
# current tool standard
|
||||
provider_type = tool.get('provider_type')
|
||||
provider_id = tool.get('provider_id')
|
||||
tool_name = tool.get('tool_name')
|
||||
if provider_type == 'builtin':
|
||||
meta['tool_icons'][tool_name] = url_prefix + provider_id + '/icon'
|
||||
elif provider_type == 'api':
|
||||
try:
|
||||
provider: ApiToolProvider = db.session.query(ApiToolProvider).filter(
|
||||
ApiToolProvider.id == provider_id
|
||||
)
|
||||
meta['tool_icons'][tool_name] = json.loads(provider.icon)
|
||||
except:
|
||||
meta['tool_icons'][tool_name] = {
|
||||
"background": "#252525",
|
||||
"content": "\ud83d\ude01"
|
||||
}
|
||||
|
||||
return meta
|
||||
|
||||
api.add_resource(AppParameterApi, '/installed-apps/<uuid:installed_app_id>/parameters', endpoint='installed_app_parameters')
|
||||
api.add_resource(ExploreAppMetaApi, '/installed-apps/<uuid:installed_app_id>/meta', endpoint='installed_app_meta')
|
||||
|
||||
@@ -9,6 +9,7 @@ from libs.login import login_required
|
||||
from models.model import App, InstalledApp, RecommendedApp
|
||||
from services.account_service import TenantService
|
||||
from sqlalchemy import and_
|
||||
from constants.languages import languages
|
||||
|
||||
app_fields = {
|
||||
'id': fields.String,
|
||||
@@ -29,7 +30,8 @@ recommended_app_fields = {
|
||||
'is_listed': fields.Boolean,
|
||||
'install_count': fields.Integer,
|
||||
'installed': fields.Boolean,
|
||||
'editable': fields.Boolean
|
||||
'editable': fields.Boolean,
|
||||
'is_agent': fields.Boolean
|
||||
}
|
||||
|
||||
recommended_app_list_fields = {
|
||||
@@ -43,7 +45,7 @@ class RecommendedAppListApi(Resource):
|
||||
@account_initialization_required
|
||||
@marshal_with(recommended_app_list_fields)
|
||||
def get(self):
|
||||
language_prefix = current_user.interface_language if current_user.interface_language else 'en-US'
|
||||
language_prefix = current_user.interface_language if current_user.interface_language else languages[0]
|
||||
|
||||
recommended_apps = db.session.query(RecommendedApp).filter(
|
||||
RecommendedApp.is_listed == True,
|
||||
@@ -82,6 +84,7 @@ class RecommendedAppListApi(Resource):
|
||||
'install_count': recommended_app.install_count,
|
||||
'installed': installed,
|
||||
'editable': current_user.role in ['owner', 'admin'],
|
||||
"is_agent": app.is_agent
|
||||
}
|
||||
recommended_apps_result.append(recommended_app_result)
|
||||
|
||||
|
||||
0
api/controllers/console/operation/__init__.py
Normal file
0
api/controllers/console/operation/__init__.py
Normal file
30
api/controllers/console/operation/operation.py
Normal file
30
api/controllers/console/operation/operation.py
Normal file
@@ -0,0 +1,30 @@
|
||||
from flask_login import current_user
|
||||
from flask_restful import Resource, reqparse
|
||||
|
||||
from controllers.console import api
|
||||
from controllers.console.setup import setup_required
|
||||
from controllers.console.wraps import account_initialization_required, only_edition_cloud
|
||||
from libs.login import login_required
|
||||
from services.operation_service import OperationService
|
||||
|
||||
|
||||
class TenantUtm(Resource):
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
@only_edition_cloud
|
||||
def post(self):
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('utm_source', type=str, required=True)
|
||||
parser.add_argument('utm_medium', type=str, required=True)
|
||||
parser.add_argument('utm_campaign', type=str, required=False, default='')
|
||||
parser.add_argument('utm_content', type=str, required=False, default='')
|
||||
parser.add_argument('utm_term', type=str, required=False, default='')
|
||||
args = parser.parse_args()
|
||||
|
||||
return OperationService.record_utm(current_user.current_tenant_id, args)
|
||||
|
||||
|
||||
api.add_resource(TenantUtm, '/operation/utm')
|
||||
@@ -1,64 +0,0 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
import logging
|
||||
|
||||
import services
|
||||
from controllers.console import api
|
||||
from controllers.console.app.error import (AppUnavailableError, AudioTooLargeError, CompletionRequestError,
|
||||
NoAudioUploadedError, ProviderModelCurrentlyNotSupportError,
|
||||
ProviderNotInitializeError, ProviderNotSupportSpeechToTextError,
|
||||
ProviderQuotaExceededError, UnsupportedAudioTypeError)
|
||||
from controllers.console.universal_chat.wraps import UniversalChatResource
|
||||
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
|
||||
from core.model_runtime.errors.invoke import InvokeError
|
||||
from flask import request
|
||||
from models.model import AppModelConfig
|
||||
from services.audio_service import AudioService
|
||||
from services.errors.audio import (AudioTooLargeServiceError, NoAudioUploadedServiceError,
|
||||
ProviderNotSupportSpeechToTextServiceError, UnsupportedAudioTypeServiceError)
|
||||
from werkzeug.exceptions import InternalServerError
|
||||
|
||||
|
||||
class UniversalChatAudioApi(UniversalChatResource):
|
||||
def post(self, universal_app):
|
||||
app_model = universal_app
|
||||
app_model_config: AppModelConfig = app_model.app_model_config
|
||||
|
||||
if not app_model_config.speech_to_text_dict['enabled']:
|
||||
raise AppUnavailableError()
|
||||
|
||||
file = request.files['file']
|
||||
|
||||
try:
|
||||
response = AudioService.transcript(
|
||||
tenant_id=app_model.tenant_id,
|
||||
file=file,
|
||||
)
|
||||
|
||||
return response
|
||||
except services.errors.app_model_config.AppModelConfigBrokenError:
|
||||
logging.exception("App model config broken.")
|
||||
raise AppUnavailableError()
|
||||
except NoAudioUploadedServiceError:
|
||||
raise NoAudioUploadedError()
|
||||
except AudioTooLargeServiceError as e:
|
||||
raise AudioTooLargeError(str(e))
|
||||
except UnsupportedAudioTypeServiceError:
|
||||
raise UnsupportedAudioTypeError()
|
||||
except ProviderNotSupportSpeechToTextServiceError:
|
||||
raise ProviderNotSupportSpeechToTextError()
|
||||
except ProviderTokenNotInitError:
|
||||
raise ProviderNotInitializeError()
|
||||
except QuotaExceededError:
|
||||
raise ProviderQuotaExceededError()
|
||||
except ModelCurrentlyNotSupportError:
|
||||
raise ProviderModelCurrentlyNotSupportError()
|
||||
except InvokeError as e:
|
||||
raise CompletionRequestError(e.description)
|
||||
except ValueError as e:
|
||||
raise e
|
||||
except Exception as e:
|
||||
logging.exception("internal server error.")
|
||||
raise InternalServerError()
|
||||
|
||||
|
||||
api.add_resource(UniversalChatAudioApi, '/universal-chat/audio-to-text')
|
||||
@@ -1,120 +0,0 @@
|
||||
import json
|
||||
import logging
|
||||
from typing import Generator, Union
|
||||
|
||||
import services
|
||||
from controllers.console import api
|
||||
from controllers.console.app.error import (AppUnavailableError, CompletionRequestError, ConversationCompletedError,
|
||||
ProviderModelCurrentlyNotSupportError, ProviderNotInitializeError,
|
||||
ProviderQuotaExceededError)
|
||||
from controllers.console.universal_chat.wraps import UniversalChatResource
|
||||
from core.application_queue_manager import ApplicationQueueManager
|
||||
from core.entities.application_entities import InvokeFrom
|
||||
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
|
||||
from core.model_runtime.errors.invoke import InvokeError
|
||||
from flask import Response, stream_with_context
|
||||
from flask_login import current_user
|
||||
from flask_restful import reqparse
|
||||
from libs.helper import uuid_value
|
||||
from services.completion_service import CompletionService
|
||||
from werkzeug.exceptions import InternalServerError, NotFound
|
||||
|
||||
|
||||
class UniversalChatApi(UniversalChatResource):
|
||||
def post(self, universal_app):
|
||||
app_model = universal_app
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('query', type=str, required=True, location='json')
|
||||
parser.add_argument('files', type=list, required=False, location='json')
|
||||
parser.add_argument('conversation_id', type=uuid_value, location='json')
|
||||
parser.add_argument('provider', type=str, required=True, location='json')
|
||||
parser.add_argument('model', type=str, required=True, location='json')
|
||||
parser.add_argument('tools', type=list, required=True, location='json')
|
||||
parser.add_argument('retriever_from', type=str, required=False, default='universal_app', location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
app_model_config = app_model.app_model_config
|
||||
|
||||
# update app model config
|
||||
args['model_config'] = app_model_config.to_dict()
|
||||
args['model_config']['model']['name'] = args['model']
|
||||
args['model_config']['model']['provider'] = args['provider']
|
||||
args['model_config']['agent_mode']['tools'] = args['tools']
|
||||
|
||||
if not args['model_config']['agent_mode']['tools']:
|
||||
args['model_config']['agent_mode']['tools'] = [
|
||||
{
|
||||
"current_datetime": {
|
||||
"enabled": True
|
||||
}
|
||||
}
|
||||
]
|
||||
else:
|
||||
args['model_config']['agent_mode']['tools'].append({
|
||||
"current_datetime": {
|
||||
"enabled": True
|
||||
}
|
||||
})
|
||||
|
||||
args['inputs'] = {}
|
||||
|
||||
del args['model']
|
||||
del args['tools']
|
||||
|
||||
args['auto_generate_name'] = False
|
||||
|
||||
try:
|
||||
response = CompletionService.completion(
|
||||
app_model=app_model,
|
||||
user=current_user,
|
||||
args=args,
|
||||
invoke_from=InvokeFrom.EXPLORE,
|
||||
streaming=True,
|
||||
is_model_config_override=True,
|
||||
)
|
||||
|
||||
return compact_response(response)
|
||||
except services.errors.conversation.ConversationNotExistsError:
|
||||
raise NotFound("Conversation Not Exists.")
|
||||
except services.errors.conversation.ConversationCompletedError:
|
||||
raise ConversationCompletedError()
|
||||
except services.errors.app_model_config.AppModelConfigBrokenError:
|
||||
logging.exception("App model config broken.")
|
||||
raise AppUnavailableError()
|
||||
except ProviderTokenNotInitError:
|
||||
raise ProviderNotInitializeError()
|
||||
except QuotaExceededError:
|
||||
raise ProviderQuotaExceededError()
|
||||
except ModelCurrentlyNotSupportError:
|
||||
raise ProviderModelCurrentlyNotSupportError()
|
||||
except InvokeError as e:
|
||||
raise CompletionRequestError(e.description)
|
||||
except ValueError as e:
|
||||
raise e
|
||||
except Exception as e:
|
||||
logging.exception("internal server error.")
|
||||
raise InternalServerError()
|
||||
|
||||
|
||||
class UniversalChatStopApi(UniversalChatResource):
|
||||
def post(self, universal_app, task_id):
|
||||
ApplicationQueueManager.set_stop_flag(task_id, InvokeFrom.EXPLORE, current_user.id)
|
||||
|
||||
return {'result': 'success'}, 200
|
||||
|
||||
|
||||
def compact_response(response: Union[dict, Generator]) -> Response:
|
||||
if isinstance(response, dict):
|
||||
return Response(response=json.dumps(response), status=200, mimetype='application/json')
|
||||
else:
|
||||
def generate() -> Generator:
|
||||
for chunk in response:
|
||||
yield chunk
|
||||
|
||||
return Response(stream_with_context(generate()), status=200,
|
||||
mimetype='text/event-stream')
|
||||
|
||||
|
||||
api.add_resource(UniversalChatApi, '/universal-chat/messages')
|
||||
api.add_resource(UniversalChatStopApi, '/universal-chat/messages/<string:task_id>/stop')
|
||||
@@ -1,110 +0,0 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
from controllers.console import api
|
||||
from controllers.console.universal_chat.wraps import UniversalChatResource
|
||||
from fields.conversation_fields import (conversation_with_model_config_fields,
|
||||
conversation_with_model_config_infinite_scroll_pagination_fields)
|
||||
from flask_login import current_user
|
||||
from flask_restful import fields, marshal_with, reqparse
|
||||
from flask_restful.inputs import int_range
|
||||
from libs.helper import TimestampField, uuid_value
|
||||
from services.conversation_service import ConversationService
|
||||
from services.errors.conversation import ConversationNotExistsError, LastConversationNotExistsError
|
||||
from services.web_conversation_service import WebConversationService
|
||||
from werkzeug.exceptions import NotFound
|
||||
|
||||
|
||||
class UniversalChatConversationListApi(UniversalChatResource):
|
||||
|
||||
@marshal_with(conversation_with_model_config_infinite_scroll_pagination_fields)
|
||||
def get(self, universal_app):
|
||||
app_model = universal_app
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('last_id', type=uuid_value, location='args')
|
||||
parser.add_argument('limit', type=int_range(1, 100), required=False, default=20, location='args')
|
||||
parser.add_argument('pinned', type=str, choices=['true', 'false', None], location='args')
|
||||
args = parser.parse_args()
|
||||
|
||||
pinned = None
|
||||
if 'pinned' in args and args['pinned'] is not None:
|
||||
pinned = True if args['pinned'] == 'true' else False
|
||||
|
||||
try:
|
||||
return WebConversationService.pagination_by_last_id(
|
||||
app_model=app_model,
|
||||
user=current_user,
|
||||
last_id=args['last_id'],
|
||||
limit=args['limit'],
|
||||
pinned=pinned
|
||||
)
|
||||
except LastConversationNotExistsError:
|
||||
raise NotFound("Last Conversation Not Exists.")
|
||||
|
||||
|
||||
class UniversalChatConversationApi(UniversalChatResource):
|
||||
def delete(self, universal_app, c_id):
|
||||
app_model = universal_app
|
||||
conversation_id = str(c_id)
|
||||
|
||||
try:
|
||||
ConversationService.delete(app_model, conversation_id, current_user)
|
||||
except ConversationNotExistsError:
|
||||
raise NotFound("Conversation Not Exists.")
|
||||
|
||||
WebConversationService.unpin(app_model, conversation_id, current_user)
|
||||
|
||||
return {"result": "success"}, 204
|
||||
|
||||
|
||||
class UniversalChatConversationRenameApi(UniversalChatResource):
|
||||
|
||||
@marshal_with(conversation_with_model_config_fields)
|
||||
def post(self, universal_app, c_id):
|
||||
app_model = universal_app
|
||||
conversation_id = str(c_id)
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('name', type=str, required=False, location='json')
|
||||
parser.add_argument('auto_generate', type=bool, required=False, default=False, location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
try:
|
||||
return ConversationService.rename(
|
||||
app_model,
|
||||
conversation_id,
|
||||
current_user,
|
||||
args['name'],
|
||||
args['auto_generate']
|
||||
)
|
||||
except ConversationNotExistsError:
|
||||
raise NotFound("Conversation Not Exists.")
|
||||
|
||||
|
||||
class UniversalChatConversationPinApi(UniversalChatResource):
|
||||
|
||||
def patch(self, universal_app, c_id):
|
||||
app_model = universal_app
|
||||
conversation_id = str(c_id)
|
||||
|
||||
try:
|
||||
WebConversationService.pin(app_model, conversation_id, current_user)
|
||||
except ConversationNotExistsError:
|
||||
raise NotFound("Conversation Not Exists.")
|
||||
|
||||
return {"result": "success"}
|
||||
|
||||
|
||||
class UniversalChatConversationUnPinApi(UniversalChatResource):
|
||||
def patch(self, universal_app, c_id):
|
||||
app_model = universal_app
|
||||
conversation_id = str(c_id)
|
||||
WebConversationService.unpin(app_model, conversation_id, current_user)
|
||||
|
||||
return {"result": "success"}
|
||||
|
||||
|
||||
api.add_resource(UniversalChatConversationRenameApi, '/universal-chat/conversations/<uuid:c_id>/name')
|
||||
api.add_resource(UniversalChatConversationListApi, '/universal-chat/conversations')
|
||||
api.add_resource(UniversalChatConversationApi, '/universal-chat/conversations/<uuid:c_id>')
|
||||
api.add_resource(UniversalChatConversationPinApi, '/universal-chat/conversations/<uuid:c_id>/pin')
|
||||
api.add_resource(UniversalChatConversationUnPinApi, '/universal-chat/conversations/<uuid:c_id>/unpin')
|
||||
@@ -1,145 +0,0 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
import logging
|
||||
|
||||
import services
|
||||
from controllers.console import api
|
||||
from controllers.console.app.error import (CompletionRequestError, ProviderModelCurrentlyNotSupportError,
|
||||
ProviderNotInitializeError, ProviderQuotaExceededError)
|
||||
from controllers.console.explore.error import AppSuggestedQuestionsAfterAnswerDisabledError
|
||||
from controllers.console.universal_chat.wraps import UniversalChatResource
|
||||
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
|
||||
from core.model_runtime.errors.invoke import InvokeError
|
||||
from flask_login import current_user
|
||||
from flask_restful import fields, marshal_with, reqparse
|
||||
from flask_restful.inputs import int_range
|
||||
from libs.helper import TimestampField, uuid_value
|
||||
from services.errors.conversation import ConversationNotExistsError
|
||||
from services.errors.message import MessageNotExistsError, SuggestedQuestionsAfterAnswerDisabledError
|
||||
from services.message_service import MessageService
|
||||
from werkzeug.exceptions import InternalServerError, NotFound
|
||||
|
||||
|
||||
class UniversalChatMessageListApi(UniversalChatResource):
|
||||
feedback_fields = {
|
||||
'rating': fields.String
|
||||
}
|
||||
|
||||
agent_thought_fields = {
|
||||
'id': fields.String,
|
||||
'chain_id': fields.String,
|
||||
'message_id': fields.String,
|
||||
'position': fields.Integer,
|
||||
'thought': fields.String,
|
||||
'tool': fields.String,
|
||||
'tool_input': fields.String,
|
||||
'created_at': TimestampField
|
||||
}
|
||||
|
||||
retriever_resource_fields = {
|
||||
'id': fields.String,
|
||||
'message_id': fields.String,
|
||||
'position': fields.Integer,
|
||||
'dataset_id': fields.String,
|
||||
'dataset_name': fields.String,
|
||||
'document_id': fields.String,
|
||||
'document_name': fields.String,
|
||||
'data_source_type': fields.String,
|
||||
'segment_id': fields.String,
|
||||
'score': fields.Float,
|
||||
'hit_count': fields.Integer,
|
||||
'word_count': fields.Integer,
|
||||
'segment_position': fields.Integer,
|
||||
'index_node_hash': fields.String,
|
||||
'content': fields.String,
|
||||
'created_at': TimestampField
|
||||
}
|
||||
|
||||
message_fields = {
|
||||
'id': fields.String,
|
||||
'conversation_id': fields.String,
|
||||
'inputs': fields.Raw,
|
||||
'query': fields.String,
|
||||
'answer': fields.String,
|
||||
'feedback': fields.Nested(feedback_fields, attribute='user_feedback', allow_null=True),
|
||||
'retriever_resources': fields.List(fields.Nested(retriever_resource_fields)),
|
||||
'created_at': TimestampField,
|
||||
'agent_thoughts': fields.List(fields.Nested(agent_thought_fields))
|
||||
}
|
||||
|
||||
message_infinite_scroll_pagination_fields = {
|
||||
'limit': fields.Integer,
|
||||
'has_more': fields.Boolean,
|
||||
'data': fields.List(fields.Nested(message_fields))
|
||||
}
|
||||
|
||||
@marshal_with(message_infinite_scroll_pagination_fields)
|
||||
def get(self, universal_app):
|
||||
app_model = universal_app
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('conversation_id', required=True, type=uuid_value, location='args')
|
||||
parser.add_argument('first_id', type=uuid_value, location='args')
|
||||
parser.add_argument('limit', type=int_range(1, 100), required=False, default=20, location='args')
|
||||
args = parser.parse_args()
|
||||
|
||||
try:
|
||||
return MessageService.pagination_by_first_id(app_model, current_user,
|
||||
args['conversation_id'], args['first_id'], args['limit'])
|
||||
except services.errors.conversation.ConversationNotExistsError:
|
||||
raise NotFound("Conversation Not Exists.")
|
||||
except services.errors.message.FirstMessageNotExistsError:
|
||||
raise NotFound("First Message Not Exists.")
|
||||
|
||||
|
||||
class UniversalChatMessageFeedbackApi(UniversalChatResource):
|
||||
def post(self, universal_app, message_id):
|
||||
app_model = universal_app
|
||||
message_id = str(message_id)
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('rating', type=str, choices=['like', 'dislike', None], location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
try:
|
||||
MessageService.create_feedback(app_model, message_id, current_user, args['rating'])
|
||||
except services.errors.message.MessageNotExistsError:
|
||||
raise NotFound("Message Not Exists.")
|
||||
|
||||
return {'result': 'success'}
|
||||
|
||||
|
||||
class UniversalChatMessageSuggestedQuestionApi(UniversalChatResource):
|
||||
def get(self, universal_app, message_id):
|
||||
app_model = universal_app
|
||||
message_id = str(message_id)
|
||||
|
||||
try:
|
||||
questions = MessageService.get_suggested_questions_after_answer(
|
||||
app_model=app_model,
|
||||
user=current_user,
|
||||
message_id=message_id
|
||||
)
|
||||
except MessageNotExistsError:
|
||||
raise NotFound("Message not found")
|
||||
except ConversationNotExistsError:
|
||||
raise NotFound("Conversation not found")
|
||||
except SuggestedQuestionsAfterAnswerDisabledError:
|
||||
raise AppSuggestedQuestionsAfterAnswerDisabledError()
|
||||
except ProviderTokenNotInitError:
|
||||
raise ProviderNotInitializeError()
|
||||
except QuotaExceededError:
|
||||
raise ProviderQuotaExceededError()
|
||||
except ModelCurrentlyNotSupportError:
|
||||
raise ProviderModelCurrentlyNotSupportError()
|
||||
except InvokeError as e:
|
||||
raise CompletionRequestError(e.description)
|
||||
except Exception:
|
||||
logging.exception("internal server error.")
|
||||
raise InternalServerError()
|
||||
|
||||
return {'data': questions}
|
||||
|
||||
|
||||
api.add_resource(UniversalChatMessageListApi, '/universal-chat/messages')
|
||||
api.add_resource(UniversalChatMessageFeedbackApi, '/universal-chat/messages/<uuid:message_id>/feedbacks')
|
||||
api.add_resource(UniversalChatMessageSuggestedQuestionApi, '/universal-chat/messages/<uuid:message_id>/suggested-questions')
|
||||
@@ -1,38 +0,0 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
import json
|
||||
|
||||
from controllers.console import api
|
||||
from controllers.console.universal_chat.wraps import UniversalChatResource
|
||||
from flask_restful import fields, marshal_with
|
||||
from models.model import App
|
||||
|
||||
|
||||
class UniversalChatParameterApi(UniversalChatResource):
|
||||
"""Resource for app variables."""
|
||||
parameters_fields = {
|
||||
'opening_statement': fields.String,
|
||||
'suggested_questions': fields.Raw,
|
||||
'suggested_questions_after_answer': fields.Raw,
|
||||
'speech_to_text': fields.Raw,
|
||||
'retriever_resource': fields.Raw,
|
||||
'annotation_reply': fields.Raw
|
||||
}
|
||||
|
||||
@marshal_with(parameters_fields)
|
||||
def get(self, universal_app: App):
|
||||
"""Retrieve app parameters."""
