mirror of
https://github.com/langgenius/dify.git
synced 2026-01-20 22:14:01 +00:00
Compare commits
257 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
f29e82685e | ||
|
|
3a5ae96e7b | ||
|
|
b63a685386 | ||
|
|
877da82b06 | ||
|
|
6637629045 | ||
|
|
e925b6c572 | ||
|
|
5412f4aba5 | ||
|
|
2d5ad0d208 | ||
|
|
1ade70aa1e | ||
|
|
2658c4d57b | ||
|
|
84c76bc04a | ||
|
|
6effcd3755 | ||
|
|
d9866489f0 | ||
|
|
c4d8bdc3db | ||
|
|
681eb1cfcc | ||
|
|
a5d21f3b09 | ||
|
|
7ba068c3e4 | ||
|
|
b201eeedbd | ||
|
|
f28cb84977 | ||
|
|
714872cd58 | ||
|
|
0708bd60ee | ||
|
|
23a6c85b80 | ||
|
|
4a28599fbd | ||
|
|
7c66d3c793 | ||
|
|
cc9edfffd8 | ||
|
|
6fa2454c9a | ||
|
|
487e699021 | ||
|
|
a7cdb745c1 | ||
|
|
73c86ee6a0 | ||
|
|
48eb590065 | ||
|
|
33562a9d8d | ||
|
|
c9194ba382 | ||
|
|
a199fa6388 | ||
|
|
4c8608dc61 | ||
|
|
a6b0f788e7 | ||
|
|
df6604a734 | ||
|
|
1ca86cf9ce | ||
|
|
78e26f8b75 | ||
|
|
2191312bb9 | ||
|
|
fcc6b41ab7 | ||
|
|
9458b8978f | ||
|
|
d75e8aeafa | ||
|
|
2eba98a465 | ||
|
|
a7a7aab7a0 | ||
|
|
86bfbb47d5 | ||
|
|
d33a269548 | ||
|
|
d3f8ea2df0 | ||
|
|
7df56ed617 | ||
|
|
e34dcc0406 | ||
|
|
a834ba8759 | ||
|
|
c67f345d0e | ||
|
|
8b8e510bfe | ||
|
|
3db839a5cb | ||
|
|
417c19577a | ||
|
|
b5953039de | ||
|
|
a43e80dd9c | ||
|
|
ad5f27bc5f | ||
|
|
05e0985f29 | ||
|
|
7b3314c5db | ||
|
|
a55ba6e614 | ||
|
|
f9bec1edf8 | ||
|
|
16199e968e | ||
|
|
02452421d5 | ||
|
|
3a5c7c75ad | ||
|
|
a7415ecfd8 | ||
|
|
934def5fcc | ||
|
|
0796791de5 | ||
|
|
6c148b223d | ||
|
|
4b168f4838 | ||
|
|
1c114eaef3 | ||
|
|
e053215155 | ||
|
|
13482b0fc1 | ||
|
|
38fa152cc4 | ||
|
|
2d9616c29c | ||
|
|
915e26527b | ||
|
|
2d604d9330 | ||
|
|
e7199826cc | ||
|
|
70e24b7594 | ||
|
|
c1602aafc7 | ||
|
|
a3fec11438 | ||
|
|
b1fd1b3ab3 | ||
|
|
5397799aac | ||
|
|
8e837dde1a | ||
|
|
9ae91a2ec3 | ||
|
|
276d3d10a0 | ||
|
|
f13623184a | ||
|
|
ef61e1487f | ||
|
|
701e2b334f | ||
|
|
6ebd6e7890 | ||
|
|
bd3a9b2f8d | ||
|
|
18d3877151 | ||
|
|
53e83d8697 | ||
|
|
6377fc75c6 | ||
|
|
2c30d19cbe | ||
|
|
9b247fccd4 | ||
|
|
3d38aa7138 | ||
|
|
7d2552b3f2 | ||
|
|
117a209ad4 | ||
|
|
071e7800a0 | ||
|
|
a76fde3d23 | ||
|
|
1fc57d7358 | ||
|
|
916d8be0ae | ||
|
|
a38412de7b | ||
|
|
9c9f0ddb93 | ||
|
|
f8fbe96da4 | ||
|
|
215a27fd95 | ||
|
|
5cba2e7087 | ||
|
|
5623839c71 | ||
|
|
78d3aa5fcd | ||
|
|
a7c78d2cd2 | ||
|
|
4db35fa375 | ||
|
|
e67a1413b6 | ||
|
|
4f3053a8cc | ||
|
|
b3c2bf125f | ||
|
|
9d5299e9ec | ||
|
|
aee15adf1b | ||
|
|
b185a70c21 | ||
|
|
a3aba7a9aa | ||
|
|
866ee5da91 | ||
|
|
e8039a7da8 | ||
|
|
5e0540077a | ||
|
|
b346bd9b83 | ||
|
|
062e2e915b | ||
|
|
e0a48c4972 | ||
|
|
f53242c081 | ||
|
|
4b53bb1a32 | ||
|
|
4c49ecedb5 | ||
|
|
4ff1870a4b | ||
|
|
6c832ee328 | ||
|
|
25264e7852 | ||
|
|
18dd0d569d | ||
|
|
3ea8d7a019 | ||
|
|
da3f10a55e | ||
|
|
8c991b5b26 | ||
|
|
22c1aafb9b | ||
|
|
8d6d1c442b | ||
|
|
95b179fb39 | ||
|
|
3a0a9e2d8f | ||
|
|
0a0d63457d | ||
|
|
920fb6d0e1 | ||
|
|
fd0fc8f4fe | ||
|
|
1c552ff23a | ||
|
|
5163dd38e5 | ||
|
|
2a27dad2fb | ||
|
|
930f74c610 | ||
|
|
3f250c9e12 | ||
|
|
fa408d264c | ||
|
|
09ea27f1ee | ||
|
|
db7156dafd | ||
|
|
4420281d96 | ||
|
|
d9afebe216 | ||
|
|
1d9cc5ca05 | ||
|
|
edb06f6aed | ||
|
|
6ca3bcbcfd | ||
|
|
71a9d63232 | ||
|
|
fb62017e50 | ||
|
|
9adbeadeec | ||
|
|
2f7b234cc5 | ||
|
|
4f5f9506ab | ||
|
|
0cc0b6e052 | ||
|
|
cd78adb0ab | ||
|
|
f42e7d1a61 | ||
|
|
c4d759dfba | ||
|
|
a58f95fa91 | ||
|
|
39574dcf6b | ||
|
|
5b06ded0b1 | ||
|
|
155a4733f6 | ||
|
|
b7c29ea1b6 | ||
|
|
cc2d71c253 | ||
|
|
cd11613952 | ||
|
|
e0d6d00a87 | ||
|
|
2dfb3e95f6 | ||
|
|
f207e180df | ||
|
|
948d64bbef | ||
|
|
01e912e543 | ||
|
|
f95f6db0e3 | ||
|
|
216fc5d312 | ||
|
|
7a8590980e | ||
|
|
e8c14bb732 | ||
|
|
bf45f08e78 | ||
|
|
2c77a74c40 | ||
|
|
440cf63317 | ||
|
|
50b11e925b | ||
|
|
7cc81b4269 | ||
|
|
93b0813b73 | ||
|
|
649b44aefa | ||
|
|
1e95d74ae2 | ||
|
|
700d5f2673 | ||
|
|
3b8234e486 | ||
|
|
0feb0bf7c0 | ||
|
|
c5d148bf94 | ||
|
|
e5e86fc033 | ||
|
|
cc52cdc2a9 | ||
|
|
42a417167f | ||
|
|
4b0d9272ef | ||
|
|
48a303b8e9 | ||
|
|
8e15ba6cd6 | ||
|
|
7898937eae | ||
|
|
1bd0a76a20 | ||
|
|
2f179d61dc | ||
|
|
7457550673 | ||
|
|
c13a90ee69 | ||
|
|
5a7b51f809 | ||
|
|
f18ce203b5 | ||
|
|
b81b8637ec | ||
|
|
0c6f92d9be | ||
|
|
55b24c373f | ||
|
|
d10ef17f17 | ||
|
|
5fa2161b05 | ||
|
|
d8b712b325 | ||
|
|
220f7c81e9 | ||
|
|
fc7e4ac75b | ||
|
|
39933aeb62 | ||
|
|
beb8065660 | ||
|
|
36080fe352 | ||
|
|
a510f32124 | ||
|
|
cc277227ad | ||
|
|
3d194787b4 | ||
|
|
a8d5ef9894 | ||
|
|
6242e91a6b | ||
|
|
cc7b5d128b | ||
|
|
f914eb95eb | ||
|
|
8ae1eb0ebb | ||
|
|
2ba89d0deb | ||
|
|
3b08bf1c6c | ||
|
|
95689ec451 | ||
|
|
51554361fc | ||
|
|
491d29cc87 | ||
|
|
6a7a71af1f | ||
|
|
a25e038a8b | ||
|
|
5d783a4922 | ||
|
|
f0eab73f3d | ||
|
|
a693569621 | ||
|
|
30c67dcd8c | ||
|
|
2295cce489 | ||
|
|
bfbaf2daa5 | ||
|
|
dfe10e9dfe | ||
|
|
60ac915c9c | ||
|
|
b1b9e3ff53 | ||
|
|
c4c47ae8c6 | ||
|
|
17c3a63e50 | ||
|
|
654985177f | ||
|
|
0d791839e6 | ||
|
|
0fc76f7e17 | ||
|
|
41d33ee837 | ||
|
|
9485cc9308 | ||
|
|
e18211ffea | ||
|
|
a856ef387b | ||
|
|
fa73aa8dbf | ||
|
|
c48ec1334e | ||
|
|
1647970fb6 | ||
|
|
12ecf89a87 | ||
|
|
a0bd15245a | ||
|
|
0c18cab111 | ||
|
|
396197e881 | ||
|
|
6a564e2d5c | ||
|
|
f369202c12 |
11
.devcontainer/Dockerfile
Normal file
11
.devcontainer/Dockerfile
Normal file
@@ -0,0 +1,11 @@
|
||||
FROM mcr.microsoft.com/devcontainers/anaconda:0-3
|
||||
|
||||
# Copy environment.yml (if found) to a temp location so we update the environment. Also
|
||||
# copy "noop.txt" so the COPY instruction does not fail if no environment.yml exists.
|
||||
COPY environment.yml* .devcontainer/noop.txt /tmp/conda-tmp/
|
||||
RUN if [ -f "/tmp/conda-tmp/environment.yml" ]; then umask 0002 && /opt/conda/bin/conda env update -n base -f /tmp/conda-tmp/environment.yml; fi \
|
||||
&& rm -rf /tmp/conda-tmp
|
||||
|
||||
# [Optional] Uncomment this section to install additional OS packages.
|
||||
# RUN apt-get update && export DEBIAN_FRONTEND=noninteractive \
|
||||
# && apt-get -y install --no-install-recommends <your-package-list-here>
|
||||
37
.devcontainer/README.md
Normal file
37
.devcontainer/README.md
Normal file
@@ -0,0 +1,37 @@
|
||||
# Devlopment with devcontainer
|
||||
This project includes a devcontainer configuration that allows you to open the project in a container with a fully configured development environment.
|
||||
Both frontend and backend environments are initialized when the container is started.
|
||||
## GitHub Codespaces
|
||||
[](https://codespaces.new/langgenius/dify)
|
||||
|
||||
you can simply click the button above to open this project in GitHub Codespaces.
|
||||
|
||||
For more info, check out the [GitHub documentation](https://docs.github.com/en/free-pro-team@latest/github/developing-online-with-codespaces/creating-a-codespace#creating-a-codespace).
|
||||
|
||||
|
||||
## VS Code Dev Containers
|
||||
[](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langgenius/dify)
|
||||
|
||||
if you have VS Code installed, you can click the button above to open this project in VS Code Dev Containers.
|
||||
|
||||
You can learn more in the [Dev Containers documentation](https://code.visualstudio.com/docs/devcontainers/containers).
|
||||
|
||||
|
||||
## Pros of Devcontainer
|
||||
Unified Development Environment: By using devcontainers, you can ensure that all developers are developing in the same environment, reducing the occurrence of "it works on my machine" type of issues.
|
||||
|
||||
Quick Start: New developers can set up their development environment in a few simple steps, without spending a lot of time on environment configuration.
|
||||
|
||||
Isolation: Devcontainers isolate your project from your host operating system, reducing the chance of OS updates or other application installations impacting the development environment.
|
||||
|
||||
## Cons of Devcontainer
|
||||
Learning Curve: For developers unfamiliar with Docker and VS Code, using devcontainers may be somewhat complex.
|
||||
|
||||
Performance Impact: While usually minimal, programs running inside a devcontainer may be slightly slower than those running directly on the host.
|
||||
|
||||
## Troubleshooting
|
||||
if you see such error message when you open this project in codespaces:
|
||||

|
||||
|
||||
a simple workaround is change `/signin` endpoint into another one, then login with github account and close the tab, then change it back to `/signin` endpoint. Then all things will be fine.
|
||||
The reason is `signin` endpoint is not allowed in codespaces, details can be found [here](https://github.com/orgs/community/discussions/5204)
|
||||
53
.devcontainer/devcontainer.json
Normal file
53
.devcontainer/devcontainer.json
Normal file
@@ -0,0 +1,53 @@
|
||||
// For format details, see https://aka.ms/devcontainer.json. For config options, see the
|
||||
// README at: https://github.com/devcontainers/templates/tree/main/src/anaconda
|
||||
{
|
||||
"name": "Anaconda (Python 3)",
|
||||
"build": {
|
||||
"context": "..",
|
||||
"dockerfile": "Dockerfile"
|
||||
},
|
||||
"features": {
|
||||
"ghcr.io/dhoeric/features/act:1": {},
|
||||
"ghcr.io/devcontainers/features/node:1": {
|
||||
"nodeGypDependencies": true,
|
||||
"version": "lts"
|
||||
},
|
||||
"ghcr.io/devcontainers-contrib/features/npm-package:1": {
|
||||
"package": "typescript",
|
||||
"version": "latest"
|
||||
},
|
||||
"ghcr.io/devcontainers/features/docker-in-docker:2": {
|
||||
"moby": true,
|
||||
"azureDnsAutoDetection": true,
|
||||
"installDockerBuildx": true,
|
||||
"version": "latest",
|
||||
"dockerDashComposeVersion": "v2"
|
||||
}
|
||||
},
|
||||
"customizations": {
|
||||
"vscode": {
|
||||
"extensions": [
|
||||
"ms-python.pylint",
|
||||
"GitHub.copilot",
|
||||
"ms-python.python"
|
||||
]
|
||||
}
|
||||
},
|
||||
"postStartCommand": "cd api && pip install -r requirements.txt",
|
||||
"postCreateCommand": "cd web && npm install"
|
||||
|
||||
// Features to add to the dev container. More info: https://containers.dev/features.
|
||||
// "features": {},
|
||||
|
||||
// Use 'forwardPorts' to make a list of ports inside the container available locally.
|
||||
// "forwardPorts": [],
|
||||
|
||||
// Use 'postCreateCommand' to run commands after the container is created.
|
||||
// "postCreateCommand": "python --version",
|
||||
|
||||
// Configure tool-specific properties.
|
||||
// "customizations": {},
|
||||
|
||||
// Uncomment to connect as root instead. More info: https://aka.ms/dev-containers-non-root.
|
||||
// "remoteUser": "root"
|
||||
}
|
||||
3
.devcontainer/noop.txt
Normal file
3
.devcontainer/noop.txt
Normal file
@@ -0,0 +1,3 @@
|
||||
This file copied into the container along with environment.yml* from the parent
|
||||
folder. This file is included to prevents the Dockerfile COPY instruction from
|
||||
failing if no environment.yml is found.
|
||||
BIN
.devcontainer/troubleshooting.png
Normal file
BIN
.devcontainer/troubleshooting.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 14 KiB |
38
.github/workflows/api-unit-tests.yml
vendored
Normal file
38
.github/workflows/api-unit-tests.yml
vendored
Normal file
@@ -0,0 +1,38 @@
|
||||
name: Run Pytest
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
push:
|
||||
branches:
|
||||
- deploy/dev
|
||||
|
||||
jobs:
|
||||
test:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v2
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: '3.10'
|
||||
|
||||
- name: Cache pip dependencies
|
||||
uses: actions/cache@v2
|
||||
with:
|
||||
path: ~/.cache/pip
|
||||
key: ${{ runner.os }}-pip-${{ hashFiles('api/requirements.txt') }}
|
||||
restore-keys: ${{ runner.os }}-pip-
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install pytest
|
||||
pip install -r api/requirements.txt
|
||||
|
||||
- name: Run pytest
|
||||
run: pytest api/tests/unit_tests
|
||||
4
.github/workflows/build-api-image.yml
vendored
4
.github/workflows/build-api-image.yml
vendored
@@ -42,12 +42,14 @@ jobs:
|
||||
uses: docker/build-push-action@v4
|
||||
with:
|
||||
context: "{{defaultContext}}:api"
|
||||
platforms: linux/amd64,linux/arm64
|
||||
platforms: ${{ startsWith(github.ref, 'refs/tags/') && 'linux/amd64,linux/arm64' || 'linux/amd64' }}
|
||||
build-args: |
|
||||
COMMIT_SHA=${{ fromJSON(steps.meta.outputs.json).labels['org.opencontainers.image.revision'] }}
|
||||
push: true
|
||||
tags: ${{ steps.meta.outputs.tags }}
|
||||
labels: ${{ steps.meta.outputs.labels }}
|
||||
cache-from: type=gha
|
||||
cache-to: type=gha,mode=max
|
||||
|
||||
- name: Deploy to server
|
||||
if: github.ref == 'refs/heads/deploy/dev'
|
||||
|
||||
4
.github/workflows/build-web-image.yml
vendored
4
.github/workflows/build-web-image.yml
vendored
@@ -42,12 +42,14 @@ jobs:
|
||||
uses: docker/build-push-action@v4
|
||||
with:
|
||||
context: "{{defaultContext}}:web"
|
||||
platforms: linux/amd64,linux/arm64
|
||||
platforms: ${{ startsWith(github.ref, 'refs/tags/') && 'linux/amd64,linux/arm64' || 'linux/amd64' }}
|
||||
build-args: |
|
||||
COMMIT_SHA=${{ fromJSON(steps.meta.outputs.json).labels['org.opencontainers.image.revision'] }}
|
||||
push: true
|
||||
tags: ${{ steps.meta.outputs.tags }}
|
||||
labels: ${{ steps.meta.outputs.labels }}
|
||||
cache-from: type=gha
|
||||
cache-to: type=gha,mode=max
|
||||
|
||||
- name: Deploy to server
|
||||
if: github.ref == 'refs/heads/deploy/dev'
|
||||
|
||||
@@ -19,7 +19,9 @@ def check_file_for_chinese_comments(file_path):
|
||||
|
||||
def main():
|
||||
has_chinese = False
|
||||
excluded_files = ["model_template.py", 'stopwords.py', 'commands.py', 'indexing_runner.py', 'web_reader_tool.py']
|
||||
excluded_files = ["model_template.py", 'stopwords.py', 'commands.py',
|
||||
'indexing_runner.py', 'web_reader_tool.py', 'spark_provider.py',
|
||||
'prompts.py']
|
||||
|
||||
for root, _, files in os.walk("."):
|
||||
for file in files:
|
||||
|
||||
3
.gitignore
vendored
3
.gitignore
vendored
@@ -149,4 +149,5 @@ sdks/python-client/build
|
||||
sdks/python-client/dist
|
||||
sdks/python-client/dify_client.egg-info
|
||||
|
||||
.vscode/
|
||||
.vscode/*
|
||||
!.vscode/launch.json
|
||||
27
.vscode/launch.json
vendored
Normal file
27
.vscode/launch.json
vendored
Normal file
@@ -0,0 +1,27 @@
|
||||
{
|
||||
// Use IntelliSense to learn about possible attributes.
|
||||
// Hover to view descriptions of existing attributes.
|
||||
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
|
||||
"version": "0.2.0",
|
||||
"configurations": [
|
||||
{
|
||||
"name": "Python: Flask",
|
||||
"type": "python",
|
||||
"request": "launch",
|
||||
"module": "flask",
|
||||
"env": {
|
||||
"FLASK_APP": "api/app.py",
|
||||
"FLASK_DEBUG": "1",
|
||||
"GEVENT_SUPPORT": "True"
|
||||
},
|
||||
"args": [
|
||||
"run",
|
||||
"--host=0.0.0.0",
|
||||
"--port=5001",
|
||||
"--debug"
|
||||
],
|
||||
"jinja": true,
|
||||
"justMyCode": true
|
||||
}
|
||||
]
|
||||
}
|
||||
@@ -53,9 +53,9 @@ Did you have an issue, like a merge conflict, or don't know how to open a pull r
|
||||
|
||||
## Community channels
|
||||
|
||||
Stuck somewhere? Have any questions? Join the [Discord Community Server](https://discord.gg/AhzKf7dNgk). We are here to help!
|
||||
Stuck somewhere? Have any questions? Join the [Discord Community Server](https://discord.gg/j3XRWSPBf7). We are here to help!
|
||||
|
||||
### i18n (Internationalization) Support
|
||||
|
||||
We are looking for contributors to help with translations in other languages. If you are interested in helping, please join the [Discord Community Server](https://discord.gg/AhzKf7dNgk) and let us know.
|
||||
Also check out the [Frontend i18n README]((web/i18n/README_EN.md)) for more information.
|
||||
Also check out the [Frontend i18n README]((web/i18n/README_EN.md)) for more information.
|
||||
|
||||
@@ -16,15 +16,15 @@
|
||||
|
||||
## 本地开发
|
||||
|
||||
要设置一个可工作的开发环境,只需 fork 项目的 git 存储库,并使用适当的软件包管理器安装后端和前端依赖项,然后创建并运行 docker-compose 堆栈。
|
||||
要设置一个可工作的开发环境,只需 fork 项目的 git 存储库,并使用适当的软件包管理器安装后端和前端依赖项,然后创建并运行 docker-compose。
|
||||
|
||||
### Fork存储库
|
||||
|
||||
您需要 fork [存储库](https://github.com/langgenius/dify)。
|
||||
您需要 fork [Git 仓库](https://github.com/langgenius/dify)。
|
||||
|
||||
### 克隆存储库
|
||||
|
||||
克隆您在 GitHub 上 fork 的存储库:
|
||||
克隆您在 GitHub 上 fork 的仓库:
|
||||
|
||||
```
|
||||
git clone git@github.com:<github_username>/dify.git
|
||||
|
||||
@@ -52,4 +52,4 @@ git clone git@github.com:<github_username>/dify.git
|
||||
|
||||
## コミュニティチャンネル
|
||||
|
||||
お困りですか?何か質問がありますか? [Discord Community サーバ](https://discord.gg/AhzKf7dNgk)に参加してください。私たちがお手伝いします!
|
||||
お困りですか?何か質問がありますか? [Discord Community サーバ](https://discord.gg/j3XRWSPBf7) に参加してください。私たちがお手伝いします!
|
||||
|
||||
48
README.md
48
README.md
@@ -6,7 +6,7 @@
|
||||
<a href="./README_ES.md">Español</a>
|
||||
</p>
|
||||
|
||||
[Website](https://dify.ai) • [Docs](https://docs.dify.ai) • [Twitter](https://twitter.com/dify_ai) • [Discord](https://discord.gg/FngNHpbcY7)
|
||||
#### [Website](https://dify.ai) • [Docs](https://docs.dify.ai) • [Deployment Docs](https://docs.dify.ai/getting-started/install-self-hosted) • [FAQ](https://docs.dify.ai/getting-started/faq) • [Twitter](https://twitter.com/dify_ai) • [Discord](https://discord.gg/FngNHpbcY7)
|
||||
|
||||
**Dify** is an easy-to-use LLMOps platform designed to empower more people to create sustainable, AI-native applications. With visual orchestration for various application types, Dify offers out-of-the-box, ready-to-use applications that can also serve as Backend-as-a-Service APIs. Unify your development process with one API for plugins and datasets integration, and streamline your operations using a single interface for prompt engineering, visual analytics, and continuous improvement.
|
||||
|
||||
@@ -15,17 +15,44 @@ Applications created with Dify include:
|
||||
Out-of-the-box web sites supporting form mode and chat conversation mode
|
||||
A single API encompassing plugin capabilities, context enhancement, and more, saving you backend coding effort
|
||||
Visual data analysis, log review, and annotation for applications
|
||||
Dify is compatible with Langchain, meaning we'll gradually support multiple LLMs, currently supported:
|
||||
|
||||
* **OpenAI** :GPT4、GPT3.5-turbo、GPT3.5-turbo-16k、text-davinci-003
|
||||
## Highlighted Features
|
||||
**1. LLMs support:** Choose capabilities based on different models when building your Dify AI apps. Dify is compatible with Langchain, meaning it will support various LLMs. Currently supported:
|
||||
|
||||
* **Azure OpenAI**
|
||||
- [x] **OpenAI**: GPT4, GPT3.5-turbo, GPT3.5-turbo-16k, text-davinci-003
|
||||
- [x] **Azure OpenAI Service**
|
||||
- [x] **Anthropic**: Claude2, Claude-instant
|
||||
- [x] **Replicate**
|
||||
- [x] **Hugging Face Hub**
|
||||
- [x] **ChatGLM**
|
||||
- [x] **Llama2**
|
||||
- [x] **MiniMax**
|
||||
- [x] **Spark**
|
||||
- [x] **Wenxin**
|
||||
- [x] **Tongyi**
|
||||
|
||||
* **Antropic**:Claude2、Claude-instant
|
||||
> We've got 1000 free trial credits available for all cloud service users to try out the Claude model.Visit [Dify.ai](https://dify.ai) and
|
||||
try it now.
|
||||
|
||||
* **hugging face Hub**:Coming soon.
|
||||
We provide the following free resources for registered Dify cloud users (sign up at [dify.ai](https://dify.ai)):
|
||||
* 600,000 free Claude model tokens to build Claude-powered apps
|
||||
* 200 free OpenAI queries to build OpenAI-based apps
|
||||
|
||||
|
||||
**2. Visual orchestration:** Build an AI app in minutes by writing and debugging prompts visually.
|
||||
|
||||
**3. Text embedding:** Fully automated text preprocessing embeds your data as context without complex concepts. Supports PDF, TXT, and syncing data from Notion, webpages, APIs.
|
||||
|
||||
**4. API-based:** Backend-as-a-service. Access web apps directly or integrate via APIs without complex backend setup.
|
||||
|
||||
**5. Plugins:** Dify "Smart Chat" now supports first-party plugins like web browsing, Google search, Wikipedia to enable online lookup, analyzing web content, and explaining the AI's reasoning process conversationally.
|
||||
|
||||
**6. Team workspaces:** Team members can join workspaces to collaboratively edit, manage, and use team AI apps.
|
||||
|
||||
**7. Data labeling and improvement:** Visually inspect AI app logs and improve data via labeling. Observe the AI's reasoning process to continuously enhance performance. (Coming soon)
|
||||
|
||||
## Use cases
|
||||
* [Create an AI ChatBot with Business Data in Minutes.](https://docs.dify.ai/use-cases/create-an-ai-chatbot-with-business-data-in-minutes)
|
||||
* [How to Build an Notion AI Assistant Based on Your Own Notes?](https://docs.dify.ai/use-cases/build-an-notion-ai-assistant)
|
||||
* [Create a Midjoureny Prompt Bot Without Code in Just a Few Minutes.](https://docs.dify.ai/use-cases/create-a-midjoureny-prompt-bot-with-dify)
|
||||
|
||||
## Use Cloud Services
|
||||
|
||||
@@ -37,7 +64,7 @@ Visit [Dify.ai](https://dify.ai)
|
||||
|
||||
Before installing Dify, make sure your machine meets the following minimum system requirements:
|
||||
|
||||
- CPU >= 1 Core
|
||||
- CPU >= 2 Core
|
||||
- RAM >= 4GB
|
||||
|
||||
### Quick Start
|
||||
@@ -68,8 +95,6 @@ Features under development:
|
||||
We will support more datasets, including text, webpages, and even Notion content. Users can build AI applications based on their own data sources.
