Compare commits

...

61 Commits

Author SHA1 Message Date
takatost
7dea485d57 feat: bump version to 0.3.27 (#1331) 2023-10-12 10:37:48 -05:00
zxhlyh
5b9858a8a3 feat: advanced prompt (#1330)
Co-authored-by: Joel <iamjoel007@gmail.com>
Co-authored-by: JzoNg <jzongcode@gmail.com>
Co-authored-by: Gillian97 <jinling.sunshine@gmail.com>
2023-10-12 23:14:28 +08:00
Garfield Dai
42a5b3ec17 feat: advanced prompt backend (#1301)
Co-authored-by: takatost <takatost@gmail.com>
2023-10-12 10:13:10 -05:00
takatost
2d1cb076c6 fix: dataset segment not exist return agent response (#1329) 2023-10-12 04:40:20 -05:00
Jyong
289c93d081 Feat/improve document delete logic (#1325)
Co-authored-by: jyong <jyong@dify.ai>
2023-10-12 13:30:44 +08:00
takatost
c0fe706597 feat: adjust to only build the latest image when pushing a tag. (#1324) 2023-10-11 23:38:07 -05:00
takatost
9cba1c8bf4 fix: retriever_resource missing (#1317) 2023-10-11 14:37:11 -05:00
takatost
cbf095465c feat: remove llm client use (#1316) 2023-10-11 14:02:53 -05:00
KVOJJJin
c007dbdc13 Feat: add document of authorization (#1311) 2023-10-11 08:03:36 -05:00
takatost
ff493d017b fix: minimax tests (#1313) 2023-10-11 07:49:26 -05:00
Jyong
7f6ad9653e Fix/grpc gevent compatible (#1314)
Co-authored-by: jyong <jyong@dify.ai>
2023-10-11 20:48:35 +08:00
takatost
2851a9f04e feat: optimize minimax llm call (#1312) 2023-10-11 07:17:41 -05:00
takatost
c536f85b2e fix: compatibility issues with the tongyi model. (#1310) 2023-10-11 05:16:26 -05:00
takatost
b1352ff8b7 feat: using random sampling to check if it violates the review mechan… (#1308) 2023-10-11 04:11:20 -05:00
Jyong
cc63c8499f bump version to 0.3.26 (#1307)
Co-authored-by: jyong <jyong@dify.ai>
2023-10-11 16:11:24 +08:00
Jyong
f191b8b8d1 milvus docker compose env (#1306)
Co-authored-by: jyong <jyong@dify.ai>
2023-10-11 16:05:37 +08:00
Jyong
5003db987d milvus secure check fix (#1305)
Co-authored-by: jyong <jyong@dify.ai>
2023-10-11 13:11:06 +08:00
Jyong
07aab5e868 Feat/add milvus vector db (#1302)
Co-authored-by: jyong <jyong@dify.ai>
2023-10-10 21:56:24 +08:00
takatost
875dfbbf0e fix: openllm completion start with prompt, remove it (#1303) 2023-10-10 04:44:19 -05:00
Charlie.Wei
9e7efa45d4 document segmentApi Add get&update&delete operate (#1285)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
2023-10-10 13:27:06 +08:00
takatost
8bf892b306 feat: bump version to 0.3.25 (#1300) 2023-10-10 13:03:49 +08:00
takatost
8480b0197b fix: prompt for baichuan text generation models (#1299) 2023-10-10 13:01:18 +08:00
zxhlyh
df07fb5951 feat: provider add baichuan (#1298) 2023-10-09 23:10:43 -05:00
takatost
4ab4bcc074 feat: support openllm embedding (#1293) 2023-10-09 23:09:35 -05:00
takatost
1d4f019de4 feat: add baichuan llm support (#1294)
Co-authored-by: zxhlyh <jasonapring2015@outlook.com>
2023-10-09 23:09:26 -05:00
takatost
677aacc8e3 feat: upgrade xinference client to 0.5.2 (#1292) 2023-10-09 08:12:58 -05:00
takatost
fda937175d feat: qdrant support in docker compose (#1286) 2023-10-08 12:04:04 -05:00
takatost
024250803a feat: move login_required wrapper outside (#1281) 2023-10-08 05:21:32 -05:00
Charlie.Wei
b711ce33b7 Application share qrcode (#1277)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
Co-authored-by: crazywoola <427733928@qq.com>
2023-10-08 09:34:49 +08:00
Rhon Joe
52bec63275 chore(web): strong type (#1259) 2023-10-07 04:42:16 -05:00
qiuqiua
657fa80f4d fix devcontainer issue (#1273) 2023-10-07 10:34:25 +08:00
takatost
373e90ee6d fix: detached model in completion thread (#1269) 2023-10-02 22:27:25 +08:00
takatost
41d4c5b424 fix: count down thread in completion db not commit (#1267) 2023-10-02 10:19:26 +08:00
takatost
86a9dea428 fix: db not commit when streaming output (#1266) 2023-10-01 16:41:52 +08:00
takatost
8606d80c66 fix: request timeout when openai completion (#1265) 2023-10-01 16:00:23 +08:00
takatost
5bffa1d918 feat: bump version to 0.3.24 (#1262) 2023-09-28 18:32:06 +08:00
zxhlyh
c9b0fe47bf Fix/notion sync (#1258) 2023-09-28 14:39:13 +08:00
zxhlyh
bcd744b6b7 fix: doc (#1256) 2023-09-28 11:26:04 +08:00
Jyong
5e511e01bf Fix/dataset api key delete (#1255)
Co-authored-by: jyong <jyong@dify.ai>
2023-09-28 10:41:41 +08:00
crazywoola
52291c645e fix: dataset footer styles (#1254) 2023-09-28 10:06:52 +08:00
takatost
a31466d34e fix: db session not commit before long llm call running (#1251) 2023-09-27 21:40:26 +08:00
takatost
d38eac959b fix: wenxin model name invalid when llm call (#1248) 2023-09-27 16:29:13 +08:00
zxhlyh
9dbb8acd4b Feat/dataset support api service (#1240)
Co-authored-by: Joel <iamjoel007@gmail.com>
Co-authored-by: crazywoola <427733928@qq.com>
2023-09-27 16:06:49 +08:00
Jyong
46154c6705 Feat/dataset service api (#1245)
Co-authored-by: jyong <jyong@dify.ai>
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
2023-09-27 16:06:32 +08:00
Garfield Dai
54ff03c35d fix: dataset query error. (#1244) 2023-09-27 15:24:54 +08:00
Garfield Dai
18c710c906 feat: support binding context var (#1227)
Co-authored-by: Joel <iamjoel007@gmail.com>
2023-09-27 14:53:22 +08:00
KVOJJJin
59236b789f Fix: dataset list refresh (#1216) 2023-09-27 10:31:46 +08:00
KVOJJJin
fd3d43cae1 Fix: debounce of dataset creation (#1237) 2023-09-27 10:31:27 +08:00
Rhon Joe
8eae643911 Fix App logs page modal show different model icon. (#1224) 2023-09-27 08:54:52 +08:00
crazywoola
fd9413874a fix: FATAL: role "root" does not exist. (#1233) 2023-09-26 10:20:00 +08:00
zxhlyh
227f9fb77d Feat/api jwt (#1212) 2023-09-25 12:49:16 +08:00
Joel
c40ee7e629 feat: batch run support retry errors and decrease rate limit times (#1215) 2023-09-25 10:20:50 +08:00
KVOJJJin
841e967d48 Fix: add loading for dataset creation (#1214) 2023-09-24 01:35:20 -05:00
Joel
9df0dcedae fix: dataset eslint error (#1221) 2023-09-22 22:38:33 +08:00
Jyong
724e053732 Fix/qdrant data issue (#1203)
Co-authored-by: jyong <jyong@dify.ai>
2023-09-22 14:21:26 +08:00
Garfield Dai
e409895c02 Feat/huggingface embedding support (#1211)
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
2023-09-22 13:59:02 +08:00
takatost
32d9b6181c fix: transaction not commit during long LLM calls (#1213) 2023-09-22 12:43:06 +08:00
takatost
2b018fade2 fix: transaction hangs due to message commit block during long LLM calls (#1206) 2023-09-21 11:22:10 +08:00
Rhon Joe
e65f9cb17a Complete type defined. (#1200) 2023-09-19 23:27:06 -05:00
zxhlyh
1367f34398 fix: provider spark free quota text (#1201) 2023-09-20 11:46:25 +08:00
crazywoola
e47f6b879a add help wanted issue template (#1199) 2023-09-19 20:02:41 -05:00
430 changed files with 16817 additions and 3566 deletions

View File

@@ -1,11 +1,8 @@
FROM mcr.microsoft.com/devcontainers/anaconda:0-3
FROM mcr.microsoft.com/devcontainers/python:3.10
COPY . .
# Copy environment.yml (if found) to a temp location so we update the environment. Also
# copy "noop.txt" so the COPY instruction does not fail if no environment.yml exists.
COPY environment.yml* .devcontainer/noop.txt /tmp/conda-tmp/
RUN if [ -f "/tmp/conda-tmp/environment.yml" ]; then umask 0002 && /opt/conda/bin/conda env update -n base -f /tmp/conda-tmp/environment.yml; fi \
&& rm -rf /tmp/conda-tmp
# [Optional] Uncomment this section to install additional OS packages.
# RUN apt-get update && export DEBIAN_FRONTEND=noninteractive \
# && apt-get -y install --no-install-recommends <your-package-list-here>
# && apt-get -y install --no-install-recommends <your-package-list-here>

View File

@@ -1,13 +1,12 @@
// For format details, see https://aka.ms/devcontainer.json. For config options, see the
// README at: https://github.com/devcontainers/templates/tree/main/src/anaconda
{
"name": "Anaconda (Python 3)",
"name": "Python 3.10",
"build": {
"context": "..",
"dockerfile": "Dockerfile"
},
"features": {
"ghcr.io/dhoeric/features/act:1": {},
"ghcr.io/devcontainers/features/node:1": {
"nodeGypDependencies": true,
"version": "lts"

11
.github/ISSUE_TEMPLATE/help_wanted.yml vendored Normal file
View File

@@ -0,0 +1,11 @@
name: "🤝 Help Wanted"
description: "Request help from the community"
labels:
- help-wanted
body:
- type: textarea
attributes:
label: Provide a description of the help you need
placeholder: Briefly describe what you need help with.
validations:
required: true

View File

@@ -31,7 +31,7 @@ jobs:
with:
images: langgenius/dify-api
tags: |
type=raw,value=latest,enable={{is_default_branch}}
type=raw,value=latest,enable=${{ startsWith(github.ref, 'refs/tags/') }}
type=ref,event=branch
type=sha,enable=true,priority=100,prefix=,suffix=,format=long
type=semver,pattern={{major}}.{{minor}}.{{patch}}

View File

@@ -31,7 +31,7 @@ jobs:
with:
images: langgenius/dify-web
tags: |
type=raw,value=latest,enable={{is_default_branch}}
type=raw,value=latest,enable=${{ startsWith(github.ref, 'refs/tags/') }}
type=ref,event=branch
type=sha,enable=true,priority=100,prefix=,suffix=,format=long
type=semver,pattern={{major}}.{{minor}}.{{patch}}

View File

@@ -1,37 +0,0 @@
import os
import re
from zhon.hanzi import punctuation
def has_chinese_characters(text):
for char in text:
if '\u4e00' <= char <= '\u9fff' or char in punctuation:
return True
return False
def check_file_for_chinese_comments(file_path):
with open(file_path, 'r', encoding='utf-8') as file:
for line_number, line in enumerate(file, start=1):
if has_chinese_characters(line):
print(f"Found Chinese characters in {file_path} on line {line_number}:")
print(line.strip())
return True
return False
def main():
has_chinese = False
excluded_files = ["model_template.py", 'stopwords.py', 'commands.py',
'indexing_runner.py', 'web_reader_tool.py', 'spark_provider.py',
'prompts.py']
for root, _, files in os.walk("."):
for file in files:
if file.endswith(".py") and file not in excluded_files:
file_path = os.path.join(root, file)
if check_file_for_chinese_comments(file_path):
has_chinese = True
if has_chinese:
raise Exception("Found Chinese characters in Python files. Please remove them.")
if __name__ == "__main__":
main()

View File

@@ -1,31 +0,0 @@
name: Check for Chinese comments
on:
push:
branches:
- 'main'
pull_request:
branches:
- main
jobs:
check-chinese-comments:
runs-on: ubuntu-latest
steps:
- name: Check out repository
uses: actions/checkout@v2
- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: 3.9
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install zhon
- name: Run script to check for Chinese comments
run: |
python .github/workflows/check_no_chinese_comments.py

1
.gitignore vendored
View File

@@ -144,6 +144,7 @@ docker/volumes/app/storage/*
docker/volumes/db/data/*
docker/volumes/redis/data/*
docker/volumes/weaviate/*
docker/volumes/qdrant/*
sdks/python-client/build
sdks/python-client/dist

View File

@@ -50,25 +50,7 @@ S3_REGION=your-region
WEB_API_CORS_ALLOW_ORIGINS=http://127.0.0.1:3000,*
CONSOLE_CORS_ALLOW_ORIGINS=http://127.0.0.1:3000,*
# Cookie configuration
COOKIE_HTTPONLY=true
COOKIE_SAMESITE=None
COOKIE_SECURE=true
# Session configuration
SESSION_PERMANENT=true
SESSION_USE_SIGNER=true
## support redis, sqlalchemy
SESSION_TYPE=redis
# session redis configuration
SESSION_REDIS_HOST=localhost
SESSION_REDIS_PORT=6379
SESSION_REDIS_PASSWORD=difyai123456
SESSION_REDIS_DB=2
# Vector database configuration, support: weaviate, qdrant
# Vector database configuration, support: weaviate, qdrant, milvus
VECTOR_STORE=weaviate
# Weaviate configuration
@@ -77,9 +59,16 @@ WEAVIATE_API_KEY=WVF5YThaHlkYwhGUSmCRgsX3tD5ngdN8pkih
WEAVIATE_GRPC_ENABLED=false
WEAVIATE_BATCH_SIZE=100
# Qdrant configuration, use `path:` prefix for local mode or `https://your-qdrant-cluster-url.qdrant.io` for remote mode
QDRANT_URL=path:storage/qdrant
QDRANT_API_KEY=your-qdrant-api-key
# Qdrant configuration, use `http://localhost:6333` for local mode or `https://your-qdrant-cluster-url.qdrant.io` for remote mode
QDRANT_URL=http://localhost:6333
QDRANT_API_KEY=difyai123456
# Milvus configuration
MILVUS_HOST=127.0.0.1
MILVUS_PORT=19530
MILVUS_USER=root
MILVUS_PASSWORD=Milvus
MILVUS_SECURE=false
# Mail configuration, support: resend
MAIL_TYPE=

View File

@@ -1,23 +1,24 @@
# -*- coding:utf-8 -*-
import os
from datetime import datetime, timedelta
from werkzeug.exceptions import Forbidden
from werkzeug.exceptions import Unauthorized
if not os.environ.get("DEBUG") or os.environ.get("DEBUG").lower() != 'true':
from gevent import monkey
monkey.patch_all()
if os.environ.get("VECTOR_STORE") == 'milvus':
import grpc.experimental.gevent
grpc.experimental.gevent.init_gevent()
import logging
import json
import threading
from flask import Flask, request, Response, session
import flask_login
from flask import Flask, request, Response
from flask_cors import CORS
from core.model_providers.providers import hosted
from extensions import ext_session, ext_celery, ext_sentry, ext_redis, ext_login, ext_migrate, \
from extensions import ext_celery, ext_sentry, ext_redis, ext_login, ext_migrate, \
ext_database, ext_storage, ext_mail, ext_stripe
from extensions.ext_database import db
from extensions.ext_login import login_manager
@@ -27,12 +28,10 @@ from models import model, account, dataset, web, task, source, tool
from events import event_handlers
# DO NOT REMOVE ABOVE
import core
from config import Config, CloudEditionConfig
from commands import register_commands
from models.account import TenantAccountJoin, AccountStatus
from models.model import Account, EndUser, App
from services.account_service import TenantService
from services.account_service import AccountService
from libs.passport import PassportService
import warnings
warnings.simplefilter("ignore", ResourceWarning)
@@ -85,81 +84,33 @@ def initialize_extensions(app):
ext_redis.init_app(app)
ext_storage.init_app(app)
ext_celery.init_app(app)
ext_session.init_app(app)
ext_login.init_app(app)
ext_mail.init_app(app)
ext_sentry.init_app(app)
ext_stripe.init_app(app)
def _create_tenant_for_account(account):
tenant = TenantService.create_tenant(f"{account.name}'s Workspace")
TenantService.create_tenant_member(tenant, account, role='owner')
account.current_tenant = tenant
return tenant
# Flask-Login configuration
@login_manager.user_loader
def load_user(user_id):
"""Load user based on the user_id."""
@login_manager.request_loader
def load_user_from_request(request_from_flask_login):
"""Load user based on the request."""
if request.blueprint == 'console':
# Check if the user_id contains a dot, indicating the old format
if '.' in user_id:
tenant_id, account_id = user_id.split('.')
else:
account_id = user_id
auth_header = request.headers.get('Authorization', '')
if ' ' not in auth_header:
raise Unauthorized('Invalid Authorization header format. Expected \'Bearer <api-key>\' format.')
auth_scheme, auth_token = auth_header.split(None, 1)
auth_scheme = auth_scheme.lower()
if auth_scheme != 'bearer':
raise Unauthorized('Invalid Authorization header format. Expected \'Bearer <api-key>\' format.')
decoded = PassportService().verify(auth_token)
user_id = decoded.get('user_id')
account = db.session.query(Account).filter(Account.id == account_id).first()
if account:
if account.status == AccountStatus.BANNED.value or account.status == AccountStatus.CLOSED.value:
raise Forbidden('Account is banned or closed.')
workspace_id = session.get('workspace_id')
if workspace_id:
tenant_account_join = db.session.query(TenantAccountJoin).filter(
TenantAccountJoin.account_id == account.id,
TenantAccountJoin.tenant_id == workspace_id
).first()
if not tenant_account_join:
tenant_account_join = db.session.query(TenantAccountJoin).filter(
TenantAccountJoin.account_id == account.id).first()
if tenant_account_join:
account.current_tenant_id = tenant_account_join.tenant_id
else:
_create_tenant_for_account(account)
session['workspace_id'] = account.current_tenant_id
else:
account.current_tenant_id = workspace_id
else:
tenant_account_join = db.session.query(TenantAccountJoin).filter(
TenantAccountJoin.account_id == account.id).first()
if tenant_account_join:
account.current_tenant_id = tenant_account_join.tenant_id
else:
_create_tenant_for_account(account)
session['workspace_id'] = account.current_tenant_id
current_time = datetime.utcnow()
# update last_active_at when last_active_at is more than 10 minutes ago
if current_time - account.last_active_at > timedelta(minutes=10):
account.last_active_at = current_time
db.session.commit()
# Log in the user with the updated user_id
flask_login.login_user(account, remember=True)
return account
return AccountService.load_user(user_id)
else:
return None
@login_manager.unauthorized_handler
def unauthorized_handler():
"""Handle unauthorized requests."""
@@ -216,6 +167,7 @@ if app.config['TESTING']:
@app.after_request
def after_request(response):
"""Add Version headers to the response."""
response.set_cookie('remember_token', '', expires=0)
response.headers.add('X-Version', app.config['CURRENT_VERSION'])
response.headers.add('X-Env', app.config['DEPLOY_ENV'])
return response

View File

@@ -3,12 +3,13 @@ import json
import math
import random
import string
import threading
import time
import uuid
import click
from tqdm import tqdm
from flask import current_app
from flask import current_app, Flask
from langchain.embeddings import OpenAIEmbeddings
from werkzeug.exceptions import NotFound
@@ -456,92 +457,92 @@ def update_qdrant_indexes():
@click.command('normalization-collections', help='restore all collections in one')
def normalization_collections():
click.echo(click.style('Start normalization collections.', fg='green'))
normalization_count = 0
normalization_count = []
page = 1
while True:
try:
datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \
.order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
.order_by(Dataset.created_at.desc()).paginate(page=page, per_page=100)
except NotFound:
break
datasets_result = datasets.items
page += 1
for dataset in datasets:
if not dataset.collection_binding_id:
try:
click.echo('restore dataset index: {}'.format(dataset.id))
try:
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except Exception:
provider = Provider(
id='provider_id',
tenant_id=dataset.tenant_id,
provider_name='openai',
provider_type=ProviderType.CUSTOM.value,
encrypted_config=json.dumps({'openai_api_key': 'TEST'}),
is_valid=True,
)
model_provider = OpenAIProvider(provider=provider)
embedding_model = OpenAIEmbedding(name="text-embedding-ada-002",
model_provider=model_provider)
embeddings = CacheEmbedding(embedding_model)
dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
filter(DatasetCollectionBinding.provider_name == embedding_model.model_provider.provider_name,
DatasetCollectionBinding.model_name == embedding_model.name). \
order_by(DatasetCollectionBinding.created_at). \
first()
for i in range(0, len(datasets_result), 5):
threads = []
sub_datasets = datasets_result[i:i + 5]
for dataset in sub_datasets:
document_format_thread = threading.Thread(target=deal_dataset_vector, kwargs={
'flask_app': current_app._get_current_object(),
'dataset': dataset,
'normalization_count': normalization_count
})
threads.append(document_format_thread)
document_format_thread.start()
for thread in threads:
thread.join()
if not dataset_collection_binding:
dataset_collection_binding = DatasetCollectionBinding(
provider_name=embedding_model.model_provider.provider_name,
model_name=embedding_model.name,
collection_name="Vector_index_" + str(uuid.uuid4()).replace("-", "_") + '_Node'
)
db.session.add(dataset_collection_binding)
db.session.commit()
click.echo(click.style('Congratulations! restore {} dataset indexes.'.format(len(normalization_count)), fg='green'))
from core.index.vector_index.qdrant_vector_index import QdrantVectorIndex, QdrantConfig
index = QdrantVectorIndex(
dataset=dataset,
config=QdrantConfig(
endpoint=current_app.config.get('QDRANT_URL'),
api_key=current_app.config.get('QDRANT_API_KEY'),
root_path=current_app.root_path
),
embeddings=embeddings
)
if index:
index.restore_dataset_in_one(dataset, dataset_collection_binding)
else:
click.echo('passed.')
def deal_dataset_vector(flask_app: Flask, dataset: Dataset, normalization_count: list):
with flask_app.app_context():
try:
click.echo('restore dataset index: {}'.format(dataset.id))
try:
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except Exception:
provider = Provider(
id='provider_id',
tenant_id=dataset.tenant_id,
provider_name='openai',
provider_type=ProviderType.CUSTOM.value,
encrypted_config=json.dumps({'openai_api_key': 'TEST'}),
is_valid=True,
)
model_provider = OpenAIProvider(provider=provider)
embedding_model = OpenAIEmbedding(name="text-embedding-ada-002",
model_provider=model_provider)
embeddings = CacheEmbedding(embedding_model)
dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
filter(DatasetCollectionBinding.provider_name == embedding_model.model_provider.provider_name,
DatasetCollectionBinding.model_name == embedding_model.name). \
order_by(DatasetCollectionBinding.created_at). \
first()
original_index = QdrantVectorIndex(
dataset=dataset,
config=QdrantConfig(
endpoint=current_app.config.get('QDRANT_URL'),
api_key=current_app.config.get('QDRANT_API_KEY'),
root_path=current_app.root_path
),
embeddings=embeddings
)
if original_index:
original_index.delete_original_collection(dataset, dataset_collection_binding)
normalization_count += 1
else:
click.echo('passed.')
except Exception as e:
click.echo(
click.style('Create dataset index error: {} {}'.format(e.__class__.__name__, str(e)),
fg='red'))
continue
if not dataset_collection_binding:
dataset_collection_binding = DatasetCollectionBinding(
provider_name=embedding_model.model_provider.provider_name,
model_name=embedding_model.name,
collection_name="Vector_index_" + str(uuid.uuid4()).replace("-", "_") + '_Node'
)
db.session.add(dataset_collection_binding)
db.session.commit()
click.echo(click.style('Congratulations! restore {} dataset indexes.'.format(normalization_count), fg='green'))
from core.index.vector_index.qdrant_vector_index import QdrantVectorIndex, QdrantConfig
index = QdrantVectorIndex(
dataset=dataset,
config=QdrantConfig(
endpoint=current_app.config.get('QDRANT_URL'),
api_key=current_app.config.get('QDRANT_API_KEY'),
root_path=current_app.root_path
),
embeddings=embeddings
)
if index:
# index.delete_by_group_id(dataset.id)
index.restore_dataset_in_one(dataset, dataset_collection_binding)
else:
click.echo('passed.')
normalization_count.append(1)
except Exception as e:
click.echo(
click.style('Create dataset index error: {} {}'.format(e.__class__.__name__, str(e)),
fg='red'))
@click.command('update_app_model_configs', help='Migrate data to support paragraph variable.')
@@ -646,6 +647,76 @@ def update_app_model_configs(batch_size):
pbar.update(len(data_batch))
@click.command('migrate_default_input_to_dataset_query_variable')
@click.option("--batch-size", default=500, help="Number of records to migrate in each batch.")
def migrate_default_input_to_dataset_query_variable(batch_size):
click.secho("Starting...", fg='green')
total_records = db.session.query(AppModelConfig) \
.join(App, App.app_model_config_id == AppModelConfig.id) \
.filter(App.mode == 'completion') \
.filter(AppModelConfig.dataset_query_variable == None) \
.count()
if total_records == 0:
click.secho("No data to migrate.", fg='green')
return
num_batches = (total_records + batch_size - 1) // batch_size
with tqdm(total=total_records, desc="Migrating Data") as pbar:
for i in range(num_batches):
offset = i * batch_size
limit = min(batch_size, total_records - offset)
click.secho(f"Fetching batch {i + 1}/{num_batches} from source database...", fg='green')
data_batch = db.session.query(AppModelConfig) \
.join(App, App.app_model_config_id == AppModelConfig.id) \
.filter(App.mode == 'completion') \
.filter(AppModelConfig.dataset_query_variable == None) \
.order_by(App.created_at) \
.offset(offset).limit(limit).all()
if not data_batch:
click.secho("No more data to migrate.", fg='green')
break
try:
click.secho(f"Migrating {len(data_batch)} records...", fg='green')
for data in data_batch:
config = AppModelConfig.to_dict(data)
tools = config["agent_mode"]["tools"]
dataset_exists = "dataset" in str(tools)
if not dataset_exists:
continue
user_input_form = config.get("user_input_form", [])
for form in user_input_form:
paragraph = form.get('paragraph')
if paragraph \
and paragraph.get('variable') == 'query':
data.dataset_query_variable = 'query'
break
if paragraph \
and paragraph.get('variable') == 'default_input':
data.dataset_query_variable = 'default_input'
break
db.session.commit()
except Exception as e:
click.secho(f"Error while migrating data: {e}, app_id: {data.app_id}, app_model_config_id: {data.id}",
fg='red')
continue
click.secho(f"Successfully migrated batch {i + 1}/{num_batches}.", fg='green')
pbar.update(len(data_batch))
def register_commands(app):
app.cli.add_command(reset_password)
@@ -659,3 +730,4 @@ def register_commands(app):
app.cli.add_command(update_qdrant_indexes)
app.cli.add_command(update_app_model_configs)
app.cli.add_command(normalization_collections)
app.cli.add_command(migrate_default_input_to_dataset_query_variable)

View File

@@ -10,9 +10,6 @@ from extensions.ext_redis import redis_client
dotenv.load_dotenv()
DEFAULTS = {
'COOKIE_HTTPONLY': 'True',
'COOKIE_SECURE': 'True',
'COOKIE_SAMESITE': 'None',
'DB_USERNAME': 'postgres',
'DB_PASSWORD': '',
'DB_HOST': 'localhost',
@@ -22,10 +19,6 @@ DEFAULTS = {
'REDIS_PORT': '6379',
'REDIS_DB': '0',
'REDIS_USE_SSL': 'False',
'SESSION_REDIS_HOST': 'localhost',
'SESSION_REDIS_PORT': '6379',
'SESSION_REDIS_DB': '2',
'SESSION_REDIS_USE_SSL': 'False',
'OAUTH_REDIRECT_PATH': '/console/api/oauth/authorize',
'OAUTH_REDIRECT_INDEX_PATH': '/',
'CONSOLE_WEB_URL': 'https://cloud.dify.ai',
@@ -36,9 +29,6 @@ DEFAULTS = {
'STORAGE_TYPE': 'local',
'STORAGE_LOCAL_PATH': 'storage',
'CHECK_UPDATE_URL': 'https://updates.dify.ai',
'SESSION_TYPE': 'sqlalchemy',
'SESSION_PERMANENT': 'True',
'SESSION_USE_SIGNER': 'True',
'DEPLOY_ENV': 'PRODUCTION',
'SQLALCHEMY_POOL_SIZE': 30,
'SQLALCHEMY_POOL_RECYCLE': 3600,
@@ -102,7 +92,7 @@ class Config:
self.CONSOLE_URL = get_env('CONSOLE_URL')
self.API_URL = get_env('API_URL')
self.APP_URL = get_env('APP_URL')
self.CURRENT_VERSION = "0.3.23"
self.CURRENT_VERSION = "0.3.27"
self.COMMIT_SHA = get_env('COMMIT_SHA')
self.EDITION = "SELF_HOSTED"
self.DEPLOY_ENV = get_env('DEPLOY_ENV')
@@ -115,20 +105,6 @@ class Config:
# Alternatively you can set it with `SECRET_KEY` environment variable.
self.SECRET_KEY = get_env('SECRET_KEY')
# cookie settings
self.REMEMBER_COOKIE_HTTPONLY = get_bool_env('COOKIE_HTTPONLY')
self.SESSION_COOKIE_HTTPONLY = get_bool_env('COOKIE_HTTPONLY')
self.REMEMBER_COOKIE_SAMESITE = get_env('COOKIE_SAMESITE')
self.SESSION_COOKIE_SAMESITE = get_env('COOKIE_SAMESITE')
self.REMEMBER_COOKIE_SECURE = get_bool_env('COOKIE_SECURE')
self.SESSION_COOKIE_SECURE = get_bool_env('COOKIE_SECURE')
self.PERMANENT_SESSION_LIFETIME = timedelta(days=7)
# session settings, only support sqlalchemy, redis
self.SESSION_TYPE = get_env('SESSION_TYPE')
self.SESSION_PERMANENT = get_bool_env('SESSION_PERMANENT')
self.SESSION_USE_SIGNER = get_bool_env('SESSION_USE_SIGNER')
# redis settings
self.REDIS_HOST = get_env('REDIS_HOST')
self.REDIS_PORT = get_env('REDIS_PORT')
@@ -137,14 +113,6 @@ class Config:
self.REDIS_DB = get_env('REDIS_DB')
self.REDIS_USE_SSL = get_bool_env('REDIS_USE_SSL')
# session redis settings
self.SESSION_REDIS_HOST = get_env('SESSION_REDIS_HOST')
self.SESSION_REDIS_PORT = get_env('SESSION_REDIS_PORT')
self.SESSION_REDIS_USERNAME = get_env('SESSION_REDIS_USERNAME')
self.SESSION_REDIS_PASSWORD = get_env('SESSION_REDIS_PASSWORD')
self.SESSION_REDIS_DB = get_env('SESSION_REDIS_DB')
self.SESSION_REDIS_USE_SSL = get_bool_env('SESSION_REDIS_USE_SSL')
# storage settings
self.STORAGE_TYPE = get_env('STORAGE_TYPE')
self.STORAGE_LOCAL_PATH = get_env('STORAGE_LOCAL_PATH')
@@ -167,6 +135,14 @@ class Config:
self.QDRANT_URL = get_env('QDRANT_URL')
self.QDRANT_API_KEY = get_env('QDRANT_API_KEY')
# milvus setting
self.MILVUS_HOST = get_env('MILVUS_HOST')
self.MILVUS_PORT = get_env('MILVUS_PORT')
self.MILVUS_USER = get_env('MILVUS_USER')
self.MILVUS_PASSWORD = get_env('MILVUS_PASSWORD')
self.MILVUS_SECURE = get_env('MILVUS_SECURE')
# cors settings
self.CONSOLE_CORS_ALLOW_ORIGINS = get_cors_allow_origins(
'CONSOLE_CORS_ALLOW_ORIGINS', self.CONSOLE_WEB_URL)