|
||||
app_model = universal_app
|
||||
app_model_config = app_model.app_model_config
|
||||
app_model_config.retriever_resource = json.dumps({'enabled': True})
|
||||
|
||||
return {
|
||||
'opening_statement': app_model_config.opening_statement,
|
||||
'suggested_questions': app_model_config.suggested_questions_list,
|
||||
'suggested_questions_after_answer': app_model_config.suggested_questions_after_answer_dict,
|
||||
'speech_to_text': app_model_config.speech_to_text_dict,
|
||||
'retriever_resource': app_model_config.retriever_resource_dict,
|
||||
'annotation_reply': app_model_config.annotation_reply_dict,
|
||||
}
|
||||
|
||||
|
||||
api.add_resource(UniversalChatParameterApi, '/universal-chat/parameters')
|
||||
@@ -1,86 +0,0 @@
|
||||
import json
|
||||
from functools import wraps
|
||||
|
||||
from controllers.console.setup import setup_required
|
||||
from controllers.console.wraps import account_initialization_required
|
||||
from extensions.ext_database import db
|
||||
from flask_login import current_user
|
||||
from flask_restful import Resource
|
||||
from libs.login import login_required
|
||||
from models.model import App, AppModelConfig
|
||||
|
||||
|
||||
def universal_chat_app_required(view=None):
|
||||
def decorator(view):
|
||||
@wraps(view)
|
||||
def decorated(*args, **kwargs):
|
||||
# get universal chat app
|
||||
universal_app = db.session.query(App).filter(
|
||||
App.tenant_id == current_user.current_tenant_id,
|
||||
App.is_universal == True
|
||||
).first()
|
||||
|
||||
if universal_app is None:
|
||||
# create universal app if not exists
|
||||
universal_app = App(
|
||||
tenant_id=current_user.current_tenant_id,
|
||||
name='Universal Chat',
|
||||
mode='chat',
|
||||
is_universal=True,
|
||||
icon='',
|
||||
icon_background='',
|
||||
api_rpm=0,
|
||||
api_rph=0,
|
||||
enable_site=False,
|
||||
enable_api=False,
|
||||
status='normal'
|
||||
)
|
||||
|
||||
db.session.add(universal_app)
|
||||
db.session.flush()
|
||||
|
||||
app_model_config = AppModelConfig(
|
||||
provider="",
|
||||
model_id="",
|
||||
configs={},
|
||||
opening_statement='',
|
||||
suggested_questions=json.dumps([]),
|
||||
suggested_questions_after_answer=json.dumps({'enabled': True}),
|
||||
speech_to_text=json.dumps({'enabled': True}),
|
||||
retriever_resource=json.dumps({'enabled': True}),
|
||||
more_like_this=None,
|
||||
sensitive_word_avoidance=None,
|
||||
model=json.dumps({
|
||||
"provider": "openai",
|
||||
"name": "gpt-3.5-turbo-16k",
|
||||
"completion_params": {
|
||||
"max_tokens": 800,
|
||||
"temperature": 0.8,
|
||||
"top_p": 1,
|
||||
"presence_penalty": 0,
|
||||
"frequency_penalty": 0
|
||||
}
|
||||
}),
|
||||
user_input_form=json.dumps([]),
|
||||
pre_prompt='',
|
||||
agent_mode=json.dumps({"enabled": True, "strategy": "function_call", "tools": []}),
|
||||
)
|
||||
|
||||
app_model_config.app_id = universal_app.id
|
||||
db.session.add(app_model_config)
|
||||
db.session.flush()
|
||||
|
||||
universal_app.app_model_config_id = app_model_config.id
|
||||
db.session.commit()
|
||||
|
||||
return view(universal_app, *args, **kwargs)
|
||||
return decorated
|
||||
|
||||
if view:
|
||||
return decorator(view)
|
||||
return decorator
|
||||
|
||||
|
||||
class UniversalChatResource(Resource):
|
||||
# must be reversed if there are multiple decorators
|
||||
method_decorators = [universal_chat_app_required, account_initialization_required, login_required, setup_required]
|
||||
@@ -11,7 +11,8 @@ from extensions.ext_database import db
|
||||
from flask import current_app, request
|
||||
from flask_login import current_user
|
||||
from flask_restful import Resource, fields, marshal_with, reqparse
|
||||
from libs.helper import TimestampField, supported_language, timezone
|
||||
from libs.helper import TimestampField, timezone
|
||||
from constants.languages import supported_language
|
||||
from libs.login import login_required
|
||||
from models.account import AccountIntegrate, InvitationCode
|
||||
from services.account_service import AccountService
|
||||
|
||||
@@ -1,15 +1,16 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
from flask import current_app
|
||||
from flask_login import current_user
|
||||
from flask_restful import Resource, abort, fields, marshal_with, reqparse
|
||||
|
||||
import services
|
||||
from controllers.console import api
|
||||
from controllers.console.setup import setup_required
|
||||
from controllers.console.wraps import account_initialization_required, cloud_edition_billing_resource_check
|
||||
from extensions.ext_database import db
|
||||
from flask import current_app
|
||||
from flask_login import current_user
|
||||
from flask_restful import Resource, abort, fields, marshal, marshal_with, reqparse
|
||||
from libs.helper import TimestampField
|
||||
from libs.login import login_required
|
||||
from models.account import Account, TenantAccountJoin
|
||||
from models.account import Account
|
||||
from services.account_service import RegisterService, TenantService
|
||||
|
||||
account_fields = {
|
||||
@@ -64,18 +65,12 @@ class MemberInviteEmailApi(Resource):
|
||||
for invitee_email in invitee_emails:
|
||||
try:
|
||||
token = RegisterService.invite_new_member(inviter.current_tenant, invitee_email, role=invitee_role,
|
||||
inviter=inviter)
|
||||
account = db.session.query(Account, TenantAccountJoin.role).join(
|
||||
TenantAccountJoin, Account.id == TenantAccountJoin.account_id
|
||||
).filter(Account.email == invitee_email).first()
|
||||
account, role = account
|
||||
inviter=inviter)
|
||||
invitation_results.append({
|
||||
'status': 'success',
|
||||
'email': invitee_email,
|
||||
'url': f'{console_web_url}/activate?email={invitee_email}&token={token}'
|
||||
})
|
||||
account = marshal(account, account_fields)
|
||||
account['role'] = role
|
||||
except Exception as e:
|
||||
invitation_results.append({
|
||||
'status': 'failed',
|
||||
|
||||
@@ -1,136 +1,293 @@
|
||||
import json
|
||||
|
||||
from libs.login import login_required
|
||||
from flask_login import current_user
|
||||
from flask_restful import Resource, reqparse
|
||||
from flask import send_file
|
||||
from werkzeug.exceptions import Forbidden
|
||||
|
||||
from controllers.console import api
|
||||
from controllers.console.setup import setup_required
|
||||
from controllers.console.wraps import account_initialization_required
|
||||
from core.tool.provider.errors import ToolValidateFailedError
|
||||
from core.tool.provider.tool_provider_service import ToolProviderService
|
||||
from extensions.ext_database import db
|
||||
from flask_login import current_user
|
||||
from flask_restful import Resource, abort, reqparse
|
||||
from libs.login import login_required
|
||||
from models.tool import ToolProvider, ToolProviderName
|
||||
from werkzeug.exceptions import Forbidden
|
||||
|
||||
from services.tools_manage_service import ToolManageService
|
||||
|
||||
import io
|
||||
|
||||
class ToolProviderListApi(Resource):
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def get(self):
|
||||
user_id = current_user.id
|
||||
tenant_id = current_user.current_tenant_id
|
||||
|
||||
tool_credential_dict = {}
|
||||
for tool_name in ToolProviderName:
|
||||
tool_credential_dict[tool_name.value] = {
|
||||
'tool_name': tool_name.value,
|
||||
'is_enabled': False,
|
||||
'credentials': None
|
||||
}
|
||||
return ToolManageService.list_tool_providers(user_id, tenant_id)
|
||||
|
||||
tool_providers = db.session.query(ToolProvider).filter(ToolProvider.tenant_id == tenant_id).all()
|
||||
class ToolBuiltinProviderListToolsApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def get(self, provider):
|
||||
user_id = current_user.id
|
||||
tenant_id = current_user.current_tenant_id
|
||||
|
||||
for p in tool_providers:
|
||||
if p.is_enabled:
|
||||
tool_credential_dict[p.tool_name] = {
|
||||
'tool_name': p.tool_name,
|
||||
'is_enabled': p.is_enabled,
|
||||
'credentials': ToolProviderService(tenant_id, p.tool_name).get_credentials(obfuscated=True)
|
||||
}
|
||||
|
||||
return list(tool_credential_dict.values())
|
||||
|
||||
|
||||
class ToolProviderCredentialsApi(Resource):
|
||||
return ToolManageService.list_builtin_tool_provider_tools(
|
||||
user_id,
|
||||
tenant_id,
|
||||
provider,
|
||||
)
|
||||
|
||||
class ToolBuiltinProviderDeleteApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self, provider):
|
||||
if provider not in [p.value for p in ToolProviderName]:
|
||||
abort(404)
|
||||
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
raise Forbidden(f'User {current_user.id} is not authorized to update provider token, '
|
||||
f'current_role is {current_user.current_tenant.current_role}')
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('credentials', type=dict, required=True, nullable=False, location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
raise Forbidden()
|
||||
|
||||
user_id = current_user.id
|
||||
tenant_id = current_user.current_tenant_id
|
||||
|
||||
tool_provider_service = ToolProviderService(tenant_id, provider)
|
||||
|
||||
try:
|
||||
tool_provider_service.credentials_validate(args['credentials'])
|
||||
except ToolValidateFailedError as ex:
|
||||
raise ValueError(str(ex))
|
||||
|
||||
encrypted_credentials = json.dumps(tool_provider_service.encrypt_credentials(args['credentials']))
|
||||
|
||||
tenant = current_user.current_tenant
|
||||
|
||||
tool_provider_model = db.session.query(ToolProvider).filter(
|
||||
ToolProvider.tenant_id == tenant.id,
|
||||
ToolProvider.tool_name == provider,
|
||||
).first()
|
||||
|
||||
# Only allow updating token for CUSTOM provider type
|
||||
if tool_provider_model:
|
||||
tool_provider_model.encrypted_credentials = encrypted_credentials
|
||||
tool_provider_model.is_enabled = True
|
||||
else:
|
||||
tool_provider_model = ToolProvider(
|
||||
tenant_id=tenant.id,
|
||||
tool_name=provider,
|
||||
encrypted_credentials=encrypted_credentials,
|
||||
is_enabled=True
|
||||
)
|
||||
db.session.add(tool_provider_model)
|
||||
|
||||
db.session.commit()
|
||||
|
||||
return {'result': 'success'}, 201
|
||||
|
||||
|
||||
class ToolProviderCredentialsValidateApi(Resource):
|
||||
|
||||
return ToolManageService.delete_builtin_tool_provider(
|
||||
user_id,
|
||||
tenant_id,
|
||||
provider,
|
||||
)
|
||||
|
||||
class ToolBuiltinProviderUpdateApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self, provider):
|
||||
if provider not in [p.value for p in ToolProviderName]:
|
||||
abort(404)
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
raise Forbidden()
|
||||
|
||||
user_id = current_user.id
|
||||
tenant_id = current_user.current_tenant_id
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('credentials', type=dict, required=True, nullable=False, location='json')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
result = True
|
||||
error = None
|
||||
return ToolManageService.update_builtin_tool_provider(
|
||||
user_id,
|
||||
tenant_id,
|
||||
provider,
|
||||
args['credentials'],
|
||||
)
|
||||
|
||||
class ToolBuiltinProviderIconApi(Resource):
|
||||
@setup_required
|
||||
def get(self, provider):
|
||||
icon_bytes, minetype = ToolManageService.get_builtin_tool_provider_icon(provider)
|
||||
return send_file(io.BytesIO(icon_bytes), mimetype=minetype)
|
||||
|
||||
|
||||
class ToolApiProviderAddApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self):
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
raise Forbidden()
|
||||
|
||||
user_id = current_user.id
|
||||
tenant_id = current_user.current_tenant_id
|
||||
|
||||
tool_provider_service = ToolProviderService(tenant_id, provider)
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('credentials', type=dict, required=True, nullable=False, location='json')
|
||||
parser.add_argument('schema_type', type=str, required=True, nullable=False, location='json')
|
||||
parser.add_argument('schema', type=str, required=True, nullable=False, location='json')
|
||||
parser.add_argument('provider', type=str, required=True, nullable=False, location='json')
|
||||
parser.add_argument('icon', type=dict, required=True, nullable=False, location='json')
|
||||
parser.add_argument('privacy_policy', type=str, required=False, nullable=True, location='json')
|
||||
|
||||
try:
|
||||
tool_provider_service.credentials_validate(args['credentials'])
|
||||
except ToolValidateFailedError as ex:
|
||||
result = False
|
||||
error = str(ex)
|
||||
args = parser.parse_args()
|
||||
|
||||
response = {'result': 'success' if result else 'error'}
|
||||
return ToolManageService.create_api_tool_provider(
|
||||
user_id,
|
||||
tenant_id,
|
||||
args['provider'],
|
||||
args['icon'],
|
||||
args['credentials'],
|
||||
args['schema_type'],
|
||||
args['schema'],
|
||||
args.get('privacy_policy', ''),
|
||||
)
|
||||
|
||||
if not result:
|
||||
response['error'] = error
|
||||
class ToolApiProviderGetRemoteSchemaApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def get(self):
|
||||
parser = reqparse.RequestParser()
|
||||
|
||||
return response
|
||||
parser.add_argument('url', type=str, required=True, nullable=False, location='args')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
return ToolManageService.get_api_tool_provider_remote_schema(
|
||||
current_user.id,
|
||||
current_user.current_tenant_id,
|
||||
args['url'],
|
||||
)
|
||||
|
||||
class ToolApiProviderListToolsApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def get(self):
|
||||
user_id = current_user.id
|
||||
tenant_id = current_user.current_tenant_id
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
|
||||
parser.add_argument('provider', type=str, required=True, nullable=False, location='args')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
return ToolManageService.list_api_tool_provider_tools(
|
||||
user_id,
|
||||
tenant_id,
|
||||
args['provider'],
|
||||
)
|
||||
|
||||
class ToolApiProviderUpdateApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self):
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
raise Forbidden()
|
||||
|
||||
user_id = current_user.id
|
||||
tenant_id = current_user.current_tenant_id
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('credentials', type=dict, required=True, nullable=False, location='json')
|
||||
parser.add_argument('schema_type', type=str, required=True, nullable=False, location='json')
|
||||
parser.add_argument('schema', type=str, required=True, nullable=False, location='json')
|
||||
parser.add_argument('provider', type=str, required=True, nullable=False, location='json')
|
||||
parser.add_argument('original_provider', type=str, required=True, nullable=False, location='json')
|
||||
parser.add_argument('icon', type=str, required=True, nullable=False, location='json')
|
||||
parser.add_argument('privacy_policy', type=str, required=True, nullable=False, location='json')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
return ToolManageService.update_api_tool_provider(
|
||||
user_id,
|
||||
tenant_id,
|
||||
args['provider'],
|
||||
args['original_provider'],
|
||||
args['icon'],
|
||||
args['credentials'],
|
||||
args['schema_type'],
|
||||
args['schema'],
|
||||
args['privacy_policy'],
|
||||
)
|
||||
|
||||
class ToolApiProviderDeleteApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self):
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
raise Forbidden()
|
||||
|
||||
user_id = current_user.id
|
||||
tenant_id = current_user.current_tenant_id
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
|
||||
parser.add_argument('provider', type=str, required=True, nullable=False, location='json')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
return ToolManageService.delete_api_tool_provider(
|
||||
user_id,
|
||||
tenant_id,
|
||||
args['provider'],
|
||||
)
|
||||
|
||||
class ToolApiProviderGetApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def get(self):
|
||||
user_id = current_user.id
|
||||
tenant_id = current_user.current_tenant_id
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
|
||||
parser.add_argument('provider', type=str, required=True, nullable=False, location='args')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
return ToolManageService.get_api_tool_provider(
|
||||
user_id,
|
||||
tenant_id,
|
||||
args['provider'],
|
||||
)
|
||||
|
||||
class ToolBuiltinProviderCredentialsSchemaApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def get(self, provider):
|
||||
return ToolManageService.list_builtin_provider_credentials_schema(provider)
|
||||
|
||||
class ToolApiProviderSchemaApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self):
|
||||
parser = reqparse.RequestParser()
|
||||
|
||||
parser.add_argument('schema', type=str, required=True, nullable=False, location='json')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
return ToolManageService.parser_api_schema(
|
||||
schema=args['schema'],
|
||||
)
|
||||
|
||||
class ToolApiProviderPreviousTestApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self):
|
||||
parser = reqparse.RequestParser()
|
||||
|
||||
parser.add_argument('tool_name', type=str, required=True, nullable=False, location='json')
|
||||
parser.add_argument('credentials', type=dict, required=True, nullable=False, location='json')
|
||||
parser.add_argument('parameters', type=dict, required=True, nullable=False, location='json')
|
||||
parser.add_argument('schema_type', type=str, required=True, nullable=False, location='json')
|
||||
parser.add_argument('schema', type=str, required=True, nullable=False, location='json')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
return ToolManageService.test_api_tool_preview(
|
||||
current_user.current_tenant_id,
|
||||
args['tool_name'],
|
||||
args['credentials'],
|
||||
args['parameters'],
|
||||
args['schema_type'],
|
||||
args['schema'],
|
||||
)
|
||||
|
||||
api.add_resource(ToolProviderListApi, '/workspaces/current/tool-providers')
|
||||
api.add_resource(ToolProviderCredentialsApi, '/workspaces/current/tool-providers/<provider>/credentials')
|
||||
api.add_resource(ToolProviderCredentialsValidateApi,
|
||||
'/workspaces/current/tool-providers/<provider>/credentials-validate')
|
||||
api.add_resource(ToolBuiltinProviderListToolsApi, '/workspaces/current/tool-provider/builtin/<provider>/tools')
|
||||
api.add_resource(ToolBuiltinProviderDeleteApi, '/workspaces/current/tool-provider/builtin/<provider>/delete')
|
||||
api.add_resource(ToolBuiltinProviderUpdateApi, '/workspaces/current/tool-provider/builtin/<provider>/update')
|
||||
api.add_resource(ToolBuiltinProviderCredentialsSchemaApi, '/workspaces/current/tool-provider/builtin/<provider>/credentials_schema')
|
||||
api.add_resource(ToolBuiltinProviderIconApi, '/workspaces/current/tool-provider/builtin/<provider>/icon')
|
||||
api.add_resource(ToolApiProviderAddApi, '/workspaces/current/tool-provider/api/add')
|
||||
api.add_resource(ToolApiProviderGetRemoteSchemaApi, '/workspaces/current/tool-provider/api/remote')
|
||||
api.add_resource(ToolApiProviderListToolsApi, '/workspaces/current/tool-provider/api/tools')
|
||||
api.add_resource(ToolApiProviderUpdateApi, '/workspaces/current/tool-provider/api/update')
|
||||
api.add_resource(ToolApiProviderDeleteApi, '/workspaces/current/tool-provider/api/delete')
|
||||
api.add_resource(ToolApiProviderGetApi, '/workspaces/current/tool-provider/api/get')
|
||||
api.add_resource(ToolApiProviderSchemaApi, '/workspaces/current/tool-provider/api/schema')
|
||||
api.add_resource(ToolApiProviderPreviousTestApi, '/workspaces/current/tool-provider/api/test/pre')
|
||||
|
||||
@@ -7,3 +7,4 @@ api = ExternalApi(bp)
|
||||
|
||||
|
||||
from . import image_preview
|
||||
from . import tool_files
|
||||
47
api/controllers/files/tool_files.py
Normal file
47
api/controllers/files/tool_files.py
Normal file
@@ -0,0 +1,47 @@
|
||||
from controllers.files import api
|
||||
from flask import Response
|
||||
from flask_restful import Resource, reqparse
|
||||
from libs.exception import BaseHTTPException
|
||||
from werkzeug.exceptions import NotFound, Forbidden
|
||||
|
||||
from core.tools.tool_file_manager import ToolFileManager
|
||||
|
||||
class ToolFilePreviewApi(Resource):
|
||||
def get(self, file_id, extension):
|
||||
file_id = str(file_id)
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
|
||||
parser.add_argument('timestamp', type=str, required=True, location='args')
|
||||
parser.add_argument('nonce', type=str, required=True, location='args')
|
||||
parser.add_argument('sign', type=str, required=True, location='args')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
if not ToolFileManager.verify_file(file_id=file_id,
|
||||
timestamp=args['timestamp'],
|
||||
nonce=args['nonce'],
|
||||
sign=args['sign'],
|
||||
):
|
||||
raise Forbidden('Invalid request.')
|
||||
|
||||
try:
|
||||
result = ToolFileManager.get_file_generator_by_message_file_id(
|
||||
file_id,
|
||||
)
|
||||
|
||||
if not result:
|
||||
raise NotFound(f'file is not found')
|
||||
|
||||
generator, mimetype = result
|
||||
except Exception:
|
||||
raise UnsupportedFileTypeError()
|
||||
|
||||
return Response(generator, mimetype=mimetype)
|
||||
|
||||
api.add_resource(ToolFilePreviewApi, '/files/tools/<uuid:file_id>.<string:extension>')
|
||||
|
||||
class UnsupportedFileTypeError(BaseHTTPException):
|
||||
error_code = 'unsupported_file_type'
|
||||
description = "File type not allowed."
|
||||
code = 415
|
||||
@@ -3,7 +3,12 @@ from controllers.service_api import api
|
||||
from controllers.service_api.wraps import AppApiResource
|
||||
from flask import current_app
|
||||
from flask_restful import fields, marshal_with
|
||||
from models.model import App
|
||||
from models.model import App, AppModelConfig
|
||||
from models.tools import ApiToolProvider
|
||||
|
||||
import json
|
||||
|
||||
from extensions.ext_database import db
|
||||
|
||||
|
||||
class AppParameterApi(AppApiResource):
|
||||
@@ -28,6 +33,7 @@ class AppParameterApi(AppApiResource):
|
||||
'suggested_questions': fields.Raw,
|
||||
'suggested_questions_after_answer': fields.Raw,
|
||||
'speech_to_text': fields.Raw,
|
||||
'text_to_speech': fields.Raw,
|
||||
'retriever_resource': fields.Raw,
|
||||
'annotation_reply': fields.Raw,
|
||||
'more_like_this': fields.Raw,
|
||||
@@ -47,6 +53,7 @@ class AppParameterApi(AppApiResource):
|
||||
'suggested_questions': app_model_config.suggested_questions_list,
|
||||
'suggested_questions_after_answer': app_model_config.suggested_questions_after_answer_dict,
|
||||
'speech_to_text': app_model_config.speech_to_text_dict,
|
||||
'text_to_speech': app_model_config.text_to_speech_dict,
|
||||
'retriever_resource': app_model_config.retriever_resource_dict,
|
||||
'annotation_reply': app_model_config.annotation_reply_dict,
|
||||
'more_like_this': app_model_config.more_like_this_dict,
|
||||
@@ -58,5 +65,42 @@ class AppParameterApi(AppApiResource):
|
||||
}
|
||||
}
|
||||
|
||||
class AppMetaApi(AppApiResource):
|
||||
def get(self, app_model: App, end_user):
|
||||
"""Get app meta"""
|
||||
app_model_config: AppModelConfig = app_model.app_model_config
|
||||
|
||||
agent_config = app_model_config.agent_mode_dict or {}
|
||||
meta = {
|
||||
'tool_icons': {}
|
||||
}
|
||||
|
||||
# get all tools
|
||||
tools = agent_config.get('tools', [])
|
||||
url_prefix = (current_app.config.get("CONSOLE_API_URL")
|
||||
+ f"/console/api/workspaces/current/tool-provider/builtin/")
|
||||
for tool in tools:
|
||||
keys = list(tool.keys())
|
||||
if len(keys) >= 4:
|
||||
# current tool standard
|
||||
provider_type = tool.get('provider_type')
|
||||
provider_id = tool.get('provider_id')
|
||||
tool_name = tool.get('tool_name')
|
||||
if provider_type == 'builtin':
|
||||
meta['tool_icons'][tool_name] = url_prefix + provider_id + '/icon'
|
||||
elif provider_type == 'api':
|
||||
try:
|
||||
provider: ApiToolProvider = db.session.query(ApiToolProvider).filter(
|
||||
ApiToolProvider.id == provider_id
|
||||
)
|
||||
meta['tool_icons'][tool_name] = json.loads(provider.icon)
|
||||
except:
|
||||
meta['tool_icons'][tool_name] = {
|
||||
"background": "#252525",
|
||||
"content": "\ud83d\ude01"
|
||||
}
|
||||
|
||||
return meta
|
||||
|
||||
api.add_resource(AppParameterApi, '/parameters')
|
||||
api.add_resource(AppMetaApi, '/meta')
|
||||
|
||||
@@ -10,6 +10,7 @@ from controllers.service_api.wraps import AppApiResource
|
||||
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
|
||||
from core.model_runtime.errors.invoke import InvokeError
|
||||
from flask import request
|
||||
from flask_restful import reqparse
|
||||
from models.model import App, AppModelConfig
|
||||
from services.audio_service import AudioService
|
||||
from services.errors.audio import (AudioTooLargeServiceError, NoAudioUploadedServiceError,
|
||||
@@ -22,14 +23,15 @@ class AudioApi(AppApiResource):
|
||||
app_model_config: AppModelConfig = app_model.app_model_config
|
||||
|
||||
if not app_model_config.speech_to_text_dict['enabled']:
|
||||
raise AppUnavailableError()
|
||||
raise AppUnavailableError()
|
||||
|
||||
file = request.files['file']
|
||||
|
||||
try:
|
||||
response = AudioService.transcript(
|
||||
response = AudioService.transcript_asr(
|
||||
tenant_id=app_model.tenant_id,
|
||||
file=file,
|
||||
end_user=end_user
|
||||
)
|
||||
|
||||
return response
|
||||
@@ -57,5 +59,50 @@ class AudioApi(AppApiResource):
|
||||
except Exception as e:
|
||||
logging.exception("internal server error.")
|
||||
raise InternalServerError()
|
||||
|
||||
api.add_resource(AudioApi, '/audio-to-text')
|
||||
|
||||
|
||||
class TextApi(AppApiResource):
|
||||
def post(self, app_model: App, end_user):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('text', type=str, required=True, nullable=False, location='json')
|
||||
parser.add_argument('user', type=str, required=True, nullable=False, location='json')
|
||||
parser.add_argument('streaming', type=bool, required=False, nullable=False, location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
try:
|
||||
response = AudioService.transcript_tts(
|
||||
tenant_id=app_model.tenant_id,
|
||||
text=args['text'],
|
||||
end_user=args['user'],
|
||||
streaming=args['streaming']
|
||||
)
|
||||
|
||||
return response
|
||||
except services.errors.app_model_config.AppModelConfigBrokenError:
|
||||
logging.exception("App model config broken.")
|
||||
raise AppUnavailableError()
|
||||
except NoAudioUploadedServiceError:
|
||||
raise NoAudioUploadedError()
|
||||
except AudioTooLargeServiceError as e:
|
||||
raise AudioTooLargeError(str(e))
|
||||
except UnsupportedAudioTypeServiceError:
|
||||
raise UnsupportedAudioTypeError()
|
||||
except ProviderNotSupportSpeechToTextServiceError:
|
||||
raise ProviderNotSupportSpeechToTextError()
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
except QuotaExceededError:
|
||||
raise ProviderQuotaExceededError()
|
||||
except ModelCurrentlyNotSupportError:
|
||||
raise ProviderModelCurrentlyNotSupportError()
|
||||
except InvokeError as e:
|
||||
raise CompletionRequestError(e.description)
|
||||
except ValueError as e:
|
||||
raise e
|
||||
except Exception as e:
|
||||
logging.exception("internal server error.")
|
||||
raise InternalServerError()
|
||||
|
||||
|
||||
api.add_resource(AudioApi, '/audio-to-text')
|
||||
api.add_resource(TextApi, '/text-to-audio')
|
||||
|
||||
@@ -37,6 +37,20 @@ class MessageListApi(AppApiResource):
|
||||
'created_at': TimestampField
|
||||
}
|
||||
|
||||
agent_thought_fields = {
|
||||
'id': fields.String,
|
||||
'chain_id': fields.String,
|
||||
'message_id': fields.String,
|
||||
'position': fields.Integer,
|
||||
'thought': fields.String,
|
||||
'tool': fields.String,
|
||||
'tool_labels': fields.Raw,
|
||||
'tool_input': fields.String,
|
||||
'created_at': TimestampField,
|
||||
'observation': fields.String,
|
||||
'message_files': fields.List(fields.String, attribute='files')
|
||||
}
|
||||
|
||||
message_fields = {
|
||||
'id': fields.String,
|
||||
'conversation_id': fields.String,
|
||||
@@ -46,7 +60,8 @@ class MessageListApi(AppApiResource):
|
||||
'message_files': fields.List(fields.Nested(message_file_fields), attribute='files'),
|
||||
'feedback': fields.Nested(feedback_fields, attribute='user_feedback', allow_null=True),
|
||||
'retriever_resources': fields.List(fields.Nested(retriever_resource_fields)),
|
||||
'created_at': TimestampField
|
||||
'created_at': TimestampField,
|
||||
'agent_thoughts': fields.List(fields.Nested(agent_thought_fields))
|
||||
}
|
||||
|
||||
message_infinite_scroll_pagination_fields = {
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
from models.dataset import Dataset
|
||||
import services.dataset_service
|
||||
from controllers.service_api import api
|
||||
from controllers.service_api.dataset.error import DatasetNameDuplicateError
|
||||
@@ -68,7 +69,7 @@ class DatasetApi(DatasetApiResource):
|
||||
help='type is required. Name must be between 1 to 40 characters.',
|
||||
type=_validate_name)
|
||||
parser.add_argument('indexing_technique', type=str, location='json',
|
||||
choices=('high_quality', 'economy'),
|
||||
choices=Dataset.INDEXING_TECHNIQUE_LIST,
|
||||
help='Invalid indexing technique.')
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
@@ -75,7 +75,7 @@ def validate_dataset_token(view=None):
|
||||
tenant_account_join = db.session.query(Tenant, TenantAccountJoin) \
|
||||
.filter(Tenant.id == api_token.tenant_id) \
|
||||
.filter(TenantAccountJoin.tenant_id == Tenant.id) \
|
||||
.filter(TenantAccountJoin.role == 'owner') \
|
||||
.filter(TenantAccountJoin.role.in_(['owner'])) \
|
||||
.one_or_none()
|
||||
if tenant_account_join:
|
||||
tenant, ta = tenant_account_join
|
||||
|
||||
@@ -3,7 +3,12 @@ from controllers.web import api
|
||||
from controllers.web.wraps import WebApiResource
|
||||
from flask import current_app
|
||||
from flask_restful import fields, marshal_with
|
||||
from models.model import App
|
||||
from models.model import App, AppModelConfig
|
||||
from models.tools import ApiToolProvider
|
||||
|
||||
from extensions.ext_database import db
|
||||
|
||||
import json
|
||||
|
||||
|
||||
class AppParameterApi(WebApiResource):
|
||||
@@ -27,6 +32,7 @@ class AppParameterApi(WebApiResource):
|
||||
'suggested_questions': fields.Raw,
|
||||
'suggested_questions_after_answer': fields.Raw,
|
||||
'speech_to_text': fields.Raw,
|
||||
'text_to_speech': fields.Raw,
|
||||
'retriever_resource': fields.Raw,
|
||||
'annotation_reply': fields.Raw,
|
||||
'more_like_this': fields.Raw,
|
||||
@@ -46,6 +52,7 @@ class AppParameterApi(WebApiResource):
|
||||
'suggested_questions': app_model_config.suggested_questions_list,
|
||||
'suggested_questions_after_answer': app_model_config.suggested_questions_after_answer_dict,
|
||||
'speech_to_text': app_model_config.speech_to_text_dict,
|
||||
'text_to_speech': app_model_config.text_to_speech_dict,
|
||||
'retriever_resource': app_model_config.retriever_resource_dict,
|
||||
'annotation_reply': app_model_config.annotation_reply_dict,
|
||||
'more_like_this': app_model_config.more_like_this_dict,
|
||||
@@ -57,5 +64,42 @@ class AppParameterApi(WebApiResource):
|
||||
}
|
||||
}
|
||||
|
||||
class AppMeta(WebApiResource):
|
||||
def get(self, app_model: App, end_user):
|
||||
"""Get app meta"""
|
||||
app_model_config: AppModelConfig = app_model.app_model_config
|
||||
|
||||
agent_config = app_model_config.agent_mode_dict or {}
|
||||
meta = {
|
||||
'tool_icons': {}
|
||||
}
|
||||
|
||||
# get all tools
|
||||
tools = agent_config.get('tools', [])
|
||||
url_prefix = (current_app.config.get("CONSOLE_API_URL")
|
||||
+ f"/console/api/workspaces/current/tool-provider/builtin/")
|
||||
for tool in tools:
|
||||
keys = list(tool.keys())
|
||||
if len(keys) >= 4:
|
||||
# current tool standard
|
||||
provider_type = tool.get('provider_type')
|
||||
provider_id = tool.get('provider_id')
|
||||
tool_name = tool.get('tool_name')
|
||||
if provider_type == 'builtin':
|
||||
meta['tool_icons'][tool_name] = url_prefix + provider_id + '/icon'
|
||||
elif provider_type == 'api':
|
||||
try:
|
||||
provider: ApiToolProvider = db.session.query(ApiToolProvider).filter(
|
||||
ApiToolProvider.id == provider_id
|
||||
)
|
||||
meta['tool_icons'][tool_name] = json.loads(provider.icon)
|
||||
except:
|
||||
meta['tool_icons'][tool_name] = {
|
||||
"background": "#252525",
|
||||
"content": "\ud83d\ude01"
|
||||
}
|
||||
|
||||
return meta
|
||||
|
||||
api.add_resource(AppParameterApi, '/parameters')
|
||||
api.add_resource(AppMeta, '/meta')
|
||||
@@ -28,9 +28,10 @@ class AudioApi(WebApiResource):
|
||||
file = request.files['file']
|
||||
|
||||
try:
|
||||
response = AudioService.transcript(
|
||||
response = AudioService.transcript_asr(
|
||||
tenant_id=app_model.tenant_id,
|
||||
file=file,
|
||||
end_user=end_user
|
||||
)
|
||||
|
||||
return response
|
||||
@@ -59,4 +60,43 @@ class AudioApi(WebApiResource):
|
||||
logging.exception("internal server error.")
|
||||
raise InternalServerError()
|
||||
|
||||
api.add_resource(AudioApi, '/audio-to-text')
|
||||
|
||||
class TextApi(WebApiResource):
|
||||
def post(self, app_model: App, end_user):
|
||||
try:
|
||||
response = AudioService.transcript_tts(
|
||||
tenant_id=app_model.tenant_id,
|
||||
text=request.form['text'],
|
||||
end_user=end_user.external_user_id,
|
||||
streaming=False
|
||||
)
|
||||
|
||||
return {'data': response.data.decode('latin1')}
|
||||
except services.errors.app_model_config.AppModelConfigBrokenError:
|
||||
logging.exception("App model config broken.")
|
||||
raise AppUnavailableError()
|
||||
except NoAudioUploadedServiceError:
|
||||
raise NoAudioUploadedError()
|
||||
except AudioTooLargeServiceError as e:
|
||||
raise AudioTooLargeError(str(e))
|
||||
except UnsupportedAudioTypeServiceError:
|
||||
raise UnsupportedAudioTypeError()
|
||||
except ProviderNotSupportSpeechToTextServiceError:
|
||||
raise ProviderNotSupportSpeechToTextError()
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
except QuotaExceededError:
|
||||
raise ProviderQuotaExceededError()
|
||||
except ModelCurrentlyNotSupportError:
|
||||
raise ProviderModelCurrentlyNotSupportError()
|
||||
except InvokeError as e:
|
||||
raise CompletionRequestError(e.description)
|
||||
except ValueError as e:
|
||||
raise e
|
||||
except Exception as e:
|
||||
logging.exception("internal server error.")