|
||||
- **Plugins**, introducing ChatGPT Plugin-standard plugins for applications, or using Dify-produced plugins
|
||||
We will release plugins complying with ChatGPT standard, or Dify's own plugins to enable more capabilities in applications.
|
||||
- **Open-source models**, e.g. adopting Llama as a model provider or for further fine-tuning
|
||||
We will work with excellent open-source models like Llama, by providing them as model options in our platform, or using them for further fine-tuning.
|
||||
|
||||
|
||||
## Q&A
|
||||
@@ -139,7 +164,6 @@ To protect your privacy, please avoid posting security issues on GitHub. Instead
|
||||
This software uses the following open-source software:
|
||||
|
||||
- Chase, H. (2022). LangChain [Computer software]. https://github.com/hwchase17/langchain
|
||||
- Liu, J. (2022). LlamaIndex [Computer software]. doi: 10.5281/zenodo.1234.
|
||||
|
||||
For more information, please refer to the official website or license text of the respective software.
|
||||
|
||||
|
||||
58
README_CN.md
58
README_CN.md
@@ -7,9 +7,9 @@
|
||||
</p>
|
||||
|
||||
|
||||
[官方网站](https://dify.ai) • [文档](https://docs.dify.ai/v/zh-hans) • [Twitter](https://twitter.com/dify_ai) • [Discord](https://discord.gg/FngNHpbcY7)
|
||||
#### [官方网站](https://dify.ai) • [使用文档](https://docs.dify.ai/v/zh-hans) · [部署文档](https://docs.dify.ai/v/zh-hans/getting-started/install-self-hosted) · [FAQ](https://docs.dify.ai/v/zh-hans/getting-started/faq) • [Twitter](https://twitter.com/dify_ai) • [Discord](https://discord.gg/FngNHpbcY7)
|
||||
|
||||
**Dify** 是一个易用的 LLMOps 平台,旨在让更多人可以创建可持续运营的原生 AI 应用。Dify 提供多种类型应用的可视化编排,应用可开箱即用,也能以“后端即服务”的 API 提供服务。
|
||||
**Dify** 是一个易用的 LLMOps 平台,基于不同的大型语言模型能力,让更多人可以简易地创建可持续运营的原生 AI 应用。Dify 提供多种类型应用的可视化编排,应用可开箱即用,也能以“后端即服务”的 API 提供服务。
|
||||
|
||||
通过 Dify 创建的应用包含了:
|
||||
|
||||
@@ -17,20 +17,45 @@
|
||||
- 一套 API 即可包含插件、上下文增强等能力,替你省下了后端代码的编写工作
|
||||
- 可视化的对应用进行数据分析,查阅日志或进行标注
|
||||
|
||||
Dify 兼容 Langchain,这意味着我们将逐步支持多种 LLMs ,目前支持的模型供应商:
|
||||
|
||||
* **OpenAI**:GPT4、GPT3.5-turbo、GPT3.5-turbo-16k、text-davinci-003
|
||||
|
||||
* **Azure OpenAI Service**
|
||||
* **Anthropic**:Claude2、Claude-instant
|
||||
## 核心能力
|
||||
1. **模型支持:** 你可以在 Dify 上选择基于不同模型的能力来开发你的 AI 应用。Dify 兼容 Langchain,这意味着我们将逐步支持多种 LLMs ,目前支持的模型供应商:
|
||||
|
||||
> 我们为所有注册云端版的用户免费提供了 1000 次 Claude 模型的消息调用额度,登录 [dify.ai](https://cloud.dify.ai) 即可使用。
|
||||
- [x] **OpenAI**:GPT4、GPT3.5-turbo、GPT3.5-turbo-16k、text-davinci-003
|
||||
- [x] **Azure OpenAI Service**
|
||||
- [x] **Anthropic**:Claude2、Claude-instant
|
||||
- [x] **Replicate**
|
||||
- [x] **Hugging Face Hub**
|
||||
- [x] **ChatGLM**
|
||||
- [x] **Llama2**
|
||||
- [x] **MiniMax**
|
||||
- [x] **讯飞星火大模型**
|
||||
- [x] **文心一言**
|
||||
- [x] **通义千问**
|
||||
|
||||
|
||||
我们为所有注册云端版的用户免费提供以下资源(登录 [dify.ai](https://cloud.dify.ai) 即可使用):
|
||||
* 60 万 Tokens Claude 模型的消息调用额度,用于创建基于 Claude 模型的 AI 应用
|
||||
* 200 次 OpenAI 模型的消息调用额度,用于创建基于 OpenAI 模型的 AI 应用
|
||||
* 300 万 讯飞星火大模型 Token 的调用额度,用于创建基于讯飞星火大模型的 AI 应用
|
||||
* 100 万 MiniMax Token 的调用额度,用于创建基于 MiniMax 模型的 AI 应用
|
||||
2. **可视化编排 Prompt:** 通过界面化编写 prompt 并调试,只需几分钟即可发布一个 AI 应用。
|
||||
3. **文本 Embedding 处理(数据集)**:全自动完成文本预处理,使用你的数据作为上下文,无需理解晦涩的概念和技术处理。支持 PDF、txt 等文件格式,支持从 Notion、网页、API 同步数据。
|
||||
4. **基于 API 开发:** 后端即服务。您可以直接访问网页应用,也可以接入 API 集成到您的应用中,无需关注复杂的后端架构和部署过程。
|
||||
5. **插件能力:** Dify 「智聊」平台已支持网页浏览、Google 搜索、Wikipedia 查询等第一方插件,可在对话中实现联网搜索、分析网页内容、展示 AI 的推理过程。
|
||||
6. **团队 Workspace:** 团队成员可加入 Workspace 编辑、管理和使用团队内的 AI 应用。
|
||||
6. **数据标注与改进:** 可视化查阅 AI 应用日志并对数据进行改进标注,观测 AI 的推理过程,不断提高其性能。(Coming soon)
|
||||
-----------------------------
|
||||
## Use cases
|
||||
* [几分钟创建一个带有业务数据的官网 AI 智能客服](https://docs.dify.ai/v/zh-hans/use-cases/create-an-ai-chatbot-with-business-data-in-minutes)
|
||||
* [构建一个 Notion AI 助手](https://docs.dify.ai/v/zh-hans/use-cases/build-an-notion-ai-assistant)
|
||||
* [创建 Midjoureny 提示词机器人](https://docs.dify.ai/v/zh-hans/use-cases/create-a-midjoureny-prompt-word-robot-with-zero-code)
|
||||
|
||||
* **Hugging Face Hub**(即将推出)
|
||||
|
||||
## 使用云服务
|
||||
|
||||
访问 [Dify.ai](https://cloud.dify.ai)
|
||||
访问 [Dify.ai](https://cloud.dify.ai) 使用云端版。
|
||||
|
||||
## 安装社区版
|
||||
|
||||
@@ -38,7 +63,7 @@ Dify 兼容 Langchain,这意味着我们将逐步支持多种 LLMs ,目前
|
||||
|
||||
在安装 Dify 之前,请确保您的机器满足以下最低系统要求:
|
||||
|
||||
- CPU >= 1 Core
|
||||
- CPU >= 2 Core
|
||||
- RAM >= 4GB
|
||||
|
||||
### 快速启动
|
||||
@@ -65,12 +90,8 @@ docker compose up -d
|
||||
|
||||
我们正在开发中的功能:
|
||||
|
||||
- **数据集**,支持更多的数据集,例如同步 Notion 或网页的内容
|
||||
我们将支持更多的数据集,包括文本、网页,甚至 Notion 内容。用户可以根据自己的数据源构建 AI 应用程序。
|
||||
- **插件**,推出符合 ChatGPT 标准的插件,或使用 Dify 产生的插件
|
||||
我们将发布符合 ChatGPT 标准的插件,或者 Dify 自己的插件,以在应用程序中启用更多功能。
|
||||
- **开源模型**,例如采用 Llama 作为模型提供者,或进行进一步的微调
|
||||
我们将与优秀的开源模型如 Llama 合作,通过在我们的平台中提供它们作为模型选项,或使用它们进行进一步的微调。
|
||||
- **数据集**,支持更多的数据集,通过网页、API 同步内容。用户可以根据自己的数据源构建 AI 应用程序。
|
||||
- **插件**,我们将发布符合 ChatGPT 标准的插件,支持更多 Dify 自己的插件,支持用户自定义插件能力,以在应用程序中启用更多功能,例如以支持以目标为导向的分解推理任务。
|
||||
|
||||
## Q&A
|
||||
|
||||
@@ -84,11 +105,11 @@ A: 一个有价值的应用由 Prompt Engineering、上下文增强和 Fine-tune
|
||||
|
||||
**Q: 如果要创建一个自己的应用,我需要准备什么?**
|
||||
|
||||
A: 我们假定你已经有了 OpenAI API Key,如果没有请去注册一个。如果你已经有了一些内容可以作为训练上下文,就太好了。
|
||||
A: 我们假定你已经有了 OpenAI 或 Claude 等模型的 API Key,如果没有请去注册一个。如果你已经有了一些内容可以作为训练上下文,就太好了。
|
||||
|
||||
**Q: 提供哪些界面语言?**
|
||||
|
||||
A: 现已支持英文与中文,你可以为我们贡献语言包。
|
||||
A: 支持英文、中文,你可以为我们贡献语言包并提供维护支持。
|
||||
|
||||
## Star History
|
||||
|
||||
@@ -134,7 +155,6 @@ A: 现已支持英文与中文,你可以为我们贡献语言包。
|
||||
本软件使用了以下开源软件:
|
||||
|
||||
- Chase, H. (2022). LangChain [Computer software]. https://github.com/hwchase17/langchain
|
||||
- Liu, J. (2022). LlamaIndex [Computer software]. doi: 10.5281/zenodo.1234.
|
||||
|
||||
更多信息,请参考相应软件的官方网站或许可证文本。
|
||||
|
||||
|
||||
@@ -32,7 +32,7 @@ Visita [Dify.ai](https://dify.ai)
|
||||
|
||||
Antes de instalar Dify, asegúrate de que tu máquina cumple con los siguientes requisitos mínimos del sistema:
|
||||
|
||||
- CPU >= 1 Core
|
||||
- CPU >= 2 Core
|
||||
- RAM >= 4GB
|
||||
|
||||
### Inicio rápido
|
||||
@@ -115,7 +115,6 @@ Para proteger tu privacidad, evita publicar problemas de seguridad en GitHub. En
|
||||
Este software utiliza el siguiente software de código abierto:
|
||||
|
||||
- Chase, H. (2022). LangChain [Software de computadora]. https://github.com/hwchase17/langchain
|
||||
- Liu, J. (2022). LlamaIndex [Software de computadora]. doi: 10.5281/zenodo.1234.
|
||||
|
||||
Para obtener más información, consulta el sitio web oficial o el texto de la licencia del software correspondiente.
|
||||
|
||||
|
||||
@@ -114,7 +114,6 @@ A: 現在、英語と中国語に対応しており、言語パックを寄贈
|
||||
本ソフトウェアは、以下のオープンソースソフトウェアを使用しています:
|
||||
|
||||
- Chase, H. (2022). LangChain [Computer software]. https://github.com/hwchase17/langchain
|
||||
- Liu, J. (2022). LlamaIndex [Computer software]. doi: 10.5281/zenodo.1234.
|
||||
|
||||
詳しくは、各ソフトウェアの公式サイトまたはライセンス文をご参照ください。
|
||||
|
||||
|
||||
@@ -1,2 +1,11 @@
|
||||
.env
|
||||
storage/privkeys/*
|
||||
*.env.*
|
||||
|
||||
storage/privkeys/*
|
||||
|
||||
# Logs
|
||||
logs
|
||||
*.log*
|
||||
|
||||
# jetbrains
|
||||
.idea
|
||||
@@ -9,17 +9,13 @@ SECRET_KEY=
|
||||
|
||||
# Console API base URL
|
||||
CONSOLE_API_URL=http://127.0.0.1:5001
|
||||
|
||||
# Console frontend web base URL
|
||||
CONSOLE_WEB_URL=http://127.0.0.1:3000
|
||||
|
||||
# Service API base URL
|
||||
SERVICE_API_URL=http://127.0.0.1:5001
|
||||
|
||||
# Web APP API base URL
|
||||
# Web APP base URL
|
||||
APP_API_URL=http://127.0.0.1:5001
|
||||
|
||||
# Web APP frontend web base URL
|
||||
APP_WEB_URL=http://127.0.0.1:3000
|
||||
|
||||
# celery configuration
|
||||
@@ -102,3 +98,31 @@ NOTION_INTEGRATION_TYPE=public
|
||||
NOTION_CLIENT_SECRET=you-client-secret
|
||||
NOTION_CLIENT_ID=you-client-id
|
||||
NOTION_INTERNAL_SECRET=you-internal-secret
|
||||
|
||||
# Hosted Model Credentials
|
||||
HOSTED_OPENAI_ENABLED=false
|
||||
HOSTED_OPENAI_API_KEY=
|
||||
HOSTED_OPENAI_API_BASE=
|
||||
HOSTED_OPENAI_API_ORGANIZATION=
|
||||
HOSTED_OPENAI_QUOTA_LIMIT=200
|
||||
HOSTED_OPENAI_PAID_ENABLED=false
|
||||
HOSTED_OPENAI_PAID_STRIPE_PRICE_ID=
|
||||
HOSTED_OPENAI_PAID_INCREASE_QUOTA=1
|
||||
|
||||
HOSTED_AZURE_OPENAI_ENABLED=false
|
||||
HOSTED_AZURE_OPENAI_API_KEY=
|
||||
HOSTED_AZURE_OPENAI_API_BASE=
|
||||
HOSTED_AZURE_OPENAI_QUOTA_LIMIT=200
|
||||
|
||||
HOSTED_ANTHROPIC_ENABLED=false
|
||||
HOSTED_ANTHROPIC_API_BASE=
|
||||
HOSTED_ANTHROPIC_API_KEY=
|
||||
HOSTED_ANTHROPIC_QUOTA_LIMIT=600000
|
||||
HOSTED_ANTHROPIC_PAID_ENABLED=false
|
||||
HOSTED_ANTHROPIC_PAID_STRIPE_PRICE_ID=
|
||||
HOSTED_ANTHROPIC_PAID_INCREASE_QUOTA=1000000
|
||||
HOSTED_ANTHROPIC_PAID_MIN_QUANTITY=20
|
||||
HOSTED_ANTHROPIC_PAID_MAX_QUANTITY=100
|
||||
|
||||
STRIPE_API_KEY=
|
||||
STRIPE_WEBHOOK_SECRET=
|
||||
@@ -1,7 +1,18 @@
|
||||
FROM langgenius/base:1.0.0-bullseye-slim as langgenius-api
|
||||
# packages install stage
|
||||
FROM python:3.10-slim AS base
|
||||
|
||||
LABEL maintainer="takatost@gmail.com"
|
||||
|
||||
RUN apt-get update \
|
||||
&& apt-get install -y --no-install-recommends gcc g++ python3-dev libc-dev libffi-dev
|
||||
|
||||
COPY requirements.txt /requirements.txt
|
||||
|
||||
RUN pip install --prefix=/pkg -r requirements.txt
|
||||
|
||||
# build stage
|
||||
FROM python:3.10-slim AS builder
|
||||
|
||||
ENV FLASK_APP app.py
|
||||
ENV EDITION SELF_HOSTED
|
||||
ENV DEPLOY_ENV PRODUCTION
|
||||
@@ -15,12 +26,17 @@ EXPOSE 5001
|
||||
|
||||
WORKDIR /app/api
|
||||
|
||||
COPY requirements.txt /app/api/requirements.txt
|
||||
|
||||
RUN pip install -r requirements.txt
|
||||
RUN apt-get update \
|
||||
&& apt-get install -y --no-install-recommends bash curl wget vim nodejs \
|
||||
&& apt-get autoremove \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
COPY --from=base /pkg /usr/local
|
||||
COPY . /app/api/
|
||||
|
||||
RUN python -c "from transformers import GPT2TokenizerFast; GPT2TokenizerFast.from_pretrained('gpt2')"
|
||||
ENV TRANSFORMERS_OFFLINE true
|
||||
|
||||
COPY docker/entrypoint.sh /entrypoint.sh
|
||||
RUN chmod +x /entrypoint.sh
|
||||
|
||||
|
||||
@@ -8,7 +8,7 @@
|
||||
|
||||
```bash
|
||||
cd ../docker
|
||||
docker-compose -f docker-compose.middleware.yaml up -d
|
||||
docker-compose -f docker-compose.middleware.yaml -p dify up -d
|
||||
cd ../api
|
||||
```
|
||||
2. Copy `.env.example` to `.env`
|
||||
@@ -33,9 +33,32 @@
|
||||
```bash
|
||||
flask db upgrade
|
||||
```
|
||||
|
||||
⚠️ If you encounter problems with jieba, for example
|
||||
|
||||
```
|
||||
> flask db upgrade
|
||||
Error: While importing 'app', an ImportError was raised:
|
||||
```
|
||||
|
||||
Please run the following command instead.
|
||||
|
||||
```
|
||||
pip install -r requirements.txt --upgrade --force-reinstall
|
||||
```
|
||||
|
||||
6. Start backend:
|
||||
```bash
|
||||
flask run --host 0.0.0.0 --port=5001 --debug
|
||||
```
|
||||
7. Setup your application by visiting http://localhost:5001/console/api/setup or other apis...
|
||||
8. If you need to debug local async processing, you can run `celery -A app.celery worker`, celery can do dataset importing and other async tasks.
|
||||
8. If you need to debug local async processing, you can run `celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail`, celery can do dataset importing and other async tasks.
|
||||
|
||||
8. Start frontend
|
||||
|
||||
You can start the frontend by running `npm install && npm run dev` in web/ folder, or you can use docker to start the frontend, for example:
|
||||
|
||||
```
|
||||
docker run -it -d --platform linux/amd64 -p 3000:3000 -e EDITION=SELF_HOSTED -e CONSOLE_URL=http://127.0.0.1:5001 --name web-self-hosted langgenius/dify-web:latest
|
||||
```
|
||||
This will start a dify frontend, now you are all set, happy coding!
|
||||
47
api/app.py
47
api/app.py
@@ -1,6 +1,6 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
import os
|
||||
from datetime import datetime
|
||||
from datetime import datetime, timedelta
|
||||
|
||||
from werkzeug.exceptions import Forbidden
|
||||
|
||||
@@ -16,8 +16,9 @@ from flask import Flask, request, Response, session
|
||||
import flask_login
|
||||
from flask_cors import CORS
|
||||
|
||||
from core.model_providers.providers import hosted
|
||||
from extensions import ext_session, ext_celery, ext_sentry, ext_redis, ext_login, ext_migrate, \
|
||||
ext_database, ext_storage, ext_mail
|
||||
ext_database, ext_storage, ext_mail, ext_stripe
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_login import login_manager
|
||||
|
||||
@@ -31,6 +32,7 @@ from config import Config, CloudEditionConfig
|
||||
from commands import register_commands
|
||||
from models.account import TenantAccountJoin, AccountStatus
|
||||
from models.model import Account, EndUser, App
|
||||
from services.account_service import TenantService
|
||||
|
||||
import warnings
|
||||
warnings.simplefilter("ignore", ResourceWarning)
|
||||
@@ -70,7 +72,7 @@ def create_app(test_config=None) -> Flask:
|
||||
register_blueprints(app)
|
||||
register_commands(app)
|
||||
|
||||
core.init_app(app)
|
||||
hosted.init_app(app)
|
||||
|
||||
return app
|
||||
|
||||
@@ -87,6 +89,16 @@ def initialize_extensions(app):
|
||||
ext_login.init_app(app)
|
||||
ext_mail.init_app(app)
|
||||
ext_sentry.init_app(app)
|
||||
ext_stripe.init_app(app)
|
||||
|
||||
|
||||
def _create_tenant_for_account(account):
|
||||
tenant = TenantService.create_tenant(f"{account.name}'s Workspace")
|
||||
|
||||
TenantService.create_tenant_member(tenant, account, role='owner')
|
||||
account.current_tenant = tenant
|
||||
|
||||
return tenant
|
||||
|
||||
|
||||
# Flask-Login configuration
|
||||
@@ -119,7 +131,9 @@ def load_user(user_id):
|
||||
|
||||
if tenant_account_join:
|
||||
account.current_tenant_id = tenant_account_join.tenant_id
|
||||
session['workspace_id'] = account.current_tenant_id
|
||||
else:
|
||||
_create_tenant_for_account(account)
|
||||
session['workspace_id'] = account.current_tenant_id
|
||||
else:
|
||||
account.current_tenant_id = workspace_id
|
||||
else:
|
||||
@@ -127,10 +141,16 @@ def load_user(user_id):
|
||||
TenantAccountJoin.account_id == account.id).first()
|
||||
if tenant_account_join:
|
||||
account.current_tenant_id = tenant_account_join.tenant_id
|
||||
session['workspace_id'] = account.current_tenant_id
|
||||
else:
|
||||
_create_tenant_for_account(account)
|
||||
session['workspace_id'] = account.current_tenant_id
|
||||
|
||||
account.last_active_at = datetime.utcnow()
|
||||
db.session.commit()
|
||||
current_time = datetime.utcnow()
|
||||
|
||||
# update last_active_at when last_active_at is more than 10 minutes ago
|
||||
if current_time - account.last_active_at > timedelta(minutes=10):
|
||||
account.last_active_at = current_time
|
||||
db.session.commit()
|
||||
|
||||
# Log in the user with the updated user_id
|
||||
flask_login.login_user(account, remember=True)
|
||||
@@ -232,5 +252,18 @@ def threads():
|
||||
}
|
||||
|
||||
|
||||
@app.route('/db-pool-stat')
|
||||
def pool_stat():
|
||||
engine = db.engine
|
||||
return {
|
||||
'pool_size': engine.pool.size(),
|
||||
'checked_in_connections': engine.pool.checkedin(),
|
||||
'checked_out_connections': engine.pool.checkedout(),
|
||||
'overflow_connections': engine.pool.overflow(),
|
||||
'connection_timeout': engine.pool.timeout(),
|
||||
'recycle_time': db.engine.pool._recycle
|
||||
}
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run(host='0.0.0.0', port=5001)
|
||||
|
||||
293
api/commands.py
293
api/commands.py
@@ -1,26 +1,34 @@
|
||||
import datetime
|
||||
import logging
|
||||
import json
|
||||
import math
|
||||
import random
|
||||
import string
|
||||
import time
|
||||
|
||||
import click
|
||||
from tqdm import tqdm
|
||||
from flask import current_app
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
from werkzeug.exceptions import NotFound
|
||||
|
||||
from core.embedding.cached_embedding import CacheEmbedding
|
||||
from core.index.index import IndexBuilder
|
||||
from core.model_providers.model_factory import ModelFactory
|
||||
from core.model_providers.models.embedding.openai_embedding import OpenAIEmbedding
|
||||
from core.model_providers.models.entity.model_params import ModelType
|
||||
from core.model_providers.providers.hosted import hosted_model_providers
|
||||
from core.model_providers.providers.openai_provider import OpenAIProvider
|
||||
from libs.password import password_pattern, valid_password, hash_password
|
||||
from libs.helper import email as email_validate
|
||||
from extensions.ext_database import db
|
||||
from libs.rsa import generate_key_pair
|
||||
from models.account import InvitationCode, Tenant
|
||||
from models.dataset import Dataset, DatasetQuery, Document, DocumentSegment
|
||||
from models.model import Account
|
||||
from models.account import InvitationCode, Tenant, TenantAccountJoin
|
||||
from models.dataset import Dataset, DatasetQuery, Document
|
||||
from models.model import Account, AppModelConfig, App
|
||||
import secrets
|
||||
import base64
|
||||
|
||||
from models.provider import Provider, ProviderName
|
||||
from services.provider_service import ProviderService
|
||||
from models.provider import Provider, ProviderType, ProviderQuotaType, ProviderModel
|
||||
|
||||
|
||||
@click.command('reset-password', help='Reset the account password.')
|
||||
@@ -102,6 +110,7 @@ def reset_encrypt_key_pair():
|
||||
tenant.encrypt_public_key = generate_key_pair(tenant.id)
|
||||
|
||||
db.session.query(Provider).filter(Provider.provider_type == 'custom').delete()
|
||||
db.session.query(ProviderModel).delete()
|
||||
db.session.commit()
|
||||
|
||||
click.echo(click.style('Congratulations! '
|
||||
@@ -251,26 +260,40 @@ def clean_unused_dataset_indexes():
|
||||
|
||||
@click.command('sync-anthropic-hosted-providers', help='Sync anthropic hosted providers.')
|
||||
def sync_anthropic_hosted_providers():
|
||||
if not hosted_model_providers.anthropic:
|
||||
click.echo(click.style('Anthropic hosted provider is not configured.', fg='red'))
|
||||
return
|
||||
|
||||
click.echo(click.style('Start sync anthropic hosted providers.', fg='green'))
|
||||
count = 0
|
||||
|
||||
new_quota_limit = hosted_model_providers.anthropic.quota_limit
|
||||
|
||||
page = 1
|
||||
while True:
|
||||
try:
|
||||
tenants = db.session.query(Tenant).order_by(Tenant.created_at.desc()).paginate(page=page, per_page=50)
|
||||
providers = db.session.query(Provider).filter(
|
||||
Provider.provider_name == 'anthropic',
|
||||
Provider.provider_type == ProviderType.SYSTEM.value,
|
||||
Provider.quota_type == ProviderQuotaType.TRIAL.value,
|
||||
Provider.quota_limit != new_quota_limit
|
||||
).order_by(Provider.created_at.desc()).paginate(page=page, per_page=100)
|
||||
except NotFound:
|
||||
break
|
||||
|
||||
page += 1
|
||||
for tenant in tenants:
|
||||
for provider in providers:
|
||||
try:
|
||||
click.echo('Syncing tenant anthropic hosted provider: {}'.format(tenant.id))
|
||||
ProviderService.create_system_provider(
|
||||
tenant,
|
||||
ProviderName.ANTHROPIC.value,
|
||||
current_app.config['ANTHROPIC_HOSTED_QUOTA_LIMIT'],
|
||||
True
|
||||
)
|
||||
click.echo('Syncing tenant anthropic hosted provider: {}, origin: limit {}, used {}'
|
||||
.format(provider.tenant_id, provider.quota_limit, provider.quota_used))
|
||||
original_quota_limit = provider.quota_limit
|
||||
division = math.ceil(new_quota_limit / 1000)
|
||||
|
||||
provider.quota_limit = new_quota_limit if original_quota_limit == 1000 \
|
||||
else original_quota_limit * division
|
||||
provider.quota_used = division * provider.quota_used
|
||||
db.session.commit()
|
||||
|
||||
count += 1
|
||||
except Exception as e:
|
||||
click.echo(click.style(
|
||||
@@ -281,6 +304,243 @@ def sync_anthropic_hosted_providers():
|
||||
click.echo(click.style('Congratulations! Synced {} anthropic hosted providers.'.format(count), fg='green'))
|
||||
|
||||
|
||||
@click.command('create-qdrant-indexes', help='Create qdrant indexes.')