View File

@@ -31,6 +31,7 @@ model_templates = {
'model': json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo-instruct",
"mode": "completion",
"completion_params": {
"max_tokens": 512,
"temperature": 1,
@@ -81,6 +82,7 @@ model_templates = {
'model': json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo",
"mode": "chat",
"completion_params": {
"max_tokens": 512,
"temperature": 1,
@@ -137,10 +139,11 @@ demo_model_templates = {
},
opening_statement='',
suggested_questions=None,
pre_prompt="Please translate the following text into {{target_language}}:\n",
pre_prompt="Please translate the following text into {{target_language}}:\n{{query}}\ntranslate:",
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo-instruct",
"mode": "completion",
"completion_params": {
"max_tokens": 1000,
"temperature": 0,
@@ -169,6 +172,13 @@ demo_model_templates = {
'Italian',
]
}
},{
"paragraph": {
"label": "Query",
"variable": "query",
"required": True,
"default": ""
}
}
])
)
@@ -200,6 +210,7 @@ demo_model_templates = {
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo",
"mode": "chat",
"completion_params": {
"max_tokens": 300,
"temperature": 0.8,
@@ -255,10 +266,11 @@ demo_model_templates = {
},
opening_statement='',
suggested_questions=None,
pre_prompt="请将以下文本翻译为{{target_language}}:\n",
pre_prompt="请将以下文本翻译为{{target_language}}:\n{{query}}\n翻译:",
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo-instruct",
"mode": "completion",
"completion_params": {
"max_tokens": 1000,
"temperature": 0,
@@ -287,6 +299,13 @@ demo_model_templates = {
"意大利语",
]
}
},{
"paragraph": {
"label": "文本内容",
"variable": "query",
"required": True,
"default": ""
}
}
])
)
@@ -318,6 +337,7 @@ demo_model_templates = {
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo",
"mode": "chat",
"completion_params": {
"max_tokens": 300,
"temperature": 0.8,

View File

@@ -9,7 +9,7 @@ api = ExternalApi(bp)
from . import setup, version, apikey, admin
# Import app controllers
from .app import app, site, completion, model_config, statistic, conversation, message, generator, audio
from .app import advanced_prompt_template, app, site, completion, model_config, statistic, conversation, message, generator, audio
# Import auth controllers
from .auth import login, oauth, data_source_oauth, activate

View File

@@ -1,5 +1,5 @@
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
import flask_restful
from flask_restful import Resource, fields, marshal_with
from werkzeug.exceptions import Forbidden
@@ -81,6 +81,7 @@ class BaseApiKeyListResource(Resource):
key = ApiToken.generate_api_key(self.token_prefix, 24)
api_token = ApiToken()
setattr(api_token, self.resource_id_field, resource_id)
api_token.tenant_id = current_user.current_tenant_id
api_token.token = key
api_token.type = self.resource_type
db.session.add(api_token)

View File

@@ -0,0 +1,26 @@
from flask_restful import Resource, reqparse
from controllers.console import api
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from libs.login import login_required
from services.advanced_prompt_template_service import AdvancedPromptTemplateService
class AdvancedPromptTemplateList(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
parser = reqparse.RequestParser()
parser.add_argument('app_mode', type=str, required=True, location='args')
parser.add_argument('model_mode', type=str, required=True, location='args')
parser.add_argument('has_context', type=str, required=False, default='true', location='args')
parser.add_argument('model_name', type=str, required=True, location='args')
args = parser.parse_args()
service = AdvancedPromptTemplateService()
return service.get_prompt(args)
api.add_resource(AdvancedPromptTemplateList, '/app/prompt-templates')

View File

@@ -3,10 +3,9 @@ import json
import logging
from datetime import datetime
import flask
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, reqparse, fields, marshal_with, abort, inputs
from libs.login import login_required
from flask_restful import Resource, reqparse, marshal_with, abort, inputs
from werkzeug.exceptions import Forbidden
from constants.model_template import model_templates, demo_model_templates
@@ -17,42 +16,13 @@ from controllers.console.wraps import account_initialization_required
from core.model_providers.error import ProviderTokenNotInitError, LLMBadRequestError
from core.model_providers.model_factory import ModelFactory
from core.model_providers.model_provider_factory import ModelProviderFactory
from core.model_providers.models.entity.model_params import ModelType
from events.app_event import app_was_created, app_was_deleted
from libs.helper import TimestampField
from fields.app_fields import app_pagination_fields, app_detail_fields, template_list_fields, \
app_detail_fields_with_site
from extensions.ext_database import db
from models.model import App, AppModelConfig, Site
from services.app_model_config_service import AppModelConfigService
model_config_fields = {
'opening_statement': fields.String,
'suggested_questions': fields.Raw(attribute='suggested_questions_list'),
'suggested_questions_after_answer': fields.Raw(attribute='suggested_questions_after_answer_dict'),
'speech_to_text': fields.Raw(attribute='speech_to_text_dict'),
'retriever_resource': fields.Raw(attribute='retriever_resource_dict'),
'more_like_this': fields.Raw(attribute='more_like_this_dict'),
'sensitive_word_avoidance': fields.Raw(attribute='sensitive_word_avoidance_dict'),
'model': fields.Raw(attribute='model_dict'),
'user_input_form': fields.Raw(attribute='user_input_form_list'),
'pre_prompt': fields.String,
'agent_mode': fields.Raw(attribute='agent_mode_dict'),
}
app_detail_fields = {
'id': fields.String,
'name': fields.String,
'mode': fields.String,
'icon': fields.String,
'icon_background': fields.String,
'enable_site': fields.Boolean,
'enable_api': fields.Boolean,
'api_rpm': fields.Integer,
'api_rph': fields.Integer,
'is_demo': fields.Boolean,
'model_config': fields.Nested(model_config_fields, attribute='app_model_config'),
'created_at': TimestampField
}
def _get_app(app_id, tenant_id):
app = db.session.query(App).filter(App.id == app_id, App.tenant_id == tenant_id).first()
@@ -62,35 +32,6 @@ def _get_app(app_id, tenant_id):
class AppListApi(Resource):
prompt_config_fields = {
'prompt_template': fields.String,
}
model_config_partial_fields = {
'model': fields.Raw(attribute='model_dict'),
'pre_prompt': fields.String,
}
app_partial_fields = {
'id': fields.String,
'name': fields.String,
'mode': fields.String,
'icon': fields.String,
'icon_background': fields.String,
'enable_site': fields.Boolean,
'enable_api': fields.Boolean,
'is_demo': fields.Boolean,
'model_config': fields.Nested(model_config_partial_fields, attribute='app_model_config'),
'created_at': TimestampField
}
app_pagination_fields = {
'page': fields.Integer,
'limit': fields.Integer(attribute='per_page'),
'total': fields.Integer,
'has_more': fields.Boolean(attribute='has_next'),
'data': fields.List(fields.Nested(app_partial_fields), attribute='items')
}
@setup_required
@login_required
@@ -162,7 +103,8 @@ class AppListApi(Resource):
model_configuration = AppModelConfigService.validate_configuration(
tenant_id=current_user.current_tenant_id,
account=current_user,
config=model_config_dict
config=model_config_dict,
mode=args['mode']
)
app = App(
@@ -236,18 +178,6 @@ class AppListApi(Resource):
class AppTemplateApi(Resource):
template_fields = {
'name': fields.String,
'icon': fields.String,
'icon_background': fields.String,
'description': fields.String,
'mode': fields.String,
'model_config': fields.Nested(model_config_fields),
}
template_list_fields = {
'data': fields.List(fields.Nested(template_fields)),
}
@setup_required
@login_required
@@ -266,38 +196,6 @@ class AppTemplateApi(Resource):
class AppApi(Resource):
site_fields = {
'access_token': fields.String(attribute='code'),
'code': fields.String,
'title': fields.String,
'icon': fields.String,
'icon_background': fields.String,
'description': fields.String,
'default_language': fields.String,
'customize_domain': fields.String,
'copyright': fields.String,
'privacy_policy': fields.String,
'customize_token_strategy': fields.String,
'prompt_public': fields.Boolean,
'app_base_url': fields.String,
}
app_detail_fields_with_site = {
'id': fields.String,
'name': fields.String,
'mode': fields.String,
'icon': fields.String,
'icon_background': fields.String,
'enable_site': fields.Boolean,
'enable_api': fields.Boolean,
'api_rpm': fields.Integer,
'api_rph': fields.Integer,
'is_demo': fields.Boolean,
'model_config': fields.Nested(model_config_fields, attribute='app_model_config'),
'site': fields.Nested(site_fields),
'api_base_url': fields.String,
'created_at': TimestampField
}
@setup_required
@login_required

View File

@@ -2,8 +2,8 @@
import logging
from flask import request
from core.login.login import login_required
from werkzeug.exceptions import InternalServerError, NotFound
from libs.login import login_required
from werkzeug.exceptions import InternalServerError
import services
from controllers.console import api

View File

@@ -5,7 +5,7 @@ from typing import Generator, Union
import flask_login
from flask import Response, stream_with_context
from core.login.login import login_required
from libs.login import login_required
from werkzeug.exceptions import InternalServerError, NotFound
import services

View File

@@ -2,8 +2,8 @@ from datetime import datetime
import pytz
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, reqparse, fields, marshal_with
from libs.login import login_required
from flask_restful import Resource, reqparse, marshal_with
from flask_restful.inputs import int_range
from sqlalchemy import or_, func
from sqlalchemy.orm import joinedload
@@ -13,107 +13,14 @@ from controllers.console import api
from controllers.console.app import _get_app
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from libs.helper import TimestampField, datetime_string, uuid_value
from fields.conversation_fields import conversation_pagination_fields, conversation_detail_fields, \
conversation_message_detail_fields, conversation_with_summary_pagination_fields
from libs.helper import datetime_string
from extensions.ext_database import db
from models.model import Message, MessageAnnotation, Conversation
account_fields = {
'id': fields.String,
'name': fields.String,
'email': fields.String
}
feedback_fields = {
'rating': fields.String,
'content': fields.String,
'from_source': fields.String,
'from_end_user_id': fields.String,
'from_account': fields.Nested(account_fields, allow_null=True),
}
annotation_fields = {
'content': fields.String,
'account': fields.Nested(account_fields, allow_null=True),
'created_at': TimestampField
}
message_detail_fields = {
'id': fields.String,
'conversation_id': fields.String,
'inputs': fields.Raw,
'query': fields.String,
'message': fields.Raw,
'message_tokens': fields.Integer,
'answer': fields.String,
'answer_tokens': fields.Integer,
'provider_response_latency': fields.Float,
'from_source': fields.String,
'from_end_user_id': fields.String,
'from_account_id': fields.String,
'feedbacks': fields.List(fields.Nested(feedback_fields)),
'annotation': fields.Nested(annotation_fields, allow_null=True),
'created_at': TimestampField
}
feedback_stat_fields = {
'like': fields.Integer,
'dislike': fields.Integer
}
model_config_fields = {
'opening_statement': fields.String,
'suggested_questions': fields.Raw,
'model': fields.Raw,
'user_input_form': fields.Raw,
'pre_prompt': fields.String,
'agent_mode': fields.Raw,
}
class CompletionConversationApi(Resource):
class MessageTextField(fields.Raw):
def format(self, value):
return value[0]['text'] if value else ''
simple_configs_fields = {
'prompt_template': fields.String,
}
simple_model_config_fields = {
'model': fields.Raw(attribute='model_dict'),
'pre_prompt': fields.String,
}
simple_message_detail_fields = {
'inputs': fields.Raw,
'query': fields.String,
'message': MessageTextField,
'answer': fields.String,
}
conversation_fields = {
'id': fields.String,
'status': fields.String,
'from_source': fields.String,
'from_end_user_id': fields.String,
'from_end_user_session_id': fields.String(),
'from_account_id': fields.String,
'read_at': TimestampField,
'created_at': TimestampField,
'annotation': fields.Nested(annotation_fields, allow_null=True),
'model_config': fields.Nested(simple_model_config_fields),
'user_feedback_stats': fields.Nested(feedback_stat_fields),
'admin_feedback_stats': fields.Nested(feedback_stat_fields),
'message': fields.Nested(simple_message_detail_fields, attribute='first_message')
}
conversation_pagination_fields = {
'page': fields.Integer,
'limit': fields.Integer(attribute='per_page'),
'total': fields.Integer,
'has_more': fields.Boolean(attribute='has_next'),
'data': fields.List(fields.Nested(conversation_fields), attribute='items')
}
@setup_required
@login_required
@@ -191,21 +98,11 @@ class CompletionConversationApi(Resource):
class CompletionConversationDetailApi(Resource):
conversation_detail_fields = {
'id': fields.String,
'status': fields.String,
'from_source': fields.String,
'from_end_user_id': fields.String,
'from_account_id': fields.String,
'created_at': TimestampField,
'model_config': fields.Nested(model_config_fields),
'message': fields.Nested(message_detail_fields, attribute='first_message'),
}
@setup_required
@login_required
@account_initialization_required
@marshal_with(conversation_detail_fields)
@marshal_with(conversation_message_detail_fields)
def get(self, app_id, conversation_id):
app_id = str(app_id)
conversation_id = str(conversation_id)
@@ -234,44 +131,11 @@ class CompletionConversationDetailApi(Resource):
class ChatConversationApi(Resource):
simple_configs_fields = {
'prompt_template': fields.String,
}
simple_model_config_fields = {
'model': fields.Raw(attribute='model_dict'),
'pre_prompt': fields.String,
}
conversation_fields = {
'id': fields.String,
'status': fields.String,
'from_source': fields.String,
'from_end_user_id': fields.String,
'from_end_user_session_id': fields.String,
'from_account_id': fields.String,
'summary': fields.String(attribute='summary_or_query'),
'read_at': TimestampField,
'created_at': TimestampField,
'annotated': fields.Boolean,
'model_config': fields.Nested(simple_model_config_fields),
'message_count': fields.Integer,
'user_feedback_stats': fields.Nested(feedback_stat_fields),
'admin_feedback_stats': fields.Nested(feedback_stat_fields)
}
conversation_pagination_fields = {
'page': fields.Integer,
'limit': fields.Integer(attribute='per_page'),
'total': fields.Integer,
'has_more': fields.Boolean(attribute='has_next'),
'data': fields.List(fields.Nested(conversation_fields), attribute='items')
}
@setup_required
@login_required
@account_initialization_required
@marshal_with(conversation_pagination_fields)
@marshal_with(conversation_with_summary_pagination_fields)
def get(self, app_id):
app_id = str(app_id)
@@ -356,19 +220,6 @@ class ChatConversationApi(Resource):
class ChatConversationDetailApi(Resource):
conversation_detail_fields = {
'id': fields.String,
'status': fields.String,
'from_source': fields.String,
'from_end_user_id': fields.String,
'from_account_id': fields.String,
'created_at': TimestampField,
'annotated': fields.Boolean,
'model_config': fields.Nested(model_config_fields),
'message_count': fields.Integer,
'user_feedback_stats': fields.Nested(feedback_stat_fields),
'admin_feedback_stats': fields.Nested(feedback_stat_fields)
}
@setup_required
@login_required

View File

@@ -1,5 +1,5 @@
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource, reqparse
from controllers.console import api
@@ -12,35 +12,6 @@ from core.model_providers.error import ProviderTokenNotInitError, QuotaExceededE
LLMAPIUnavailableError, LLMRateLimitError, LLMAuthorizationError, ModelCurrentlyNotSupportError
class IntroductionGenerateApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self):
parser = reqparse.RequestParser()
parser.add_argument('prompt_template', type=str, required=True, location='json')
args = parser.parse_args()
account = current_user
try:
answer = LLMGenerator.generate_introduction(
account.current_tenant_id,
args['prompt_template']
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
raise CompletionRequestError(str(e))
return {'introduction': answer}
class RuleGenerateApi(Resource):
@setup_required
@login_required
@@ -72,5 +43,4 @@ class RuleGenerateApi(Resource):
return rules
api.add_resource(IntroductionGenerateApi, '/introduction-generate')
api.add_resource(RuleGenerateApi, '/rule-generate')

View File

@@ -16,8 +16,9 @@ from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.model_providers.error import LLMRateLimitError, LLMBadRequestError, LLMAuthorizationError, LLMAPIConnectionError, \
ProviderTokenNotInitError, LLMAPIUnavailableError, QuotaExceededError, ModelCurrentlyNotSupportError
from core.login.login import login_required
from libs.helper import uuid_value, TimestampField
from libs.login import login_required
from fields.conversation_fields import message_detail_fields
from libs.helper import uuid_value
from libs.infinite_scroll_pagination import InfiniteScrollPagination
from extensions.ext_database import db
from models.model import MessageAnnotation, Conversation, Message, MessageFeedback
@@ -27,44 +28,6 @@ from services.errors.conversation import ConversationNotExistsError
from services.errors.message import MessageNotExistsError
from services.message_service import MessageService
account_fields = {
'id': fields.String,
'name': fields.String,
'email': fields.String
}
feedback_fields = {
'rating': fields.String,
'content': fields.String,
'from_source': fields.String,
'from_end_user_id': fields.String,
'from_account': fields.Nested(account_fields, allow_null=True),
}
annotation_fields = {
'content': fields.String,
'account': fields.Nested(account_fields, allow_null=True),
'created_at': TimestampField
}
message_detail_fields = {
'id': fields.String,
'conversation_id': fields.String,
'inputs': fields.Raw,
'query': fields.String,
'message': fields.Raw,
'message_tokens': fields.Integer,
'answer': fields.String,
'answer_tokens': fields.Integer,
'provider_response_latency': fields.Float,
'from_source': fields.String,
'from_end_user_id': fields.String,
'from_account_id': fields.String,
'feedbacks': fields.List(fields.Nested(feedback_fields)),
'annotation': fields.Nested(annotation_fields, allow_null=True),
'created_at': TimestampField
}
class ChatMessageListApi(Resource):
message_infinite_scroll_pagination_fields = {
@@ -366,7 +329,7 @@ class MessageApi(Resource):
message_id = str(message_id)
# get app info
app_model = _get_app(app_id, 'chat')
app_model = _get_app(app_id)
message = db.session.query(Message).filter(
Message.id == message_id,

View File

@@ -1,5 +1,4 @@
# -*- coding:utf-8 -*-
import json
from flask import request
from flask_restful import Resource
@@ -9,7 +8,7 @@ from controllers.console import api
from controllers.console.app import _get_app
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.login.login import login_required
from libs.login import login_required
from events.app_event import app_model_config_was_updated
from extensions.ext_database import db
from models.model import AppModelConfig
@@ -31,7 +30,8 @@ class ModelConfigResource(Resource):
model_configuration = AppModelConfigService.validate_configuration(
tenant_id=current_user.current_tenant_id,
account=current_user,
config=request.json
config=request.json,
mode=app_model.mode
)
new_app_model_config = AppModelConfig(

View File

@@ -1,33 +1,18 @@
# -*- coding:utf-8 -*-
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, reqparse, fields, marshal_with
from libs.login import login_required
from flask_restful import Resource, reqparse, marshal_with
from werkzeug.exceptions import NotFound, Forbidden
from controllers.console import api
from controllers.console.app import _get_app
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from fields.app_fields import app_site_fields
from libs.helper import supported_language
from extensions.ext_database import db
from models.model import Site
app_site_fields = {
'app_id': fields.String,
'access_token': fields.String(attribute='code'),
'code': fields.String,
'title': fields.String,
'icon': fields.String,
'icon_background': fields.String,
'description': fields.String,
'default_language': fields.String,
'customize_domain': fields.String,
'copyright': fields.String,
'privacy_policy': fields.String,
'customize_token_strategy': fields.String,
'prompt_public': fields.Boolean
}
def parse_app_site_args():
parser = reqparse.RequestParser()

View File

@@ -5,7 +5,7 @@ from datetime import datetime
import pytz
from flask import jsonify
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource, reqparse
from controllers.console import api

View File

@@ -1,16 +1,13 @@
import logging
from datetime import datetime
from typing import Optional
import flask_login
import requests
from flask import request, redirect, current_app, session
from flask import request, redirect, current_app
from flask_login import current_user
from flask_restful import Resource
from werkzeug.exceptions import Forbidden
from core.login.login import login_required
from libs.login import login_required
from libs.oauth_data_source import NotionOAuth
from controllers.console import api
from ..setup import setup_required
@@ -45,15 +42,34 @@ class OAuthDataSource(Resource):
if current_app.config.get('NOTION_INTEGRATION_TYPE') == 'internal':
internal_secret = current_app.config.get('NOTION_INTERNAL_SECRET')
oauth_provider.save_internal_access_token(internal_secret)
return redirect(f'{current_app.config.get("CONSOLE_WEB_URL")}?oauth_data_source=success')
return { 'data': '' }
else:
auth_url = oauth_provider.get_authorization_url()
return redirect(auth_url)
return { 'data': auth_url }, 200
class OAuthDataSourceCallback(Resource):
def get(self, provider: str):
OAUTH_DATASOURCE_PROVIDERS = get_oauth_providers()
with current_app.app_context():
oauth_provider = OAUTH_DATASOURCE_PROVIDERS.get(provider)
if not oauth_provider:
return {'error': 'Invalid provider'}, 400
if 'code' in request.args:
code = request.args.get('code')
return redirect(f'{current_app.config.get("CONSOLE_WEB_URL")}?type=notion&code={code}')
elif 'error' in request.args:
error = request.args.get('error')
return redirect(f'{current_app.config.get("CONSOLE_WEB_URL")}?type=notion&error={error}')
else:
return redirect(f'{current_app.config.get("CONSOLE_WEB_URL")}?type=notion&error=Access denied')
class OAuthDataSourceBinding(Resource):
def get(self, provider: str):
OAUTH_DATASOURCE_PROVIDERS = get_oauth_providers()
with current_app.app_context():
@@ -69,12 +85,7 @@ class OAuthDataSourceCallback(Resource):
f"An error occurred during the OAuthCallback process with {provider}: {e.response.text}")
return {'error': 'OAuth data source process failed'}, 400
return redirect(f'{current_app.config.get("CONSOLE_WEB_URL")}?oauth_data_source=success')
elif 'error' in request.args:
error = request.args.get('error')
return redirect(f'{current_app.config.get("CONSOLE_WEB_URL")}?oauth_data_source={error}')
else:
return redirect(f'{current_app.config.get("CONSOLE_WEB_URL")}?oauth_data_source=access_denied')
return {'result': 'success'}, 200
class OAuthDataSourceSync(Resource):
@@ -101,4 +112,5 @@ class OAuthDataSourceSync(Resource):
api.add_resource(OAuthDataSource, '/oauth/data-source/<string:provider>')
api.add_resource(OAuthDataSourceCallback, '/oauth/data-source/callback/<string:provider>')
api.add_resource(OAuthDataSourceBinding, '/oauth/data-source/binding/<string:provider>')
api.add_resource(OAuthDataSourceSync, '/oauth/data-source/<string:provider>/<uuid:binding_id>/sync')

View File

@@ -6,7 +6,6 @@ from flask_restful import Resource, reqparse
import services
from controllers.console import api
from controllers.console.error import AccountNotLinkTenantError
from controllers.console.setup import setup_required
from libs.helper import email
from libs.password import valid_password
@@ -37,12 +36,12 @@ class LoginApi(Resource):
except Exception:
pass
flask_login.login_user(account, remember=args['remember_me'])
AccountService.update_last_login(account, request)
# todo: return the user info
token = AccountService.get_account_jwt_token(account)
return {'result': 'success'}
return {'result': 'success', 'data': token}
class LogoutApi(Resource):

View File

@@ -2,9 +2,8 @@ import logging
from datetime import datetime
from typing import Optional
import flask_login
import requests
from flask import request, redirect, current_app, session
from flask import request, redirect, current_app
from flask_restful import Resource
from libs.oauth import OAuthUserInfo, GitHubOAuth, GoogleOAuth
@@ -75,12 +74,11 @@ class OAuthCallback(Resource):
account.initialized_at = datetime.utcnow()
db.session.commit()
# login user
session.clear()
flask_login.login_user(account, remember=True)
AccountService.update_last_login(account, request)
return redirect(f'{current_app.config.get("CONSOLE_WEB_URL")}?oauth_login=success')
token = AccountService.get_account_jwt_token(account)
return redirect(f'{current_app.config.get("CONSOLE_WEB_URL")}?console_token={token}')
def _get_account_by_openid_or_email(provider: str, user_info: OAuthUserInfo) -> Optional[Account]:

View File

@@ -2,10 +2,10 @@ import datetime
import json
from cachetools import TTLCache
from flask import request, current_app
from flask import request
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, marshal_with, fields, reqparse, marshal
from libs.login import login_required
from flask_restful import Resource, marshal_with, reqparse
from werkzeug.exceptions import NotFound
from controllers.console import api
@@ -14,7 +14,7 @@ from controllers.console.wraps import account_initialization_required
from core.data_loader.loader.notion import NotionLoader
from core.indexing_runner import IndexingRunner
from extensions.ext_database import db
from libs.helper import TimestampField
from fields.data_source_fields import integrate_notion_info_list_fields, integrate_list_fields
from models.dataset import Document
from models.source import DataSourceBinding
from services.dataset_service import DatasetService, DocumentService
@@ -24,37 +24,6 @@ cache = TTLCache(maxsize=None, ttl=30)
class DataSourceApi(Resource):
integrate_icon_fields = {
'type': fields.String,
'url': fields.String,
'emoji': fields.String
}
integrate_page_fields = {
'page_name': fields.String,
'page_id': fields.String,
'page_icon': fields.Nested(integrate_icon_fields, allow_null=True),
'parent_id': fields.String,
'type': fields.String
}
integrate_workspace_fields = {
'workspace_name': fields.String,
'workspace_id': fields.String,
'workspace_icon': fields.String,
'pages': fields.List(fields.Nested(integrate_page_fields)),
'total': fields.Integer
}
integrate_fields = {
'id': fields.String,
'provider': fields.String,
'created_at': TimestampField,
'is_bound': fields.Boolean,
'disabled': fields.Boolean,
'link': fields.String,
'source_info': fields.Nested(integrate_workspace_fields)
}
integrate_list_fields = {
'data': fields.List(fields.Nested(integrate_fields)),
}
@setup_required
@login_required
@@ -131,28 +100,6 @@ class DataSourceApi(Resource):
class DataSourceNotionListApi(Resource):
integrate_icon_fields = {
'type': fields.String,
'url': fields.String,
'emoji': fields.String
}
integrate_page_fields = {
'page_name': fields.String,
'page_id': fields.String,
'page_icon': fields.Nested(integrate_icon_fields, allow_null=True),
'is_bound': fields.Boolean,
'parent_id': fields.String,
'type': fields.String
}
integrate_workspace_fields = {
'workspace_name': fields.String,
'workspace_id': fields.String,
'workspace_icon': fields.String,
'pages': fields.List(fields.Nested(integrate_page_fields))
}
integrate_notion_info_list_fields = {
'notion_info': fields.List(fields.Nested(integrate_workspace_fields)),
}
@setup_required
@login_required