|
||||
raise InternalServerError()
|
||||
|
||||
|
||||
api.add_resource(AudioApi, '/audio-to-text')
|
||||
api.add_resource(TextApi, '/text-to-audio')
|
||||
|
||||
@@ -14,6 +14,7 @@ from core.entities.application_entities import InvokeFrom
|
||||
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
|
||||
from core.model_runtime.errors.invoke import InvokeError
|
||||
from fields.conversation_fields import message_file_fields
|
||||
from fields.message_fields import agent_thought_fields
|
||||
from flask import Response, stream_with_context
|
||||
from flask_restful import fields, marshal_with, reqparse
|
||||
from flask_restful.inputs import int_range
|
||||
@@ -59,7 +60,8 @@ class MessageListApi(WebApiResource):
|
||||
'message_files': fields.List(fields.Nested(message_file_fields), attribute='files'),
|
||||
'feedback': fields.Nested(feedback_fields, attribute='user_feedback', allow_null=True),
|
||||
'retriever_resources': fields.List(fields.Nested(retriever_resource_fields)),
|
||||
'created_at': TimestampField
|
||||
'created_at': TimestampField,
|
||||
'agent_thoughts': fields.List(fields.Nested(agent_thought_fields))
|
||||
}
|
||||
|
||||
message_infinite_scroll_pagination_fields = {
|
||||
|
||||
@@ -13,8 +13,8 @@ from core.entities.message_entities import prompt_messages_to_lc_messages
|
||||
from core.helper import moderation
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_runtime.errors.invoke import InvokeError
|
||||
from core.tool.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
|
||||
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
|
||||
from core.tools.tool.dataset_retriever.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
|
||||
from core.tools.tool.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
|
||||
from langchain.agents import AgentExecutor as LCAgentExecutor
|
||||
from langchain.agents import BaseMultiActionAgent, BaseSingleActionAgent
|
||||
from langchain.callbacks.manager import Callbacks
|
||||
|
||||
@@ -1,251 +0,0 @@
|
||||
import json
|
||||
import logging
|
||||
from typing import cast
|
||||
|
||||
from core.agent.agent.agent_llm_callback import AgentLLMCallback
|
||||
from core.app_runner.app_runner import AppRunner
|
||||
from core.application_queue_manager import ApplicationQueueManager
|
||||
from core.callback_handler.agent_loop_gather_callback_handler import AgentLoopGatherCallbackHandler
|
||||
from core.entities.application_entities import ApplicationGenerateEntity, ModelConfigEntity, PromptTemplateEntity
|
||||
from core.features.agent_runner import AgentRunnerFeature
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.llm_entities import LLMUsage
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from extensions.ext_database import db
|
||||
from models.model import App, Conversation, Message, MessageAgentThought, MessageChain
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AgentApplicationRunner(AppRunner):
|
||||
"""
|
||||
Agent Application Runner
|
||||
"""
|
||||
|
||||
def run(self, application_generate_entity: ApplicationGenerateEntity,
|
||||
queue_manager: ApplicationQueueManager,
|
||||
conversation: Conversation,
|
||||
message: Message) -> None:
|
||||
"""
|
||||
Run agent application
|
||||
:param application_generate_entity: application generate entity
|
||||
:param queue_manager: application queue manager
|
||||
:param conversation: conversation
|
||||
:param message: message
|
||||
:return:
|
||||
"""
|
||||
app_record = db.session.query(App).filter(App.id == application_generate_entity.app_id).first()
|
||||
if not app_record:
|
||||
raise ValueError(f"App not found")
|
||||
|
||||
app_orchestration_config = application_generate_entity.app_orchestration_config_entity
|
||||
|
||||
inputs = application_generate_entity.inputs
|
||||
query = application_generate_entity.query
|
||||
files = application_generate_entity.files
|
||||
|
||||
# Pre-calculate the number of tokens of the prompt messages,
|
||||
# and return the rest number of tokens by model context token size limit and max token size limit.
|
||||
# If the rest number of tokens is not enough, raise exception.
|
||||
# Include: prompt template, inputs, query(optional), files(optional)
|
||||
# Not Include: memory, external data, dataset context
|
||||
self.get_pre_calculate_rest_tokens(
|
||||
app_record=app_record,
|
||||
model_config=app_orchestration_config.model_config,
|
||||
prompt_template_entity=app_orchestration_config.prompt_template,
|
||||
inputs=inputs,
|
||||
files=files,
|
||||
query=query
|
||||
)
|
||||
|
||||
memory = None
|
||||
if application_generate_entity.conversation_id:
|
||||
# get memory of conversation (read-only)
|
||||
model_instance = ModelInstance(
|
||||
provider_model_bundle=app_orchestration_config.model_config.provider_model_bundle,
|
||||
model=app_orchestration_config.model_config.model
|
||||
)
|
||||
|
||||
memory = TokenBufferMemory(
|
||||
conversation=conversation,
|
||||
model_instance=model_instance
|
||||
)
|
||||
|
||||
# reorganize all inputs and template to prompt messages
|
||||
# Include: prompt template, inputs, query(optional), files(optional)
|
||||
# memory(optional)
|
||||
prompt_messages, stop = self.organize_prompt_messages(
|
||||
app_record=app_record,
|
||||
model_config=app_orchestration_config.model_config,
|
||||
prompt_template_entity=app_orchestration_config.prompt_template,
|
||||
inputs=inputs,
|
||||
files=files,
|
||||
query=query,
|
||||
context=None,
|
||||
memory=memory
|
||||
)
|
||||
|
||||
# Create MessageChain
|
||||
message_chain = self._init_message_chain(
|
||||
message=message,
|
||||
query=query
|
||||
)
|
||||
|
||||
# add agent callback to record agent thoughts
|
||||
agent_callback = AgentLoopGatherCallbackHandler(
|
||||
model_config=app_orchestration_config.model_config,
|
||||
message=message,
|
||||
queue_manager=queue_manager,
|
||||
message_chain=message_chain
|
||||
)
|
||||
|
||||
# init LLM Callback
|
||||
agent_llm_callback = AgentLLMCallback(
|
||||
agent_callback=agent_callback
|
||||
)
|
||||
|
||||
agent_runner = AgentRunnerFeature(
|
||||
tenant_id=application_generate_entity.tenant_id,
|
||||
app_orchestration_config=app_orchestration_config,
|
||||
model_config=app_orchestration_config.model_config,
|
||||
config=app_orchestration_config.agent,
|
||||
queue_manager=queue_manager,
|
||||
message=message,
|
||||
user_id=application_generate_entity.user_id,
|
||||
agent_llm_callback=agent_llm_callback,
|
||||
callback=agent_callback,
|
||||
memory=memory
|
||||
)
|
||||
|
||||
# agent run
|
||||
result = agent_runner.run(
|
||||
query=query,
|
||||
invoke_from=application_generate_entity.invoke_from
|
||||
)
|
||||
|
||||
if result:
|
||||
self._save_message_chain(
|
||||
message_chain=message_chain,
|
||||
output_text=result
|
||||
)
|
||||
|
||||
if (result
|
||||
and app_orchestration_config.prompt_template.prompt_type == PromptTemplateEntity.PromptType.SIMPLE
|
||||
and app_orchestration_config.prompt_template.simple_prompt_template
|
||||
):
|
||||
# Direct output if agent result exists and has pre prompt
|
||||
self.direct_output(
|
||||
queue_manager=queue_manager,
|
||||
app_orchestration_config=app_orchestration_config,
|
||||
prompt_messages=prompt_messages,
|
||||
stream=application_generate_entity.stream,
|
||||
text=result,
|
||||
usage=self._get_usage_of_all_agent_thoughts(
|
||||
model_config=app_orchestration_config.model_config,
|
||||
message=message
|
||||
)
|
||||
)
|
||||
else:
|
||||
# As normal LLM run, agent result as context
|
||||
context = result
|
||||
|
||||
# reorganize all inputs and template to prompt messages
|
||||
# Include: prompt template, inputs, query(optional), files(optional)
|
||||
# memory(optional), external data, dataset context(optional)
|
||||
prompt_messages, stop = self.organize_prompt_messages(
|
||||
app_record=app_record,
|
||||
model_config=app_orchestration_config.model_config,
|
||||
prompt_template_entity=app_orchestration_config.prompt_template,
|
||||
inputs=inputs,
|
||||
files=files,
|
||||
query=query,
|
||||
context=context,
|
||||
memory=memory
|
||||
)
|
||||
|
||||
# Re-calculate the max tokens if sum(prompt_token + max_tokens) over model token limit
|
||||
self.recale_llm_max_tokens(
|
||||
model_config=app_orchestration_config.model_config,
|
||||
prompt_messages=prompt_messages
|
||||
)
|
||||
|
||||
# Invoke model
|
||||
model_instance = ModelInstance(
|
||||
provider_model_bundle=app_orchestration_config.model_config.provider_model_bundle,
|
||||
model=app_orchestration_config.model_config.model
|
||||
)
|
||||
|
||||
invoke_result = model_instance.invoke_llm(
|
||||
prompt_messages=prompt_messages,
|
||||
model_parameters=app_orchestration_config.model_config.parameters,
|
||||
stop=stop,
|
||||
stream=application_generate_entity.stream,
|
||||
user=application_generate_entity.user_id,
|
||||
)
|
||||
|
||||
# handle invoke result
|
||||
self._handle_invoke_result(
|
||||
invoke_result=invoke_result,
|
||||
queue_manager=queue_manager,
|
||||
stream=application_generate_entity.stream
|
||||
)
|
||||
|
||||
def _init_message_chain(self, message: Message, query: str) -> MessageChain:
|
||||
"""
|
||||
Init MessageChain
|
||||
:param message: message
|
||||
:param query: query
|
||||
:return:
|
||||
"""
|
||||
message_chain = MessageChain(
|
||||
message_id=message.id,
|
||||
type="AgentExecutor",
|
||||
input=json.dumps({
|
||||
"input": query
|
||||
})
|
||||
)
|
||||
|
||||
db.session.add(message_chain)
|
||||
db.session.commit()
|
||||
|
||||
return message_chain
|
||||
|
||||
def _save_message_chain(self, message_chain: MessageChain, output_text: str) -> None:
|
||||
"""
|
||||
Save MessageChain
|
||||
:param message_chain: message chain
|
||||
:param output_text: output text
|
||||
:return:
|
||||
"""
|
||||
message_chain.output = json.dumps({
|
||||
"output": output_text
|
||||
})
|
||||
db.session.commit()
|
||||
|
||||
def _get_usage_of_all_agent_thoughts(self, model_config: ModelConfigEntity,
|
||||
message: Message) -> LLMUsage:
|
||||
"""
|
||||
Get usage of all agent thoughts
|
||||
:param model_config: model config
|
||||
:param message: message
|
||||
:return:
|
||||
"""
|
||||
agent_thoughts = (db.session.query(MessageAgentThought)
|
||||
.filter(MessageAgentThought.message_id == message.id).all())
|
||||
|
||||
all_message_tokens = 0
|
||||
all_answer_tokens = 0
|
||||
for agent_thought in agent_thoughts:
|
||||
all_message_tokens += agent_thought.message_token
|
||||
all_answer_tokens += agent_thought.answer_token
|
||||
|
||||
model_type_instance = model_config.provider_model_bundle.model_type_instance
|
||||
model_type_instance = cast(LargeLanguageModel, model_type_instance)
|
||||
|
||||
return model_type_instance._calc_response_usage(
|
||||
model_config.model,
|
||||
model_config.credentials,
|
||||
all_message_tokens,
|
||||
all_answer_tokens
|
||||
)
|
||||
@@ -2,7 +2,8 @@ import time
|
||||
from typing import Generator, List, Optional, Tuple, Union, cast
|
||||
|
||||
from core.application_queue_manager import ApplicationQueueManager, PublishFrom
|
||||
from core.entities.application_entities import AppOrchestrationConfigEntity, ModelConfigEntity, PromptTemplateEntity
|
||||
from core.entities.application_entities import AppOrchestrationConfigEntity, ModelConfigEntity, \
|
||||
PromptTemplateEntity, ExternalDataVariableEntity, ApplicationGenerateEntity, InvokeFrom
|
||||
from core.file.file_obj import FileObj
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
|
||||
@@ -10,9 +11,12 @@ from core.model_runtime.entities.message_entities import AssistantPromptMessage,
|
||||
from core.model_runtime.entities.model_entities import ModelPropertyKey
|
||||
from core.model_runtime.errors.invoke import InvokeBadRequestError
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.features.hosting_moderation import HostingModerationFeature
|
||||
from core.features.moderation import ModerationFeature
|
||||
from core.features.external_data_fetch import ExternalDataFetchFeature
|
||||
from core.features.annotation_reply import AnnotationReplyFeature
|
||||
from core.prompt.prompt_transform import PromptTransform
|
||||
from models.model import App
|
||||
|
||||
from models.model import App, MessageAnnotation, Message
|
||||
|
||||
class AppRunner:
|
||||
def get_pre_calculate_rest_tokens(self, app_record: App,
|
||||
@@ -199,7 +203,8 @@ class AppRunner:
|
||||
|
||||
def _handle_invoke_result(self, invoke_result: Union[LLMResult, Generator],
|
||||
queue_manager: ApplicationQueueManager,
|
||||
stream: bool) -> None:
|
||||
stream: bool,
|
||||
agent: bool = False) -> None:
|
||||
"""
|
||||
Handle invoke result
|
||||
:param invoke_result: invoke result
|
||||
@@ -210,16 +215,19 @@ class AppRunner:
|
||||
if not stream:
|
||||
self._handle_invoke_result_direct(
|
||||
invoke_result=invoke_result,
|
||||
queue_manager=queue_manager
|
||||
queue_manager=queue_manager,
|
||||
agent=agent
|
||||
)
|
||||
else:
|
||||
self._handle_invoke_result_stream(
|
||||
invoke_result=invoke_result,
|
||||
queue_manager=queue_manager
|
||||
queue_manager=queue_manager,
|
||||
agent=agent
|
||||
)
|
||||
|
||||
def _handle_invoke_result_direct(self, invoke_result: LLMResult,
|
||||
queue_manager: ApplicationQueueManager) -> None:
|
||||
queue_manager: ApplicationQueueManager,
|
||||
agent: bool) -> None:
|
||||
"""
|
||||
Handle invoke result direct
|
||||
:param invoke_result: invoke result
|
||||
@@ -232,7 +240,8 @@ class AppRunner:
|
||||
)
|
||||
|
||||
def _handle_invoke_result_stream(self, invoke_result: Generator,
|
||||
queue_manager: ApplicationQueueManager) -> None:
|
||||
queue_manager: ApplicationQueueManager,
|
||||
agent: bool) -> None:
|
||||
"""
|
||||
Handle invoke result
|
||||
:param invoke_result: invoke result
|
||||
@@ -244,7 +253,10 @@ class AppRunner:
|
||||
text = ''
|
||||
usage = None
|
||||
for result in invoke_result:
|
||||
queue_manager.publish_chunk_message(result, PublishFrom.APPLICATION_MANAGER)
|
||||
if not agent:
|
||||
queue_manager.publish_chunk_message(result, PublishFrom.APPLICATION_MANAGER)
|
||||
else:
|
||||
queue_manager.publish_agent_chunk_message(result, PublishFrom.APPLICATION_MANAGER)
|
||||
|
||||
text += result.delta.message.content
|
||||
|
||||
@@ -271,3 +283,101 @@ class AppRunner:
|
||||
llm_result=llm_result,
|
||||
pub_from=PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
def moderation_for_inputs(self, app_id: str,
|
||||
tenant_id: str,
|
||||
app_orchestration_config_entity: AppOrchestrationConfigEntity,
|
||||
inputs: dict,
|
||||
query: str) -> Tuple[bool, dict, str]:
|
||||
"""
|
||||
Process sensitive_word_avoidance.
|
||||
:param app_id: app id
|
||||
:param tenant_id: tenant id
|
||||
:param app_orchestration_config_entity: app orchestration config entity
|
||||
:param inputs: inputs
|
||||
:param query: query
|
||||
:return:
|
||||
"""
|
||||
moderation_feature = ModerationFeature()
|
||||
return moderation_feature.check(
|
||||
app_id=app_id,
|
||||
tenant_id=tenant_id,
|
||||
app_orchestration_config_entity=app_orchestration_config_entity,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
)
|
||||
|
||||
def check_hosting_moderation(self, application_generate_entity: ApplicationGenerateEntity,
|
||||
queue_manager: ApplicationQueueManager,
|
||||
prompt_messages: list[PromptMessage]) -> bool:
|
||||
"""
|
||||
Check hosting moderation
|
||||
:param application_generate_entity: application generate entity
|
||||
:param queue_manager: queue manager
|
||||
:param prompt_messages: prompt messages
|
||||
:return:
|
||||
"""
|
||||
hosting_moderation_feature = HostingModerationFeature()
|
||||
moderation_result = hosting_moderation_feature.check(
|
||||
application_generate_entity=application_generate_entity,
|
||||
prompt_messages=prompt_messages
|
||||
)
|
||||
|
||||
if moderation_result:
|
||||
self.direct_output(
|
||||
queue_manager=queue_manager,
|
||||
app_orchestration_config=application_generate_entity.app_orchestration_config_entity,
|
||||
prompt_messages=prompt_messages,
|
||||
text="I apologize for any confusion, " \
|
||||
"but I'm an AI assistant to be helpful, harmless, and honest.",
|
||||
stream=application_generate_entity.stream
|
||||
)
|
||||
|
||||
return moderation_result
|
||||
|
||||
def fill_in_inputs_from_external_data_tools(self, tenant_id: str,
|
||||
app_id: str,
|
||||
external_data_tools: list[ExternalDataVariableEntity],
|
||||
inputs: dict,
|
||||
query: str) -> dict:
|
||||
"""
|
||||
Fill in variable inputs from external data tools if exists.
|
||||
|
||||
:param tenant_id: workspace id
|
||||
:param app_id: app id
|
||||
:param external_data_tools: external data tools configs
|
||||
:param inputs: the inputs
|
||||
:param query: the query
|
||||
:return: the filled inputs
|
||||
"""
|
||||
external_data_fetch_feature = ExternalDataFetchFeature()
|
||||
return external_data_fetch_feature.fetch(
|
||||
tenant_id=tenant_id,
|
||||
app_id=app_id,
|
||||
external_data_tools=external_data_tools,
|
||||
inputs=inputs,
|
||||
query=query
|
||||
)
|
||||
|
||||
def query_app_annotations_to_reply(self, app_record: App,
|
||||
message: Message,
|
||||
query: str,
|
||||
user_id: str,
|
||||
invoke_from: InvokeFrom) -> Optional[MessageAnnotation]:
|
||||
"""
|
||||
Query app annotations to reply
|
||||
:param app_record: app record
|
||||
:param message: message
|
||||
:param query: query
|
||||
:param user_id: user id
|
||||
:param invoke_from: invoke from
|
||||
:return:
|
||||
"""
|
||||
annotation_reply_feature = AnnotationReplyFeature()
|
||||
return annotation_reply_feature.query(
|
||||
app_record=app_record,
|
||||
message=message,
|
||||
query=query,
|
||||
user_id=user_id,
|
||||
invoke_from=invoke_from
|
||||
)
|
||||
342
api/core/app_runner/assistant_app_runner.py
Normal file
342
api/core/app_runner/assistant_app_runner.py
Normal file
@@ -0,0 +1,342 @@
|
||||
import json
|
||||
import logging
|
||||
from typing import cast
|
||||
|
||||
from core.app_runner.app_runner import AppRunner
|
||||
from core.features.assistant_cot_runner import AssistantCotApplicationRunner
|
||||
from core.features.assistant_fc_runner import AssistantFunctionCallApplicationRunner
|
||||
from core.entities.application_entities import ApplicationGenerateEntity, ModelConfigEntity, \
|
||||
AgentEntity
|
||||
from core.application_queue_manager import ApplicationQueueManager, PublishFrom
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.llm_entities import LLMUsage
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.moderation.base import ModerationException
|
||||
from core.tools.entities.tool_entities import ToolRuntimeVariablePool
|
||||
from extensions.ext_database import db
|
||||
from models.model import Conversation, Message, App, MessageChain, MessageAgentThought
|
||||
from models.tools import ToolConversationVariables
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class AssistantApplicationRunner(AppRunner):
|
||||
"""
|
||||
Assistant Application Runner
|
||||
"""
|
||||
def run(self, application_generate_entity: ApplicationGenerateEntity,
|
||||
queue_manager: ApplicationQueueManager,
|
||||
conversation: Conversation,
|
||||
message: Message) -> None:
|
||||
"""
|
||||
Run assistant application
|
||||
:param application_generate_entity: application generate entity
|
||||
:param queue_manager: application queue manager
|
||||
:param conversation: conversation
|
||||
:param message: message
|
||||
:return:
|
||||
"""
|
||||
app_record = db.session.query(App).filter(App.id == application_generate_entity.app_id).first()
|
||||
if not app_record:
|
||||
raise ValueError(f"App not found")
|
||||
|
||||
app_orchestration_config = application_generate_entity.app_orchestration_config_entity
|
||||
|
||||
inputs = application_generate_entity.inputs
|
||||
query = application_generate_entity.query
|
||||
files = application_generate_entity.files
|
||||
|
||||
# Pre-calculate the number of tokens of the prompt messages,
|
||||
# and return the rest number of tokens by model context token size limit and max token size limit.
|
||||
# If the rest number of tokens is not enough, raise exception.
|
||||
# Include: prompt template, inputs, query(optional), files(optional)
|
||||
# Not Include: memory, external data, dataset context
|
||||
self.get_pre_calculate_rest_tokens(
|
||||
app_record=app_record,
|
||||
model_config=app_orchestration_config.model_config,
|
||||
prompt_template_entity=app_orchestration_config.prompt_template,
|
||||
inputs=inputs,
|
||||
files=files,
|
||||
query=query
|
||||
)
|
||||
|
||||
memory = None
|
||||
if application_generate_entity.conversation_id:
|
||||
# get memory of conversation (read-only)
|
||||
model_instance = ModelInstance(
|
||||
provider_model_bundle=app_orchestration_config.model_config.provider_model_bundle,
|
||||
model=app_orchestration_config.model_config.model
|
||||
)
|
||||
|
||||
memory = TokenBufferMemory(
|
||||
conversation=conversation,
|
||||
model_instance=model_instance
|
||||
)
|
||||
|
||||
# organize all inputs and template to prompt messages
|
||||
# Include: prompt template, inputs, query(optional), files(optional)
|
||||
# memory(optional)
|
||||
prompt_messages, _ = self.organize_prompt_messages(
|
||||
app_record=app_record,
|
||||
model_config=app_orchestration_config.model_config,
|
||||
prompt_template_entity=app_orchestration_config.prompt_template,
|
||||
inputs=inputs,
|
||||
files=files,
|
||||
query=query,
|
||||
memory=memory
|
||||
)
|
||||
|
||||
# moderation
|
||||
try:
|
||||
# process sensitive_word_avoidance
|
||||
_, inputs, query = self.moderation_for_inputs(
|
||||
app_id=app_record.id,
|
||||
tenant_id=application_generate_entity.tenant_id,
|
||||
app_orchestration_config_entity=app_orchestration_config,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
)
|
||||
except ModerationException as e:
|
||||
self.direct_output(
|
||||
queue_manager=queue_manager,
|
||||
app_orchestration_config=app_orchestration_config,
|
||||
prompt_messages=prompt_messages,
|
||||
text=str(e),
|
||||
stream=application_generate_entity.stream
|
||||
)
|
||||
return
|
||||
|
||||
if query:
|
||||
# annotation reply
|
||||
annotation_reply = self.query_app_annotations_to_reply(
|
||||
app_record=app_record,
|
||||
message=message,
|
||||
query=query,
|
||||
user_id=application_generate_entity.user_id,
|
||||
invoke_from=application_generate_entity.invoke_from
|
||||
)
|
||||
|
||||
if annotation_reply:
|
||||
queue_manager.publish_annotation_reply(
|
||||
message_annotation_id=annotation_reply.id,
|
||||
pub_from=PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
self.direct_output(
|
||||
queue_manager=queue_manager,
|
||||
app_orchestration_config=app_orchestration_config,
|
||||
prompt_messages=prompt_messages,
|
||||
text=annotation_reply.content,
|
||||
stream=application_generate_entity.stream
|
||||
)
|
||||
return
|
||||
|
||||
# fill in variable inputs from external data tools if exists
|
||||
external_data_tools = app_orchestration_config.external_data_variables
|
||||
if external_data_tools:
|
||||
inputs = self.fill_in_inputs_from_external_data_tools(
|
||||
tenant_id=app_record.tenant_id,
|
||||
app_id=app_record.id,
|
||||
external_data_tools=external_data_tools,
|
||||
inputs=inputs,
|
||||
query=query
|
||||
)
|
||||
|
||||
# reorganize all inputs and template to prompt messages
|
||||
# Include: prompt template, inputs, query(optional), files(optional)
|
||||
# memory(optional), external data, dataset context(optional)
|
||||
prompt_messages, _ = self.organize_prompt_messages(
|
||||
app_record=app_record,
|
||||
model_config=app_orchestration_config.model_config,
|
||||
prompt_template_entity=app_orchestration_config.prompt_template,
|
||||
inputs=inputs,
|
||||
files=files,
|
||||
query=query,
|
||||
memory=memory
|
||||
)
|
||||
|
||||
# check hosting moderation
|
||||
hosting_moderation_result = self.check_hosting_moderation(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
prompt_messages=prompt_messages
|
||||
)
|
||||
|
||||
if hosting_moderation_result:
|
||||
return
|
||||
|
||||
agent_entity = app_orchestration_config.agent
|
||||
|
||||
# load tool variables
|
||||
tool_conversation_variables = self._load_tool_variables(conversation_id=conversation.id,
|
||||
user_id=application_generate_entity.user_id,
|
||||
tanent_id=application_generate_entity.tenant_id)
|
||||
|
||||
# convert db variables to tool variables
|
||||
tool_variables = self._convert_db_variables_to_tool_variables(tool_conversation_variables)
|
||||
|
||||
message_chain = self._init_message_chain(
|
||||
message=message,
|
||||
query=query
|
||||
)
|
||||
|
||||
# init model instance
|
||||
model_instance = ModelInstance(
|
||||
provider_model_bundle=app_orchestration_config.model_config.provider_model_bundle,
|
||||
model=app_orchestration_config.model_config.model
|
||||
)
|
||||
prompt_message, _ = self.organize_prompt_messages(
|
||||
app_record=app_record,
|
||||
model_config=app_orchestration_config.model_config,
|
||||
prompt_template_entity=app_orchestration_config.prompt_template,
|
||||
inputs=inputs,
|
||||
files=files,
|
||||
query=query,
|
||||
memory=memory,
|
||||
)
|
||||
|
||||
# start agent runner
|
||||
if agent_entity.strategy == AgentEntity.Strategy.CHAIN_OF_THOUGHT:
|
||||
assistant_cot_runner = AssistantCotApplicationRunner(
|
||||
tenant_id=application_generate_entity.tenant_id,
|
||||
application_generate_entity=application_generate_entity,
|
||||
app_orchestration_config=app_orchestration_config,
|
||||
model_config=app_orchestration_config.model_config,
|
||||
config=agent_entity,
|
||||
queue_manager=queue_manager,
|
||||
message=message,
|
||||
user_id=application_generate_entity.user_id,
|
||||
memory=memory,
|
||||
prompt_messages=prompt_message,
|
||||
variables_pool=tool_variables,
|
||||
db_variables=tool_conversation_variables,
|
||||
)
|
||||
invoke_result = assistant_cot_runner.run(
|
||||
model_instance=model_instance,
|
||||
conversation=conversation,
|
||||
message=message,
|
||||
query=query,
|
||||
)
|
||||
elif agent_entity.strategy == AgentEntity.Strategy.FUNCTION_CALLING:
|
||||
assistant_fc_runner = AssistantFunctionCallApplicationRunner(
|
||||
tenant_id=application_generate_entity.tenant_id,
|
||||
application_generate_entity=application_generate_entity,
|
||||
app_orchestration_config=app_orchestration_config,
|
||||
model_config=app_orchestration_config.model_config,
|
||||
config=agent_entity,
|
||||
queue_manager=queue_manager,
|
||||
message=message,
|
||||
user_id=application_generate_entity.user_id,
|
||||
memory=memory,
|
||||
prompt_messages=prompt_message,
|
||||
variables_pool=tool_variables,
|
||||
db_variables=tool_conversation_variables
|
||||
)
|
||||
invoke_result = assistant_fc_runner.run(
|
||||
model_instance=model_instance,
|
||||
conversation=conversation,
|
||||
message=message,
|
||||
query=query,
|
||||
)
|
||||
|
||||
# handle invoke result
|
||||
self._handle_invoke_result(
|
||||
invoke_result=invoke_result,
|
||||
queue_manager=queue_manager,
|
||||
stream=application_generate_entity.stream,
|
||||
agent=True
|
||||
)
|
||||
|
||||
def _load_tool_variables(self, conversation_id: str, user_id: str, tanent_id: str) -> ToolConversationVariables:
|
||||
"""
|
||||
load tool variables from database
|
||||
"""
|
||||
tool_variables: ToolConversationVariables = db.session.query(ToolConversationVariables).filter(
|
||||
ToolConversationVariables.conversation_id == conversation_id,
|
||||
ToolConversationVariables.tenant_id == tanent_id
|
||||
).first()
|
||||
|
||||
if tool_variables:
|
||||
# save tool variables to session, so that we can update it later
|
||||
db.session.add(tool_variables)
|
||||
else:
|
||||
# create new tool variables
|
||||
tool_variables = ToolConversationVariables(
|
||||
conversation_id=conversation_id,
|
||||
user_id=user_id,
|
||||
tenant_id=tanent_id,
|
||||
variables_str='[]',
|
||||
)
|
||||
db.session.add(tool_variables)
|
||||
db.session.commit()
|
||||
|
||||
return tool_variables
|
||||
|
||||
def _convert_db_variables_to_tool_variables(self, db_variables: ToolConversationVariables) -> ToolRuntimeVariablePool:
|
||||
"""
|
||||
convert db variables to tool variables
|
||||
"""
|
||||
return ToolRuntimeVariablePool(**{
|
||||
'conversation_id': db_variables.conversation_id,
|
||||
'user_id': db_variables.user_id,
|
||||
'tenant_id': db_variables.tenant_id,
|
||||
'pool': db_variables.variables
|
||||
})
|
||||
|
||||
def _init_message_chain(self, message: Message, query: str) -> MessageChain:
|
||||
"""
|
||||
Init MessageChain
|
||||
:param message: message
|
||||
:param query: query
|
||||
:return:
|
||||
"""
|
||||
message_chain = MessageChain(
|
||||
message_id=message.id,
|
||||
type="AgentExecutor",
|
||||
input=json.dumps({
|
||||
"input": query
|
||||
})
|
||||
)
|
||||
|
||||
db.session.add(message_chain)
|
||||
db.session.commit()
|
||||
|
||||
return message_chain
|
||||
|
||||
def _save_message_chain(self, message_chain: MessageChain, output_text: str) -> None:
|
||||
"""
|
||||
Save MessageChain
|
||||
:param message_chain: message chain
|
||||
:param output_text: output text
|
||||
:return:
|
||||
"""
|
||||
message_chain.output = json.dumps({
|
||||
"output": output_text
|
||||
})
|
||||
db.session.commit()
|
||||
|
||||
def _get_usage_of_all_agent_thoughts(self, model_config: ModelConfigEntity,
|
||||
message: Message) -> LLMUsage:
|
||||
"""
|
||||
Get usage of all agent thoughts
|
||||
:param model_config: model config
|
||||
:param message: message
|
||||
:return:
|
||||
"""
|
||||
agent_thoughts = (db.session.query(MessageAgentThought)
|
||||
.filter(MessageAgentThought.message_id == message.id).all())
|
||||
|
||||
all_message_tokens = 0
|
||||
all_answer_tokens = 0
|
||||
for agent_thought in agent_thoughts:
|
||||
all_message_tokens += agent_thought.message_tokens
|
||||
all_answer_tokens += agent_thought.answer_tokens
|
||||
|
||||
model_type_instance = model_config.provider_model_bundle.model_type_instance
|
||||
model_type_instance = cast(LargeLanguageModel, model_type_instance)
|
||||
|
||||
return model_type_instance._calc_response_usage(
|
||||
model_config.model,
|
||||
model_config.credentials,
|
||||
all_message_tokens,
|
||||
all_answer_tokens
|
||||
)
|
||||
@@ -1,23 +1,18 @@
|
||||
import logging
|
||||
from typing import Optional, Tuple
|
||||
from typing import Optional
|
||||
|
||||
from core.app_runner.app_runner import AppRunner
|
||||
from core.application_queue_manager import ApplicationQueueManager, PublishFrom
|
||||
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
|
||||
from core.entities.application_entities import (ApplicationGenerateEntity, AppOrchestrationConfigEntity, DatasetEntity,
|
||||
ExternalDataVariableEntity, InvokeFrom, ModelConfigEntity)
|
||||
from core.features.annotation_reply import AnnotationReplyFeature
|
||||
from core.entities.application_entities import (ApplicationGenerateEntity, DatasetEntity,
|
||||
InvokeFrom, ModelConfigEntity)
|
||||
from core.features.dataset_retrieval import DatasetRetrievalFeature
|
||||
from core.features.external_data_fetch import ExternalDataFetchFeature
|
||||
from core.features.hosting_moderation import HostingModerationFeature
|
||||
from core.features.moderation import ModerationFeature
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.message_entities import PromptMessage
|
||||
from core.moderation.base import ModerationException
|
||||
from core.prompt.prompt_transform import AppMode
|
||||
from extensions.ext_database import db
|
||||
from models.model import App, Conversation, Message, MessageAnnotation
|
||||
from models.model import App, Conversation, Message
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -213,76 +208,6 @@ class BasicApplicationRunner(AppRunner):
|
||||
stream=application_generate_entity.stream
|
||||
)
|
||||
|
||||
def moderation_for_inputs(self, app_id: str,
|
||||
tenant_id: str,
|
||||
app_orchestration_config_entity: AppOrchestrationConfigEntity,
|
||||
inputs: dict,
|
||||
query: str) -> Tuple[bool, dict, str]:
|
||||
"""
|
||||
Process sensitive_word_avoidance.
|
||||
:param app_id: app id
|
||||
:param tenant_id: tenant id
|
||||
:param app_orchestration_config_entity: app orchestration config entity
|
||||
:param inputs: inputs
|
||||
:param query: query
|
||||
:return:
|
||||
"""
|
||||
moderation_feature = ModerationFeature()
|
||||
return moderation_feature.check(
|
||||
app_id=app_id,
|
||||
tenant_id=tenant_id,
|
||||
app_orchestration_config_entity=app_orchestration_config_entity,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
)
|
||||
|
||||
def query_app_annotations_to_reply(self, app_record: App,
|
||||
message: Message,
|
||||
query: str,
|
||||
user_id: str,
|
||||
invoke_from: InvokeFrom) -> Optional[MessageAnnotation]:
|
||||
"""
|
||||
Query app annotations to reply
|
||||
:param app_record: app record
|
||||
:param message: message
|
||||
:param query: query
|
||||
:param user_id: user id
|
||||
:param invoke_from: invoke from
|
||||
:return:
|
||||
"""
|
||||
annotation_reply_feature = AnnotationReplyFeature()
|
||||
return annotation_reply_feature.query(
|
||||
app_record=app_record,
|
||||
message=message,
|
||||
query=query,
|
||||
user_id=user_id,
|
||||
invoke_from=invoke_from
|
||||
)
|
||||
|
||||
def fill_in_inputs_from_external_data_tools(self, tenant_id: str,
|
||||
app_id: str,
|
||||
external_data_tools: list[ExternalDataVariableEntity],
|
||||
inputs: dict,
|
||||
query: str) -> dict:
|
||||
"""
|
||||
Fill in variable inputs from external data tools if exists.