|
||||
def create_qdrant_indexes():
|
||||
click.echo(click.style('Start create qdrant indexes.', fg='green'))
|
||||
create_count = 0
|
||||
|
||||
page = 1
|
||||
while True:
|
||||
try:
|
||||
datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \
|
||||
.order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
|
||||
except NotFound:
|
||||
break
|
||||
|
||||
page += 1
|
||||
for dataset in datasets:
|
||||
if dataset.index_struct_dict:
|
||||
if dataset.index_struct_dict['type'] != 'qdrant':
|
||||
try:
|
||||
click.echo('Create dataset qdrant index: {}'.format(dataset.id))
|
||||
try:
|
||||
embedding_model = ModelFactory.get_embedding_model(
|
||||
tenant_id=dataset.tenant_id,
|
||||
model_provider_name=dataset.embedding_model_provider,
|
||||
model_name=dataset.embedding_model
|
||||
)
|
||||
except Exception:
|
||||
try:
|
||||
embedding_model = ModelFactory.get_embedding_model(
|
||||
tenant_id=dataset.tenant_id
|
||||
)
|
||||
dataset.embedding_model = embedding_model.name
|
||||
dataset.embedding_model_provider = embedding_model.model_provider.provider_name
|
||||
except Exception:
|
||||
provider = Provider(
|
||||
id='provider_id',
|
||||
tenant_id=dataset.tenant_id,
|
||||
provider_name='openai',
|
||||
provider_type=ProviderType.SYSTEM.value,
|
||||
encrypted_config=json.dumps({'openai_api_key': 'TEST'}),
|
||||
is_valid=True,
|
||||
)
|
||||
model_provider = OpenAIProvider(provider=provider)
|
||||
embedding_model = OpenAIEmbedding(name="text-embedding-ada-002", model_provider=model_provider)
|
||||
embeddings = CacheEmbedding(embedding_model)
|
||||
|
||||
from core.index.vector_index.qdrant_vector_index import QdrantVectorIndex, QdrantConfig
|
||||
|
||||
index = QdrantVectorIndex(
|
||||
dataset=dataset,
|
||||
config=QdrantConfig(
|
||||
endpoint=current_app.config.get('QDRANT_URL'),
|
||||
api_key=current_app.config.get('QDRANT_API_KEY'),
|
||||
root_path=current_app.root_path
|
||||
),
|
||||
embeddings=embeddings
|
||||
)
|
||||
if index:
|
||||
index.create_qdrant_dataset(dataset)
|
||||
index_struct = {
|
||||
"type": 'qdrant',
|
||||
"vector_store": {"class_prefix": dataset.index_struct_dict['vector_store']['class_prefix']}
|
||||
}
|
||||
dataset.index_struct = json.dumps(index_struct)
|
||||
db.session.commit()
|
||||
create_count += 1
|
||||
else:
|
||||
click.echo('passed.')
|
||||
except Exception as e:
|
||||
click.echo(
|
||||
click.style('Create dataset index error: {} {}'.format(e.__class__.__name__, str(e)), fg='red'))
|
||||
continue
|
||||
|
||||
click.echo(click.style('Congratulations! Create {} dataset indexes.'.format(create_count), fg='green'))
|
||||
|
||||
|
||||
@click.command('update-qdrant-indexes', help='Update qdrant indexes.')
|
||||
def update_qdrant_indexes():
|
||||
click.echo(click.style('Start Update qdrant indexes.', fg='green'))
|
||||
create_count = 0
|
||||
|
||||
page = 1
|
||||
while True:
|
||||
try:
|
||||
datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \
|
||||
.order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
|
||||
except NotFound:
|
||||
break
|
||||
|
||||
page += 1
|
||||
for dataset in datasets:
|
||||
if dataset.index_struct_dict:
|
||||
if dataset.index_struct_dict['type'] != 'qdrant':
|
||||
try:
|
||||
click.echo('Update dataset qdrant index: {}'.format(dataset.id))
|
||||
try:
|
||||
embedding_model = ModelFactory.get_embedding_model(
|
||||
tenant_id=dataset.tenant_id,
|
||||
model_provider_name=dataset.embedding_model_provider,
|
||||
model_name=dataset.embedding_model
|
||||
)
|
||||
except Exception:
|
||||
provider = Provider(
|
||||
id='provider_id',
|
||||
tenant_id=dataset.tenant_id,
|
||||
provider_name='openai',
|
||||
provider_type=ProviderType.CUSTOM.value,
|
||||
encrypted_config=json.dumps({'openai_api_key': 'TEST'}),
|
||||
is_valid=True,
|
||||
)
|
||||
model_provider = OpenAIProvider(provider=provider)
|
||||
embedding_model = OpenAIEmbedding(name="text-embedding-ada-002", model_provider=model_provider)
|
||||
embeddings = CacheEmbedding(embedding_model)
|
||||
|
||||
from core.index.vector_index.qdrant_vector_index import QdrantVectorIndex, QdrantConfig
|
||||
|
||||
index = QdrantVectorIndex(
|
||||
dataset=dataset,
|
||||
config=QdrantConfig(
|
||||
endpoint=current_app.config.get('QDRANT_URL'),
|
||||
api_key=current_app.config.get('QDRANT_API_KEY'),
|
||||
root_path=current_app.root_path
|
||||
),
|
||||
embeddings=embeddings
|
||||
)
|
||||
if index:
|
||||
index.update_qdrant_dataset(dataset)
|
||||
create_count += 1
|
||||
else:
|
||||
click.echo('passed.')
|
||||
except Exception as e:
|
||||
click.echo(
|
||||
click.style('Create dataset index error: {} {}'.format(e.__class__.__name__, str(e)), fg='red'))
|
||||
continue
|
||||
|
||||
click.echo(click.style('Congratulations! Update {} dataset indexes.'.format(create_count), fg='green'))
|
||||
|
||||
@click.command('update_app_model_configs', help='Migrate data to support paragraph variable.')
|
||||
@click.option("--batch-size", default=500, help="Number of records to migrate in each batch.")
|
||||
def update_app_model_configs(batch_size):
|
||||
pre_prompt_template = '{{default_input}}'
|
||||
user_input_form_template = {
|
||||
"en-US": [
|
||||
{
|
||||
"paragraph": {
|
||||
"label": "Query",
|
||||
"variable": "default_input",
|
||||
"required": False,
|
||||
"default": ""
|
||||
}
|
||||
}
|
||||
],
|
||||
"zh-Hans": [
|
||||
{
|
||||
"paragraph": {
|
||||
"label": "查询内容",
|
||||
"variable": "default_input",
|
||||
"required": False,
|
||||
"default": ""
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
click.secho("Start migrate old data that the text generator can support paragraph variable.", fg='green')
|
||||
|
||||
total_records = db.session.query(AppModelConfig) \
|
||||
.join(App, App.app_model_config_id == AppModelConfig.id) \
|
||||
.filter(App.mode == 'completion') \
|
||||
.count()
|
||||
|
||||
if total_records == 0:
|
||||
click.secho("No data to migrate.", fg='green')
|
||||
return
|
||||
|
||||
num_batches = (total_records + batch_size - 1) // batch_size
|
||||
|
||||
with tqdm(total=total_records, desc="Migrating Data") as pbar:
|
||||
for i in range(num_batches):
|
||||
offset = i * batch_size
|
||||
limit = min(batch_size, total_records - offset)
|
||||
|
||||
click.secho(f"Fetching batch {i+1}/{num_batches} from source database...", fg='green')
|
||||
|
||||
data_batch = db.session.query(AppModelConfig) \
|
||||
.join(App, App.app_model_config_id == AppModelConfig.id) \
|
||||
.filter(App.mode == 'completion') \
|
||||
.order_by(App.created_at) \
|
||||
.offset(offset).limit(limit).all()
|
||||
|
||||
if not data_batch:
|
||||
click.secho("No more data to migrate.", fg='green')
|
||||
break
|
||||
|
||||
try:
|
||||
click.secho(f"Migrating {len(data_batch)} records...", fg='green')
|
||||
for data in data_batch:
|
||||
# click.secho(f"Migrating data {data.id}, pre_prompt: {data.pre_prompt}, user_input_form: {data.user_input_form}", fg='green')
|
||||
|
||||
if data.pre_prompt is None:
|
||||
data.pre_prompt = pre_prompt_template
|
||||
else:
|
||||
if pre_prompt_template in data.pre_prompt:
|
||||
continue
|
||||
data.pre_prompt += pre_prompt_template
|
||||
|
||||
app_data = db.session.query(App) \
|
||||
.filter(App.id == data.app_id) \
|
||||
.one()
|
||||
|
||||
account_data = db.session.query(Account) \
|
||||
.join(TenantAccountJoin, Account.id == TenantAccountJoin.account_id) \
|
||||
.filter(TenantAccountJoin.role == 'owner') \
|
||||
.filter(TenantAccountJoin.tenant_id == app_data.tenant_id) \
|
||||
.one_or_none()
|
||||
|
||||
if not account_data:
|
||||
continue
|
||||
|
||||
if data.user_input_form is None or data.user_input_form == 'null':
|
||||
data.user_input_form = json.dumps(user_input_form_template[account_data.interface_language])
|
||||
else:
|
||||
raw_json_data = json.loads(data.user_input_form)
|
||||
raw_json_data.append(user_input_form_template[account_data.interface_language][0])
|
||||
data.user_input_form = json.dumps(raw_json_data)
|
||||
|
||||
# click.secho(f"Updated data {data.id}, pre_prompt: {data.pre_prompt}, user_input_form: {data.user_input_form}", fg='green')
|
||||
|
||||
db.session.commit()
|
||||
|
||||
except Exception as e:
|
||||
click.secho(f"Error while migrating data: {e}, app_id: {data.app_id}, app_model_config_id: {data.id}", fg='red')
|
||||
continue
|
||||
|
||||
click.secho(f"Successfully migrated batch {i+1}/{num_batches}.", fg='green')
|
||||
|
||||
pbar.update(len(data_batch))
|
||||
|
||||
def register_commands(app):
|
||||
app.cli.add_command(reset_password)
|
||||
app.cli.add_command(reset_email)
|
||||
@@ -289,3 +549,6 @@ def register_commands(app):
|
||||
app.cli.add_command(recreate_all_dataset_indexes)
|
||||
app.cli.add_command(sync_anthropic_hosted_providers)
|
||||
app.cli.add_command(clean_unused_dataset_indexes)
|
||||
app.cli.add_command(create_qdrant_indexes)
|
||||
app.cli.add_command(update_qdrant_indexes)
|
||||
app.cli.add_command(update_app_model_configs)
|
||||
@@ -41,20 +41,30 @@ DEFAULTS = {
|
||||
'SESSION_USE_SIGNER': 'True',
|
||||
'DEPLOY_ENV': 'PRODUCTION',
|
||||
'SQLALCHEMY_POOL_SIZE': 30,
|
||||
'SQLALCHEMY_POOL_RECYCLE': 3600,
|
||||
'SQLALCHEMY_ECHO': 'False',
|
||||
'SENTRY_TRACES_SAMPLE_RATE': 1.0,
|
||||
'SENTRY_PROFILES_SAMPLE_RATE': 1.0,
|
||||
'WEAVIATE_GRPC_ENABLED': 'True',
|
||||
'WEAVIATE_BATCH_SIZE': 100,
|
||||
'CELERY_BACKEND': 'database',
|
||||
'PDF_PREVIEW': 'True',
|
||||
'LOG_LEVEL': 'INFO',
|
||||
'DISABLE_PROVIDER_CONFIG_VALIDATION': 'False',
|
||||
'DEFAULT_LLM_PROVIDER': 'openai',
|
||||
'OPENAI_HOSTED_QUOTA_LIMIT': 200,
|
||||
'ANTHROPIC_HOSTED_QUOTA_LIMIT': 1000,
|
||||
'HOSTED_OPENAI_QUOTA_LIMIT': 200,
|
||||
'HOSTED_OPENAI_ENABLED': 'False',
|
||||
'HOSTED_OPENAI_PAID_ENABLED': 'False',
|
||||
'HOSTED_OPENAI_PAID_INCREASE_QUOTA': 1,
|
||||
'HOSTED_AZURE_OPENAI_ENABLED': 'False',
|
||||
'HOSTED_AZURE_OPENAI_QUOTA_LIMIT': 200,
|
||||
'HOSTED_ANTHROPIC_QUOTA_LIMIT': 600000,
|
||||
'HOSTED_ANTHROPIC_ENABLED': 'False',
|
||||
'HOSTED_ANTHROPIC_PAID_ENABLED': 'False',
|
||||
'HOSTED_ANTHROPIC_PAID_INCREASE_QUOTA': 1000000,
|
||||
'HOSTED_ANTHROPIC_PAID_MIN_QUANTITY': 20,
|
||||
'HOSTED_ANTHROPIC_PAID_MAX_QUANTITY': 100,
|
||||
'TENANT_DOCUMENT_COUNT': 100,
|
||||
'CLEAN_DAY_SETTING': 30
|
||||
'CLEAN_DAY_SETTING': 30,
|
||||
'UPLOAD_FILE_SIZE_LIMIT': 15,
|
||||
'UPLOAD_FILE_BATCH_LIMIT': 5,
|
||||
}
|
||||
|
||||
|
||||
@@ -90,13 +100,12 @@ class Config:
|
||||
self.CONSOLE_URL = get_env('CONSOLE_URL')
|
||||
self.API_URL = get_env('API_URL')
|
||||
self.APP_URL = get_env('APP_URL')
|
||||
self.CURRENT_VERSION = "0.3.12"
|
||||
self.CURRENT_VERSION = "0.3.21"
|
||||
self.COMMIT_SHA = get_env('COMMIT_SHA')
|
||||
self.EDITION = "SELF_HOSTED"
|
||||
self.DEPLOY_ENV = get_env('DEPLOY_ENV')
|
||||
self.TESTING = False
|
||||
self.LOG_LEVEL = get_env('LOG_LEVEL')
|
||||
self.PDF_PREVIEW = get_bool_env('PDF_PREVIEW')
|
||||
|
||||
# Your App secret key will be used for securely signing the session cookie
|
||||
# Make sure you are changing this key for your deployment with a strong key.
|
||||
@@ -182,7 +191,10 @@ class Config:
|
||||
}
|
||||
|
||||
self.SQLALCHEMY_DATABASE_URI = f"postgresql://{db_credentials['DB_USERNAME']}:{db_credentials['DB_PASSWORD']}@{db_credentials['DB_HOST']}:{db_credentials['DB_PORT']}/{db_credentials['DB_DATABASE']}"
|
||||
self.SQLALCHEMY_ENGINE_OPTIONS = {'pool_size': int(get_env('SQLALCHEMY_POOL_SIZE'))}
|
||||
self.SQLALCHEMY_ENGINE_OPTIONS = {
|
||||
'pool_size': int(get_env('SQLALCHEMY_POOL_SIZE')),
|
||||
'pool_recycle': int(get_env('SQLALCHEMY_POOL_RECYCLE'))
|
||||
}
|
||||
|
||||
self.SQLALCHEMY_ECHO = get_bool_env('SQLALCHEMY_ECHO')
|
||||
|
||||
@@ -194,19 +206,32 @@ class Config:
|
||||
self.BROKER_USE_SSL = self.CELERY_BROKER_URL.startswith('rediss://')
|
||||
|
||||
# hosted provider credentials
|
||||
self.OPENAI_API_KEY = get_env('OPENAI_API_KEY')
|
||||
self.ANTHROPIC_API_KEY = get_env('ANTHROPIC_API_KEY')
|
||||
self.HOSTED_OPENAI_ENABLED = get_bool_env('HOSTED_OPENAI_ENABLED')
|
||||
self.HOSTED_OPENAI_API_KEY = get_env('HOSTED_OPENAI_API_KEY')
|
||||
self.HOSTED_OPENAI_API_BASE = get_env('HOSTED_OPENAI_API_BASE')
|
||||
self.HOSTED_OPENAI_API_ORGANIZATION = get_env('HOSTED_OPENAI_API_ORGANIZATION')
|
||||
self.HOSTED_OPENAI_QUOTA_LIMIT = int(get_env('HOSTED_OPENAI_QUOTA_LIMIT'))
|
||||
self.HOSTED_OPENAI_PAID_ENABLED = get_bool_env('HOSTED_OPENAI_PAID_ENABLED')
|
||||
self.HOSTED_OPENAI_PAID_STRIPE_PRICE_ID = get_env('HOSTED_OPENAI_PAID_STRIPE_PRICE_ID')
|
||||
self.HOSTED_OPENAI_PAID_INCREASE_QUOTA = int(get_env('HOSTED_OPENAI_PAID_INCREASE_QUOTA'))
|
||||
|
||||
self.OPENAI_HOSTED_QUOTA_LIMIT = get_env('OPENAI_HOSTED_QUOTA_LIMIT')
|
||||
self.ANTHROPIC_HOSTED_QUOTA_LIMIT = get_env('ANTHROPIC_HOSTED_QUOTA_LIMIT')
|
||||
self.HOSTED_AZURE_OPENAI_ENABLED = get_bool_env('HOSTED_AZURE_OPENAI_ENABLED')
|
||||
self.HOSTED_AZURE_OPENAI_API_KEY = get_env('HOSTED_AZURE_OPENAI_API_KEY')
|
||||
self.HOSTED_AZURE_OPENAI_API_BASE = get_env('HOSTED_AZURE_OPENAI_API_BASE')
|
||||
self.HOSTED_AZURE_OPENAI_QUOTA_LIMIT = int(get_env('HOSTED_AZURE_OPENAI_QUOTA_LIMIT'))
|
||||
|
||||
# By default it is False
|
||||
# You could disable it for compatibility with certain OpenAPI providers
|
||||
self.DISABLE_PROVIDER_CONFIG_VALIDATION = get_bool_env('DISABLE_PROVIDER_CONFIG_VALIDATION')
|
||||
self.HOSTED_ANTHROPIC_ENABLED = get_bool_env('HOSTED_ANTHROPIC_ENABLED')
|
||||
self.HOSTED_ANTHROPIC_API_BASE = get_env('HOSTED_ANTHROPIC_API_BASE')
|
||||
self.HOSTED_ANTHROPIC_API_KEY = get_env('HOSTED_ANTHROPIC_API_KEY')
|
||||
self.HOSTED_ANTHROPIC_QUOTA_LIMIT = int(get_env('HOSTED_ANTHROPIC_QUOTA_LIMIT'))
|
||||
self.HOSTED_ANTHROPIC_PAID_ENABLED = get_bool_env('HOSTED_ANTHROPIC_PAID_ENABLED')
|
||||
self.HOSTED_ANTHROPIC_PAID_STRIPE_PRICE_ID = get_env('HOSTED_ANTHROPIC_PAID_STRIPE_PRICE_ID')
|
||||
self.HOSTED_ANTHROPIC_PAID_INCREASE_QUOTA = int(get_env('HOSTED_ANTHROPIC_PAID_INCREASE_QUOTA'))
|
||||
self.HOSTED_ANTHROPIC_PAID_MIN_QUANTITY = int(get_env('HOSTED_ANTHROPIC_PAID_MIN_QUANTITY'))
|
||||
self.HOSTED_ANTHROPIC_PAID_MAX_QUANTITY = int(get_env('HOSTED_ANTHROPIC_PAID_MAX_QUANTITY'))
|
||||
|
||||
# For temp use only
|
||||
# set default LLM provider, default is 'openai', support `azure_openai`
|
||||
self.DEFAULT_LLM_PROVIDER = get_env('DEFAULT_LLM_PROVIDER')
|
||||
self.STRIPE_API_KEY = get_env('STRIPE_API_KEY')
|
||||
self.STRIPE_WEBHOOK_SECRET = get_env('STRIPE_WEBHOOK_SECRET')
|
||||
|
||||
# notion import setting
|
||||
self.NOTION_CLIENT_ID = get_env('NOTION_CLIENT_ID')
|
||||
@@ -218,6 +243,10 @@ class Config:
|
||||
self.TENANT_DOCUMENT_COUNT = get_env('TENANT_DOCUMENT_COUNT')
|
||||
self.CLEAN_DAY_SETTING = get_env('CLEAN_DAY_SETTING')
|
||||
|
||||
# uploading settings
|
||||
self.UPLOAD_FILE_SIZE_LIMIT = int(get_env('UPLOAD_FILE_SIZE_LIMIT'))
|
||||
self.UPLOAD_FILE_BATCH_LIMIT = int(get_env('UPLOAD_FILE_BATCH_LIMIT'))
|
||||
|
||||
|
||||
class CloudEditionConfig(Config):
|
||||
|
||||
|
||||
@@ -38,7 +38,18 @@ model_templates = {
|
||||
"presence_penalty": 0,
|
||||
"frequency_penalty": 0
|
||||
}
|
||||
})
|
||||
}),
|
||||
'user_input_form': json.dumps([
|
||||
{
|
||||
"paragraph": {
|
||||
"label": "Query",
|
||||
"variable": "query",
|
||||
"required": True,
|
||||
"default": ""
|
||||
}
|
||||
}
|
||||
]),
|
||||
'pre_prompt': '{{query}}'
|
||||
}
|
||||
},
|
||||
|
||||
|
||||
@@ -18,10 +18,13 @@ from .auth import login, oauth, data_source_oauth, activate
|
||||
from .datasets import datasets, datasets_document, datasets_segments, file, hit_testing, data_source
|
||||
|
||||
# Import workspace controllers
|
||||
from .workspace import workspace, members, model_providers, account, tool_providers
|
||||
from .workspace import workspace, members, providers, model_providers, account, tool_providers, models
|
||||
|
||||
# Import explore controllers
|
||||
from .explore import installed_app, recommended_app, completion, conversation, message, parameter, saved_message, audio
|
||||
|
||||
# Import universal chat controllers
|
||||
from .universal_chat import chat, conversation, message, parameter, audio
|
||||
|
||||
# Import webhook controllers
|
||||
from .webhook import stripe
|
||||
|
||||
@@ -55,7 +55,7 @@ class InsertExploreAppListApi(Resource):
|
||||
|
||||
app = App.query.filter(App.id == args['app_id']).first()
|
||||
if not app:
|
||||
raise NotFound('App not found')
|
||||
raise NotFound(f'App \'{args["app_id"]}\' is not found')
|
||||
|
||||
site = app.site
|
||||
if not site:
|
||||
@@ -63,10 +63,12 @@ class InsertExploreAppListApi(Resource):
|
||||
copy_right = args['copyright'] if args['copyright'] else ''
|
||||
privacy_policy = args['privacy_policy'] if args['privacy_policy'] else ''
|
||||
else:
|
||||
desc = site.description if (site.description if not args['desc'] else args['desc']) else ''
|
||||
copy_right = site.copyright if (site.copyright if not args['copyright'] else args['copyright']) else ''
|
||||
privacy_policy = site.privacy_policy \
|
||||
if (site.privacy_policy if not args['privacy_policy'] else args['privacy_policy']) else ''
|
||||
desc = site.description if site.description else \
|
||||
args['desc'] if args['desc'] else ''
|
||||
copy_right = site.copyright if site.copyright else \
|
||||
args['copyright'] if args['copyright'] else ''
|
||||
privacy_policy = site.privacy_policy if site.privacy_policy else \
|
||||
args['privacy_policy'] if args['privacy_policy'] else ''
|
||||
|
||||
recommended_app = RecommendedApp.query.filter(RecommendedApp.app_id == args['app_id']).first()
|
||||
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
from flask_login import login_required, current_user
|
||||
from flask_login import current_user
|
||||
from core.login.login import login_required
|
||||
import flask_restful
|
||||
from flask_restful import Resource, fields, marshal_with
|
||||
from werkzeug.exceptions import Forbidden
|
||||
|
||||
@@ -1,17 +1,23 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
import json
|
||||
import logging
|
||||
from datetime import datetime
|
||||
|
||||
import flask
|
||||
from flask_login import login_required, current_user
|
||||
from flask_login import current_user
|
||||
from core.login.login import login_required
|
||||
from flask_restful import Resource, reqparse, fields, marshal_with, abort, inputs
|
||||
from werkzeug.exceptions import Unauthorized, Forbidden
|
||||
from werkzeug.exceptions import Forbidden
|
||||
|
||||
from constants.model_template import model_templates, demo_model_templates
|
||||
from controllers.console import api
|
||||
from controllers.console.app.error import AppNotFoundError
|
||||
from controllers.console.app.error import AppNotFoundError, ProviderNotInitializeError
|
||||
from controllers.console.setup import setup_required
|
||||
from controllers.console.wraps import account_initialization_required
|
||||
from core.model_providers.error import ProviderTokenNotInitError, LLMBadRequestError
|
||||
from core.model_providers.model_factory import ModelFactory
|
||||
from core.model_providers.model_provider_factory import ModelProviderFactory
|
||||
from core.model_providers.models.entity.model_params import ModelType
|
||||
from events.app_event import app_was_created, app_was_deleted
|
||||
from libs.helper import TimestampField
|
||||
from extensions.ext_database import db
|
||||
@@ -123,12 +129,39 @@ class AppListApi(Resource):
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
raise Forbidden()
|
||||
|
||||
try:
|
||||
default_model = ModelFactory.get_text_generation_model(
|
||||
tenant_id=current_user.current_tenant_id
|
||||
)
|
||||
except (ProviderTokenNotInitError, LLMBadRequestError):
|
||||
default_model = None
|
||||
except Exception as e:
|
||||
logging.exception(e)
|
||||
default_model = None
|
||||
|
||||
if args['model_config'] is not None:
|
||||
# validate config
|
||||
model_config_dict = args['model_config']
|
||||
|
||||
# get model provider
|
||||
model_provider = ModelProviderFactory.get_preferred_model_provider(
|
||||
current_user.current_tenant_id,
|
||||
model_config_dict["model"]["provider"]
|
||||
)
|
||||
|
||||
if not model_provider:
|
||||
if not default_model:
|
||||
raise ProviderNotInitializeError(
|
||||
f"No Default System Reasoning Model available. Please configure "
|
||||
f"in the Settings -> Model Provider.")
|
||||
else:
|
||||
model_config_dict["model"]["provider"] = default_model.model_provider.provider_name
|
||||
model_config_dict["model"]["name"] = default_model.name
|
||||
|
||||
model_configuration = AppModelConfigService.validate_configuration(
|
||||
tenant_id=current_user.current_tenant_id,
|
||||
account=current_user,
|
||||
config=args['model_config'],
|
||||
mode=args['mode']
|
||||
config=model_config_dict
|
||||
)
|
||||
|
||||
app = App(
|
||||
@@ -140,21 +173,8 @@ class AppListApi(Resource):
|
||||
status='normal'
|
||||
)
|
||||
|
||||
app_model_config = AppModelConfig(
|
||||
provider="",
|
||||
model_id="",
|
||||
configs={},
|
||||
opening_statement=model_configuration['opening_statement'],
|
||||
suggested_questions=json.dumps(model_configuration['suggested_questions']),
|
||||
suggested_questions_after_answer=json.dumps(model_configuration['suggested_questions_after_answer']),
|
||||
speech_to_text=json.dumps(model_configuration['speech_to_text']),
|
||||
more_like_this=json.dumps(model_configuration['more_like_this']),
|
||||
sensitive_word_avoidance=json.dumps(model_configuration['sensitive_word_avoidance']),
|
||||
model=json.dumps(model_configuration['model']),
|
||||
user_input_form=json.dumps(model_configuration['user_input_form']),
|
||||
pre_prompt=model_configuration['pre_prompt'],
|
||||
agent_mode=json.dumps(model_configuration['agent_mode']),
|
||||
)
|
||||
app_model_config = AppModelConfig()
|
||||
app_model_config = app_model_config.from_model_config_dict(model_configuration)
|
||||
else:
|
||||
if 'mode' not in args or args['mode'] is None:
|
||||
abort(400, message="mode is required")
|
||||
@@ -164,6 +184,23 @@ class AppListApi(Resource):
|
||||
app = App(**model_config_template['app'])
|
||||
app_model_config = AppModelConfig(**model_config_template['model_config'])
|
||||
|
||||
# get model provider
|
||||
model_provider = ModelProviderFactory.get_preferred_model_provider(
|
||||
current_user.current_tenant_id,
|
||||
app_model_config.model_dict["provider"]
|
||||
)
|
||||
|
||||
if not model_provider:
|
||||
if not default_model:
|
||||
raise ProviderNotInitializeError(
|
||||
f"No Default System Reasoning Model available. Please configure "
|
||||
f"in the Settings -> Model Provider.")