View File

@@ -1,8 +1,11 @@
# -*- coding:utf-8 -*-
from flask import request
import flask_restful
from flask import request, current_app
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, reqparse, fields, marshal, marshal_with
from controllers.console.apikey import api_key_list, api_key_fields
from libs.login import login_required
from flask_restful import Resource, reqparse, marshal, marshal_with
from werkzeug.exceptions import NotFound, Forbidden
import services
from controllers.console import api
@@ -12,45 +15,16 @@ from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.indexing_runner import IndexingRunner
from core.model_providers.error import LLMBadRequestError, ProviderTokenNotInitError
from core.model_providers.model_factory import ModelFactory
from core.model_providers.models.entity.model_params import ModelType
from libs.helper import TimestampField
from fields.app_fields import related_app_list
from fields.dataset_fields import dataset_detail_fields, dataset_query_detail_fields
from fields.document_fields import document_status_fields
from extensions.ext_database import db
from models.dataset import DocumentSegment, Document
from models.model import UploadFile
from models.model import UploadFile, ApiToken
from services.dataset_service import DatasetService, DocumentService
from services.provider_service import ProviderService
dataset_detail_fields = {
'id': fields.String,
'name': fields.String,
'description': fields.String,
'provider': fields.String,
'permission': fields.String,
'data_source_type': fields.String,
'indexing_technique': fields.String,
'app_count': fields.Integer,
'document_count': fields.Integer,
'word_count': fields.Integer,
'created_by': fields.String,
'created_at': TimestampField,
'updated_by': fields.String,
'updated_at': TimestampField,
'embedding_model': fields.String,
'embedding_model_provider': fields.String,
'embedding_available': fields.Boolean
}
dataset_query_detail_fields = {
"id": fields.String,
"content": fields.String,
"source": fields.String,
"source_app_id": fields.String,
"created_by_role": fields.String,
"created_by": fields.String,
"created_at": TimestampField
}
def _validate_name(name):
if not name or len(name) < 1 or len(name) > 40:
@@ -82,7 +56,8 @@ class DatasetListApi(Resource):
# check embedding setting
provider_service = ProviderService()
valid_model_list = provider_service.get_valid_model_list(current_user.current_tenant_id, ModelType.EMBEDDINGS.value)
valid_model_list = provider_service.get_valid_model_list(current_user.current_tenant_id,
ModelType.EMBEDDINGS.value)
# if len(valid_model_list) == 0:
# raise ProviderNotInitializeError(
# f"No Embedding Model available. Please configure a valid provider "
@@ -157,7 +132,8 @@ class DatasetApi(Resource):
# check embedding setting
provider_service = ProviderService()
# get valid model list
valid_model_list = provider_service.get_valid_model_list(current_user.current_tenant_id, ModelType.EMBEDDINGS.value)
valid_model_list = provider_service.get_valid_model_list(current_user.current_tenant_id,
ModelType.EMBEDDINGS.value)
model_names = []
for valid_model in valid_model_list:
model_names.append(f"{valid_model['model_name']}:{valid_model['model_provider']['provider_name']}")
@@ -271,7 +247,8 @@ class DatasetIndexingEstimateApi(Resource):
parser.add_argument('indexing_technique', type=str, required=True, nullable=True, location='json')
parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
parser.add_argument('dataset_id', type=str, required=False, nullable=False, location='json')
parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False, location='json')
parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False,
location='json')
args = parser.parse_args()
# validate args
DocumentService.estimate_args_validate(args)
@@ -320,18 +297,6 @@ class DatasetIndexingEstimateApi(Resource):
class DatasetRelatedAppListApi(Resource):
app_detail_kernel_fields = {
'id': fields.String,
'name': fields.String,
'mode': fields.String,
'icon': fields.String,
'icon_background': fields.String,
}
related_app_list = {
'data': fields.List(fields.Nested(app_detail_kernel_fields)),
'total': fields.Integer,
}
@setup_required
@login_required
@@ -363,24 +328,6 @@ class DatasetRelatedAppListApi(Resource):
class DatasetIndexingStatusApi(Resource):
document_status_fields = {
'id': fields.String,
'indexing_status': fields.String,
'processing_started_at': TimestampField,
'parsing_completed_at': TimestampField,
'cleaning_completed_at': TimestampField,
'splitting_completed_at': TimestampField,
'completed_at': TimestampField,
'paused_at': TimestampField,
'error': fields.String,
'stopped_at': TimestampField,
'completed_segments': fields.Integer,
'total_segments': fields.Integer,
}
document_status_fields_list = {
'data': fields.List(fields.Nested(document_status_fields))
}
@setup_required
@login_required
@@ -400,16 +347,101 @@ class DatasetIndexingStatusApi(Resource):
DocumentSegment.status != 're_segment').count()
document.completed_segments = completed_segments
document.total_segments = total_segments
documents_status.append(marshal(document, self.document_status_fields))
documents_status.append(marshal(document, document_status_fields))
data = {
'data': documents_status
}
return data
class DatasetApiKeyApi(Resource):
max_keys = 10
token_prefix = 'dataset-'
resource_type = 'dataset'
@setup_required
@login_required
@account_initialization_required
@marshal_with(api_key_list)
def get(self):
keys = db.session.query(ApiToken). \
filter(ApiToken.type == self.resource_type, ApiToken.tenant_id == current_user.current_tenant_id). \
all()
return {"items": keys}
@setup_required
@login_required
@account_initialization_required
@marshal_with(api_key_fields)
def post(self):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
current_key_count = db.session.query(ApiToken). \
filter(ApiToken.type == self.resource_type, ApiToken.tenant_id == current_user.current_tenant_id). \
count()
if current_key_count >= self.max_keys:
flask_restful.abort(
400,
message=f"Cannot create more than {self.max_keys} API keys for this resource type.",
code='max_keys_exceeded'
)
key = ApiToken.generate_api_key(self.token_prefix, 24)
api_token = ApiToken()
api_token.tenant_id = current_user.current_tenant_id
api_token.token = key
api_token.type = self.resource_type
db.session.add(api_token)
db.session.commit()
return api_token, 200
class DatasetApiDeleteApi(Resource):
resource_type = 'dataset'
@setup_required
@login_required
@account_initialization_required
def delete(self, api_key_id):
api_key_id = str(api_key_id)
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
key = db.session.query(ApiToken). \
filter(ApiToken.tenant_id == current_user.current_tenant_id, ApiToken.type == self.resource_type,
ApiToken.id == api_key_id). \
first()
if key is None:
flask_restful.abort(404, message='API key not found')
db.session.query(ApiToken).filter(ApiToken.id == api_key_id).delete()
db.session.commit()
return {'result': 'success'}, 204
class DatasetApiBaseUrlApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
return {
'api_base_url': (current_app.config['SERVICE_API_URL'] if current_app.config['SERVICE_API_URL']
else request.host_url.rstrip('/')) + '/v1'
}
api.add_resource(DatasetListApi, '/datasets')
api.add_resource(DatasetApi, '/datasets/<uuid:dataset_id>')
api.add_resource(DatasetQueryApi, '/datasets/<uuid:dataset_id>/queries')
api.add_resource(DatasetIndexingEstimateApi, '/datasets/indexing-estimate')
api.add_resource(DatasetRelatedAppListApi, '/datasets/<uuid:dataset_id>/related-apps')
api.add_resource(DatasetIndexingStatusApi, '/datasets/<uuid:dataset_id>/indexing-status')
api.add_resource(DatasetApiKeyApi, '/datasets/api-keys')
api.add_resource(DatasetApiDeleteApi, '/datasets/api-keys/<uuid:api_key_id>')
api.add_resource(DatasetApiBaseUrlApi, '/datasets/api-base-info')

View File

@@ -1,11 +1,10 @@
# -*- coding:utf-8 -*-
import random
from datetime import datetime
from typing import List
from flask import request, current_app
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource, fields, marshal, marshal_with, reqparse
from sqlalchemy import desc, asc
from werkzeug.exceptions import NotFound, Forbidden
@@ -23,7 +22,8 @@ from core.model_providers.error import ProviderTokenNotInitError, QuotaExceededE
LLMBadRequestError
from core.model_providers.model_factory import ModelFactory
from extensions.ext_redis import redis_client
from libs.helper import TimestampField
from fields.document_fields import document_with_segments_fields, document_fields, \
dataset_and_document_fields, document_status_fields
from extensions.ext_database import db
from models.dataset import DatasetProcessRule, Dataset
from models.dataset import Document, DocumentSegment
@@ -32,64 +32,6 @@ from services.dataset_service import DocumentService, DatasetService
from tasks.add_document_to_index_task import add_document_to_index_task
from tasks.remove_document_from_index_task import remove_document_from_index_task
dataset_fields = {
'id': fields.String,
'name': fields.String,
'description': fields.String,
'permission': fields.String,
'data_source_type': fields.String,
'indexing_technique': fields.String,
'created_by': fields.String,
'created_at': TimestampField,
}
document_fields = {
'id': fields.String,
'position': fields.Integer,
'data_source_type': fields.String,
'data_source_info': fields.Raw(attribute='data_source_info_dict'),
'dataset_process_rule_id': fields.String,
'name': fields.String,
'created_from': fields.String,
'created_by': fields.String,
'created_at': TimestampField,
'tokens': fields.Integer,
'indexing_status': fields.String,
'error': fields.String,
'enabled': fields.Boolean,
'disabled_at': TimestampField,
'disabled_by': fields.String,
'archived': fields.Boolean,
'display_status': fields.String,
'word_count': fields.Integer,
'hit_count': fields.Integer,
'doc_form': fields.String,
}
document_with_segments_fields = {
'id': fields.String,
'position': fields.Integer,
'data_source_type': fields.String,
'data_source_info': fields.Raw(attribute='data_source_info_dict'),
'dataset_process_rule_id': fields.String,
'name': fields.String,
'created_from': fields.String,
'created_by': fields.String,
'created_at': TimestampField,
'tokens': fields.Integer,
'indexing_status': fields.String,
'error': fields.String,
'enabled': fields.Boolean,
'disabled_at': TimestampField,
'disabled_by': fields.String,
'archived': fields.Boolean,
'display_status': fields.String,
'word_count': fields.Integer,
'hit_count': fields.Integer,
'completed_segments': fields.Integer,
'total_segments': fields.Integer
}
class DocumentResource(Resource):
def get_document(self, dataset_id: str, document_id: str) -> Document:
@@ -303,11 +245,6 @@ class DatasetDocumentListApi(Resource):
class DatasetInitApi(Resource):
dataset_and_document_fields = {
'dataset': fields.Nested(dataset_fields),
'documents': fields.List(fields.Nested(document_fields)),
'batch': fields.String
}
@setup_required
@login_required
@@ -504,24 +441,6 @@ class DocumentBatchIndexingEstimateApi(DocumentResource):
class DocumentBatchIndexingStatusApi(DocumentResource):
document_status_fields = {
'id': fields.String,
'indexing_status': fields.String,
'processing_started_at': TimestampField,
'parsing_completed_at': TimestampField,
'cleaning_completed_at': TimestampField,
'splitting_completed_at': TimestampField,
'completed_at': TimestampField,
'paused_at': TimestampField,
'error': fields.String,
'stopped_at': TimestampField,
'completed_segments': fields.Integer,
'total_segments': fields.Integer,
}
document_status_fields_list = {
'data': fields.List(fields.Nested(document_status_fields))
}
@setup_required
@login_required
@@ -541,7 +460,7 @@ class DocumentBatchIndexingStatusApi(DocumentResource):
document.total_segments = total_segments
if document.is_paused:
document.indexing_status = 'paused'
documents_status.append(marshal(document, self.document_status_fields))
documents_status.append(marshal(document, document_status_fields))
data = {
'data': documents_status
}
@@ -549,20 +468,6 @@ class DocumentBatchIndexingStatusApi(DocumentResource):
class DocumentIndexingStatusApi(DocumentResource):
document_status_fields = {
'id': fields.String,
'indexing_status': fields.String,
'processing_started_at': TimestampField,
'parsing_completed_at': TimestampField,
'cleaning_completed_at': TimestampField,
'splitting_completed_at': TimestampField,
'completed_at': TimestampField,
'paused_at': TimestampField,
'error': fields.String,
'stopped_at': TimestampField,
'completed_segments': fields.Integer,
'total_segments': fields.Integer,
}
@setup_required
@login_required
@@ -586,7 +491,7 @@ class DocumentIndexingStatusApi(DocumentResource):
document.total_segments = total_segments
if document.is_paused:
document.indexing_status = 'paused'
return marshal(document, self.document_status_fields)
return marshal(document, document_status_fields)
class DocumentDetailApi(DocumentResource):

View File

@@ -3,7 +3,7 @@ import uuid
from datetime import datetime
from flask import request
from flask_login import current_user
from flask_restful import Resource, reqparse, fields, marshal
from flask_restful import Resource, reqparse, marshal
from werkzeug.exceptions import NotFound, Forbidden
import services
@@ -14,48 +14,18 @@ from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.model_providers.error import LLMBadRequestError, ProviderTokenNotInitError
from core.model_providers.model_factory import ModelFactory
from core.login.login import login_required
from libs.login import login_required
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from fields.segment_fields import segment_fields
from models.dataset import DocumentSegment
from libs.helper import TimestampField
from services.dataset_service import DatasetService, DocumentService, SegmentService
from tasks.enable_segment_to_index_task import enable_segment_to_index_task
from tasks.disable_segment_from_index_task import disable_segment_from_index_task
from tasks.batch_create_segment_to_index_task import batch_create_segment_to_index_task
import pandas as pd
segment_fields = {
'id': fields.String,
'position': fields.Integer,
'document_id': fields.String,
'content': fields.String,
'answer': fields.String,
'word_count': fields.Integer,
'tokens': fields.Integer,
'keywords': fields.List(fields.String),
'index_node_id': fields.String,
'index_node_hash': fields.String,
'hit_count': fields.Integer,
'enabled': fields.Boolean,
'disabled_at': TimestampField,
'disabled_by': fields.String,
'status': fields.String,
'created_by': fields.String,
'created_at': TimestampField,
'indexing_at': TimestampField,
'completed_at': TimestampField,
'error': fields.String,
'stopped_at': TimestampField
}
segment_list_response = {
'data': fields.List(fields.Nested(segment_fields)),
'has_more': fields.Boolean,
'limit': fields.Integer
}
class DatasetDocumentSegmentListApi(Resource):
@setup_required

View File

@@ -1,28 +1,19 @@
import datetime
import hashlib
import tempfile
import chardet
import time
import uuid
from pathlib import Path
from cachetools import TTLCache
from flask import request, current_app
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, marshal_with, fields
from werkzeug.exceptions import NotFound
import services
from libs.login import login_required
from flask_restful import Resource, marshal_with
from controllers.console import api
from controllers.console.datasets.error import NoFileUploadedError, TooManyFilesError, FileTooLargeError, \
UnsupportedFileTypeError
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.data_loader.file_extractor import FileExtractor
from extensions.ext_storage import storage
from libs.helper import TimestampField
from extensions.ext_database import db
from models.model import UploadFile
from fields.file_fields import upload_config_fields, file_fields
from services.file_service import FileService
cache = TTLCache(maxsize=None, ttl=30)
@@ -31,10 +22,6 @@ PREVIEW_WORDS_LIMIT = 3000
class FileApi(Resource):
upload_config_fields = {
'file_size_limit': fields.Integer,
'batch_count_limit': fields.Integer
}
@setup_required
@login_required
@@ -48,16 +35,6 @@ class FileApi(Resource):
'batch_count_limit': batch_count_limit
}, 200
file_fields = {
'id': fields.String,
'name': fields.String,
'size': fields.Integer,
'extension': fields.String,
'mime_type': fields.String,
'created_by': fields.String,
'created_at': TimestampField,
}
@setup_required
@login_required
@account_initialization_required
@@ -73,45 +50,13 @@ class FileApi(Resource):
if len(request.files) > 1:
raise TooManyFilesError()
file_content = file.read()
file_size = len(file_content)
file_size_limit = current_app.config.get("UPLOAD_FILE_SIZE_LIMIT") * 1024 * 1024
if file_size > file_size_limit:
message = "({file_size} > {file_size_limit})"
raise FileTooLargeError(message)
extension = file.filename.split('.')[-1]
if extension.lower() not in ALLOWED_EXTENSIONS:
try:
upload_file = FileService.upload_file(file)
except services.errors.file.FileTooLargeError as file_too_large_error:
raise FileTooLargeError(file_too_large_error.description)
except services.errors.file.UnsupportedFileTypeError:
raise UnsupportedFileTypeError()
# user uuid as file name
file_uuid = str(uuid.uuid4())
file_key = 'upload_files/' + current_user.current_tenant_id + '/' + file_uuid + '.' + extension
# save file to storage
storage.save(file_key, file_content)
# save file to db
config = current_app.config
upload_file = UploadFile(
tenant_id=current_user.current_tenant_id,
storage_type=config['STORAGE_TYPE'],
key=file_key,
name=file.filename,
size=file_size,
extension=extension,
mime_type=file.mimetype,
created_by=current_user.id,
created_at=datetime.datetime.utcnow(),
used=False,
hash=hashlib.sha3_256(file_content).hexdigest()
)
db.session.add(upload_file)
db.session.commit()
return upload_file, 201
@@ -121,26 +66,7 @@ class FilePreviewApi(Resource):
@account_initialization_required
def get(self, file_id):
file_id = str(file_id)
key = file_id + request.path
cached_response = cache.get(key)
if cached_response and time.time() - cached_response['timestamp'] < cache.ttl:
return cached_response['response']
upload_file = db.session.query(UploadFile) \
.filter(UploadFile.id == file_id) \
.first()
if not upload_file:
raise NotFound("File not found")
# extract text from file
extension = upload_file.extension
if extension.lower() not in ALLOWED_EXTENSIONS:
raise UnsupportedFileTypeError()
text = FileExtractor.load(upload_file, return_text=True)
text = text[0:PREVIEW_WORDS_LIMIT] if text else ''
text = FileService.get_file_preview(file_id)
return {'content': text}

View File

@@ -1,8 +1,8 @@
import logging
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, reqparse, marshal, fields
from libs.login import login_required
from flask_restful import Resource, reqparse, marshal
from werkzeug.exceptions import InternalServerError, NotFound, Forbidden
import services
@@ -14,48 +14,10 @@ from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.model_providers.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError, \
LLMBadRequestError
from libs.helper import TimestampField
from fields.hit_testing_fields import hit_testing_record_fields
from services.dataset_service import DatasetService
from services.hit_testing_service import HitTestingService
document_fields = {
'id': fields.String,
'data_source_type': fields.String,
'name': fields.String,
'doc_type': fields.String,
}
segment_fields = {
'id': fields.String,
'position': fields.Integer,
'document_id': fields.String,
'content': fields.String,
'answer': fields.String,
'word_count': fields.Integer,
'tokens': fields.Integer,
'keywords': fields.List(fields.String),
'index_node_id': fields.String,
'index_node_hash': fields.String,
'hit_count': fields.Integer,
'enabled': fields.Boolean,
'disabled_at': TimestampField,
'disabled_by': fields.String,
'status': fields.String,
'created_by': fields.String,
'created_at': TimestampField,
'indexing_at': TimestampField,
'completed_at': TimestampField,
'error': fields.String,
'stopped_at': TimestampField,
'document': fields.Nested(document_fields),
}
hit_testing_record_fields = {
'segment': fields.Nested(segment_fields),
'score': fields.Float,
'tsne_position': fields.Raw
}
class HitTestingApi(Resource):

View File

@@ -7,26 +7,12 @@ from werkzeug.exceptions import NotFound
from controllers.console import api
from controllers.console.explore.error import NotChatAppError
from controllers.console.explore.wraps import InstalledAppResource
from fields.conversation_fields import conversation_infinite_scroll_pagination_fields, simple_conversation_fields
from libs.helper import TimestampField, uuid_value
from services.conversation_service import ConversationService
from services.errors.conversation import LastConversationNotExistsError, ConversationNotExistsError
from services.web_conversation_service import WebConversationService
conversation_fields = {
'id': fields.String,
'name': fields.String,
'inputs': fields.Raw,
'status': fields.String,
'introduction': fields.String,
'created_at': TimestampField
}
conversation_infinite_scroll_pagination_fields = {
'limit': fields.Integer,
'has_more': fields.Boolean,
'data': fields.List(fields.Nested(conversation_fields))
}
class ConversationListApi(InstalledAppResource):
@@ -76,7 +62,7 @@ class ConversationApi(InstalledAppResource):
class ConversationRenameApi(InstalledAppResource):
@marshal_with(conversation_fields)
@marshal_with(simple_conversation_fields)
def post(self, installed_app, c_id):
app_model = installed_app.app
if app_model.mode != 'chat':

View File

@@ -2,8 +2,8 @@
from datetime import datetime
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, reqparse, fields, marshal_with, inputs
from libs.login import login_required
from flask_restful import Resource, reqparse, marshal_with, inputs
from sqlalchemy import and_
from werkzeug.exceptions import NotFound, Forbidden, BadRequest
@@ -11,32 +11,10 @@ from controllers.console import api
from controllers.console.explore.wraps import InstalledAppResource
from controllers.console.wraps import account_initialization_required
from extensions.ext_database import db
from libs.helper import TimestampField
from fields.installed_app_fields import installed_app_list_fields
from models.model import App, InstalledApp, RecommendedApp
from services.account_service import TenantService
app_fields = {
'id': fields.String,
'name': fields.String,
'mode': fields.String,
'icon': fields.String,
'icon_background': fields.String
}
installed_app_fields = {
'id': fields.String,
'app': fields.Nested(app_fields),
'app_owner_tenant_id': fields.String,
'is_pinned': fields.Boolean,
'last_used_at': TimestampField,
'editable': fields.Boolean,
'uninstallable': fields.Boolean,
}
installed_app_list_fields = {
'installed_apps': fields.List(fields.Nested(installed_app_fields))
}
class InstalledAppsListApi(Resource):
@login_required

View File

@@ -17,6 +17,7 @@ from controllers.console.explore.error import NotCompletionAppError, AppSuggeste
from controllers.console.explore.wraps import InstalledAppResource
from core.model_providers.error import LLMRateLimitError, LLMBadRequestError, LLMAuthorizationError, LLMAPIConnectionError, \
ProviderTokenNotInitError, LLMAPIUnavailableError, QuotaExceededError, ModelCurrentlyNotSupportError
from fields.message_fields import message_infinite_scroll_pagination_fields
from libs.helper import uuid_value, TimestampField
from services.completion_service import CompletionService
from services.errors.app import MoreLikeThisDisabledError
@@ -26,45 +27,6 @@ from services.message_service import MessageService
class MessageListApi(InstalledAppResource):
feedback_fields = {
'rating': fields.String
}
retriever_resource_fields = {
'id': fields.String,
'message_id': fields.String,
'position': fields.Integer,
'dataset_id': fields.String,
'dataset_name': fields.String,
'document_id': fields.String,
'document_name': fields.String,
'data_source_type': fields.String,
'segment_id': fields.String,
'score': fields.Float,
'hit_count': fields.Integer,
'word_count': fields.Integer,
'segment_position': fields.Integer,
'index_node_hash': fields.String,
'content': fields.String,
'created_at': TimestampField
}
message_fields = {
'id': fields.String,
'conversation_id': fields.String,
'inputs': fields.Raw,
'query': fields.String,
'answer': fields.String,
'feedback': fields.Nested(feedback_fields, attribute='user_feedback', allow_null=True),
'retriever_resources': fields.List(fields.Nested(retriever_resource_fields)),
'created_at': TimestampField
}
message_infinite_scroll_pagination_fields = {
'limit': fields.Integer,
'has_more': fields.Boolean,
'data': fields.List(fields.Nested(message_fields))
}
@marshal_with(message_infinite_scroll_pagination_fields)
def get(self, installed_app):

View File

@@ -1,6 +1,6 @@
# -*- coding:utf-8 -*-
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource, fields, marshal_with
from sqlalchemy import and_

View File

@@ -1,5 +1,5 @@
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource
from functools import wraps

View File

@@ -1,7 +1,6 @@
# -*- coding:utf-8 -*-
from functools import wraps
import flask_login
from flask import request, current_app
from flask_restful import Resource, reqparse
@@ -58,9 +57,6 @@ class SetupApi(Resource):
)
setup()
# Login
flask_login.login_user(account)
AccountService.update_last_login(account, request)
return {'result': 'success'}, 201

View File

@@ -6,31 +6,17 @@ from werkzeug.exceptions import NotFound
from controllers.console import api
from controllers.console.universal_chat.wraps import UniversalChatResource
from fields.conversation_fields import conversation_with_model_config_infinite_scroll_pagination_fields, \
conversation_with_model_config_fields
from libs.helper import TimestampField, uuid_value
from services.conversation_service import ConversationService
from services.errors.conversation import LastConversationNotExistsError, ConversationNotExistsError
from services.web_conversation_service import WebConversationService
conversation_fields = {
'id': fields.String,
'name': fields.String,
'inputs': fields.Raw,
'status': fields.String,
'introduction': fields.String,
'created_at': TimestampField,
'model_config': fields.Raw,
}
conversation_infinite_scroll_pagination_fields = {
'limit': fields.Integer,
'has_more': fields.Boolean,
'data': fields.List(fields.Nested(conversation_fields))
}
class UniversalChatConversationListApi(UniversalChatResource):
@marshal_with(conversation_infinite_scroll_pagination_fields)
@marshal_with(conversation_with_model_config_infinite_scroll_pagination_fields)
def get(self, universal_app):
app_model = universal_app
@@ -73,7 +59,7 @@ class UniversalChatConversationApi(UniversalChatResource):
class UniversalChatConversationRenameApi(UniversalChatResource):
@marshal_with(conversation_fields)
@marshal_with(conversation_with_model_config_fields)
def post(self, universal_app, c_id):
app_model = universal_app
conversation_id = str(c_id)

View File

@@ -2,7 +2,7 @@ import json
from functools import wraps
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required

View File

@@ -4,7 +4,7 @@ from datetime import datetime
import pytz
from flask import current_app, request
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource, reqparse, fields, marshal_with
from services.errors.account import CurrentPasswordIncorrectError as ServiceCurrentPasswordIncorrectError

View File

@@ -1,7 +1,7 @@
# -*- coding:utf-8 -*-
from flask import current_app
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource, reqparse, marshal_with, abort, fields, marshal
import services

View File

@@ -1,5 +1,5 @@
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource, reqparse
from werkzeug.exceptions import Forbidden

View File

@@ -1,5 +1,5 @@
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource, reqparse
from controllers.console import api

View File

@@ -1,6 +1,6 @@
# -*- coding:utf-8 -*-
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource, reqparse
from werkzeug.exceptions import Forbidden

View File

@@ -1,7 +1,7 @@
import json
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource, abort, reqparse
from werkzeug.exceptions import Forbidden

View File

@@ -3,9 +3,8 @@ import logging
from flask import request
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource, fields, marshal_with, reqparse, marshal, inputs
from flask_restful.inputs import int_range
from controllers.console import api
from controllers.console.admin import admin_required

View File

@@ -9,4 +9,4 @@ api = ExternalApi(bp)
from .app import completion, app, conversation, message, audio
from .dataset import document
from .dataset import document, segment, dataset

View File

@@ -8,25 +8,11 @@ from controllers.service_api import api
from controllers.service_api.app import create_or_update_end_user_for_user_id
from controllers.service_api.app.error import NotChatAppError
from controllers.service_api.wraps import AppApiResource
from fields.conversation_fields import conversation_infinite_scroll_pagination_fields, simple_conversation_fields
from libs.helper import TimestampField, uuid_value
import services
from services.conversation_service import ConversationService
conversation_fields = {
'id': fields.String,
'name': fields.String,
'inputs': fields.Raw,
'status': fields.String,
'introduction': fields.String,
'created_at': TimestampField
}
conversation_infinite_scroll_pagination_fields = {
'limit': fields.Integer,
'has_more': fields.Boolean,
'data': fields.List(fields.Nested(conversation_fields))
}
class ConversationApi(AppApiResource):
@@ -50,7 +36,7 @@ class ConversationApi(AppApiResource):
raise NotFound("Last Conversation Not Exists.")
class ConversationDetailApi(AppApiResource):
@marshal_with(conversation_fields)
@marshal_with(simple_conversation_fields)
def delete(self, app_model, end_user, c_id):
if app_model.mode != 'chat':
raise NotChatAppError()
@@ -70,7 +56,7 @@ class ConversationDetailApi(AppApiResource):
class ConversationRenameApi(AppApiResource):
@marshal_with(conversation_fields)
@marshal_with(simple_conversation_fields)
def post(self, app_model, end_user, c_id):
if app_model.mode != 'chat':
raise NotChatAppError()

View File

@@ -0,0 +1,81 @@
from flask import request
from flask_restful import reqparse, marshal
import services.dataset_service
from controllers.service_api import api
from controllers.service_api.dataset.error import DatasetNameDuplicateError
from controllers.service_api.wraps import DatasetApiResource
from libs.login import current_user
from core.model_providers.models.entity.model_params import ModelType
from fields.dataset_fields import dataset_detail_fields
from services.dataset_service import DatasetService
from services.provider_service import ProviderService
def _validate_name(name):
if not name or len(name) < 1 or len(name) > 40:
raise ValueError('Name must be between 1 to 40 characters.')
return name
class DatasetApi(DatasetApiResource):
"""Resource for get datasets."""
def get(self, tenant_id):
page = request.args.get('page', default=1, type=int)
limit = request.args.get('limit', default=20, type=int)
provider = request.args.get('provider', default="vendor")
datasets, total = DatasetService.get_datasets(page, limit, provider,
tenant_id, current_user)
# check embedding setting
provider_service = ProviderService()
valid_model_list = provider_service.get_valid_model_list(current_user.current_tenant_id,
ModelType.EMBEDDINGS.value)
model_names = []
for valid_model in valid_model_list:
model_names.append(f"{valid_model['model_name']}:{valid_model['model_provider']['provider_name']}")
data = marshal(datasets, dataset_detail_fields)
for item in data:
if item['indexing_technique'] == 'high_quality':
item_model = f"{item['embedding_model']}:{item['embedding_model_provider']}"
if item_model in model_names:
item['embedding_available'] = True
else:
item['embedding_available'] = False
else:
item['embedding_available'] = True
response = {
'data': data,
'has_more': len(datasets) == limit,
'limit': limit,
'total': total,
'page': page
}
return response, 200
"""Resource for datasets."""
def post(self, tenant_id):
parser = reqparse.RequestParser()
parser.add_argument('name', nullable=False, required=True,
help='type is required. Name must be between 1 to 40 characters.',
type=_validate_name)
parser.add_argument('indexing_technique', type=str, location='json',
choices=('high_quality', 'economy'),
help='Invalid indexing technique.')
args = parser.parse_args()
try:
dataset = DatasetService.create_empty_dataset(
tenant_id=tenant_id,
name=args['name'],
indexing_technique=args['indexing_technique'],
account=current_user
)
except services.errors.dataset.DatasetNameDuplicateError:
raise DatasetNameDuplicateError()
return marshal(dataset, dataset_detail_fields), 200
api.add_resource(DatasetApi, '/datasets')