|
||||
|
||||
:param tenant_id: workspace id
|
||||
:param app_id: app id
|
||||
:param external_data_tools: external data tools configs
|
||||
:param inputs: the inputs
|
||||
:param query: the query
|
||||
:return: the filled inputs
|
||||
"""
|
||||
external_data_fetch_feature = ExternalDataFetchFeature()
|
||||
return external_data_fetch_feature.fetch(
|
||||
tenant_id=tenant_id,
|
||||
app_id=app_id,
|
||||
external_data_tools=external_data_tools,
|
||||
inputs=inputs,
|
||||
query=query
|
||||
)
|
||||
|
||||
def retrieve_dataset_context(self, tenant_id: str,
|
||||
app_record: App,
|
||||
queue_manager: ApplicationQueueManager,
|
||||
@@ -334,31 +259,4 @@ class BasicApplicationRunner(AppRunner):
|
||||
hit_callback=hit_callback,
|
||||
memory=memory
|
||||
)
|
||||
|
||||
def check_hosting_moderation(self, application_generate_entity: ApplicationGenerateEntity,
|
||||
queue_manager: ApplicationQueueManager,
|
||||
prompt_messages: list[PromptMessage]) -> bool:
|
||||
"""
|
||||
Check hosting moderation
|
||||
:param application_generate_entity: application generate entity
|
||||
:param queue_manager: queue manager
|
||||
:param prompt_messages: prompt messages
|
||||
:return:
|
||||
"""
|
||||
hosting_moderation_feature = HostingModerationFeature()
|
||||
moderation_result = hosting_moderation_feature.check(
|
||||
application_generate_entity=application_generate_entity,
|
||||
prompt_messages=prompt_messages
|
||||
)
|
||||
|
||||
if moderation_result:
|
||||
self.direct_output(
|
||||
queue_manager=queue_manager,
|
||||
app_orchestration_config=application_generate_entity.app_orchestration_config_entity,
|
||||
prompt_messages=prompt_messages,
|
||||
text="I apologize for any confusion, " \
|
||||
"but I'm an AI assistant to be helpful, harmless, and honest.",
|
||||
stream=application_generate_entity.stream
|
||||
)
|
||||
|
||||
return moderation_result
|
||||
|
||||
@@ -8,7 +8,8 @@ from core.application_queue_manager import ApplicationQueueManager, PublishFrom
|
||||
from core.entities.application_entities import ApplicationGenerateEntity, InvokeFrom
|
||||
from core.entities.queue_entities import (AnnotationReplyEvent, QueueAgentThoughtEvent, QueueErrorEvent,
|
||||
QueueMessageEndEvent, QueueMessageEvent, QueueMessageReplaceEvent,
|
||||
QueuePingEvent, QueueRetrieverResourcesEvent, QueueStopEvent)
|
||||
QueuePingEvent, QueueRetrieverResourcesEvent, QueueStopEvent,
|
||||
QueueMessageFileEvent, QueueAgentMessageEvent)
|
||||
from core.errors.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
|
||||
from core.model_runtime.entities.message_entities import (AssistantPromptMessage, ImagePromptMessageContent,
|
||||
@@ -16,11 +17,13 @@ from core.model_runtime.entities.message_entities import (AssistantPromptMessage
|
||||
TextPromptMessageContent)
|
||||
from core.model_runtime.errors.invoke import InvokeAuthorizationError, InvokeError
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.tools.tool_file_manager import ToolFileManager
|
||||
from core.tools.tool_manager import ToolManager
|
||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||
from core.prompt.prompt_template import PromptTemplateParser
|
||||
from events.message_event import message_was_created
|
||||
from extensions.ext_database import db
|
||||
from models.model import Conversation, Message, MessageAgentThought
|
||||
from models.model import Conversation, Message, MessageAgentThought, MessageFile
|
||||
from pydantic import BaseModel
|
||||
from services.annotation_service import AppAnnotationService
|
||||
|
||||
@@ -279,11 +282,12 @@ class GenerateTaskPipeline:
|
||||
|
||||
self._task_state.llm_result.message.content = annotation.content
|
||||
elif isinstance(event, QueueAgentThoughtEvent):
|
||||
agent_thought = (
|
||||
agent_thought: MessageAgentThought = (
|
||||
db.session.query(MessageAgentThought)
|
||||
.filter(MessageAgentThought.id == event.agent_thought_id)
|
||||
.first()
|
||||
)
|
||||
db.session.refresh(agent_thought)
|
||||
|
||||
if agent_thought:
|
||||
response = {
|
||||
@@ -293,16 +297,49 @@ class GenerateTaskPipeline:
|
||||
'message_id': self._message.id,
|
||||
'position': agent_thought.position,
|
||||
'thought': agent_thought.thought,
|
||||
'observation': agent_thought.observation,
|
||||
'tool': agent_thought.tool,
|
||||
'tool_labels': agent_thought.tool_labels,
|
||||
'tool_input': agent_thought.tool_input,
|
||||
'created_at': int(self._message.created_at.timestamp())
|
||||
'created_at': int(self._message.created_at.timestamp()),
|
||||
'message_files': agent_thought.files
|
||||
}
|
||||
|
||||
if self._conversation.mode == 'chat':
|
||||
response['conversation_id'] = self._conversation.id
|
||||
|
||||
yield self._yield_response(response)
|
||||
elif isinstance(event, QueueMessageEvent):
|
||||
elif isinstance(event, QueueMessageFileEvent):
|
||||
message_file: MessageFile = (
|
||||
db.session.query(MessageFile)
|
||||
.filter(MessageFile.id == event.message_file_id)
|
||||
.first()
|
||||
)
|
||||
# get extension
|
||||
if '.' in message_file.url:
|
||||
extension = f'.{message_file.url.split(".")[-1]}'
|
||||
if len(extension) > 10:
|
||||
extension = '.bin'
|
||||
else:
|
||||
extension = '.bin'
|
||||
# add sign url
|
||||
url = ToolFileManager.sign_file(file_id=message_file.id, extension=extension)
|
||||
|
||||
if message_file:
|
||||
response = {
|
||||
'event': 'message_file',
|
||||
'id': message_file.id,
|
||||
'type': message_file.type,
|
||||
'belongs_to': message_file.belongs_to or 'user',
|
||||
'url': url
|
||||
}
|
||||
|
||||
if self._conversation.mode == 'chat':
|
||||
response['conversation_id'] = self._conversation.id
|
||||
|
||||
yield self._yield_response(response)
|
||||
|
||||
elif isinstance(event, (QueueMessageEvent, QueueAgentMessageEvent)):
|
||||
chunk = event.chunk
|
||||
delta_text = chunk.delta.message.content
|
||||
if delta_text is None:
|
||||
@@ -332,7 +369,7 @@ class GenerateTaskPipeline:
|
||||
self._output_moderation_handler.append_new_token(delta_text)
|
||||
|
||||
self._task_state.llm_result.message.content += delta_text
|
||||
response = self._handle_chunk(delta_text)
|
||||
response = self._handle_chunk(delta_text, agent=isinstance(event, QueueAgentMessageEvent))
|
||||
yield self._yield_response(response)
|
||||
elif isinstance(event, QueueMessageReplaceEvent):
|
||||
response = {
|
||||
@@ -384,14 +421,14 @@ class GenerateTaskPipeline:
|
||||
extras=self._application_generate_entity.extras
|
||||
)
|
||||
|
||||
def _handle_chunk(self, text: str) -> dict:
|
||||
def _handle_chunk(self, text: str, agent: bool = False) -> dict:
|
||||
"""
|
||||
Handle completed event.
|
||||
:param text: text
|
||||
:return:
|
||||
"""
|
||||
response = {
|
||||
'event': 'message',
|
||||
'event': 'message' if not agent else 'agent_message',
|
||||
'id': self._message.id,
|
||||
'task_id': self._application_generate_entity.task_id,
|
||||
'message_id': self._message.id,
|
||||
@@ -493,6 +530,10 @@ class GenerateTaskPipeline:
|
||||
'score': resource['score'],
|
||||
'content': resource['content'],
|
||||
})
|
||||
# show annotation reply
|
||||
if 'annotation_reply' in self._task_state.metadata:
|
||||
if self._application_generate_entity.invoke_from in [InvokeFrom.DEBUGGER, InvokeFrom.SERVICE_API]:
|
||||
metadata['annotation_reply'] = self._task_state.metadata['annotation_reply']
|
||||
|
||||
# show usage
|
||||
if self._application_generate_entity.invoke_from in [InvokeFrom.DEBUGGER, InvokeFrom.SERVICE_API]:
|
||||
|
||||
@@ -116,7 +116,7 @@ class OutputModerationHandler(BaseModel):
|
||||
|
||||
# trigger replace event
|
||||
if self.thread_running:
|
||||
self.on_message_replace_func(final_output)
|
||||
self.on_message_replace_func(final_output, PublishFrom.TASK_PIPELINE)
|
||||
|
||||
if result.action == ModerationAction.DIRECT_OUTPUT:
|
||||
break
|
||||
|
||||
@@ -4,7 +4,7 @@ import threading
|
||||
import uuid
|
||||
from typing import Any, Generator, Optional, Tuple, Union, cast
|
||||
|
||||
from core.app_runner.agent_app_runner import AgentApplicationRunner
|
||||
from core.app_runner.assistant_app_runner import AssistantApplicationRunner
|
||||
from core.app_runner.basic_app_runner import BasicApplicationRunner
|
||||
from core.app_runner.generate_task_pipeline import GenerateTaskPipeline
|
||||
from core.application_queue_manager import ApplicationQueueManager, ConversationTaskStoppedException, PublishFrom
|
||||
@@ -13,7 +13,7 @@ from core.entities.application_entities import (AdvancedChatPromptTemplateEntity
|
||||
ApplicationGenerateEntity, AppOrchestrationConfigEntity, DatasetEntity,
|
||||
DatasetRetrieveConfigEntity, ExternalDataVariableEntity,
|
||||
FileUploadEntity, InvokeFrom, ModelConfigEntity, PromptTemplateEntity,
|
||||
SensitiveWordAvoidanceEntity)
|
||||
SensitiveWordAvoidanceEntity, AgentPromptEntity)
|
||||
from core.entities.model_entities import ModelStatus
|
||||
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
|
||||
from core.file.file_obj import FileObj
|
||||
@@ -23,6 +23,7 @@ from core.model_runtime.errors.invoke import InvokeAuthorizationError, InvokeErr
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.prompt.prompt_template import PromptTemplateParser
|
||||
from core.provider_manager import ProviderManager
|
||||
from core.tools.prompt.template import REACT_PROMPT_TEMPLATES
|
||||
from extensions.ext_database import db
|
||||
from flask import Flask, current_app
|
||||
from models.account import Account
|
||||
@@ -93,6 +94,9 @@ class ApplicationManager:
|
||||
extras=extras
|
||||
)
|
||||
|
||||
if not stream and application_generate_entity.app_orchestration_config_entity.agent:
|
||||
raise ValueError("Agent app is not supported in blocking mode.")
|
||||
|
||||
# init generate records
|
||||
(
|
||||
conversation,
|
||||
@@ -151,7 +155,7 @@ class ApplicationManager:
|
||||
|
||||
if application_generate_entity.app_orchestration_config_entity.agent:
|
||||
# agent app
|
||||
runner = AgentApplicationRunner()
|
||||
runner = AssistantApplicationRunner()
|
||||
runner.run(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
@@ -354,6 +358,8 @@ class ApplicationManager:
|
||||
|
||||
# external data variables
|
||||
properties['external_data_variables'] = []
|
||||
|
||||
# old external_data_tools
|
||||
external_data_tools = copy_app_model_config_dict.get('external_data_tools', [])
|
||||
for external_data_tool in external_data_tools:
|
||||
if 'enabled' not in external_data_tool or not external_data_tool['enabled']:
|
||||
@@ -366,6 +372,19 @@ class ApplicationManager:
|
||||
config=external_data_tool['config']
|
||||
)
|
||||
)
|
||||
|
||||
# current external_data_tools
|
||||
for variable in copy_app_model_config_dict.get('user_input_form', []):
|
||||
typ = list(variable.keys())[0]
|
||||
if typ == 'external_data_tool':
|
||||
val = variable[typ]
|
||||
properties['external_data_variables'].append(
|
||||
ExternalDataVariableEntity(
|
||||
variable=val['variable'],
|
||||
type=val['type'],
|
||||
config=val['config']
|
||||
)
|
||||
)
|
||||
|
||||
# show retrieve source
|
||||
show_retrieve_source = False
|
||||
@@ -375,15 +394,65 @@ class ApplicationManager:
|
||||
show_retrieve_source = True
|
||||
|
||||
properties['show_retrieve_source'] = show_retrieve_source
|
||||
|
||||
dataset_ids = []
|
||||
if 'datasets' in copy_app_model_config_dict.get('dataset_configs', {}):
|
||||
datasets = copy_app_model_config_dict.get('dataset_configs', {}).get('datasets', {
|
||||
'strategy': 'router',
|
||||
'datasets': []
|
||||
})
|
||||
|
||||
|
||||
for dataset in datasets.get('datasets', []):
|
||||
keys = list(dataset.keys())
|
||||
if len(keys) == 0 or keys[0] != 'dataset':
|
||||
continue
|
||||
dataset = dataset['dataset']
|
||||
|
||||
if 'enabled' not in dataset or not dataset['enabled']:
|
||||
continue
|
||||
|
||||
dataset_id = dataset.get('id', None)
|
||||
if dataset_id:
|
||||
dataset_ids.append(dataset_id)
|
||||
else:
|
||||
datasets = {'strategy': 'router', 'datasets': []}
|
||||
|
||||
if 'agent_mode' in copy_app_model_config_dict and copy_app_model_config_dict['agent_mode'] \
|
||||
and 'enabled' in copy_app_model_config_dict['agent_mode'] and copy_app_model_config_dict['agent_mode'][
|
||||
'enabled']:
|
||||
agent_dict = copy_app_model_config_dict.get('agent_mode')
|
||||
agent_strategy = agent_dict.get('strategy', 'router')
|
||||
if agent_strategy in ['router', 'react_router']:
|
||||
dataset_ids = []
|
||||
for tool in agent_dict.get('tools', []):
|
||||
and 'enabled' in copy_app_model_config_dict['agent_mode'] \
|
||||
and copy_app_model_config_dict['agent_mode']['enabled']:
|
||||
|
||||
agent_dict = copy_app_model_config_dict.get('agent_mode', {})
|
||||
agent_strategy = agent_dict.get('strategy', 'cot')
|
||||
|
||||
if agent_strategy == 'function_call':
|
||||
strategy = AgentEntity.Strategy.FUNCTION_CALLING
|
||||
elif agent_strategy == 'cot' or agent_strategy == 'react':
|
||||
strategy = AgentEntity.Strategy.CHAIN_OF_THOUGHT
|
||||
else:
|
||||
# old configs, try to detect default strategy
|
||||
if copy_app_model_config_dict['model']['provider'] == 'openai':
|
||||
strategy = AgentEntity.Strategy.FUNCTION_CALLING
|
||||
else:
|
||||
strategy = AgentEntity.Strategy.CHAIN_OF_THOUGHT
|
||||
|
||||
agent_tools = []
|
||||
for tool in agent_dict.get('tools', []):
|
||||
keys = tool.keys()
|
||||
if len(keys) >= 4:
|
||||
if "enabled" not in tool or not tool["enabled"]:
|
||||
continue
|
||||
|
||||
agent_tool_properties = {
|
||||
'provider_type': tool['provider_type'],
|
||||
'provider_id': tool['provider_id'],
|
||||
'tool_name': tool['tool_name'],
|
||||
'tool_parameters': tool['tool_parameters'] if 'tool_parameters' in tool else {}
|
||||
}
|
||||
|
||||
agent_tools.append(AgentToolEntity(**agent_tool_properties))
|
||||
elif len(keys) == 1:
|
||||
# old standard
|
||||
key = list(tool.keys())[0]
|
||||
|
||||
if key != 'dataset':
|
||||
@@ -396,59 +465,60 @@ class ApplicationManager:
|
||||
|
||||
dataset_id = tool_item['id']
|
||||
dataset_ids.append(dataset_id)
|
||||
|
||||
dataset_configs = copy_app_model_config_dict.get('dataset_configs', {'retrieval_model': 'single'})
|
||||
query_variable = copy_app_model_config_dict.get('dataset_query_variable')
|
||||
if dataset_configs['retrieval_model'] == 'single':
|
||||
properties['dataset'] = DatasetEntity(
|
||||
dataset_ids=dataset_ids,
|
||||
retrieve_config=DatasetRetrieveConfigEntity(
|
||||
query_variable=query_variable,
|
||||
retrieve_strategy=DatasetRetrieveConfigEntity.RetrieveStrategy.value_of(
|
||||
dataset_configs['retrieval_model']
|
||||
),
|
||||
single_strategy=agent_strategy
|
||||
)
|
||||
|
||||
if 'strategy' in copy_app_model_config_dict['agent_mode'] and \
|
||||
copy_app_model_config_dict['agent_mode']['strategy'] not in ['react_router', 'router']:
|
||||
agent_prompt = agent_dict.get('prompt', None) or {}
|
||||
# check model mode
|
||||
model_mode = copy_app_model_config_dict.get('model', {}).get('mode', 'completion')
|
||||
if model_mode == 'completion':
|
||||
agent_prompt_entity = AgentPromptEntity(
|
||||
first_prompt=agent_prompt.get('first_prompt', REACT_PROMPT_TEMPLATES['english']['completion']['prompt']),
|
||||
next_iteration=agent_prompt.get('next_iteration', REACT_PROMPT_TEMPLATES['english']['completion']['agent_scratchpad']),
|
||||
)
|
||||
else:
|
||||
properties['dataset'] = DatasetEntity(
|
||||
dataset_ids=dataset_ids,
|
||||
retrieve_config=DatasetRetrieveConfigEntity(
|
||||
query_variable=query_variable,
|
||||
retrieve_strategy=DatasetRetrieveConfigEntity.RetrieveStrategy.value_of(
|
||||
dataset_configs['retrieval_model']
|
||||
),
|
||||
top_k=dataset_configs.get('top_k'),
|
||||
score_threshold=dataset_configs.get('score_threshold'),
|
||||
reranking_model=dataset_configs.get('reranking_model')
|
||||
)
|
||||
agent_prompt_entity = AgentPromptEntity(
|
||||
first_prompt=agent_prompt.get('first_prompt', REACT_PROMPT_TEMPLATES['english']['chat']['prompt']),
|
||||
next_iteration=agent_prompt.get('next_iteration', REACT_PROMPT_TEMPLATES['english']['chat']['agent_scratchpad']),
|
||||
)
|
||||
else:
|
||||
if agent_strategy == 'react':
|
||||
strategy = AgentEntity.Strategy.CHAIN_OF_THOUGHT
|
||||
else:
|
||||
strategy = AgentEntity.Strategy.FUNCTION_CALLING
|
||||
|
||||
agent_tools = []
|
||||
for tool in agent_dict.get('tools', []):
|
||||
key = list(tool.keys())[0]
|
||||
tool_item = tool[key]
|
||||
|
||||
agent_tool_properties = {
|
||||
"tool_id": key
|
||||
}
|
||||
|
||||
if "enabled" not in tool_item or not tool_item["enabled"]:
|
||||
continue
|
||||
|
||||
agent_tool_properties["config"] = tool_item
|
||||
agent_tools.append(AgentToolEntity(**agent_tool_properties))
|
||||
|
||||
properties['agent'] = AgentEntity(
|
||||
provider=properties['model_config'].provider,
|
||||
model=properties['model_config'].model,
|
||||
strategy=strategy,
|
||||
tools=agent_tools
|
||||
prompt=agent_prompt_entity,
|
||||
tools=agent_tools,
|
||||
max_iteration=agent_dict.get('max_iteration', 5)
|
||||
)
|
||||
|
||||
if len(dataset_ids) > 0:
|
||||
# dataset configs
|
||||
dataset_configs = copy_app_model_config_dict.get('dataset_configs', {'retrieval_model': 'single'})
|
||||
query_variable = copy_app_model_config_dict.get('dataset_query_variable')
|
||||
|
||||
if dataset_configs['retrieval_model'] == 'single':
|
||||
properties['dataset'] = DatasetEntity(
|
||||
dataset_ids=dataset_ids,
|
||||
retrieve_config=DatasetRetrieveConfigEntity(
|
||||
query_variable=query_variable,
|
||||
retrieve_strategy=DatasetRetrieveConfigEntity.RetrieveStrategy.value_of(
|
||||
dataset_configs['retrieval_model']
|
||||
),
|
||||
single_strategy=datasets.get('strategy', 'router')
|
||||
)
|
||||
)
|
||||
else:
|
||||
properties['dataset'] = DatasetEntity(
|
||||
dataset_ids=dataset_ids,
|
||||
retrieve_config=DatasetRetrieveConfigEntity(
|
||||
query_variable=query_variable,
|
||||
retrieve_strategy=DatasetRetrieveConfigEntity.RetrieveStrategy.value_of(
|
||||
dataset_configs['retrieval_model']
|
||||
),
|
||||
top_k=dataset_configs.get('top_k'),
|
||||
score_threshold=dataset_configs.get('score_threshold'),
|
||||
reranking_model=dataset_configs.get('reranking_model')
|
||||
)
|
||||
)
|
||||
|
||||
# file upload
|
||||
@@ -485,6 +555,12 @@ class ApplicationManager:
|
||||
if 'enabled' in speech_to_text_dict and speech_to_text_dict['enabled']:
|
||||
properties['speech_to_text'] = True
|
||||
|
||||
# text to speech
|
||||
text_to_speech_dict = copy_app_model_config_dict.get('text_to_speech')
|
||||
if text_to_speech_dict:
|
||||
if 'enabled' in text_to_speech_dict and text_to_speech_dict['enabled']:
|
||||
properties['text_to_speech'] = True
|
||||
|
||||
# sensitive word avoidance
|
||||
sensitive_word_avoidance_dict = copy_app_model_config_dict.get('sensitive_word_avoidance')
|
||||
if sensitive_word_avoidance_dict:
|
||||
@@ -601,6 +677,7 @@ class ApplicationManager:
|
||||
message_id=message.id,
|
||||
type=file.type.value,
|
||||
transfer_method=file.transfer_method.value,
|
||||
belongs_to='user',
|
||||
url=file.url,
|
||||
upload_file_id=file.upload_file_id,
|
||||
created_by_role=('account' if account_id else 'end_user'),
|
||||
|
||||
@@ -7,10 +7,10 @@ from core.entities.application_entities import InvokeFrom
|
||||
from core.entities.queue_entities import (AnnotationReplyEvent, AppQueueEvent, QueueAgentThoughtEvent, QueueErrorEvent,
|
||||
QueueMessage, QueueMessageEndEvent, QueueMessageEvent,
|
||||
QueueMessageReplaceEvent, QueuePingEvent, QueueRetrieverResourcesEvent,
|
||||
QueueStopEvent)
|
||||
QueueStopEvent, QueueMessageFileEvent, QueueAgentMessageEvent)
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.model import MessageAgentThought
|
||||
from models.model import MessageAgentThought, MessageFile
|
||||
from sqlalchemy.orm import DeclarativeMeta
|
||||
|
||||
|
||||
@@ -96,6 +96,18 @@ class ApplicationQueueManager:
|
||||
chunk=chunk
|
||||
), pub_from)
|
||||
|
||||
def publish_agent_chunk_message(self, chunk: LLMResultChunk, pub_from: PublishFrom) -> None:
|
||||
"""
|
||||
Publish agent chunk message to channel
|
||||
|
||||
:param chunk: chunk
|
||||
:param pub_from: publish from
|
||||
:return:
|
||||
"""
|
||||
self.publish(QueueAgentMessageEvent(
|
||||
chunk=chunk
|
||||
), pub_from)
|
||||
|
||||
def publish_message_replace(self, text: str, pub_from: PublishFrom) -> None:
|
||||
"""
|
||||
Publish message replace
|
||||
@@ -144,6 +156,17 @@ class ApplicationQueueManager:
|
||||
agent_thought_id=message_agent_thought.id
|
||||
), pub_from)
|
||||
|
||||
def publish_message_file(self, message_file: MessageFile, pub_from: PublishFrom) -> None:
|
||||
"""
|
||||
Publish agent thought
|
||||
:param message_file: message file
|
||||
:param pub_from: publish from
|
||||
:return:
|
||||
"""
|
||||
self.publish(QueueMessageFileEvent(
|
||||
message_file_id=message_file.id
|
||||
), pub_from)
|
||||
|
||||
def publish_error(self, e, pub_from: PublishFrom) -> None:
|
||||
"""
|
||||
Publish error
|
||||
|
||||
74
api/core/callback_handler/agent_tool_callback_handler.py
Normal file
74
api/core/callback_handler/agent_tool_callback_handler.py
Normal file
@@ -0,0 +1,74 @@
|
||||
import os
|
||||
from typing import Any, Dict, Optional, Union
|
||||
from pydantic import BaseModel
|
||||
|
||||
from langchain.callbacks.base import BaseCallbackHandler
|
||||
from langchain.input import print_text
|
||||
|
||||
class DifyAgentCallbackHandler(BaseCallbackHandler, BaseModel):
|
||||
"""Callback Handler that prints to std out."""
|
||||
color: Optional[str] = ''
|
||||
current_loop = 1
|
||||
|
||||
def __init__(self, color: Optional[str] = None) -> None:
|
||||
super().__init__()
|
||||
"""Initialize callback handler."""
|
||||
# use a specific color is not specified
|
||||
self.color = color or 'green'
|
||||
self.current_loop = 1
|
||||
|
||||
def on_tool_start(
|
||||
self,
|
||||
tool_name: str,
|
||||
tool_inputs: Dict[str, Any],
|
||||
) -> None:
|
||||
"""Do nothing."""
|
||||
print_text("\n[on_tool_start] ToolCall:" + tool_name + "\n" + str(tool_inputs) + "\n", color=self.color)
|
||||
|
||||
def on_tool_end(
|
||||
self,
|
||||
tool_name: str,
|
||||
tool_inputs: Dict[str, Any],
|
||||
tool_outputs: str,
|
||||
) -> None:
|
||||
"""If not the final action, print out observation."""
|
||||
print_text("\n[on_tool_end]\n", color=self.color)
|
||||
print_text("Tool: " + tool_name + "\n", color=self.color)
|
||||
print_text("Inputs: " + str(tool_inputs) + "\n", color=self.color)
|
||||
print_text("Outputs: " + str(tool_outputs) + "\n", color=self.color)
|
||||
print_text("\n")
|
||||
|
||||
def on_tool_error(
|
||||
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
|
||||
) -> None:
|
||||
"""Do nothing."""
|
||||
print_text("\n[on_tool_error] Error: " + str(error) + "\n", color='red')
|
||||
|
||||
def on_agent_start(
|
||||
self, thought: str
|
||||
) -> None:
|
||||
"""Run on agent start."""
|
||||
if thought:
|
||||
print_text("\n[on_agent_start] \nCurrent Loop: " + \
|
||||
str(self.current_loop) + \
|
||||
"\nThought: " + thought + "\n", color=self.color)
|
||||
else:
|
||||
print_text("\n[on_agent_start] \nCurrent Loop: " + str(self.current_loop) + "\n", color=self.color)
|
||||
|
||||
def on_agent_finish(
|
||||
self, color: Optional[str] = None, **kwargs: Any
|
||||
) -> None:
|
||||
"""Run on agent end."""
|
||||
print_text("\n[on_agent_finish]\n Loop: " + str(self.current_loop) + "\n", color=self.color)
|
||||
|
||||
self.current_loop += 1
|
||||
|
||||
@property
|
||||
def ignore_agent(self) -> bool:
|
||||
"""Whether to ignore agent callbacks."""
|
||||
return not os.environ.get("DEBUG") or os.environ.get("DEBUG").lower() != 'true'
|
||||
|
||||
@property
|
||||
def ignore_chat_model(self) -> bool:
|
||||
"""Whether to ignore chat model callbacks."""
|
||||
return not os.environ.get("DEBUG") or os.environ.get("DEBUG").lower() != 'true'
|
||||
@@ -27,7 +27,7 @@ USER_AGENT = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTM
|
||||
|
||||
class FileExtractor:
|
||||
@classmethod
|
||||
def load(cls, upload_file: UploadFile, return_text: bool = False, is_automatic: bool = False) -> Union[List[Document] | str]:
|
||||
def load(cls, upload_file: UploadFile, return_text: bool = False, is_automatic: bool = False) -> Union[List[Document], str]:
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
suffix = Path(upload_file.key).suffix
|
||||
file_path = f"{temp_dir}/{next(tempfile._get_candidate_names())}{suffix}"
|
||||
@@ -36,7 +36,7 @@ class FileExtractor:
|
||||
return cls.load_from_file(file_path, return_text, upload_file, is_automatic)
|
||||
|
||||
@classmethod
|
||||
def load_from_url(cls, url: str, return_text: bool = False) -> Union[List[Document] | str]:
|
||||
def load_from_url(cls, url: str, return_text: bool = False) -> Union[List[Document], str]:
|
||||
response = requests.get(url, headers={
|
||||
"User-Agent": USER_AGENT
|
||||
})
|
||||
@@ -52,7 +52,7 @@ class FileExtractor:
|
||||
@classmethod
|
||||
def load_from_file(cls, file_path: str, return_text: bool = False,
|
||||
upload_file: Optional[UploadFile] = None,
|
||||
is_automatic: bool = False) -> Union[List[Document] | str]:
|
||||
is_automatic: bool = False) -> Union[List[Document], str]:
|
||||
input_file = Path(file_path)
|
||||
delimiter = '\n'
|
||||
file_extension = input_file.suffix.lower()
|
||||
@@ -68,7 +68,7 @@ class FileExtractor:
|
||||
else MarkdownLoader(file_path, autodetect_encoding=True)
|
||||
elif file_extension in ['.htm', '.html']:
|
||||
loader = HTMLLoader(file_path)
|
||||
elif file_extension == '.docx':
|
||||
elif file_extension in ['.docx', '.doc']:
|
||||
loader = Docx2txtLoader(file_path)
|
||||
elif file_extension == '.csv':
|
||||
loader = CSVLoader(file_path, autodetect_encoding=True)
|
||||
@@ -95,7 +95,7 @@ class FileExtractor:
|
||||
loader = MarkdownLoader(file_path, autodetect_encoding=True)
|
||||
elif file_extension in ['.htm', '.html']:
|
||||
loader = HTMLLoader(file_path)
|
||||
elif file_extension == '.docx':
|
||||
elif file_extension in ['.docx', '.doc']:
|
||||
loader = Docx2txtLoader(file_path)
|
||||
elif file_extension == '.csv':
|
||||
loader = CSVLoader(file_path, autodetect_encoding=True)
|
||||
|
||||
@@ -1,9 +1,7 @@
|
||||
import logging
|
||||
import re
|
||||
from typing import List, Optional, Tuple, cast
|
||||
from typing import List
|
||||
|
||||
from langchain.document_loaders.base import BaseLoader
|
||||
from langchain.document_loaders.helpers import detect_file_encodings
|
||||
from langchain.schema import Document
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -1,14 +1,10 @@
|
||||
import logging
|
||||
import re
|
||||
from typing import List, Optional, Tuple, cast
|
||||
|
||||
from typing import List
|
||||
from langchain.document_loaders.base import BaseLoader
|
||||
from langchain.document_loaders.helpers import detect_file_encodings
|
||||
from langchain.schema import Document
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class UnstructuredPPTLoader(BaseLoader):
|
||||
"""Load msg files.
|
||||
|
||||
|
||||
@@ -1,14 +1,10 @@
|
||||
import logging
|
||||
import re
|
||||
from typing import List, Optional, Tuple, cast
|
||||
from typing import List
|
||||
|
||||
from langchain.document_loaders.base import BaseLoader
|
||||
from langchain.document_loaders.helpers import detect_file_encodings
|
||||
from langchain.schema import Document
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class UnstructuredPPTXLoader(BaseLoader):
|
||||
"""Load msg files.
|
||||
|
||||
|
||||
@@ -1,9 +1,7 @@
|
||||
import logging
|
||||
import re
|
||||
from typing import List, Optional, Tuple, cast
|
||||
from typing import List
|
||||
|
||||
from langchain.document_loaders.base import BaseLoader
|
||||
from langchain.document_loaders.helpers import detect_file_encodings
|
||||
from langchain.schema import Document
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -1,9 +1,7 @@
|
||||
import logging
|
||||
import re
|
||||
from typing import List, Optional, Tuple, cast
|
||||
from typing import List
|
||||
|
||||
from langchain.document_loaders.base import BaseLoader
|
||||
from langchain.document_loaders.helpers import detect_file_encodings
|
||||
from langchain.schema import Document
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -1,10 +1,16 @@
|
||||
import base64
|
||||
import json
|
||||
import logging
|
||||
from typing import List, Optional
|
||||
from typing import List, Optional, cast
|
||||
|
||||
import numpy as np
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.model_entities import ModelPropertyKey
|
||||
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
|
||||
from extensions.ext_database import db
|
||||
from langchain.embeddings.base import Embeddings
|
||||
|
||||
from extensions.ext_redis import redis_client
|
||||
from libs import helper
|
||||
from models.dataset import Embedding
|
||||
from sqlalchemy.exc import IntegrityError
|
||||
@@ -18,47 +24,33 @@ class CacheEmbedding(Embeddings):
|
||||
self._user = user
|
||||
|
||||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Embed search docs."""
