Compare commits

..

13 Commits

Author SHA1 Message Date
takatost
3cc697832a feat: bump version to 0.3.32 (#1620) 2023-11-25 16:43:31 +08:00
zxhlyh
bb98f5756a feat: add xinference rerank model (#1619) 2023-11-25 16:23:24 +08:00
takatost
e1d2203371 fix: provider chatglm tests error (#1618) 2023-11-25 16:04:36 +08:00
takatost
93467cb363 fix: dataset tool missing in n-to-1 retrieve mode (#1617) 2023-11-25 16:04:22 +08:00
takatost
ea526d0822 feat: chatglm3 support (#1616) 2023-11-25 15:37:07 +08:00
takatost
0e627c920f feat: xinference rerank model support (#1615) 2023-11-25 03:56:00 +08:00
takatost
ea35f1dce1 feat: bump version to 0.3.31-fix3 (#1606) 2023-11-22 19:40:52 +08:00
Jyong
a5b80c9d1f Fix/multi thread parameter (#1604) 2023-11-22 18:31:29 +08:00
Jyong
f704094a5f fix hybrid search when document is none (#1603)
Co-authored-by: jyong <jyong@dify.ai>
2023-11-22 17:53:42 +08:00
takatost
1f58f15bff feat: optimize db connections in thread (#1601) 2023-11-22 16:55:59 +08:00
Jyong
b930716745 fix weaviate hybrid search issue (#1600)
Co-authored-by: jyong <jyong@dify.ai>
2023-11-22 16:41:20 +08:00
zxhlyh
9587479b76 fix: chat token spent info style (#1597) 2023-11-22 15:22:50 +08:00
waltcow
3c0fbf3a6a fix sql transaction error in statistic API (#1586) 2023-11-22 14:28:21 +08:00
30 changed files with 428 additions and 156 deletions

View File

@@ -91,7 +91,7 @@ class Config:
# ------------------------
# General Configurations.
# ------------------------
self.CURRENT_VERSION = "0.3.31"
self.CURRENT_VERSION = "0.3.32"
self.COMMIT_SHA = get_env('COMMIT_SHA')
self.EDITION = "SELF_HOSTED"
self.DEPLOY_ENV = get_env('DEPLOY_ENV')

View File

@@ -62,16 +62,15 @@ class DailyConversationStatistic(Resource):
sql_query += ' GROUP BY date order by date'
with db.engine.begin() as conn:
rs = conn.execute(db.text(sql_query), arg_dict)
response_data = []
for i in rs:
response_data.append({
'date': str(i.date),
'conversation_count': i.conversation_count
})
with db.engine.begin() as conn:
rs = conn.execute(db.text(sql_query), arg_dict)
for i in rs:
response_data.append({
'date': str(i.date),
'conversation_count': i.conversation_count
})
return jsonify({
'data': response_data
@@ -124,16 +123,15 @@ class DailyTerminalsStatistic(Resource):
sql_query += ' GROUP BY date order by date'
with db.engine.begin() as conn:
rs = conn.execute(db.text(sql_query), arg_dict)
response_data = []
for i in rs:
response_data.append({
'date': str(i.date),
'terminal_count': i.terminal_count
})
with db.engine.begin() as conn:
rs = conn.execute(db.text(sql_query), arg_dict)
for i in rs:
response_data.append({
'date': str(i.date),
'terminal_count': i.terminal_count
})
return jsonify({
'data': response_data
@@ -187,18 +185,17 @@ class DailyTokenCostStatistic(Resource):
sql_query += ' GROUP BY date order by date'
with db.engine.begin() as conn:
rs = conn.execute(db.text(sql_query), arg_dict)
response_data = []
for i in rs:
response_data.append({
'date': str(i.date),
'token_count': i.token_count,
'total_price': i.total_price,
'currency': 'USD'
})
with db.engine.begin() as conn:
rs = conn.execute(db.text(sql_query), arg_dict)
for i in rs:
response_data.append({
'date': str(i.date),
'token_count': i.token_count,
'total_price': i.total_price,
'currency': 'USD'
})
return jsonify({
'data': response_data
@@ -256,16 +253,15 @@ LEFT JOIN conversations c on c.id=subquery.conversation_id
GROUP BY date
ORDER BY date"""
response_data = []
with db.engine.begin() as conn:
rs = conn.execute(db.text(sql_query), arg_dict)
response_data = []
for i in rs:
response_data.append({
'date': str(i.date),
'interactions': float(i.interactions.quantize(Decimal('0.01')))
})
for i in rs:
response_data.append({
'date': str(i.date),
'interactions': float(i.interactions.quantize(Decimal('0.01')))
})
return jsonify({
'data': response_data
@@ -320,20 +316,19 @@ class UserSatisfactionRateStatistic(Resource):
sql_query += ' GROUP BY date order by date'
with db.engine.begin() as conn:
rs = conn.execute(db.text(sql_query), arg_dict)
response_data = []
for i in rs:
response_data.append({
'date': str(i.date),
'rate': round((i.feedback_count * 1000 / i.message_count) if i.message_count > 0 else 0, 2),
})
with db.engine.begin() as conn:
rs = conn.execute(db.text(sql_query), arg_dict)
for i in rs:
response_data.append({
'date': str(i.date),
'rate': round((i.feedback_count * 1000 / i.message_count) if i.message_count > 0 else 0, 2),
})
return jsonify({
'data': response_data
})
'data': response_data
})
class AverageResponseTimeStatistic(Resource):
@@ -383,16 +378,15 @@ class AverageResponseTimeStatistic(Resource):
sql_query += ' GROUP BY date order by date'
with db.engine.begin() as conn:
rs = conn.execute(db.text(sql_query), arg_dict)
response_data = []
for i in rs:
response_data.append({
'date': str(i.date),
'latency': round(i.latency * 1000, 4)
})
with db.engine.begin() as conn:
rs = conn.execute(db.text(sql_query), arg_dict)
for i in rs:
response_data.append({
'date': str(i.date),
'latency': round(i.latency * 1000, 4)
})
return jsonify({
'data': response_data
@@ -447,16 +441,15 @@ WHERE app_id = :app_id'''
sql_query += ' GROUP BY date order by date'
with db.engine.begin() as conn:
rs = conn.execute(db.text(sql_query), arg_dict)
response_data = []
for i in rs:
response_data.append({
'date': str(i.date),
'tps': round(i.tokens_per_second, 4)
})
with db.engine.begin() as conn:
rs = conn.execute(db.text(sql_query), arg_dict)
for i in rs:
response_data.append({
'date': str(i.date),
'tps': round(i.tokens_per_second, 4)
})
return jsonify({
'data': response_data