View File

@@ -1,114 +1,287 @@
import datetime
import uuid
import json
from flask import current_app
from flask_restful import reqparse
from flask import request
from flask_restful import reqparse, marshal
from sqlalchemy import desc
from werkzeug.exceptions import NotFound
import services.dataset_service
from controllers.service_api import api
from controllers.service_api.app.error import ProviderNotInitializeError
from controllers.service_api.dataset.error import ArchivedDocumentImmutableError, DocumentIndexingError, \
DatasetNotInitedError
NoFileUploadedError, TooManyFilesError
from controllers.service_api.wraps import DatasetApiResource
from libs.login import current_user
from core.model_providers.error import ProviderTokenNotInitError
from extensions.ext_database import db
from extensions.ext_storage import storage
from models.model import UploadFile
from fields.document_fields import document_fields, document_status_fields
from models.dataset import Dataset, Document, DocumentSegment
from services.dataset_service import DocumentService
from services.file_service import FileService
class DocumentListApi(DatasetApiResource):
class DocumentAddByTextApi(DatasetApiResource):
"""Resource for documents."""
def post(self, dataset):
"""Create document."""
def post(self, tenant_id, dataset_id):
"""Create document by text."""
parser = reqparse.RequestParser()
parser.add_argument('name', type=str, required=True, nullable=False, location='json')
parser.add_argument('text', type=str, required=True, nullable=False, location='json')
parser.add_argument('doc_type', type=str, location='json')
parser.add_argument('doc_metadata', type=dict, location='json')
parser.add_argument('process_rule', type=dict, required=False, nullable=True, location='json')
parser.add_argument('original_document_id', type=str, required=False, location='json')
parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False,
location='json')
parser.add_argument('indexing_technique', type=str, choices=Dataset.INDEXING_TECHNIQUE_LIST, nullable=False,
location='json')
args = parser.parse_args()
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == tenant_id,
Dataset.id == dataset_id
).first()
if not dataset.indexing_technique:
raise DatasetNotInitedError("Dataset indexing technique must be set.")
if not dataset:
raise ValueError('Dataset is not exist.')
doc_type = args.get('doc_type')
doc_metadata = args.get('doc_metadata')
if not dataset.indexing_technique and not args['indexing_technique']:
raise ValueError('indexing_technique is required.')
if doc_type and doc_type not in DocumentService.DOCUMENT_METADATA_SCHEMA:
raise ValueError('Invalid doc_type.')
# user uuid as file name
file_uuid = str(uuid.uuid4())
file_key = 'upload_files/' + dataset.tenant_id + '/' + file_uuid + '.txt'
# save file to storage
storage.save(file_key, args.get('text'))
# save file to db
config = current_app.config
upload_file = UploadFile(
tenant_id=dataset.tenant_id,
storage_type=config['STORAGE_TYPE'],
key=file_key,
name=args.get('name') + '.txt',
size=len(args.get('text')),
extension='txt',
mime_type='text/plain',
created_by=dataset.created_by,
created_at=datetime.datetime.utcnow(),
used=True,
used_by=dataset.created_by,
used_at=datetime.datetime.utcnow()
)
db.session.add(upload_file)
db.session.commit()
document_data = {
'data_source': {
'type': 'upload_file',
'info': [
{
'upload_file_id': upload_file.id
}
]
upload_file = FileService.upload_text(args.get('text'), args.get('name'))
data_source = {
'type': 'upload_file',
'info_list': {
'data_source_type': 'upload_file',
'file_info_list': {
'file_ids': [upload_file.id]
}
}
}
args['data_source'] = data_source
# validate args
DocumentService.document_create_args_validate(args)
try:
documents, batch = DocumentService.save_document_with_dataset_id(
dataset=dataset,
document_data=document_data,
account=dataset.created_by_account,
dataset_process_rule=dataset.latest_process_rule,
document_data=args,
account=current_user,
dataset_process_rule=dataset.latest_process_rule if 'process_rule' not in args else None,
created_from='api'
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
document = documents[0]
if doc_type and doc_metadata:
metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[doc_type]
document.doc_metadata = {}
for key, value_type in metadata_schema.items():
value = doc_metadata.get(key)
if value is not None and isinstance(value, value_type):
document.doc_metadata[key] = value
document.doc_type = doc_type
document.updated_at = datetime.datetime.utcnow()
db.session.commit()
return {'id': document.id}
documents_and_batch_fields = {
'document': marshal(document, document_fields),
'batch': batch
}
return documents_and_batch_fields, 200
class DocumentApi(DatasetApiResource):
def delete(self, dataset, document_id):
class DocumentUpdateByTextApi(DatasetApiResource):
"""Resource for update documents."""
def post(self, tenant_id, dataset_id, document_id):
"""Update document by text."""
parser = reqparse.RequestParser()
parser.add_argument('name', type=str, required=False, nullable=True, location='json')
parser.add_argument('text', type=str, required=False, nullable=True, location='json')
parser.add_argument('process_rule', type=dict, required=False, nullable=True, location='json')
parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False,
location='json')
args = parser.parse_args()
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == tenant_id,
Dataset.id == dataset_id
).first()
if not dataset:
raise ValueError('Dataset is not exist.')
if args['text']:
upload_file = FileService.upload_text(args.get('text'), args.get('name'))
data_source = {
'type': 'upload_file',
'info_list': {
'data_source_type': 'upload_file',
'file_info_list': {
'file_ids': [upload_file.id]
}
}
}
args['data_source'] = data_source
# validate args
args['original_document_id'] = str(document_id)
DocumentService.document_create_args_validate(args)
try:
documents, batch = DocumentService.save_document_with_dataset_id(
dataset=dataset,
document_data=args,
account=current_user,
dataset_process_rule=dataset.latest_process_rule if 'process_rule' not in args else None,
created_from='api'
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
document = documents[0]
documents_and_batch_fields = {
'document': marshal(document, document_fields),
'batch': batch
}
return documents_and_batch_fields, 200
class DocumentAddByFileApi(DatasetApiResource):
"""Resource for documents."""
def post(self, tenant_id, dataset_id):
"""Create document by upload file."""
args = {}
if 'data' in request.form:
args = json.loads(request.form['data'])
if 'doc_form' not in args:
args['doc_form'] = 'text_model'
if 'doc_language' not in args:
args['doc_language'] = 'English'
# get dataset info
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == tenant_id,
Dataset.id == dataset_id
).first()
if not dataset:
raise ValueError('Dataset is not exist.')
if not dataset.indexing_technique and not args['indexing_technique']:
raise ValueError('indexing_technique is required.')
# save file info
file = request.files['file']
# check file
if 'file' not in request.files:
raise NoFileUploadedError()
if len(request.files) > 1:
raise TooManyFilesError()
upload_file = FileService.upload_file(file)
data_source = {
'type': 'upload_file',
'info_list': {
'file_info_list': {
'file_ids': [upload_file.id]
}
}
}
args['data_source'] = data_source
# validate args
DocumentService.document_create_args_validate(args)
try:
documents, batch = DocumentService.save_document_with_dataset_id(
dataset=dataset,
document_data=args,
account=dataset.created_by_account,
dataset_process_rule=dataset.latest_process_rule if 'process_rule' not in args else None,
created_from='api'
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
document = documents[0]
documents_and_batch_fields = {
'document': marshal(document, document_fields),
'batch': batch
}
return documents_and_batch_fields, 200
class DocumentUpdateByFileApi(DatasetApiResource):
"""Resource for update documents."""
def post(self, tenant_id, dataset_id, document_id):
"""Update document by upload file."""
args = {}
if 'data' in request.form:
args = json.loads(request.form['data'])
if 'doc_form' not in args:
args['doc_form'] = 'text_model'
if 'doc_language' not in args:
args['doc_language'] = 'English'
# get dataset info
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == tenant_id,
Dataset.id == dataset_id
).first()
if not dataset:
raise ValueError('Dataset is not exist.')
if 'file' in request.files:
# save file info
file = request.files['file']
if len(request.files) > 1:
raise TooManyFilesError()
upload_file = FileService.upload_file(file)
data_source = {
'type': 'upload_file',
'info_list': {
'file_info_list': {
'file_ids': [upload_file.id]
}
}
}
args['data_source'] = data_source
# validate args
args['original_document_id'] = str(document_id)
DocumentService.document_create_args_validate(args)
try:
documents, batch = DocumentService.save_document_with_dataset_id(
dataset=dataset,
document_data=args,
account=dataset.created_by_account,
dataset_process_rule=dataset.latest_process_rule if 'process_rule' not in args else None,
created_from='api'
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
document = documents[0]
documents_and_batch_fields = {
'document': marshal(document, document_fields),
'batch': batch
}
return documents_and_batch_fields, 200
class DocumentDeleteApi(DatasetApiResource):
def delete(self, tenant_id, dataset_id, document_id):
"""Delete document."""
document_id = str(document_id)
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
# get dataset info
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == tenant_id,
Dataset.id == dataset_id
).first()
if not dataset:
raise ValueError('Dataset is not exist.')
document = DocumentService.get_document(dataset.id, document_id)
@@ -126,8 +299,85 @@ class DocumentApi(DatasetApiResource):
except services.errors.document.DocumentIndexingError:
raise DocumentIndexingError('Cannot delete document during indexing.')
return {'result': 'success'}, 204
return {'result': 'success'}, 200
api.add_resource(DocumentListApi, '/documents')
api.add_resource(DocumentApi, '/documents/<uuid:document_id>')
class DocumentListApi(DatasetApiResource):
def get(self, tenant_id, dataset_id):
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
page = request.args.get('page', default=1, type=int)
limit = request.args.get('limit', default=20, type=int)
search = request.args.get('keyword', default=None, type=str)
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == tenant_id,
Dataset.id == dataset_id
).first()
if not dataset:
raise NotFound('Dataset not found.')
query = Document.query.filter_by(
dataset_id=str(dataset_id), tenant_id=tenant_id)
if search:
search = f'%{search}%'
query = query.filter(Document.name.like(search))
query = query.order_by(desc(Document.created_at))
paginated_documents = query.paginate(
page=page, per_page=limit, max_per_page=100, error_out=False)
documents = paginated_documents.items
response = {
'data': marshal(documents, document_fields),
'has_more': len(documents) == limit,
'limit': limit,
'total': paginated_documents.total,
'page': page
}
return response
class DocumentIndexingStatusApi(DatasetApiResource):
def get(self, tenant_id, dataset_id, batch):
dataset_id = str(dataset_id)
batch = str(batch)
tenant_id = str(tenant_id)
# get dataset
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == tenant_id,
Dataset.id == dataset_id
).first()
if not dataset:
raise NotFound('Dataset not found.')
# get documents
documents = DocumentService.get_batch_documents(dataset_id, batch)
if not documents:
raise NotFound('Documents not found.')
documents_status = []
for document in documents:
completed_segments = DocumentSegment.query.filter(DocumentSegment.completed_at.isnot(None),
DocumentSegment.document_id == str(document.id),
DocumentSegment.status != 're_segment').count()
total_segments = DocumentSegment.query.filter(DocumentSegment.document_id == str(document.id),
DocumentSegment.status != 're_segment').count()
document.completed_segments = completed_segments
document.total_segments = total_segments
if document.is_paused:
document.indexing_status = 'paused'
documents_status.append(marshal(document, document_status_fields))
data = {
'data': documents_status
}
return data
api.add_resource(DocumentAddByTextApi, '/datasets/<uuid:dataset_id>/document/create_by_text')
api.add_resource(DocumentAddByFileApi, '/datasets/<uuid:dataset_id>/document/create_by_file')
api.add_resource(DocumentUpdateByTextApi, '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update_by_text')
api.add_resource(DocumentUpdateByFileApi, '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update_by_file')
api.add_resource(DocumentDeleteApi, '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>')
api.add_resource(DocumentListApi, '/datasets/<uuid:dataset_id>/documents')
api.add_resource(DocumentIndexingStatusApi, '/datasets/<uuid:dataset_id>/documents/<string:batch>/indexing-status')

View File

@@ -1,20 +1,73 @@
# -*- coding:utf-8 -*-
from libs.exception import BaseHTTPException
class NoFileUploadedError(BaseHTTPException):
error_code = 'no_file_uploaded'
description = "Please upload your file."
code = 400
class TooManyFilesError(BaseHTTPException):
error_code = 'too_many_files'
description = "Only one file is allowed."
code = 400
class FileTooLargeError(BaseHTTPException):
error_code = 'file_too_large'
description = "File size exceeded. {message}"
code = 413
class UnsupportedFileTypeError(BaseHTTPException):
error_code = 'unsupported_file_type'
description = "File type not allowed."
code = 415
class HighQualityDatasetOnlyError(BaseHTTPException):
error_code = 'high_quality_dataset_only'
description = "Current operation only supports 'high-quality' datasets."
code = 400
class DatasetNotInitializedError(BaseHTTPException):
error_code = 'dataset_not_initialized'
description = "The dataset is still being initialized or indexing. Please wait a moment."
code = 400
class ArchivedDocumentImmutableError(BaseHTTPException):
error_code = 'archived_document_immutable'
description = "Cannot operate when document was archived."
description = "The archived document is not editable."
code = 403
class DatasetNameDuplicateError(BaseHTTPException):
error_code = 'dataset_name_duplicate'
description = "The dataset name already exists. Please modify your dataset name."
code = 409
class InvalidActionError(BaseHTTPException):
error_code = 'invalid_action'
description = "Invalid action."
code = 400
class DocumentAlreadyFinishedError(BaseHTTPException):
error_code = 'document_already_finished'
description = "The document has been processed. Please refresh the page or go to the document details."
code = 400
class DocumentIndexingError(BaseHTTPException):
error_code = 'document_indexing'
description = "Cannot operate document during indexing."
code = 403
description = "The document is being processed and cannot be edited."
code = 400
class DatasetNotInitedError(BaseHTTPException):
error_code = 'dataset_not_inited'
description = "The dataset is still being initialized or indexing. Please wait a moment."
code = 403
class InvalidMetadataError(BaseHTTPException):
error_code = 'invalid_metadata'
description = "The metadata content is incorrect. Please check and verify."
code = 400

View File

@@ -0,0 +1,201 @@
from flask_login import current_user
from flask_restful import reqparse, marshal
from werkzeug.exceptions import NotFound
from controllers.service_api import api
from controllers.service_api.app.error import ProviderNotInitializeError
from controllers.service_api.wraps import DatasetApiResource
from core.model_providers.error import ProviderTokenNotInitError, LLMBadRequestError
from core.model_providers.model_factory import ModelFactory
from extensions.ext_database import db
from fields.segment_fields import segment_fields
from models.dataset import Dataset, DocumentSegment
from services.dataset_service import DatasetService, DocumentService, SegmentService
class SegmentApi(DatasetApiResource):
"""Resource for segments."""
def post(self, tenant_id, dataset_id, document_id):
"""Create single segment."""
# check dataset
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == tenant_id,
Dataset.id == dataset_id
).first()
if not dataset:
raise NotFound('Dataset not found.')
# check document
document_id = str(document_id)
document = DocumentService.get_document(dataset.id, document_id)
if not document:
raise NotFound('Document not found.')
# check embedding model setting
if dataset.indexing_technique == 'high_quality':
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
# validate args
parser = reqparse.RequestParser()
parser.add_argument('segments', type=list, required=False, nullable=True, location='json')
args = parser.parse_args()
for args_item in args['segments']:
SegmentService.segment_create_args_validate(args_item, document)
segments = SegmentService.multi_create_segment(args['segments'], document, dataset)
return {
'data': marshal(segments, segment_fields),
'doc_form': document.doc_form
}, 200
def get(self, tenant_id, dataset_id, document_id):
"""Create single segment."""
# check dataset
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == tenant_id,
Dataset.id == dataset_id
).first()
if not dataset:
raise NotFound('Dataset not found.')
# check document
document_id = str(document_id)
document = DocumentService.get_document(dataset.id, document_id)
if not document:
raise NotFound('Document not found.')
# check embedding model setting
if dataset.indexing_technique == 'high_quality':
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
parser = reqparse.RequestParser()
parser.add_argument('status', type=str,
action='append', default=[], location='args')
parser.add_argument('keyword', type=str, default=None, location='args')
args = parser.parse_args()
status_list = args['status']
keyword = args['keyword']
query = DocumentSegment.query.filter(
DocumentSegment.document_id == str(document_id),
DocumentSegment.tenant_id == current_user.current_tenant_id
)
if status_list:
query = query.filter(DocumentSegment.status.in_(status_list))
if keyword:
query = query.where(DocumentSegment.content.ilike(f'%{keyword}%'))
total = query.count()
segments = query.order_by(DocumentSegment.position).all()
return {
'data': marshal(segments, segment_fields),
'doc_form': document.doc_form,
'total': total
}, 200
class DatasetSegmentApi(DatasetApiResource):
def delete(self, tenant_id, dataset_id, document_id, segment_id):
# check dataset
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == tenant_id,
Dataset.id == dataset_id
).first()
if not dataset:
raise NotFound('Dataset not found.')
# check user's model setting
DatasetService.check_dataset_model_setting(dataset)
# check document
document_id = str(document_id)
document = DocumentService.get_document(dataset_id, document_id)
if not document:
raise NotFound('Document not found.')
# check segment
segment = DocumentSegment.query.filter(
DocumentSegment.id == str(segment_id),
DocumentSegment.tenant_id == current_user.current_tenant_id
).first()
if not segment:
raise NotFound('Segment not found.')
SegmentService.delete_segment(segment, document, dataset)
return {'result': 'success'}, 200
def post(self, tenant_id, dataset_id, document_id, segment_id):
# check dataset
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == tenant_id,
Dataset.id == dataset_id
).first()
if not dataset:
raise NotFound('Dataset not found.')
# check user's model setting
DatasetService.check_dataset_model_setting(dataset)
# check document
document_id = str(document_id)
document = DocumentService.get_document(dataset_id, document_id)
if not document:
raise NotFound('Document not found.')
if dataset.indexing_technique == 'high_quality':
# check embedding model setting
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
# check segment
segment_id = str(segment_id)
segment = DocumentSegment.query.filter(
DocumentSegment.id == str(segment_id),
DocumentSegment.tenant_id == current_user.current_tenant_id
).first()
if not segment:
raise NotFound('Segment not found.')
# validate args
parser = reqparse.RequestParser()
parser.add_argument('segments', type=dict, required=False, nullable=True, location='json')
args = parser.parse_args()
SegmentService.segment_create_args_validate(args['segments'], document)
segment = SegmentService.update_segment(args['segments'], segment, document, dataset)
return {
'data': marshal(segment, segment_fields),
'doc_form': document.doc_form
}, 200
api.add_resource(SegmentApi, '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments')
api.add_resource(DatasetSegmentApi, '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/<uuid:segment_id>')

View File

@@ -2,12 +2,14 @@
from datetime import datetime
from functools import wraps
from flask import request
from flask import request, current_app
from flask_login import user_logged_in
from flask_restful import Resource
from werkzeug.exceptions import NotFound, Unauthorized
from libs.login import _get_user
from extensions.ext_database import db
from models.dataset import Dataset
from models.account import Tenant, TenantAccountJoin, Account
from models.model import ApiToken, App
@@ -43,12 +45,24 @@ def validate_dataset_token(view=None):
@wraps(view)
def decorated(*args, **kwargs):
api_token = validate_and_get_api_token('dataset')
dataset = db.session.query(Dataset).filter(Dataset.id == api_token.dataset_id).first()
if not dataset:
raise NotFound()
return view(dataset, *args, **kwargs)
tenant_account_join = db.session.query(Tenant, TenantAccountJoin) \
.filter(Tenant.id == api_token.tenant_id) \
.filter(TenantAccountJoin.tenant_id == Tenant.id) \
.filter(TenantAccountJoin.role == 'owner') \
.one_or_none()
if tenant_account_join:
tenant, ta = tenant_account_join
account = Account.query.filter_by(id=ta.account_id).first()
# Login admin
if account:
account.current_tenant = tenant
current_app.login_manager._update_request_context_with_user(account)
user_logged_in.send(current_app._get_current_object(), user=_get_user())
else:
raise Unauthorized("Tenant owner account is not exist.")
else:
raise Unauthorized("Tenant is not exist.")
return view(api_token.tenant_id, *args, **kwargs)
return decorated
if view:

View File

@@ -6,26 +6,12 @@ from werkzeug.exceptions import NotFound
from controllers.web import api
from controllers.web.error import NotChatAppError
from controllers.web.wraps import WebApiResource
from fields.conversation_fields import conversation_infinite_scroll_pagination_fields, simple_conversation_fields
from libs.helper import TimestampField, uuid_value
from services.conversation_service import ConversationService
from services.errors.conversation import LastConversationNotExistsError, ConversationNotExistsError
from services.web_conversation_service import WebConversationService
conversation_fields = {
'id': fields.String,
'name': fields.String,
'inputs': fields.Raw,
'status': fields.String,
'introduction': fields.String,
'created_at': TimestampField
}
conversation_infinite_scroll_pagination_fields = {
'limit': fields.Integer,
'has_more': fields.Boolean,
'data': fields.List(fields.Nested(conversation_fields))
}
class ConversationListApi(WebApiResource):
@@ -73,7 +59,7 @@ class ConversationApi(WebApiResource):
class ConversationRenameApi(WebApiResource):
@marshal_with(conversation_fields)
@marshal_with(simple_conversation_fields)
def post(self, app_model, end_user, c_id):
if app_model.mode != 'chat':
raise NotChatAppError()

View File

@@ -115,7 +115,7 @@ class MessageMoreLikeThisApi(WebApiResource):
streaming = args['response_mode'] == 'streaming'
try:
response = CompletionService.generate_more_like_this(app_model, end_user, message_id, streaming)
response = CompletionService.generate_more_like_this(app_model, end_user, message_id, streaming, 'web_app')
return compact_response(response)
except MessageNotExistsError:
raise NotFound("Message Not Exists.")

View File

@@ -2,14 +2,18 @@ import json
from typing import Tuple, List, Any, Union, Sequence, Optional, cast
from langchain.agents import OpenAIFunctionsAgent, BaseSingleActionAgent
from langchain.agents.openai_functions_agent.base import _format_intermediate_steps, _parse_ai_message
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.prompts.chat import BaseMessagePromptTemplate
from langchain.schema import AgentAction, AgentFinish, SystemMessage
from langchain.schema import AgentAction, AgentFinish, SystemMessage, Generation, LLMResult, AIMessage
from langchain.schema.language_model import BaseLanguageModel
from langchain.tools import BaseTool
from pydantic import root_validator
from core.model_providers.models.entity.message import to_prompt_messages
from core.model_providers.models.llm.base import BaseLLM
from core.third_party.langchain.llms.fake import FakeLLM
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
@@ -24,6 +28,10 @@ class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
arbitrary_types_allowed = True
@root_validator
def validate_llm(cls, values: dict) -> dict:
return values
def should_use_agent(self, query: str):
"""
return should use agent
@@ -65,17 +73,57 @@ class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
return AgentFinish(return_values={"output": observation}, log=observation)
try:
agent_decision = super().plan(intermediate_steps, callbacks, **kwargs)
agent_decision = self.real_plan(intermediate_steps, callbacks, **kwargs)
if isinstance(agent_decision, AgentAction):
tool_inputs = agent_decision.tool_input
if isinstance(tool_inputs, dict) and 'query' in tool_inputs:
tool_inputs['query'] = kwargs['input']
agent_decision.tool_input = tool_inputs
else:
agent_decision.return_values['output'] = ''
return agent_decision
except Exception as e:
new_exception = self.model_instance.handle_exceptions(e)
raise new_exception
def real_plan(
self,
intermediate_steps: List[Tuple[AgentAction, str]],
callbacks: Callbacks = None,
**kwargs: Any,
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date, along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
agent_scratchpad = _format_intermediate_steps(intermediate_steps)
selected_inputs = {
k: kwargs[k] for k in self.prompt.input_variables if k != "agent_scratchpad"
}
full_inputs = dict(**selected_inputs, agent_scratchpad=agent_scratchpad)
prompt = self.prompt.format_prompt(**full_inputs)
messages = prompt.to_messages()
prompt_messages = to_prompt_messages(messages)
result = self.model_instance.run(
messages=prompt_messages,
functions=self.functions,
)
ai_message = AIMessage(
content=result.content,
additional_kwargs={
'function_call': result.function_call
}
)
agent_decision = _parse_ai_message(ai_message)
return agent_decision
async def aplan(
self,
intermediate_steps: List[Tuple[AgentAction, str]],
@@ -87,7 +135,7 @@ class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
@classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
model_instance: BaseLLM,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None,
@@ -96,11 +144,15 @@ class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
),
**kwargs: Any,
) -> BaseSingleActionAgent:
return super().from_llm_and_tools(
llm=llm,
tools=tools,
callback_manager=callback_manager,
prompt = cls.create_prompt(
extra_prompt_messages=extra_prompt_messages,
system_message=system_message,
)
return cls(
model_instance=model_instance,
llm=FakeLLM(response=''),
prompt=prompt,
tools=tools,
callback_manager=callback_manager,
**kwargs,
)

View File

@@ -5,21 +5,40 @@ from langchain.agents.openai_functions_agent.base import _parse_ai_message, \
_format_intermediate_steps
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.chat_models.openai import _convert_message_to_dict, _import_tiktoken
from langchain.memory.prompt import SUMMARY_PROMPT
from langchain.prompts.chat import BaseMessagePromptTemplate
from langchain.schema import AgentAction, AgentFinish, SystemMessage
from langchain.schema.language_model import BaseLanguageModel
from langchain.schema import AgentAction, AgentFinish, SystemMessage, AIMessage, HumanMessage, BaseMessage, \
get_buffer_string
from langchain.tools import BaseTool
from pydantic import root_validator
from core.agent.agent.calc_token_mixin import ExceededLLMTokensLimitError
from core.agent.agent.openai_function_call_summarize_mixin import OpenAIFunctionCallSummarizeMixin
from core.agent.agent.calc_token_mixin import ExceededLLMTokensLimitError, CalcTokenMixin
from core.chain.llm_chain import LLMChain
from core.model_providers.models.entity.message import to_prompt_messages
from core.model_providers.models.llm.base import BaseLLM
from core.third_party.langchain.llms.fake import FakeLLM
class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, OpenAIFunctionCallSummarizeMixin):
class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, CalcTokenMixin):
moving_summary_buffer: str = ""
moving_summary_index: int = 0
summary_model_instance: BaseLLM = None
model_instance: BaseLLM
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
@root_validator
def validate_llm(cls, values: dict) -> dict:
return values
@classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
model_instance: BaseLLM,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None,
@@ -28,12 +47,16 @@ class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, OpenAIFunctio
),
**kwargs: Any,
) -> BaseSingleActionAgent:
return super().from_llm_and_tools(
llm=llm,
prompt = cls.create_prompt(
extra_prompt_messages=extra_prompt_messages,
system_message=system_message,
)
return cls(
model_instance=model_instance,
llm=FakeLLM(response=''),
prompt=prompt,
tools=tools,
callback_manager=callback_manager,
extra_prompt_messages=extra_prompt_messages,
system_message=cls.get_system_message(),
**kwargs,
)
@@ -44,23 +67,26 @@ class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, OpenAIFunctio
:param query:
:return:
"""
original_max_tokens = self.llm.max_tokens
self.llm.max_tokens = 40
original_max_tokens = self.model_instance.model_kwargs.max_tokens
self.model_instance.model_kwargs.max_tokens = 40
prompt = self.prompt.format_prompt(input=query, agent_scratchpad=[])
messages = prompt.to_messages()
try:
predicted_message = self.llm.predict_messages(
messages, functions=self.functions, callbacks=None
prompt_messages = to_prompt_messages(messages)
result = self.model_instance.run(
messages=prompt_messages,
functions=self.functions,
callbacks=None
)
except Exception as e:
new_exception = self.model_instance.handle_exceptions(e)
raise new_exception
function_call = predicted_message.additional_kwargs.get("function_call", {})
function_call = result.function_call
self.llm.max_tokens = original_max_tokens
self.model_instance.model_kwargs.max_tokens = original_max_tokens
return True if function_call else False
@@ -93,10 +119,19 @@ class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, OpenAIFunctio
except ExceededLLMTokensLimitError as e:
return AgentFinish(return_values={"output": str(e)}, log=str(e))
predicted_message = self.llm.predict_messages(
messages, functions=self.functions, callbacks=callbacks
prompt_messages = to_prompt_messages(messages)
result = self.model_instance.run(
messages=prompt_messages,
functions=self.functions,
)
agent_decision = _parse_ai_message(predicted_message)
ai_message = AIMessage(
content=result.content,
additional_kwargs={
'function_call': result.function_call
}
)
agent_decision = _parse_ai_message(ai_message)
if isinstance(agent_decision, AgentAction) and agent_decision.tool == 'dataset':
tool_inputs = agent_decision.tool_input
@@ -122,3 +157,142 @@ class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, OpenAIFunctio
return super().return_stopped_response(early_stopping_method, intermediate_steps, **kwargs)
except ValueError:
return AgentFinish({"output": "I'm sorry, I don't know how to respond to that."}, "")
def summarize_messages_if_needed(self, messages: List[BaseMessage], **kwargs) -> List[BaseMessage]:
# calculate rest tokens and summarize previous function observation messages if rest_tokens < 0
rest_tokens = self.get_message_rest_tokens(self.model_instance, messages, **kwargs)
rest_tokens = rest_tokens - 20 # to deal with the inaccuracy of rest_tokens
if rest_tokens >= 0:
return messages
system_message = None
human_message = None
should_summary_messages = []
for message in messages:
if isinstance(message, SystemMessage):
system_message = message
elif isinstance(message, HumanMessage):
human_message = message
else:
should_summary_messages.append(message)
if len(should_summary_messages) > 2:
ai_message = should_summary_messages[-2]
function_message = should_summary_messages[-1]
should_summary_messages = should_summary_messages[self.moving_summary_index:-2]
self.moving_summary_index = len(should_summary_messages)
else:
error_msg = "Exceeded LLM tokens limit, stopped."
raise ExceededLLMTokensLimitError(error_msg)
new_messages = [system_message, human_message]
if self.moving_summary_index == 0:
should_summary_messages.insert(0, human_message)
self.moving_summary_buffer = self.predict_new_summary(
messages=should_summary_messages,
existing_summary=self.moving_summary_buffer
)
new_messages.append(AIMessage(content=self.moving_summary_buffer))
new_messages.append(ai_message)
new_messages.append(function_message)
return new_messages
def predict_new_summary(
self, messages: List[BaseMessage], existing_summary: str
) -> str:
new_lines = get_buffer_string(
messages,
human_prefix="Human",
ai_prefix="AI",
)
chain = LLMChain(model_instance=self.summary_model_instance, prompt=SUMMARY_PROMPT)
return chain.predict(summary=existing_summary, new_lines=new_lines)
def get_num_tokens_from_messages(self, model_instance: BaseLLM, messages: List[BaseMessage], **kwargs) -> int:
"""Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package.
Official documentation: https://github.com/openai/openai-cookbook/blob/
main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb"""
if model_instance.model_provider.provider_name == 'azure_openai':
model = model_instance.base_model_name
model = model.replace("gpt-35", "gpt-3.5")
else:
model = model_instance.base_model_name
tiktoken_ = _import_tiktoken()
try:
encoding = tiktoken_.encoding_for_model(model)
except KeyError:
model = "cl100k_base"
encoding = tiktoken_.get_encoding(model)
if model.startswith("gpt-3.5-turbo"):
# every message follows <im_start>{role/name}\n{content}<im_end>\n
tokens_per_message = 4
# if there's a name, the role is omitted
tokens_per_name = -1
elif model.startswith("gpt-4"):
tokens_per_message = 3
tokens_per_name = 1
else:
raise NotImplementedError(
f"get_num_tokens_from_messages() is not presently implemented "
f"for model {model}."
"See https://github.com/openai/openai-python/blob/main/chatml.md for "
"information on how messages are converted to tokens."
)
num_tokens = 0
for m in messages:
message = _convert_message_to_dict(m)
num_tokens += tokens_per_message
for key, value in message.items():
if key == "function_call":
for f_key, f_value in value.items():
num_tokens += len(encoding.encode(f_key))
num_tokens += len(encoding.encode(f_value))
else:
num_tokens += len(encoding.encode(value))
if key == "name":
num_tokens += tokens_per_name
# every reply is primed with <im_start>assistant
num_tokens += 3
if kwargs.get('functions'):
for function in kwargs.get('functions'):
num_tokens += len(encoding.encode('name'))
num_tokens += len(encoding.encode(function.get("name")))
num_tokens += len(encoding.encode('description'))
num_tokens += len(encoding.encode(function.get("description")))
parameters = function.get("parameters")
num_tokens += len(encoding.encode('parameters'))
if 'title' in parameters:
num_tokens += len(encoding.encode('title'))
num_tokens += len(encoding.encode(parameters.get("title")))
num_tokens += len(encoding.encode('type'))
num_tokens += len(encoding.encode(parameters.get("type")))
if 'properties' in parameters:
num_tokens += len(encoding.encode('properties'))
for key, value in parameters.get('properties').items():
num_tokens += len(encoding.encode(key))
for field_key, field_value in value.items():
num_tokens += len(encoding.encode(field_key))
if field_key == 'enum':
for enum_field in field_value:
num_tokens += 3
num_tokens += len(encoding.encode(enum_field))
else:
num_tokens += len(encoding.encode(field_key))
num_tokens += len(encoding.encode(str(field_value)))
if 'required' in parameters:
num_tokens += len(encoding.encode('required'))
for required_field in parameters['required']:
num_tokens += 3
num_tokens += len(encoding.encode(required_field))
return num_tokens