|
||||
# use doc embedding cache or store if not exists
|
||||
text_embeddings = [None for _ in range(len(texts))]
|
||||
embedding_queue_indices = []
|
||||
for i, text in enumerate(texts):
|
||||
hash = helper.generate_text_hash(text)
|
||||
embedding = db.session.query(Embedding).filter_by(model_name=self._model_instance.model, hash=hash).first()
|
||||
if embedding:
|
||||
text_embeddings[i] = embedding.get_embedding()
|
||||
else:
|
||||
embedding_queue_indices.append(i)
|
||||
"""Embed search docs in batches of 10."""
|
||||
text_embeddings = []
|
||||
try:
|
||||
model_type_instance = cast(TextEmbeddingModel, self._model_instance.model_type_instance)
|
||||
model_schema = model_type_instance.get_model_schema(self._model_instance.model, self._model_instance.credentials)
|
||||
max_chunks = model_schema.model_properties[ModelPropertyKey.MAX_CHUNKS] \
|
||||
if model_schema and ModelPropertyKey.MAX_CHUNKS in model_schema.model_properties else 1
|
||||
for i in range(0, len(texts), max_chunks):
|
||||
batch_texts = texts[i:i + max_chunks]
|
||||
|
||||
if embedding_queue_indices:
|
||||
try:
|
||||
embedding_result = self._model_instance.invoke_text_embedding(
|
||||
texts=[texts[i] for i in embedding_queue_indices],
|
||||
texts=batch_texts,
|
||||
user=self._user
|
||||
)
|
||||
|
||||
embedding_results = embedding_result.embeddings
|
||||
except Exception as ex:
|
||||
logger.error('Failed to embed documents: ', ex)
|
||||
raise ex
|
||||
for vector in embedding_result.embeddings:
|
||||
try:
|
||||
normalized_embedding = (vector / np.linalg.norm(vector)).tolist()
|
||||
text_embeddings.append(normalized_embedding)
|
||||
except IntegrityError:
|
||||
db.session.rollback()
|
||||
except Exception as e:
|
||||
logging.exception('Failed to add embedding to redis')
|
||||
|
||||
for i, indice in enumerate(embedding_queue_indices):
|
||||
hash = helper.generate_text_hash(texts[indice])
|
||||
|
||||
try:
|
||||
embedding = Embedding(model_name=self._model_instance.model, hash=hash)
|
||||
vector = embedding_results[i]
|
||||
normalized_embedding = (vector / np.linalg.norm(vector)).tolist()
|
||||
text_embeddings[indice] = normalized_embedding
|
||||
embedding.set_embedding(normalized_embedding)
|
||||
db.session.add(embedding)
|
||||
db.session.commit()
|
||||
except IntegrityError:
|
||||
db.session.rollback()
|
||||
continue
|
||||
except:
|
||||
logging.exception('Failed to add embedding to db')
|
||||
continue
|
||||
except Exception as ex:
|
||||
logger.error('Failed to embed documents: ', ex)
|
||||
raise ex
|
||||
|
||||
return text_embeddings
|
||||
|
||||
@@ -66,9 +58,12 @@ class CacheEmbedding(Embeddings):
|
||||
"""Embed query text."""
|
||||
# use doc embedding cache or store if not exists
|
||||
hash = helper.generate_text_hash(text)
|
||||
embedding = db.session.query(Embedding).filter_by(model_name=self._model_instance.model, hash=hash).first()
|
||||
embedding_cache_key = f'{self._model_instance.provider}_{self._model_instance.model}_{hash}'
|
||||
embedding = redis_client.get(embedding_cache_key)
|
||||
if embedding:
|
||||
return embedding.get_embedding()
|
||||
redis_client.expire(embedding_cache_key, 600)
|
||||
return list(np.frombuffer(base64.b64decode(embedding), dtype="float"))
|
||||
|
||||
|
||||
try:
|
||||
embedding_result = self._model_instance.invoke_text_embedding(
|
||||
@@ -82,13 +77,18 @@ class CacheEmbedding(Embeddings):
|
||||
raise ex
|
||||
|
||||
try:
|
||||
embedding = Embedding(model_name=self._model_instance.model, hash=hash)
|
||||
embedding.set_embedding(embedding_results)
|
||||
db.session.add(embedding)
|
||||
db.session.commit()
|
||||
# encode embedding to base64
|
||||
embedding_vector = np.array(embedding_results)
|
||||
vector_bytes = embedding_vector.tobytes()
|
||||
# Transform to Base64
|
||||
encoded_vector = base64.b64encode(vector_bytes)
|
||||
# Transform to string
|
||||
encoded_str = encoded_vector.decode("utf-8")
|
||||
redis_client.setex(embedding_cache_key, 600, encoded_str)
|
||||
|
||||
except IntegrityError:
|
||||
db.session.rollback()
|
||||
except:
|
||||
logging.exception('Failed to add embedding to db')
|
||||
logging.exception('Failed to add embedding to redis')
|
||||
|
||||
return embedding_results
|
||||
|
||||
@@ -1,11 +1,12 @@
|
||||
from enum import Enum
|
||||
from typing import Any, Optional, cast
|
||||
from typing import Optional, Any, cast, Literal, Union
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from core.entities.provider_configuration import ProviderModelBundle
|
||||
from core.file.file_obj import FileObj
|
||||
from core.model_runtime.entities.message_entities import PromptMessageRole
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class ModelConfigEntity(BaseModel):
|
||||
@@ -153,9 +154,35 @@ class AgentToolEntity(BaseModel):
|
||||
"""
|
||||
Agent Tool Entity.
|
||||
"""
|
||||
tool_id: str
|
||||
config: dict[str, Any] = {}
|
||||
provider_type: Literal["builtin", "api"]
|
||||
provider_id: str
|
||||
tool_name: str
|
||||
tool_parameters: dict[str, Any] = {}
|
||||
|
||||
class AgentPromptEntity(BaseModel):
|
||||
"""
|
||||
Agent Prompt Entity.
|
||||
"""
|
||||
first_prompt: str
|
||||
next_iteration: str
|
||||
|
||||
class AgentScratchpadUnit(BaseModel):
|
||||
"""
|
||||
Agent First Prompt Entity.
|
||||
"""
|
||||
|
||||
class Action(BaseModel):
|
||||
"""
|
||||
Action Entity.
|
||||
"""
|
||||
action_name: str
|
||||
action_input: Union[dict, str]
|
||||
|
||||
agent_response: Optional[str] = None
|
||||
thought: Optional[str] = None
|
||||
action_str: Optional[str] = None
|
||||
observation: Optional[str] = None
|
||||
action: Optional[Action] = None
|
||||
|
||||
class AgentEntity(BaseModel):
|
||||
"""
|
||||
@@ -171,8 +198,9 @@ class AgentEntity(BaseModel):
|
||||
provider: str
|
||||
model: str
|
||||
strategy: Strategy
|
||||
tools: list[AgentToolEntity] = []
|
||||
|
||||
prompt: Optional[AgentPromptEntity] = None
|
||||
tools: list[AgentToolEntity] = None
|
||||
max_iteration: int = 5
|
||||
|
||||
class AppOrchestrationConfigEntity(BaseModel):
|
||||
"""
|
||||
@@ -191,6 +219,7 @@ class AppOrchestrationConfigEntity(BaseModel):
|
||||
show_retrieve_source: bool = False
|
||||
more_like_this: bool = False
|
||||
speech_to_text: bool = False
|
||||
text_to_speech: bool = False
|
||||
sensitive_word_avoidance: Optional[SensitiveWordAvoidanceEntity] = None
|
||||
|
||||
|
||||
@@ -255,7 +284,6 @@ class ApplicationGenerateEntity(BaseModel):
|
||||
query: Optional[str] = None
|
||||
files: list[FileObj] = []
|
||||
user_id: str
|
||||
|
||||
# extras
|
||||
stream: bool
|
||||
invoke_from: InvokeFrom
|
||||
|
||||
@@ -153,8 +153,16 @@ class ProviderConfiguration(BaseModel):
|
||||
|
||||
if provider_record:
|
||||
try:
|
||||
original_credentials = json.loads(
|
||||
provider_record.encrypted_config) if provider_record.encrypted_config else {}
|
||||
# fix origin data
|
||||
if provider_record.encrypted_config:
|
||||
if not provider_record.encrypted_config.startswith("{"):
|
||||
original_credentials = {
|
||||
"openai_api_key": provider_record.encrypted_config
|
||||
}
|
||||
else:
|
||||
original_credentials = json.loads(provider_record.encrypted_config)
|
||||
else:
|
||||
original_credentials = {}
|
||||
except JSONDecodeError:
|
||||
original_credentials = {}
|
||||
|
||||
|
||||
@@ -10,11 +10,13 @@ class QueueEvent(Enum):
|
||||
QueueEvent enum
|
||||
"""
|
||||
MESSAGE = "message"
|
||||
AGENT_MESSAGE = "agent_message"
|
||||
MESSAGE_REPLACE = "message-replace"
|
||||
MESSAGE_END = "message-end"
|
||||
RETRIEVER_RESOURCES = "retriever-resources"
|
||||
ANNOTATION_REPLY = "annotation-reply"
|
||||
AGENT_THOUGHT = "agent-thought"
|
||||
MESSAGE_FILE = "message-file"
|
||||
ERROR = "error"
|
||||
PING = "ping"
|
||||
STOP = "stop"
|
||||
@@ -33,7 +35,14 @@ class QueueMessageEvent(AppQueueEvent):
|
||||
"""
|
||||
event = QueueEvent.MESSAGE
|
||||
chunk: LLMResultChunk
|
||||
|
||||
|
||||
class QueueAgentMessageEvent(AppQueueEvent):
|
||||
"""
|
||||
QueueMessageEvent entity
|
||||
"""
|
||||
event = QueueEvent.AGENT_MESSAGE
|
||||
chunk: LLMResultChunk
|
||||
|
||||
|
||||
class QueueMessageReplaceEvent(AppQueueEvent):
|
||||
"""
|
||||
@@ -73,7 +82,13 @@ class QueueAgentThoughtEvent(AppQueueEvent):
|
||||
"""
|
||||
event = QueueEvent.AGENT_THOUGHT
|
||||
agent_thought_id: str
|
||||
|
||||
|
||||
class QueueMessageFileEvent(AppQueueEvent):
|
||||
"""
|
||||
QueueAgentThoughtEvent entity
|
||||
"""
|
||||
event = QueueEvent.MESSAGE_FILE
|
||||
message_file_id: str
|
||||
|
||||
class QueueErrorEvent(AppQueueEvent):
|
||||
"""
|
||||
|
||||
@@ -1,30 +1,27 @@
|
||||
import logging
|
||||
from typing import List, Optional, cast
|
||||
from typing import cast, Optional, List
|
||||
|
||||
from langchain import WikipediaAPIWrapper
|
||||
from langchain.callbacks.base import BaseCallbackHandler
|
||||
from langchain.tools import BaseTool, WikipediaQueryRun, Tool
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from core.agent.agent.agent_llm_callback import AgentLLMCallback
|
||||
from core.agent.agent_executor import AgentConfiguration, AgentExecutor, PlanningStrategy
|
||||
from core.agent.agent_executor import PlanningStrategy, AgentConfiguration, AgentExecutor
|
||||
from core.application_queue_manager import ApplicationQueueManager
|
||||
from core.callback_handler.agent_loop_gather_callback_handler import AgentLoopGatherCallbackHandler
|
||||
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
|
||||
from core.callback_handler.std_out_callback_handler import DifyStdOutCallbackHandler
|
||||
from core.entities.application_entities import (AgentEntity, AgentToolEntity, AppOrchestrationConfigEntity, InvokeFrom,
|
||||
ModelConfigEntity)
|
||||
from core.entities.application_entities import ModelConfigEntity, InvokeFrom, \
|
||||
AgentEntity, AgentToolEntity, AppOrchestrationConfigEntity
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_runtime.entities.model_entities import ModelFeature, ModelType
|
||||
from core.model_runtime.model_providers import model_provider_factory
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.tool.current_datetime_tool import DatetimeTool
|
||||
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
|
||||
from core.tool.provider.serpapi_provider import SerpAPIToolProvider
|
||||
from core.tool.serpapi_wrapper import OptimizedSerpAPIInput, OptimizedSerpAPIWrapper
|
||||
from core.tool.web_reader_tool import WebReaderTool
|
||||
from core.tools.tool.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
|
||||
from extensions.ext_database import db
|
||||
from langchain import WikipediaAPIWrapper
|
||||
from langchain.callbacks.base import BaseCallbackHandler
|
||||
from langchain.tools import BaseTool, Tool, WikipediaQueryRun
|
||||
from models.dataset import Dataset
|
||||
from models.model import Message
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -132,55 +129,6 @@ class AgentRunnerFeature:
|
||||
logger.exception("agent_executor run failed")
|
||||
return None
|
||||
|
||||
def to_tools(self, tool_configs: list[AgentToolEntity],
|
||||
invoke_from: InvokeFrom,
|
||||
callbacks: list[BaseCallbackHandler]) \
|
||||
-> Optional[List[BaseTool]]:
|
||||
"""
|
||||
Convert tool configs to tools
|
||||
:param tool_configs: tool configs
|
||||
:param invoke_from: invoke from
|
||||
:param callbacks: callbacks
|
||||
"""
|
||||
tools = []
|
||||
for tool_config in tool_configs:
|
||||
tool = None
|
||||
if tool_config.tool_id == "dataset":
|
||||
tool = self.to_dataset_retriever_tool(
|
||||
tool_config=tool_config.config,
|
||||
invoke_from=invoke_from
|
||||
)
|
||||
elif tool_config.tool_id == "web_reader":
|
||||
tool = self.to_web_reader_tool(
|
||||
tool_config=tool_config.config,
|
||||
invoke_from=invoke_from
|
||||
)
|
||||
elif tool_config.tool_id == "google_search":
|
||||
tool = self.to_google_search_tool(
|
||||
tool_config=tool_config.config,
|
||||
invoke_from=invoke_from
|
||||
)
|
||||
elif tool_config.tool_id == "wikipedia":
|
||||
tool = self.to_wikipedia_tool(
|
||||
tool_config=tool_config.config,
|
||||
invoke_from=invoke_from
|
||||
)
|
||||
elif tool_config.tool_id == "current_datetime":
|
||||
tool = self.to_current_datetime_tool(
|
||||
tool_config=tool_config.config,
|
||||
invoke_from=invoke_from
|
||||
)
|
||||
|
||||
if tool:
|
||||
if tool.callbacks is not None:
|
||||
tool.callbacks.extend(callbacks)
|
||||
else:
|
||||
tool.callbacks = callbacks
|
||||
|
||||
tools.append(tool)
|
||||
|
||||
return tools
|
||||
|
||||
def to_dataset_retriever_tool(self, tool_config: dict,
|
||||
invoke_from: InvokeFrom) \
|
||||
-> Optional[BaseTool]:
|
||||
@@ -247,78 +195,4 @@ class AgentRunnerFeature:
|
||||
retriever_from=invoke_from.to_source()
|
||||
)
|
||||
|
||||
return tool
|
||||
|
||||
def to_web_reader_tool(self, tool_config: dict,
|
||||
invoke_from: InvokeFrom) -> Optional[BaseTool]:
|
||||
"""
|
||||
A tool for reading web pages
|
||||
:param tool_config: tool config
|
||||
:param invoke_from: invoke from
|
||||
:return:
|
||||
"""
|
||||
model_parameters = {
|
||||
"temperature": 0,
|
||||
"max_tokens": 500
|
||||
}
|
||||
|
||||
tool = WebReaderTool(
|
||||
model_config=self.model_config,
|
||||
model_parameters=model_parameters,
|
||||
max_chunk_length=4000,
|
||||
continue_reading=True
|
||||
)
|
||||
|
||||
return tool
|
||||
|
||||
def to_google_search_tool(self, tool_config: dict,
|
||||
invoke_from: InvokeFrom) -> Optional[BaseTool]:
|
||||
"""
|
||||
A tool for performing a Google search and extracting snippets and webpages
|
||||
:param tool_config: tool config
|
||||
:param invoke_from: invoke from
|
||||
:return:
|
||||
"""
|
||||
tool_provider = SerpAPIToolProvider(tenant_id=self.tenant_id)
|
||||
func_kwargs = tool_provider.credentials_to_func_kwargs()
|
||||
if not func_kwargs:
|
||||
return None
|
||||
|
||||
tool = Tool(
|
||||
name="google_search",
|
||||
description="A tool for performing a Google search and extracting snippets and webpages "
|
||||
"when you need to search for something you don't know or when your information "
|
||||
"is not up to date. "
|
||||
"Input should be a search query.",
|
||||
func=OptimizedSerpAPIWrapper(**func_kwargs).run,
|
||||
args_schema=OptimizedSerpAPIInput
|
||||
)
|
||||
|
||||
return tool
|
||||
|
||||
def to_current_datetime_tool(self, tool_config: dict,
|
||||
invoke_from: InvokeFrom) -> Optional[BaseTool]:
|
||||
"""
|
||||
A tool for getting the current date and time
|
||||
:param tool_config: tool config
|
||||
:param invoke_from: invoke from
|
||||
:return:
|
||||
"""
|
||||
return DatetimeTool()
|
||||
|
||||
def to_wikipedia_tool(self, tool_config: dict,
|
||||
invoke_from: InvokeFrom) -> Optional[BaseTool]:
|
||||
"""
|
||||
A tool for searching Wikipedia
|
||||
:param tool_config: tool config
|
||||
:param invoke_from: invoke from
|
||||
:return:
|
||||
"""
|
||||
class WikipediaInput(BaseModel):
|
||||
query: str = Field(..., description="search query.")
|
||||
|
||||
return WikipediaQueryRun(
|
||||
name="wikipedia",
|
||||
api_wrapper=WikipediaAPIWrapper(doc_content_chars_max=4000),
|
||||
args_schema=WikipediaInput
|
||||
)
|
||||
return tool
|
||||
574
api/core/features/assistant_base_runner.py
Normal file
574
api/core/features/assistant_base_runner.py
Normal file
@@ -0,0 +1,574 @@
|
||||
import logging
|
||||
import json
|
||||
|
||||
from typing import Optional, List, Tuple, Union
|
||||
from datetime import datetime
|
||||
from mimetypes import guess_extension
|
||||
|
||||
from core.app_runner.app_runner import AppRunner
|
||||
from extensions.ext_database import db
|
||||
|
||||
from models.model import MessageAgentThought, Message, MessageFile
|
||||
from models.tools import ToolConversationVariables
|
||||
|
||||
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolInvokeMessageBinary, \
|
||||
ToolRuntimeVariablePool, ToolParamter
|
||||
from core.tools.tool.tool import Tool
|
||||
from core.tools.tool_manager import ToolManager
|
||||
from core.tools.tool_file_manager import ToolFileManager
|
||||
from core.tools.tool.dataset_retriever_tool import DatasetRetrieverTool
|
||||
from core.app_runner.app_runner import AppRunner
|
||||
from core.callback_handler.agent_tool_callback_handler import DifyAgentCallbackHandler
|
||||
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
|
||||
from core.entities.application_entities import ModelConfigEntity, AgentEntity, AgentToolEntity
|
||||
from core.application_queue_manager import ApplicationQueueManager
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.entities.application_entities import ModelConfigEntity, \
|
||||
AgentEntity, AppOrchestrationConfigEntity, ApplicationGenerateEntity, InvokeFrom
|
||||
from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageTool
|
||||
from core.model_runtime.entities.llm_entities import LLMUsage
|
||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||
from core.file.message_file_parser import FileTransferMethod
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class BaseAssistantApplicationRunner(AppRunner):
|
||||
def __init__(self, tenant_id: str,
|
||||
application_generate_entity: ApplicationGenerateEntity,
|
||||
app_orchestration_config: AppOrchestrationConfigEntity,
|
||||
model_config: ModelConfigEntity,
|
||||
config: AgentEntity,
|
||||
queue_manager: ApplicationQueueManager,
|
||||
message: Message,
|
||||
user_id: str,
|
||||
memory: Optional[TokenBufferMemory] = None,
|
||||
prompt_messages: Optional[List[PromptMessage]] = None,
|
||||
variables_pool: Optional[ToolRuntimeVariablePool] = None,
|
||||
db_variables: Optional[ToolConversationVariables] = None,
|
||||
) -> None:
|
||||
"""
|
||||
Agent runner
|
||||
:param tenant_id: tenant id
|
||||
:param app_orchestration_config: app orchestration config
|
||||
:param model_config: model config
|
||||
:param config: dataset config
|
||||
:param queue_manager: queue manager
|
||||
:param message: message
|
||||
:param user_id: user id
|
||||
:param agent_llm_callback: agent llm callback
|
||||
:param callback: callback
|
||||
:param memory: memory
|
||||
"""
|
||||
self.tenant_id = tenant_id
|
||||
self.application_generate_entity = application_generate_entity
|
||||
self.app_orchestration_config = app_orchestration_config
|
||||
self.model_config = model_config
|
||||
self.config = config
|
||||
self.queue_manager = queue_manager
|
||||
self.message = message
|
||||
self.user_id = user_id
|
||||
self.memory = memory
|
||||
self.history_prompt_messages = prompt_messages
|
||||
self.variables_pool = variables_pool
|
||||
self.db_variables_pool = db_variables
|
||||
|
||||
# init callback
|
||||
self.agent_callback = DifyAgentCallbackHandler()
|
||||
# init dataset tools
|
||||
hit_callback = DatasetIndexToolCallbackHandler(
|
||||
queue_manager=queue_manager,
|
||||
app_id=self.application_generate_entity.app_id,
|
||||
message_id=message.id,
|
||||
user_id=user_id,
|
||||
invoke_from=self.application_generate_entity.invoke_from,
|
||||
)
|
||||
self.dataset_tools = DatasetRetrieverTool.get_dataset_tools(
|
||||
tenant_id=tenant_id,
|
||||
dataset_ids=app_orchestration_config.dataset.dataset_ids if app_orchestration_config.dataset else [],
|
||||
retrieve_config=app_orchestration_config.dataset.retrieve_config if app_orchestration_config.dataset else None,
|
||||
return_resource=app_orchestration_config.show_retrieve_source,
|
||||
invoke_from=application_generate_entity.invoke_from,
|
||||
hit_callback=hit_callback
|
||||
)
|
||||
# get how many agent thoughts have been created
|
||||
self.agent_thought_count = db.session.query(MessageAgentThought).filter(
|
||||
MessageAgentThought.message_id == self.message.id,
|
||||
).count()
|
||||
|
||||
def _repacket_app_orchestration_config(self, app_orchestration_config: AppOrchestrationConfigEntity) -> AppOrchestrationConfigEntity:
|
||||
"""
|
||||
Repacket app orchestration config
|
||||
"""
|
||||
if app_orchestration_config.prompt_template.simple_prompt_template is None:
|
||||
app_orchestration_config.prompt_template.simple_prompt_template = ''
|
||||
|
||||
return app_orchestration_config
|
||||
|
||||
def _convert_tool_response_to_str(self, tool_response: List[ToolInvokeMessage]) -> str:
|
||||
"""
|
||||
Handle tool response
|
||||
"""
|
||||
result = ''
|
||||
for response in tool_response:
|
||||
if response.type == ToolInvokeMessage.MessageType.TEXT:
|
||||
result += response.message
|
||||
elif response.type == ToolInvokeMessage.MessageType.LINK:
|
||||
result += f"result link: {response.message}. please dirct user to check it."
|
||||
elif response.type == ToolInvokeMessage.MessageType.IMAGE_LINK or \
|
||||
response.type == ToolInvokeMessage.MessageType.IMAGE:
|
||||
result += f"image has been created and sent to user already, you should tell user to check it now."
|
||||
else:
|
||||
result += f"tool response: {response.message}."
|
||||
|
||||
return result
|
||||
|
||||
def _convert_tool_to_prompt_message_tool(self, tool: AgentToolEntity) -> Tuple[PromptMessageTool, Tool]:
|
||||
"""
|
||||
convert tool to prompt message tool
|
||||
"""
|
||||
tool_entity = ToolManager.get_tool_runtime(
|
||||
provider_type=tool.provider_type, provider_name=tool.provider_id, tool_name=tool.tool_name,
|
||||
tanent_id=self.application_generate_entity.tenant_id,
|
||||
agent_callback=self.agent_callback
|
||||
)
|
||||
tool_entity.load_variables(self.variables_pool)
|
||||
|
||||
message_tool = PromptMessageTool(
|
||||
name=tool.tool_name,
|
||||
description=tool_entity.description.llm,
|
||||
parameters={
|
||||
"type": "object",
|
||||
"properties": {},
|
||||
"required": [],
|
||||
}
|
||||
)
|
||||
|
||||
runtime_parameters = {}
|
||||
|
||||
parameters = tool_entity.parameters or []
|
||||
user_parameters = tool_entity.get_runtime_parameters() or []
|
||||
|
||||
# override parameters
|
||||
for parameter in user_parameters:
|
||||
# check if parameter in tool parameters
|
||||
found = False
|
||||
for tool_parameter in parameters:
|
||||
if tool_parameter.name == parameter.name:
|
||||
found = True
|
||||
break
|
||||
|
||||
if found:
|
||||
# override parameter
|
||||
tool_parameter.type = parameter.type
|
||||
tool_parameter.form = parameter.form
|
||||
tool_parameter.required = parameter.required
|
||||
tool_parameter.default = parameter.default
|
||||
tool_parameter.options = parameter.options
|
||||
tool_parameter.llm_description = parameter.llm_description
|
||||
else:
|
||||
# add new parameter
|
||||
parameters.append(parameter)
|
||||
|
||||
for parameter in parameters:
|
||||
parameter_type = 'string'
|
||||
enum = []
|
||||
if parameter.type == ToolParamter.ToolParameterType.STRING:
|
||||
parameter_type = 'string'
|
||||
elif parameter.type == ToolParamter.ToolParameterType.BOOLEAN:
|
||||
parameter_type = 'boolean'
|
||||
elif parameter.type == ToolParamter.ToolParameterType.NUMBER:
|
||||
parameter_type = 'number'
|
||||
elif parameter.type == ToolParamter.ToolParameterType.SELECT:
|
||||
for option in parameter.options:
|
||||
enum.append(option.value)
|
||||
parameter_type = 'string'
|
||||
else:
|
||||
raise ValueError(f"parameter type {parameter.type} is not supported")
|
||||
|
||||
if parameter.form == ToolParamter.ToolParameterForm.FORM:
|
||||
# get tool parameter from form
|
||||
tool_parameter_config = tool.tool_parameters.get(parameter.name)
|
||||
if not tool_parameter_config:
|
||||
# get default value
|
||||
tool_parameter_config = parameter.default
|
||||
if not tool_parameter_config and parameter.required:
|
||||
raise ValueError(f"tool parameter {parameter.name} not found in tool config")
|
||||
|
||||
if parameter.type == ToolParamter.ToolParameterType.SELECT:
|
||||
# check if tool_parameter_config in options
|
||||
options = list(map(lambda x: x.value, parameter.options))
|
||||
if tool_parameter_config not in options:
|
||||
raise ValueError(f"tool parameter {parameter.name} value {tool_parameter_config} not in options {options}")
|
||||
|
||||
# convert tool parameter config to correct type
|
||||
try:
|
||||
if parameter.type == ToolParamter.ToolParameterType.NUMBER:
|
||||
# check if tool parameter is integer
|
||||
if isinstance(tool_parameter_config, int):
|
||||
tool_parameter_config = tool_parameter_config
|
||||
elif isinstance(tool_parameter_config, float):
|
||||
tool_parameter_config = tool_parameter_config
|
||||
elif isinstance(tool_parameter_config, str):
|
||||
if '.' in tool_parameter_config:
|
||||
tool_parameter_config = float(tool_parameter_config)
|
||||
else:
|
||||
tool_parameter_config = int(tool_parameter_config)
|
||||
elif parameter.type == ToolParamter.ToolParameterType.BOOLEAN:
|
||||
tool_parameter_config = bool(tool_parameter_config)
|
||||
elif parameter.type not in [ToolParamter.ToolParameterType.SELECT, ToolParamter.ToolParameterType.STRING]:
|
||||
tool_parameter_config = str(tool_parameter_config)
|
||||
elif parameter.type == ToolParamter.ToolParameterType:
|
||||
tool_parameter_config = str(tool_parameter_config)
|
||||
except Exception as e:
|
||||
raise ValueError(f"tool parameter {parameter.name} value {tool_parameter_config} is not correct type")
|
||||
|
||||
# save tool parameter to tool entity memory
|
||||
runtime_parameters[parameter.name] = tool_parameter_config
|
||||
|
||||
elif parameter.form == ToolParamter.ToolParameterForm.LLM:
|
||||
message_tool.parameters['properties'][parameter.name] = {
|
||||
"type": parameter_type,
|
||||
"description": parameter.llm_description or '',
|
||||
}
|
||||
|
||||
if len(enum) > 0:
|
||||
message_tool.parameters['properties'][parameter.name]['enum'] = enum
|
||||
|
||||
if parameter.required:
|
||||
message_tool.parameters['required'].append(parameter.name)
|
||||
|
||||
tool_entity.runtime.runtime_parameters.update(runtime_parameters)
|
||||
|
||||
return message_tool, tool_entity
|
||||
|
||||
def _convert_dataset_retriever_tool_to_prompt_message_tool(self, tool: DatasetRetrieverTool) -> PromptMessageTool:
|
||||
"""
|
||||
convert dataset retriever tool to prompt message tool
|
||||
"""
|
||||
prompt_tool = PromptMessageTool(
|
||||
name=tool.identity.name,
|
||||
description=tool.description.llm,
|
||||
parameters={
|
||||
"type": "object",
|
||||
"properties": {},
|
||||
"required": [],
|
||||
}
|
||||
)
|
||||
|
||||
for parameter in tool.get_runtime_parameters():
|
||||
parameter_type = 'string'
|
||||
|
||||
prompt_tool.parameters['properties'][parameter.name] = {
|
||||
"type": parameter_type,
|
||||
"description": parameter.llm_description or '',
|
||||
}
|
||||
|
||||
if parameter.required:
|
||||
if parameter.name not in prompt_tool.parameters['required']:
|
||||
prompt_tool.parameters['required'].append(parameter.name)
|
||||
|
||||
return prompt_tool
|
||||
|
||||
def update_prompt_message_tool(self, tool: Tool, prompt_tool: PromptMessageTool) -> PromptMessageTool:
|
||||
"""
|
||||
update prompt message tool
|
||||
"""
|
||||
# try to get tool runtime parameters
|
||||
tool_runtime_parameters = tool.get_runtime_parameters() or []
|
||||
|
||||
for parameter in tool_runtime_parameters:
|
||||
parameter_type = 'string'
|
||||
enum = []
|
||||
if parameter.type == ToolParamter.ToolParameterType.STRING:
|
||||
parameter_type = 'string'
|
||||
elif parameter.type == ToolParamter.ToolParameterType.BOOLEAN:
|
||||
parameter_type = 'boolean'
|
||||
elif parameter.type == ToolParamter.ToolParameterType.NUMBER:
|
||||
parameter_type = 'number'
|
||||
elif parameter.type == ToolParamter.ToolParameterType.SELECT:
|
||||
for option in parameter.options:
|
||||
enum.append(option.value)
|
||||
parameter_type = 'string'
|
||||
else:
|
||||
raise ValueError(f"parameter type {parameter.type} is not supported")
|
||||
|
||||
if parameter.form == ToolParamter.ToolParameterForm.LLM:
|
||||
prompt_tool.parameters['properties'][parameter.name] = {
|
||||
"type": parameter_type,
|
||||
"description": parameter.llm_description or '',
|
||||
}
|
||||
|
||||
if len(enum) > 0:
|
||||
prompt_tool.parameters['properties'][parameter.name]['enum'] = enum
|
||||
|
||||
if parameter.required:
|
||||
if parameter.name not in prompt_tool.parameters['required']:
|
||||
prompt_tool.parameters['required'].append(parameter.name)
|
||||
|
||||
return prompt_tool
|
||||
|
||||
def extract_tool_response_binary(self, tool_response: List[ToolInvokeMessage]) -> List[ToolInvokeMessageBinary]:
|
||||
"""
|
||||
Extract tool response binary
|
||||
"""
|
||||
result = []
|
||||
|
||||
for response in tool_response:
|
||||
if response.type == ToolInvokeMessage.MessageType.IMAGE_LINK or \
|
||||
response.type == ToolInvokeMessage.MessageType.IMAGE:
|
||||
result.append(ToolInvokeMessageBinary(
|
||||
mimetype=response.meta.get('mime_type', 'octet/stream'),
|
||||
url=response.message,
|
||||
save_as=response.save_as,
|
||||
))
|
||||
elif response.type == ToolInvokeMessage.MessageType.BLOB:
|
||||
result.append(ToolInvokeMessageBinary(
|
||||
mimetype=response.meta.get('mime_type', 'octet/stream'),
|
||||
url=response.message,
|
||||
save_as=response.save_as,
|
||||
))
|
||||
elif response.type == ToolInvokeMessage.MessageType.LINK:
|
||||
# check if there is a mime type in meta
|
||||
if response.meta and 'mime_type' in response.meta:
|
||||
result.append(ToolInvokeMessageBinary(
|
||||
mimetype=response.meta.get('mime_type', 'octet/stream') if response.meta else 'octet/stream',
|
||||
url=response.message,
|
||||
save_as=response.save_as,
|
||||
))
|
||||
|
||||
return result
|
||||
|
||||
def create_message_files(self, messages: List[ToolInvokeMessageBinary]) -> List[Tuple[MessageFile, bool]]:
|
||||
"""
|
||||
Create message file
|
||||
|
||||
:param messages: messages
|
||||
:return: message files, should save as variable
|
||||
"""
|
||||
result = []
|
||||
|
||||
for message in messages:
|
||||
file_type = 'bin'
|
||||
if 'image' in message.mimetype:
|
||||
file_type = 'image'
|
||||
elif 'video' in message.mimetype:
|
||||
file_type = 'video'
|
||||
elif 'audio' in message.mimetype:
|
||||
file_type = 'audio'
|
||||
elif 'text' in message.mimetype:
|
||||
file_type = 'text'
|
||||
elif 'pdf' in message.mimetype:
|
||||
file_type = 'pdf'
|
||||
elif 'zip' in message.mimetype:
|
||||
file_type = 'archive'