|
||||
else:
|
||||
model_dict = app_model_config.model_dict
|
||||
model_dict['provider'] = default_model.model_provider.provider_name
|
||||
model_dict['name'] = default_model.name
|
||||
app_model_config.model = json.dumps(model_dict)
|
||||
|
||||
app.name = args['name']
|
||||
app.mode = args['mode']
|
||||
app.icon = args['icon']
|
||||
@@ -278,6 +315,10 @@ class AppApi(Resource):
|
||||
def delete(self, app_id):
|
||||
"""Delete app"""
|
||||
app_id = str(app_id)
|
||||
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
raise Forbidden()
|
||||
|
||||
app = _get_app(app_id, current_user.current_tenant_id)
|
||||
|
||||
db.session.delete(app)
|
||||
@@ -297,19 +338,13 @@ class AppNameApi(Resource):
|
||||
@account_initialization_required
|
||||
@marshal_with(app_detail_fields)
|
||||
def post(self, app_id):
|
||||
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
raise Forbidden()
|
||||
app_id = str(app_id)
|
||||
app = _get_app(app_id, current_user.current_tenant_id)
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('name', type=str, required=True, location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
app = db.get_or_404(App, str(app_id))
|
||||
if app.tenant_id != flask.session.get('tenant_id'):
|
||||
raise Unauthorized()
|
||||
|
||||
app.name = args.get('name')
|
||||
app.updated_at = datetime.utcnow()
|
||||
db.session.commit()
|
||||
@@ -322,20 +357,14 @@ class AppIconApi(Resource):
|
||||
@account_initialization_required
|
||||
@marshal_with(app_detail_fields)
|
||||
def post(self, app_id):
|
||||
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
raise Forbidden()
|
||||
app_id = str(app_id)
|
||||
app = _get_app(app_id, current_user.current_tenant_id)
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('icon', type=str, location='json')
|
||||
parser.add_argument('icon_background', type=str, location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
app = db.get_or_404(App, str(app_id))
|
||||
if app.tenant_id != flask.session.get('tenant_id'):
|
||||
raise Unauthorized()
|
||||
|
||||
app.icon = args.get('icon')
|
||||
app.icon_background = args.get('icon_background')
|
||||
app.updated_at = datetime.utcnow()
|
||||
@@ -389,29 +418,6 @@ class AppApiStatus(Resource):
|
||||
return app
|
||||
|
||||
|
||||
class AppRateLimit(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
@marshal_with(app_detail_fields)
|
||||
def post(self, app_id):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('api_rpm', type=inputs.natural, required=False, location='json')
|
||||
parser.add_argument('api_rph', type=inputs.natural, required=False, location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
app_id = str(app_id)
|
||||
app = _get_app(app_id, current_user.current_tenant_id)
|
||||
|
||||
if args.get('api_rpm'):
|
||||
app.api_rpm = args.get('api_rpm')
|
||||
if args.get('api_rph'):
|
||||
app.api_rph = args.get('api_rph')
|
||||
app.updated_at = datetime.utcnow()
|
||||
db.session.commit()
|
||||
return app
|
||||
|
||||
|
||||
class AppCopy(Resource):
|
||||
@staticmethod
|
||||
def create_app_copy(app):
|
||||
@@ -431,22 +437,9 @@ class AppCopy(Resource):
|
||||
|
||||
@staticmethod
|
||||
def create_app_model_config_copy(app_config, copy_app_id):
|
||||
copy_app_model_config = AppModelConfig(
|
||||
app_id=copy_app_id,
|
||||
provider=app_config.provider,
|
||||
model_id=app_config.model_id,
|
||||
configs=app_config.configs,
|
||||
opening_statement=app_config.opening_statement,
|
||||
suggested_questions=app_config.suggested_questions,
|
||||
suggested_questions_after_answer=app_config.suggested_questions_after_answer,
|
||||
speech_to_text=app_config.speech_to_text,
|
||||
more_like_this=app_config.more_like_this,
|
||||
sensitive_word_avoidance=app_config.sensitive_word_avoidance,
|
||||
model=app_config.model,
|
||||
user_input_form=app_config.user_input_form,
|
||||
pre_prompt=app_config.pre_prompt,
|
||||
agent_mode=app_config.agent_mode
|
||||
)
|
||||
copy_app_model_config = app_config.copy()
|
||||
copy_app_model_config.app_id = copy_app_id
|
||||
|
||||
return copy_app_model_config
|
||||
|
||||
@setup_required
|
||||
@@ -474,21 +467,11 @@ class AppCopy(Resource):
|
||||
return copy_app, 201
|
||||
|
||||
|
||||
class AppExport(Resource):
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self, app_id):
|
||||
# todo
|
||||
pass
|
||||
|
||||
|
||||
api.add_resource(AppListApi, '/apps')
|
||||
api.add_resource(AppTemplateApi, '/app-templates')
|
||||
api.add_resource(AppApi, '/apps/<uuid:app_id>')
|
||||
api.add_resource(AppCopy, '/apps/<uuid:app_id>/copy')
|
||||
api.add_resource(AppNameApi, '/apps/<uuid:app_id>/name')
|
||||
api.add_resource(AppIconApi, '/apps/<uuid:app_id>/icon')
|
||||
api.add_resource(AppSiteStatus, '/apps/<uuid:app_id>/site-enable')
|
||||
api.add_resource(AppApiStatus, '/apps/<uuid:app_id>/api-enable')
|
||||
api.add_resource(AppRateLimit, '/apps/<uuid:app_id>/rate-limit')
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
import logging
|
||||
|
||||
from flask import request
|
||||
from flask_login import login_required
|
||||
from core.login.login import login_required
|
||||
from werkzeug.exceptions import InternalServerError, NotFound
|
||||
|
||||
import services
|
||||
@@ -14,7 +14,7 @@ from controllers.console.app.error import AppUnavailableError, \
|
||||
UnsupportedAudioTypeError, ProviderNotSupportSpeechToTextError
|
||||
from controllers.console.setup import setup_required
|
||||
from controllers.console.wraps import account_initialization_required
|
||||
from core.llm.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
|
||||
from core.model_providers.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
|
||||
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
|
||||
from flask_restful import Resource
|
||||
from services.audio_service import AudioService
|
||||
|
||||
@@ -5,7 +5,7 @@ from typing import Generator, Union
|
||||
|
||||
import flask_login
|
||||
from flask import Response, stream_with_context
|
||||
from flask_login import login_required
|
||||
from core.login.login import login_required
|
||||
from werkzeug.exceptions import InternalServerError, NotFound
|
||||
|
||||
import services
|
||||
@@ -17,7 +17,7 @@ from controllers.console.app.error import ConversationCompletedError, AppUnavail
|
||||
from controllers.console.setup import setup_required
|
||||
from controllers.console.wraps import account_initialization_required
|
||||
from core.conversation_message_task import PubHandler
|
||||
from core.llm.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
|
||||
from core.model_providers.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
|
||||
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
|
||||
from libs.helper import uuid_value
|
||||
from flask_restful import Resource, reqparse
|
||||
@@ -39,10 +39,13 @@ class CompletionMessageApi(Resource):
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('inputs', type=dict, required=True, location='json')
|
||||
parser.add_argument('query', type=str, location='json')
|
||||
parser.add_argument('query', type=str, location='json', default='')
|
||||
parser.add_argument('model_config', type=dict, required=True, location='json')
|
||||
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
streaming = args['response_mode'] != 'blocking'
|
||||
|
||||
account = flask_login.current_user
|
||||
|
||||
try:
|
||||
@@ -51,7 +54,7 @@ class CompletionMessageApi(Resource):
|
||||
user=account,
|
||||
args=args,
|
||||
from_source='console',
|
||||
streaming=True,
|
||||
streaming=streaming,
|
||||
is_model_config_override=True
|
||||
)
|
||||
|
||||
@@ -111,8 +114,11 @@ class ChatMessageApi(Resource):
|
||||
parser.add_argument('query', type=str, required=True, location='json')
|
||||
parser.add_argument('model_config', type=dict, required=True, location='json')
|
||||
parser.add_argument('conversation_id', type=uuid_value, location='json')
|
||||
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
streaming = args['response_mode'] != 'blocking'
|
||||
|
||||
account = flask_login.current_user
|
||||
|
||||
try:
|
||||
@@ -121,7 +127,7 @@ class ChatMessageApi(Resource):
|
||||
user=account,
|
||||
args=args,
|
||||
from_source='console',
|
||||
streaming=True,
|
||||
streaming=streaming,
|
||||
is_model_config_override=True
|
||||
)
|
||||
|
||||
|
||||
@@ -1,7 +1,8 @@
|
||||
from datetime import datetime
|
||||
|
||||
import pytz
|
||||
from flask_login import login_required, current_user
|
||||
from flask_login import current_user
|
||||
from core.login.login import login_required
|
||||
from flask_restful import Resource, reqparse, fields, marshal_with
|
||||
from flask_restful.inputs import int_range
|
||||
from sqlalchemy import or_, func
|
||||
@@ -95,7 +96,7 @@ class CompletionConversationApi(Resource):
|
||||
'status': fields.String,
|
||||
'from_source': fields.String,
|
||||
'from_end_user_id': fields.String,
|
||||
'from_end_user_session_id': fields.String(attribute='end_user.session_id'),
|
||||
'from_end_user_session_id': fields.String(),
|
||||
'from_account_id': fields.String,
|
||||
'read_at': TimestampField,
|
||||
'created_at': TimestampField,
|
||||
@@ -136,8 +137,6 @@ class CompletionConversationApi(Resource):
|
||||
|
||||
query = db.select(Conversation).where(Conversation.app_id == app.id, Conversation.mode == 'completion')
|
||||
|
||||
query = query.options(joinedload(Conversation.end_user))
|
||||
|
||||
if args['keyword']:
|
||||
query = query.join(
|
||||
Message, Message.conversation_id == Conversation.id
|
||||
@@ -249,7 +248,7 @@ class ChatConversationApi(Resource):
|
||||
'status': fields.String,
|
||||
'from_source': fields.String,
|
||||
'from_end_user_id': fields.String,
|
||||
'from_end_user_session_id': fields.String(attribute='end_user.session_id'),
|
||||
'from_end_user_session_id': fields.String,
|
||||
'from_account_id': fields.String,
|
||||
'summary': fields.String(attribute='summary_or_query'),
|
||||
'read_at': TimestampField,
|
||||
@@ -292,8 +291,6 @@ class ChatConversationApi(Resource):
|
||||
|
||||
query = db.select(Conversation).where(Conversation.app_id == app.id, Conversation.mode == 'chat')
|
||||
|
||||
query = query.options(joinedload(Conversation.end_user))
|
||||
|
||||
if args['keyword']:
|
||||
query = query.join(
|
||||
Message, Message.conversation_id == Conversation.id
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
from flask_login import login_required, current_user
|
||||
from flask_login import current_user
|
||||
from core.login.login import login_required
|
||||
from flask_restful import Resource, reqparse
|
||||
|
||||
from controllers.console import api
|
||||
@@ -7,7 +8,7 @@ from controllers.console.app.error import ProviderNotInitializeError, ProviderQu
|
||||
from controllers.console.setup import setup_required
|
||||
from controllers.console.wraps import account_initialization_required
|
||||
from core.generator.llm_generator import LLMGenerator
|
||||
from core.llm.error import ProviderTokenNotInitError, QuotaExceededError, LLMBadRequestError, LLMAPIConnectionError, \
|
||||
from core.model_providers.error import ProviderTokenNotInitError, QuotaExceededError, LLMBadRequestError, LLMAPIConnectionError, \
|
||||
LLMAPIUnavailableError, LLMRateLimitError, LLMAuthorizationError, ModelCurrentlyNotSupportError
|
||||
|
||||
|
||||
|
||||
@@ -3,7 +3,7 @@ import logging
|
||||
from typing import Union, Generator
|
||||
|
||||
from flask import Response, stream_with_context
|
||||
from flask_login import current_user, login_required
|
||||
from flask_login import current_user
|
||||
from flask_restful import Resource, reqparse, marshal_with, fields
|
||||
from flask_restful.inputs import int_range
|
||||
from werkzeug.exceptions import InternalServerError, NotFound
|
||||
@@ -14,8 +14,9 @@ from controllers.console.app.error import CompletionRequestError, ProviderNotIni
|
||||
AppMoreLikeThisDisabledError, ProviderQuotaExceededError, ProviderModelCurrentlyNotSupportError
|
||||
from controllers.console.setup import setup_required
|
||||
from controllers.console.wraps import account_initialization_required
|
||||
from core.llm.error import LLMRateLimitError, LLMBadRequestError, LLMAuthorizationError, LLMAPIConnectionError, \
|
||||
from core.model_providers.error import LLMRateLimitError, LLMBadRequestError, LLMAuthorizationError, LLMAPIConnectionError, \
|
||||
ProviderTokenNotInitError, LLMAPIUnavailableError, QuotaExceededError, ModelCurrentlyNotSupportError
|
||||
from core.login.login import login_required
|
||||
from libs.helper import uuid_value, TimestampField
|
||||
from libs.infinite_scroll_pagination import InfiniteScrollPagination
|
||||
from extensions.ext_database import db
|
||||
|
||||
@@ -3,12 +3,13 @@ import json
|
||||
|
||||
from flask import request
|
||||
from flask_restful import Resource
|
||||
from flask_login import login_required, current_user
|
||||
from flask_login import current_user
|
||||
|
||||
from controllers.console import api
|
||||
from controllers.console.app import _get_app
|
||||
from controllers.console.setup import setup_required
|
||||
from controllers.console.wraps import account_initialization_required
|
||||
from core.login.login import login_required
|
||||
from events.app_event import app_model_config_was_updated
|
||||
from extensions.ext_database import db
|
||||
from models.model import AppModelConfig
|
||||
@@ -28,27 +29,15 @@ class ModelConfigResource(Resource):
|
||||
|
||||
# validate config
|
||||
model_configuration = AppModelConfigService.validate_configuration(
|
||||
tenant_id=current_user.current_tenant_id,
|
||||
account=current_user,
|
||||
config=request.json,
|
||||
mode=app_model.mode
|
||||
config=request.json
|
||||
)
|
||||
|
||||
new_app_model_config = AppModelConfig(
|
||||
app_id=app_model.id,
|
||||
provider="",
|
||||
model_id="",
|
||||
configs={},
|
||||
opening_statement=model_configuration['opening_statement'],
|
||||
suggested_questions=json.dumps(model_configuration['suggested_questions']),
|
||||
suggested_questions_after_answer=json.dumps(model_configuration['suggested_questions_after_answer']),
|
||||
speech_to_text=json.dumps(model_configuration['speech_to_text']),
|
||||
more_like_this=json.dumps(model_configuration['more_like_this']),
|
||||
sensitive_word_avoidance=json.dumps(model_configuration['sensitive_word_avoidance']),
|
||||
model=json.dumps(model_configuration['model']),
|
||||
user_input_form=json.dumps(model_configuration['user_input_form']),
|
||||
pre_prompt=model_configuration['pre_prompt'],
|
||||
agent_mode=json.dumps(model_configuration['agent_mode']),
|
||||
)
|
||||
new_app_model_config = new_app_model_config.from_model_config_dict(model_configuration)
|
||||
|
||||
db.session.add(new_app_model_config)
|
||||
db.session.flush()
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
from flask_login import login_required, current_user
|
||||
from flask_login import current_user
|
||||
from core.login.login import login_required
|
||||
from flask_restful import Resource, reqparse, fields, marshal_with
|
||||
from werkzeug.exceptions import NotFound, Forbidden
|
||||
|
||||
@@ -80,6 +81,13 @@ class AppSite(Resource):
|
||||
if value is not None:
|
||||
setattr(site, attr_name, value)
|
||||
|
||||
if attr_name == 'title':
|
||||
app_model.name = value
|
||||
elif attr_name == 'icon':
|
||||
app_model.icon = value
|
||||
elif attr_name == 'icon_background':
|
||||
app_model.icon_background = value
|
||||
|
||||
db.session.commit()
|
||||
|
||||
return site
|
||||
|
||||
@@ -4,7 +4,8 @@ from datetime import datetime
|
||||
|
||||
import pytz
|
||||
from flask import jsonify
|
||||
from flask_login import login_required, current_user
|
||||
from flask_login import current_user
|
||||
from core.login.login import login_required
|
||||
from flask_restful import Resource, reqparse
|
||||
|
||||
from controllers.console import api
|
||||
@@ -398,9 +399,74 @@ class AverageResponseTimeStatistic(Resource):
|
||||
})
|
||||
|
||||
|
||||
class TokensPerSecondStatistic(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def get(self, app_id):
|
||||
account = current_user
|
||||
app_id = str(app_id)
|
||||
app_model = _get_app(app_id)
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('start', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
|
||||
parser.add_argument('end', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
|
||||
args = parser.parse_args()
|
||||
|
||||
sql_query = '''SELECT date(DATE_TRUNC('day', created_at AT TIME ZONE 'UTC' AT TIME ZONE :tz )) AS date,
|
||||
CASE
|
||||
WHEN SUM(provider_response_latency) = 0 THEN 0
|
||||
ELSE (SUM(answer_tokens) / SUM(provider_response_latency))
|
||||
END as tokens_per_second
|
||||
FROM messages
|
||||
WHERE app_id = :app_id'''
|
||||
arg_dict = {'tz': account.timezone, 'app_id': app_model.id}
|
||||
|
||||
timezone = pytz.timezone(account.timezone)
|
||||
utc_timezone = pytz.utc
|
||||
|
||||
if args['start']:
|
||||
start_datetime = datetime.strptime(args['start'], '%Y-%m-%d %H:%M')
|
||||
start_datetime = start_datetime.replace(second=0)
|
||||
|
||||
start_datetime_timezone = timezone.localize(start_datetime)
|
||||
start_datetime_utc = start_datetime_timezone.astimezone(utc_timezone)
|
||||
|
||||
sql_query += ' and created_at >= :start'
|
||||
arg_dict['start'] = start_datetime_utc
|
||||
|
||||
if args['end']:
|
||||
end_datetime = datetime.strptime(args['end'], '%Y-%m-%d %H:%M')
|
||||
end_datetime = end_datetime.replace(second=0)
|
||||
|
||||
end_datetime_timezone = timezone.localize(end_datetime)
|
||||
end_datetime_utc = end_datetime_timezone.astimezone(utc_timezone)
|
||||
|
||||
sql_query += ' and created_at < :end'
|
||||
arg_dict['end'] = end_datetime_utc
|
||||
|
||||
sql_query += ' GROUP BY date order by date'
|
||||
|
||||
with db.engine.begin() as conn:
|
||||
rs = conn.execute(db.text(sql_query), arg_dict)
|
||||
|
||||
response_data = []
|
||||
|
||||
for i in rs:
|
||||
response_data.append({
|
||||
'date': str(i.date),
|
||||
'tps': round(i.tokens_per_second, 4)
|
||||
})
|
||||
|
||||
return jsonify({
|
||||
'data': response_data
|
||||
})
|
||||
|
||||
|
||||
api.add_resource(DailyConversationStatistic, '/apps/<uuid:app_id>/statistics/daily-conversations')
|
||||
api.add_resource(DailyTerminalsStatistic, '/apps/<uuid:app_id>/statistics/daily-end-users')
|
||||
api.add_resource(DailyTokenCostStatistic, '/apps/<uuid:app_id>/statistics/token-costs')
|
||||
api.add_resource(AverageSessionInteractionStatistic, '/apps/<uuid:app_id>/statistics/average-session-interactions')
|
||||
api.add_resource(UserSatisfactionRateStatistic, '/apps/<uuid:app_id>/statistics/user-satisfaction-rate')
|
||||
api.add_resource(AverageResponseTimeStatistic, '/apps/<uuid:app_id>/statistics/average-response-time')
|
||||
api.add_resource(TokensPerSecondStatistic, '/apps/<uuid:app_id>/statistics/tokens-per-second')
|
||||
|
||||
@@ -16,26 +16,25 @@ from services.account_service import RegisterService
|
||||
class ActivateCheckApi(Resource):
|
||||
def get(self):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('workspace_id', type=str, required=True, nullable=False, location='args')
|
||||
parser.add_argument('email', type=email, required=True, nullable=False, location='args')
|
||||
parser.add_argument('workspace_id', type=str, required=False, nullable=True, location='args')
|
||||
parser.add_argument('email', type=email, required=False, nullable=True, location='args')
|
||||
parser.add_argument('token', type=str, required=True, nullable=False, location='args')
|
||||
args = parser.parse_args()
|
||||
|
||||
account = RegisterService.get_account_if_token_valid(args['workspace_id'], args['email'], args['token'])
|
||||
workspaceId = args['workspace_id']
|
||||
reg_email = args['email']
|
||||
token = args['token']
|
||||
|
||||
tenant = db.session.query(Tenant).filter(
|
||||
Tenant.id == args['workspace_id'],
|
||||
Tenant.status == 'normal'
|
||||
).first()
|
||||
invitation = RegisterService.get_invitation_if_token_valid(workspaceId, reg_email, token)
|
||||
|
||||
return {'is_valid': account is not None, 'workspace_name': tenant.name}
|
||||
return {'is_valid': invitation is not None, 'workspace_name': invitation['tenant'].name if invitation else None}
|
||||
|
||||
|
||||
class ActivateApi(Resource):
|
||||
def post(self):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('workspace_id', type=str, required=True, nullable=False, location='json')
|
||||
parser.add_argument('email', type=email, required=True, nullable=False, location='json')
|
||||
parser.add_argument('workspace_id', type=str, required=False, nullable=True, location='json')
|
||||
parser.add_argument('email', type=email, required=False, nullable=True, location='json')
|
||||
parser.add_argument('token', type=str, required=True, nullable=False, location='json')
|
||||
parser.add_argument('name', type=str_len(30), required=True, nullable=False, location='json')
|
||||
parser.add_argument('password', type=valid_password, required=True, nullable=False, location='json')
|
||||
@@ -44,12 +43,13 @@ class ActivateApi(Resource):
|
||||
parser.add_argument('timezone', type=timezone, required=True, nullable=False, location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
account = RegisterService.get_account_if_token_valid(args['workspace_id'], args['email'], args['token'])
|
||||
if account is None:
|
||||
invitation = RegisterService.get_invitation_if_token_valid(args['workspace_id'], args['email'], args['token'])
|
||||
if invitation is None:
|
||||
raise AlreadyActivateError()
|
||||
|
||||
RegisterService.revoke_token(args['workspace_id'], args['email'], args['token'])
|
||||
|
||||
account = invitation['account']
|
||||
account.name = args['name']
|
||||
|
||||
# generate password salt
|
||||
|
||||
@@ -5,9 +5,12 @@ from typing import Optional
|
||||
import flask_login
|
||||
import requests
|
||||
from flask import request, redirect, current_app, session
|
||||
from flask_login import current_user, login_required
|
||||
from flask_login import current_user
|
||||
|
||||
from flask_restful import Resource
|
||||
from werkzeug.exceptions import Forbidden
|
||||
|
||||
from core.login.login import login_required
|
||||
from libs.oauth_data_source import NotionOAuth
|
||||
from controllers.console import api
|
||||
from ..setup import setup_required
|
||||
|
||||
@@ -35,7 +35,7 @@ class LoginApi(Resource):
|
||||
try:
|
||||
TenantService.switch_tenant(account)
|
||||
except Exception:
|
||||
raise AccountNotLinkTenantError("Account not link tenant")
|
||||
pass
|
||||
|
||||
flask_login.login_user(account, remember=args['remember_me'])
|
||||
AccountService.update_last_login(account, request)
|
||||
|
||||
@@ -3,7 +3,8 @@ import json
|
||||
|
||||
from cachetools import TTLCache
|
||||
from flask import request, current_app
|
||||
from flask_login import login_required, current_user
|
||||
from flask_login import current_user
|
||||
from core.login.login import login_required
|
||||
from flask_restful import Resource, marshal_with, fields, reqparse, marshal
|
||||
from werkzeug.exceptions import NotFound
|
||||
|
||||
@@ -21,10 +22,6 @@ from tasks.document_indexing_sync_task import document_indexing_sync_task
|
||||
|
||||
cache = TTLCache(maxsize=None, ttl=30)
|
||||
|
||||
FILE_SIZE_LIMIT = 15 * 1024 * 1024 # 15MB
|
||||
ALLOWED_EXTENSIONS = ['txt', 'markdown', 'md', 'pdf', 'html', 'htm']
|
||||
PREVIEW_WORDS_LIMIT = 3000
|
||||
|
||||
|
||||
class DataSourceApi(Resource):
|
||||
integrate_icon_fields = {
|
||||
@@ -255,7 +252,7 @@ class DataSourceNotionApi(Resource):
|
||||
# validate args
|
||||
DocumentService.estimate_args_validate(args)
|
||||
indexing_runner = IndexingRunner()
|
||||
response = indexing_runner.notion_indexing_estimate(args['notion_info_list'], args['process_rule'])
|
||||
response = indexing_runner.notion_indexing_estimate(current_user.current_tenant_id, args['notion_info_list'], args['process_rule'])
|
||||
return response, 200
|
||||
|
||||
|
||||
|
||||
@@ -1,19 +1,25 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
from flask import request
|
||||
from flask_login import login_required, current_user
|
||||
from flask_login import current_user
|
||||
from core.login.login import login_required
|
||||
from flask_restful import Resource, reqparse, fields, marshal, marshal_with
|
||||
from werkzeug.exceptions import NotFound, Forbidden
|
||||
import services
|
||||
from controllers.console import api
|
||||
from controllers.console.app.error import ProviderNotInitializeError
|
||||
from controllers.console.datasets.error import DatasetNameDuplicateError
|
||||
from controllers.console.setup import setup_required
|
||||
from controllers.console.wraps import account_initialization_required
|
||||
from core.indexing_runner import IndexingRunner
|
||||
from core.model_providers.error import LLMBadRequestError, ProviderTokenNotInitError
|
||||
from core.model_providers.model_factory import ModelFactory
|
||||
from core.model_providers.models.entity.model_params import ModelType
|
||||
from libs.helper import TimestampField
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import DocumentSegment, Document
|
||||
from models.model import UploadFile
|
||||
from services.dataset_service import DatasetService, DocumentService
|
||||
from services.provider_service import ProviderService
|
||||
|
||||
dataset_detail_fields = {
|
||||
'id': fields.String,
|
||||
@@ -30,6 +36,9 @@ dataset_detail_fields = {
|
||||
'created_at': TimestampField,
|
||||
'updated_by': fields.String,
|
||||
'updated_at': TimestampField,
|
||||
'embedding_model': fields.String,
|
||||
'embedding_model_provider': fields.String,
|
||||
'embedding_available': fields.Boolean
|
||||
}
|
||||
|
||||
dataset_query_detail_fields = {
|
||||
@@ -71,8 +80,28 @@ class DatasetListApi(Resource):
|
||||
datasets, total = DatasetService.get_datasets(page, limit, provider,
|
||||
current_user.current_tenant_id, current_user)
|
||||
|
||||
# check embedding setting
|
||||
provider_service = ProviderService()
|
||||
valid_model_list = provider_service.get_valid_model_list(current_user.current_tenant_id, ModelType.EMBEDDINGS.value)
|
||||
# if len(valid_model_list) == 0:
|
||||
# raise ProviderNotInitializeError(
|
||||
# f"No Embedding Model available. Please configure a valid provider "
|
||||
# f"in the Settings -> Model Provider.")
|
||||
model_names = []
|
||||
for valid_model in valid_model_list:
|
||||
model_names.append(f"{valid_model['model_name']}:{valid_model['model_provider']['provider_name']}")
|
||||
data = marshal(datasets, dataset_detail_fields)
|
||||
for item in data:
|
||||
if item['indexing_technique'] == 'high_quality':
|
||||
item_model = f"{item['embedding_model']}:{item['embedding_model_provider']}"
|
||||
if item_model in model_names:
|
||||
item['embedding_available'] = True
|
||||
else:
|
||||
item['embedding_available'] = False
|
||||
else:
|
||||
item['embedding_available'] = True
|
||||
response = {
|
||||
'data': marshal(datasets, dataset_detail_fields),
|
||||
'data': data,
|
||||
'has_more': len(datasets) == limit,
|
||||
'limit': limit,
|
||||
'total': total,
|
||||
@@ -119,20 +148,39 @@ class DatasetApi(Resource):
|
||||
dataset = DatasetService.get_dataset(dataset_id_str)
|
||||
if dataset is None:
|
||||
raise NotFound("Dataset not found.")
|
||||
|
||||
try:
|
||||
DatasetService.check_dataset_permission(
|
||||
dataset, current_user)
|
||||
except services.errors.account.NoPermissionError as e:
|
||||
raise Forbidden(str(e))
|
||||
|
||||
return marshal(dataset, dataset_detail_fields), 200
|
||||
data = marshal(dataset, dataset_detail_fields)
|
||||
# check embedding setting
|
||||
provider_service = ProviderService()
|
||||
# get valid model list
|
||||
valid_model_list = provider_service.get_valid_model_list(current_user.current_tenant_id, ModelType.EMBEDDINGS.value)
|
||||
model_names = []
|
||||
for valid_model in valid_model_list:
|
||||
model_names.append(f"{valid_model['model_name']}:{valid_model['model_provider']['provider_name']}")
|
||||
if data['indexing_technique'] == 'high_quality':
|
||||
item_model = f"{data['embedding_model']}:{data['embedding_model_provider']}"
|
||||
if item_model in model_names:
|
||||
data['embedding_available'] = True
|
||||
else:
|
||||
data['embedding_available'] = False
|
||||
else:
|
||||
data['embedding_available'] = True
|
||||
return data, 200
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def patch(self, dataset_id):
|
||||
dataset_id_str = str(dataset_id)
|
||||
dataset = DatasetService.get_dataset(dataset_id_str)
|
||||
if dataset is None:
|
||||
raise NotFound("Dataset not found.")
|
||||
# check user's model setting
|
||||
DatasetService.check_dataset_model_setting(dataset)
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('name', nullable=False,
|
||||
@@ -220,7 +268,10 @@ class DatasetIndexingEstimateApi(Resource):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('info_list', type=dict, required=True, nullable=True, location='json')
|
||||
parser.add_argument('process_rule', type=dict, required=True, nullable=True, location='json')
|
||||
parser.add_argument('indexing_technique', type=str, required=True, nullable=True, location='json')
|
||||
parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
|
||||
parser.add_argument('dataset_id', type=str, required=False, nullable=False, location='json')
|
||||
parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False, location='json')
|
||||
args = parser.parse_args()
|
||||
# validate args
|
||||
DocumentService.estimate_args_validate(args)
|
||||
@@ -235,12 +286,34 @@ class DatasetIndexingEstimateApi(Resource):
|
||||
raise NotFound("File not found.")
|
||||
|
||||
indexing_runner = IndexingRunner()
|
||||
response = indexing_runner.file_indexing_estimate(file_details, args['process_rule'], args['doc_form'])
|
||||
|
||||
try:
|
||||
response = indexing_runner.file_indexing_estimate(current_user.current_tenant_id, file_details,
|
||||
args['process_rule'], args['doc_form'],
|
||||
args['doc_language'], args['dataset_id'],
|
||||
args['indexing_technique'])
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
f"No Embedding Model available. Please configure a valid provider "
|
||||
f"in the Settings -> Model Provider.")