View File

@@ -1,140 +0,0 @@
from typing import cast, List
from langchain.chat_models import ChatOpenAI
from langchain.chat_models.openai import _convert_message_to_dict
from langchain.memory.summary import SummarizerMixin
from langchain.schema import SystemMessage, HumanMessage, BaseMessage, AIMessage
from langchain.schema.language_model import BaseLanguageModel
from pydantic import BaseModel
from core.agent.agent.calc_token_mixin import ExceededLLMTokensLimitError, CalcTokenMixin
from core.model_providers.models.llm.base import BaseLLM
class OpenAIFunctionCallSummarizeMixin(BaseModel, CalcTokenMixin):
moving_summary_buffer: str = ""
moving_summary_index: int = 0
summary_llm: BaseLanguageModel = None
model_instance: BaseLLM
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def summarize_messages_if_needed(self, messages: List[BaseMessage], **kwargs) -> List[BaseMessage]:
# calculate rest tokens and summarize previous function observation messages if rest_tokens < 0
rest_tokens = self.get_message_rest_tokens(self.model_instance, messages, **kwargs)
rest_tokens = rest_tokens - 20 # to deal with the inaccuracy of rest_tokens
if rest_tokens >= 0:
return messages
system_message = None
human_message = None
should_summary_messages = []
for message in messages:
if isinstance(message, SystemMessage):
system_message = message
elif isinstance(message, HumanMessage):
human_message = message
else:
should_summary_messages.append(message)
if len(should_summary_messages) > 2:
ai_message = should_summary_messages[-2]
function_message = should_summary_messages[-1]
should_summary_messages = should_summary_messages[self.moving_summary_index:-2]
self.moving_summary_index = len(should_summary_messages)
else:
error_msg = "Exceeded LLM tokens limit, stopped."
raise ExceededLLMTokensLimitError(error_msg)
new_messages = [system_message, human_message]
if self.moving_summary_index == 0:
should_summary_messages.insert(0, human_message)
summary_handler = SummarizerMixin(llm=self.summary_llm)
self.moving_summary_buffer = summary_handler.predict_new_summary(
messages=should_summary_messages,
existing_summary=self.moving_summary_buffer
)
new_messages.append(AIMessage(content=self.moving_summary_buffer))
new_messages.append(ai_message)
new_messages.append(function_message)
return new_messages
def get_num_tokens_from_messages(self, model_instance: BaseLLM, messages: List[BaseMessage], **kwargs) -> int:
"""Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package.
Official documentation: https://github.com/openai/openai-cookbook/blob/
main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb"""
llm = cast(ChatOpenAI, model_instance.client)
model, encoding = llm._get_encoding_model()
if model.startswith("gpt-3.5-turbo"):
# every message follows <im_start>{role/name}\n{content}<im_end>\n
tokens_per_message = 4
# if there's a name, the role is omitted
tokens_per_name = -1
elif model.startswith("gpt-4"):
tokens_per_message = 3
tokens_per_name = 1
else:
raise NotImplementedError(
f"get_num_tokens_from_messages() is not presently implemented "
f"for model {model}."
"See https://github.com/openai/openai-python/blob/main/chatml.md for "
"information on how messages are converted to tokens."
)
num_tokens = 0
for m in messages:
message = _convert_message_to_dict(m)
num_tokens += tokens_per_message
for key, value in message.items():
if key == "function_call":
for f_key, f_value in value.items():
num_tokens += len(encoding.encode(f_key))
num_tokens += len(encoding.encode(f_value))
else:
num_tokens += len(encoding.encode(value))
if key == "name":
num_tokens += tokens_per_name
# every reply is primed with <im_start>assistant
num_tokens += 3
if kwargs.get('functions'):
for function in kwargs.get('functions'):
num_tokens += len(encoding.encode('name'))
num_tokens += len(encoding.encode(function.get("name")))
num_tokens += len(encoding.encode('description'))
num_tokens += len(encoding.encode(function.get("description")))
parameters = function.get("parameters")
num_tokens += len(encoding.encode('parameters'))
if 'title' in parameters:
num_tokens += len(encoding.encode('title'))
num_tokens += len(encoding.encode(parameters.get("title")))
num_tokens += len(encoding.encode('type'))
num_tokens += len(encoding.encode(parameters.get("type")))
if 'properties' in parameters:
num_tokens += len(encoding.encode('properties'))
for key, value in parameters.get('properties').items():
num_tokens += len(encoding.encode(key))
for field_key, field_value in value.items():
num_tokens += len(encoding.encode(field_key))
if field_key == 'enum':
for enum_field in field_value:
num_tokens += 3
num_tokens += len(encoding.encode(enum_field))
else:
num_tokens += len(encoding.encode(field_key))
num_tokens += len(encoding.encode(str(field_value)))
if 'required' in parameters:
num_tokens += len(encoding.encode('required'))
for required_field in parameters['required']:
num_tokens += 3
num_tokens += len(encoding.encode(required_field))
return num_tokens

View File

@@ -1,107 +0,0 @@
from typing import List, Tuple, Any, Union, Sequence, Optional
from langchain.agents import BaseMultiActionAgent
from langchain.agents.openai_functions_multi_agent.base import OpenAIMultiFunctionsAgent, _format_intermediate_steps, \
_parse_ai_message
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.prompts.chat import BaseMessagePromptTemplate
from langchain.schema import AgentAction, AgentFinish, SystemMessage
from langchain.schema.language_model import BaseLanguageModel
from langchain.tools import BaseTool
from core.agent.agent.calc_token_mixin import ExceededLLMTokensLimitError
from core.agent.agent.openai_function_call_summarize_mixin import OpenAIFunctionCallSummarizeMixin
class AutoSummarizingOpenMultiAIFunctionCallAgent(OpenAIMultiFunctionsAgent, OpenAIFunctionCallSummarizeMixin):
@classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None,
system_message: Optional[SystemMessage] = SystemMessage(
content="You are a helpful AI assistant."
),
**kwargs: Any,
) -> BaseMultiActionAgent:
return super().from_llm_and_tools(
llm=llm,
tools=tools,
callback_manager=callback_manager,
extra_prompt_messages=extra_prompt_messages,
system_message=cls.get_system_message(),
**kwargs,
)
def should_use_agent(self, query: str):
"""
return should use agent
:param query:
:return:
"""
original_max_tokens = self.llm.max_tokens
self.llm.max_tokens = 15
prompt = self.prompt.format_prompt(input=query, agent_scratchpad=[])
messages = prompt.to_messages()
try:
predicted_message = self.llm.predict_messages(
messages, functions=self.functions, callbacks=None
)
except Exception as e:
new_exception = self.model_instance.handle_exceptions(e)
raise new_exception
function_call = predicted_message.additional_kwargs.get("function_call", {})
self.llm.max_tokens = original_max_tokens
return True if function_call else False
def plan(
self,
intermediate_steps: List[Tuple[AgentAction, str]],
callbacks: Callbacks = None,
**kwargs: Any,
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date, along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
agent_scratchpad = _format_intermediate_steps(intermediate_steps)
selected_inputs = {
k: kwargs[k] for k in self.prompt.input_variables if k != "agent_scratchpad"
}
full_inputs = dict(**selected_inputs, agent_scratchpad=agent_scratchpad)
prompt = self.prompt.format_prompt(**full_inputs)
messages = prompt.to_messages()
# summarize messages if rest_tokens < 0
try:
messages = self.summarize_messages_if_needed(messages, functions=self.functions)
except ExceededLLMTokensLimitError as e:
return AgentFinish(return_values={"output": str(e)}, log=str(e))
predicted_message = self.llm.predict_messages(
messages, functions=self.functions, callbacks=callbacks
)
agent_decision = _parse_ai_message(predicted_message)
return agent_decision
@classmethod
def get_system_message(cls):
# get current time
return SystemMessage(content="You are a helpful AI assistant.\n"
"The current date or current time you know is wrong.\n"
"Respond directly if appropriate.")

View File

@@ -4,7 +4,6 @@ from typing import List, Tuple, Any, Union, Sequence, Optional, cast
from langchain import BasePromptTemplate
from langchain.agents import StructuredChatAgent, AgentOutputParser, Agent
from langchain.agents.structured_chat.base import HUMAN_MESSAGE_TEMPLATE
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate
@@ -12,6 +11,7 @@ from langchain.schema import AgentAction, AgentFinish, OutputParserException
from langchain.tools import BaseTool
from langchain.agents.structured_chat.prompt import PREFIX, SUFFIX
from core.chain.llm_chain import LLMChain
from core.model_providers.models.llm.base import BaseLLM
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
@@ -49,7 +49,6 @@ Action:
class StructuredMultiDatasetRouterAgent(StructuredChatAgent):
model_instance: BaseLLM
dataset_tools: Sequence[BaseTool]
class Config:
@@ -98,7 +97,7 @@ class StructuredMultiDatasetRouterAgent(StructuredChatAgent):
try:
full_output = self.llm_chain.predict(callbacks=callbacks, **full_inputs)
except Exception as e:
new_exception = self.model_instance.handle_exceptions(e)
new_exception = self.llm_chain.model_instance.handle_exceptions(e)
raise new_exception
try:
@@ -108,6 +107,8 @@ class StructuredMultiDatasetRouterAgent(StructuredChatAgent):
if isinstance(tool_inputs, dict) and 'query' in tool_inputs:
tool_inputs['query'] = kwargs['input']
agent_decision.tool_input = tool_inputs
else:
agent_decision.return_values['output'] = ''
return agent_decision
except OutputParserException:
return AgentFinish({"output": "I'm sorry, the answer of model is invalid, "
@@ -145,7 +146,7 @@ class StructuredMultiDatasetRouterAgent(StructuredChatAgent):
@classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
model_instance: BaseLLM,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
output_parser: Optional[AgentOutputParser] = None,
@@ -157,17 +158,28 @@ class StructuredMultiDatasetRouterAgent(StructuredChatAgent):
memory_prompts: Optional[List[BasePromptTemplate]] = None,
**kwargs: Any,
) -> Agent:
return super().from_llm_and_tools(
llm=llm,
tools=tools,
callback_manager=callback_manager,
output_parser=output_parser,
"""Construct an agent from an LLM and tools."""
cls._validate_tools(tools)
prompt = cls.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
human_message_template=human_message_template,
format_instructions=format_instructions,
input_variables=input_variables,
memory_prompts=memory_prompts,
)
llm_chain = LLMChain(
model_instance=model_instance,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
_output_parser = output_parser
return cls(
llm_chain=llm_chain,
allowed_tools=tool_names,
output_parser=_output_parser,
dataset_tools=tools,
**kwargs,
)

View File

@@ -4,16 +4,17 @@ from typing import List, Tuple, Any, Union, Sequence, Optional
from langchain import BasePromptTemplate
from langchain.agents import StructuredChatAgent, AgentOutputParser, Agent
from langchain.agents.structured_chat.base import HUMAN_MESSAGE_TEMPLATE
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.memory.summary import SummarizerMixin
from langchain.memory.prompt import SUMMARY_PROMPT
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate
from langchain.schema import AgentAction, AgentFinish, AIMessage, HumanMessage, OutputParserException
from langchain.schema import AgentAction, AgentFinish, AIMessage, HumanMessage, OutputParserException, BaseMessage, \
get_buffer_string
from langchain.tools import BaseTool
from langchain.agents.structured_chat.prompt import PREFIX, SUFFIX
from core.agent.agent.calc_token_mixin import CalcTokenMixin, ExceededLLMTokensLimitError
from core.chain.llm_chain import LLMChain
from core.model_providers.models.llm.base import BaseLLM
FORMAT_INSTRUCTIONS = """Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
@@ -52,8 +53,7 @@ Action:
class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
moving_summary_buffer: str = ""
moving_summary_index: int = 0
summary_llm: BaseLanguageModel = None
model_instance: BaseLLM
summary_model_instance: BaseLLM = None
class Config:
"""Configuration for this pydantic object."""
@@ -95,14 +95,14 @@ class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
if prompts:
messages = prompts[0].to_messages()
rest_tokens = self.get_message_rest_tokens(self.model_instance, messages)
rest_tokens = self.get_message_rest_tokens(self.llm_chain.model_instance, messages)
if rest_tokens < 0:
full_inputs = self.summarize_messages(intermediate_steps, **kwargs)
try:
full_output = self.llm_chain.predict(callbacks=callbacks, **full_inputs)
except Exception as e:
new_exception = self.model_instance.handle_exceptions(e)
new_exception = self.llm_chain.model_instance.handle_exceptions(e)
raise new_exception
try:
@@ -118,7 +118,7 @@ class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
"I don't know how to respond to that."}, "")
def summarize_messages(self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs):
if len(intermediate_steps) >= 2 and self.summary_llm:
if len(intermediate_steps) >= 2 and self.summary_model_instance:
should_summary_intermediate_steps = intermediate_steps[self.moving_summary_index:-1]
should_summary_messages = [AIMessage(content=observation)
for _, observation in should_summary_intermediate_steps]
@@ -130,11 +130,10 @@ class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
error_msg = "Exceeded LLM tokens limit, stopped."
raise ExceededLLMTokensLimitError(error_msg)
summary_handler = SummarizerMixin(llm=self.summary_llm)
if self.moving_summary_buffer and 'chat_history' in kwargs:
kwargs["chat_history"].pop()
self.moving_summary_buffer = summary_handler.predict_new_summary(
self.moving_summary_buffer = self.predict_new_summary(
messages=should_summary_messages,
existing_summary=self.moving_summary_buffer
)
@@ -144,6 +143,18 @@ class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
return self.get_full_inputs([intermediate_steps[-1]], **kwargs)
def predict_new_summary(
self, messages: List[BaseMessage], existing_summary: str
) -> str:
new_lines = get_buffer_string(
messages,
human_prefix="Human",
ai_prefix="AI",
)
chain = LLMChain(model_instance=self.summary_model_instance, prompt=SUMMARY_PROMPT)
return chain.predict(summary=existing_summary, new_lines=new_lines)
@classmethod
def create_prompt(
cls,
@@ -176,7 +187,7 @@ class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
@classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
model_instance: BaseLLM,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
output_parser: Optional[AgentOutputParser] = None,
@@ -188,16 +199,27 @@ class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
memory_prompts: Optional[List[BasePromptTemplate]] = None,
**kwargs: Any,
) -> Agent:
return super().from_llm_and_tools(
llm=llm,
tools=tools,
callback_manager=callback_manager,
output_parser=output_parser,
"""Construct an agent from an LLM and tools."""
cls._validate_tools(tools)
prompt = cls.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
human_message_template=human_message_template,
format_instructions=format_instructions,
input_variables=input_variables,
memory_prompts=memory_prompts,
)
llm_chain = LLMChain(
model_instance=model_instance,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
_output_parser = output_parser
return cls(
llm_chain=llm_chain,
allowed_tools=tool_names,
output_parser=_output_parser,
**kwargs,
)

View File

@@ -10,7 +10,6 @@ from pydantic import BaseModel, Extra
from core.agent.agent.multi_dataset_router_agent import MultiDatasetRouterAgent
from core.agent.agent.openai_function_call import AutoSummarizingOpenAIFunctionCallAgent
from core.agent.agent.openai_multi_function_call import AutoSummarizingOpenMultiAIFunctionCallAgent
from core.agent.agent.output_parser.structured_chat import StructuredChatOutputParser
from core.agent.agent.structed_multi_dataset_router_agent import StructuredMultiDatasetRouterAgent
from core.agent.agent.structured_chat import AutoSummarizingStructuredChatAgent
@@ -27,7 +26,6 @@ class PlanningStrategy(str, enum.Enum):
REACT_ROUTER = 'react_router'
REACT = 'react'
FUNCTION_CALL = 'function_call'
MULTI_FUNCTION_CALL = 'multi_function_call'
class AgentConfiguration(BaseModel):
@@ -64,30 +62,18 @@ class AgentExecutor:
if self.configuration.strategy == PlanningStrategy.REACT:
agent = AutoSummarizingStructuredChatAgent.from_llm_and_tools(
model_instance=self.configuration.model_instance,
llm=self.configuration.model_instance.client,
tools=self.configuration.tools,
output_parser=StructuredChatOutputParser(),
summary_llm=self.configuration.summary_model_instance.client
summary_model_instance=self.configuration.summary_model_instance
if self.configuration.summary_model_instance else None,
verbose=True
)
elif self.configuration.strategy == PlanningStrategy.FUNCTION_CALL:
agent = AutoSummarizingOpenAIFunctionCallAgent.from_llm_and_tools(
model_instance=self.configuration.model_instance,
llm=self.configuration.model_instance.client,
tools=self.configuration.tools,
extra_prompt_messages=self.configuration.memory.buffer if self.configuration.memory else None, # used for read chat histories memory
summary_llm=self.configuration.summary_model_instance.client
if self.configuration.summary_model_instance else None,
verbose=True
)
elif self.configuration.strategy == PlanningStrategy.MULTI_FUNCTION_CALL:
agent = AutoSummarizingOpenMultiAIFunctionCallAgent.from_llm_and_tools(
model_instance=self.configuration.model_instance,
llm=self.configuration.model_instance.client,
tools=self.configuration.tools,
extra_prompt_messages=self.configuration.memory.buffer if self.configuration.memory else None, # used for read chat histories memory
summary_llm=self.configuration.summary_model_instance.client
summary_model_instance=self.configuration.summary_model_instance
if self.configuration.summary_model_instance else None,
verbose=True
)
@@ -95,7 +81,6 @@ class AgentExecutor:
self.configuration.tools = [t for t in self.configuration.tools if isinstance(t, DatasetRetrieverTool)]
agent = MultiDatasetRouterAgent.from_llm_and_tools(
model_instance=self.configuration.model_instance,
llm=self.configuration.model_instance.client,
tools=self.configuration.tools,
extra_prompt_messages=self.configuration.memory.buffer if self.configuration.memory else None,
verbose=True
@@ -104,7 +89,6 @@ class AgentExecutor:
self.configuration.tools = [t for t in self.configuration.tools if isinstance(t, DatasetRetrieverTool)]
agent = StructuredMultiDatasetRouterAgent.from_llm_and_tools(
model_instance=self.configuration.model_instance,
llm=self.configuration.model_instance.client,
tools=self.configuration.tools,
output_parser=StructuredChatOutputParser(),
verbose=True

View File

@@ -0,0 +1,36 @@
from typing import List, Dict, Any, Optional
from langchain import LLMChain as LCLLMChain
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.schema import LLMResult, Generation
from langchain.schema.language_model import BaseLanguageModel
from core.model_providers.models.entity.message import to_prompt_messages
from core.model_providers.models.llm.base import BaseLLM
from core.third_party.langchain.llms.fake import FakeLLM
class LLMChain(LCLLMChain):
model_instance: BaseLLM
"""The language model instance to use."""
llm: BaseLanguageModel = FakeLLM(response="")
def generate(
self,
input_list: List[Dict[str, Any]],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> LLMResult:
"""Generate LLM result from inputs."""
prompts, stop = self.prep_prompts(input_list, run_manager=run_manager)
messages = prompts[0].to_messages()
prompt_messages = to_prompt_messages(messages)
result = self.model_instance.run(
messages=prompt_messages,
stop=stop
)
generations = [
[Generation(text=result.content)]
]
return LLMResult(generations=generations)

View File

@@ -1,4 +1,3 @@
import json
import logging
from typing import Optional, List, Union
@@ -16,10 +15,8 @@ from core.model_providers.model_factory import ModelFactory
from core.model_providers.models.entity.message import PromptMessage
from core.model_providers.models.llm.base import BaseLLM
from core.orchestrator_rule_parser import OrchestratorRuleParser
from core.prompt.prompt_builder import PromptBuilder
from core.prompt.prompts import MORE_LIKE_THIS_GENERATE_PROMPT
from models.dataset import DocumentSegment, Dataset, Document
from models.model import App, AppModelConfig, Account, Conversation, Message, EndUser
from core.prompt.prompt_template import PromptTemplateParser
from models.model import App, AppModelConfig, Account, Conversation, EndUser
class Completion:
@@ -30,7 +27,7 @@ class Completion:
"""
errors: ProviderTokenNotInitError
"""
query = PromptBuilder.process_template(query)
query = PromptTemplateParser.remove_template_variables(query)
memory = None
if conversation:
@@ -108,12 +105,14 @@ class Completion:
retriever_from=retriever_from
)
query_for_agent = cls.get_query_for_agent(app, app_model_config, query, inputs)
# run agent executor
agent_execute_result = None
if agent_executor:
should_use_agent = agent_executor.should_use_agent(query)
if query_for_agent and agent_executor:
should_use_agent = agent_executor.should_use_agent(query_for_agent)
if should_use_agent:
agent_execute_result = agent_executor.run(query)
agent_execute_result = agent_executor.run(query_for_agent)
# When no extra pre prompt is specified,
# the output of the agent can be used directly as the main output content without calling LLM again
@@ -142,6 +141,13 @@ class Completion:
logging.warning(f'ChunkedEncodingError: {e}')
conversation_message_task.end()
return
@classmethod
def get_query_for_agent(cls, app: App, app_model_config: AppModelConfig, query: str, inputs: dict) -> str:
if app.mode != 'completion':
return query
return inputs.get(app_model_config.dataset_query_variable, "")
@classmethod
def run_final_llm(cls, model_instance: BaseLLM, mode: str, app_model_config: AppModelConfig, query: str,
@@ -151,14 +157,28 @@ class Completion:
memory: Optional[ReadOnlyConversationTokenDBBufferSharedMemory],
fake_response: Optional[str]):
# get llm prompt
prompt_messages, stop_words = model_instance.get_prompt(
mode=mode,
pre_prompt=app_model_config.pre_prompt,
inputs=inputs,
query=query,
context=agent_execute_result.output if agent_execute_result else None,
memory=memory
)
if app_model_config.prompt_type == 'simple':
prompt_messages, stop_words = model_instance.get_prompt(
mode=mode,
pre_prompt=app_model_config.pre_prompt,
inputs=inputs,
query=query,
context=agent_execute_result.output if agent_execute_result else None,
memory=memory
)
else:
prompt_messages = model_instance.get_advanced_prompt(
app_mode=mode,
app_model_config=app_model_config,
inputs=inputs,
query=query,
context=agent_execute_result.output if agent_execute_result else None,
memory=memory
)
model_config = app_model_config.model_dict
completion_params = model_config.get("completion_params", {})
stop_words = completion_params.get("stop", [])
cls.recale_llm_max_tokens(
model_instance=model_instance,
@@ -167,7 +187,7 @@ class Completion:
response = model_instance.run(
messages=prompt_messages,
stop=stop_words,
stop=stop_words if stop_words else None,
callbacks=[LLMCallbackHandler(model_instance, conversation_message_task)],
fake_response=fake_response
)
@@ -257,52 +277,3 @@ class Completion:
model_kwargs = model_instance.get_model_kwargs()
model_kwargs.max_tokens = max_tokens
model_instance.set_model_kwargs(model_kwargs)
@classmethod
def generate_more_like_this(cls, task_id: str, app: App, message: Message, pre_prompt: str,
app_model_config: AppModelConfig, user: Account, streaming: bool):
final_model_instance = ModelFactory.get_text_generation_model_from_model_config(
tenant_id=app.tenant_id,
model_config=app_model_config.model_dict,
streaming=streaming
)
# get llm prompt
old_prompt_messages, _ = final_model_instance.get_prompt(
mode='completion',
pre_prompt=pre_prompt,
inputs=message.inputs,
query=message.query,
context=None,
memory=None
)
original_completion = message.answer.strip()
prompt = MORE_LIKE_THIS_GENERATE_PROMPT
prompt = prompt.format(prompt=old_prompt_messages[0].content, original_completion=original_completion)
prompt_messages = [PromptMessage(content=prompt)]
conversation_message_task = ConversationMessageTask(
task_id=task_id,
app=app,
app_model_config=app_model_config,
user=user,
inputs=message.inputs,
query=message.query,
is_override=True if message.override_model_configs else False,
streaming=streaming,
model_instance=final_model_instance
)
cls.recale_llm_max_tokens(
model_instance=final_model_instance,
prompt_messages=prompt_messages
)
final_model_instance.run(
messages=prompt_messages,
callbacks=[LLMCallbackHandler(final_model_instance, conversation_message_task)]
)