View File

@@ -115,7 +115,7 @@ class ModelProviderModelValidateApi(Resource):
parser = reqparse.RequestParser()
parser.add_argument('model_name', type=str, required=True, nullable=False, location='json')
parser.add_argument('model_type', type=str, required=True, nullable=False,
choices=['text-generation', 'embeddings', 'speech2text'], location='json')
choices=['text-generation', 'embeddings', 'speech2text', 'reranking'], location='json')
parser.add_argument('config', type=dict, required=True, nullable=False, location='json')
args = parser.parse_args()
@@ -155,7 +155,7 @@ class ModelProviderModelUpdateApi(Resource):
parser = reqparse.RequestParser()
parser.add_argument('model_name', type=str, required=True, nullable=False, location='json')
parser.add_argument('model_type', type=str, required=True, nullable=False,
choices=['text-generation', 'embeddings', 'speech2text'], location='json')
choices=['text-generation', 'embeddings', 'speech2text', 'reranking'], location='json')
parser.add_argument('config', type=dict, required=True, nullable=False, location='json')
args = parser.parse_args()
@@ -184,7 +184,7 @@ class ModelProviderModelUpdateApi(Resource):
parser = reqparse.RequestParser()
parser.add_argument('model_name', type=str, required=True, nullable=False, location='args')
parser.add_argument('model_type', type=str, required=True, nullable=False,
choices=['text-generation', 'embeddings', 'speech2text'], location='args')
choices=['text-generation', 'embeddings', 'speech2text', 'reranking'], location='args')
args = parser.parse_args()
provider_service = ProviderService()

View File

@@ -111,7 +111,7 @@ class WeaviateVectorIndex(BaseVectorIndex):
if self._vector_store:
return self._vector_store
attributes = ['doc_id', 'dataset_id', 'document_id']
attributes = ['doc_id', 'dataset_id', 'document_id', 'doc_hash']
if self._is_origin():
attributes = ['doc_id']