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
elif args['info_list']['data_source_type'] == 'notion_import':
|
||||
|
||||
indexing_runner = IndexingRunner()
|
||||
response = indexing_runner.notion_indexing_estimate(args['info_list']['notion_info_list'],
|
||||
args['process_rule'], args['doc_form'])
|
||||
|
||||
try:
|
||||
response = indexing_runner.notion_indexing_estimate(current_user.current_tenant_id,
|
||||
args['info_list']['notion_info_list'],
|
||||
args['process_rule'], args['doc_form'],
|
||||
args['doc_language'], args['dataset_id'],
|
||||
args['indexing_technique'])
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
f"No Embedding Model available. Please configure a valid provider "
|
||||
f"in the Settings -> Model Provider.")
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
else:
|
||||
raise ValueError('Data source type not support')
|
||||
return response, 200
|
||||
|
||||
@@ -3,8 +3,9 @@ import random
|
||||
from datetime import datetime
|
||||
from typing import List
|
||||
|
||||
from flask import request
|
||||
from flask_login import login_required, current_user
|
||||
from flask import request, current_app
|
||||
from flask_login import current_user
|
||||
from core.login.login import login_required
|
||||
from flask_restful import Resource, fields, marshal, marshal_with, reqparse
|
||||
from sqlalchemy import desc, asc
|
||||
from werkzeug.exceptions import NotFound, Forbidden
|
||||
@@ -18,7 +19,9 @@ from controllers.console.datasets.error import DocumentAlreadyFinishedError, Inv
|
||||
from controllers.console.setup import setup_required
|
||||
from controllers.console.wraps import account_initialization_required
|
||||
from core.indexing_runner import IndexingRunner
|
||||
from core.llm.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
|
||||
from core.model_providers.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError, \
|
||||
LLMBadRequestError
|
||||
from core.model_providers.model_factory import ModelFactory
|
||||
from extensions.ext_redis import redis_client
|
||||
from libs.helper import TimestampField
|
||||
from extensions.ext_database import db
|
||||
@@ -135,6 +138,10 @@ class GetProcessRuleApi(Resource):
|
||||
req_data = request.args
|
||||
|
||||
document_id = req_data.get('document_id')
|
||||
|
||||
# get default rules
|
||||
mode = DocumentService.DEFAULT_RULES['mode']
|
||||
rules = DocumentService.DEFAULT_RULES['rules']
|
||||
if document_id:
|
||||
# get the latest process rule
|
||||
document = Document.query.get_or_404(document_id)
|
||||
@@ -155,11 +162,9 @@ class GetProcessRuleApi(Resource):
|
||||
order_by(DatasetProcessRule.created_at.desc()). \
|
||||
limit(1). \
|
||||
one_or_none()
|
||||
mode = dataset_process_rule.mode
|
||||
rules = dataset_process_rule.rules_dict
|
||||
else:
|
||||
mode = DocumentService.DEFAULT_RULES['mode']
|
||||
rules = DocumentService.DEFAULT_RULES['rules']
|
||||
if dataset_process_rule:
|
||||
mode = dataset_process_rule.mode
|
||||
rules = dataset_process_rule.rules_dict
|
||||
|
||||
return {
|
||||
'mode': mode,
|
||||
@@ -272,6 +277,8 @@ class DatasetDocumentListApi(Resource):
|
||||
parser.add_argument('duplicate', type=bool, nullable=False, location='json')
|
||||
parser.add_argument('original_document_id', type=str, required=False, location='json')
|
||||
parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
|
||||
parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False,
|
||||
location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
if not dataset.indexing_technique and not args['indexing_technique']:
|
||||
@@ -317,7 +324,20 @@ class DatasetInitApi(Resource):
|
||||
parser.add_argument('data_source', type=dict, required=True, nullable=True, location='json')
|
||||
parser.add_argument('process_rule', type=dict, required=True, nullable=True, location='json')
|
||||
parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
|
||||
parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False,
|
||||
location='json')
|
||||
args = parser.parse_args()
|
||||
if args['indexing_technique'] == 'high_quality':
|
||||
try:
|
||||
ModelFactory.get_embedding_model(
|
||||
tenant_id=current_user.current_tenant_id
|
||||
)
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
f"No Embedding Model available. Please configure a valid provider "
|
||||
f"in the Settings -> Model Provider.")
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
|
||||
# validate args
|
||||
DocumentService.document_create_args_validate(args)
|
||||
@@ -384,7 +404,16 @@ class DocumentIndexingEstimateApi(DocumentResource):
|
||||
|
||||
indexing_runner = IndexingRunner()
|
||||
|
||||
response = indexing_runner.file_indexing_estimate([file], data_process_rule_dict)
|
||||
try:
|
||||
response = indexing_runner.file_indexing_estimate(current_user.current_tenant_id, [file],
|
||||
data_process_rule_dict, None,
|
||||
'English', dataset_id)
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
f"No Embedding Model available. Please configure a valid provider "
|
||||
f"in the Settings -> Model Provider.")
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
|
||||
return response
|
||||
|
||||
@@ -445,12 +474,30 @@ class DocumentBatchIndexingEstimateApi(DocumentResource):
|
||||
raise NotFound("File not found.")
|
||||
|
||||
indexing_runner = IndexingRunner()
|
||||
response = indexing_runner.file_indexing_estimate(file_details, data_process_rule_dict)
|
||||
elif dataset.data_source_type:
|
||||
try:
|
||||
response = indexing_runner.file_indexing_estimate(current_user.current_tenant_id, file_details,
|
||||
data_process_rule_dict, None,
|
||||
'English', dataset_id)
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
f"No Embedding Model available. Please configure a valid provider "
|
||||
f"in the Settings -> Model Provider.")
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
elif dataset.data_source_type == 'notion_import':
|
||||
|
||||
indexing_runner = IndexingRunner()
|
||||
response = indexing_runner.notion_indexing_estimate(info_list,
|
||||
data_process_rule_dict)
|
||||
try:
|
||||
response = indexing_runner.notion_indexing_estimate(current_user.current_tenant_id,
|
||||
info_list,
|
||||
data_process_rule_dict,
|
||||
None, 'English', dataset_id)
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
f"No Embedding Model available. Please configure a valid provider "
|
||||
f"in the Settings -> Model Provider.")
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
else:
|
||||
raise ValueError('Data source type not support')
|
||||
return response
|
||||
@@ -537,7 +584,8 @@ class DocumentIndexingStatusApi(DocumentResource):
|
||||
|
||||
document.completed_segments = completed_segments
|
||||
document.total_segments = total_segments
|
||||
|
||||
if document.is_paused:
|
||||
document.indexing_status = 'paused'
|
||||
return marshal(document, self.document_status_fields)
|
||||
|
||||
|
||||
@@ -671,6 +719,12 @@ class DocumentDeleteApi(DocumentResource):
|
||||
def delete(self, dataset_id, document_id):
|
||||
dataset_id = str(dataset_id)
|
||||
document_id = str(document_id)
|
||||
dataset = DatasetService.get_dataset(dataset_id)
|
||||
if dataset is None:
|
||||
raise NotFound("Dataset not found.")
|
||||
# check user's model setting
|
||||
DatasetService.check_dataset_model_setting(dataset)
|
||||
|
||||
document = self.get_document(dataset_id, document_id)
|
||||
|
||||
try:
|
||||
@@ -711,11 +765,13 @@ class DocumentMetadataApi(DocumentResource):
|
||||
metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[doc_type]
|
||||
|
||||
document.doc_metadata = {}
|
||||
|
||||
for key, value_type in metadata_schema.items():
|
||||
value = doc_metadata.get(key)
|
||||
if value is not None and isinstance(value, value_type):
|
||||
document.doc_metadata[key] = value
|
||||
if doc_type == 'others':
|
||||
document.doc_metadata = doc_metadata
|
||||
else:
|
||||
for key, value_type in metadata_schema.items():
|
||||
value = doc_metadata.get(key)
|
||||
if value is not None and isinstance(value, value_type):
|
||||
document.doc_metadata[key] = value
|
||||
|
||||
document.doc_type = doc_type
|
||||
document.updated_at = datetime.utcnow()
|
||||
@@ -731,6 +787,12 @@ class DocumentStatusApi(DocumentResource):
|
||||
def patch(self, dataset_id, document_id, action):
|
||||
dataset_id = str(dataset_id)
|
||||
document_id = str(document_id)
|
||||
dataset = DatasetService.get_dataset(dataset_id)
|
||||
if dataset is None:
|
||||
raise NotFound("Dataset not found.")
|
||||
# check user's model setting
|
||||
DatasetService.check_dataset_model_setting(dataset)
|
||||
|
||||
document = self.get_document(dataset_id, document_id)
|
||||
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
@@ -794,12 +856,40 @@ class DocumentStatusApi(DocumentResource):
|
||||
|
||||
remove_document_from_index_task.delay(document_id)
|
||||
|
||||
return {'result': 'success'}, 200
|
||||
elif action == "un_archive":
|
||||
if not document.archived:
|
||||
raise InvalidActionError('Document is not archived.')
|
||||
|
||||
# check document limit
|
||||
if current_app.config['EDITION'] == 'CLOUD':
|
||||
documents_count = DocumentService.get_tenant_documents_count()
|
||||
total_count = documents_count + 1
|
||||
tenant_document_count = int(current_app.config['TENANT_DOCUMENT_COUNT'])
|
||||
if total_count > tenant_document_count:
|
||||
raise ValueError(f"All your documents have overed limit {tenant_document_count}.")
|
||||
|
||||
document.archived = False
|
||||
document.archived_at = None
|
||||
document.archived_by = None
|
||||
document.updated_at = datetime.utcnow()
|
||||
db.session.commit()
|
||||
|
||||
# Set cache to prevent indexing the same document multiple times
|
||||
redis_client.setex(indexing_cache_key, 600, 1)
|
||||
|
||||
add_document_to_index_task.delay(document_id)
|
||||
|
||||
return {'result': 'success'}, 200
|
||||
else:
|
||||
raise InvalidActionError()
|
||||
|
||||
|
||||
class DocumentPauseApi(DocumentResource):
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def patch(self, dataset_id, document_id):
|
||||
"""pause document."""
|
||||
dataset_id = str(dataset_id)
|
||||
@@ -829,6 +919,9 @@ class DocumentPauseApi(DocumentResource):
|
||||
|
||||
|
||||
class DocumentRecoverApi(DocumentResource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def patch(self, dataset_id, document_id):
|
||||
"""recover document."""
|
||||
dataset_id = str(dataset_id)
|
||||
@@ -854,6 +947,21 @@ class DocumentRecoverApi(DocumentResource):
|
||||
return {'result': 'success'}, 204
|
||||
|
||||
|
||||
class DocumentLimitApi(DocumentResource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def get(self):
|
||||
"""get document limit"""
|
||||
documents_count = DocumentService.get_tenant_documents_count()
|
||||
tenant_document_count = int(current_app.config['TENANT_DOCUMENT_COUNT'])
|
||||
|
||||
return {
|
||||
'documents_count': documents_count,
|
||||
'documents_limit': tenant_document_count
|
||||
}, 200
|
||||
|
||||
|
||||
api.add_resource(GetProcessRuleApi, '/datasets/process-rule')
|
||||
api.add_resource(DatasetDocumentListApi,
|
||||
'/datasets/<uuid:dataset_id>/documents')
|
||||
@@ -879,3 +987,4 @@ api.add_resource(DocumentStatusApi,
|
||||
'/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/status/<string:action>')
|
||||
api.add_resource(DocumentPauseApi, '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/pause')
|
||||
api.add_resource(DocumentRecoverApi, '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/resume')
|
||||
api.add_resource(DocumentLimitApi, '/datasets/limit')
|
||||
|
||||
@@ -1,15 +1,20 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
import uuid
|
||||
from datetime import datetime
|
||||
|
||||
from flask_login import login_required, current_user
|
||||
from flask import request
|
||||
from flask_login import current_user
|
||||
from flask_restful import Resource, reqparse, fields, marshal
|
||||
from werkzeug.exceptions import NotFound, Forbidden
|
||||
|
||||
import services
|
||||
from controllers.console import api
|
||||
from controllers.console.datasets.error import InvalidActionError
|
||||
from controllers.console.app.error import ProviderNotInitializeError
|
||||
from controllers.console.datasets.error import InvalidActionError, NoFileUploadedError, TooManyFilesError
|
||||
from controllers.console.setup import setup_required
|
||||
from controllers.console.wraps import account_initialization_required
|
||||
from core.model_providers.error import LLMBadRequestError, ProviderTokenNotInitError
|
||||
from core.model_providers.model_factory import ModelFactory
|
||||
from core.login.login import login_required
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import DocumentSegment
|
||||
@@ -17,7 +22,9 @@ from models.dataset import DocumentSegment
|
||||
from libs.helper import TimestampField
|
||||
from services.dataset_service import DatasetService, DocumentService, SegmentService
|
||||
from tasks.enable_segment_to_index_task import enable_segment_to_index_task
|
||||
from tasks.remove_segment_from_index_task import remove_segment_from_index_task
|
||||
from tasks.disable_segment_from_index_task import disable_segment_from_index_task
|
||||
from tasks.batch_create_segment_to_index_task import batch_create_segment_to_index_task
|
||||
import pandas as pd
|
||||
|
||||
segment_fields = {
|
||||
'id': fields.String,
|
||||
@@ -142,7 +149,8 @@ class DatasetDocumentSegmentApi(Resource):
|
||||
dataset = DatasetService.get_dataset(dataset_id)
|
||||
if not dataset:
|
||||
raise NotFound('Dataset not found.')
|
||||
|
||||
# check user's model setting
|
||||
DatasetService.check_dataset_model_setting(dataset)
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
raise Forbidden()
|
||||
@@ -151,6 +159,20 @@ class DatasetDocumentSegmentApi(Resource):
|
||||
DatasetService.check_dataset_permission(dataset, current_user)
|
||||
except services.errors.account.NoPermissionError as e:
|
||||
raise Forbidden(str(e))
|
||||
if dataset.indexing_technique == 'high_quality':
|
||||
# check embedding model setting
|
||||
try:
|
||||
ModelFactory.get_embedding_model(
|
||||
tenant_id=current_user.current_tenant_id,
|
||||
model_provider_name=dataset.embedding_model_provider,
|
||||
model_name=dataset.embedding_model
|
||||
)
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
f"No Embedding Model available. Please configure a valid provider "
|
||||
f"in the Settings -> Model Provider.")
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
|
||||
segment = DocumentSegment.query.filter(
|
||||
DocumentSegment.id == str(segment_id),
|
||||
@@ -197,7 +219,7 @@ class DatasetDocumentSegmentApi(Resource):
|
||||
# Set cache to prevent indexing the same segment multiple times
|
||||
redis_client.setex(indexing_cache_key, 600, 1)
|
||||
|
||||
remove_segment_from_index_task.delay(segment.id)
|
||||
disable_segment_from_index_task.delay(segment.id)
|
||||
|
||||
return {'result': 'success'}, 200
|
||||
else:
|
||||
@@ -222,6 +244,20 @@ class DatasetDocumentSegmentAddApi(Resource):
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
raise Forbidden()
|
||||
# check embedding model setting
|
||||
if dataset.indexing_technique == 'high_quality':
|
||||
try:
|
||||
ModelFactory.get_embedding_model(
|
||||
tenant_id=current_user.current_tenant_id,
|
||||
model_provider_name=dataset.embedding_model_provider,
|
||||
model_name=dataset.embedding_model
|
||||
)
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
f"No Embedding Model available. Please configure a valid provider "
|
||||
f"in the Settings -> Model Provider.")
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
try:
|
||||
DatasetService.check_dataset_permission(dataset, current_user)
|
||||
except services.errors.account.NoPermissionError as e:
|
||||
@@ -233,7 +269,7 @@ class DatasetDocumentSegmentAddApi(Resource):
|
||||
parser.add_argument('keywords', type=list, required=False, nullable=True, location='json')
|
||||
args = parser.parse_args()
|
||||
SegmentService.segment_create_args_validate(args, document)
|
||||
segment = SegmentService.create_segment(args, document)
|
||||
segment = SegmentService.create_segment(args, document, dataset)
|
||||
return {
|
||||
'data': marshal(segment, segment_fields),
|
||||
'doc_form': document.doc_form
|
||||
@@ -250,12 +286,28 @@ class DatasetDocumentSegmentUpdateApi(Resource):
|
||||
dataset = DatasetService.get_dataset(dataset_id)
|
||||
if not dataset:
|
||||
raise NotFound('Dataset not found.')
|
||||
# check user's model setting
|
||||
DatasetService.check_dataset_model_setting(dataset)
|
||||
# check document
|
||||
document_id = str(document_id)
|
||||
document = DocumentService.get_document(dataset_id, document_id)
|
||||
if not document:
|
||||
raise NotFound('Document not found.')
|
||||
# check segment
|
||||
if dataset.indexing_technique == 'high_quality':
|
||||
# check embedding model setting
|
||||
try:
|
||||
ModelFactory.get_embedding_model(
|
||||
tenant_id=current_user.current_tenant_id,
|
||||
model_provider_name=dataset.embedding_model_provider,
|
||||
model_name=dataset.embedding_model
|
||||
)
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
f"No Embedding Model available. Please configure a valid provider "
|
||||
f"in the Settings -> Model Provider.")
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
# check segment
|
||||
segment_id = str(segment_id)
|
||||
segment = DocumentSegment.query.filter(
|
||||
DocumentSegment.id == str(segment_id),
|
||||
@@ -277,12 +329,115 @@ class DatasetDocumentSegmentUpdateApi(Resource):
|
||||
parser.add_argument('keywords', type=list, required=False, nullable=True, location='json')
|
||||
args = parser.parse_args()
|
||||
SegmentService.segment_create_args_validate(args, document)
|
||||
segment = SegmentService.update_segment(args, segment, document)
|
||||
segment = SegmentService.update_segment(args, segment, document, dataset)
|
||||
return {
|
||||
'data': marshal(segment, segment_fields),
|
||||
'doc_form': document.doc_form
|
||||
}, 200
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def delete(self, dataset_id, document_id, segment_id):
|
||||
# check dataset
|
||||
dataset_id = str(dataset_id)
|
||||
dataset = DatasetService.get_dataset(dataset_id)
|
||||
if not dataset:
|
||||
raise NotFound('Dataset not found.')
|
||||
# check user's model setting
|
||||
DatasetService.check_dataset_model_setting(dataset)
|
||||
# check document
|
||||
document_id = str(document_id)
|
||||
document = DocumentService.get_document(dataset_id, document_id)
|
||||
if not document:
|
||||
raise NotFound('Document not found.')
|
||||
# check segment
|
||||
segment_id = str(segment_id)
|
||||
segment = DocumentSegment.query.filter(
|
||||
DocumentSegment.id == str(segment_id),
|
||||
DocumentSegment.tenant_id == current_user.current_tenant_id
|
||||
).first()
|
||||
if not segment:
|
||||
raise NotFound('Segment not found.')
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
raise Forbidden()
|
||||
try:
|
||||
DatasetService.check_dataset_permission(dataset, current_user)
|
||||
except services.errors.account.NoPermissionError as e:
|
||||
raise Forbidden(str(e))
|
||||
SegmentService.delete_segment(segment, document, dataset)
|
||||
return {'result': 'success'}, 200
|
||||
|
||||
|
||||
class DatasetDocumentSegmentBatchImportApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self, dataset_id, document_id):
|
||||
# check dataset
|
||||
dataset_id = str(dataset_id)
|
||||
dataset = DatasetService.get_dataset(dataset_id)
|
||||
if not dataset:
|
||||
raise NotFound('Dataset not found.')
|
||||
# check document
|
||||
document_id = str(document_id)
|
||||
document = DocumentService.get_document(dataset_id, document_id)
|
||||
if not document:
|
||||
raise NotFound('Document not found.')
|
||||
# get file from request
|
||||
file = request.files['file']
|
||||
# check file
|
||||
if 'file' not in request.files:
|
||||
raise NoFileUploadedError()
|
||||
|
||||
if len(request.files) > 1:
|
||||
raise TooManyFilesError()
|
||||
# check file type
|
||||
if not file.filename.endswith('.csv'):
|
||||
raise ValueError("Invalid file type. Only CSV files are allowed")
|
||||
|
||||
try:
|
||||
# Skip the first row
|
||||
df = pd.read_csv(file)
|
||||
result = []
|
||||
for index, row in df.iterrows():
|
||||
if document.doc_form == 'qa_model':
|
||||
data = {'content': row[0], 'answer': row[1]}
|
||||
else:
|
||||
data = {'content': row[0]}
|
||||
result.append(data)
|
||||
if len(result) == 0:
|
||||
raise ValueError("The CSV file is empty.")
|
||||
# async job
|
||||
job_id = str(uuid.uuid4())
|
||||
indexing_cache_key = 'segment_batch_import_{}'.format(str(job_id))
|
||||
# send batch add segments task
|
||||
redis_client.setnx(indexing_cache_key, 'waiting')
|
||||
batch_create_segment_to_index_task.delay(str(job_id), result, dataset_id, document_id,
|
||||
current_user.current_tenant_id, current_user.id)
|
||||
except Exception as e:
|
||||
return {'error': str(e)}, 500
|
||||
return {
|
||||
'job_id': job_id,
|
||||
'job_status': 'waiting'
|
||||
}, 200
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def get(self, job_id):
|
||||
job_id = str(job_id)
|
||||
indexing_cache_key = 'segment_batch_import_{}'.format(job_id)
|
||||
cache_result = redis_client.get(indexing_cache_key)
|
||||
if cache_result is None:
|
||||
raise ValueError("The job is not exist.")
|
||||
|
||||
return {
|
||||
'job_id': job_id,
|
||||
'job_status': cache_result.decode()
|
||||
}, 200
|
||||
|
||||
|
||||
api.add_resource(DatasetDocumentSegmentListApi,
|
||||
'/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments')
|
||||
@@ -292,3 +447,6 @@ api.add_resource(DatasetDocumentSegmentAddApi,
|
||||
'/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segment')
|
||||
api.add_resource(DatasetDocumentSegmentUpdateApi,
|
||||
'/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/<uuid:segment_id>')
|
||||
api.add_resource(DatasetDocumentSegmentBatchImportApi,
|
||||
'/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/batch_import',
|
||||
'/datasets/batch_import_status/<uuid:job_id>')
|
||||
|
||||
@@ -8,7 +8,8 @@ from pathlib import Path
|
||||
|
||||
from cachetools import TTLCache
|
||||
from flask import request, current_app
|
||||
from flask_login import login_required, current_user
|
||||
from flask_login import current_user
|
||||
from core.login.login import login_required
|
||||
from flask_restful import Resource, marshal_with, fields
|
||||
from werkzeug.exceptions import NotFound
|
||||
|
||||
@@ -25,12 +26,28 @@ from models.model import UploadFile
|
||||
|
||||
cache = TTLCache(maxsize=None, ttl=30)
|
||||
|
||||
FILE_SIZE_LIMIT = 15 * 1024 * 1024 # 15MB
|
||||
ALLOWED_EXTENSIONS = ['txt', 'markdown', 'md', 'pdf', 'html', 'htm', 'xlsx']
|
||||
PREVIEW_WORDS_LIMIT = 3000
|
||||
|
||||
|
||||
class FileApi(Resource):
|
||||
upload_config_fields = {
|
||||
'file_size_limit': fields.Integer,
|
||||
'batch_count_limit': fields.Integer
|
||||
}
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
@marshal_with(upload_config_fields)
|
||||
def get(self):
|
||||
file_size_limit = current_app.config.get("UPLOAD_FILE_SIZE_LIMIT")
|
||||
batch_count_limit = current_app.config.get("UPLOAD_FILE_BATCH_LIMIT")
|
||||
return {
|
||||
'file_size_limit': file_size_limit,
|
||||
'batch_count_limit': batch_count_limit
|
||||
}, 200
|
||||
|
||||
file_fields = {
|
||||
'id': fields.String,
|
||||
'name': fields.String,
|
||||
@@ -60,12 +77,13 @@ class FileApi(Resource):
|
||||
file_content = file.read()
|
||||
file_size = len(file_content)
|
||||
|
||||
if file_size > FILE_SIZE_LIMIT:
|
||||
message = "({file_size} > {FILE_SIZE_LIMIT})"
|
||||
file_size_limit = current_app.config.get("UPLOAD_FILE_SIZE_LIMIT") * 1024 * 1024
|
||||
if file_size > file_size_limit:
|
||||
message = "({file_size} > {file_size_limit})"
|
||||
raise FileTooLargeError(message)
|
||||
|
||||
extension = file.filename.split('.')[-1]
|
||||
if extension not in ALLOWED_EXTENSIONS:
|
||||
if extension.lower() not in ALLOWED_EXTENSIONS:
|
||||
raise UnsupportedFileTypeError()
|
||||
|
||||
# user uuid as file name
|
||||
@@ -118,7 +136,7 @@ class FilePreviewApi(Resource):
|
||||
|
||||
# extract text from file
|
||||
extension = upload_file.extension
|
||||
if extension not in ALLOWED_EXTENSIONS:
|
||||
if extension.lower() not in ALLOWED_EXTENSIONS:
|
||||
raise UnsupportedFileTypeError()
|
||||
|
||||
text = FileExtractor.load(upload_file, return_text=True)
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import logging
|
||||
|
||||
from flask_login import login_required, current_user
|
||||
from flask_login import current_user
|
||||
from core.login.login import login_required
|
||||
from flask_restful import Resource, reqparse, marshal, fields
|
||||
from werkzeug.exceptions import InternalServerError, NotFound, Forbidden
|
||||
|
||||
@@ -11,7 +12,8 @@ from controllers.console.app.error import ProviderNotInitializeError, ProviderQu
|
||||
from controllers.console.datasets.error import HighQualityDatasetOnlyError, DatasetNotInitializedError
|
||||
from controllers.console.setup import setup_required
|
||||
from controllers.console.wraps import account_initialization_required
|
||||
from core.llm.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
|
||||
from core.model_providers.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError, \
|
||||
LLMBadRequestError
|
||||
from libs.helper import TimestampField
|
||||
from services.dataset_service import DatasetService
|
||||
from services.hit_testing_service import HitTestingService
|
||||
@@ -102,6 +104,12 @@ class HitTestingApi(Resource):
|
||||
raise ProviderQuotaExceededError()
|
||||
except ModelCurrentlyNotSupportError:
|
||||
raise ProviderModelCurrentlyNotSupportError()
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
f"No Embedding Model available. Please configure a valid provider "
|
||||
f"in the Settings -> Model Provider.")