|
||||
# ...
|
||||
|
||||
invoke_from = self.application_generate_entity.invoke_from
|
||||
|
||||
message_file = MessageFile(
|
||||
message_id=self.message.id,
|
||||
type=file_type,
|
||||
transfer_method=FileTransferMethod.TOOL_FILE.value,
|
||||
belongs_to='assistant',
|
||||
url=message.url,
|
||||
upload_file_id=None,
|
||||
created_by_role=('account'if invoke_from in [InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER] else 'end_user'),
|
||||
created_by=self.user_id,
|
||||
)
|
||||
db.session.add(message_file)
|
||||
result.append((
|
||||
message_file,
|
||||
message.save_as
|
||||
))
|
||||
|
||||
db.session.commit()
|
||||
|
||||
return result
|
||||
|
||||
def create_agent_thought(self, message_id: str, message: str,
|
||||
tool_name: str, tool_input: str, messages_ids: List[str]
|
||||
) -> MessageAgentThought:
|
||||
"""
|
||||
Create agent thought
|
||||
"""
|
||||
thought = MessageAgentThought(
|
||||
message_id=message_id,
|
||||
message_chain_id=None,
|
||||
thought='',
|
||||
tool=tool_name,
|
||||
tool_labels_str='{}',
|
||||
tool_input=tool_input,
|
||||
message=message,
|
||||
message_token=0,
|
||||
message_unit_price=0,
|
||||
message_price_unit=0,
|
||||
message_files=json.dumps(messages_ids) if messages_ids else '',
|
||||
answer='',
|
||||
observation='',
|
||||
answer_token=0,
|
||||
answer_unit_price=0,
|
||||
answer_price_unit=0,
|
||||
tokens=0,
|
||||
total_price=0,
|
||||
position=self.agent_thought_count + 1,
|
||||
currency='USD',
|
||||
latency=0,
|
||||
created_by_role='account',
|
||||
created_by=self.user_id,
|
||||
)
|
||||
|
||||
db.session.add(thought)
|
||||
db.session.commit()
|
||||
|
||||
self.agent_thought_count += 1
|
||||
|
||||
return thought
|
||||
|
||||
def save_agent_thought(self,
|
||||
agent_thought: MessageAgentThought,
|
||||
tool_name: str,
|
||||
tool_input: Union[str, dict],
|
||||
thought: str,
|
||||
observation: str,
|
||||
answer: str,
|
||||
messages_ids: List[str],
|
||||
llm_usage: LLMUsage = None) -> MessageAgentThought:
|
||||
"""
|
||||
Save agent thought
|
||||
"""
|
||||
if thought is not None:
|
||||
agent_thought.thought = thought
|
||||
|
||||
if tool_name is not None:
|
||||
agent_thought.tool = tool_name
|
||||
|
||||
if tool_input is not None:
|
||||
if isinstance(tool_input, dict):
|
||||
try:
|
||||
tool_input = json.dumps(tool_input, ensure_ascii=False)
|
||||
except Exception as e:
|
||||
tool_input = json.dumps(tool_input)
|
||||
|
||||
agent_thought.tool_input = tool_input
|
||||
|
||||
if observation is not None:
|
||||
agent_thought.observation = observation
|
||||
|
||||
if answer is not None:
|
||||
agent_thought.answer = answer
|
||||
|
||||
if messages_ids is not None and len(messages_ids) > 0:
|
||||
agent_thought.message_files = json.dumps(messages_ids)
|
||||
|
||||
if llm_usage:
|
||||
agent_thought.message_token = llm_usage.prompt_tokens
|
||||
agent_thought.message_price_unit = llm_usage.prompt_price_unit
|
||||
agent_thought.message_unit_price = llm_usage.prompt_unit_price
|
||||
agent_thought.answer_token = llm_usage.completion_tokens
|
||||
agent_thought.answer_price_unit = llm_usage.completion_price_unit
|
||||
agent_thought.answer_unit_price = llm_usage.completion_unit_price
|
||||
agent_thought.tokens = llm_usage.total_tokens
|
||||
agent_thought.total_price = llm_usage.total_price
|
||||
|
||||
# check if tool labels is not empty
|
||||
labels = agent_thought.tool_labels or {}
|
||||
tools = agent_thought.tool.split(';') if agent_thought.tool else []
|
||||
for tool in tools:
|
||||
if not tool:
|
||||
continue
|
||||
if tool not in labels:
|
||||
tool_label = ToolManager.get_tool_label(tool)
|
||||
if tool_label:
|
||||
labels[tool] = tool_label.to_dict()
|
||||
else:
|
||||
labels[tool] = {'en_US': tool, 'zh_Hans': tool}
|
||||
|
||||
agent_thought.tool_labels_str = json.dumps(labels)
|
||||
|
||||
db.session.commit()
|
||||
|
||||
def get_history_prompt_messages(self) -> List[PromptMessage]:
|
||||
"""
|
||||
Get history prompt messages
|
||||
"""
|
||||
if self.history_prompt_messages is None:
|
||||
self.history_prompt_messages = db.session.query(PromptMessage).filter(
|
||||
PromptMessage.message_id == self.message.id,
|
||||
).order_by(PromptMessage.position.asc()).all()
|
||||
|
||||
return self.history_prompt_messages
|
||||
|
||||
def transform_tool_invoke_messages(self, messages: List[ToolInvokeMessage]) -> List[ToolInvokeMessage]:
|
||||
"""
|
||||
Transform tool message into agent thought
|
||||
"""
|
||||
result = []
|
||||
|
||||
for message in messages:
|
||||
if message.type == ToolInvokeMessage.MessageType.TEXT:
|
||||
result.append(message)
|
||||
elif message.type == ToolInvokeMessage.MessageType.LINK:
|
||||
result.append(message)
|
||||
elif message.type == ToolInvokeMessage.MessageType.IMAGE:
|
||||
# try to download image
|
||||
try:
|
||||
file = ToolFileManager.create_file_by_url(user_id=self.user_id, tenant_id=self.tenant_id,
|
||||
conversation_id=self.message.conversation_id,
|
||||
file_url=message.message)
|
||||
|
||||
url = f'/files/tools/{file.id}{guess_extension(file.mimetype) or ".png"}'
|
||||
|
||||
result.append(ToolInvokeMessage(
|
||||
type=ToolInvokeMessage.MessageType.IMAGE_LINK,
|
||||
message=url,
|
||||
save_as=message.save_as,
|
||||
meta=message.meta.copy() if message.meta is not None else {},
|
||||
))
|
||||
except Exception as e:
|
||||
logger.exception(e)
|
||||
result.append(ToolInvokeMessage(
|
||||
type=ToolInvokeMessage.MessageType.TEXT,
|
||||
message=f"Failed to download image: {message.message}, you can try to download it yourself.",
|
||||
meta=message.meta.copy() if message.meta is not None else {},
|
||||
save_as=message.save_as,
|
||||
))
|
||||
elif message.type == ToolInvokeMessage.MessageType.BLOB:
|
||||
# get mime type and save blob to storage
|
||||
mimetype = message.meta.get('mime_type', 'octet/stream')
|
||||
# if message is str, encode it to bytes
|
||||
if isinstance(message.message, str):
|
||||
message.message = message.message.encode('utf-8')
|
||||
file = ToolFileManager.create_file_by_raw(user_id=self.user_id, tenant_id=self.tenant_id,
|
||||
conversation_id=self.message.conversation_id,
|
||||
file_binary=message.message,
|
||||
mimetype=mimetype)
|
||||
|
||||
url = f'/files/tools/{file.id}{guess_extension(file.mimetype) or ".bin"}'
|
||||
|
||||
# check if file is image
|
||||
if 'image' in mimetype:
|
||||
result.append(ToolInvokeMessage(
|
||||
type=ToolInvokeMessage.MessageType.IMAGE_LINK,
|
||||
message=url,
|
||||
save_as=message.save_as,
|
||||
meta=message.meta.copy() if message.meta is not None else {},
|
||||
))
|
||||
else:
|
||||
result.append(ToolInvokeMessage(
|
||||
type=ToolInvokeMessage.MessageType.LINK,
|
||||
message=url,
|
||||
save_as=message.save_as,
|
||||
meta=message.meta.copy() if message.meta is not None else {},
|
||||
))
|
||||
else:
|
||||
result.append(message)
|
||||
|
||||
return result
|
||||
|
||||
def update_db_variables(self, tool_variables: ToolRuntimeVariablePool, db_variables: ToolConversationVariables):
|
||||
"""
|
||||
convert tool variables to db variables
|
||||
"""
|
||||
db_variables.updated_at = datetime.utcnow()
|
||||
db_variables.variables_str = json.dumps(jsonable_encoder(tool_variables.pool))
|
||||
db.session.commit()
|
||||
581
api/core/features/assistant_cot_runner.py
Normal file
581
api/core/features/assistant_cot_runner.py
Normal file
@@ -0,0 +1,581 @@
|
||||
import json
|
||||
import logging
|
||||
import re
|
||||
from typing import Literal, Union, Generator, Dict, List
|
||||
|
||||
from core.entities.application_entities import AgentPromptEntity, AgentScratchpadUnit
|
||||
from core.application_queue_manager import PublishFrom
|
||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||
from core.model_runtime.entities.message_entities import PromptMessageTool, PromptMessage, \
|
||||
UserPromptMessage, SystemPromptMessage, AssistantPromptMessage
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMUsage, LLMResultChunk, LLMResultChunkDelta
|
||||
from core.model_manager import ModelInstance
|
||||
|
||||
from core.tools.errors import ToolInvokeError, ToolNotFoundError, \
|
||||
ToolNotSupportedError, ToolProviderNotFoundError, ToolParamterValidationError, \
|
||||
ToolProviderCredentialValidationError
|
||||
|
||||
from core.features.assistant_base_runner import BaseAssistantApplicationRunner
|
||||
|
||||
from models.model import Conversation, Message
|
||||
|
||||
class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
|
||||
def run(self, model_instance: ModelInstance,
|
||||
conversation: Conversation,
|
||||
message: Message,
|
||||
query: str,
|
||||
) -> Union[Generator, LLMResult]:
|
||||
"""
|
||||
Run Cot agent application
|
||||
"""
|
||||
app_orchestration_config = self.app_orchestration_config
|
||||
self._repacket_app_orchestration_config(app_orchestration_config)
|
||||
|
||||
agent_scratchpad: List[AgentScratchpadUnit] = []
|
||||
|
||||
# check model mode
|
||||
if self.app_orchestration_config.model_config.mode == "completion":
|
||||
# TODO: stop words
|
||||
if 'Observation' not in app_orchestration_config.model_config.stop:
|
||||
app_orchestration_config.model_config.stop.append('Observation')
|
||||
|
||||
iteration_step = 1
|
||||
max_iteration_steps = min(self.app_orchestration_config.agent.max_iteration, 5) + 1
|
||||
|
||||
prompt_messages = self.history_prompt_messages
|
||||
|
||||
# convert tools into ModelRuntime Tool format
|
||||
prompt_messages_tools: List[PromptMessageTool] = []
|
||||
tool_instances = {}
|
||||
for tool in self.app_orchestration_config.agent.tools if self.app_orchestration_config.agent else []:
|
||||
try:
|
||||
prompt_tool, tool_entity = self._convert_tool_to_prompt_message_tool(tool)
|
||||
except Exception:
|
||||
# api tool may be deleted
|
||||
continue
|
||||
# save tool entity
|
||||
tool_instances[tool.tool_name] = tool_entity
|
||||
# save prompt tool
|
||||
prompt_messages_tools.append(prompt_tool)
|
||||
|
||||
# convert dataset tools into ModelRuntime Tool format
|
||||
for dataset_tool in self.dataset_tools:
|
||||
prompt_tool = self._convert_dataset_retriever_tool_to_prompt_message_tool(dataset_tool)
|
||||
# save prompt tool
|
||||
prompt_messages_tools.append(prompt_tool)
|
||||
# save tool entity
|
||||
tool_instances[dataset_tool.identity.name] = dataset_tool
|
||||
|
||||
function_call_state = True
|
||||
llm_usage = {
|
||||
'usage': None
|
||||
}
|
||||
final_answer = ''
|
||||
|
||||
def increse_usage(final_llm_usage_dict: Dict[str, LLMUsage], usage: LLMUsage):
|
||||
if not final_llm_usage_dict['usage']:
|
||||
final_llm_usage_dict['usage'] = usage
|
||||
else:
|
||||
llm_usage = final_llm_usage_dict['usage']
|
||||
llm_usage.prompt_tokens += usage.prompt_tokens
|
||||
llm_usage.completion_tokens += usage.completion_tokens
|
||||
llm_usage.prompt_price += usage.prompt_price
|
||||
llm_usage.completion_price += usage.completion_price
|
||||
|
||||
while function_call_state and iteration_step <= max_iteration_steps:
|
||||
# continue to run until there is not any tool call
|
||||
function_call_state = False
|
||||
|
||||
if iteration_step == max_iteration_steps:
|
||||
# the last iteration, remove all tools
|
||||
prompt_messages_tools = []
|
||||
|
||||
message_file_ids = []
|
||||
|
||||
agent_thought = self.create_agent_thought(
|
||||
message_id=message.id,
|
||||
message='',
|
||||
tool_name='',
|
||||
tool_input='',
|
||||
messages_ids=message_file_ids
|
||||
)
|
||||
|
||||
if iteration_step > 1:
|
||||
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
|
||||
|
||||
# update prompt messages
|
||||
prompt_messages = self._originze_cot_prompt_messages(
|
||||
mode=app_orchestration_config.model_config.mode,
|
||||
prompt_messages=prompt_messages,
|
||||
tools=prompt_messages_tools,
|
||||
agent_scratchpad=agent_scratchpad,
|
||||
agent_prompt_message=app_orchestration_config.agent.prompt,
|
||||
instruction=app_orchestration_config.prompt_template.simple_prompt_template,
|
||||
input=query
|
||||
)
|
||||
|
||||
# recale llm max tokens
|
||||
self.recale_llm_max_tokens(self.model_config, prompt_messages)
|
||||
# invoke model
|
||||
llm_result: LLMResult = model_instance.invoke_llm(
|
||||
prompt_messages=prompt_messages,
|
||||
model_parameters=app_orchestration_config.model_config.parameters,
|
||||
tools=[],
|
||||
stop=app_orchestration_config.model_config.stop,
|
||||
stream=False,
|
||||
user=self.user_id,
|
||||
callbacks=[],
|
||||
)
|
||||
|
||||
# check llm result
|
||||
if not llm_result:
|
||||
raise ValueError("failed to invoke llm")
|
||||
|
||||
# get scratchpad
|
||||
scratchpad = self._extract_response_scratchpad(llm_result.message.content)
|
||||
agent_scratchpad.append(scratchpad)
|
||||
|
||||
# get llm usage
|
||||
if llm_result.usage:
|
||||
increse_usage(llm_usage, llm_result.usage)
|
||||
|
||||
# publish agent thought if it's first iteration
|
||||
if iteration_step == 1:
|
||||
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
|
||||
|
||||
self.save_agent_thought(agent_thought=agent_thought,
|
||||
tool_name=scratchpad.action.action_name if scratchpad.action else '',
|
||||
tool_input=scratchpad.action.action_input if scratchpad.action else '',
|
||||
thought=scratchpad.thought,
|
||||
observation='',
|
||||
answer=llm_result.message.content,
|
||||
messages_ids=[],
|
||||
llm_usage=llm_result.usage)
|
||||
|
||||
if scratchpad.action and scratchpad.action.action_name.lower() != "final answer":
|
||||
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
|
||||
|
||||
# publish agent thought if it's not empty and there is a action
|
||||
if scratchpad.thought and scratchpad.action:
|
||||
# check if final answer
|
||||
if not scratchpad.action.action_name.lower() == "final answer":
|
||||
yield LLMResultChunk(
|
||||
model=model_instance.model,
|
||||
prompt_messages=prompt_messages,
|
||||
delta=LLMResultChunkDelta(
|
||||
index=0,
|
||||
message=AssistantPromptMessage(
|
||||
content=scratchpad.thought
|
||||
),
|
||||
usage=llm_result.usage,
|
||||
),
|
||||
system_fingerprint=''
|
||||
)
|
||||
|
||||
if not scratchpad.action:
|
||||
# failed to extract action, return final answer directly
|
||||
final_answer = scratchpad.agent_response or ''
|
||||
else:
|
||||
if scratchpad.action.action_name.lower() == "final answer":
|
||||
# action is final answer, return final answer directly
|
||||
try:
|
||||
final_answer = scratchpad.action.action_input if \
|
||||
isinstance(scratchpad.action.action_input, str) else \
|
||||
json.dumps(scratchpad.action.action_input)
|
||||
except json.JSONDecodeError:
|
||||
final_answer = f'{scratchpad.action.action_input}'
|
||||
else:
|
||||
function_call_state = True
|
||||
|
||||
# action is tool call, invoke tool
|
||||
tool_call_name = scratchpad.action.action_name
|
||||
tool_call_args = scratchpad.action.action_input
|
||||
tool_instance = tool_instances.get(tool_call_name)
|
||||
if not tool_instance:
|
||||
answer = f"there is not a tool named {tool_call_name}"
|
||||
self.save_agent_thought(agent_thought=agent_thought,
|
||||
tool_name='',
|
||||
tool_input='',
|
||||
thought=None,
|
||||
observation=answer,
|
||||
answer=answer,
|
||||
messages_ids=[])
|
||||
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
|
||||
else:
|
||||
# invoke tool
|
||||
error_response = None
|
||||
try:
|
||||
tool_response = tool_instance.invoke(
|
||||
user_id=self.user_id,
|
||||
tool_paramters=tool_call_args if isinstance(tool_call_args, dict) else json.loads(tool_call_args)
|
||||
)
|
||||
# transform tool response to llm friendly response
|
||||
tool_response = self.transform_tool_invoke_messages(tool_response)
|
||||
# extract binary data from tool invoke message
|
||||
binary_files = self.extract_tool_response_binary(tool_response)
|
||||
# create message file
|
||||
message_files = self.create_message_files(binary_files)
|
||||
# publish files
|
||||
for message_file, save_as in message_files:
|
||||
if save_as:
|
||||
self.variables_pool.set_file(tool_name=tool_call_name,
|
||||
value=message_file.id,
|
||||
name=save_as)
|
||||
self.queue_manager.publish_message_file(message_file, PublishFrom.APPLICATION_MANAGER)
|
||||
|
||||
message_file_ids = [message_file.id for message_file, _ in message_files]
|
||||
except ToolProviderCredentialValidationError as e:
|
||||
error_response = f"Plese check your tool provider credentials"
|
||||
except (
|
||||
ToolNotFoundError, ToolNotSupportedError, ToolProviderNotFoundError
|
||||
) as e:
|
||||
error_response = f"there is not a tool named {tool_call_name}"
|
||||
except (
|
||||
ToolParamterValidationError
|
||||
) as e:
|
||||
error_response = f"tool paramters validation error: {e}, please check your tool paramters"
|
||||
except ToolInvokeError as e:
|
||||
error_response = f"tool invoke error: {e}"
|
||||
except Exception as e:
|
||||
error_response = f"unknown error: {e}"
|
||||
|
||||
if error_response:
|
||||
observation = error_response
|
||||
else:
|
||||
observation = self._convert_tool_response_to_str(tool_response)
|
||||
|
||||
# save scratchpad
|
||||
scratchpad.observation = observation
|
||||
scratchpad.agent_response = llm_result.message.content
|
||||
|
||||
# save agent thought
|
||||
self.save_agent_thought(
|
||||
agent_thought=agent_thought,
|
||||
tool_name=tool_call_name,
|
||||
tool_input=tool_call_args,
|
||||
thought=None,
|
||||
observation=observation,
|
||||
answer=llm_result.message.content,
|
||||
messages_ids=message_file_ids,
|
||||
)
|
||||
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
|
||||
|
||||
# update prompt tool message
|
||||
for prompt_tool in prompt_messages_tools:
|
||||
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
|
||||
|
||||
iteration_step += 1
|
||||
|
||||
yield LLMResultChunk(
|
||||
model=model_instance.model,
|
||||
prompt_messages=prompt_messages,
|
||||
delta=LLMResultChunkDelta(
|
||||
index=0,
|
||||
message=AssistantPromptMessage(
|
||||
content=final_answer
|
||||
),
|
||||
usage=llm_usage['usage']
|
||||
),
|
||||
system_fingerprint=''
|
||||
)
|
||||
|
||||
# save agent thought
|
||||
self.save_agent_thought(
|
||||
agent_thought=agent_thought,
|
||||
tool_name='',
|
||||
tool_input='',
|
||||
thought=final_answer,
|
||||
observation='',
|
||||
answer=final_answer,
|
||||
messages_ids=[]
|
||||
)
|
||||
|
||||
self.update_db_variables(self.variables_pool, self.db_variables_pool)
|
||||
# publish end event
|
||||
self.queue_manager.publish_message_end(LLMResult(
|
||||
model=model_instance.model,
|
||||
prompt_messages=prompt_messages,
|
||||
message=AssistantPromptMessage(
|
||||
content=final_answer
|
||||
),
|
||||
usage=llm_usage['usage'] if llm_usage['usage'] else LLMUsage.empty_usage(),
|
||||
system_fingerprint=''
|
||||
), PublishFrom.APPLICATION_MANAGER)
|
||||
|
||||
def _extract_response_scratchpad(self, content: str) -> AgentScratchpadUnit:
|
||||
"""
|
||||
extract response from llm response
|
||||
"""
|
||||
def extra_quotes() -> AgentScratchpadUnit:
|
||||
agent_response = content
|
||||
# try to extract all quotes
|
||||
pattern = re.compile(r'```(.*?)```', re.DOTALL)
|
||||
quotes = pattern.findall(content)
|
||||
|
||||
# try to extract action from end to start
|
||||
for i in range(len(quotes) - 1, 0, -1):
|
||||
"""
|
||||
1. use json load to parse action
|
||||
2. use plain text `Action: xxx` to parse action
|
||||
"""
|
||||
try:
|
||||
action = json.loads(quotes[i].replace('```', ''))
|
||||
action_name = action.get("action")
|
||||
action_input = action.get("action_input")
|
||||
agent_thought = agent_response.replace(quotes[i], '')
|
||||
|
||||
if action_name and action_input:
|
||||
return AgentScratchpadUnit(
|
||||
agent_response=content,
|
||||
thought=agent_thought,
|
||||
action_str=quotes[i],
|
||||
action=AgentScratchpadUnit.Action(
|
||||
action_name=action_name,
|
||||
action_input=action_input,
|
||||
)
|
||||
)
|
||||
except:
|
||||
# try to parse action from plain text
|
||||
action_name = re.findall(r'action: (.*)', quotes[i], re.IGNORECASE)
|
||||
action_input = re.findall(r'action input: (.*)', quotes[i], re.IGNORECASE)
|
||||
# delete action from agent response
|
||||
agent_thought = agent_response.replace(quotes[i], '')
|
||||
# remove extra quotes
|
||||
agent_thought = re.sub(r'```(json)*\n*```', '', agent_thought, flags=re.DOTALL)
|
||||
# remove Action: xxx from agent thought
|
||||
agent_thought = re.sub(r'Action:.*', '', agent_thought, flags=re.IGNORECASE)
|
||||
|
||||
if action_name and action_input:
|
||||
return AgentScratchpadUnit(
|
||||
agent_response=content,
|
||||
thought=agent_thought,
|
||||
action_str=quotes[i],
|
||||
action=AgentScratchpadUnit.Action(
|
||||
action_name=action_name[0],
|
||||
action_input=action_input[0],
|
||||
)
|
||||
)
|
||||
|
||||
def extra_json():
|
||||
agent_response = content
|
||||
# try to extract all json
|
||||
structures, pair_match_stack = [], []
|
||||
started_at, end_at = 0, 0
|
||||
for i in range(len(content)):
|
||||
if content[i] == '{':
|
||||
pair_match_stack.append(i)
|
||||
if len(pair_match_stack) == 1:
|
||||
started_at = i
|
||||
elif content[i] == '}':
|
||||
begin = pair_match_stack.pop()
|
||||
if not pair_match_stack:
|
||||
end_at = i + 1
|
||||
structures.append((content[begin:i+1], (started_at, end_at)))
|
||||
|
||||
# handle the last character
|
||||
if pair_match_stack:
|
||||
end_at = len(content)
|
||||
structures.append((content[pair_match_stack[0]:], (started_at, end_at)))
|
||||
|
||||
for i in range(len(structures), 0, -1):
|
||||
try:
|
||||
json_content, (started_at, end_at) = structures[i - 1]
|
||||
action = json.loads(json_content)
|
||||
action_name = action.get("action")
|
||||
action_input = action.get("action_input")
|
||||
# delete json content from agent response
|
||||
agent_thought = agent_response[:started_at] + agent_response[end_at:]
|
||||
# remove extra quotes like ```(json)*\n\n```
|
||||
agent_thought = re.sub(r'```(json)*\n*```', '', agent_thought, flags=re.DOTALL)
|
||||
# remove Action: xxx from agent thought
|
||||
agent_thought = re.sub(r'Action:.*', '', agent_thought, flags=re.IGNORECASE)
|
||||
|
||||
if action_name and action_input:
|
||||
return AgentScratchpadUnit(
|
||||
agent_response=content,
|
||||
thought=agent_thought,
|
||||
action_str=json_content,
|
||||
action=AgentScratchpadUnit.Action(
|
||||
action_name=action_name,
|
||||
action_input=action_input,
|
||||
)
|
||||
)
|
||||
except:
|
||||
pass
|
||||
|
||||
agent_scratchpad = extra_quotes()
|
||||
if agent_scratchpad:
|
||||
return agent_scratchpad
|
||||
agent_scratchpad = extra_json()
|
||||
if agent_scratchpad:
|
||||
return agent_scratchpad
|
||||
|
||||
return AgentScratchpadUnit(
|
||||
agent_response=content,
|
||||
thought=content,
|
||||
action_str='',
|
||||
action=None
|
||||
)
|
||||
|
||||
def _check_cot_prompt_messages(self, mode: Literal["completion", "chat"],
|
||||
agent_prompt_message: AgentPromptEntity,
|
||||
):
|
||||
"""
|
||||
check chain of thought prompt messages, a standard prompt message is like:
|
||||
Respond to the human as helpfully and accurately as possible.
|
||||
|
||||
{{instruction}}
|
||||
|
||||
You have access to the following tools:
|
||||
|
||||
{{tools}}
|
||||
|
||||
Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
|
||||
Valid action values: "Final Answer" or {{tool_names}}
|
||||
|
||||
Provide only ONE action per $JSON_BLOB, as shown:
|
||||
|
||||
```
|
||||
{
|
||||
"action": $TOOL_NAME,
|
||||
"action_input": $ACTION_INPUT
|
||||
}
|
||||
```
|
||||
"""
|
||||
|
||||
# parse agent prompt message
|
||||
first_prompt = agent_prompt_message.first_prompt
|
||||
next_iteration = agent_prompt_message.next_iteration
|
||||
|
||||
if not isinstance(first_prompt, str) or not isinstance(next_iteration, str):
|
||||
raise ValueError(f"first_prompt or next_iteration is required in CoT agent mode")
|
||||
|
||||
# check instruction, tools, and tool_names slots
|
||||
if not first_prompt.find("{{instruction}}") >= 0:
|
||||
raise ValueError("{{instruction}} is required in first_prompt")
|
||||
if not first_prompt.find("{{tools}}") >= 0:
|
||||
raise ValueError("{{tools}} is required in first_prompt")
|
||||
if not first_prompt.find("{{tool_names}}") >= 0:
|
||||
raise ValueError("{{tool_names}} is required in first_prompt")
|
||||
|
||||
if mode == "completion":
|
||||
if not first_prompt.find("{{query}}") >= 0:
|
||||
raise ValueError("{{query}} is required in first_prompt")
|
||||
if not first_prompt.find("{{agent_scratchpad}}") >= 0:
|
||||
raise ValueError("{{agent_scratchpad}} is required in first_prompt")
|
||||
|
||||
if mode == "completion":
|
||||
if not next_iteration.find("{{observation}}") >= 0:
|
||||
raise ValueError("{{observation}} is required in next_iteration")
|
||||
|
||||
def _convert_strachpad_list_to_str(self, agent_scratchpad: List[AgentScratchpadUnit]) -> str:
|
||||
"""
|
||||
convert agent scratchpad list to str
|
||||
"""
|
||||
next_iteration = self.app_orchestration_config.agent.prompt.next_iteration
|
||||
|
||||
result = ''
|
||||
for scratchpad in agent_scratchpad:
|
||||
result += scratchpad.thought + next_iteration.replace("{{observation}}", scratchpad.observation or '') + "\n"
|
||||
|
||||
return result
|
||||
|
||||
def _originze_cot_prompt_messages(self, mode: Literal["completion", "chat"],
|
||||
prompt_messages: List[PromptMessage],
|
||||
tools: List[PromptMessageTool],
|
||||
agent_scratchpad: List[AgentScratchpadUnit],
|
||||
agent_prompt_message: AgentPromptEntity,
|
||||
instruction: str,
|
||||
input: str,
|
||||
) -> List[PromptMessage]:
|
||||
"""
|
||||
originze chain of thought prompt messages, a standard prompt message is like:
|
||||
Respond to the human as helpfully and accurately as possible.