View File

@@ -1,27 +1,45 @@
import decimal
import logging
from typing import List, Optional, Any
import openai
from langchain.callbacks.manager import Callbacks
from langchain.llms import ChatGLM
from langchain.schema import LLMResult
from langchain.schema import LLMResult, get_buffer_string
from core.model_providers.error import LLMBadRequestError
from core.model_providers.error import LLMBadRequestError, LLMRateLimitError, LLMAuthorizationError, \
LLMAPIUnavailableError, LLMAPIConnectionError
from core.model_providers.models.llm.base import BaseLLM
from core.model_providers.models.entity.message import PromptMessage, MessageType
from core.model_providers.models.entity.model_params import ModelMode, ModelKwargs
from core.third_party.langchain.llms.chat_open_ai import EnhanceChatOpenAI
class ChatGLMModel(BaseLLM):
model_mode: ModelMode = ModelMode.COMPLETION
model_mode: ModelMode = ModelMode.CHAT
def _init_client(self) -> Any:
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, self.model_kwargs)
return ChatGLM(
extra_model_kwargs = {
'top_p': provider_model_kwargs.get('top_p')
}
if provider_model_kwargs.get('max_length') is not None:
extra_model_kwargs['max_length'] = provider_model_kwargs.get('max_length')
client = EnhanceChatOpenAI(
model_name=self.name,
temperature=provider_model_kwargs.get('temperature'),
max_tokens=provider_model_kwargs.get('max_tokens'),
model_kwargs=extra_model_kwargs,
streaming=self.streaming,
callbacks=self.callbacks,
endpoint_url=self.credentials.get('api_base'),
**provider_model_kwargs
request_timeout=60,
openai_api_key="1",
openai_api_base=self.credentials['api_base'] + '/v1'
)
return client
def _run(self, messages: List[PromptMessage],
stop: Optional[List[str]] = None,
callbacks: Callbacks = None,
@@ -45,19 +63,40 @@ class ChatGLMModel(BaseLLM):
:return:
"""
prompts = self._get_prompt_from_messages(messages)
return max(self._client.get_num_tokens(prompts), 0)
return max(sum([self._client.get_num_tokens(get_buffer_string([m])) for m in prompts]) - len(prompts), 0)
def get_currency(self):
return 'RMB'
def _set_model_kwargs(self, model_kwargs: ModelKwargs):
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, model_kwargs)
for k, v in provider_model_kwargs.items():
if hasattr(self.client, k):
setattr(self.client, k, v)
extra_model_kwargs = {
'top_p': provider_model_kwargs.get('top_p')
}
self.client.temperature = provider_model_kwargs.get('temperature')
self.client.max_tokens = provider_model_kwargs.get('max_tokens')
self.client.model_kwargs = extra_model_kwargs
def handle_exceptions(self, ex: Exception) -> Exception:
if isinstance(ex, ValueError):
return LLMBadRequestError(f"ChatGLM: {str(ex)}")
if isinstance(ex, openai.error.InvalidRequestError):
logging.warning("Invalid request to ChatGLM API.")
return LLMBadRequestError(str(ex))
elif isinstance(ex, openai.error.APIConnectionError):
logging.warning("Failed to connect to ChatGLM API.")
return LLMAPIConnectionError(ex.__class__.__name__ + ":" + str(ex))
elif isinstance(ex, (openai.error.APIError, openai.error.ServiceUnavailableError, openai.error.Timeout)):
logging.warning("ChatGLM service unavailable.")
return LLMAPIUnavailableError(ex.__class__.__name__ + ":" + str(ex))
elif isinstance(ex, openai.error.RateLimitError):
return LLMRateLimitError(str(ex))
elif isinstance(ex, openai.error.AuthenticationError):
return LLMAuthorizationError(str(ex))
elif isinstance(ex, openai.error.OpenAIError):
return LLMBadRequestError(ex.__class__.__name__ + ":" + str(ex))
else:
return ex
@classmethod
def support_streaming(cls):
return True

View File

@@ -0,0 +1,58 @@
import logging
from typing import Optional, List
from langchain.schema import Document
from xinference_client.client.restful.restful_client import Client
from core.model_providers.error import LLMBadRequestError
from core.model_providers.models.reranking.base import BaseReranking
from core.model_providers.providers.base import BaseModelProvider
class XinferenceReranking(BaseReranking):
def __init__(self, model_provider: BaseModelProvider, name: str):
self.credentials = model_provider.get_model_credentials(
model_name=name,
model_type=self.type
)
client = Client(self.credentials['server_url'])
super().__init__(model_provider, client, name)
def rerank(self, query: str, documents: List[Document], score_threshold: Optional[float], top_k: Optional[int]) -> Optional[List[Document]]:
docs = []
doc_id = []
for document in documents:
if document.metadata['doc_id'] not in doc_id:
doc_id.append(document.metadata['doc_id'])
docs.append(document.page_content)
model = self.client.get_model(self.credentials['model_uid'])
response = model.rerank(query=query, documents=docs, top_n=top_k)
rerank_documents = []
for idx, result in enumerate(response['results']):
# format document
index = result['index']
rerank_document = Document(
page_content=result['document'],
metadata={
"doc_id": documents[index].metadata['doc_id'],
"doc_hash": documents[index].metadata['doc_hash'],
"document_id": documents[index].metadata['document_id'],
"dataset_id": documents[index].metadata['dataset_id'],
'score': result['relevance_score']
}
)
# score threshold check
if score_threshold is not None:
if result.relevance_score >= score_threshold:
rerank_documents.append(rerank_document)
else:
rerank_documents.append(rerank_document)
return rerank_documents
def handle_exceptions(self, ex: Exception) -> Exception:
return LLMBadRequestError(f"Xinference rerank: {str(ex)}")