|
||||
except ValueError as e:
|
||||
raise ValueError(str(e))
|
||||
except Exception as e:
|
||||
logging.exception("Hit testing failed.")
|
||||
raise InternalServerError(str(e))
|
||||
|
||||
@@ -11,7 +11,7 @@ from controllers.console.app.error import AppUnavailableError, ProviderNotInitia
|
||||
NoAudioUploadedError, AudioTooLargeError, \
|
||||
UnsupportedAudioTypeError, ProviderNotSupportSpeechToTextError
|
||||
from controllers.console.explore.wraps import InstalledAppResource
|
||||
from core.llm.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
|
||||
from core.model_providers.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
|
||||
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
|
||||
from services.audio_service import AudioService
|
||||
from services.errors.audio import NoAudioUploadedServiceError, AudioTooLargeServiceError, \
|
||||
|
||||
@@ -15,7 +15,7 @@ from controllers.console.app.error import ConversationCompletedError, AppUnavail
|
||||
from controllers.console.explore.error import NotCompletionAppError, NotChatAppError
|
||||
from controllers.console.explore.wraps import InstalledAppResource
|
||||
from core.conversation_message_task import PubHandler
|
||||
from core.llm.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
|
||||
from core.model_providers.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
|
||||
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
|
||||
from libs.helper import uuid_value
|
||||
from services.completion_service import CompletionService
|
||||
@@ -31,7 +31,7 @@ class CompletionApi(InstalledAppResource):
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('inputs', type=dict, required=True, location='json')
|
||||
parser.add_argument('query', type=str, location='json')
|
||||
parser.add_argument('query', type=str, location='json', default='')
|
||||
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
@@ -1,7 +1,8 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
from datetime import datetime
|
||||
|
||||
from flask_login import login_required, current_user
|
||||
from flask_login import current_user
|
||||
from core.login.login import login_required
|
||||
from flask_restful import Resource, reqparse, fields, marshal_with, inputs
|
||||
from sqlalchemy import and_
|
||||
from werkzeug.exceptions import NotFound, Forbidden, BadRequest
|
||||
|
||||
@@ -15,7 +15,7 @@ from controllers.console.app.error import AppMoreLikeThisDisabledError, Provider
|
||||
ProviderQuotaExceededError, ProviderModelCurrentlyNotSupportError, CompletionRequestError
|
||||
from controllers.console.explore.error import NotCompletionAppError, AppSuggestedQuestionsAfterAnswerDisabledError
|
||||
from controllers.console.explore.wraps import InstalledAppResource
|
||||
from core.llm.error import LLMRateLimitError, LLMBadRequestError, LLMAuthorizationError, LLMAPIConnectionError, \
|
||||
from core.model_providers.error import LLMRateLimitError, LLMBadRequestError, LLMAuthorizationError, LLMAPIConnectionError, \
|
||||
ProviderTokenNotInitError, LLMAPIUnavailableError, QuotaExceededError, ModelCurrentlyNotSupportError
|
||||
from libs.helper import uuid_value, TimestampField
|
||||
from services.completion_service import CompletionService
|
||||
|
||||
@@ -4,8 +4,6 @@ from flask_restful import marshal_with, fields
|
||||
from controllers.console import api
|
||||
from controllers.console.explore.wraps import InstalledAppResource
|
||||
|
||||
from core.llm.llm_builder import LLMBuilder
|
||||
from models.provider import ProviderName
|
||||
from models.model import InstalledApp
|
||||
|
||||
|
||||
@@ -35,13 +33,12 @@ class AppParameterApi(InstalledAppResource):
|
||||
"""Retrieve app parameters."""
|
||||
app_model = installed_app.app
|
||||
app_model_config = app_model.app_model_config
|
||||
provider_name = LLMBuilder.get_default_provider(installed_app.tenant_id, 'whisper-1')
|
||||
|
||||
return {
|
||||
'opening_statement': app_model_config.opening_statement,
|
||||
'suggested_questions': app_model_config.suggested_questions_list,
|
||||
'suggested_questions_after_answer': app_model_config.suggested_questions_after_answer_dict,
|
||||
'speech_to_text': app_model_config.speech_to_text_dict if provider_name == ProviderName.OPENAI.value else { 'enabled': False },
|
||||
'speech_to_text': app_model_config.speech_to_text_dict,
|
||||
'more_like_this': app_model_config.more_like_this_dict,
|
||||
'user_input_form': app_model_config.user_input_form_list
|
||||
}
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
from flask_login import login_required, current_user
|
||||
from flask_login import current_user
|
||||
from core.login.login import login_required
|
||||
from flask_restful import Resource, fields, marshal_with
|
||||
from sqlalchemy import and_
|
||||
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
from flask_login import login_required, current_user
|
||||
from flask_login import current_user
|
||||
from core.login.login import login_required
|
||||
from flask_restful import Resource
|
||||
from functools import wraps
|
||||
|
||||
|
||||
@@ -19,15 +19,16 @@ from .wraps import only_edition_self_hosted
|
||||
|
||||
class SetupApi(Resource):
|
||||
|
||||
@only_edition_self_hosted
|
||||
def get(self):
|
||||
setup_status = get_setup_status()
|
||||
if setup_status:
|
||||
return {
|
||||
'step': 'finished',
|
||||
'setup_at': setup_status.setup_at.isoformat()
|
||||
}
|
||||
return {'step': 'not_start'}
|
||||
if current_app.config['EDITION'] == 'SELF_HOSTED':
|
||||
setup_status = get_setup_status()
|
||||
if setup_status:
|
||||
return {
|
||||
'step': 'finished',
|
||||
'setup_at': setup_status.setup_at.isoformat()
|
||||
}
|
||||
return {'step': 'not_start'}
|
||||
return {'step': 'finished'}
|
||||
|
||||
@only_edition_self_hosted
|
||||
def post(self):
|
||||
|
||||
@@ -11,7 +11,7 @@ from controllers.console.app.error import AppUnavailableError, ProviderNotInitia
|
||||
NoAudioUploadedError, AudioTooLargeError, \
|
||||
UnsupportedAudioTypeError, ProviderNotSupportSpeechToTextError
|
||||
from controllers.console.universal_chat.wraps import UniversalChatResource
|
||||
from core.llm.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
|
||||
from core.model_providers.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
|
||||
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
|
||||
from services.audio_service import AudioService
|
||||
from services.errors.audio import NoAudioUploadedServiceError, AudioTooLargeServiceError, \
|
||||
|
||||
@@ -12,9 +12,8 @@ from controllers.console import api
|
||||
from controllers.console.app.error import ConversationCompletedError, AppUnavailableError, ProviderNotInitializeError, \
|
||||
ProviderQuotaExceededError, ProviderModelCurrentlyNotSupportError, CompletionRequestError
|
||||
from controllers.console.universal_chat.wraps import UniversalChatResource
|
||||
from core.constant import llm_constant
|
||||
from core.conversation_message_task import PubHandler
|
||||
from core.llm.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError, \
|
||||
from core.model_providers.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError, \
|
||||
LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError, LLMRateLimitError, LLMAuthorizationError
|
||||
from libs.helper import uuid_value
|
||||
from services.completion_service import CompletionService
|
||||
@@ -27,6 +26,7 @@ class UniversalChatApi(UniversalChatResource):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('query', type=str, required=True, location='json')
|
||||
parser.add_argument('conversation_id', type=uuid_value, location='json')
|
||||
parser.add_argument('provider', type=str, required=True, location='json')
|
||||
parser.add_argument('model', type=str, required=True, location='json')
|
||||
parser.add_argument('tools', type=list, required=True, location='json')
|
||||
args = parser.parse_args()
|
||||
@@ -36,11 +36,7 @@ class UniversalChatApi(UniversalChatResource):
|
||||
# update app model config
|
||||
args['model_config'] = app_model_config.to_dict()
|
||||
args['model_config']['model']['name'] = args['model']
|
||||
|
||||
if not llm_constant.models[args['model']]:
|
||||
raise ValueError("Model not exists.")
|
||||
|
||||
args['model_config']['model']['provider'] = llm_constant.models[args['model']]
|
||||
args['model_config']['model']['provider'] = args['provider']
|
||||
args['model_config']['agent_mode']['tools'] = args['tools']
|
||||
|
||||
if not args['model_config']['agent_mode']['tools']:
|
||||
|
||||
@@ -12,7 +12,7 @@ from controllers.console.app.error import ProviderNotInitializeError, \
|
||||
ProviderQuotaExceededError, ProviderModelCurrentlyNotSupportError, CompletionRequestError
|
||||
from controllers.console.explore.error import AppSuggestedQuestionsAfterAnswerDisabledError
|
||||
from controllers.console.universal_chat.wraps import UniversalChatResource
|
||||
from core.llm.error import LLMRateLimitError, LLMBadRequestError, LLMAuthorizationError, LLMAPIConnectionError, \
|
||||
from core.model_providers.error import LLMRateLimitError, LLMBadRequestError, LLMAuthorizationError, LLMAPIConnectionError, \
|
||||
ProviderTokenNotInitError, LLMAPIUnavailableError, QuotaExceededError, ModelCurrentlyNotSupportError
|
||||
from libs.helper import uuid_value, TimestampField
|
||||
from services.errors.conversation import ConversationNotExistsError
|
||||
|
||||
@@ -4,8 +4,6 @@ from flask_restful import marshal_with, fields
|
||||
from controllers.console import api
|
||||
from controllers.console.universal_chat.wraps import UniversalChatResource
|
||||
|
||||
from core.llm.llm_builder import LLMBuilder
|
||||
from models.provider import ProviderName
|
||||
from models.model import App
|
||||
|
||||
|
||||
@@ -23,13 +21,12 @@ class UniversalChatParameterApi(UniversalChatResource):
|
||||
"""Retrieve app parameters."""
|
||||
app_model = universal_app
|
||||
app_model_config = app_model.app_model_config
|
||||
provider_name = LLMBuilder.get_default_provider(universal_app.tenant_id, 'whisper-1')
|
||||
|
||||
return {
|
||||
'opening_statement': app_model_config.opening_statement,
|
||||
'suggested_questions': app_model_config.suggested_questions_list,
|
||||
'suggested_questions_after_answer': app_model_config.suggested_questions_after_answer_dict,
|
||||
'speech_to_text': app_model_config.speech_to_text_dict if provider_name == ProviderName.OPENAI.value else { 'enabled': False },
|
||||
'speech_to_text': app_model_config.speech_to_text_dict,
|
||||
}
|
||||
|
||||
|
||||
|
||||
@@ -1,7 +1,8 @@
|
||||
import json
|
||||
from functools import wraps
|
||||
|
||||
from flask_login import login_required, current_user
|
||||
from flask_login import current_user
|
||||
from core.login.login import login_required
|
||||
from flask_restful import Resource
|
||||
from controllers.console.setup import setup_required
|
||||
from controllers.console.wraps import account_initialization_required
|
||||
|
||||
61
api/controllers/console/webhook/stripe.py
Normal file
61
api/controllers/console/webhook/stripe.py
Normal file
@@ -0,0 +1,61 @@
|
||||
import logging
|
||||
|
||||
import stripe
|
||||
from flask import request, current_app
|
||||
from flask_restful import Resource
|
||||
|
||||
from controllers.console import api
|
||||
from controllers.console.setup import setup_required
|
||||
from controllers.console.wraps import only_edition_cloud
|
||||
from services.provider_checkout_service import ProviderCheckoutService
|
||||
|
||||
|
||||
class StripeWebhookApi(Resource):
|
||||
@setup_required
|
||||
@only_edition_cloud
|
||||
def post(self):
|
||||
payload = request.data
|
||||
sig_header = request.headers.get('STRIPE_SIGNATURE')
|
||||
webhook_secret = current_app.config.get('STRIPE_WEBHOOK_SECRET')
|
||||
|
||||
try:
|
||||
event = stripe.Webhook.construct_event(
|
||||
payload, sig_header, webhook_secret
|
||||
)
|
||||
except ValueError as e:
|
||||
# Invalid payload
|
||||
return 'Invalid payload', 400
|
||||
except stripe.error.SignatureVerificationError as e:
|
||||
# Invalid signature
|
||||
return 'Invalid signature', 400
|
||||
|
||||
# Handle the checkout.session.completed event
|
||||
if event['type'] == 'checkout.session.completed':
|
||||
logging.debug(event['data']['object']['id'])
|
||||
logging.debug(event['data']['object']['amount_subtotal'])
|
||||
logging.debug(event['data']['object']['currency'])
|
||||
logging.debug(event['data']['object']['payment_intent'])
|
||||
logging.debug(event['data']['object']['payment_status'])
|
||||
logging.debug(event['data']['object']['metadata'])
|
||||
|
||||
session = stripe.checkout.Session.retrieve(
|
||||
event['data']['object']['id'],
|
||||
expand=['line_items'],
|
||||
)
|
||||
|
||||
logging.debug(session.line_items['data'][0]['quantity'])
|
||||
|
||||
# Fulfill the purchase...
|
||||
provider_checkout_service = ProviderCheckoutService()
|
||||
|
||||
try:
|
||||
provider_checkout_service.fulfill_provider_order(event, session.line_items)
|
||||
except Exception as e:
|
||||
|
||||
logging.debug(str(e))
|
||||
return 'success', 200
|
||||
|
||||
return 'success', 200
|
||||
|
||||
|
||||
api.add_resource(StripeWebhookApi, '/webhook/stripe')
|
||||
@@ -3,7 +3,8 @@ from datetime import datetime
|
||||
|
||||
import pytz
|
||||
from flask import current_app, request
|
||||
from flask_login import login_required, current_user
|
||||
from flask_login import current_user
|
||||
from core.login.login import login_required
|
||||
from flask_restful import Resource, reqparse, fields, marshal_with
|
||||
|
||||
from services.errors.account import CurrentPasswordIncorrectError as ServiceCurrentPasswordIncorrectError
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
from flask import current_app
|
||||
from flask_login import login_required, current_user
|
||||
from flask_login import current_user
|
||||
from core.login.login import login_required
|
||||
from flask_restful import Resource, reqparse, marshal_with, abort, fields, marshal
|
||||
|
||||
import services
|
||||
@@ -48,46 +49,43 @@ class MemberInviteEmailApi(Resource):
|
||||
@account_initialization_required
|
||||
def post(self):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('email', type=str, required=True, location='json')
|
||||
parser.add_argument('emails', type=str, required=True, location='json', action='append')
|
||||
parser.add_argument('role', type=str, required=True, default='admin', location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
invitee_email = args['email']
|
||||
invitee_emails = args['emails']
|
||||
invitee_role = args['role']
|
||||
if invitee_role not in ['admin', 'normal']:
|
||||
return {'code': 'invalid-role', 'message': 'Invalid role'}, 400
|
||||
|
||||
inviter = current_user
|
||||
|
||||
try:
|
||||
token = RegisterService.invite_new_member(inviter.current_tenant, invitee_email, role=invitee_role,
|
||||
inviter=inviter)
|
||||
account = db.session.query(Account, TenantAccountJoin.role).join(
|
||||
TenantAccountJoin, Account.id == TenantAccountJoin.account_id
|
||||
).filter(Account.email == args['email']).first()
|
||||
account, role = account
|
||||
account = marshal(account, account_fields)
|
||||
account['role'] = role
|
||||
except services.errors.account.CannotOperateSelfError as e:
|
||||
return {'code': 'cannot-operate-self', 'message': str(e)}, 400
|
||||
except services.errors.account.NoPermissionError as e:
|
||||
return {'code': 'forbidden', 'message': str(e)}, 403
|
||||
except services.errors.account.AccountAlreadyInTenantError as e:
|
||||
return {'code': 'email-taken', 'message': str(e)}, 409
|
||||
except Exception as e:
|
||||
return {'code': 'unexpected-error', 'message': str(e)}, 500
|
||||
|
||||
# todo:413
|
||||
invitation_results = []
|
||||
console_web_url = current_app.config.get("CONSOLE_WEB_URL")
|
||||
for invitee_email in invitee_emails:
|
||||
try:
|
||||
token = RegisterService.invite_new_member(inviter.current_tenant, invitee_email, role=invitee_role,
|
||||
inviter=inviter)
|
||||
account = db.session.query(Account, TenantAccountJoin.role).join(
|
||||
TenantAccountJoin, Account.id == TenantAccountJoin.account_id
|
||||
).filter(Account.email == invitee_email).first()
|
||||
account, role = account
|
||||
invitation_results.append({
|
||||
'status': 'success',
|
||||
'email': invitee_email,
|
||||
'url': f'{console_web_url}/activate?email={invitee_email}&token={token}'
|
||||
})
|
||||
account = marshal(account, account_fields)
|
||||
account['role'] = role
|
||||
except Exception as e:
|
||||
invitation_results.append({
|
||||
'status': 'failed',
|
||||
'email': invitee_email,
|
||||
'message': str(e)
|
||||
})
|
||||
|
||||
return {
|
||||
'result': 'success',
|
||||
'account': account,
|
||||
'invite_url': '{}/activate?workspace_id={}&email={}&token={}'.format(
|
||||
current_app.config.get("CONSOLE_WEB_URL"),
|
||||
str(current_user.current_tenant_id),
|
||||
invitee_email,
|
||||
token
|
||||
)
|
||||
'invitation_results': invitation_results,
|
||||
}, 201
|
||||
|
||||
|
||||
|
||||
@@ -1,24 +1,19 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
import base64
|
||||
import json
|
||||
import logging
|
||||
|
||||
from flask import current_app
|
||||
from flask_login import login_required, current_user
|
||||
from flask_restful import Resource, reqparse, abort
|
||||
from flask_login import current_user
|
||||
from core.login.login import login_required
|
||||
from flask_restful import Resource, reqparse
|
||||
from werkzeug.exceptions import Forbidden
|
||||
|
||||
from controllers.console import api
|
||||
from controllers.console.app.error import ProviderNotInitializeError
|
||||
from controllers.console.setup import setup_required
|
||||
from controllers.console.wraps import account_initialization_required
|
||||
from core.llm.provider.errors import ValidateFailedError
|
||||
from extensions.ext_database import db
|
||||
from libs import rsa
|
||||
from models.provider import Provider, ProviderType, ProviderName
|
||||
from core.model_providers.error import LLMBadRequestError
|
||||
from core.model_providers.providers.base import CredentialsValidateFailedError
|
||||
from services.provider_checkout_service import ProviderCheckoutService
|
||||
from services.provider_service import ProviderService
|
||||
|
||||
|
||||
class ProviderListApi(Resource):
|
||||
class ModelProviderListApi(Resource):
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@@ -26,156 +21,36 @@ class ProviderListApi(Resource):
|
||||
def get(self):
|
||||
tenant_id = current_user.current_tenant_id
|
||||
|
||||
"""
|
||||
If the type is AZURE_OPENAI, decode and return the four fields of azure_api_type, azure_api_version:,
|
||||
azure_api_base, azure_api_key as an object, where azure_api_key displays the first 6 bits in plaintext, and the
|
||||
rest is replaced by * and the last two bits are displayed in plaintext
|
||||
|
||||
If the type is other, decode and return the Token field directly, the field displays the first 6 bits in
|
||||
plaintext, the rest is replaced by * and the last two bits are displayed in plaintext
|
||||
"""
|
||||
|
||||
ProviderService.init_supported_provider(current_user.current_tenant)
|
||||
providers = Provider.query.filter_by(tenant_id=tenant_id).all()
|
||||
|
||||
provider_list = [
|
||||
{
|
||||
'provider_name': p.provider_name,
|
||||
'provider_type': p.provider_type,
|
||||
'is_valid': p.is_valid,
|
||||
'last_used': p.last_used,
|
||||
'is_enabled': p.is_enabled,
|
||||
**({
|
||||
'quota_type': p.quota_type,
|
||||
'quota_limit': p.quota_limit,
|
||||
'quota_used': p.quota_used
|
||||
} if p.provider_type == ProviderType.SYSTEM.value else {}),
|
||||
'token': ProviderService.get_obfuscated_api_key(current_user.current_tenant,
|
||||
ProviderName(p.provider_name), only_custom=True)
|
||||
if p.provider_type == ProviderType.CUSTOM.value else None
|
||||
}
|
||||
for p in providers
|
||||
]
|
||||
provider_service = ProviderService()
|
||||
provider_list = provider_service.get_provider_list(tenant_id)
|
||||
|
||||
return provider_list
|
||||
|
||||
|
||||
class ProviderTokenApi(Resource):
|
||||
class ModelProviderValidateApi(Resource):
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self, provider):
|
||||
if provider not in [p.value for p in ProviderName]:
|
||||
abort(404)
|
||||
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
logging.log(logging.ERROR,
|
||||
f'User {current_user.id} is not authorized to update provider token, current_role is {current_user.current_tenant.current_role}')
|
||||
raise Forbidden()
|
||||
def post(self, provider_name: str):
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
|
||||
parser.add_argument('token', type=ProviderService.get_token_type(
|
||||
tenant=current_user.current_tenant,
|
||||
provider_name=ProviderName(provider)
|
||||
), required=True, nullable=False, location='json')
|
||||
|
||||
parser.add_argument('config', type=dict, required=True, nullable=False, location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
if args['token']:
|
||||
try:
|
||||
ProviderService.validate_provider_configs(
|
||||
tenant=current_user.current_tenant,
|
||||
provider_name=ProviderName(provider),
|
||||
configs=args['token']
|
||||
)
|
||||
token_is_valid = True
|
||||
except ValidateFailedError as ex:
|
||||
raise ValueError(str(ex))
|
||||
|
||||
base64_encrypted_token = ProviderService.get_encrypted_token(
|
||||
tenant=current_user.current_tenant,
|
||||
provider_name=ProviderName(provider),
|
||||
configs=args['token']
|
||||
)
|
||||
else:
|
||||
base64_encrypted_token = None
|
||||
token_is_valid = False
|
||||
|
||||
tenant = current_user.current_tenant
|
||||
|
||||
provider_model = db.session.query(Provider).filter(
|
||||
Provider.tenant_id == tenant.id,
|
||||
Provider.provider_name == provider,
|
||||
Provider.provider_type == ProviderType.CUSTOM.value
|
||||
).first()
|
||||
|
||||
# Only allow updating token for CUSTOM provider type
|
||||
if provider_model:
|
||||
provider_model.encrypted_config = base64_encrypted_token
|
||||
provider_model.is_valid = token_is_valid
|
||||
else:
|
||||
provider_model = Provider(tenant_id=tenant.id, provider_name=provider,
|
||||
provider_type=ProviderType.CUSTOM.value,
|
||||
encrypted_config=base64_encrypted_token,
|
||||
is_valid=token_is_valid)
|
||||
db.session.add(provider_model)
|
||||
|
||||
if provider in [ProviderName.OPENAI.value, ProviderName.AZURE_OPENAI.value] and provider_model.is_valid:
|
||||
other_providers = db.session.query(Provider).filter(
|
||||
Provider.tenant_id == tenant.id,
|
||||
Provider.provider_name.in_([ProviderName.OPENAI.value, ProviderName.AZURE_OPENAI.value]),
|
||||
Provider.provider_name != provider,
|
||||
Provider.provider_type == ProviderType.CUSTOM.value
|
||||
).all()
|
||||
|
||||
for other_provider in other_providers:
|
||||
other_provider.is_valid = False
|
||||
|
||||
db.session.commit()
|
||||
|
||||
if provider in [ProviderName.AZURE_OPENAI.value, ProviderName.COHERE.value,
|
||||
ProviderName.HUGGINGFACEHUB.value]:
|
||||
return {'result': 'success', 'warning': 'MOCK: This provider is not supported yet.'}, 201
|
||||
|
||||
return {'result': 'success'}, 201
|
||||
|
||||
|
||||
class ProviderTokenValidateApi(Resource):
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self, provider):
|
||||
if provider not in [p.value for p in ProviderName]:
|
||||
abort(404)
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('token', type=ProviderService.get_token_type(
|
||||
tenant=current_user.current_tenant,
|
||||
provider_name=ProviderName(provider)
|
||||
), required=True, nullable=False, location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
# todo: remove this when the provider is supported
|
||||
if provider in [ProviderName.COHERE.value,
|
||||
ProviderName.HUGGINGFACEHUB.value]:
|
||||
return {'result': 'success', 'warning': 'MOCK: This provider is not supported yet.'}
|
||||
provider_service = ProviderService()
|
||||
|
||||
result = True
|
||||
error = None
|
||||
|
||||
try:
|
||||
ProviderService.validate_provider_configs(
|
||||
tenant=current_user.current_tenant,
|
||||
provider_name=ProviderName(provider),
|
||||
configs=args['token']
|
||||
provider_service.custom_provider_config_validate(
|
||||
provider_name=provider_name,
|
||||
config=args['config']
|
||||
)
|
||||
except ValidateFailedError as e:
|
||||
except CredentialsValidateFailedError as ex:
|
||||
result = False
|
||||
error = str(e)
|
||||
error = str(ex)
|
||||
|
||||
response = {'result': 'success' if result else 'error'}
|
||||
|
||||
@@ -185,91 +60,243 @@ class ProviderTokenValidateApi(Resource):
|
||||
return response
|
||||
|
||||
|
||||
class ProviderSystemApi(Resource):
|
||||
class ModelProviderUpdateApi(Resource):
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def put(self, provider):
|
||||
if provider not in [p.value for p in ProviderName]:
|
||||
abort(404)
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('is_enabled', type=bool, required=True, location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
tenant = current_user.current_tenant_id
|
||||
|
||||
provider_model = Provider.query.filter_by(tenant_id=tenant.id, provider_name=provider).first()
|
||||
|
||||
if provider_model and provider_model.provider_type == ProviderType.SYSTEM.value:
|
||||
provider_model.is_valid = args['is_enabled']
|
||||
db.session.commit()
|
||||
elif not provider_model:
|
||||
if provider == ProviderName.OPENAI.value:
|
||||
quota_limit = current_app.config['OPENAI_HOSTED_QUOTA_LIMIT']
|
||||
elif provider == ProviderName.ANTHROPIC.value:
|
||||
quota_limit = current_app.config['ANTHROPIC_HOSTED_QUOTA_LIMIT']
|
||||
else:
|
||||
quota_limit = 0
|
||||
|
||||
ProviderService.create_system_provider(
|
||||
tenant,
|
||||
provider,
|
||||
quota_limit,
|
||||
args['is_enabled']
|
||||
)
|
||||
else:
|
||||
abort(403)
|
||||
|
||||
return {'result': 'success'}
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def get(self, provider):
|
||||
if provider not in [p.value for p in ProviderName]:
|
||||
abort(404)
|
||||
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
def post(self, provider_name: str):
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
raise Forbidden()
|
||||
|
||||
provider_model = db.session.query(Provider).filter(Provider.tenant_id == current_user.current_tenant_id,
|
||||
Provider.provider_name == provider,
|
||||
Provider.provider_type == ProviderType.SYSTEM.value).first()
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('config', type=dict, required=True, nullable=False, location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
system_model = None
|
||||
if provider_model:
|
||||
system_model = {
|
||||
'result': 'success',
|
||||
'provider': {
|
||||
'provider_name': provider_model.provider_name,
|
||||
'provider_type': provider_model.provider_type,
|
||||
'is_valid': provider_model.is_valid,
|
||||
'last_used': provider_model.last_used,
|
||||
'is_enabled': provider_model.is_enabled,
|
||||
'quota_type': provider_model.quota_type,
|
||||
'quota_limit': provider_model.quota_limit,
|
||||
'quota_used': provider_model.quota_used
|
||||
}
|
||||
provider_service = ProviderService()
|
||||
|
||||
try:
|
||||
provider_service.save_custom_provider_config(
|
||||
tenant_id=current_user.current_tenant_id,
|
||||
provider_name=provider_name,
|
||||
config=args['config']
|
||||
)
|
||||
except CredentialsValidateFailedError as ex:
|
||||
raise ValueError(str(ex))
|
||||
|
||||
return {'result': 'success'}, 201
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def delete(self, provider_name: str):
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
raise Forbidden()
|
||||
|
||||
provider_service = ProviderService()
|
||||
provider_service.delete_custom_provider(
|
||||
tenant_id=current_user.current_tenant_id,
|
||||
provider_name=provider_name
|
||||
)
|
||||
|
||||
return {'result': 'success'}, 204
|
||||
|
||||
|
||||
class ModelProviderModelValidateApi(Resource):
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self, provider_name: str):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('model_name', type=str, required=True, nullable=False, location='json')
|
||||
parser.add_argument('model_type', type=str, required=True, nullable=False,
|
||||
choices=['text-generation', 'embeddings', 'speech2text'], location='json')
|
||||
parser.add_argument('config', type=dict, required=True, nullable=False, location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
provider_service = ProviderService()
|
||||
|
||||
result = True
|
||||
error = None
|
||||
|
||||
try:
|
||||
provider_service.custom_provider_model_config_validate(
|
||||
provider_name=provider_name,
|
||||
model_name=args['model_name'],
|
||||
model_type=args['model_type'],
|
||||
config=args['config']
|
||||
)
|
||||
except CredentialsValidateFailedError as ex:
|
||||
result = False
|
||||
error = str(ex)
|
||||
|
||||
response = {'result': 'success' if result else 'error'}
|
||||
|
||||
if not result:
|
||||
response['error'] = error
|
||||
|
||||
return response
|
||||
|
||||
|
||||
class ModelProviderModelUpdateApi(Resource):
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self, provider_name: str):
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
raise Forbidden()
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('model_name', type=str, required=True, nullable=False, location='json')
|
||||
parser.add_argument('model_type', type=str, required=True, nullable=False,
|
||||
choices=['text-generation', 'embeddings', 'speech2text'], location='json')
|
||||
parser.add_argument('config', type=dict, required=True, nullable=False, location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
provider_service = ProviderService()
|
||||
|
||||
try:
|
||||
provider_service.add_or_save_custom_provider_model_config(
|
||||
tenant_id=current_user.current_tenant_id,
|
||||
provider_name=provider_name,
|
||||
model_name=args['model_name'],
|
||||
model_type=args['model_type'],
|
||||
config=args['config']
|
||||
)
|
||||
except CredentialsValidateFailedError as ex:
|
||||
raise ValueError(str(ex))
|
||||
|
||||
return {'result': 'success'}, 200
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def delete(self, provider_name: str):
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
raise Forbidden()
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('model_name', type=str, required=True, nullable=False, location='args')
|
||||
parser.add_argument('model_type', type=str, required=True, nullable=False,
|
||||
choices=['text-generation', 'embeddings', 'speech2text'], location='args')
|
||||
args = parser.parse_args()
|
||||
|
||||
provider_service = ProviderService()
|
||||
provider_service.delete_custom_provider_model(
|
||||
tenant_id=current_user.current_tenant_id,
|
||||
provider_name=provider_name,
|
||||
model_name=args['model_name'],
|
||||
model_type=args['model_type']
|
||||
)
|
||||
|
||||
return {'result': 'success'}, 204
|
||||
|
||||
|
||||
class PreferredProviderTypeUpdateApi(Resource):
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self, provider_name: str):
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
raise Forbidden()
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('preferred_provider_type', type=str, required=True, nullable=False,
|
||||
choices=['system', 'custom'], location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
provider_service = ProviderService()
|
||||
provider_service.switch_preferred_provider(
|
||||
tenant_id=current_user.current_tenant_id,
|
||||
provider_name=provider_name,
|
||||
preferred_provider_type=args['preferred_provider_type']
|
||||
)
|
||||
|
||||
return {'result': 'success'}
|
||||
|
||||
|
||||
class ModelProviderModelParameterRuleApi(Resource):
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def get(self, provider_name: str):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('model_name', type=str, required=True, nullable=False, location='args')
|
||||
args = parser.parse_args()
|
||||
|
||||
provider_service = ProviderService()
|
||||
|
||||
try:
|
||||
parameter_rules = provider_service.get_model_parameter_rules(
|
||||
tenant_id=current_user.current_tenant_id,
|
||||
model_provider_name=provider_name,
|
||||
model_name=args['model_name'],
|
||||
model_type='text-generation'
|
||||
)
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
f"Current Text Generation Model is invalid. Please switch to the available model.")