View File

@@ -10,7 +10,7 @@ from core.model_providers.model_factory import ModelFactory
from core.model_providers.models.entity.message import to_prompt_messages, MessageType
from core.model_providers.models.llm.base import BaseLLM
from core.prompt.prompt_builder import PromptBuilder
from core.prompt.prompt_template import JinjaPromptTemplate
from core.prompt.prompt_template import PromptTemplateParser
from events.message_event import message_was_created
from extensions.ext_database import db
from extensions.ext_redis import redis_client
@@ -74,10 +74,10 @@ class ConversationMessageTask:
if self.mode == 'chat':
introduction = self.app_model_config.opening_statement
if introduction:
prompt_template = JinjaPromptTemplate.from_template(template=introduction)
prompt_inputs = {k: self.inputs[k] for k in prompt_template.input_variables if k in self.inputs}
prompt_template = PromptTemplateParser(template=introduction)
prompt_inputs = {k: self.inputs[k] for k in prompt_template.variable_keys if k in self.inputs}
try:
introduction = prompt_template.format(**prompt_inputs)
introduction = prompt_template.format(prompt_inputs)
except KeyError:
pass
@@ -94,7 +94,7 @@ class ConversationMessageTask:
if not self.conversation:
self.is_new_conversation = True
self.conversation = Conversation(
app_id=self.app_model_config.app_id,
app_id=self.app.id,
app_model_config_id=self.app_model_config.id,
model_provider=self.provider_name,
model_id=self.model_name,
@@ -112,10 +112,10 @@ class ConversationMessageTask:
)
db.session.add(self.conversation)
db.session.flush()
db.session.commit()
self.message = Message(
app_id=self.app_model_config.app_id,
app_id=self.app.id,
model_provider=self.provider_name,
model_id=self.model_name,
override_model_configs=json.dumps(override_model_configs) if override_model_configs else None,
@@ -140,7 +140,7 @@ class ConversationMessageTask:
)
db.session.add(self.message)
db.session.flush()
db.session.commit()
def append_message_text(self, text: str):
if text is not None:
@@ -150,12 +150,12 @@ class ConversationMessageTask:
message_tokens = llm_message.prompt_tokens
answer_tokens = llm_message.completion_tokens
message_unit_price = self.model_instance.get_tokens_unit_price(MessageType.HUMAN)
message_price_unit = self.model_instance.get_price_unit(MessageType.HUMAN)
message_unit_price = self.model_instance.get_tokens_unit_price(MessageType.USER)
message_price_unit = self.model_instance.get_price_unit(MessageType.USER)
answer_unit_price = self.model_instance.get_tokens_unit_price(MessageType.ASSISTANT)
answer_price_unit = self.model_instance.get_price_unit(MessageType.ASSISTANT)
message_total_price = self.model_instance.calc_tokens_price(message_tokens, MessageType.HUMAN)
message_total_price = self.model_instance.calc_tokens_price(message_tokens, MessageType.USER)
answer_total_price = self.model_instance.calc_tokens_price(answer_tokens, MessageType.ASSISTANT)
total_price = message_total_price + answer_total_price
@@ -163,7 +163,7 @@ class ConversationMessageTask:
self.message.message_tokens = message_tokens
self.message.message_unit_price = message_unit_price
self.message.message_price_unit = message_price_unit
self.message.answer = PromptBuilder.process_template(
self.message.answer = PromptTemplateParser.remove_template_variables(
llm_message.completion.strip()) if llm_message.completion else ''
self.message.answer_tokens = answer_tokens
self.message.answer_unit_price = answer_unit_price
@@ -191,12 +191,13 @@ class ConversationMessageTask:
)
db.session.add(message_chain)
db.session.flush()
db.session.commit()
return message_chain
def on_chain_end(self, message_chain: MessageChain, chain_result: ChainResult):
message_chain.output = json.dumps(chain_result.completion)
db.session.commit()
self._pub_handler.pub_chain(message_chain)
@@ -217,7 +218,7 @@ class ConversationMessageTask:
)
db.session.add(message_agent_thought)
db.session.flush()
db.session.commit()
self._pub_handler.pub_agent_thought(message_agent_thought)
@@ -225,15 +226,15 @@ class ConversationMessageTask:
def on_agent_end(self, message_agent_thought: MessageAgentThought, agent_model_instance: BaseLLM,
agent_loop: AgentLoop):
agent_message_unit_price = agent_model_instance.get_tokens_unit_price(MessageType.HUMAN)
agent_message_price_unit = agent_model_instance.get_price_unit(MessageType.HUMAN)
agent_message_unit_price = agent_model_instance.get_tokens_unit_price(MessageType.USER)
agent_message_price_unit = agent_model_instance.get_price_unit(MessageType.USER)
agent_answer_unit_price = agent_model_instance.get_tokens_unit_price(MessageType.ASSISTANT)
agent_answer_price_unit = agent_model_instance.get_price_unit(MessageType.ASSISTANT)
loop_message_tokens = agent_loop.prompt_tokens
loop_answer_tokens = agent_loop.completion_tokens
loop_message_total_price = agent_model_instance.calc_tokens_price(loop_message_tokens, MessageType.HUMAN)
loop_message_total_price = agent_model_instance.calc_tokens_price(loop_message_tokens, MessageType.USER)
loop_answer_total_price = agent_model_instance.calc_tokens_price(loop_answer_tokens, MessageType.ASSISTANT)
loop_total_price = loop_message_total_price + loop_answer_total_price
@@ -249,7 +250,7 @@ class ConversationMessageTask:
message_agent_thought.tokens = agent_loop.prompt_tokens + agent_loop.completion_tokens
message_agent_thought.total_price = loop_total_price
message_agent_thought.currency = agent_model_instance.get_currency()
db.session.flush()
db.session.commit()
def on_dataset_query_end(self, dataset_query_obj: DatasetQueryObj):
dataset_query = DatasetQuery(
@@ -262,6 +263,7 @@ class ConversationMessageTask:
)
db.session.add(dataset_query)
db.session.commit()
def on_dataset_query_finish(self, resource: List):
if resource and len(resource) > 0:
@@ -285,7 +287,7 @@ class ConversationMessageTask:
created_by=self.user.id
)
db.session.add(dataset_retriever_resource)
db.session.flush()
db.session.commit()
self.retriever_resource = resource
def message_end(self):

View File

@@ -16,6 +16,7 @@ logger = logging.getLogger(__name__)
BLOCK_CHILD_URL_TMPL = "https://api.notion.com/v1/blocks/{block_id}/children"
DATABASE_URL_TMPL = "https://api.notion.com/v1/databases/{database_id}/query"
SEARCH_URL = "https://api.notion.com/v1/search"
RETRIEVE_PAGE_URL_TMPL = "https://api.notion.com/v1/pages/{page_id}"
RETRIEVE_DATABASE_URL_TMPL = "https://api.notion.com/v1/databases/{database_id}"
HEADING_TYPE = ['heading_1', 'heading_2', 'heading_3']

View File

@@ -10,9 +10,8 @@ from core.model_providers.models.entity.model_params import ModelKwargs
from core.prompt.output_parser.rule_config_generator import RuleConfigGeneratorOutputParser
from core.prompt.output_parser.suggested_questions_after_answer import SuggestedQuestionsAfterAnswerOutputParser
from core.prompt.prompt_template import JinjaPromptTemplate, OutLinePromptTemplate
from core.prompt.prompts import CONVERSATION_TITLE_PROMPT, CONVERSATION_SUMMARY_PROMPT, INTRODUCTION_GENERATE_PROMPT, \
GENERATOR_QA_PROMPT
from core.prompt.prompt_template import PromptTemplateParser
from core.prompt.prompts import CONVERSATION_TITLE_PROMPT, GENERATOR_QA_PROMPT
class LLMGenerator:
@@ -44,78 +43,19 @@ class LLMGenerator:
return answer.strip()
@classmethod
def generate_conversation_summary(cls, tenant_id: str, messages):
max_tokens = 200
model_instance = ModelFactory.get_text_generation_model(
tenant_id=tenant_id,
model_kwargs=ModelKwargs(
max_tokens=max_tokens
)
)
prompt = CONVERSATION_SUMMARY_PROMPT
prompt_with_empty_context = prompt.format(context='')
prompt_tokens = model_instance.get_num_tokens([PromptMessage(content=prompt_with_empty_context)])
max_context_token_length = model_instance.model_rules.max_tokens.max
max_context_token_length = max_context_token_length if max_context_token_length else 1500
rest_tokens = max_context_token_length - prompt_tokens - max_tokens - 1
context = ''
for message in messages:
if not message.answer:
continue
if len(message.query) > 2000:
query = message.query[:300] + "...[TRUNCATED]..." + message.query[-300:]
else:
query = message.query
if len(message.answer) > 2000:
answer = message.answer[:300] + "...[TRUNCATED]..." + message.answer[-300:]
else:
answer = message.answer
message_qa_text = "\n\nHuman:" + query + "\n\nAssistant:" + answer
if rest_tokens - model_instance.get_num_tokens([PromptMessage(content=context + message_qa_text)]) > 0:
context += message_qa_text
if not context:
return '[message too long, no summary]'
prompt = prompt.format(context=context)
prompts = [PromptMessage(content=prompt)]
response = model_instance.run(prompts)
answer = response.content
return answer.strip()
@classmethod
def generate_introduction(cls, tenant_id: str, pre_prompt: str):
prompt = INTRODUCTION_GENERATE_PROMPT
prompt = prompt.format(prompt=pre_prompt)
model_instance = ModelFactory.get_text_generation_model(
tenant_id=tenant_id
)
prompts = [PromptMessage(content=prompt)]
response = model_instance.run(prompts)
answer = response.content
return answer.strip()
@classmethod
def generate_suggested_questions_after_answer(cls, tenant_id: str, histories: str):
output_parser = SuggestedQuestionsAfterAnswerOutputParser()
format_instructions = output_parser.get_format_instructions()
prompt = JinjaPromptTemplate(
template="{{histories}}\n{{format_instructions}}\nquestions:\n",
input_variables=["histories"],
partial_variables={"format_instructions": format_instructions}
prompt_template = PromptTemplateParser(
template="{{histories}}\n{{format_instructions}}\nquestions:\n"
)
_input = prompt.format_prompt(histories=histories)
prompt = prompt_template.format({
"histories": histories,
"format_instructions": format_instructions
})
try:
model_instance = ModelFactory.get_text_generation_model(
@@ -128,10 +68,10 @@ class LLMGenerator:
except ProviderTokenNotInitError:
return []
prompts = [PromptMessage(content=_input.to_string())]
prompt_messages = [PromptMessage(content=prompt)]
try:
output = model_instance.run(prompts)
output = model_instance.run(prompt_messages)
questions = output_parser.parse(output.content)
except LLMError:
questions = []
@@ -145,19 +85,21 @@ class LLMGenerator:
def generate_rule_config(cls, tenant_id: str, audiences: str, hoping_to_solve: str) -> dict:
output_parser = RuleConfigGeneratorOutputParser()
prompt = OutLinePromptTemplate(
template=output_parser.get_format_instructions(),
input_variables=["audiences", "hoping_to_solve"],
partial_variables={
"variable": '{variable}',
"lanA": '{lanA}',
"lanB": '{lanB}',
"topic": '{topic}'
},
validate_template=False
prompt_template = PromptTemplateParser(
template=output_parser.get_format_instructions()
)
_input = prompt.format_prompt(audiences=audiences, hoping_to_solve=hoping_to_solve)
prompt = prompt_template.format(
inputs={
"audiences": audiences,
"hoping_to_solve": hoping_to_solve,
"variable": "{{variable}}",
"lanA": "{{lanA}}",
"lanB": "{{lanB}}",
"topic": "{{topic}}"
},
remove_template_variables=False
)
model_instance = ModelFactory.get_text_generation_model(
tenant_id=tenant_id,
@@ -167,10 +109,10 @@ class LLMGenerator:
)
)
prompts = [PromptMessage(content=_input.to_string())]
prompt_messages = [PromptMessage(content=prompt)]
try:
output = model_instance.run(prompts)
output = model_instance.run(prompt_messages)
rule_config = output_parser.parse(output.content)
except LLMError as e:
raise e

View File

@@ -1,4 +1,5 @@
import logging
import random
import openai
@@ -16,19 +17,20 @@ def check_moderation(model_provider: BaseModelProvider, text: str) -> bool:
length = 2000
text_chunks = [text[i:i + length] for i in range(0, len(text), length)]
max_text_chunks = 32
chunks = [text_chunks[i:i + max_text_chunks] for i in range(0, len(text_chunks), max_text_chunks)]
if len(text_chunks) == 0:
return True
for text_chunk in chunks:
try:
moderation_result = openai.Moderation.create(input=text_chunk,
api_key=hosted_model_providers.openai.api_key)
except Exception as ex:
logging.exception(ex)
raise LLMBadRequestError('Rate limit exceeded, please try again later.')
text_chunk = random.choice(text_chunks)
for result in moderation_result.results:
if result['flagged'] is True:
return False
try:
moderation_result = openai.Moderation.create(input=text_chunk,
api_key=hosted_model_providers.openai.api_key)
except Exception as ex:
logging.exception(ex)
raise LLMBadRequestError('Rate limit exceeded, please try again later.')
for result in moderation_result.results:
if result['flagged'] is True:
return False
return True

View File

@@ -246,11 +246,28 @@ class KeywordTableIndex(BaseIndex):
keyword_table = self._add_text_to_keyword_table(keyword_table, node_id, keywords)
self._save_dataset_keyword_table(keyword_table)
def multi_create_segment_keywords(self, pre_segment_data_list: list):
keyword_table_handler = JiebaKeywordTableHandler()
keyword_table = self._get_dataset_keyword_table()
for pre_segment_data in pre_segment_data_list:
segment = pre_segment_data['segment']
if pre_segment_data['keywords']:
segment.keywords = pre_segment_data['keywords']
keyword_table = self._add_text_to_keyword_table(keyword_table, segment.index_node_id,
pre_segment_data['keywords'])
else:
keywords = keyword_table_handler.extract_keywords(segment.content,
self._config.max_keywords_per_chunk)
segment.keywords = list(keywords)
keyword_table = self._add_text_to_keyword_table(keyword_table, segment.index_node_id, list(keywords))
self._save_dataset_keyword_table(keyword_table)
def update_segment_keywords_index(self, node_id: str, keywords: List[str]):
keyword_table = self._get_dataset_keyword_table()
keyword_table = self._add_text_to_keyword_table(keyword_table, node_id, keywords)
self._save_dataset_keyword_table(keyword_table)
class KeywordTableRetriever(BaseRetriever, BaseModel):
index: KeywordTableIndex
search_kwargs: dict = Field(default_factory=dict)

View File

@@ -113,8 +113,10 @@ class BaseVectorIndex(BaseIndex):
def delete_by_group_id(self, group_id: str) -> None:
vector_store = self._get_vector_store()
vector_store = cast(self._get_vector_store_class(), vector_store)
vector_store.delete()
if self.dataset.collection_binding_id:
vector_store.delete_by_group_id(group_id)
else:
vector_store.delete()
def delete(self) -> None:
vector_store = self._get_vector_store()
@@ -283,7 +285,7 @@ class BaseVectorIndex(BaseIndex):
if documents:
try:
self.create_with_collection_name(documents, dataset_collection_binding.collection_name)
self.add_texts(documents)
except Exception as e:
raise e

View File

@@ -0,0 +1,858 @@
"""Wrapper around the Milvus vector database."""
from __future__ import annotations
import logging
from typing import Any, Iterable, List, Optional, Tuple, Union, Sequence
from uuid import uuid4
import numpy as np
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.vectorstores.base import VectorStore
from langchain.vectorstores.utils import maximal_marginal_relevance
logger = logging.getLogger(__name__)
DEFAULT_MILVUS_CONNECTION = {
"host": "localhost",
"port": "19530",
"user": "",
"password": "",
"secure": False,
}
class Milvus(VectorStore):
"""Initialize wrapper around the milvus vector database.
In order to use this you need to have `pymilvus` installed and a
running Milvus
See the following documentation for how to run a Milvus instance:
https://milvus.io/docs/install_standalone-docker.md
If looking for a hosted Milvus, take a look at this documentation:
https://zilliz.com/cloud and make use of the Zilliz vectorstore found in
this project,
IF USING L2/IP metric IT IS HIGHLY SUGGESTED TO NORMALIZE YOUR DATA.
Args:
embedding_function (Embeddings): Function used to embed the text.
collection_name (str): Which Milvus collection to use. Defaults to
"LangChainCollection".
connection_args (Optional[dict[str, any]]): The connection args used for
this class comes in the form of a dict.
consistency_level (str): The consistency level to use for a collection.
Defaults to "Session".
index_params (Optional[dict]): Which index params to use. Defaults to
HNSW/AUTOINDEX depending on service.
search_params (Optional[dict]): Which search params to use. Defaults to
default of index.
drop_old (Optional[bool]): Whether to drop the current collection. Defaults
to False.
The connection args used for this class comes in the form of a dict,
here are a few of the options:
address (str): The actual address of Milvus
instance. Example address: "localhost:19530"
uri (str): The uri of Milvus instance. Example uri:
"http://randomwebsite:19530",
"tcp:foobarsite:19530",
"https://ok.s3.south.com:19530".
host (str): The host of Milvus instance. Default at "localhost",
PyMilvus will fill in the default host if only port is provided.
port (str/int): The port of Milvus instance. Default at 19530, PyMilvus
will fill in the default port if only host is provided.
user (str): Use which user to connect to Milvus instance. If user and
password are provided, we will add related header in every RPC call.
password (str): Required when user is provided. The password
corresponding to the user.
secure (bool): Default is false. If set to true, tls will be enabled.
client_key_path (str): If use tls two-way authentication, need to
write the client.key path.
client_pem_path (str): If use tls two-way authentication, need to
write the client.pem path.
ca_pem_path (str): If use tls two-way authentication, need to write
the ca.pem path.
server_pem_path (str): If use tls one-way authentication, need to
write the server.pem path.
server_name (str): If use tls, need to write the common name.
Example:
.. code-block:: python
from langchain import Milvus
from langchain.embeddings import OpenAIEmbeddings
embedding = OpenAIEmbeddings()
# Connect to a milvus instance on localhost
milvus_store = Milvus(
embedding_function = Embeddings,
collection_name = "LangChainCollection",
drop_old = True,
)
Raises:
ValueError: If the pymilvus python package is not installed.
"""
def __init__(
self,
embedding_function: Embeddings,
collection_name: str = "LangChainCollection",
connection_args: Optional[dict[str, Any]] = None,
consistency_level: str = "Session",
index_params: Optional[dict] = None,
search_params: Optional[dict] = None,
drop_old: Optional[bool] = False,
):
"""Initialize the Milvus vector store."""
try:
from pymilvus import Collection, utility
except ImportError:
raise ValueError(
"Could not import pymilvus python package. "
"Please install it with `pip install pymilvus`."
)
# Default search params when one is not provided.
self.default_search_params = {
"IVF_FLAT": {"metric_type": "L2", "params": {"nprobe": 10}},
"IVF_SQ8": {"metric_type": "L2", "params": {"nprobe": 10}},
"IVF_PQ": {"metric_type": "L2", "params": {"nprobe": 10}},
"HNSW": {"metric_type": "L2", "params": {"ef": 10}},
"RHNSW_FLAT": {"metric_type": "L2", "params": {"ef": 10}},
"RHNSW_SQ": {"metric_type": "L2", "params": {"ef": 10}},
"RHNSW_PQ": {"metric_type": "L2", "params": {"ef": 10}},
"IVF_HNSW": {"metric_type": "L2", "params": {"nprobe": 10, "ef": 10}},
"ANNOY": {"metric_type": "L2", "params": {"search_k": 10}},
"AUTOINDEX": {"metric_type": "L2", "params": {}},
}
self.embedding_func = embedding_function
self.collection_name = collection_name
self.index_params = index_params
self.search_params = search_params
self.consistency_level = consistency_level
# In order for a collection to be compatible, pk needs to be auto'id and int
self._primary_field = "id"
# In order for compatibility, the text field will need to be called "text"
self._text_field = "page_content"
# In order for compatibility, the vector field needs to be called "vector"
self._vector_field = "vectors"
# In order for compatibility, the metadata field will need to be called "metadata"
self._metadata_field = "metadata"
self.fields: list[str] = []
# Create the connection to the server
if connection_args is None:
connection_args = DEFAULT_MILVUS_CONNECTION
self.alias = self._create_connection_alias(connection_args)
self.col: Optional[Collection] = None
# Grab the existing collection if it exists
if utility.has_collection(self.collection_name, using=self.alias):
self.col = Collection(
self.collection_name,
using=self.alias,
)
# If need to drop old, drop it
if drop_old and isinstance(self.col, Collection):
self.col.drop()
self.col = None
# Initialize the vector store
self._init()
@property
def embeddings(self) -> Embeddings:
return self.embedding_func
def _create_connection_alias(self, connection_args: dict) -> str:
"""Create the connection to the Milvus server."""
from pymilvus import MilvusException, connections
# Grab the connection arguments that are used for checking existing connection
host: str = connection_args.get("host", None)
port: Union[str, int] = connection_args.get("port", None)
address: str = connection_args.get("address", None)
uri: str = connection_args.get("uri", None)
user = connection_args.get("user", None)
# Order of use is host/port, uri, address
if host is not None and port is not None:
given_address = str(host) + ":" + str(port)
elif uri is not None:
given_address = uri.split("https://")[1]
elif address is not None:
given_address = address
else:
given_address = None
logger.debug("Missing standard address type for reuse atttempt")
# User defaults to empty string when getting connection info
if user is not None:
tmp_user = user
else:
tmp_user = ""
# If a valid address was given, then check if a connection exists
if given_address is not None:
for con in connections.list_connections():
addr = connections.get_connection_addr(con[0])
if (
con[1]
and ("address" in addr)
and (addr["address"] == given_address)
and ("user" in addr)
and (addr["user"] == tmp_user)
):
logger.debug("Using previous connection: %s", con[0])
return con[0]
# Generate a new connection if one doesn't exist
alias = uuid4().hex
try:
connections.connect(alias=alias, **connection_args)
logger.debug("Created new connection using: %s", alias)
return alias
except MilvusException as e:
logger.error("Failed to create new connection using: %s", alias)
raise e
def _init(
self, embeddings: Optional[list] = None, metadatas: Optional[list[dict]] = None
) -> None:
if embeddings is not None:
self._create_collection(embeddings, metadatas)
self._extract_fields()
self._create_index()
self._create_search_params()
self._load()
def _create_collection(
self, embeddings: list, metadatas: Optional[list[dict]] = None
) -> None:
from pymilvus import (
Collection,
CollectionSchema,
DataType,
FieldSchema,
MilvusException,
)
from pymilvus.orm.types import infer_dtype_bydata
# Determine embedding dim
dim = len(embeddings[0])
fields = []
# Determine metadata schema
# if metadatas:
# # Create FieldSchema for each entry in metadata.
# for key, value in metadatas[0].items():
# # Infer the corresponding datatype of the metadata
# dtype = infer_dtype_bydata(value)
# # Datatype isn't compatible
# if dtype == DataType.UNKNOWN or dtype == DataType.NONE:
# logger.error(
# "Failure to create collection, unrecognized dtype for key: %s",
# key,
# )
# raise ValueError(f"Unrecognized datatype for {key}.")
# # Dataype is a string/varchar equivalent
# elif dtype == DataType.VARCHAR:
# fields.append(FieldSchema(key, DataType.VARCHAR, max_length=65_535))
# else:
# fields.append(FieldSchema(key, dtype))
if metadatas:
fields.append(FieldSchema(self._metadata_field, DataType.JSON, max_length=65_535))
# Create the text field
fields.append(
FieldSchema(self._text_field, DataType.VARCHAR, max_length=65_535)
)
# Create the primary key field
fields.append(
FieldSchema(
self._primary_field, DataType.INT64, is_primary=True, auto_id=True
)
)
# Create the vector field, supports binary or float vectors
fields.append(
FieldSchema(self._vector_field, infer_dtype_bydata(embeddings[0]), dim=dim)
)
# Create the schema for the collection
schema = CollectionSchema(fields)
# Create the collection
try:
self.col = Collection(
name=self.collection_name,
schema=schema,
consistency_level=self.consistency_level,
using=self.alias,
)
except MilvusException as e:
logger.error(
"Failed to create collection: %s error: %s", self.collection_name, e
)
raise e
def _extract_fields(self) -> None:
"""Grab the existing fields from the Collection"""
from pymilvus import Collection
if isinstance(self.col, Collection):
schema = self.col.schema
for x in schema.fields:
self.fields.append(x.name)
# Since primary field is auto-id, no need to track it
self.fields.remove(self._primary_field)
def _get_index(self) -> Optional[dict[str, Any]]:
"""Return the vector index information if it exists"""
from pymilvus import Collection
if isinstance(self.col, Collection):
for x in self.col.indexes:
if x.field_name == self._vector_field:
return x.to_dict()
return None
def _create_index(self) -> None:
"""Create a index on the collection"""
from pymilvus import Collection, MilvusException
if isinstance(self.col, Collection) and self._get_index() is None:
try:
# If no index params, use a default HNSW based one
if self.index_params is None:
self.index_params = {
"metric_type": "IP",
"index_type": "HNSW",
"params": {"M": 8, "efConstruction": 64},
}
try:
self.col.create_index(
self._vector_field,
index_params=self.index_params,
using=self.alias,
)
# If default did not work, most likely on Zilliz Cloud
except MilvusException:
# Use AUTOINDEX based index
self.index_params = {
"metric_type": "L2",
"index_type": "AUTOINDEX",
"params": {},
}
self.col.create_index(
self._vector_field,
index_params=self.index_params,
using=self.alias,
)
logger.debug(
"Successfully created an index on collection: %s",
self.collection_name,
)
except MilvusException as e:
logger.error(
"Failed to create an index on collection: %s", self.collection_name
)
raise e
def _create_search_params(self) -> None:
"""Generate search params based on the current index type"""
from pymilvus import Collection
if isinstance(self.col, Collection) and self.search_params is None:
index = self._get_index()
if index is not None:
index_type: str = index["index_param"]["index_type"]
metric_type: str = index["index_param"]["metric_type"]
self.search_params = self.default_search_params[index_type]
self.search_params["metric_type"] = metric_type
def _load(self) -> None:
"""Load the collection if available."""
from pymilvus import Collection
if isinstance(self.col, Collection) and self._get_index() is not None:
self.col.load()
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
timeout: Optional[int] = None,
batch_size: int = 1000,
**kwargs: Any,
) -> List[str]:
"""Insert text data into Milvus.
Inserting data when the collection has not be made yet will result
in creating a new Collection. The data of the first entity decides
the schema of the new collection, the dim is extracted from the first
embedding and the columns are decided by the first metadata dict.
Metada keys will need to be present for all inserted values. At
the moment there is no None equivalent in Milvus.
Args:
texts (Iterable[str]): The texts to embed, it is assumed
that they all fit in memory.
metadatas (Optional[List[dict]]): Metadata dicts attached to each of
the texts. Defaults to None.
timeout (Optional[int]): Timeout for each batch insert. Defaults
to None.
batch_size (int, optional): Batch size to use for insertion.
Defaults to 1000.
Raises:
MilvusException: Failure to add texts
Returns:
List[str]: The resulting keys for each inserted element.
"""
from pymilvus import Collection, MilvusException
texts = list(texts)
try:
embeddings = self.embedding_func.embed_documents(texts)
except NotImplementedError:
embeddings = [self.embedding_func.embed_query(x) for x in texts]
if len(embeddings) == 0:
logger.debug("Nothing to insert, skipping.")
return []
# If the collection hasn't been initialized yet, perform all steps to do so
if not isinstance(self.col, Collection):
self._init(embeddings, metadatas)
# Dict to hold all insert columns
insert_dict: dict[str, list] = {
self._text_field: texts,
self._vector_field: embeddings,
}
# Collect the metadata into the insert dict.
# if metadatas is not None:
# for d in metadatas:
# for key, value in d.items():
# if key in self.fields:
# insert_dict.setdefault(key, []).append(value)
if metadatas is not None:
for d in metadatas:
insert_dict.setdefault(self._metadata_field, []).append(d)
# Total insert count
vectors: list = insert_dict[self._vector_field]
total_count = len(vectors)
pks: list[str] = []
assert isinstance(self.col, Collection)
for i in range(0, total_count, batch_size):
# Grab end index
end = min(i + batch_size, total_count)
# Convert dict to list of lists batch for insertion
insert_list = [insert_dict[x][i:end] for x in self.fields]
# Insert into the collection.
try:
res: Collection
res = self.col.insert(insert_list, timeout=timeout, **kwargs)
pks.extend(res.primary_keys)
except MilvusException as e:
logger.error(
"Failed to insert batch starting at entity: %s/%s", i, total_count
)
raise e
return pks
def similarity_search(
self,
query: str,
k: int = 4,
param: Optional[dict] = None,
expr: Optional[str] = None,
timeout: Optional[int] = None,
**kwargs: Any,
) -> List[Document]:
"""Perform a similarity search against the query string.
Args:
query (str): The text to search.
k (int, optional): How many results to return. Defaults to 4.
param (dict, optional): The search params for the index type.
Defaults to None.
expr (str, optional): Filtering expression. Defaults to None.
timeout (int, optional): How long to wait before timeout error.
Defaults to None.
kwargs: Collection.search() keyword arguments.
Returns:
List[Document]: Document results for search.
"""
if self.col is None:
logger.debug("No existing collection to search.")
return []
res = self.similarity_search_with_score(
query=query, k=k, param=param, expr=expr, timeout=timeout, **kwargs
)
return [doc for doc, _ in res]
def similarity_search_by_vector(
self,
embedding: List[float],
k: int = 4,
param: Optional[dict] = None,
expr: Optional[str] = None,
timeout: Optional[int] = None,
**kwargs: Any,
) -> List[Document]:
"""Perform a similarity search against the query string.
Args:
embedding (List[float]): The embedding vector to search.
k (int, optional): How many results to return. Defaults to 4.
param (dict, optional): The search params for the index type.
Defaults to None.
expr (str, optional): Filtering expression. Defaults to None.
timeout (int, optional): How long to wait before timeout error.
Defaults to None.
kwargs: Collection.search() keyword arguments.
Returns:
List[Document]: Document results for search.
"""
if self.col is None:
logger.debug("No existing collection to search.")
return []
res = self.similarity_search_with_score_by_vector(
embedding=embedding, k=k, param=param, expr=expr, timeout=timeout, **kwargs
)
return [doc for doc, _ in res]
def similarity_search_with_score(
self,
query: str,
k: int = 4,
param: Optional[dict] = None,
expr: Optional[str] = None,
timeout: Optional[int] = None,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Perform a search on a query string and return results with score.
For more information about the search parameters, take a look at the pymilvus
documentation found here:
https://milvus.io/api-reference/pymilvus/v2.2.6/Collection/search().md
Args:
query (str): The text being searched.
k (int, optional): The amount of results to return. Defaults to 4.
param (dict): The search params for the specified index.
Defaults to None.
expr (str, optional): Filtering expression. Defaults to None.
timeout (int, optional): How long to wait before timeout error.
Defaults to None.
kwargs: Collection.search() keyword arguments.
Returns:
List[float], List[Tuple[Document, any, any]]:
"""
if self.col is None:
logger.debug("No existing collection to search.")
return []
# Embed the query text.
embedding = self.embedding_func.embed_query(query)
res = self.similarity_search_with_score_by_vector(
embedding=embedding, k=k, param=param, expr=expr, timeout=timeout, **kwargs
)
return res
def _similarity_search_with_relevance_scores(
self,
query: str,
k: int = 4,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
Args:
query: input text
k: Number of Documents to return. Defaults to 4.
**kwargs: kwargs to be passed to similarity search. Should include:
score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
Returns:
List of Tuples of (doc, similarity_score)
"""
return self.similarity_search_with_score(query, k, **kwargs)
def similarity_search_with_score_by_vector(
self,
embedding: List[float],
k: int = 4,
param: Optional[dict] = None,
expr: Optional[str] = None,
timeout: Optional[int] = None,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Perform a search on a query string and return results with score.
For more information about the search parameters, take a look at the pymilvus
documentation found here:
https://milvus.io/api-reference/pymilvus/v2.2.6/Collection/search().md
Args:
embedding (List[float]): The embedding vector being searched.
k (int, optional): The amount of results to return. Defaults to 4.
param (dict): The search params for the specified index.
Defaults to None.
expr (str, optional): Filtering expression. Defaults to None.
timeout (int, optional): How long to wait before timeout error.
Defaults to None.
kwargs: Collection.search() keyword arguments.
Returns:
List[Tuple[Document, float]]: Result doc and score.
"""
if self.col is None:
logger.debug("No existing collection to search.")
return []
if param is None:
param = self.search_params
# Determine result metadata fields.
output_fields = self.fields[:]
output_fields.remove(self._vector_field)
# Perform the search.
res = self.col.search(
data=[embedding],
anns_field=self._vector_field,
param=param,
limit=k,
expr=expr,
output_fields=output_fields,
timeout=timeout,
**kwargs,
)
# Organize results.
ret = []
for result in res[0]:
meta = {x: result.entity.get(x) for x in output_fields}
doc = Document(page_content=meta.pop(self._text_field), metadata=meta.get('metadata'))
pair = (doc, result.score)
ret.append(pair)
return ret
def max_marginal_relevance_search(
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
param: Optional[dict] = None,
expr: Optional[str] = None,
timeout: Optional[int] = None,
**kwargs: Any,
) -> List[Document]:
"""Perform a search and return results that are reordered by MMR.
Args:
query (str): The text being searched.
k (int, optional): How many results to give. Defaults to 4.
fetch_k (int, optional): Total results to select k from.
Defaults to 20.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5
param (dict, optional): The search params for the specified index.
Defaults to None.
expr (str, optional): Filtering expression. Defaults to None.
timeout (int, optional): How long to wait before timeout error.
Defaults to None.
kwargs: Collection.search() keyword arguments.
Returns:
List[Document]: Document results for search.
"""
if self.col is None:
logger.debug("No existing collection to search.")
return []
embedding = self.embedding_func.embed_query(query)
return self.max_marginal_relevance_search_by_vector(
embedding=embedding,
k=k,
fetch_k=fetch_k,
lambda_mult=lambda_mult,
param=param,
expr=expr,
timeout=timeout,
**kwargs,
)
def max_marginal_relevance_search_by_vector(
self,
embedding: list[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
param: Optional[dict] = None,
expr: Optional[str] = None,
timeout: Optional[int] = None,
**kwargs: Any,
) -> List[Document]:
"""Perform a search and return results that are reordered by MMR.
Args:
embedding (str): The embedding vector being searched.
k (int, optional): How many results to give. Defaults to 4.
fetch_k (int, optional): Total results to select k from.
Defaults to 20.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5
param (dict, optional): The search params for the specified index.
Defaults to None.
expr (str, optional): Filtering expression. Defaults to None.
timeout (int, optional): How long to wait before timeout error.
Defaults to None.
kwargs: Collection.search() keyword arguments.
Returns:
List[Document]: Document results for search.
"""
if self.col is None:
logger.debug("No existing collection to search.")
return []
if param is None:
param = self.search_params
# Determine result metadata fields.
output_fields = self.fields[:]
output_fields.remove(self._vector_field)
# Perform the search.
res = self.col.search(
data=[embedding],
anns_field=self._vector_field,
param=param,
limit=fetch_k,
expr=expr,
output_fields=output_fields,
timeout=timeout,
**kwargs,
)
# Organize results.
ids = []
documents = []
scores = []
for result in res[0]:
meta = {x: result.entity.get(x) for x in output_fields}
doc = Document(page_content=meta.pop(self._text_field), metadata=meta)
documents.append(doc)
scores.append(result.score)
ids.append(result.id)
vectors = self.col.query(
expr=f"{self._primary_field} in {ids}",
output_fields=[self._primary_field, self._vector_field],
timeout=timeout,
)
# Reorganize the results from query to match search order.
vectors = {x[self._primary_field]: x[self._vector_field] for x in vectors}
ordered_result_embeddings = [vectors[x] for x in ids]
# Get the new order of results.
new_ordering = maximal_marginal_relevance(
np.array(embedding), ordered_result_embeddings, k=k, lambda_mult=lambda_mult
)
# Reorder the values and return.
ret = []
for x in new_ordering:
# Function can return -1 index
if x == -1:
break
else:
ret.append(documents[x])
return ret
@classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
collection_name: str = "LangChainCollection",
connection_args: dict[str, Any] = DEFAULT_MILVUS_CONNECTION,
consistency_level: str = "Session",
index_params: Optional[dict] = None,
search_params: Optional[dict] = None,
drop_old: bool = False,
batch_size: int = 100,
ids: Optional[Sequence[str]] = None,
**kwargs: Any,
) -> Milvus:
"""Create a Milvus collection, indexes it with HNSW, and insert data.
Args:
texts (List[str]): Text data.
embedding (Embeddings): Embedding function.
metadatas (Optional[List[dict]]): Metadata for each text if it exists.
Defaults to None.
collection_name (str, optional): Collection name to use. Defaults to
"LangChainCollection".
connection_args (dict[str, Any], optional): Connection args to use. Defaults
to DEFAULT_MILVUS_CONNECTION.
consistency_level (str, optional): Which consistency level to use. Defaults
to "Session".
index_params (Optional[dict], optional): Which index_params to use. Defaults
to None.
search_params (Optional[dict], optional): Which search params to use.
Defaults to None.
drop_old (Optional[bool], optional): Whether to drop the collection with
that name if it exists. Defaults to False.
batch_size:
How many vectors upload per-request.
Default: 100
ids: Optional[Sequence[str]] = None,
Returns:
Milvus: Milvus Vector Store
"""
vector_db = cls(
embedding_function=embedding,
collection_name=collection_name,
connection_args=connection_args,
consistency_level=consistency_level,
index_params=index_params,
search_params=search_params,
drop_old=drop_old,
**kwargs,
)
vector_db.add_texts(texts=texts, metadatas=metadatas, batch_size=batch_size)
return vector_db