View File

@@ -2,6 +2,7 @@ import json
from json import JSONDecodeError
from typing import Type
import requests
from langchain.llms import ChatGLM
from core.helper import encrypter
@@ -25,21 +26,26 @@ class ChatGLMProvider(BaseModelProvider):
if model_type == ModelType.TEXT_GENERATION:
return [
{
'id': 'chatglm2-6b',
'name': 'ChatGLM2-6B',
'mode': ModelMode.COMPLETION.value,
'id': 'chatglm3-6b',
'name': 'ChatGLM3-6B',
'mode': ModelMode.CHAT.value,
},
{
'id': 'chatglm-6b',
'name': 'ChatGLM-6B',
'mode': ModelMode.COMPLETION.value,
'id': 'chatglm3-6b-32k',
'name': 'ChatGLM3-6B-32K',
'mode': ModelMode.CHAT.value,
},
{
'id': 'chatglm2-6b',
'name': 'ChatGLM2-6B',
'mode': ModelMode.CHAT.value,
}
]
else:
return []
def _get_text_generation_model_mode(self, model_name) -> str:
return ModelMode.COMPLETION.value
return ModelMode.CHAT.value
def get_model_class(self, model_type: ModelType) -> Type[BaseProviderModel]:
"""
@@ -64,16 +70,19 @@ class ChatGLMProvider(BaseModelProvider):
:return:
"""
model_max_tokens = {
'chatglm-6b': 2000,
'chatglm2-6b': 32000,
'chatglm3-6b-32k': 32000,
'chatglm3-6b': 8000,
'chatglm2-6b': 8000,
}
max_tokens_alias = 'max_length' if model_name == 'chatglm2-6b' else 'max_tokens'
return ModelKwargsRules(
temperature=KwargRule[float](min=0, max=2, default=1, precision=2),
top_p=KwargRule[float](min=0, max=1, default=0.7, precision=2),
presence_penalty=KwargRule[float](enabled=False),
frequency_penalty=KwargRule[float](enabled=False),
max_tokens=KwargRule[int](alias='max_token', min=10, max=model_max_tokens.get(model_name), default=2048, precision=0),
max_tokens=KwargRule[int](alias=max_tokens_alias, min=10, max=model_max_tokens.get(model_name), default=2048, precision=0),
)
@classmethod
@@ -85,16 +94,10 @@ class ChatGLMProvider(BaseModelProvider):
raise CredentialsValidateFailedError('ChatGLM Endpoint URL must be provided.')
try:
credential_kwargs = {
'endpoint_url': credentials['api_base']
}
response = requests.get(f"{credentials['api_base']}/v1/models", timeout=5)
llm = ChatGLM(
max_token=10,
**credential_kwargs
)
llm("ping")
if response.status_code != 200:
raise Exception('ChatGLM Endpoint URL is invalid.')
except Exception as ex:
raise CredentialsValidateFailedError(str(ex))

View File

@@ -2,11 +2,13 @@ import json
from typing import Type
import requests
from xinference_client.client.restful.restful_client import Client
from core.helper import encrypter
from core.model_providers.models.embedding.xinference_embedding import XinferenceEmbedding
from core.model_providers.models.entity.model_params import KwargRule, ModelKwargsRules, ModelType, ModelMode
from core.model_providers.models.llm.xinference_model import XinferenceModel
from core.model_providers.models.reranking.xinference_reranking import XinferenceReranking
from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError
from core.model_providers.models.base import BaseProviderModel
@@ -40,6 +42,8 @@ class XinferenceProvider(BaseModelProvider):
model_class = XinferenceModel
elif model_type == ModelType.EMBEDDINGS:
model_class = XinferenceEmbedding
elif model_type == ModelType.RERANKING:
model_class = XinferenceReranking
else:
raise NotImplementedError
@@ -113,6 +117,10 @@ class XinferenceProvider(BaseModelProvider):
)
embedding.embed_query("ping")
elif model_type == ModelType.RERANKING:
rerank_client = Client(credential_kwargs['server_url'])
model = rerank_client.get_model(credential_kwargs['model_uid'])
model.rerank(query="ping", documents=["ping", "pong"], top_n=2)
except Exception as ex:
raise CredentialsValidateFailedError(str(ex))

View File

@@ -6,6 +6,7 @@
"model_flexibility": "configurable",
"supported_model_types": [
"text-generation",
"embeddings"
"embeddings",
"reranking"
]
}