|
||||
|
||||
rules = {
|
||||
k: {
|
||||
'enabled': v.enabled,
|
||||
'min': v.min,
|
||||
'max': v.max,
|
||||
'default': v.default
|
||||
}
|
||||
else:
|
||||
abort(404)
|
||||
for k, v in vars(parameter_rules).items()
|
||||
}
|
||||
|
||||
return system_model
|
||||
return rules
|
||||
|
||||
|
||||
api.add_resource(ProviderTokenApi, '/providers/<provider>/token',
|
||||
endpoint='current_providers_token') # Deprecated
|
||||
api.add_resource(ProviderTokenValidateApi, '/providers/<provider>/token-validate',
|
||||
endpoint='current_providers_token_validate') # Deprecated
|
||||
class ModelProviderPaymentCheckoutUrlApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def get(self, provider_name: str):
|
||||
provider_service = ProviderCheckoutService()
|
||||
provider_checkout = provider_service.create_checkout(
|
||||
tenant_id=current_user.current_tenant_id,
|
||||
provider_name=provider_name,
|
||||
account=current_user
|
||||
)
|
||||
|
||||
api.add_resource(ProviderTokenApi, '/workspaces/current/providers/<provider>/token',
|
||||
endpoint='workspaces_current_providers_token') # PUT for updating provider token
|
||||
api.add_resource(ProviderTokenValidateApi, '/workspaces/current/providers/<provider>/token-validate',
|
||||
endpoint='workspaces_current_providers_token_validate') # POST for validating provider token
|
||||
return {
|
||||
'url': provider_checkout.get_checkout_url()
|
||||
}
|
||||
|
||||
api.add_resource(ProviderListApi, '/workspaces/current/providers') # GET for getting providers list
|
||||
api.add_resource(ProviderSystemApi, '/workspaces/current/providers/<provider>/system',
|
||||
endpoint='workspaces_current_providers_system') # GET for getting provider quota, PUT for updating provider status
|
||||
|
||||
class ModelProviderFreeQuotaSubmitApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self, provider_name: str):
|
||||
provider_service = ProviderService()
|
||||
result = provider_service.free_quota_submit(
|
||||
tenant_id=current_user.current_tenant_id,
|
||||
provider_name=provider_name
|
||||
)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
api.add_resource(ModelProviderListApi, '/workspaces/current/model-providers')
|
||||
api.add_resource(ModelProviderValidateApi, '/workspaces/current/model-providers/<string:provider_name>/validate')
|
||||
api.add_resource(ModelProviderUpdateApi, '/workspaces/current/model-providers/<string:provider_name>')
|
||||
api.add_resource(ModelProviderModelValidateApi,
|
||||
'/workspaces/current/model-providers/<string:provider_name>/models/validate')
|
||||
api.add_resource(ModelProviderModelUpdateApi,
|
||||
'/workspaces/current/model-providers/<string:provider_name>/models')
|
||||
api.add_resource(PreferredProviderTypeUpdateApi,
|
||||
'/workspaces/current/model-providers/<string:provider_name>/preferred-provider-type')
|
||||
api.add_resource(ModelProviderModelParameterRuleApi,
|
||||
'/workspaces/current/model-providers/<string:provider_name>/models/parameter-rules')
|
||||
api.add_resource(ModelProviderPaymentCheckoutUrlApi,
|
||||
'/workspaces/current/model-providers/<string:provider_name>/checkout-url')
|
||||
api.add_resource(ModelProviderFreeQuotaSubmitApi,
|
||||
'/workspaces/current/model-providers/<string:provider_name>/free-quota-submit')
|
||||
|
||||
109
api/controllers/console/workspace/models.py
Normal file
109
api/controllers/console/workspace/models.py
Normal file
@@ -0,0 +1,109 @@
|
||||
from flask_login import current_user
|
||||
from core.login.login import login_required
|
||||
from flask_restful import Resource, reqparse
|
||||
|
||||
from controllers.console import api
|
||||
from controllers.console.setup import setup_required
|
||||
from controllers.console.wraps import account_initialization_required
|
||||
from core.model_providers.model_provider_factory import ModelProviderFactory
|
||||
from core.model_providers.models.entity.model_params import ModelType
|
||||
from models.provider import ProviderType
|
||||
from services.provider_service import ProviderService
|
||||
|
||||
|
||||
class DefaultModelApi(Resource):
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def get(self):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('model_type', type=str, required=True, nullable=False,
|
||||
choices=['text-generation', 'embeddings', 'speech2text'], location='args')
|
||||
args = parser.parse_args()
|
||||
|
||||
tenant_id = current_user.current_tenant_id
|
||||
|
||||
provider_service = ProviderService()
|
||||
default_model = provider_service.get_default_model_of_model_type(
|
||||
tenant_id=tenant_id,
|
||||
model_type=args['model_type']
|
||||
)
|
||||
|
||||
if not default_model:
|
||||
return None
|
||||
|
||||
model_provider = ModelProviderFactory.get_preferred_model_provider(
|
||||
tenant_id,
|
||||
default_model.provider_name
|
||||
)
|
||||
|
||||
if not model_provider:
|
||||
return {
|
||||
'model_name': default_model.model_name,
|
||||
'model_type': default_model.model_type,
|
||||
'model_provider': {
|
||||
'provider_name': default_model.provider_name
|
||||
}
|
||||
}
|
||||
|
||||
provider = model_provider.provider
|
||||
rst = {
|
||||
'model_name': default_model.model_name,
|
||||
'model_type': default_model.model_type,
|
||||
'model_provider': {
|
||||
'provider_name': provider.provider_name,
|
||||
'provider_type': provider.provider_type
|
||||
}
|
||||
}
|
||||
|
||||
model_provider_rules = ModelProviderFactory.get_provider_rule(default_model.provider_name)
|
||||
if provider.provider_type == ProviderType.SYSTEM.value:
|
||||
rst['model_provider']['quota_type'] = provider.quota_type
|
||||
rst['model_provider']['quota_unit'] = model_provider_rules['system_config']['quota_unit']
|
||||
rst['model_provider']['quota_limit'] = provider.quota_limit
|
||||
rst['model_provider']['quota_used'] = provider.quota_used
|
||||
|
||||
return rst
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('model_name', type=str, required=True, nullable=False, location='json')
|
||||
parser.add_argument('model_type', type=str, required=True, nullable=False,
|
||||
choices=['text-generation', 'embeddings', 'speech2text'], location='json')
|
||||
parser.add_argument('provider_name', type=str, required=True, nullable=False, location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
provider_service = ProviderService()
|
||||
provider_service.update_default_model_of_model_type(
|
||||
tenant_id=current_user.current_tenant_id,
|
||||
model_type=args['model_type'],
|
||||
provider_name=args['provider_name'],
|
||||
model_name=args['model_name']
|
||||
)
|
||||
|
||||
return {'result': 'success'}
|
||||
|
||||
|
||||
class ValidModelApi(Resource):
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def get(self, model_type):
|
||||
ModelType.value_of(model_type)
|
||||
|
||||
provider_service = ProviderService()
|
||||
valid_models = provider_service.get_valid_model_list(
|
||||
tenant_id=current_user.current_tenant_id,
|
||||
model_type=model_type
|
||||
)
|
||||
|
||||
return valid_models
|
||||
|
||||
|
||||
api.add_resource(DefaultModelApi, '/workspaces/current/default-model')
|
||||
api.add_resource(ValidModelApi, '/workspaces/current/models/model-type/<string:model_type>')
|
||||
131
api/controllers/console/workspace/providers.py
Normal file
131
api/controllers/console/workspace/providers.py
Normal file
@@ -0,0 +1,131 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
from flask_login import current_user
|
||||
from core.login.login import login_required
|
||||
from flask_restful import Resource, reqparse
|
||||
from werkzeug.exceptions import Forbidden
|
||||
|
||||
from controllers.console import api
|
||||
from controllers.console.setup import setup_required
|
||||
from controllers.console.wraps import account_initialization_required
|
||||
from core.model_providers.providers.base import CredentialsValidateFailedError
|
||||
from models.provider import ProviderType
|
||||
from services.provider_service import ProviderService
|
||||
|
||||
|
||||
class ProviderListApi(Resource):
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def get(self):
|
||||
tenant_id = current_user.current_tenant_id
|
||||
|
||||
"""
|
||||
If the type is AZURE_OPENAI, decode and return the four fields of azure_api_type, azure_api_version:,
|
||||
azure_api_base, azure_api_key as an object, where azure_api_key displays the first 6 bits in plaintext, and the
|
||||
rest is replaced by * and the last two bits are displayed in plaintext
|
||||
|
||||
If the type is other, decode and return the Token field directly, the field displays the first 6 bits in
|
||||
plaintext, the rest is replaced by * and the last two bits are displayed in plaintext
|
||||
"""
|
||||
|
||||
provider_service = ProviderService()
|
||||
provider_info_list = provider_service.get_provider_list(tenant_id)
|
||||
|
||||
provider_list = [
|
||||
{
|
||||
'provider_name': p['provider_name'],
|
||||
'provider_type': p['provider_type'],
|
||||
'is_valid': p['is_valid'],
|
||||
'last_used': p['last_used'],
|
||||
'is_enabled': p['is_valid'],
|
||||
**({
|
||||
'quota_type': p['quota_type'],
|
||||
'quota_limit': p['quota_limit'],
|
||||
'quota_used': p['quota_used']
|
||||
} if p['provider_type'] == ProviderType.SYSTEM.value else {}),
|
||||
'token': (p['config'] if p['provider_name'] != 'openai' else p['config']['openai_api_key'])
|
||||
if p['config'] else None
|
||||
}
|
||||
for name, provider_info in provider_info_list.items()
|
||||
for p in provider_info['providers']
|
||||
]
|
||||
|
||||
return provider_list
|
||||
|
||||
|
||||
class ProviderTokenApi(Resource):
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self, provider):
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
raise Forbidden()
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('token', required=True, nullable=False, location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
if provider == 'openai':
|
||||
args['token'] = {
|
||||
'openai_api_key': args['token']
|
||||
}
|
||||
|
||||
provider_service = ProviderService()
|
||||
try:
|
||||
provider_service.save_custom_provider_config(
|
||||
tenant_id=current_user.current_tenant_id,
|
||||
provider_name=provider,
|
||||
config=args['token']
|
||||
)
|
||||
except CredentialsValidateFailedError as ex:
|
||||
raise ValueError(str(ex))
|
||||
|
||||
return {'result': 'success'}, 201
|
||||
|
||||
|
||||
class ProviderTokenValidateApi(Resource):
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self, provider):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('token', required=True, nullable=False, location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
provider_service = ProviderService()
|
||||
|
||||
if provider == 'openai':
|
||||
args['token'] = {
|
||||
'openai_api_key': args['token']
|
||||
}
|
||||
|
||||
result = True
|
||||
error = None
|
||||
|
||||
try:
|
||||
provider_service.custom_provider_config_validate(
|
||||
provider_name=provider,
|
||||
config=args['token']
|
||||
)
|
||||
except CredentialsValidateFailedError as ex:
|
||||
result = False
|
||||
error = str(ex)
|
||||
|
||||
response = {'result': 'success' if result else 'error'}
|
||||
|
||||
if not result:
|
||||
response['error'] = error
|
||||
|
||||
return response
|
||||
|
||||
|
||||
api.add_resource(ProviderTokenApi, '/workspaces/current/providers/<provider>/token',
|
||||
endpoint='workspaces_current_providers_token') # PUT for updating provider token
|
||||
api.add_resource(ProviderTokenValidateApi, '/workspaces/current/providers/<provider>/token-validate',
|
||||
endpoint='workspaces_current_providers_token_validate') # POST for validating provider token
|
||||
|
||||
api.add_resource(ProviderListApi, '/workspaces/current/providers') # GET for getting providers list
|
||||
@@ -1,6 +1,7 @@
|
||||
import json
|
||||
|
||||
from flask_login import login_required, current_user
|
||||
from flask_login import current_user
|
||||
from core.login.login import login_required
|
||||
from flask_restful import Resource, abort, reqparse
|
||||
from werkzeug.exceptions import Forbidden
|
||||
|
||||
|
||||
@@ -2,10 +2,13 @@
|
||||
import logging
|
||||
|
||||
from flask import request
|
||||
from flask_login import login_required, current_user
|
||||
from flask_restful import Resource, fields, marshal_with, reqparse, marshal
|
||||
from flask_login import current_user
|
||||
from core.login.login import login_required
|
||||
from flask_restful import Resource, fields, marshal_with, reqparse, marshal, inputs
|
||||
from flask_restful.inputs import int_range
|
||||
|
||||
from controllers.console import api
|
||||
from controllers.console.admin import admin_required
|
||||
from controllers.console.setup import setup_required
|
||||
from controllers.console.error import AccountNotLinkTenantError
|
||||
from controllers.console.wraps import account_initialization_required
|
||||
@@ -30,7 +33,7 @@ tenant_fields = {
|
||||
'created_at': TimestampField,
|
||||
'role': fields.String,
|
||||
'providers': fields.List(fields.Nested(provider_fields)),
|
||||
'in_trail': fields.Boolean,
|
||||
'in_trial': fields.Boolean,
|
||||
'trial_end_reason': fields.String,
|
||||
}
|
||||
|
||||
@@ -43,6 +46,13 @@ tenants_fields = {
|
||||
'current': fields.Boolean
|
||||
}
|
||||
|
||||
workspace_fields = {
|
||||
'id': fields.String,
|
||||
'name': fields.String,
|
||||
'status': fields.String,
|
||||
'created_at': TimestampField
|
||||
}
|
||||
|
||||
|
||||
class TenantListApi(Resource):
|
||||
@setup_required
|
||||
@@ -57,6 +67,38 @@ class TenantListApi(Resource):
|
||||
return {'workspaces': marshal(tenants, tenants_fields)}, 200
|
||||
|
||||
|
||||
class WorkspaceListApi(Resource):
|
||||
@setup_required
|
||||
@admin_required
|
||||
def get(self):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('page', type=inputs.int_range(1, 99999), required=False, default=1, location='args')
|
||||
parser.add_argument('limit', type=inputs.int_range(1, 100), required=False, default=20, location='args')
|
||||
args = parser.parse_args()
|
||||
|
||||
tenants = db.session.query(Tenant).order_by(Tenant.created_at.desc())\
|
||||
.paginate(page=args['page'], per_page=args['limit'])
|
||||
|
||||
has_more = False
|
||||
if len(tenants.items) == args['limit']:
|
||||
current_page_first_tenant = tenants[-1]
|
||||
rest_count = db.session.query(Tenant).filter(
|
||||
Tenant.created_at < current_page_first_tenant.created_at,
|
||||
Tenant.id != current_page_first_tenant.id
|
||||
).count()
|
||||
|
||||
if rest_count > 0:
|
||||
has_more = True
|
||||
total = db.session.query(Tenant).count()
|
||||
return {
|
||||
'data': marshal(tenants.items, workspace_fields),
|
||||
'has_more': has_more,
|
||||
'limit': args['limit'],
|
||||
'page': args['page'],
|
||||
'total': total
|
||||
}, 200
|
||||
|
||||
|
||||
class TenantApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@@ -92,6 +134,7 @@ class SwitchWorkspaceApi(Resource):
|
||||
|
||||
|
||||
api.add_resource(TenantListApi, '/workspaces') # GET for getting all tenants
|
||||
api.add_resource(WorkspaceListApi, '/all-workspaces') # GET for getting all tenants
|
||||
api.add_resource(TenantApi, '/workspaces/current', endpoint='workspaces_current') # GET for getting current tenant info
|
||||
api.add_resource(TenantApi, '/info', endpoint='info') # Deprecated
|
||||
api.add_resource(SwitchWorkspaceApi, '/workspaces/switch') # POST for switching tenant
|
||||
|
||||
@@ -4,8 +4,6 @@ from flask_restful import fields, marshal_with
|
||||
from controllers.service_api import api
|
||||
from controllers.service_api.wraps import AppApiResource
|
||||
|
||||
from core.llm.llm_builder import LLMBuilder
|
||||
from models.provider import ProviderName
|
||||
from models.model import App
|
||||
|
||||
|
||||
@@ -35,13 +33,12 @@ class AppParameterApi(AppApiResource):
|
||||
def get(self, app_model: App, end_user):
|
||||
"""Retrieve app parameters."""
|
||||
app_model_config = app_model.app_model_config
|
||||
provider_name = LLMBuilder.get_default_provider(app_model.tenant_id, 'whisper-1')
|
||||
|
||||
return {
|
||||
'opening_statement': app_model_config.opening_statement,
|
||||
'suggested_questions': app_model_config.suggested_questions_list,
|
||||
'suggested_questions_after_answer': app_model_config.suggested_questions_after_answer_dict,
|
||||
'speech_to_text': app_model_config.speech_to_text_dict if provider_name == ProviderName.OPENAI.value else { 'enabled': False },
|
||||
'speech_to_text': app_model_config.speech_to_text_dict,
|
||||
'more_like_this': app_model_config.more_like_this_dict,
|
||||
'user_input_form': app_model_config.user_input_form_list
|
||||
}
|
||||
|
||||
@@ -9,7 +9,7 @@ from controllers.service_api.app.error import AppUnavailableError, ProviderNotIn
|
||||
ProviderModelCurrentlyNotSupportError, NoAudioUploadedError, AudioTooLargeError, UnsupportedAudioTypeError, \
|
||||
ProviderNotSupportSpeechToTextError
|
||||
from controllers.service_api.wraps import AppApiResource
|
||||
from core.llm.error import LLMBadRequestError, LLMAuthorizationError, LLMAPIUnavailableError, LLMAPIConnectionError, \
|
||||
from core.model_providers.error import LLMBadRequestError, LLMAuthorizationError, LLMAPIUnavailableError, LLMAPIConnectionError, \
|
||||
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
|
||||
from models.model import App, AppModelConfig
|
||||
from services.audio_service import AudioService
|
||||
|
||||
@@ -14,7 +14,7 @@ from controllers.service_api.app.error import AppUnavailableError, ProviderNotIn
|
||||
ProviderModelCurrentlyNotSupportError
|
||||
from controllers.service_api.wraps import AppApiResource
|
||||
from core.conversation_message_task import PubHandler
|
||||
from core.llm.error import LLMBadRequestError, LLMAuthorizationError, LLMAPIUnavailableError, LLMAPIConnectionError, \
|
||||
from core.model_providers.error import LLMBadRequestError, LLMAuthorizationError, LLMAPIUnavailableError, LLMAPIConnectionError, \
|
||||
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
|
||||
from libs.helper import uuid_value
|
||||
from services.completion_service import CompletionService
|
||||
@@ -27,7 +27,7 @@ class CompletionApi(AppApiResource):
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('inputs', type=dict, required=True, location='json')
|
||||
parser.add_argument('query', type=str, location='json')
|
||||
parser.add_argument('query', type=str, location='json', default='')
|
||||
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
|
||||
parser.add_argument('user', type=str, location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
@@ -64,9 +64,9 @@ class ConversationDetailApi(AppApiResource):
|
||||
|
||||
try:
|
||||
ConversationService.delete(app_model, conversation_id, end_user)
|
||||
return {"result": "success"}
|
||||
except services.errors.conversation.ConversationNotExistsError:
|
||||
raise NotFound("Conversation Not Exists.")
|
||||
return {"result": "success"}, 204
|
||||
|
||||
class ConversationRenameApi(AppApiResource):
|
||||
|
||||
|
||||
@@ -11,7 +11,7 @@ from controllers.service_api.app.error import ProviderNotInitializeError
|
||||
from controllers.service_api.dataset.error import ArchivedDocumentImmutableError, DocumentIndexingError, \
|
||||
DatasetNotInitedError
|
||||
from controllers.service_api.wraps import DatasetApiResource
|
||||
from core.llm.error import ProviderTokenNotInitError
|
||||
from core.model_providers.error import ProviderTokenNotInitError
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_storage import storage
|
||||
from models.model import UploadFile
|
||||
|
||||
@@ -17,7 +17,7 @@ def validate_app_token(view=None):
|
||||
def decorated(*args, **kwargs):
|
||||
api_token = validate_and_get_api_token('app')
|
||||
|
||||
app_model = db.session.query(App).get(api_token.app_id)
|
||||
app_model = db.session.query(App).filter(App.id == api_token.app_id).first()
|
||||
if not app_model:
|
||||
raise NotFound()
|
||||
|
||||
@@ -44,7 +44,7 @@ def validate_dataset_token(view=None):
|
||||
def decorated(*args, **kwargs):
|
||||
api_token = validate_and_get_api_token('dataset')
|
||||
|
||||
dataset = db.session.query(Dataset).get(api_token.dataset_id)
|
||||
dataset = db.session.query(Dataset).filter(Dataset.id == api_token.dataset_id).first()
|
||||
if not dataset:
|
||||
raise NotFound()
|
||||
|
||||
@@ -64,14 +64,14 @@ def validate_and_get_api_token(scope=None):
|
||||
Validate and get API token.