|
||||
|
||||
{{instruction}}
|
||||
|
||||
You have access to the following tools:
|
||||
|
||||
{{tools}}
|
||||
|
||||
Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
|
||||
Valid action values: "Final Answer" or {{tool_names}}
|
||||
|
||||
Provide only ONE action per $JSON_BLOB, as shown:
|
||||
|
||||
```
|
||||
{{{{
|
||||
"action": $TOOL_NAME,
|
||||
"action_input": $ACTION_INPUT
|
||||
}}}}
|
||||
```
|
||||
"""
|
||||
|
||||
self._check_cot_prompt_messages(mode, agent_prompt_message)
|
||||
|
||||
# parse agent prompt message
|
||||
first_prompt = agent_prompt_message.first_prompt
|
||||
|
||||
# parse tools
|
||||
tools_str = self._jsonify_tool_prompt_messages(tools)
|
||||
|
||||
# parse tools name
|
||||
tool_names = '"' + '","'.join([tool.name for tool in tools]) + '"'
|
||||
|
||||
# get system message
|
||||
system_message = first_prompt.replace("{{instruction}}", instruction) \
|
||||
.replace("{{tools}}", tools_str) \
|
||||
.replace("{{tool_names}}", tool_names)
|
||||
|
||||
# originze prompt messages
|
||||
if mode == "chat":
|
||||
# override system message
|
||||
overrided = False
|
||||
prompt_messages = prompt_messages.copy()
|
||||
for prompt_message in prompt_messages:
|
||||
if isinstance(prompt_message, SystemPromptMessage):
|
||||
prompt_message.content = system_message
|
||||
overrided = True
|
||||
break
|
||||
|
||||
if not overrided:
|
||||
prompt_messages.insert(0, SystemPromptMessage(
|
||||
content=system_message,
|
||||
))
|
||||
|
||||
# add assistant message
|
||||
if len(agent_scratchpad) > 0:
|
||||
prompt_messages.append(AssistantPromptMessage(
|
||||
content=(agent_scratchpad[-1].thought or '')
|
||||
))
|
||||
|
||||
# add user message
|
||||
if len(agent_scratchpad) > 0:
|
||||
prompt_messages.append(UserPromptMessage(
|
||||
content=(agent_scratchpad[-1].observation or ''),
|
||||
))
|
||||
|
||||
return prompt_messages
|
||||
elif mode == "completion":
|
||||
# parse agent scratchpad
|
||||
agent_scratchpad_str = self._convert_strachpad_list_to_str(agent_scratchpad)
|
||||
# parse prompt messages
|
||||
return [UserPromptMessage(
|
||||
content=first_prompt.replace("{{instruction}}", instruction)
|
||||
.replace("{{tools}}", tools_str)
|
||||
.replace("{{tool_names}}", tool_names)
|
||||
.replace("{{query}}", input)
|
||||
.replace("{{agent_scratchpad}}", agent_scratchpad_str),
|
||||
)]
|
||||
else:
|
||||
raise ValueError(f"mode {mode} is not supported")
|
||||
|
||||
def _jsonify_tool_prompt_messages(self, tools: list[PromptMessageTool]) -> str:
|
||||
"""
|
||||
jsonify tool prompt messages
|
||||
"""
|
||||
tools = jsonable_encoder(tools)
|
||||
try:
|
||||
return json.dumps(tools, ensure_ascii=False)
|
||||
except json.JSONDecodeError:
|
||||
return json.dumps(tools)
|
||||
333
api/core/features/assistant_fc_runner.py
Normal file
333
api/core/features/assistant_fc_runner.py
Normal file
@@ -0,0 +1,333 @@
|
||||
import json
|
||||
import logging
|
||||
|
||||
from typing import Union, Generator, Dict, Any, Tuple, List
|
||||
|
||||
from core.model_runtime.entities.message_entities import PromptMessage, UserPromptMessage,\
|
||||
SystemPromptMessage, AssistantPromptMessage, ToolPromptMessage, PromptMessageTool
|
||||
from core.model_runtime.entities.llm_entities import LLMResultChunk, LLMResult, LLMUsage
|
||||
from core.model_manager import ModelInstance
|
||||
from core.application_queue_manager import PublishFrom
|
||||
|
||||
from core.tools.errors import ToolInvokeError, ToolNotFoundError, \
|
||||
ToolNotSupportedError, ToolProviderNotFoundError, ToolParamterValidationError, \
|
||||
ToolProviderCredentialValidationError
|
||||
|
||||
from core.features.assistant_base_runner import BaseAssistantApplicationRunner
|
||||
|
||||
from models.model import Conversation, Message, MessageAgentThought
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
|
||||
def run(self, model_instance: ModelInstance,
|
||||
conversation: Conversation,
|
||||
message: Message,
|
||||
query: str,
|
||||
) -> Generator[LLMResultChunk, None, None]:
|
||||
"""
|
||||
Run FunctionCall agent application
|
||||
"""
|
||||
app_orchestration_config = self.app_orchestration_config
|
||||
|
||||
prompt_template = self.app_orchestration_config.prompt_template.simple_prompt_template or ''
|
||||
prompt_messages = self.history_prompt_messages
|
||||
prompt_messages = self.organize_prompt_messages(
|
||||
prompt_template=prompt_template,
|
||||
query=query,
|
||||
prompt_messages=prompt_messages
|
||||
)
|
||||
|
||||
# convert tools into ModelRuntime Tool format
|
||||
prompt_messages_tools: List[PromptMessageTool] = []
|
||||
tool_instances = {}
|
||||
for tool in self.app_orchestration_config.agent.tools if self.app_orchestration_config.agent else []:
|
||||
try:
|
||||
prompt_tool, tool_entity = self._convert_tool_to_prompt_message_tool(tool)
|
||||
except Exception:
|
||||
# api tool may be deleted
|
||||
continue
|
||||
# save tool entity
|
||||
tool_instances[tool.tool_name] = tool_entity
|
||||
# save prompt tool
|
||||
prompt_messages_tools.append(prompt_tool)
|
||||
|
||||
# convert dataset tools into ModelRuntime Tool format
|
||||
for dataset_tool in self.dataset_tools:
|
||||
prompt_tool = self._convert_dataset_retriever_tool_to_prompt_message_tool(dataset_tool)
|
||||
# save prompt tool
|
||||
prompt_messages_tools.append(prompt_tool)
|
||||
# save tool entity
|
||||
tool_instances[dataset_tool.identity.name] = dataset_tool
|
||||
|
||||
iteration_step = 1
|
||||
max_iteration_steps = min(app_orchestration_config.agent.max_iteration, 5) + 1
|
||||
|
||||
# continue to run until there is not any tool call
|
||||
function_call_state = True
|
||||
agent_thoughts: List[MessageAgentThought] = []
|
||||
llm_usage = {
|
||||
'usage': None
|
||||
}
|
||||
final_answer = ''
|
||||
|
||||
def increase_usage(final_llm_usage_dict: Dict[str, LLMUsage], usage: LLMUsage):
|
||||
if not final_llm_usage_dict['usage']:
|
||||
final_llm_usage_dict['usage'] = usage
|
||||
else:
|
||||
llm_usage = final_llm_usage_dict['usage']
|
||||
llm_usage.prompt_tokens += usage.prompt_tokens
|
||||
llm_usage.completion_tokens += usage.completion_tokens
|
||||
llm_usage.prompt_price += usage.prompt_price
|
||||
llm_usage.completion_price += usage.completion_price
|
||||
|
||||
while function_call_state and iteration_step <= max_iteration_steps:
|
||||
function_call_state = False
|
||||
|
||||
if iteration_step == max_iteration_steps:
|
||||
# the last iteration, remove all tools
|
||||
prompt_messages_tools = []
|
||||
|
||||
message_file_ids = []
|
||||
agent_thought = self.create_agent_thought(
|
||||
message_id=message.id,
|
||||
message='',
|
||||
tool_name='',
|
||||
tool_input='',
|
||||
messages_ids=message_file_ids
|
||||
)
|
||||
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
|
||||
|
||||
# recale llm max tokens
|
||||
self.recale_llm_max_tokens(self.model_config, prompt_messages)
|
||||
# invoke model
|
||||
chunks: Generator[LLMResultChunk, None, None] = model_instance.invoke_llm(
|
||||
prompt_messages=prompt_messages,
|
||||
model_parameters=app_orchestration_config.model_config.parameters,
|
||||
tools=prompt_messages_tools,
|
||||
stop=app_orchestration_config.model_config.stop,
|
||||
stream=True,
|
||||
user=self.user_id,
|
||||
callbacks=[],
|
||||
)
|
||||
|
||||
tool_calls: List[Tuple[str, str, Dict[str, Any]]] = []
|
||||
|
||||
# save full response
|
||||
response = ''
|
||||
|
||||
# save tool call names and inputs
|
||||
tool_call_names = ''
|
||||
tool_call_inputs = ''
|
||||
|
||||
current_llm_usage = None
|
||||
|
||||
for chunk in chunks:
|
||||
# check if there is any tool call
|
||||
if self.check_tool_calls(chunk):
|
||||
function_call_state = True
|
||||
tool_calls.extend(self.extract_tool_calls(chunk))
|
||||
tool_call_names = ';'.join([tool_call[1] for tool_call in tool_calls])
|
||||
try:
|
||||
tool_call_inputs = json.dumps({
|
||||
tool_call[1]: tool_call[2] for tool_call in tool_calls
|
||||
}, ensure_ascii=False)
|
||||
except json.JSONDecodeError as e:
|
||||
# ensure ascii to avoid encoding error
|
||||
tool_call_inputs = json.dumps({
|
||||
tool_call[1]: tool_call[2] for tool_call in tool_calls
|
||||
})
|
||||
|
||||
if chunk.delta.message and chunk.delta.message.content:
|
||||
if isinstance(chunk.delta.message.content, list):
|
||||
for content in chunk.delta.message.content:
|
||||
response += content.data
|
||||
else:
|
||||
response += chunk.delta.message.content
|
||||
|
||||
if chunk.delta.usage:
|
||||
increase_usage(llm_usage, chunk.delta.usage)
|
||||
current_llm_usage = chunk.delta.usage
|
||||
|
||||
yield chunk
|
||||
|
||||
# save thought
|
||||
self.save_agent_thought(
|
||||
agent_thought=agent_thought,
|
||||
tool_name=tool_call_names,
|
||||
tool_input=tool_call_inputs,
|
||||
thought=response,
|
||||
observation=None,
|
||||
answer=response,
|
||||
messages_ids=[],
|
||||
llm_usage=current_llm_usage
|
||||
)
|
||||
|
||||
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
|
||||
|
||||
final_answer += response + '\n'
|
||||
|
||||
# call tools
|
||||
tool_responses = []
|
||||
for tool_call_id, tool_call_name, tool_call_args in tool_calls:
|
||||
tool_instance = tool_instances.get(tool_call_name)
|
||||
if not tool_instance:
|
||||
tool_response = {
|
||||
"tool_call_id": tool_call_id,
|
||||
"tool_call_name": tool_call_name,
|
||||
"tool_response": f"there is not a tool named {tool_call_name}"
|
||||
}
|
||||
tool_responses.append(tool_response)
|
||||
else:
|
||||
# invoke tool
|
||||
error_response = None
|
||||
try:
|
||||
tool_invoke_message = tool_instance.invoke(
|
||||
user_id=self.user_id,
|
||||
tool_paramters=tool_call_args,
|
||||
)
|
||||
# transform tool invoke message to get LLM friendly message
|
||||
tool_invoke_message = self.transform_tool_invoke_messages(tool_invoke_message)
|
||||
# extract binary data from tool invoke message
|
||||
binary_files = self.extract_tool_response_binary(tool_invoke_message)
|
||||
# create message file
|
||||
message_files = self.create_message_files(binary_files)
|
||||
# publish files
|
||||
for message_file, save_as in message_files:
|
||||
if save_as:
|
||||
self.variables_pool.set_file(tool_name=tool_call_name, value=message_file.id, name=save_as)
|
||||
|
||||
# publish message file
|
||||
self.queue_manager.publish_message_file(message_file, PublishFrom.APPLICATION_MANAGER)
|
||||
# add message file ids
|
||||
message_file_ids.append(message_file.id)
|
||||
|
||||
except ToolProviderCredentialValidationError as e:
|
||||
error_response = f"Plese check your tool provider credentials"
|
||||
except (
|
||||
ToolNotFoundError, ToolNotSupportedError, ToolProviderNotFoundError
|
||||
) as e:
|
||||
error_response = f"there is not a tool named {tool_call_name}"
|
||||
except (
|
||||
ToolParamterValidationError
|
||||
) as e:
|
||||
error_response = f"tool paramters validation error: {e}, please check your tool paramters"
|
||||
except ToolInvokeError as e:
|
||||
error_response = f"tool invoke error: {e}"
|
||||
except Exception as e:
|
||||
error_response = f"unknown error: {e}"
|
||||
|
||||
if error_response:
|
||||
observation = error_response
|
||||
tool_response = {
|
||||
"tool_call_id": tool_call_id,
|
||||
"tool_call_name": tool_call_name,
|
||||
"tool_response": error_response
|
||||
}
|
||||
tool_responses.append(tool_response)
|
||||
else:
|
||||
observation = self._convert_tool_response_to_str(tool_invoke_message)
|
||||
tool_response = {
|
||||
"tool_call_id": tool_call_id,
|
||||
"tool_call_name": tool_call_name,
|
||||
"tool_response": observation
|
||||
}
|
||||
tool_responses.append(tool_response)
|
||||
|
||||
prompt_messages = self.organize_prompt_messages(
|
||||
prompt_template=prompt_template,
|
||||
query=None,
|
||||
tool_call_id=tool_call_id,
|
||||
tool_call_name=tool_call_name,
|
||||
tool_response=tool_response['tool_response'],
|
||||
prompt_messages=prompt_messages,
|
||||
)
|
||||
|
||||
if len(tool_responses) > 0:
|
||||
# save agent thought
|
||||
self.save_agent_thought(
|
||||
agent_thought=agent_thought,
|
||||
tool_name=None,
|
||||
tool_input=None,
|
||||
thought=None,
|
||||
observation=tool_response['tool_response'],
|
||||
answer=None,
|
||||
messages_ids=message_file_ids
|
||||
)
|
||||
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
|
||||
|
||||
# update prompt messages
|
||||
if response.strip():
|
||||
prompt_messages.append(AssistantPromptMessage(
|
||||
content=response,
|
||||
))
|
||||
|
||||
# update prompt tool
|
||||
for prompt_tool in prompt_messages_tools:
|
||||
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
|
||||
|
||||
iteration_step += 1
|
||||
|
||||
self.update_db_variables(self.variables_pool, self.db_variables_pool)
|
||||
# publish end event
|
||||
self.queue_manager.publish_message_end(LLMResult(
|
||||
model=model_instance.model,
|
||||
prompt_messages=prompt_messages,
|
||||
message=AssistantPromptMessage(
|
||||
content=final_answer,
|
||||
),
|
||||
usage=llm_usage['usage'] if llm_usage['usage'] else LLMUsage.empty_usage(),
|
||||
system_fingerprint=''
|
||||
), PublishFrom.APPLICATION_MANAGER)
|
||||
|
||||
def check_tool_calls(self, llm_result_chunk: LLMResultChunk) -> bool:
|
||||
"""
|
||||
Check if there is any tool call in llm result chunk
|
||||
"""
|
||||
if llm_result_chunk.delta.message.tool_calls:
|
||||
return True
|
||||
return False
|
||||
|
||||
def extract_tool_calls(self, llm_result_chunk: LLMResultChunk) -> Union[None, List[Tuple[str, str, Dict[str, Any]]]]:
|
||||
"""
|
||||
Extract tool calls from llm result chunk
|
||||
|
||||
Returns:
|
||||
List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
|
||||
"""
|
||||
tool_calls = []
|
||||
for prompt_message in llm_result_chunk.delta.message.tool_calls:
|
||||
tool_calls.append((
|
||||
prompt_message.id,
|
||||
prompt_message.function.name,
|
||||
json.loads(prompt_message.function.arguments),
|
||||
))
|
||||
|
||||
return tool_calls
|
||||
|
||||
def organize_prompt_messages(self, prompt_template: str,
|
||||
query: str = None,
|
||||
tool_call_id: str = None, tool_call_name: str = None, tool_response: str = None,
|
||||
prompt_messages: list[PromptMessage] = None
|
||||
) -> list[PromptMessage]:
|
||||
"""
|
||||
Organize prompt messages
|
||||
"""
|
||||
|
||||
if not prompt_messages:
|
||||
prompt_messages = [
|
||||
SystemPromptMessage(content=prompt_template),
|
||||
UserPromptMessage(content=query),
|
||||
]
|
||||
else:
|
||||
if tool_response:
|
||||
prompt_messages = prompt_messages.copy()
|
||||
prompt_messages.append(
|
||||
ToolPromptMessage(
|
||||
content=tool_response,
|
||||
tool_call_id=tool_call_id,
|
||||
name=tool_call_name,
|
||||
)
|
||||
)
|
||||
|
||||
return prompt_messages
|
||||
@@ -6,8 +6,8 @@ from core.entities.application_entities import DatasetEntity, DatasetRetrieveCon
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_runtime.entities.model_entities import ModelFeature
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.tool.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
|
||||
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
|
||||
from core.tools.tool.dataset_retriever.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
|
||||
from core.tools.tool.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
|
||||
from extensions.ext_database import db
|
||||
from langchain.tools import BaseTool
|
||||
from models.dataset import Dataset
|
||||
|
||||
@@ -22,6 +22,7 @@ class FileType(enum.Enum):
|
||||
class FileTransferMethod(enum.Enum):
|
||||
REMOTE_URL = 'remote_url'
|
||||
LOCAL_FILE = 'local_file'
|
||||
TOOL_FILE = 'tool_file'
|
||||
|
||||
@staticmethod
|
||||
def value_of(value):
|
||||
@@ -30,6 +31,16 @@ class FileTransferMethod(enum.Enum):
|
||||
return member
|
||||
raise ValueError(f"No matching enum found for value '{value}'")
|
||||
|
||||
class FileBelongsTo(enum.Enum):
|
||||
USER = 'user'
|
||||
ASSISTANT = 'assistant'
|
||||
|
||||
@staticmethod
|
||||
def value_of(value):
|
||||
for member in FileBelongsTo:
|
||||
if member.value == value:
|
||||
return member
|
||||
raise ValueError(f"No matching enum found for value '{value}'")
|
||||
|
||||
class FileObj(BaseModel):
|
||||
id: Optional[str]
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
from typing import Dict, List, Optional, Union
|
||||
|
||||
import requests
|
||||
from core.file.file_obj import FileObj, FileTransferMethod, FileType
|
||||
from core.file.upload_file_parser import SUPPORT_EXTENSIONS
|
||||
from core.file.file_obj import FileObj, FileTransferMethod, FileType, FileBelongsTo
|
||||
from services.file_service import IMAGE_EXTENSIONS
|
||||
from extensions.ext_database import db
|
||||
from models.account import Account
|
||||
from models.model import AppModelConfig, EndUser, MessageFile, UploadFile
|
||||
@@ -83,7 +83,7 @@ class MessageFileParser:
|
||||
UploadFile.tenant_id == self.tenant_id,
|
||||
UploadFile.created_by == user.id,
|
||||
UploadFile.created_by_role == ('account' if isinstance(user, Account) else 'end_user'),
|
||||
UploadFile.extension.in_(SUPPORT_EXTENSIONS)
|
||||
UploadFile.extension.in_(IMAGE_EXTENSIONS)
|
||||
).first())
|
||||
|
||||
# check upload file is belong to tenant and user
|
||||
@@ -128,6 +128,10 @@ class MessageFileParser:
|
||||
|
||||
# group by file type and convert file args or message files to FileObj
|
||||
for file in files:
|
||||
if isinstance(file, MessageFile):
|
||||
if file.belongs_to == FileBelongsTo.ASSISTANT.value:
|
||||
continue
|
||||
|
||||
file_obj = self._to_file_obj(file, file_upload_config)
|
||||
if file_obj.type not in type_file_objs:
|
||||
continue
|
||||
|
||||
8
api/core/file/tool_file_parser.py
Normal file
8
api/core/file/tool_file_parser.py
Normal file
@@ -0,0 +1,8 @@
|
||||
tool_file_manager = {
|
||||
'manager': None
|
||||
}
|
||||
|
||||
class ToolFileParser:
|
||||
@staticmethod
|
||||
def get_tool_file_manager() -> 'ToolFileManager':
|
||||
return tool_file_manager['manager']
|
||||
@@ -9,8 +9,8 @@ from typing import Optional
|
||||
from extensions.ext_storage import storage
|
||||
from flask import current_app
|
||||
|
||||
SUPPORT_EXTENSIONS = ['jpg', 'jpeg', 'png', 'webp', 'gif', 'svg']
|
||||
|
||||
IMAGE_EXTENSIONS = ['jpg', 'jpeg', 'png', 'webp', 'gif', 'svg']
|
||||
IMAGE_EXTENSIONS.extend([ext.upper() for ext in IMAGE_EXTENSIONS])
|
||||
|
||||
class UploadFileParser:
|
||||
@classmethod
|
||||
@@ -18,7 +18,7 @@ class UploadFileParser:
|
||||
if not upload_file:
|
||||
return None
|
||||
|
||||
if upload_file.extension not in SUPPORT_EXTENSIONS:
|
||||
if upload_file.extension not in IMAGE_EXTENSIONS:
|
||||
return None
|
||||
|
||||
if current_app.config['MULTIMODAL_SEND_IMAGE_FORMAT'] == 'url' or force_url:
|
||||
|
||||
@@ -274,6 +274,8 @@ class IndexingRunner:
|
||||
tokens = 0
|
||||
preview_texts = []
|
||||
total_segments = 0
|
||||
total_price = 0
|
||||
currency = 'USD'
|
||||
for file_detail in file_details:
|
||||
|
||||
processing_rule = DatasetProcessRule(
|
||||
@@ -344,11 +346,13 @@ class IndexingRunner:
|
||||
price_type=PriceType.INPUT,
|
||||
tokens=tokens
|
||||
)
|
||||
total_price = '{:f}'.format(embedding_price_info.total_amount)
|
||||
currency = embedding_price_info.currency
|
||||
return {
|
||||
"total_segments": total_segments,
|
||||
"tokens": tokens,
|
||||
"total_price": '{:f}'.format(embedding_price_info.total_amount) if embedding_model_instance else 0,
|
||||
"currency": embedding_price_info.currency if embedding_model_instance else 'USD',
|
||||
"total_price": total_price,
|
||||
"currency": currency,
|
||||
"preview": preview_texts
|
||||
}
|
||||
|
||||
@@ -388,6 +392,8 @@ class IndexingRunner:
|
||||
tokens = 0
|
||||
preview_texts = []
|
||||
total_segments = 0
|
||||
total_price = 0
|
||||
currency = 'USD'
|
||||
for notion_info in notion_info_list:
|
||||
workspace_id = notion_info['workspace_id']
|
||||
data_source_binding = DataSourceBinding.query.filter(
|
||||
@@ -470,20 +476,22 @@ class IndexingRunner:
|
||||
"qa_preview": document_qa_list,
|
||||
"preview": preview_texts
|
||||
}
|
||||
|
||||
embedding_model_type_instance = embedding_model_instance.model_type_instance
|
||||
embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
|
||||
embedding_price_info = embedding_model_type_instance.get_price(
|
||||
model=embedding_model_instance.model,
|
||||
credentials=embedding_model_instance.credentials,
|
||||
price_type=PriceType.INPUT,
|
||||
tokens=tokens
|
||||
)
|
||||
if embedding_model_instance:
|
||||
embedding_model_type_instance = embedding_model_instance.model_type_instance
|
||||
embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
|
||||
embedding_price_info = embedding_model_type_instance.get_price(
|
||||
model=embedding_model_instance.model,
|
||||
credentials=embedding_model_instance.credentials,
|
||||
price_type=PriceType.INPUT,
|
||||
tokens=tokens
|
||||
)
|
||||
total_price = '{:f}'.format(embedding_price_info.total_amount)
|
||||
currency = embedding_price_info.currency
|
||||
return {
|
||||
"total_segments": total_segments,
|
||||
"tokens": tokens,
|
||||
"total_price": '{:f}'.format(embedding_price_info.total_amount) if embedding_model_instance else 0,
|
||||
"currency": embedding_price_info.currency if embedding_model_instance else 'USD',
|
||||
"total_price": total_price,
|
||||
"currency": currency,
|
||||
"preview": preview_texts
|
||||
}
|
||||
|
||||
@@ -647,7 +655,9 @@ class IndexingRunner:
|
||||
else:
|
||||
page_content = page_content
|
||||
document_node.page_content = page_content
|
||||
split_documents.append(document_node)
|
||||
|
||||
if document_node.page_content:
|
||||
split_documents.append(document_node)
|
||||
all_documents.extend(split_documents)
|
||||
# processing qa document
|
||||
if document_form == 'qa_model':
|
||||
|
||||
@@ -12,6 +12,7 @@ from core.model_runtime.model_providers.__base.large_language_model import Large
|
||||
from core.model_runtime.model_providers.__base.moderation_model import ModerationModel
|
||||
from core.model_runtime.model_providers.__base.rerank_model import RerankModel
|
||||
from core.model_runtime.model_providers.__base.speech2text_model import Speech2TextModel
|
||||
from core.model_runtime.model_providers.__base.tts_model import TTSModel
|
||||
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
|
||||
from core.provider_manager import ProviderManager
|
||||
|
||||
@@ -144,7 +145,7 @@ class ModelInstance:
|
||||
user=user
|
||||
)
|
||||
|
||||
def invoke_speech2text(self, file: IO[bytes], user: Optional[str] = None, **params) \
|
||||
def invoke_speech2text(self, file: IO[bytes], user: Optional[str] = None) \
|
||||
-> str:
|
||||
"""
|
||||
Invoke large language model
|
||||
@@ -161,8 +162,29 @@ class ModelInstance:
|
||||
model=self.model,
|
||||
credentials=self.credentials,
|
||||
file=file,
|
||||
user=user
|
||||
)
|
||||
|
||||
def invoke_tts(self, content_text: str, streaming: bool, user: Optional[str] = None) \
|
||||
-> str:
|
||||
"""
|
||||
Invoke large language model
|
||||
|
||||
:param content_text: text content to be translated
|
||||
:param user: unique user id
|
||||
:param streaming: output is streaming
|
||||
:return: text for given audio file
|
||||
"""
|
||||
if not isinstance(self.model_type_instance, TTSModel):
|
||||
raise Exception(f"Model type instance is not TTSModel")
|
||||
|
||||
self.model_type_instance = cast(TTSModel, self.model_type_instance)
|
||||
return self.model_type_instance.invoke(
|
||||
model=self.model,
|
||||
credentials=self.credentials,
|
||||
content_text=content_text,
|
||||
user=user,
|
||||
**params
|
||||
streaming=streaming
|
||||
)
|
||||
|
||||
|
||||
|
||||
@@ -13,6 +13,7 @@ This module provides the interface for invoking and authenticating various model
|
||||
- `Text Embedding Model` - Text Embedding, pre-computed tokens capability
|
||||
- `Rerank Model` - Segment Rerank capability
|
||||
- `Speech-to-text Model` - Speech to text capability
|
||||
- `Text-to-speech Model` - Text to speech capability
|
||||
- `Moderation` - Moderation capability
|
||||
|
||||
- Model provider display
|
||||
|
||||
@@ -13,6 +13,7 @@
|
||||
- `Text Embedidng Model` - 文本 Embedding ,预计算 tokens 能力
|
||||
- `Rerank Model` - 分段 Rerank 能力
|
||||
- `Speech-to-text Model` - 语音转文本能力
|
||||
- `Text-to-speech Model` - 文本转语音能力
|
||||
- `Moderation` - Moderation 能力
|
||||
|
||||
- 模型供应商展示
|
||||
|
||||
@@ -299,9 +299,7 @@ Inherit the `__base.speech2text_model.Speech2TextModel` base class and implement
|
||||
- Invoke Invocation
|
||||
|
||||
```python
|
||||
def _invoke(self, model: str, credentials: dict,
|
||||
file: IO[bytes], user: Optional[str] = None) \
|
||||
-> str:
|
||||
def _invoke(self, model: str, credentials: dict, file: IO[bytes], user: Optional[str] = None) -> str:
|
||||
"""
|
||||
Invoke large language model
|
||||
|
||||
@@ -331,6 +329,46 @@ Inherit the `__base.speech2text_model.Speech2TextModel` base class and implement
|
||||
|
||||
The string after speech-to-text conversion.
|
||||
|
||||
### Text2speech
|
||||
|
||||
Inherit the `__base.text2speech_model.Text2SpeechModel` base class and implement the following interfaces:
|
||||
|
||||
- Invoke Invocation
|
||||
|
||||
```python
|
||||
def _invoke(elf, model: str, credentials: dict, content_text: str, streaming: bool, user: Optional[str] = None):
|
||||
"""
|
||||
Invoke large language model
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param content_text: text content to be translated
|
||||
:param streaming: output is streaming
|
||||
:param user: unique user id
|
||||
:return: translated audio file
|
||||
"""
|
||||
```
|
||||
|
||||
- Parameters:
|
||||
|
||||
- `model` (string) Model name
|
||||
|
||||
- `credentials` (object) Credential information
|
||||
|
||||
The parameters of credential information are defined by either the `provider_credential_schema` or `model_credential_schema` in the provider's YAML configuration file. Inputs such as `api_key` are included.
|
||||
|
||||
- `content_text` (string) The text content that needs to be converted
|
||||
|
||||
- `streaming` (bool) Whether to stream output
|
||||
|
||||
- `user` (string) [optional] Unique identifier of the user
|
||||
|
||||
This can help the provider monitor and detect abusive behavior.
|
||||
|
||||
- Returns:
|
||||
|
||||
Text converted speech stream。
|
||||
|
||||
### Moderation
|
||||
|
||||
Inherit the `__base.moderation_model.ModerationModel` base class and implement the following interfaces:
|
||||
|
||||
@@ -94,6 +94,7 @@ The currently supported model types are as follows:
|
||||
- `text_embedding` Text Embedding model
|
||||
- `rerank` Rerank model
|
||||
- `speech2text` Speech to text
|
||||
- `tts` Text to speech
|
||||
- `moderation` Moderation
|
||||
|
||||
Continuing with `Anthropic` as an example, since `Anthropic` only supports LLM, we create a `module` named `llm` in `model_providers.anthropic`.