View File

@@ -9,30 +9,44 @@ from core.index.base import BaseIndex
from core.index.vector_index.base import BaseVectorIndex
from core.vector_store.milvus_vector_store import MilvusVectorStore
from core.vector_store.weaviate_vector_store import WeaviateVectorStore
from models.dataset import Dataset
from extensions.ext_database import db
from models.dataset import Dataset, DatasetCollectionBinding
class MilvusConfig(BaseModel):
endpoint: str
host: str
port: int
user: str
password: str
secure: bool = False
batch_size: int = 100
@root_validator()
def validate_config(cls, values: dict) -> dict:
if not values['endpoint']:
raise ValueError("config MILVUS_ENDPOINT is required")
if not values['host']:
raise ValueError("config MILVUS_HOST is required")
if not values['port']:
raise ValueError("config MILVUS_PORT is required")
if not values['user']:
raise ValueError("config MILVUS_USER is required")
if not values['password']:
raise ValueError("config MILVUS_PASSWORD is required")
return values
def to_milvus_params(self):
return {
'host': self.host,
'port': self.port,
'user': self.user,
'password': self.password,
'secure': self.secure
}
class MilvusVectorIndex(BaseVectorIndex):
def __init__(self, dataset: Dataset, config: MilvusConfig, embeddings: Embeddings):
super().__init__(dataset, embeddings)
self._client = self._init_client(config)
self._client_config = config
def get_type(self) -> str:
return 'milvus'
@@ -49,7 +63,6 @@ class MilvusVectorIndex(BaseVectorIndex):
dataset_id = dataset.id
return "Vector_index_" + dataset_id.replace("-", "_") + '_Node'
def to_index_struct(self) -> dict:
return {
"type": self.get_type(),
@@ -58,26 +71,29 @@ class MilvusVectorIndex(BaseVectorIndex):
def create(self, texts: list[Document], **kwargs) -> BaseIndex:
uuids = self._get_uuids(texts)
self._vector_store = WeaviateVectorStore.from_documents(
index_params = {
'metric_type': 'IP',
'index_type': "HNSW",
'params': {"M": 8, "efConstruction": 64}
}
self._vector_store = MilvusVectorStore.from_documents(
texts,
self._embeddings,
client=self._client,
index_name=self.get_index_name(self.dataset),
uuids=uuids,
by_text=False
collection_name=self.get_index_name(self.dataset),
connection_args=self._client_config.to_milvus_params(),
index_params=index_params
)
return self
def create_with_collection_name(self, texts: list[Document], collection_name: str, **kwargs) -> BaseIndex:
uuids = self._get_uuids(texts)
self._vector_store = WeaviateVectorStore.from_documents(
self._vector_store = MilvusVectorStore.from_documents(
texts,
self._embeddings,
client=self._client,
index_name=collection_name,
uuids=uuids,
by_text=False
collection_name=collection_name,
ids=uuids,
content_payload_key='page_content'
)
return self
@@ -86,42 +102,53 @@ class MilvusVectorIndex(BaseVectorIndex):
"""Only for created index."""
if self._vector_store:
return self._vector_store
attributes = ['doc_id', 'dataset_id', 'document_id']
if self._is_origin():
attributes = ['doc_id']
return WeaviateVectorStore(
client=self._client,
index_name=self.get_index_name(self.dataset),
text_key='text',
embedding=self._embeddings,
attributes=attributes,
by_text=False
return MilvusVectorStore(
collection_name=self.get_index_name(self.dataset),
embedding_function=self._embeddings,
connection_args=self._client_config.to_milvus_params()
)
def _get_vector_store_class(self) -> type:
return MilvusVectorStore
def delete_by_document_id(self, document_id: str):
if self._is_origin():
self.recreate_dataset(self.dataset)
return
vector_store = self._get_vector_store()
vector_store = cast(self._get_vector_store_class(), vector_store)
ids = vector_store.get_ids_by_document_id(document_id)
if ids:
vector_store.del_texts({
'filter': f'id in {ids}'
})
def delete_by_ids(self, doc_ids: list[str]) -> None:
vector_store = self._get_vector_store()
vector_store = cast(self._get_vector_store_class(), vector_store)
ids = vector_store.get_ids_by_doc_ids(doc_ids)
vector_store.del_texts({
'filter': f' id in {ids}'
})
def delete_by_group_id(self, group_id: str) -> None:
vector_store = self._get_vector_store()
vector_store = cast(self._get_vector_store_class(), vector_store)
vector_store.del_texts({
"operator": "Equal",
"path": ["document_id"],
"valueText": document_id
})
vector_store.delete()
def _is_origin(self):
if self.dataset.index_struct_dict:
class_prefix: str = self.dataset.index_struct_dict['vector_store']['class_prefix']
if not class_prefix.endswith('_Node'):
# original class_prefix
return True
def delete(self) -> None:
vector_store = self._get_vector_store()
vector_store = cast(self._get_vector_store_class(), vector_store)
return False
from qdrant_client.http import models
vector_store.del_texts(models.Filter(
must=[
models.FieldCondition(
key="group_id",
match=models.MatchValue(value=self.dataset.id),
),
],
))

View File

@@ -1390,70 +1390,12 @@ class Qdrant(VectorStore):
path=path,
**kwargs,
)
try:
# Skip any validation in case of forced collection recreate.
if force_recreate:
raise ValueError
# Get the vector configuration of the existing collection and vector, if it
# was specified. If the old configuration does not match the current one,
# an exception is being thrown.
collection_info = client.get_collection(collection_name=collection_name)
current_vector_config = collection_info.config.params.vectors
if isinstance(current_vector_config, dict) and vector_name is not None:
if vector_name not in current_vector_config:
raise QdrantException(
f"Existing Qdrant collection {collection_name} does not "
f"contain vector named {vector_name}. Did you mean one of the "
f"existing vectors: {', '.join(current_vector_config.keys())}? "
f"If you want to recreate the collection, set `force_recreate` "
f"parameter to `True`."
)
current_vector_config = current_vector_config.get(
vector_name
) # type: ignore[assignment]
elif isinstance(current_vector_config, dict) and vector_name is None:
raise QdrantException(
f"Existing Qdrant collection {collection_name} uses named vectors. "
f"If you want to reuse it, please set `vector_name` to any of the "
f"existing named vectors: "
f"{', '.join(current_vector_config.keys())}." # noqa
f"If you want to recreate the collection, set `force_recreate` "
f"parameter to `True`."
)
elif (
not isinstance(current_vector_config, dict) and vector_name is not None
):
raise QdrantException(
f"Existing Qdrant collection {collection_name} doesn't use named "
f"vectors. If you want to reuse it, please set `vector_name` to "
f"`None`. If you want to recreate the collection, set "
f"`force_recreate` parameter to `True`."
)
# Check if the vector configuration has the same dimensionality.
if current_vector_config.size != vector_size: # type: ignore[union-attr]
raise QdrantException(
f"Existing Qdrant collection is configured for vectors with "
f"{current_vector_config.size} " # type: ignore[union-attr]
f"dimensions. Selected embeddings are {vector_size}-dimensional. "
f"If you want to recreate the collection, set `force_recreate` "
f"parameter to `True`."
)
current_distance_func = (
current_vector_config.distance.name.upper() # type: ignore[union-attr]
)
if current_distance_func != distance_func:
raise QdrantException(
f"Existing Qdrant collection is configured for "
f"{current_vector_config.distance} " # type: ignore[union-attr]
f"similarity. Please set `distance_func` parameter to "
f"`{distance_func}` if you want to reuse it. If you want to "
f"recreate the collection, set `force_recreate` parameter to "
f"`True`."
)
except (UnexpectedResponse, RpcError, ValueError):
all_collection_name = []
collections_response = client.get_collections()
collection_list = collections_response.collections
for collection in collection_list:
all_collection_name.append(collection.name)
if collection_name not in all_collection_name:
vectors_config = rest.VectorParams(
size=vector_size,
distance=rest.Distance[distance_func],
@@ -1481,6 +1423,67 @@ class Qdrant(VectorStore):
timeout=timeout, # type: ignore[arg-type]
)
is_new_collection = True
if force_recreate:
raise ValueError
# Get the vector configuration of the existing collection and vector, if it
# was specified. If the old configuration does not match the current one,
# an exception is being thrown.
collection_info = client.get_collection(collection_name=collection_name)
current_vector_config = collection_info.config.params.vectors
if isinstance(current_vector_config, dict) and vector_name is not None:
if vector_name not in current_vector_config:
raise QdrantException(
f"Existing Qdrant collection {collection_name} does not "
f"contain vector named {vector_name}. Did you mean one of the "
f"existing vectors: {', '.join(current_vector_config.keys())}? "
f"If you want to recreate the collection, set `force_recreate` "
f"parameter to `True`."
)
current_vector_config = current_vector_config.get(
vector_name
) # type: ignore[assignment]
elif isinstance(current_vector_config, dict) and vector_name is None:
raise QdrantException(
f"Existing Qdrant collection {collection_name} uses named vectors. "
f"If you want to reuse it, please set `vector_name` to any of the "
f"existing named vectors: "
f"{', '.join(current_vector_config.keys())}." # noqa
f"If you want to recreate the collection, set `force_recreate` "
f"parameter to `True`."
)
elif (
not isinstance(current_vector_config, dict) and vector_name is not None
):
raise QdrantException(
f"Existing Qdrant collection {collection_name} doesn't use named "
f"vectors. If you want to reuse it, please set `vector_name` to "
f"`None`. If you want to recreate the collection, set "
f"`force_recreate` parameter to `True`."
)
# Check if the vector configuration has the same dimensionality.
if current_vector_config.size != vector_size: # type: ignore[union-attr]
raise QdrantException(
f"Existing Qdrant collection is configured for vectors with "
f"{current_vector_config.size} " # type: ignore[union-attr]
f"dimensions. Selected embeddings are {vector_size}-dimensional. "
f"If you want to recreate the collection, set `force_recreate` "
f"parameter to `True`."
)
current_distance_func = (
current_vector_config.distance.name.upper() # type: ignore[union-attr]
)
if current_distance_func != distance_func:
raise QdrantException(
f"Existing Qdrant collection is configured for "
f"{current_vector_config.distance} " # type: ignore[union-attr]
f"similarity. Please set `distance_func` parameter to "
f"`{distance_func}` if you want to reuse it. If you want to "
f"recreate the collection, set `force_recreate` parameter to "
f"`True`."
)
qdrant = cls(
client=client,
collection_name=collection_name,

View File

@@ -169,6 +169,19 @@ class QdrantVectorIndex(BaseVectorIndex):
],
))
def delete(self) -> None:
vector_store = self._get_vector_store()
vector_store = cast(self._get_vector_store_class(), vector_store)
from qdrant_client.http import models
vector_store.del_texts(models.Filter(
must=[
models.FieldCondition(
key="group_id",
match=models.MatchValue(value=self.dataset.id),
),
],
))
def _is_origin(self):
if self.dataset.index_struct_dict:

View File

@@ -47,6 +47,20 @@ class VectorIndex:
),
embeddings=embeddings
)
elif vector_type == "milvus":
from core.index.vector_index.milvus_vector_index import MilvusVectorIndex, MilvusConfig
return MilvusVectorIndex(
dataset=dataset,
config=MilvusConfig(
host=config.get('MILVUS_HOST'),
port=config.get('MILVUS_PORT'),
user=config.get('MILVUS_USER'),
password=config.get('MILVUS_PASSWORD'),
secure=config.get('MILVUS_SECURE'),
),
embeddings=embeddings
)
else:
raise ValueError(f"Vector store {config.get('VECTOR_STORE')} is not supported.")

View File

@@ -11,6 +11,7 @@ from flask import current_app, Flask
from flask_login import current_user
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter
from sqlalchemy.orm.exc import ObjectDeletedError
from core.data_loader.file_extractor import FileExtractor
from core.data_loader.loader.notion import NotionLoader
@@ -79,6 +80,8 @@ class IndexingRunner:
dataset_document.error = str(e.description)
dataset_document.stopped_at = datetime.datetime.utcnow()
db.session.commit()
except ObjectDeletedError:
logging.warning('Document deleted, document id: {}'.format(dataset_document.id))
except Exception as e:
logging.exception("consume document failed")
dataset_document.indexing_status = 'error'
@@ -276,13 +279,14 @@ class IndexingRunner:
)
if len(preview_texts) > 0:
# qa model document
response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0], doc_language)
response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0],
doc_language)
document_qa_list = self.format_split_text(response)
return {
"total_segments": total_segments * 20,
"tokens": total_segments * 2000,
"total_price": '{:f}'.format(
text_generation_model.calc_tokens_price(total_segments * 2000, MessageType.HUMAN)),
text_generation_model.calc_tokens_price(total_segments * 2000, MessageType.USER)),
"currency": embedding_model.get_currency(),
"qa_preview": document_qa_list,
"preview": preview_texts
@@ -372,13 +376,14 @@ class IndexingRunner:
)
if len(preview_texts) > 0:
# qa model document
response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0], doc_language)
response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0],
doc_language)
document_qa_list = self.format_split_text(response)
return {
"total_segments": total_segments * 20,
"tokens": total_segments * 2000,
"total_price": '{:f}'.format(
text_generation_model.calc_tokens_price(total_segments * 2000, MessageType.HUMAN)),
text_generation_model.calc_tokens_price(total_segments * 2000, MessageType.USER)),
"currency": embedding_model.get_currency(),
"qa_preview": document_qa_list,
"preview": preview_texts
@@ -582,7 +587,6 @@ class IndexingRunner:
all_qa_documents.extend(format_documents)
def _split_to_documents_for_estimate(self, text_docs: List[Document], splitter: TextSplitter,
processing_rule: DatasetProcessRule) -> List[Document]:
"""
@@ -734,6 +738,9 @@ class IndexingRunner:
count = DatasetDocument.query.filter_by(id=document_id, is_paused=True).count()
if count > 0:
raise DocumentIsPausedException()
document = DatasetDocument.query.filter_by(id=document_id).first()
if not document:
raise DocumentIsDeletedPausedException()
update_params = {
DatasetDocument.indexing_status: after_indexing_status
@@ -781,3 +788,7 @@ class IndexingRunner:
class DocumentIsPausedException(Exception):
pass
class DocumentIsDeletedPausedException(Exception):
pass

View File

@@ -31,7 +31,7 @@ class ReadOnlyConversationTokenDBBufferSharedMemory(BaseChatMemory):
chat_messages: List[PromptMessage] = []
for message in messages:
chat_messages.append(PromptMessage(content=message.query, type=MessageType.HUMAN))
chat_messages.append(PromptMessage(content=message.query, type=MessageType.USER))
chat_messages.append(PromptMessage(content=message.answer, type=MessageType.ASSISTANT))
if not chat_messages:

View File

@@ -51,6 +51,9 @@ class ModelProviderFactory:
elif provider_name == 'chatglm':
from core.model_providers.providers.chatglm_provider import ChatGLMProvider
return ChatGLMProvider
elif provider_name == 'baichuan':
from core.model_providers.providers.baichuan_provider import BaichuanProvider
return BaichuanProvider
elif provider_name == 'azure_openai':
from core.model_providers.providers.azure_openai_provider import AzureOpenAIProvider
return AzureOpenAIProvider

View File

@@ -0,0 +1,22 @@
from core.model_providers.error import LLMBadRequestError
from core.model_providers.providers.base import BaseModelProvider
from core.third_party.langchain.embeddings.huggingface_hub_embedding import HuggingfaceHubEmbeddings
from core.model_providers.models.embedding.base import BaseEmbedding
class HuggingfaceEmbedding(BaseEmbedding):
def __init__(self, model_provider: BaseModelProvider, name: str):
credentials = model_provider.get_model_credentials(
model_name=name,
model_type=self.type
)
client = HuggingfaceHubEmbeddings(
model=name,
**credentials
)
super().__init__(model_provider, client, name)
def handle_exceptions(self, ex: Exception) -> Exception:
return LLMBadRequestError(f"Huggingface embedding: {str(ex)}")

View File

@@ -0,0 +1,22 @@
from core.third_party.langchain.embeddings.openllm_embedding import OpenLLMEmbeddings
from core.model_providers.error import LLMBadRequestError
from core.model_providers.providers.base import BaseModelProvider
from core.model_providers.models.embedding.base import BaseEmbedding
class OpenLLMEmbedding(BaseEmbedding):
def __init__(self, model_provider: BaseModelProvider, name: str):
credentials = model_provider.get_model_credentials(
model_name=name,
model_type=self.type
)
client = OpenLLMEmbeddings(
server_url=credentials['server_url']
)
super().__init__(model_provider, client, name)
def handle_exceptions(self, ex: Exception) -> Exception:
return LLMBadRequestError(f"OpenLLM embedding: {str(ex)}")

View File

@@ -1,5 +1,4 @@
from core.third_party.langchain.embeddings.xinference_embedding import XinferenceEmbedding as XinferenceEmbeddings
from replicate.exceptions import ModelError, ReplicateError
from core.model_providers.error import LLMBadRequestError
from core.model_providers.providers.base import BaseModelProvider
@@ -21,7 +20,4 @@ class XinferenceEmbedding(BaseEmbedding):
super().__init__(model_provider, client, name)
def handle_exceptions(self, ex: Exception) -> Exception:
if isinstance(ex, (ModelError, ReplicateError)):
return LLMBadRequestError(f"Xinference embedding: {str(ex)}")
else:
return ex
return LLMBadRequestError(f"Xinference embedding: {str(ex)}")

View File

@@ -1,6 +1,6 @@
import enum
from langchain.schema import HumanMessage, AIMessage, SystemMessage, BaseMessage
from langchain.schema import HumanMessage, AIMessage, SystemMessage, BaseMessage, FunctionMessage
from pydantic import BaseModel
@@ -9,26 +9,31 @@ class LLMRunResult(BaseModel):
prompt_tokens: int
completion_tokens: int
source: list = None
function_call: dict = None
class MessageType(enum.Enum):
HUMAN = 'human'
USER = 'user'
ASSISTANT = 'assistant'
SYSTEM = 'system'
class PromptMessage(BaseModel):
type: MessageType = MessageType.HUMAN
type: MessageType = MessageType.USER
content: str = ''
function_call: dict = None
def to_lc_messages(messages: list[PromptMessage]):
lc_messages = []
for message in messages:
if message.type == MessageType.HUMAN:
if message.type == MessageType.USER:
lc_messages.append(HumanMessage(content=message.content))
elif message.type == MessageType.ASSISTANT:
lc_messages.append(AIMessage(content=message.content))
additional_kwargs = {}
if message.function_call:
additional_kwargs['function_call'] = message.function_call
lc_messages.append(AIMessage(content=message.content, additional_kwargs=additional_kwargs))
elif message.type == MessageType.SYSTEM:
lc_messages.append(SystemMessage(content=message.content))
@@ -39,11 +44,21 @@ def to_prompt_messages(messages: list[BaseMessage]):
prompt_messages = []
for message in messages:
if isinstance(message, HumanMessage):
prompt_messages.append(PromptMessage(content=message.content, type=MessageType.HUMAN))
prompt_messages.append(PromptMessage(content=message.content, type=MessageType.USER))
elif isinstance(message, AIMessage):
prompt_messages.append(PromptMessage(content=message.content, type=MessageType.ASSISTANT))
message_kwargs = {
'content': message.content,
'type': MessageType.ASSISTANT
}
if 'function_call' in message.additional_kwargs:
message_kwargs['function_call'] = message.additional_kwargs['function_call']
prompt_messages.append(PromptMessage(**message_kwargs))
elif isinstance(message, SystemMessage):
prompt_messages.append(PromptMessage(content=message.content, type=MessageType.SYSTEM))
elif isinstance(message, FunctionMessage):
prompt_messages.append(PromptMessage(content=message.content, type=MessageType.USER))
return prompt_messages

View File

@@ -81,7 +81,20 @@ class AzureOpenAIModel(BaseLLM):
:return:
"""
prompts = self._get_prompt_from_messages(messages)
return self._client.generate([prompts], stop, callbacks)
generate_kwargs = {
'stop': stop,
'callbacks': callbacks
}
if isinstance(prompts, str):
generate_kwargs['prompts'] = [prompts]
else:
generate_kwargs['messages'] = [prompts]
if 'functions' in kwargs:
generate_kwargs['functions'] = kwargs['functions']
return self._client.generate(**generate_kwargs)
@property
def base_model_name(self) -> str:

View File

@@ -0,0 +1,67 @@
from typing import List, Optional, Any
from langchain.callbacks.manager import Callbacks
from langchain.schema import LLMResult
from core.model_providers.error import LLMBadRequestError
from core.model_providers.models.llm.base import BaseLLM
from core.model_providers.models.entity.message import PromptMessage
from core.model_providers.models.entity.model_params import ModelMode, ModelKwargs
from core.third_party.langchain.llms.baichuan_llm import BaichuanChatLLM
class BaichuanModel(BaseLLM):
model_mode: ModelMode = ModelMode.CHAT
def _init_client(self) -> Any:
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, self.model_kwargs)
return BaichuanChatLLM(
streaming=self.streaming,
callbacks=self.callbacks,
**self.credentials,
**provider_model_kwargs
)
def _run(self, messages: List[PromptMessage],
stop: Optional[List[str]] = None,
callbacks: Callbacks = None,
**kwargs) -> LLMResult:
"""
run predict by prompt messages and stop words.
:param messages:
:param stop:
:param callbacks:
:return:
"""
prompts = self._get_prompt_from_messages(messages)
return self._client.generate([prompts], stop, callbacks)
def prompt_file_name(self, mode: str) -> str:
if mode == 'completion':
return 'baichuan_completion'
else:
return 'baichuan_chat'
def get_num_tokens(self, messages: List[PromptMessage]) -> int:
"""
get num tokens of prompt messages.
:param messages:
:return:
"""
prompts = self._get_prompt_from_messages(messages)
return max(self._client.get_num_tokens_from_messages(prompts), 0)
def _set_model_kwargs(self, model_kwargs: ModelKwargs):
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, model_kwargs)
for k, v in provider_model_kwargs.items():
if hasattr(self.client, k):
setattr(self.client, k, v)
def handle_exceptions(self, ex: Exception) -> Exception:
return LLMBadRequestError(f"Baichuan: {str(ex)}")
@property
def support_streaming(self):
return True