View File

@@ -207,22 +207,22 @@ class OrchestratorRuleParser:
).first()
if not dataset:
return None
continue
if dataset and dataset.available_document_count == 0 and dataset.available_document_count == 0:
return None
continue
dataset_ids.append(dataset.id)
if retrieval_model == 'single':
retrieval_model = dataset.retrieval_model if dataset.retrieval_model else default_retrieval_model
top_k = retrieval_model['top_k']
retrieval_model_config = dataset.retrieval_model if dataset.retrieval_model else default_retrieval_model
top_k = retrieval_model_config['top_k']
# dynamically adjust top_k when the remaining token number is not enough to support top_k
# top_k = self._dynamic_calc_retrieve_k(dataset=dataset, top_k=top_k, rest_tokens=rest_tokens)
score_threshold = None
score_threshold_enable = retrieval_model.get("score_threshold_enable")
score_threshold_enable = retrieval_model_config.get("score_threshold_enable")
if score_threshold_enable:
score_threshold = retrieval_model.get("score_threshold")
score_threshold = retrieval_model_config.get("score_threshold")
tool = DatasetRetrieverTool.from_dataset(
dataset=dataset,

View File

@@ -192,7 +192,7 @@ class DatasetMultiRetrieverTool(BaseTool):
'search_method'] == 'hybrid_search':
embedding_thread = threading.Thread(target=RetrievalService.embedding_search, kwargs={
'flask_app': current_app._get_current_object(),
'dataset': dataset,
'dataset_id': str(dataset.id),
'query': query,
'top_k': self.top_k,
'score_threshold': self.score_threshold,
@@ -210,7 +210,7 @@ class DatasetMultiRetrieverTool(BaseTool):
full_text_index_thread = threading.Thread(target=RetrievalService.full_text_index_search,
kwargs={
'flask_app': current_app._get_current_object(),
'dataset': dataset,
'dataset_id': str(dataset.id),
'query': query,
'search_method': 'hybrid_search',
'embeddings': embeddings,

View File

@@ -106,7 +106,7 @@ class DatasetRetrieverTool(BaseTool):
if retrieval_model['search_method'] == 'semantic_search' or retrieval_model['search_method'] == 'hybrid_search':
embedding_thread = threading.Thread(target=RetrievalService.embedding_search, kwargs={
'flask_app': current_app._get_current_object(),
'dataset': dataset,
'dataset_id': str(dataset.id),
'query': query,
'top_k': self.top_k,
'score_threshold': retrieval_model['score_threshold'] if retrieval_model[
@@ -124,7 +124,7 @@ class DatasetRetrieverTool(BaseTool):
if retrieval_model['search_method'] == 'full_text_search' or retrieval_model['search_method'] == 'hybrid_search':
full_text_index_thread = threading.Thread(target=RetrievalService.full_text_index_search, kwargs={
'flask_app': current_app._get_current_object(),
'dataset': dataset,
'dataset_id': str(dataset.id),
'query': query,
'search_method': retrieval_model['search_method'],
'embeddings': embeddings,

View File

@@ -60,7 +60,7 @@ def _create_weaviate_client(**kwargs: Any) -> Any:
def _default_score_normalizer(val: float) -> float:
return 1 - 1 / (1 + np.exp(val))
return 1 - val
def _json_serializable(value: Any) -> Any:
@@ -243,7 +243,8 @@ class Weaviate(VectorStore):
query_obj = query_obj.with_where(kwargs.get("where_filter"))
if kwargs.get("additional"):
query_obj = query_obj.with_additional(kwargs.get("additional"))
result = query_obj.with_bm25(query=content).with_limit(k).do()
properties = ['text', 'dataset_id', 'doc_hash', 'doc_id', 'document_id']
result = query_obj.with_bm25(query=query, properties=properties).with_limit(k).do()
if "errors" in result:
raise ValueError(f"Error during query: {result['errors']}")
docs = []
@@ -380,14 +381,14 @@ class Weaviate(VectorStore):
result = (
query_obj.with_near_vector(vector)
.with_limit(k)
.with_additional("vector")
.with_additional(["vector", "distance"])
.do()
)
else:
result = (
query_obj.with_near_text(content)
.with_limit(k)
.with_additional("vector")
.with_additional(["vector", "distance"])
.do()
)
@@ -397,7 +398,7 @@ class Weaviate(VectorStore):
docs_and_scores = []
for res in result["data"]["Get"][self._index_name]:
text = res.pop(self._text_key)
score = np.dot(res["_additional"]["vector"], embedded_query)
score = res["_additional"]["distance"]
docs_and_scores.append((Document(page_content=text, metadata=res), score))
return docs_and_scores

View File

@@ -1,4 +1,4 @@
from langchain.vectorstores import Weaviate
from core.vector_store.vector.weaviate import Weaviate
class WeaviateVectorStore(Weaviate):

View File

@@ -48,7 +48,7 @@ huggingface_hub~=0.16.4
transformers~=4.31.0
stripe~=5.5.0
pandas==1.5.3
xinference-client~=0.5.4
xinference-client~=0.6.4
safetensors==0.3.2
zhipuai==1.0.7
werkzeug==2.3.7