|
||||
|
||||
@@ -47,6 +47,10 @@
|
||||
- `max_chunks` (int) Maximum number of chunks (available for model types `text-embedding`, `moderation`)
|
||||
- `file_upload_limit` (int) Maximum file upload limit, in MB (available for model type `speech2text`)
|
||||
- `supported_file_extensions` (string) Supported file extension formats, e.g., mp3, mp4 (available for model type `speech2text`)
|
||||
- `default_voice` (string) default voice, e.g.:alloy,echo,fable,onyx,nova,shimmer(available for model type `tts`)
|
||||
- `word_limit` (int) Single conversion word limit, paragraphwise by default(available for model type `tts`)
|
||||
- `audio_type` (string) Support audio file extension format, e.g.:mp3,wav(available for model type `tts`)
|
||||
- `max_workers` (int) Number of concurrent workers supporting text and audio conversion(available for model type`tts`)
|
||||
- `max_characters_per_chunk` (int) Maximum characters per chunk (available for model type `moderation`)
|
||||
- `parameter_rules` (array[[ParameterRule](#ParameterRule)]) [optional] Model invocation parameter rules
|
||||
- `pricing` ([PriceConfig](#PriceConfig)) [optional] Pricing information
|
||||
@@ -58,6 +62,7 @@
|
||||
- `text-embedding` Text Embedding model
|
||||
- `rerank` Rerank model
|
||||
- `speech2text` Speech to text
|
||||
- `tts` Text to speech
|
||||
- `moderation` Moderation
|
||||
|
||||
### ConfigurateMethod
|
||||
|
||||
@@ -23,6 +23,7 @@
|
||||
- `text_embedding` 文本 Embedding 模型
|
||||
- `rerank` Rerank 模型
|
||||
- `speech2text` 语音转文字
|
||||
- `tts` 文字转语音
|
||||
- `moderation` 审查
|
||||
|
||||
`Xinference`支持`LLM`和`Text Embedding`和Rerank,那么我们开始编写`xinference.yaml`。
|
||||
|
||||
@@ -369,6 +369,46 @@ class XinferenceProvider(Provider):
|
||||
|
||||
语音转换后的字符串。
|
||||
|
||||
### Text2speech
|
||||
|
||||
继承 `__base.text2speech_model.Text2SpeechModel` 基类,实现以下接口:
|
||||
|
||||
- Invoke 调用
|
||||
|
||||
```python
|
||||
def _invoke(elf, model: str, credentials: dict, content_text: str, streaming: bool, user: Optional[str] = None):
|
||||
"""
|
||||
Invoke large language model
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param content_text: text content to be translated
|
||||
:param streaming: output is streaming
|
||||
:param user: unique user id
|
||||
:return: translated audio file
|
||||
"""
|
||||
```
|
||||
|
||||
- 参数:
|
||||
|
||||
- `model` (string) 模型名称
|
||||
|
||||
- `credentials` (object) 凭据信息
|
||||
|
||||
凭据信息的参数由供应商 YAML 配置文件的 `provider_credential_schema` 或 `model_credential_schema` 定义,传入如:`api_key` 等。
|
||||
|
||||
- `content_text` (string) 需要转换的文本内容
|
||||
|
||||
- `streaming` (bool) 是否进行流式输出
|
||||
|
||||
- `user` (string) [optional] 用户的唯一标识符
|
||||
|
||||
可以帮助供应商监控和检测滥用行为。
|
||||
|
||||
- 返回:
|
||||
|
||||
文本转换后的语音流。
|
||||
|
||||
### Moderation
|
||||
|
||||
继承 `__base.moderation_model.ModerationModel` 基类,实现以下接口:
|
||||
|
||||
@@ -10,6 +10,7 @@
|
||||
- `text_embedding` 文本 Embedding 模型
|
||||
- `rerank` Rerank 模型
|
||||
- `speech2text` 语音转文字
|
||||
- `tts` 文字转语音
|
||||
- `moderation` 审查
|
||||
|
||||
依旧以 `Anthropic` 为例,`Anthropic` 仅支持 LLM,因此在 `model_providers.anthropic` 创建一个 `llm` 为名称的 `module`。
|
||||
|
||||
@@ -48,6 +48,10 @@
|
||||
- `max_chunks` (int) 最大分块数量 (模型类型 `text-embedding ` `moderation` 可用)
|
||||
- `file_upload_limit` (int) 文件最大上传限制,单位:MB。(模型类型 `speech2text` 可用)
|
||||
- `supported_file_extensions` (string) 支持文件扩展格式,如:mp3,mp4(模型类型 `speech2text` 可用)
|
||||
- `default_voice` (string) 缺省音色,可选:alloy,echo,fable,onyx,nova,shimmer(模型类型 `tts` 可用)
|
||||
- `word_limit` (int) 单次转换字数限制,默认按段落分段(模型类型 `tts` 可用)
|
||||
- `audio_type` (string) 支持音频文件扩展格式,如:mp3,wav(模型类型 `tts` 可用)
|
||||
- `max_workers` (int) 支持文字音频转换并发任务数(模型类型 `tts` 可用)
|
||||
- `max_characters_per_chunk` (int) 每块最大字符数 (模型类型 `moderation` 可用)
|
||||
- `parameter_rules` (array[[ParameterRule](#ParameterRule)]) [optional] 模型调用参数规则
|
||||
- `pricing` ([PriceConfig](#PriceConfig)) [optional] 价格信息
|
||||
@@ -59,6 +63,7 @@
|
||||
- `text-embedding` 文本 Embedding 模型
|
||||
- `rerank` Rerank 模型
|
||||
- `speech2text` 语音转文字
|
||||
- `tts` 文字转语音
|
||||
- `moderation` 审查
|
||||
|
||||
### ConfigurateMethod
|
||||
|
||||
@@ -15,7 +15,7 @@ class ModelType(Enum):
|
||||
RERANK = "rerank"
|
||||
SPEECH2TEXT = "speech2text"
|
||||
MODERATION = "moderation"
|
||||
# TTS = "tts"
|
||||
TTS = "tts"
|
||||
# TEXT2IMG = "text2img"
|
||||
|
||||
@classmethod
|
||||
@@ -33,6 +33,8 @@ class ModelType(Enum):
|
||||
return cls.RERANK
|
||||
elif origin_model_type == 'speech2text' or origin_model_type == cls.SPEECH2TEXT.value:
|
||||
return cls.SPEECH2TEXT
|
||||
elif origin_model_type == 'tts' or origin_model_type == cls.TTS.value:
|
||||
return cls.TTS
|
||||
elif origin_model_type == cls.MODERATION.value:
|
||||
return cls.MODERATION
|
||||
else:
|
||||
@@ -52,6 +54,8 @@ class ModelType(Enum):
|
||||
return 'reranking'
|
||||
elif self == self.SPEECH2TEXT:
|
||||
return 'speech2text'
|
||||
elif self == self.TTS:
|
||||
return 'tts'
|
||||
elif self == self.MODERATION:
|
||||
return 'moderation'
|
||||
else:
|
||||
@@ -120,6 +124,10 @@ class ModelPropertyKey(Enum):
|
||||
FILE_UPLOAD_LIMIT = "file_upload_limit"
|
||||
SUPPORTED_FILE_EXTENSIONS = "supported_file_extensions"
|
||||
MAX_CHARACTERS_PER_CHUNK = "max_characters_per_chunk"
|
||||
DEFAULT_VOICE = "default_voice"
|
||||
WORD_LIMIT = "word_limit"
|
||||
AUDOI_TYPE = "audio_type"
|
||||
MAX_WORKERS = "max_workers"
|
||||
|
||||
|
||||
class ProviderModel(BaseModel):
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import logging
|
||||
import os
|
||||
import re
|
||||
import time
|
||||
from abc import abstractmethod
|
||||
from typing import Generator, List, Optional, Union
|
||||
@@ -212,6 +213,10 @@ class LargeLanguageModel(AIModel):
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def enforce_stop_tokens(self, text: str, stop: List[str]) -> str:
|
||||
"""Cut off the text as soon as any stop words occur."""
|
||||
return re.split("|".join(stop), text, maxsplit=1)[0]
|
||||
|
||||
def _llm_result_to_stream(self, result: LLMResult) -> Generator:
|
||||
"""
|
||||
Transform llm result to stream
|
||||
|
||||
140
api/core/model_runtime/model_providers/__base/tts_model.py
Normal file
140
api/core/model_runtime/model_providers/__base/tts_model.py
Normal file
@@ -0,0 +1,140 @@
|
||||
import uuid
|
||||
import hashlib
|
||||
import subprocess
|
||||
from abc import abstractmethod
|
||||
from typing import Optional
|
||||
|
||||
from core.model_runtime.errors.invoke import InvokeBadRequestError
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.model_runtime.model_providers.__base.ai_model import AIModel
|
||||
from core.model_runtime.entities.model_entities import ModelPropertyKey
|
||||
|
||||
|
||||
class TTSModel(AIModel):
|
||||
"""
|
||||
Model class for ttstext model.
|
||||
"""
|
||||
model_type: ModelType = ModelType.TTS
|
||||
|
||||
def invoke(self, model: str, credentials: dict, content_text: str, streaming: bool, user: Optional[str] = None):
|
||||
"""
|
||||
Invoke large language model
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param content_text: text content to be translated
|
||||
:param streaming: output is streaming
|
||||
:param user: unique user id
|
||||
:return: translated audio file
|
||||
"""
|
||||
try:
|
||||
return self._invoke(model=model, credentials=credentials, user=user, streaming=streaming, content_text=content_text)
|
||||
except Exception as e:
|
||||
raise self._transform_invoke_error(e)
|
||||
|
||||
@abstractmethod
|
||||
def _invoke(self, model: str, credentials: dict, content_text: str, streaming: bool, user: Optional[str] = None):
|
||||
"""
|
||||
Invoke large language model
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param content_text: text content to be translated
|
||||
:param streaming: output is streaming
|
||||
:param user: unique user id
|
||||
:return: translated audio file
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def _get_model_voice(self, model: str, credentials: dict) -> any:
|
||||
"""
|
||||
Get voice for given tts model
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:return: voice
|
||||
"""
|
||||
model_schema = self.get_model_schema(model, credentials)
|
||||
|
||||
if model_schema and ModelPropertyKey.DEFAULT_VOICE in model_schema.model_properties:
|
||||
return model_schema.model_properties[ModelPropertyKey.DEFAULT_VOICE]
|
||||
|
||||
def _get_model_audio_type(self, model: str, credentials: dict) -> str:
|
||||
"""
|
||||
Get audio type for given tts model
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:return: voice
|
||||
"""
|
||||
model_schema = self.get_model_schema(model, credentials)
|
||||
|
||||
if model_schema and ModelPropertyKey.AUDOI_TYPE in model_schema.model_properties:
|
||||
return model_schema.model_properties[ModelPropertyKey.AUDOI_TYPE]
|
||||
|
||||
def _get_model_word_limit(self, model: str, credentials: dict) -> int:
|
||||
"""
|
||||
Get audio type for given tts model
|
||||
:return: audio type
|
||||
"""
|
||||
model_schema = self.get_model_schema(model, credentials)
|
||||
|
||||
if model_schema and ModelPropertyKey.WORD_LIMIT in model_schema.model_properties:
|
||||
return model_schema.model_properties[ModelPropertyKey.WORD_LIMIT]
|
||||
|
||||
def _get_model_workers_limit(self, model: str, credentials: dict) -> int:
|
||||
"""
|
||||
Get audio max workers for given tts model
|
||||
:return: audio type
|
||||
"""
|
||||
model_schema = self.get_model_schema(model, credentials)
|
||||
|
||||
if model_schema and ModelPropertyKey.MAX_WORKERS in model_schema.model_properties:
|
||||
return model_schema.model_properties[ModelPropertyKey.MAX_WORKERS]
|
||||
|
||||
@staticmethod
|
||||
def _split_text_into_sentences(text: str, limit: int, delimiters=None):
|
||||
if delimiters is None:
|
||||
delimiters = set('。!?;\n')
|
||||
|
||||
buf = []
|
||||
word_count = 0
|
||||
for char in text:
|
||||
buf.append(char)
|
||||
if char in delimiters:
|
||||
if word_count >= limit:
|
||||
yield ''.join(buf)
|
||||
buf = []
|
||||
word_count = 0
|
||||
else:
|
||||
word_count += 1
|
||||
else:
|
||||
word_count += 1
|
||||
|
||||
if buf:
|
||||
yield ''.join(buf)
|
||||
|
||||
@staticmethod
|
||||
def _is_ffmpeg_installed():
|
||||
try:
|
||||
output = subprocess.check_output("ffmpeg -version", shell=True)
|
||||
if "ffmpeg version" in output.decode("utf-8"):
|
||||
return True
|
||||
else:
|
||||
raise InvokeBadRequestError("ffmpeg is not installed, "
|
||||
"details: https://docs.dify.ai/getting-started/install-self-hosted"
|
||||
"/install-faq#id-14.-what-to-do-if-this-error-occurs-in-text-to-speech")
|
||||
except Exception:
|
||||
raise InvokeBadRequestError("ffmpeg is not installed, "
|
||||
"details: https://docs.dify.ai/getting-started/install-self-hosted"
|
||||
"/install-faq#id-14.-what-to-do-if-this-error-occurs-in-text-to-speech")
|
||||
|
||||
# Todo: To improve the streaming function
|
||||
@staticmethod
|
||||
def _get_file_name(file_content: str) -> str:
|
||||
hash_object = hashlib.sha256(file_content.encode())
|
||||
hex_digest = hash_object.hexdigest()
|
||||
|
||||
namespace_uuid = uuid.UUID('a5da6ef9-b303-596f-8e88-bf8fa40f4b31')
|
||||
unique_uuid = uuid.uuid5(namespace_uuid, hex_digest)
|
||||
return str(unique_uuid)
|
||||
@@ -2,11 +2,12 @@
|
||||
- anthropic
|
||||
- azure_openai
|
||||
- google
|
||||
- replicate
|
||||
- huggingface_hub
|
||||
- cohere
|
||||
- bedrock
|
||||
- togetherai
|
||||
- ollama
|
||||
- replicate
|
||||
- huggingface_hub
|
||||
- zhipuai
|
||||
- baichuan
|
||||
- spark
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import base64
|
||||
import copy
|
||||
import time
|
||||
from typing import Optional, Tuple
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import tiktoken
|
||||
@@ -76,7 +76,7 @@ class AzureOpenAITextEmbeddingModel(_CommonAzureOpenAI, TextEmbeddingModel):
|
||||
embeddings_batch, embedding_used_tokens = self._embedding_invoke(
|
||||
model=model,
|
||||
client=client,
|
||||
texts=[""],
|
||||
texts="",
|
||||
extra_model_kwargs=extra_model_kwargs
|
||||
)
|
||||
|
||||
@@ -147,7 +147,7 @@ class AzureOpenAITextEmbeddingModel(_CommonAzureOpenAI, TextEmbeddingModel):
|
||||
return ai_model_entity.entity
|
||||
|
||||
@staticmethod
|
||||
def _embedding_invoke(model: str, client: AzureOpenAI, texts: list[str],
|
||||
def _embedding_invoke(model: str, client: AzureOpenAI, texts: Union[list[str], str],
|
||||
extra_model_kwargs: dict) -> Tuple[list[list[float]], int]:
|
||||
response = client.embeddings.create(
|
||||
input=texts,
|
||||
|
||||
@@ -0,0 +1,14 @@
|
||||
<svg width="140" height="24" viewBox="0 0 140 24" fill="none" xmlns="http://www.w3.org/2000/svg">
|
||||
<path d="M131.701 17.9999V6.8999H133.876V13.6049L136.531 10.3349H139.141L135.976 13.9949L139.381 17.9999H136.711L133.876 14.5049V17.9999H131.701Z" fill="#252F3E"/>
|
||||
<path d="M129.847 17.6699C129.577 17.8299 129.252 17.9499 128.872 18.0299C128.492 18.1199 128.097 18.1649 127.687 18.1649C126.467 18.1649 125.532 17.8249 124.882 17.1449C124.242 16.4649 123.922 15.4849 123.922 14.2049C123.922 12.9349 124.262 11.9449 124.942 11.2349C125.622 10.5249 126.567 10.1699 127.777 10.1699C128.507 10.1699 129.182 10.3299 129.802 10.6499V12.1049C129.212 11.9349 128.672 11.8499 128.182 11.8499C127.482 11.8499 126.967 12.0299 126.637 12.3899C126.307 12.7399 126.142 13.2999 126.142 14.0699V14.2799C126.142 15.0399 126.302 15.5999 126.622 15.9599C126.952 16.3099 127.457 16.4849 128.137 16.4849C128.627 16.4849 129.197 16.3949 129.847 16.2149V17.6699Z" fill="#252F3E"/>
|
||||
<path d="M118.51 18.2249C117.32 18.2249 116.39 17.8699 115.72 17.1599C115.05 16.4399 114.715 15.4399 114.715 14.1599C114.715 12.8899 115.05 11.8999 115.72 11.1899C116.39 10.4699 117.32 10.1099 118.51 10.1099C119.7 10.1099 120.63 10.4699 121.3 11.1899C121.97 11.8999 122.305 12.8899 122.305 14.1599C122.305 15.4399 121.97 16.4399 121.3 17.1599C120.63 17.8699 119.7 18.2249 118.51 18.2249ZM118.51 16.5449C119.56 16.5449 120.085 15.7499 120.085 14.1599C120.085 12.5799 119.56 11.7899 118.51 11.7899C117.46 11.7899 116.935 12.5799 116.935 14.1599C116.935 15.7499 117.46 16.5449 118.51 16.5449Z" fill="#252F3E"/>
|
||||
<path d="M108.727 17.9998V10.3348H110.527L110.797 11.4748C111.197 11.0348 111.572 10.7248 111.922 10.5448C112.282 10.3548 112.662 10.2598 113.062 10.2598C113.252 10.2598 113.452 10.2748 113.662 10.3048V12.3298C113.382 12.2698 113.072 12.2398 112.732 12.2398C112.082 12.2398 111.477 12.3548 110.917 12.5848V17.9998H108.727Z" fill="#252F3E"/>
|
||||
<path d="M104.417 17.9999L104.237 17.3249C103.617 17.8849 102.882 18.1649 102.032 18.1649C101.402 18.1649 100.847 18.0099 100.367 17.6999C99.8866 17.3799 99.5116 16.9199 99.2416 16.3199C98.9816 15.7199 98.8516 15.0149 98.8516 14.2049C98.8516 12.9649 99.1466 11.9749 99.7366 11.2349C100.327 10.4849 101.107 10.1099 102.077 10.1099C102.867 10.1099 103.552 10.3349 104.132 10.7849V6.8999H106.322V17.9999H104.417ZM102.752 16.5149C103.232 16.5149 103.692 16.3749 104.132 16.0949V12.1349C103.702 11.8849 103.207 11.7599 102.647 11.7599C102.117 11.7599 101.722 11.9599 101.462 12.3599C101.202 12.7499 101.072 13.3449 101.072 14.1449C101.072 14.9449 101.207 15.5399 101.477 15.9299C101.757 16.3199 102.182 16.5149 102.752 16.5149Z" fill="#252F3E"/>
|
||||
<path d="M92.4625 14.6999C92.5025 15.3599 92.7025 15.8399 93.0625 16.1399C93.4225 16.4299 93.9875 16.5749 94.7575 16.5749C95.4275 16.5749 96.2075 16.4499 97.0975 16.1999V17.6549C96.7475 17.8349 96.3275 17.9749 95.8375 18.0749C95.3575 18.1749 94.8575 18.2249 94.3375 18.2249C93.0675 18.2249 92.0975 17.8799 91.4275 17.1899C90.7675 16.4999 90.4375 15.4899 90.4375 14.1599C90.4375 12.8799 90.7675 11.8849 91.4275 11.1749C92.0875 10.4649 93.0025 10.1099 94.1725 10.1099C95.1625 10.1099 95.9225 10.3849 96.4525 10.9349C96.9925 11.4749 97.2625 12.2499 97.2625 13.2599C97.2625 13.4799 97.2475 13.7299 97.2175 14.0099C97.1875 14.2899 97.1525 14.5199 97.1125 14.6999H92.4625ZM94.0975 11.6249C93.6075 11.6249 93.2175 11.7749 92.9275 12.0749C92.6475 12.3649 92.4875 12.7899 92.4475 13.3499H95.3875V13.0949C95.3875 12.1149 94.9575 11.6249 94.0975 11.6249Z" fill="#252F3E"/>
|
||||
<path d="M81.1992 18V7.60498H84.9342C85.9342 7.60498 86.7392 7.85998 87.3492 8.36998C87.9692 8.87998 88.2792 9.54498 88.2792 10.365C88.2792 10.875 88.1592 11.315 87.9192 11.685C87.6892 12.045 87.3442 12.325 86.8842 12.525C87.5242 12.715 88.0092 13.03 88.3392 13.47C88.6792 13.9 88.8492 14.43 88.8492 15.06C88.8492 15.96 88.5142 16.675 87.8442 17.205C87.1742 17.735 86.2742 18 85.1442 18H81.1992ZM83.3292 13.47V16.395H85.0992C86.1192 16.395 86.6292 15.915 86.6292 14.955C86.6292 13.965 86.0842 13.47 84.9942 13.47H83.3292ZM83.3292 9.20998V11.94H84.6342C85.6042 11.94 86.0892 11.49 86.0892 10.59C86.0892 9.66998 85.6442 9.20998 84.7542 9.20998H83.3292Z" fill="#252F3E"/>
|
||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M62.0002 20.4425L58.6644 21.5548L57.3636 20.6872L58.7799 20.2142L58.3454 18.9107L55.9143 19.7206L55.1251 19.1953V15.4374C55.1251 15.1775 54.9779 14.9396 54.7456 14.8227L52.375 13.6375V10.3621L54.4376 9.33087L56.5001 10.3621V12.6873C56.5001 12.9486 56.6472 13.1864 56.8796 13.3033L59.6297 14.6783L60.2457 13.4477L57.8751 12.2624V10.3621L60.2457 9.17824C60.4781 9.06136 60.6252 8.82349 60.6252 8.56223V6.49969H59.2502V8.13735L57.1876 9.16862L55.1251 8.13735V4.80566L56.5001 3.88852V6.49969H57.8751V2.97275L58.6644 2.44612L62.0002 3.55851V20.4425ZM69.5628 18.8749C69.941 18.8749 70.2504 19.1829 70.2504 19.5624C70.2504 19.9419 69.941 20.2499 69.5628 20.2499C69.1847 20.2499 68.8753 19.9419 68.8753 19.5624C68.8753 19.1829 69.1847 18.8749 69.5628 18.8749ZM68.1878 3.74964C68.566 3.74964 68.8753 4.05765 68.8753 4.43715C68.8753 4.81666 68.566 5.12467 68.1878 5.12467C67.8097 5.12467 67.5003 4.81666 67.5003 4.43715C67.5003 4.05765 67.8097 3.74964 68.1878 3.74964ZM70.9379 11.9998C71.316 11.9998 71.6254 12.3078 71.6254 12.6873C71.6254 13.0668 71.316 13.3748 70.9379 13.3748C70.5597 13.3748 70.2504 13.0668 70.2504 12.6873C70.2504 12.3078 70.5597 11.9998 70.9379 11.9998ZM69.0018 13.3748C69.2865 14.1737 70.0427 14.7498 70.9379 14.7498C72.075 14.7498 73.0004 13.8258 73.0004 12.6873C73.0004 11.5502 72.075 10.6248 70.9379 10.6248C70.0427 10.6248 69.2865 11.2023 69.0018 11.9998H63.3752V9.24974H68.1878C68.5673 9.24974 68.8753 8.94311 68.8753 8.56223V6.37319C69.6742 6.08856 70.2504 5.3323 70.2504 4.43715C70.2504 3.30001 69.325 2.37462 68.1878 2.37462C67.0507 2.37462 66.1253 3.30001 66.1253 4.43715C66.1253 5.3323 66.7014 6.08856 67.5003 6.37319V7.87472H63.3752V3.06213C63.3752 2.7665 63.1855 2.50387 62.905 2.41037L58.7799 1.03534C58.5778 0.967964 58.3578 0.998214 58.1818 1.11509L54.0567 3.86514C53.8656 3.99302 53.7501 4.20752 53.7501 4.43715V8.13735L51.3795 9.32262C51.1471 9.4395 51 9.67738 51 9.93726V14.0623C51 14.3236 51.1471 14.5615 51.3795 14.6783L53.7501 15.8622V19.5624C53.7501 19.7921 53.8656 20.0079 54.0567 20.1344L58.1818 22.8845C58.2959 22.9615 58.4279 23 58.5626 23C58.6355 23 58.7084 22.989 58.7799 22.9642L62.905 21.5892C63.1855 21.4971 63.3752 21.2345 63.3752 20.9375V17.4999H66.5282L67.7011 18.6742L67.7189 18.6563C67.5842 18.9313 67.5003 19.2366 67.5003 19.5624C67.5003 20.6996 68.4257 21.625 69.5628 21.625C70.7 21.625 71.6254 20.6996 71.6254 19.5624C71.6254 18.4253 70.7 17.4999 69.5628 17.4999C69.2356 17.4999 68.9303 17.5838 68.6567 17.7199L68.6746 17.702L67.2996 16.327C67.1703 16.1977 66.9957 16.1249 66.8128 16.1249H63.3752V13.3748H69.0018Z" fill="#252F3E"/>
|
||||
<line x1="43.25" y1="4" x2="43.25" y2="20" stroke="black" stroke-opacity="0.08" stroke-width="0.5"/>
|
||||
<path d="M9.89554 9.62679C9.89554 10.0589 9.94226 10.4093 10.024 10.6663C10.1175 10.9232 10.2342 11.2035 10.3978 11.5072C10.4562 11.6006 10.4795 11.6941 10.4795 11.7758C10.4795 11.8926 10.4094 12.0094 10.2576 12.1262L9.52179 12.6168C9.41667 12.6869 9.31156 12.7219 9.21812 12.7219C9.10132 12.7219 8.98453 12.6635 8.86773 12.5584C8.70422 12.3832 8.56406 12.1963 8.44726 12.0094C8.33047 11.8109 8.21367 11.589 8.0852 11.3203C7.17419 12.3949 6.02958 12.9321 4.65139 12.9321C3.6703 12.9321 2.88777 12.6518 2.31546 12.0912C1.74316 11.5306 1.45117 10.7831 1.45117 9.84871C1.45117 8.85594 1.80156 8.05004 2.51402 7.4427C3.22647 6.83536 4.17252 6.53169 5.37552 6.53169C5.77263 6.53169 6.18142 6.56673 6.61356 6.62513C7.04571 6.68353 7.48954 6.77697 7.95672 6.88208V6.02947C7.95672 5.14182 7.76985 4.5228 7.40778 4.16073C7.03403 3.79866 6.40333 3.62347 5.504 3.62347C5.09521 3.62347 4.67475 3.67019 4.2426 3.7753C3.81046 3.88042 3.38999 4.00889 2.9812 4.17241C2.79433 4.25417 2.65417 4.30089 2.57242 4.32424C2.49066 4.3476 2.43226 4.35928 2.38554 4.35928C2.22203 4.35928 2.14027 4.24249 2.14027 3.99722V3.42491C2.14027 3.23804 2.16363 3.09788 2.22203 3.01613C2.28042 2.93437 2.38554 2.85261 2.54906 2.77085C2.95784 2.56062 3.44839 2.38543 4.02069 2.24527C4.59299 2.09344 5.20033 2.02336 5.84271 2.02336C7.23258 2.02336 8.24871 2.33871 8.90277 2.96941C9.54515 3.60011 9.87218 4.55784 9.87218 5.8426V9.62679H9.89554ZM5.15361 11.4021C5.53904 11.4021 5.93615 11.332 6.35661 11.1919C6.77708 11.0517 7.15083 10.7948 7.46618 10.4444C7.65305 10.2225 7.79321 9.97718 7.86328 9.69687C7.93336 9.41656 7.98008 9.07785 7.98008 8.68074V8.1902C7.64137 8.10844 7.2793 8.03836 6.90555 7.99165C6.53181 7.94493 6.16974 7.92157 5.80767 7.92157C5.02514 7.92157 4.45283 8.0734 4.06741 8.38875C3.68198 8.7041 3.49511 9.14793 3.49511 9.73191C3.49511 10.2809 3.63526 10.6896 3.92725 10.9699C4.20756 11.2619 4.61635 11.4021 5.15361 11.4021ZM14.5323 12.6635C14.3221 12.6635 14.182 12.6285 14.0885 12.5467C13.9951 12.4766 13.9133 12.3131 13.8432 12.0912L11.0985 3.06285C11.0285 2.82925 10.9934 2.67742 10.9934 2.59566C10.9934 2.40879 11.0869 2.30367 11.2737 2.30367H12.4183C12.6402 2.30367 12.7921 2.33871 12.8738 2.42047C12.9673 2.49054 13.0374 2.65406 13.1074 2.87597L15.0696 10.6079L16.8916 2.87597C16.95 2.64238 17.0201 2.49054 17.1135 2.42047C17.207 2.35039 17.3705 2.30367 17.5807 2.30367H18.5151C18.737 2.30367 18.8888 2.33871 18.9823 2.42047C19.0757 2.49054 19.1575 2.65406 19.2042 2.87597L21.0496 10.7013L23.0701 2.87597C23.1402 2.64238 23.222 2.49054 23.3037 2.42047C23.3972 2.35039 23.549 2.30367 23.7592 2.30367H24.8454C25.0323 2.30367 25.1374 2.39711 25.1374 2.59566C25.1374 2.65406 25.1258 2.71246 25.1141 2.78253C25.1024 2.85261 25.079 2.94605 25.0323 3.07453L22.2175 12.1029C22.1475 12.3365 22.0657 12.4883 21.9723 12.5584C21.8788 12.6285 21.727 12.6752 21.5284 12.6752H20.524C20.3021 12.6752 20.1502 12.6401 20.0568 12.5584C19.9634 12.4766 19.8816 12.3248 19.8349 12.0912L18.0246 4.55784L16.2259 12.0795C16.1675 12.3131 16.0974 12.4649 16.004 12.5467C15.9105 12.6285 15.747 12.6635 15.5368 12.6635H14.5323ZM29.5407 12.9788C28.9333 12.9788 28.326 12.9088 27.742 12.7686C27.158 12.6285 26.7025 12.4766 26.3988 12.3014C26.212 12.1963 26.0835 12.0795 26.0368 11.9744C25.9901 11.8693 25.9667 11.7525 25.9667 11.6474V11.0517C25.9667 10.8064 26.0601 10.6896 26.2353 10.6896C26.3054 10.6896 26.3755 10.7013 26.4456 10.7247C26.5156 10.748 26.6208 10.7948 26.7375 10.8415C27.1347 11.0167 27.5668 11.1568 28.0223 11.2503C28.4895 11.3437 28.945 11.3904 29.4122 11.3904C30.148 11.3904 30.7203 11.2619 31.1174 11.005C31.5145 10.748 31.7247 10.3743 31.7247 9.89542C31.7247 9.56839 31.6196 9.29976 31.4094 9.07785C31.1992 8.85594 30.8021 8.65738 30.2298 8.47051L28.5362 7.94493C27.6836 7.6763 27.0529 7.27919 26.6675 6.75361C26.282 6.2397 26.0835 5.6674 26.0835 5.06006C26.0835 4.56952 26.1886 4.13737 26.3988 3.76362C26.6091 3.38987 26.8894 3.06285 27.2398 2.80589C27.5902 2.53726 27.9873 2.33871 28.4545 2.19855C28.9216 2.0584 29.4122 2 29.9261 2C30.183 2 30.4517 2.01168 30.7086 2.04672C30.9773 2.08176 31.2225 2.12848 31.4678 2.17519C31.7014 2.23359 31.9233 2.29199 32.1335 2.36207C32.3438 2.43215 32.5073 2.50222 32.6241 2.5723C32.7876 2.66574 32.9044 2.75918 32.9745 2.86429C33.0445 2.95773 33.0796 3.0862 33.0796 3.24972V3.79866C33.0796 4.04393 32.9861 4.17241 32.811 4.17241C32.7175 4.17241 32.5657 4.12569 32.3671 4.03225C31.7014 3.72858 30.9539 3.57675 30.1246 3.57675C29.4589 3.57675 28.9333 3.68187 28.5712 3.90378C28.2092 4.12569 28.0223 4.4644 28.0223 4.94326C28.0223 5.27029 28.1391 5.5506 28.3727 5.77252C28.6063 5.99443 29.0384 6.21634 29.6575 6.4149L31.316 6.94048C32.1569 7.20911 32.7642 7.58286 33.1263 8.06172C33.4884 8.54059 33.6636 9.08953 33.6636 9.69687C33.6636 10.1991 33.5584 10.6546 33.3599 11.0517C33.1497 11.4488 32.8693 11.7992 32.5073 12.0795C32.1452 12.3715 31.7131 12.5817 31.2108 12.7336C30.6853 12.8971 30.1363 12.9788 29.5407 12.9788Z" fill="#252F3E"/>
|
||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M31.749 18.6553C27.9064 21.4934 22.3235 23.0001 17.5232 23.0001C10.7957 23.0001 4.73399 20.5123 0.155575 16.3778C-0.206494 16.0507 0.120536 15.6069 0.552682 15.8639C5.50484 18.737 11.6133 20.4773 17.932 20.4773C22.195 20.4773 26.8786 19.5896 31.1883 17.7676C31.8307 17.4756 32.3797 18.1881 31.749 18.6553Z" fill="#FF9900"/>
|
||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M33.3507 16.833C32.8601 16.2023 30.1037 16.5293 28.854 16.6811C28.4803 16.7278 28.4219 16.4008 28.7606 16.1555C30.9564 14.6138 34.5654 15.0577 34.9858 15.5716C35.4063 16.0971 34.869 19.7062 32.8134 21.4347C32.4981 21.7034 32.1944 21.5632 32.3345 21.2128C32.8017 20.0565 33.8412 17.452 33.3507 16.833Z" fill="#FF9900"/>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 12 KiB |
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user