View File

@@ -1,6 +1,7 @@
import json
import os
import re
import time
from abc import abstractmethod
from typing import List, Optional, Any, Union, Tuple
import decimal
@@ -12,14 +13,17 @@ from langchain.schema import LLMResult, SystemMessage, AIMessage, HumanMessage,
from core.callback_handler.std_out_callback_handler import DifyStreamingStdOutCallbackHandler, DifyStdOutCallbackHandler
from core.helper import moderation
from core.model_providers.models.base import BaseProviderModel
from core.model_providers.models.entity.message import PromptMessage, MessageType, LLMRunResult, to_prompt_messages
from core.model_providers.models.entity.message import PromptMessage, MessageType, LLMRunResult, to_prompt_messages, \
to_lc_messages
from core.model_providers.models.entity.model_params import ModelType, ModelKwargs, ModelMode, ModelKwargsRules
from core.model_providers.providers.base import BaseModelProvider
from core.prompt.prompt_builder import PromptBuilder
from core.prompt.prompt_template import JinjaPromptTemplate
from core.prompt.prompt_template import PromptTemplateParser
from core.third_party.langchain.llms.fake import FakeLLM
import logging
from extensions.ext_database import db
logger = logging.getLogger(__name__)
@@ -154,8 +158,11 @@ class BaseLLM(BaseProviderModel):
except Exception as ex:
raise self.handle_exceptions(ex)
function_call = None
if isinstance(result.generations[0][0], ChatGeneration):
completion_content = result.generations[0][0].message.content
if 'function_call' in result.generations[0][0].message.additional_kwargs:
function_call = result.generations[0][0].message.additional_kwargs.get('function_call')
else:
completion_content = result.generations[0][0].text
@@ -188,7 +195,8 @@ class BaseLLM(BaseProviderModel):
return LLMRunResult(
content=completion_content,
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens
completion_tokens=completion_tokens,
function_call=function_call
)
@abstractmethod
@@ -224,7 +232,7 @@ class BaseLLM(BaseProviderModel):
:param message_type:
:return:
"""
if message_type == MessageType.HUMAN or message_type == MessageType.SYSTEM:
if message_type == MessageType.USER or message_type == MessageType.SYSTEM:
unit_price = self.price_config['prompt']
else:
unit_price = self.price_config['completion']
@@ -242,7 +250,7 @@ class BaseLLM(BaseProviderModel):
:param message_type:
:return: decimal.Decimal('0.0001')
"""
if message_type == MessageType.HUMAN or message_type == MessageType.SYSTEM:
if message_type == MessageType.USER or message_type == MessageType.SYSTEM:
unit_price = self.price_config['prompt']
else:
unit_price = self.price_config['completion']
@@ -257,7 +265,7 @@ class BaseLLM(BaseProviderModel):
:param message_type:
:return: decimal.Decimal('0.000001')
"""
if message_type == MessageType.HUMAN or message_type == MessageType.SYSTEM:
if message_type == MessageType.USER or message_type == MessageType.SYSTEM:
price_unit = self.price_config['unit']
else:
price_unit = self.price_config['unit']
@@ -322,6 +330,85 @@ class BaseLLM(BaseProviderModel):
prompt, stops = self._get_prompt_and_stop(prompt_rules, pre_prompt, inputs, query, context, memory)
return [PromptMessage(content=prompt)], stops
def get_advanced_prompt(self, app_mode: str,
app_model_config: str, inputs: dict,
query: str,
context: Optional[str],
memory: Optional[BaseChatMemory]) -> List[PromptMessage]:
model_mode = app_model_config.model_dict['mode']
conversation_histories_role = {}
raw_prompt_list = []
prompt_messages = []
if app_mode == 'chat' and model_mode == ModelMode.COMPLETION.value:
prompt_text = app_model_config.completion_prompt_config_dict['prompt']['text']
raw_prompt_list = [{
'role': MessageType.USER.value,
'text': prompt_text
}]
conversation_histories_role = app_model_config.completion_prompt_config_dict['conversation_histories_role']
elif app_mode == 'chat' and model_mode == ModelMode.CHAT.value:
raw_prompt_list = app_model_config.chat_prompt_config_dict['prompt']
elif app_mode == 'completion' and model_mode == ModelMode.CHAT.value:
raw_prompt_list = app_model_config.chat_prompt_config_dict['prompt']
elif app_mode == 'completion' and model_mode == ModelMode.COMPLETION.value:
prompt_text = app_model_config.completion_prompt_config_dict['prompt']['text']
raw_prompt_list = [{
'role': MessageType.USER.value,
'text': prompt_text
}]
else:
raise Exception("app_mode or model_mode not support")
for prompt_item in raw_prompt_list:
prompt = prompt_item['text']
# set prompt template variables
prompt_template = PromptTemplateParser(template=prompt)
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
if '#context#' in prompt:
if context:
prompt_inputs['#context#'] = context
else:
prompt_inputs['#context#'] = ''
if '#query#' in prompt:
if query:
prompt_inputs['#query#'] = query
else:
prompt_inputs['#query#'] = ''
if '#histories#' in prompt:
if memory and app_mode == 'chat' and model_mode == ModelMode.COMPLETION.value:
memory.human_prefix = conversation_histories_role['user_prefix']
memory.ai_prefix = conversation_histories_role['assistant_prefix']
histories = self._get_history_messages_from_memory(memory, 2000)
prompt_inputs['#histories#'] = histories
else:
prompt_inputs['#histories#'] = ''
prompt = prompt_template.format(
prompt_inputs
)
prompt = re.sub(r'<\|.*?\|>', '', prompt)
prompt_messages.append(PromptMessage(type = MessageType(prompt_item['role']) ,content=prompt))
if memory and app_mode == 'chat' and model_mode == ModelMode.CHAT.value:
memory.human_prefix = MessageType.USER.value
memory.ai_prefix = MessageType.ASSISTANT.value
histories = self._get_history_messages_list_from_memory(memory, 2000)
prompt_messages.extend(histories)
if app_mode == 'chat' and model_mode == ModelMode.CHAT.value:
prompt_messages.append(PromptMessage(type = MessageType.USER ,content=query))
return prompt_messages
def prompt_file_name(self, mode: str) -> str:
if mode == 'completion':
return 'common_completion'
@@ -334,17 +421,17 @@ class BaseLLM(BaseProviderModel):
memory: Optional[BaseChatMemory]) -> Tuple[str, Optional[list]]:
context_prompt_content = ''
if context and 'context_prompt' in prompt_rules:
prompt_template = JinjaPromptTemplate.from_template(template=prompt_rules['context_prompt'])
prompt_template = PromptTemplateParser(template=prompt_rules['context_prompt'])
context_prompt_content = prompt_template.format(
context=context
{'context': context}
)
pre_prompt_content = ''
if pre_prompt:
prompt_template = JinjaPromptTemplate.from_template(template=pre_prompt)
prompt_inputs = {k: inputs[k] for k in prompt_template.input_variables if k in inputs}
prompt_template = PromptTemplateParser(template=pre_prompt)
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
pre_prompt_content = prompt_template.format(
**prompt_inputs
prompt_inputs
)
prompt = ''
@@ -377,10 +464,8 @@ class BaseLLM(BaseProviderModel):
memory.ai_prefix = prompt_rules['assistant_prefix'] if 'assistant_prefix' in prompt_rules else 'Assistant'
histories = self._get_history_messages_from_memory(memory, rest_tokens)
prompt_template = JinjaPromptTemplate.from_template(template=prompt_rules['histories_prompt'])
histories_prompt_content = prompt_template.format(
histories=histories
)
prompt_template = PromptTemplateParser(template=prompt_rules['histories_prompt'])
histories_prompt_content = prompt_template.format({'histories': histories})
prompt = ''
for order in prompt_rules['system_prompt_orders']:
@@ -391,10 +476,8 @@ class BaseLLM(BaseProviderModel):
elif order == 'histories_prompt':
prompt += histories_prompt_content
prompt_template = JinjaPromptTemplate.from_template(template=query_prompt)
query_prompt_content = prompt_template.format(
query=query
)
prompt_template = PromptTemplateParser(template=query_prompt)
query_prompt_content = prompt_template.format({'query': query})
prompt += query_prompt_content
@@ -425,6 +508,16 @@ class BaseLLM(BaseProviderModel):
external_context = memory.load_memory_variables({})
return external_context[memory_key]
def _get_history_messages_list_from_memory(self, memory: BaseChatMemory,
max_token_limit: int) -> List[PromptMessage]:
"""Get memory messages."""
memory.max_token_limit = max_token_limit
memory.return_messages = True
memory_key = memory.memory_variables[0]
external_context = memory.load_memory_variables({})
memory.return_messages = False
return to_prompt_messages(external_context[memory_key])
def _get_prompt_from_messages(self, messages: List[PromptMessage],
model_mode: Optional[ModelMode] = None) -> Union[str | List[BaseMessage]]:
if not model_mode:
@@ -439,16 +532,7 @@ class BaseLLM(BaseProviderModel):
if len(messages) == 0:
return []
chat_messages = []
for message in messages:
if message.type == MessageType.HUMAN:
chat_messages.append(HumanMessage(content=message.content))
elif message.type == MessageType.ASSISTANT:
chat_messages.append(AIMessage(content=message.content))
elif message.type == MessageType.SYSTEM:
chat_messages.append(SystemMessage(content=message.content))
return chat_messages
return to_lc_messages(messages)
def _to_model_kwargs_input(self, model_rules: ModelKwargsRules, model_kwargs: ModelKwargs) -> dict:
"""

View File

@@ -1,26 +1,23 @@
import decimal
from typing import List, Optional, Any
from langchain.callbacks.manager import Callbacks
from langchain.llms import Minimax
from langchain.schema import LLMResult
from core.model_providers.error import LLMBadRequestError
from core.model_providers.models.llm.base import BaseLLM
from core.model_providers.models.entity.message import PromptMessage, MessageType
from core.model_providers.models.entity.message import PromptMessage
from core.model_providers.models.entity.model_params import ModelMode, ModelKwargs
from core.third_party.langchain.llms.minimax_llm import MinimaxChatLLM
class MinimaxModel(BaseLLM):
model_mode: ModelMode = ModelMode.COMPLETION
model_mode: ModelMode = ModelMode.CHAT
def _init_client(self) -> Any:
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, self.model_kwargs)
return Minimax(
return MinimaxChatLLM(
model=self.name,
model_kwargs={
'stream': False
},
streaming=self.streaming,
callbacks=self.callbacks,
**self.credentials,
**provider_model_kwargs
@@ -49,7 +46,7 @@ class MinimaxModel(BaseLLM):
:return:
"""
prompts = self._get_prompt_from_messages(messages)
return max(self._client.get_num_tokens(prompts), 0)
return max(self._client.get_num_tokens_from_messages(prompts), 0)
def get_currency(self):
return 'RMB'
@@ -65,3 +62,7 @@ class MinimaxModel(BaseLLM):
return LLMBadRequestError(f"Minimax: {str(ex)}")
else:
return ex
@property
def support_streaming(self):
return True

View File

@@ -5,6 +5,7 @@ from typing import List, Optional, Any
import openai
from langchain.callbacks.manager import Callbacks
from langchain.schema import LLMResult
from openai import api_requestor
from core.model_providers.providers.base import BaseModelProvider
from core.third_party.langchain.llms.chat_open_ai import EnhanceChatOpenAI
@@ -105,7 +106,21 @@ class OpenAIModel(BaseLLM):
raise ModelCurrentlyNotSupportError("Dify Hosted OpenAI GPT-4 currently not support.")
prompts = self._get_prompt_from_messages(messages)
return self._client.generate([prompts], stop, callbacks)
generate_kwargs = {
'stop': stop,
'callbacks': callbacks
}
if isinstance(prompts, str):
generate_kwargs['prompts'] = [prompts]
else:
generate_kwargs['messages'] = [prompts]
if 'functions' in kwargs:
generate_kwargs['functions'] = kwargs['functions']
return self._client.generate(**generate_kwargs)
def get_num_tokens(self, messages: List[PromptMessage]) -> int:
"""

View File

@@ -18,7 +18,6 @@ class TongyiModel(BaseLLM):
def _init_client(self) -> Any:
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, self.model_kwargs)
del provider_model_kwargs['max_tokens']
return EnhanceTongyi(
model_name=self.name,
max_retries=1,
@@ -58,7 +57,6 @@ class TongyiModel(BaseLLM):
def _set_model_kwargs(self, model_kwargs: ModelKwargs):
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, model_kwargs)
del provider_model_kwargs['max_tokens']
for k, v in provider_model_kwargs.items():
if hasattr(self.client, k):
setattr(self.client, k, v)

View File

@@ -18,6 +18,7 @@ class WenxinModel(BaseLLM):
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, self.model_kwargs)
# TODO load price_config from configs(db)
return Wenxin(
model=self.name,
streaming=self.streaming,
callbacks=self.callbacks,
**self.credentials,

View File

@@ -9,7 +9,7 @@ from langchain.schema import HumanMessage
from core.helper import encrypter
from core.model_providers.models.base import BaseProviderModel
from core.model_providers.models.entity.model_params import ModelKwargsRules, KwargRule
from core.model_providers.models.entity.model_params import ModelKwargsRules, KwargRule, ModelMode
from core.model_providers.models.entity.provider import ModelFeature
from core.model_providers.models.llm.anthropic_model import AnthropicModel
from core.model_providers.models.llm.base import ModelType
@@ -34,10 +34,12 @@ class AnthropicProvider(BaseModelProvider):
{
'id': 'claude-instant-1',
'name': 'claude-instant-1',
'mode': ModelMode.CHAT.value,
},
{
'id': 'claude-2',
'name': 'claude-2',
'mode': ModelMode.CHAT.value,
'features': [
ModelFeature.AGENT_THOUGHT.value
]
@@ -46,6 +48,9 @@ class AnthropicProvider(BaseModelProvider):
else:
return []
def _get_text_generation_model_mode(self, model_name) -> str:
return ModelMode.CHAT.value
def get_model_class(self, model_type: ModelType) -> Type[BaseProviderModel]:
"""
Returns the model class.

View File

@@ -12,7 +12,7 @@ from core.helper import encrypter
from core.model_providers.models.base import BaseProviderModel
from core.model_providers.models.embedding.azure_openai_embedding import AzureOpenAIEmbedding, \
AZURE_OPENAI_API_VERSION
from core.model_providers.models.entity.model_params import ModelType, ModelKwargsRules, KwargRule
from core.model_providers.models.entity.model_params import ModelType, ModelKwargsRules, KwargRule, ModelMode
from core.model_providers.models.entity.provider import ModelFeature
from core.model_providers.models.llm.azure_openai_model import AzureOpenAIModel
from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError
@@ -61,6 +61,10 @@ class AzureOpenAIProvider(BaseModelProvider):
}
credentials = json.loads(provider_model.encrypted_config)
if provider_model.model_type == ModelType.TEXT_GENERATION.value:
model_dict['mode'] = self._get_text_generation_model_mode(credentials['base_model_name'])
if credentials['base_model_name'] in [
'gpt-4',
'gpt-4-32k',
@@ -77,12 +81,19 @@ class AzureOpenAIProvider(BaseModelProvider):
return model_list
def _get_text_generation_model_mode(self, model_name) -> str:
if model_name == 'text-davinci-003':
return ModelMode.COMPLETION.value
else:
return ModelMode.CHAT.value
def _get_fixed_model_list(self, model_type: ModelType) -> list[dict]:
if model_type == ModelType.TEXT_GENERATION:
models = [
{
'id': 'gpt-3.5-turbo',
'name': 'gpt-3.5-turbo',
'mode': ModelMode.CHAT.value,
'features': [
ModelFeature.AGENT_THOUGHT.value
]
@@ -90,6 +101,7 @@ class AzureOpenAIProvider(BaseModelProvider):
{
'id': 'gpt-3.5-turbo-16k',
'name': 'gpt-3.5-turbo-16k',
'mode': ModelMode.CHAT.value,
'features': [
ModelFeature.AGENT_THOUGHT.value
]
@@ -97,6 +109,7 @@ class AzureOpenAIProvider(BaseModelProvider):
{
'id': 'gpt-4',
'name': 'gpt-4',
'mode': ModelMode.CHAT.value,
'features': [
ModelFeature.AGENT_THOUGHT.value
]
@@ -104,6 +117,7 @@ class AzureOpenAIProvider(BaseModelProvider):
{
'id': 'gpt-4-32k',
'name': 'gpt-4-32k',
'mode': ModelMode.CHAT.value,
'features': [
ModelFeature.AGENT_THOUGHT.value
]
@@ -111,6 +125,7 @@ class AzureOpenAIProvider(BaseModelProvider):
{
'id': 'text-davinci-003',
'name': 'text-davinci-003',
'mode': ModelMode.COMPLETION.value,
}
]

View File

@@ -0,0 +1,171 @@
import json
from json import JSONDecodeError
from typing import Type
from langchain.schema import HumanMessage
from core.helper import encrypter
from core.model_providers.models.base import BaseProviderModel
from core.model_providers.models.entity.model_params import ModelKwargsRules, KwargRule, ModelType, ModelMode
from core.model_providers.models.llm.baichuan_model import BaichuanModel
from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError
from core.third_party.langchain.llms.baichuan_llm import BaichuanChatLLM
from models.provider import ProviderType
class BaichuanProvider(BaseModelProvider):
@property
def provider_name(self):
"""
Returns the name of a provider.
"""
return 'baichuan'
def _get_text_generation_model_mode(self, model_name) -> str:
return ModelMode.CHAT.value
def _get_fixed_model_list(self, model_type: ModelType) -> list[dict]:
if model_type == ModelType.TEXT_GENERATION:
return [
{
'id': 'baichuan2-53b',
'name': 'Baichuan2-53B',
'mode': ModelMode.CHAT.value,
}
]
else:
return []
def get_model_class(self, model_type: ModelType) -> Type[BaseProviderModel]:
"""
Returns the model class.
:param model_type:
:return:
"""
if model_type == ModelType.TEXT_GENERATION:
model_class = BaichuanModel
else:
raise NotImplementedError
return model_class
def get_model_parameter_rules(self, model_name: str, model_type: ModelType) -> ModelKwargsRules:
"""
get model parameter rules.
:param model_name:
:param model_type:
:return:
"""
return ModelKwargsRules(
temperature=KwargRule[float](min=0, max=1, default=0.3, precision=2),
top_p=KwargRule[float](min=0, max=0.99, default=0.85, precision=2),
presence_penalty=KwargRule[float](enabled=False),
frequency_penalty=KwargRule[float](enabled=False),
max_tokens=KwargRule[int](enabled=False),
)
@classmethod
def is_provider_credentials_valid_or_raise(cls, credentials: dict):
"""
Validates the given credentials.
"""
if 'api_key' not in credentials:
raise CredentialsValidateFailedError('Baichuan api_key must be provided.')
if 'secret_key' not in credentials:
raise CredentialsValidateFailedError('Baichuan secret_key must be provided.')
try:
credential_kwargs = {
'api_key': credentials['api_key'],
'secret_key': credentials['secret_key'],
}
llm = BaichuanChatLLM(
temperature=0,
**credential_kwargs
)
llm([HumanMessage(content='ping')])
except Exception as ex:
raise CredentialsValidateFailedError(str(ex))
@classmethod
def encrypt_provider_credentials(cls, tenant_id: str, credentials: dict) -> dict:
credentials['api_key'] = encrypter.encrypt_token(tenant_id, credentials['api_key'])
credentials['secret_key'] = encrypter.encrypt_token(tenant_id, credentials['secret_key'])
return credentials
def get_provider_credentials(self, obfuscated: bool = False) -> dict:
if self.provider.provider_type == ProviderType.CUSTOM.value:
try:
credentials = json.loads(self.provider.encrypted_config)
except JSONDecodeError:
credentials = {
'api_key': None,
'secret_key': None,
}
if credentials['api_key']:
credentials['api_key'] = encrypter.decrypt_token(
self.provider.tenant_id,
credentials['api_key']
)
if obfuscated:
credentials['api_key'] = encrypter.obfuscated_token(credentials['api_key'])
if credentials['secret_key']:
credentials['secret_key'] = encrypter.decrypt_token(
self.provider.tenant_id,
credentials['secret_key']
)
if obfuscated:
credentials['secret_key'] = encrypter.obfuscated_token(credentials['secret_key'])
return credentials
else:
return {}
def should_deduct_quota(self):
return True
@classmethod
def is_model_credentials_valid_or_raise(cls, model_name: str, model_type: ModelType, credentials: dict):
"""
check model credentials valid.
:param model_name:
:param model_type:
:param credentials:
"""
return
@classmethod
def encrypt_model_credentials(cls, tenant_id: str, model_name: str, model_type: ModelType,
credentials: dict) -> dict:
"""
encrypt model credentials for save.
:param tenant_id:
:param model_name:
:param model_type:
:param credentials:
:return:
"""
return {}
def get_model_credentials(self, model_name: str, model_type: ModelType, obfuscated: bool = False) -> dict:
"""
get credentials for llm use.
:param model_name:
:param model_type:
:param obfuscated:
:return:
"""
return self.get_provider_credentials(obfuscated)

View File

@@ -61,10 +61,19 @@ class BaseModelProvider(BaseModel, ABC):
ProviderModel.is_valid == True
).order_by(ProviderModel.created_at.asc()).all()
return [{
'id': provider_model.model_name,
'name': provider_model.model_name
} for provider_model in provider_models]
provider_model_list = []
for provider_model in provider_models:
provider_model_dict = {
'id': provider_model.model_name,
'name': provider_model.model_name
}
if model_type == ModelType.TEXT_GENERATION:
provider_model_dict['mode'] = self._get_text_generation_model_mode(provider_model.model_name)
provider_model_list.append(provider_model_dict)
return provider_model_list
@abstractmethod
def _get_fixed_model_list(self, model_type: ModelType) -> list[dict]:
@@ -76,6 +85,16 @@ class BaseModelProvider(BaseModel, ABC):
"""
raise NotImplementedError
@abstractmethod
def _get_text_generation_model_mode(self, model_name) -> str:
"""
get text generation model mode.
:param model_name:
:return:
"""
raise NotImplementedError
@abstractmethod
def get_model_class(self, model_type: ModelType) -> Type:
"""

View File

@@ -6,7 +6,7 @@ from langchain.llms import ChatGLM
from core.helper import encrypter
from core.model_providers.models.base import BaseProviderModel
from core.model_providers.models.entity.model_params import ModelKwargsRules, KwargRule, ModelType
from core.model_providers.models.entity.model_params import ModelKwargsRules, KwargRule, ModelType, ModelMode
from core.model_providers.models.llm.chatglm_model import ChatGLMModel
from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError
from models.provider import ProviderType
@@ -27,15 +27,20 @@ class ChatGLMProvider(BaseModelProvider):
{
'id': 'chatglm2-6b',
'name': 'ChatGLM2-6B',
'mode': ModelMode.COMPLETION.value,
},
{
'id': 'chatglm-6b',
'name': 'ChatGLM-6B',
'mode': ModelMode.COMPLETION.value,
}
]
else:
return []
def _get_text_generation_model_mode(self, model_name) -> str:
return ModelMode.COMPLETION.value
def get_model_class(self, model_type: ModelType) -> Type[BaseProviderModel]:
"""
Returns the model class.

View File

@@ -1,17 +1,22 @@
import json
from typing import Type
import requests
from huggingface_hub import HfApi
from core.helper import encrypter
from core.model_providers.models.entity.model_params import KwargRule, ModelKwargsRules, ModelType
from core.model_providers.models.entity.model_params import KwargRule, ModelKwargsRules, ModelType, ModelMode
from core.model_providers.models.llm.huggingface_hub_model import HuggingfaceHubModel
from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError
from core.model_providers.models.base import BaseProviderModel
from core.third_party.langchain.llms.huggingface_endpoint_llm import HuggingFaceEndpointLLM
from core.third_party.langchain.embeddings.huggingface_hub_embedding import HuggingfaceHubEmbeddings
from core.model_providers.models.embedding.huggingface_embedding import HuggingfaceEmbedding
from models.provider import ProviderType
HUGGINGFACE_ENDPOINT_API = 'https://api.endpoints.huggingface.cloud/v2/endpoint/'
class HuggingfaceHubProvider(BaseModelProvider):
@property
@@ -24,6 +29,9 @@ class HuggingfaceHubProvider(BaseModelProvider):
def _get_fixed_model_list(self, model_type: ModelType) -> list[dict]:
return []
def _get_text_generation_model_mode(self, model_name) -> str:
return ModelMode.COMPLETION.value
def get_model_class(self, model_type: ModelType) -> Type[BaseProviderModel]:
"""
Returns the model class.
@@ -33,6 +41,8 @@ class HuggingfaceHubProvider(BaseModelProvider):
"""
if model_type == ModelType.TEXT_GENERATION:
model_class = HuggingfaceHubModel
elif model_type == ModelType.EMBEDDINGS:
model_class = HuggingfaceEmbedding
else:
raise NotImplementedError
@@ -63,7 +73,7 @@ class HuggingfaceHubProvider(BaseModelProvider):
:param model_type:
:param credentials:
"""
if model_type != ModelType.TEXT_GENERATION:
if model_type not in [ModelType.TEXT_GENERATION, ModelType.EMBEDDINGS]:
raise NotImplementedError
if 'huggingfacehub_api_type' not in credentials \
@@ -88,19 +98,15 @@ class HuggingfaceHubProvider(BaseModelProvider):
if 'task_type' not in credentials:
raise CredentialsValidateFailedError('Task Type must be provided.')
if credentials['task_type'] not in ("text2text-generation", "text-generation", "summarization"):
if credentials['task_type'] not in ("text2text-generation", "text-generation", 'feature-extraction'):
raise CredentialsValidateFailedError('Task Type must be one of text2text-generation, '
'text-generation, summarization.')
'text-generation, feature-extraction.')
try:
llm = HuggingFaceEndpointLLM(
endpoint_url=credentials['huggingfacehub_endpoint_url'],
task=credentials['task_type'],
model_kwargs={"temperature": 0.5, "max_new_tokens": 200},
huggingfacehub_api_token=credentials['huggingfacehub_api_token']
)
llm("ping")
if credentials['task_type'] == 'feature-extraction':
cls.check_embedding_valid(credentials, model_name)
else:
cls.check_llm_valid(credentials)
except Exception as e:
raise CredentialsValidateFailedError(f"{e.__class__.__name__}:{str(e)}")
else:
@@ -112,13 +118,64 @@ class HuggingfaceHubProvider(BaseModelProvider):
if 'inference' in model_info.cardData and not model_info.cardData['inference']:
raise ValueError(f'Inference API has been turned off for this model {model_name}.')
VALID_TASKS = ("text2text-generation", "text-generation", "summarization")
VALID_TASKS = ("text2text-generation", "text-generation", "feature-extraction")
if model_info.pipeline_tag not in VALID_TASKS:
raise ValueError(f"Model {model_name} is not a valid task, "
f"must be one of {VALID_TASKS}.")
except Exception as e:
raise CredentialsValidateFailedError(f"{e.__class__.__name__}:{str(e)}")
@classmethod
def check_llm_valid(cls, credentials: dict):
llm = HuggingFaceEndpointLLM(
endpoint_url=credentials['huggingfacehub_endpoint_url'],
task=credentials['task_type'],
model_kwargs={"temperature": 0.5, "max_new_tokens": 200},
huggingfacehub_api_token=credentials['huggingfacehub_api_token']
)
llm("ping")
@classmethod
def check_embedding_valid(cls, credentials: dict, model_name: str):
cls.check_endpoint_url_model_repository_name(credentials, model_name)
embedding_model = HuggingfaceHubEmbeddings(
model=model_name,
**credentials
)
embedding_model.embed_query("ping")
@classmethod
def check_endpoint_url_model_repository_name(cls, credentials: dict, model_name: str):
try:
url = f'{HUGGINGFACE_ENDPOINT_API}{credentials["huggingface_namespace"]}'
headers = {
'Authorization': f'Bearer {credentials["huggingfacehub_api_token"]}',
'Content-Type': 'application/json'
}
response =requests.get(url=url, headers=headers)
if response.status_code != 200:
raise ValueError('User Name or Organization Name is invalid.')
model_repository_name = ''
for item in response.json().get("items", []):
if item.get("status", {}).get("url") == credentials['huggingfacehub_endpoint_url']:
model_repository_name = item.get("model", {}).get("repository")
break
if model_repository_name != model_name:
raise ValueError(f'Model Name {model_name} is invalid. Please check it on the inference endpoints console.')
except Exception as e:
raise ValueError(str(e))
@classmethod
def encrypt_model_credentials(cls, tenant_id: str, model_name: str, model_type: ModelType,
credentials: dict) -> dict:

View File

@@ -6,7 +6,7 @@ from langchain.schema import HumanMessage
from core.helper import encrypter
from core.model_providers.models.embedding.localai_embedding import LocalAIEmbedding
from core.model_providers.models.entity.model_params import ModelKwargsRules, ModelType, KwargRule
from core.model_providers.models.entity.model_params import ModelKwargsRules, ModelType, KwargRule, ModelMode
from core.model_providers.models.llm.localai_model import LocalAIModel
from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError
@@ -27,6 +27,13 @@ class LocalAIProvider(BaseModelProvider):
def _get_fixed_model_list(self, model_type: ModelType) -> list[dict]:
return []
def _get_text_generation_model_mode(self, model_name) -> str:
credentials = self.get_model_credentials(model_name, ModelType.TEXT_GENERATION)
if credentials['completion_type'] == 'chat_completion':
return ModelMode.CHAT.value
else:
return ModelMode.COMPLETION.value
def get_model_class(self, model_type: ModelType) -> Type[BaseProviderModel]:
"""
Returns the model class.

View File

@@ -2,14 +2,15 @@ import json
from json import JSONDecodeError
from typing import Type
from langchain.llms import Minimax
from langchain.schema import HumanMessage
from core.helper import encrypter
from core.model_providers.models.base import BaseProviderModel
from core.model_providers.models.embedding.minimax_embedding import MinimaxEmbedding
from core.model_providers.models.entity.model_params import ModelKwargsRules, KwargRule, ModelType
from core.model_providers.models.entity.model_params import ModelKwargsRules, KwargRule, ModelType, ModelMode
from core.model_providers.models.llm.minimax_model import MinimaxModel
from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError
from core.third_party.langchain.llms.minimax_llm import MinimaxChatLLM
from models.provider import ProviderType, ProviderQuotaType
@@ -28,10 +29,12 @@ class MinimaxProvider(BaseModelProvider):
{
'id': 'abab5.5-chat',
'name': 'abab5.5-chat',
'mode': ModelMode.COMPLETION.value,
},
{
'id': 'abab5-chat',
'name': 'abab5-chat',
'mode': ModelMode.COMPLETION.value,
}
]
elif model_type == ModelType.EMBEDDINGS:
@@ -44,6 +47,9 @@ class MinimaxProvider(BaseModelProvider):
else:
return []
def _get_text_generation_model_mode(self, model_name) -> str:
return ModelMode.COMPLETION.value
def get_model_class(self, model_type: ModelType) -> Type[BaseProviderModel]:
"""
Returns the model class.
@@ -98,14 +104,14 @@ class MinimaxProvider(BaseModelProvider):
'minimax_api_key': credentials['minimax_api_key'],
}
llm = Minimax(
llm = MinimaxChatLLM(
model='abab5.5-chat',
max_tokens=10,
temperature=0.01,
**credential_kwargs
)
llm("ping")
llm([HumanMessage(content='ping')])
except Exception as ex:
raise CredentialsValidateFailedError(str(ex))

Some files were not shown because too many files have changed in this diff Show More