View File

@@ -232,7 +232,7 @@ class CompletionService:
logging.exception("Unknown Error in completion")
PubHandler.pub_error(user, generate_task_id, e)
finally:
db.session.commit()
db.session.remove()
@classmethod
def countdown_and_close(cls, flask_app: Flask, worker_thread, pubsub, detached_user,
@@ -242,22 +242,25 @@ class CompletionService:
def close_pubsub():
with flask_app.app_context():
user = db.session.merge(detached_user)
try:
user = db.session.merge(detached_user)
sleep_iterations = 0
while sleep_iterations < timeout and worker_thread.is_alive():
if sleep_iterations > 0 and sleep_iterations % 10 == 0:
PubHandler.ping(user, generate_task_id)
sleep_iterations = 0
while sleep_iterations < timeout and worker_thread.is_alive():
if sleep_iterations > 0 and sleep_iterations % 10 == 0:
PubHandler.ping(user, generate_task_id)
time.sleep(1)
sleep_iterations += 1
time.sleep(1)
sleep_iterations += 1
if worker_thread.is_alive():
PubHandler.stop(user, generate_task_id)
try:
pubsub.close()
except Exception:
pass
if worker_thread.is_alive():
PubHandler.stop(user, generate_task_id)
try:
pubsub.close()
except Exception:
pass
finally:
db.session.remove()
countdown_thread = threading.Thread(target=close_pubsub)
countdown_thread.start()
@@ -394,7 +397,7 @@ class CompletionService:
logging.exception(e)
raise
finally:
db.session.commit()
db.session.remove()
try:
pubsub.unsubscribe(generate_channel)
@@ -436,7 +439,7 @@ class CompletionService:
logging.exception(e)
raise
finally:
db.session.commit()
db.session.remove()
try:
pubsub.unsubscribe(generate_channel)

View File

@@ -61,7 +61,7 @@ class HitTestingService:
if retrieval_model['search_method'] == 'semantic_search' or retrieval_model['search_method'] == 'hybrid_search':
embedding_thread = threading.Thread(target=RetrievalService.embedding_search, kwargs={
'flask_app': current_app._get_current_object(),
'dataset': dataset,
'dataset_id': str(dataset.id),
'query': query,
'top_k': retrieval_model['top_k'],
'score_threshold': retrieval_model['score_threshold'] if retrieval_model['score_threshold_enable'] else None,
@@ -77,7 +77,7 @@ class HitTestingService:
if retrieval_model['search_method'] == 'full_text_search' or retrieval_model['search_method'] == 'hybrid_search':
full_text_index_thread = threading.Thread(target=RetrievalService.full_text_index_search, kwargs={
'flask_app': current_app._get_current_object(),
'dataset': dataset,
'dataset_id': str(dataset.id),
'query': query,
'search_method': retrieval_model['search_method'],
'embeddings': embeddings,

View File

@@ -4,6 +4,7 @@ from flask import current_app, Flask
from langchain.embeddings.base import Embeddings
from core.index.vector_index.vector_index import VectorIndex
from core.model_providers.model_factory import ModelFactory
from extensions.ext_database import db
from models.dataset import Dataset
default_retrieval_model = {
@@ -21,10 +22,13 @@ default_retrieval_model = {
class RetrievalService:
@classmethod
def embedding_search(cls, flask_app: Flask, dataset: Dataset, query: str,
def embedding_search(cls, flask_app: Flask, dataset_id: str, query: str,
top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
all_documents: list, search_method: str, embeddings: Embeddings):
with flask_app.app_context():
dataset = db.session.query(Dataset).filter(
Dataset.id == dataset_id
).first()
vector_index = VectorIndex(
dataset=dataset,
@@ -56,10 +60,13 @@ class RetrievalService:
all_documents.extend(documents)
@classmethod
def full_text_index_search(cls, flask_app: Flask, dataset: Dataset, query: str,
def full_text_index_search(cls, flask_app: Flask, dataset_id: str, query: str,
top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
all_documents: list, search_method: str, embeddings: Embeddings):
with flask_app.app_context():
dataset = db.session.query(Dataset).filter(
Dataset.id == dataset_id
).first()
vector_index = VectorIndex(
dataset=dataset,

View File

@@ -50,4 +50,7 @@ XINFERENCE_MODEL_UID=
OPENLLM_SERVER_URL=
# LocalAI Credentials
LOCALAI_SERVER_URL=
LOCALAI_SERVER_URL=
# Cohere Credentials
COHERE_API_KEY=

View File

@@ -0,0 +1,61 @@
import json
import os
from unittest.mock import patch
from langchain.schema import Document
from core.model_providers.models.reranking.cohere_reranking import CohereReranking
from core.model_providers.providers.cohere_provider import CohereProvider
from models.provider import Provider, ProviderType
def get_mock_provider(valid_api_key):
return Provider(
id='provider_id',
tenant_id='tenant_id',
provider_name='cohere',
provider_type=ProviderType.CUSTOM.value,
encrypted_config=json.dumps({'api_key': valid_api_key}),
is_valid=True,
)
def get_mock_model():
valid_api_key = os.environ['COHERE_API_KEY']
provider = CohereProvider(provider=get_mock_provider(valid_api_key))
return CohereReranking(
model_provider=provider,
name='rerank-english-v2.0'
)
def decrypt_side_effect(tenant_id, encrypted_api_key):
return encrypted_api_key
@patch('core.helper.encrypter.decrypt_token', side_effect=decrypt_side_effect)
def test_run(mock_decrypt):
model = get_mock_model()
docs = []
docs.append(Document(
page_content='bye',
metadata={
"doc_id": 'a',
"doc_hash": 'doc_hash',
"document_id": 'document_id',
"dataset_id": 'dataset_id',
}
))
docs.append(Document(
page_content='hello',
metadata={
"doc_id": 'b',
"doc_hash": 'doc_hash',
"document_id": 'document_id',
"dataset_id": 'dataset_id',
}
))
rst = model.rerank('hello', docs, None, 2)
assert rst[0].page_content == 'hello'

View File

@@ -0,0 +1,78 @@
import json
import os
from unittest.mock import patch, MagicMock
from langchain.schema import Document
from core.model_providers.models.entity.model_params import ModelType
from core.model_providers.models.reranking.xinference_reranking import XinferenceReranking
from core.model_providers.providers.xinference_provider import XinferenceProvider
from models.provider import Provider, ProviderType, ProviderModel
def get_mock_provider(valid_server_url, valid_model_uid):
return Provider(
id='provider_id',
tenant_id='tenant_id',
provider_name='xinference',
provider_type=ProviderType.CUSTOM.value,
encrypted_config=json.dumps({'server_url': valid_server_url, 'model_uid': valid_model_uid}),
is_valid=True,
)
def get_mock_model(mocker):
valid_server_url = os.environ['XINFERENCE_SERVER_URL']
valid_model_uid = os.environ['XINFERENCE_MODEL_UID']
model_name = 'bge-reranker-base'
provider = XinferenceProvider(provider=get_mock_provider(valid_server_url, valid_model_uid))
mock_query = MagicMock()
mock_query.filter.return_value.first.return_value = ProviderModel(
provider_name='xinference',
model_name=model_name,
model_type=ModelType.RERANKING.value,
encrypted_config=json.dumps({
'server_url': valid_server_url,
'model_uid': valid_model_uid
}),
is_valid=True,
)
mocker.patch('extensions.ext_database.db.session.query', return_value=mock_query)
return XinferenceReranking(
model_provider=provider,
name=model_name
)
def decrypt_side_effect(tenant_id, encrypted_api_key):
return encrypted_api_key
@patch('core.helper.encrypter.decrypt_token', side_effect=decrypt_side_effect)
def test_run(mock_decrypt, mocker):
model = get_mock_model(mocker)
docs = []
docs.append(Document(
page_content='bye',
metadata={
"doc_id": 'a',
"doc_hash": 'doc_hash',
"document_id": 'document_id',
"dataset_id": 'dataset_id',
}
))
docs.append(Document(
page_content='hello',
metadata={
"doc_id": 'b',
"doc_hash": 'doc_hash',
"document_id": 'document_id',
"dataset_id": 'dataset_id',
}
))
rst = model.rerank('hello', docs, None, 2)
assert rst[0].page_content == 'hello'

View File

@@ -2,7 +2,9 @@ import pytest
from unittest.mock import patch
import json
import requests
from langchain.schema import LLMResult, Generation, AIMessage, ChatResult, ChatGeneration
from requests import Response
from core.model_providers.providers.base import CredentialsValidateFailedError
from core.model_providers.providers.chatglm_provider import ChatGLMProvider
@@ -26,8 +28,11 @@ def decrypt_side_effect(tenant_id, encrypted_key):
def test_is_provider_credentials_valid_or_raise_valid(mocker):
mocker.patch('langchain.llms.chatglm.ChatGLM._call',
return_value="abc")
mock_response = Response()
mock_response.status_code = 200
mock_response._content = json.dumps({'models': []}).encode('utf-8')
mocker.patch('requests.get',
return_value=mock_response)
MODEL_PROVIDER_CLASS.is_provider_credentials_valid_or_raise(VALIDATE_CREDENTIAL)

View File

@@ -30,7 +30,7 @@ services:
# The Weaviate vector store.
weaviate:
image: semitechnologies/weaviate:1.18.4
image: semitechnologies/weaviate:1.19.0
restart: always
volumes:
# Mount the Weaviate data directory to the container.
@@ -63,4 +63,4 @@ services:
# environment:
# QDRANT__API_KEY: 'difyai123456'
# ports:
# - "6333:6333"
# - "6333:6333"

View File

@@ -2,7 +2,7 @@ version: '3.1'
services:
# API service
api:
image: langgenius/dify-api:0.3.31-fix2
image: langgenius/dify-api:0.3.32
restart: always
environment:
# Startup mode, 'api' starts the API server.
@@ -128,7 +128,7 @@ services:
# worker service
# The Celery worker for processing the queue.
worker:
image: langgenius/dify-api:0.3.31-fix2
image: langgenius/dify-api:0.3.32
restart: always
environment:
# Startup mode, 'worker' starts the Celery worker for processing the queue.
@@ -196,7 +196,7 @@ services:
# Frontend web application.
web:
image: langgenius/dify-web:0.3.31-fix2
image: langgenius/dify-web:0.3.32
restart: always
environment:
EDITION: SELF_HOSTED
@@ -253,7 +253,7 @@ services:
# The Weaviate vector store.
weaviate:
image: semitechnologies/weaviate:1.18.4
image: semitechnologies/weaviate:1.19.0
restart: always
volumes:
# Mount the Weaviate data directory to the container.

View File

@@ -194,7 +194,7 @@ const Answer: FC<IAnswerProps> = ({
</div>
)
}
<div className={cn(s.answerWrapWrap, 'chat-answer-container')}>
<div className={cn(s.answerWrapWrap, 'chat-answer-container group')}>
<div className={`${s.answerWrap} ${showEdit ? 'w-full' : ''}`}>
<div className={`${s.answer} relative text-sm text-gray-900`}>
<div className={'ml-2 py-3 px-4 bg-gray-100 rounded-tr-2xl rounded-b-2xl'}>
@@ -280,7 +280,7 @@ const Answer: FC<IAnswerProps> = ({
{!feedbackDisabled && renderFeedbackRating(feedback?.rating, !isHideFeedbackEdit, displayScene !== 'console')}
</div>
</div>
{more && <MoreInfo more={more} isQuestion={false} />}
{more && <MoreInfo className='hidden group-hover:block' more={more} isQuestion={false} />}
</div>
</div>
</div>

View File

@@ -5,15 +5,19 @@ import { useTranslation } from 'react-i18next'
import type { MessageMore } from '../type'
import { formatNumber } from '@/utils/format'
export type IMoreInfoProps = { more: MessageMore; isQuestion: boolean }
export type IMoreInfoProps = {
more: MessageMore
isQuestion: boolean
className?: string
}
const MoreInfo: FC<IMoreInfoProps> = ({ more, isQuestion }) => {
const MoreInfo: FC<IMoreInfoProps> = ({ more, isQuestion, className }) => {
const { t } = useTranslation()
return (<div className={`mt-1 w-full text-xs text-gray-400 !text-right ${isQuestion ? 'mr-2 text-right ' : 'ml-2 text-left float-right'}`}>
<span>{`${t('appLog.detail.timeConsuming')} ${more.latency}${t('appLog.detail.second')}`}</span>
<span>{`${t('appLog.detail.tokenCost')} ${formatNumber(more.tokens)}`}</span>
<span>· </span>
<span>{more.time} </span>
return (<div className={`mt-1 w-full text-xs text-gray-400 ${isQuestion ? 'mr-2 text-right ' : 'pl-2 text-left float-right'} ${className}`}>
<span className='mr-2'>{`${t('appLog.detail.timeConsuming')} ${more.latency}${t('appLog.detail.second')}`}</span>
<span className='mr-2'>{`${t('appLog.detail.tokenCost')} ${formatNumber(more.tokens)}`}</span>
<span className='mr-2'>·</span>
<span>{more.time}</span>
</div>)
}
export default React.memo(MoreInfo)

View File

@@ -80,6 +80,13 @@ const config: ProviderConfig = {
'zh-Hans': 'Embeddings',
},
},
{
key: 'reranking',
label: {
'en': 'Rerank',
'zh-Hans': 'Rerank',
},
},
],
},
{

View File

@@ -150,10 +150,11 @@ const Form: FC<FormProps> = ({
if (field.type === 'radio') {
const options = typeof field.options === 'function' ? field.options(value) : field.options
return (
<div key={field.key} className='py-3'>
<div className={nameClassName}>{field.label[locale]}</div>
<div className='grid grid-cols-2 gap-3'>
<div className={`grid grid-cols-${options?.length} gap-3`}>
{
options?.map(option => (
<div

View File

@@ -1,6 +1,6 @@
{
"name": "dify-web",
"version": "0.3.31",
"version": "0.3.32",
"private": true,
"scripts": {
"dev": "next dev",