|
||||
"""
|
||||
auth_header = request.headers.get('Authorization')
|
||||
if auth_header is None:
|
||||
raise Unauthorized()
|
||||
if auth_header is None or ' ' not in auth_header:
|
||||
raise Unauthorized("Authorization header must be provided and start with 'Bearer'")
|
||||
|
||||
auth_scheme, auth_token = auth_header.split(None, 1)
|
||||
auth_scheme = auth_scheme.lower()
|
||||
|
||||
if auth_scheme != 'bearer':
|
||||
raise Unauthorized()
|
||||
raise Unauthorized("Authorization scheme must be 'Bearer'")
|
||||
|
||||
api_token = db.session.query(ApiToken).filter(
|
||||
ApiToken.token == auth_token,
|
||||
@@ -79,7 +79,7 @@ def validate_and_get_api_token(scope=None):
|
||||
).first()
|
||||
|
||||
if not api_token:
|
||||
raise Unauthorized()
|
||||
raise Unauthorized("Access token is invalid")
|
||||
|
||||
api_token.last_used_at = datetime.utcnow()
|
||||
db.session.commit()
|
||||
|
||||
@@ -4,8 +4,6 @@ from flask_restful import marshal_with, fields
|
||||
from controllers.web import api
|
||||
from controllers.web.wraps import WebApiResource
|
||||
|
||||
from core.llm.llm_builder import LLMBuilder
|
||||
from models.provider import ProviderName
|
||||
from models.model import App
|
||||
|
||||
|
||||
@@ -34,13 +32,12 @@ class AppParameterApi(WebApiResource):
|
||||
def get(self, app_model: App, end_user):
|
||||
"""Retrieve app parameters."""
|
||||
app_model_config = app_model.app_model_config
|
||||
provider_name = LLMBuilder.get_default_provider(app_model.tenant_id, 'whisper-1')
|
||||
|
||||
return {
|
||||
'opening_statement': app_model_config.opening_statement,
|
||||
'suggested_questions': app_model_config.suggested_questions_list,
|
||||
'suggested_questions_after_answer': app_model_config.suggested_questions_after_answer_dict,
|
||||
'speech_to_text': app_model_config.speech_to_text_dict if provider_name == ProviderName.OPENAI.value else { 'enabled': False },
|
||||
'speech_to_text': app_model_config.speech_to_text_dict,
|
||||
'more_like_this': app_model_config.more_like_this_dict,
|
||||
'user_input_form': app_model_config.user_input_form_list
|
||||
}
|
||||
|
||||
@@ -10,7 +10,7 @@ from controllers.web.error import AppUnavailableError, ProviderNotInitializeErro
|
||||
ProviderQuotaExceededError, ProviderModelCurrentlyNotSupportError, NoAudioUploadedError, AudioTooLargeError, \
|
||||
UnsupportedAudioTypeError, ProviderNotSupportSpeechToTextError
|
||||
from controllers.web.wraps import WebApiResource
|
||||
from core.llm.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
|
||||
from core.model_providers.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
|
||||
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
|
||||
from services.audio_service import AudioService
|
||||
from services.errors.audio import NoAudioUploadedServiceError, AudioTooLargeServiceError, \
|
||||
|
||||
@@ -14,7 +14,7 @@ from controllers.web.error import AppUnavailableError, ConversationCompletedErro
|
||||
ProviderQuotaExceededError, ProviderModelCurrentlyNotSupportError
|
||||
from controllers.web.wraps import WebApiResource
|
||||
from core.conversation_message_task import PubHandler
|
||||
from core.llm.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
|
||||
from core.model_providers.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
|
||||
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
|
||||
from libs.helper import uuid_value
|
||||
from services.completion_service import CompletionService
|
||||
@@ -29,7 +29,7 @@ class CompletionApi(WebApiResource):
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('inputs', type=dict, required=True, location='json')
|
||||
parser.add_argument('query', type=str, location='json')
|
||||
parser.add_argument('query', type=str, location='json', default='')
|
||||
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
@@ -14,7 +14,7 @@ from controllers.web.error import NotChatAppError, CompletionRequestError, Provi
|
||||
AppMoreLikeThisDisabledError, NotCompletionAppError, AppSuggestedQuestionsAfterAnswerDisabledError, \
|
||||
ProviderQuotaExceededError, ProviderModelCurrentlyNotSupportError
|
||||
from controllers.web.wraps import WebApiResource
|
||||
from core.llm.error import LLMRateLimitError, LLMBadRequestError, LLMAuthorizationError, LLMAPIConnectionError, \
|
||||
from core.model_providers.error import LLMRateLimitError, LLMBadRequestError, LLMAuthorizationError, LLMAPIConnectionError, \
|
||||
ProviderTokenNotInitError, LLMAPIUnavailableError, QuotaExceededError, ModelCurrentlyNotSupportError
|
||||
from libs.helper import uuid_value, TimestampField
|
||||
from services.completion_service import CompletionService
|
||||
|
||||
@@ -11,13 +11,13 @@ from libs.passport import PassportService
|
||||
class PassportResource(Resource):
|
||||
"""Base resource for passport."""
|
||||
def get(self):
|
||||
app_id = request.headers.get('X-App-Code')
|
||||
if app_id is None:
|
||||
app_code = request.headers.get('X-App-Code')
|
||||
if app_code is None:
|
||||
raise Unauthorized('X-App-Code header is missing.')
|
||||
|
||||
# get site from db and check if it is normal
|
||||
site = db.session.query(Site).filter(
|
||||
Site.code == app_id,
|
||||
Site.code == app_code,
|
||||
Site.status == 'normal'
|
||||
).first()
|
||||
if not site:
|
||||
@@ -41,6 +41,7 @@ class PassportResource(Resource):
|
||||
"iss": site.app_id,
|
||||
'sub': 'Web API Passport',
|
||||
'app_id': site.app_id,
|
||||
'app_code': app_code,
|
||||
'end_user_id': end_user.id,
|
||||
}
|
||||
|
||||
|
||||
@@ -6,7 +6,7 @@ from flask_restful import Resource
|
||||
from werkzeug.exceptions import NotFound, Unauthorized
|
||||
|
||||
from extensions.ext_database import db
|
||||
from models.model import App, EndUser
|
||||
from models.model import App, EndUser, Site
|
||||
from libs.passport import PassportService
|
||||
|
||||
def validate_jwt_token(view=None):
|
||||
@@ -35,9 +35,13 @@ def decode_jwt_token():
|
||||
if auth_scheme != 'bearer':
|
||||
raise Unauthorized('Invalid Authorization header format. Expected \'Bearer <api-key>\' format.')
|
||||
decoded = PassportService().verify(tk)
|
||||
app_code = decoded.get('app_code')
|
||||
app_model = db.session.query(App).filter(App.id == decoded['app_id']).first()
|
||||
site = db.session.query(Site).filter(Site.code == app_code).first()
|
||||
if not app_model:
|
||||
raise NotFound()
|
||||
if not app_code and not site:
|
||||
raise Unauthorized('Site URL is no longer valid.')
|
||||
if app_model.enable_site is False:
|
||||
raise Unauthorized('Site is disabled.')
|
||||
end_user = db.session.query(EndUser).filter(EndUser.id == decoded['end_user_id']).first()
|
||||
|
||||
@@ -1,36 +0,0 @@
|
||||
import os
|
||||
from typing import Optional
|
||||
|
||||
import langchain
|
||||
from flask import Flask
|
||||
from pydantic import BaseModel
|
||||
|
||||
from core.callback_handler.std_out_callback_handler import DifyStdOutCallbackHandler
|
||||
from core.prompt.prompt_template import OneLineFormatter
|
||||
|
||||
|
||||
class HostedOpenAICredential(BaseModel):
|
||||
api_key: str
|
||||
|
||||
|
||||
class HostedAnthropicCredential(BaseModel):
|
||||
api_key: str
|
||||
|
||||
|
||||
class HostedLLMCredentials(BaseModel):
|
||||
openai: Optional[HostedOpenAICredential] = None
|
||||
anthropic: Optional[HostedAnthropicCredential] = None
|
||||
|
||||
|
||||
hosted_llm_credentials = HostedLLMCredentials()
|
||||
|
||||
|
||||
def init_app(app: Flask):
|
||||
if os.environ.get("DEBUG") and os.environ.get("DEBUG").lower() == 'true':
|
||||
langchain.verbose = True
|
||||
|
||||
if app.config.get("OPENAI_API_KEY"):
|
||||
hosted_llm_credentials.openai = HostedOpenAICredential(api_key=app.config.get("OPENAI_API_KEY"))
|
||||
|
||||
if app.config.get("ANTHROPIC_API_KEY"):
|
||||
hosted_llm_credentials.anthropic = HostedAnthropicCredential(api_key=app.config.get("ANTHROPIC_API_KEY"))
|
||||
|
||||
@@ -1,20 +1,17 @@
|
||||
from typing import cast, List
|
||||
from typing import List
|
||||
|
||||
from langchain import OpenAI
|
||||
from langchain.base_language import BaseLanguageModel
|
||||
from langchain.chat_models.openai import ChatOpenAI
|
||||
from langchain.schema import BaseMessage
|
||||
|
||||
from core.constant import llm_constant
|
||||
from core.model_providers.models.entity.message import to_prompt_messages
|
||||
from core.model_providers.models.llm.base import BaseLLM
|
||||
|
||||
|
||||
class CalcTokenMixin:
|
||||
|
||||
def get_num_tokens_from_messages(self, llm: BaseLanguageModel, messages: List[BaseMessage], **kwargs) -> int:
|
||||
llm = cast(ChatOpenAI, llm)
|
||||
return llm.get_num_tokens_from_messages(messages)
|
||||
def get_num_tokens_from_messages(self, model_instance: BaseLLM, messages: List[BaseMessage], **kwargs) -> int:
|
||||
return model_instance.get_num_tokens(to_prompt_messages(messages))
|
||||
|
||||
def get_message_rest_tokens(self, llm: BaseLanguageModel, messages: List[BaseMessage], **kwargs) -> int:
|
||||
def get_message_rest_tokens(self, model_instance: BaseLLM, messages: List[BaseMessage], **kwargs) -> int:
|
||||
"""
|
||||
Got the rest tokens available for the model after excluding messages tokens and completion max tokens
|
||||
|
||||
@@ -22,10 +19,9 @@ class CalcTokenMixin:
|
||||
:param messages:
|
||||
:return:
|
||||
"""
|
||||
llm = cast(ChatOpenAI, llm)
|
||||
llm_max_tokens = llm_constant.max_context_token_length[llm.model_name]
|
||||
completion_max_tokens = llm.max_tokens
|
||||
used_tokens = self.get_num_tokens_from_messages(llm, messages, **kwargs)
|
||||
llm_max_tokens = model_instance.model_rules.max_tokens.max
|
||||
completion_max_tokens = model_instance.model_kwargs.max_tokens
|
||||
used_tokens = self.get_num_tokens_from_messages(model_instance, messages, **kwargs)
|
||||
rest_tokens = llm_max_tokens - completion_max_tokens - used_tokens
|
||||
|
||||
return rest_tokens
|
||||
|
||||
@@ -4,9 +4,11 @@ from langchain.agents import OpenAIFunctionsAgent, BaseSingleActionAgent
|
||||
from langchain.callbacks.base import BaseCallbackManager
|
||||
from langchain.callbacks.manager import Callbacks
|
||||
from langchain.prompts.chat import BaseMessagePromptTemplate
|
||||
from langchain.schema import AgentAction, AgentFinish, BaseLanguageModel, SystemMessage
|
||||
from langchain.schema import AgentAction, AgentFinish, SystemMessage
|
||||
from langchain.schema.language_model import BaseLanguageModel
|
||||
from langchain.tools import BaseTool
|
||||
|
||||
from core.model_providers.models.llm.base import BaseLLM
|
||||
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
|
||||
|
||||
|
||||
@@ -14,6 +16,12 @@ class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
|
||||
"""
|
||||
An Multi Dataset Retrieve Agent driven by Router.
|
||||
"""
|
||||
model_instance: BaseLLM
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
def should_use_agent(self, query: str):
|
||||
"""
|
||||
@@ -44,14 +52,24 @@ class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
|
||||
elif len(self.tools) == 1:
|
||||
tool = next(iter(self.tools))
|
||||
tool = cast(DatasetRetrieverTool, tool)
|
||||
rst = tool.run(tool_input={'dataset_id': tool.dataset_id, 'query': kwargs['input']})
|
||||
rst = tool.run(tool_input={'query': kwargs['input']})
|
||||
return AgentFinish(return_values={"output": rst}, log=rst)
|
||||
|
||||
if intermediate_steps:
|
||||
_, observation = intermediate_steps[-1]
|
||||
return AgentFinish(return_values={"output": observation}, log=observation)
|
||||
|
||||
return super().plan(intermediate_steps, callbacks, **kwargs)
|
||||
try:
|
||||
agent_decision = super().plan(intermediate_steps, callbacks, **kwargs)
|
||||
if isinstance(agent_decision, AgentAction):
|
||||
tool_inputs = agent_decision.tool_input
|
||||
if isinstance(tool_inputs, dict) and 'query' in tool_inputs:
|
||||
tool_inputs['query'] = kwargs['input']
|
||||
agent_decision.tool_input = tool_inputs
|
||||
return agent_decision
|
||||
except Exception as e:
|
||||
new_exception = self.model_instance.handle_exceptions(e)
|
||||
raise new_exception
|
||||
|
||||
async def aplan(
|
||||
self,
|
||||
|
||||
@@ -6,7 +6,8 @@ from langchain.agents.openai_functions_agent.base import _parse_ai_message, \
|
||||
from langchain.callbacks.base import BaseCallbackManager
|
||||
from langchain.callbacks.manager import Callbacks
|
||||
from langchain.prompts.chat import BaseMessagePromptTemplate
|
||||
from langchain.schema import AgentAction, AgentFinish, SystemMessage, BaseLanguageModel
|
||||
from langchain.schema import AgentAction, AgentFinish, SystemMessage
|
||||
from langchain.schema.language_model import BaseLanguageModel
|
||||
from langchain.tools import BaseTool
|
||||
|
||||
from core.agent.agent.calc_token_mixin import ExceededLLMTokensLimitError
|
||||
@@ -44,14 +45,18 @@ class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, OpenAIFunctio
|
||||
:return:
|
||||
"""
|
||||
original_max_tokens = self.llm.max_tokens
|
||||
self.llm.max_tokens = 15
|
||||
self.llm.max_tokens = 40
|
||||
|
||||
prompt = self.prompt.format_prompt(input=query, agent_scratchpad=[])
|
||||
messages = prompt.to_messages()
|
||||
|
||||
predicted_message = self.llm.predict_messages(
|
||||
messages, functions=self.functions, callbacks=None
|
||||
)
|
||||
try:
|
||||
predicted_message = self.llm.predict_messages(
|
||||
messages, functions=self.functions, callbacks=None
|
||||
)
|
||||
except Exception as e:
|
||||
new_exception = self.model_instance.handle_exceptions(e)
|
||||
raise new_exception
|
||||
|
||||
function_call = predicted_message.additional_kwargs.get("function_call", {})
|
||||
|
||||
@@ -84,7 +89,7 @@ class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, OpenAIFunctio
|
||||
|
||||
# summarize messages if rest_tokens < 0
|
||||
try:
|
||||
messages = self.summarize_messages_if_needed(self.llm, messages, functions=self.functions)
|
||||
messages = self.summarize_messages_if_needed(messages, functions=self.functions)
|
||||
except ExceededLLMTokensLimitError as e:
|
||||
return AgentFinish(return_values={"output": str(e)}, log=str(e))
|
||||
|
||||
@@ -92,6 +97,13 @@ class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, OpenAIFunctio
|
||||
messages, functions=self.functions, callbacks=callbacks
|
||||
)
|
||||
agent_decision = _parse_ai_message(predicted_message)
|
||||
|
||||
if isinstance(agent_decision, AgentAction) and agent_decision.tool == 'dataset':
|
||||
tool_inputs = agent_decision.tool_input
|
||||
if isinstance(tool_inputs, dict) and 'query' in tool_inputs:
|
||||
tool_inputs['query'] = kwargs['input']
|
||||
agent_decision.tool_input = tool_inputs
|
||||
|
||||
return agent_decision
|
||||
|
||||
@classmethod
|
||||
|
||||
@@ -3,20 +3,28 @@ from typing import cast, List
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.chat_models.openai import _convert_message_to_dict
|
||||
from langchain.memory.summary import SummarizerMixin
|
||||
from langchain.schema import SystemMessage, HumanMessage, BaseMessage, AIMessage, BaseLanguageModel
|
||||
from langchain.schema import SystemMessage, HumanMessage, BaseMessage, AIMessage
|
||||
from langchain.schema.language_model import BaseLanguageModel
|
||||
from pydantic import BaseModel
|
||||
|
||||
from core.agent.agent.calc_token_mixin import ExceededLLMTokensLimitError, CalcTokenMixin
|
||||
from core.model_providers.models.llm.base import BaseLLM
|
||||
|
||||
|
||||
class OpenAIFunctionCallSummarizeMixin(BaseModel, CalcTokenMixin):
|
||||
moving_summary_buffer: str = ""
|
||||
moving_summary_index: int = 0
|
||||
summary_llm: BaseLanguageModel
|
||||
summary_llm: BaseLanguageModel = None
|
||||
model_instance: BaseLLM
|
||||
|
||||
def summarize_messages_if_needed(self, llm: BaseLanguageModel, messages: List[BaseMessage], **kwargs) -> List[BaseMessage]:
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
def summarize_messages_if_needed(self, messages: List[BaseMessage], **kwargs) -> List[BaseMessage]:
|
||||
# calculate rest tokens and summarize previous function observation messages if rest_tokens < 0
|
||||
rest_tokens = self.get_message_rest_tokens(llm, messages, **kwargs)
|
||||
rest_tokens = self.get_message_rest_tokens(self.model_instance, messages, **kwargs)
|
||||
rest_tokens = rest_tokens - 20 # to deal with the inaccuracy of rest_tokens
|
||||
if rest_tokens >= 0:
|
||||
return messages
|
||||
@@ -58,12 +66,12 @@ class OpenAIFunctionCallSummarizeMixin(BaseModel, CalcTokenMixin):
|
||||
|
||||
return new_messages
|
||||
|
||||
def get_num_tokens_from_messages(self, llm: BaseLanguageModel, messages: List[BaseMessage], **kwargs) -> int:
|
||||
def get_num_tokens_from_messages(self, model_instance: BaseLLM, messages: List[BaseMessage], **kwargs) -> int:
|
||||
"""Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package.
|
||||
|
||||
Official documentation: https://github.com/openai/openai-cookbook/blob/
|
||||
main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb"""
|
||||
llm = cast(ChatOpenAI, llm)
|
||||
llm = cast(ChatOpenAI, model_instance.client)
|
||||
model, encoding = llm._get_encoding_model()
|
||||
if model.startswith("gpt-3.5-turbo"):
|
||||
# every message follows <im_start>{role/name}\n{content}<im_end>\n
|
||||
|
||||
@@ -6,7 +6,8 @@ from langchain.agents.openai_functions_multi_agent.base import OpenAIMultiFuncti
|
||||
from langchain.callbacks.base import BaseCallbackManager
|
||||
from langchain.callbacks.manager import Callbacks
|
||||
from langchain.prompts.chat import BaseMessagePromptTemplate
|
||||
from langchain.schema import AgentAction, AgentFinish, SystemMessage, BaseLanguageModel
|
||||
from langchain.schema import AgentAction, AgentFinish, SystemMessage
|
||||
from langchain.schema.language_model import BaseLanguageModel
|
||||
from langchain.tools import BaseTool
|
||||
|
||||
from core.agent.agent.calc_token_mixin import ExceededLLMTokensLimitError
|
||||
@@ -49,9 +50,13 @@ class AutoSummarizingOpenMultiAIFunctionCallAgent(OpenAIMultiFunctionsAgent, Ope
|
||||
prompt = self.prompt.format_prompt(input=query, agent_scratchpad=[])
|
||||
messages = prompt.to_messages()
|
||||
|
||||
predicted_message = self.llm.predict_messages(
|
||||
messages, functions=self.functions, callbacks=None
|
||||
)
|
||||
try:
|
||||
predicted_message = self.llm.predict_messages(
|
||||
messages, functions=self.functions, callbacks=None
|
||||
)
|
||||
except Exception as e:
|
||||
new_exception = self.model_instance.handle_exceptions(e)
|
||||
raise new_exception
|
||||
|
||||
function_call = predicted_message.additional_kwargs.get("function_call", {})
|
||||
|
||||
@@ -84,7 +89,7 @@ class AutoSummarizingOpenMultiAIFunctionCallAgent(OpenAIMultiFunctionsAgent, Ope
|
||||
|
||||
# summarize messages if rest_tokens < 0
|
||||
try:
|
||||
messages = self.summarize_messages_if_needed(self.llm, messages, functions=self.functions)
|
||||
messages = self.summarize_messages_if_needed(messages, functions=self.functions)
|
||||
except ExceededLLMTokensLimitError as e:
|
||||
return AgentFinish(return_values={"output": str(e)}, log=str(e))
|
||||
|
||||
|
||||
@@ -10,7 +10,7 @@ from langchain.schema import AgentAction, AgentFinish, OutputParserException
|
||||
class StructuredChatOutputParser(LCStructuredChatOutputParser):
|
||||
def parse(self, text: str) -> Union[AgentAction, AgentFinish]:
|
||||
try:
|
||||
action_match = re.search(r"```(.*?)\n(.*?)```?", text, re.DOTALL)
|
||||
action_match = re.search(r"```(\w*)\n?({.*?)```", text, re.DOTALL)
|
||||
if action_match is not None:
|
||||
response = json.loads(action_match.group(2).strip(), strict=False)
|
||||
if isinstance(response, list):
|
||||
@@ -26,4 +26,4 @@ class StructuredChatOutputParser(LCStructuredChatOutputParser):
|
||||
else:
|
||||
return AgentFinish({"output": text}, text)
|
||||
except Exception as e:
|
||||
raise OutputParserException(f"Could not parse LLM output: {text}") from e
|
||||
raise OutputParserException(f"Could not parse LLM output: {text}")
|
||||
|
||||
173
api/core/agent/agent/structed_multi_dataset_router_agent.py
Normal file
173
api/core/agent/agent/structed_multi_dataset_router_agent.py
Normal file
@@ -0,0 +1,173 @@
|
||||
import re
|
||||
from typing import List, Tuple, Any, Union, Sequence, Optional, cast
|
||||
|
||||
from langchain import BasePromptTemplate
|
||||
from langchain.agents import StructuredChatAgent, AgentOutputParser, Agent
|
||||
from langchain.agents.structured_chat.base import HUMAN_MESSAGE_TEMPLATE
|
||||
from langchain.base_language import BaseLanguageModel
|
||||
from langchain.callbacks.base import BaseCallbackManager
|
||||
from langchain.callbacks.manager import Callbacks
|
||||
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate
|
||||
from langchain.schema import AgentAction, AgentFinish, OutputParserException
|
||||
from langchain.tools import BaseTool
|
||||
from langchain.agents.structured_chat.prompt import PREFIX, SUFFIX
|
||||
|
||||
from core.model_providers.models.llm.base import BaseLLM
|
||||
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
|
||||
|
||||
FORMAT_INSTRUCTIONS = """Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
|
||||
The nouns in the format of "Thought", "Action", "Action Input", "Final Answer" must be expressed in English.
|
||||
Valid "action" values: "Final Answer" or {tool_names}
|
||||
|
||||
Provide only ONE action per $JSON_BLOB, as shown:
|
||||
|
||||
```
|
||||
{{{{
|
||||
"action": $TOOL_NAME,
|
||||
"action_input": $INPUT
|
||||
}}}}
|
||||
```
|
||||
|
||||
Follow this format:
|
||||
|
||||
Question: input question to answer
|
||||
Thought: consider previous and subsequent steps
|
||||
Action:
|
||||
```
|
||||
$JSON_BLOB
|
||||
```
|
||||
Observation: action result
|
||||
... (repeat Thought/Action/Observation N times)
|
||||
Thought: I know what to respond
|
||||
Action:
|
||||
```
|
||||
{{{{
|
||||
"action": "Final Answer",
|
||||
"action_input": "Final response to human"
|
||||
}}}}
|
||||
```"""
|
||||
|
||||
|
||||
class StructuredMultiDatasetRouterAgent(StructuredChatAgent):
|
||||
model_instance: BaseLLM
|
||||
dataset_tools: Sequence[BaseTool]
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
def should_use_agent(self, query: str):
|
||||
"""
|
||||
return should use agent
|
||||
Using the ReACT mode to determine whether an agent is needed is costly,
|
||||
so it's better to just use an Agent for reasoning, which is cheaper.
|
||||
|
||||
:param query:
|
||||
:return:
|
||||
"""
|
||||
return True
|
||||
|
||||
def plan(
|
||||
self,
|
||||
intermediate_steps: List[Tuple[AgentAction, str]],
|
||||
callbacks: Callbacks = None,
|
||||
**kwargs: Any,
|
||||
) -> Union[AgentAction, AgentFinish]:
|
||||
"""Given input, decided what to do.
|
||||
|
||||
Args:
|
||||
intermediate_steps: Steps the LLM has taken to date,
|
||||
along with observations
|
||||
callbacks: Callbacks to run.
|
||||
**kwargs: User inputs.
|
||||
|
||||
Returns:
|
||||
Action specifying what tool to use.
|
||||
"""
|
||||
if len(self.dataset_tools) == 0:
|
||||
return AgentFinish(return_values={"output": ''}, log='')
|
||||
elif len(self.dataset_tools) == 1:
|
||||
tool = next(iter(self.dataset_tools))
|
||||
tool = cast(DatasetRetrieverTool, tool)
|
||||
rst = tool.run(tool_input={'query': kwargs['input']})
|
||||
return AgentFinish(return_values={"output": rst}, log=rst)
|
||||
|
||||
full_inputs = self.get_full_inputs(intermediate_steps, **kwargs)
|
||||
|
||||
try:
|
||||
full_output = self.llm_chain.predict(callbacks=callbacks, **full_inputs)
|
||||
except Exception as e:
|
||||
new_exception = self.model_instance.handle_exceptions(e)
|
||||
raise new_exception
|
||||
|
||||
try:
|
||||
agent_decision = self.output_parser.parse(full_output)
|
||||
if isinstance(agent_decision, AgentAction):
|
||||
tool_inputs = agent_decision.tool_input
|
||||
if isinstance(tool_inputs, dict) and 'query' in tool_inputs:
|
||||
tool_inputs['query'] = kwargs['input']
|
||||
agent_decision.tool_input = tool_inputs
|
||||
return agent_decision
|
||||
except OutputParserException:
|
||||
return AgentFinish({"output": "I'm sorry, the answer of model is invalid, "
|
||||
"I don't know how to respond to that."}, "")
|
||||
@classmethod
|
||||
def create_prompt(
|
||||
cls,
|
||||
tools: Sequence[BaseTool],
|
||||
prefix: str = PREFIX,
|
||||
suffix: str = SUFFIX,
|
||||
human_message_template: str = HUMAN_MESSAGE_TEMPLATE,
|
||||
format_instructions: str = FORMAT_INSTRUCTIONS,
|
||||
input_variables: Optional[List[str]] = None,
|
||||
memory_prompts: Optional[List[BasePromptTemplate]] = None,
|
||||
) -> BasePromptTemplate:
|
||||
tool_strings = []
|
||||
for tool in tools:
|
||||
args_schema = re.sub("}", "}}}}", re.sub("{", "{{{{", str(tool.args)))
|
||||
tool_strings.append(f"{tool.name}: {tool.description}, args: {args_schema}")
|
||||
formatted_tools = "\n".join(tool_strings)
|
||||
unique_tool_names = set(tool.name for tool in tools)
|
||||
tool_names = ", ".join('"' + name + '"' for name in unique_tool_names)
|
||||
format_instructions = format_instructions.format(tool_names=tool_names)
|
||||
template = "\n\n".join([prefix, formatted_tools, format_instructions, suffix])
|
||||
if input_variables is None:
|
||||
input_variables = ["input", "agent_scratchpad"]
|
||||
_memory_prompts = memory_prompts or []
|
||||
messages = [
|
||||
SystemMessagePromptTemplate.from_template(template),
|
||||
*_memory_prompts,
|
||||
HumanMessagePromptTemplate.from_template(human_message_template),
|
||||
]
|
||||
return ChatPromptTemplate(input_variables=input_variables, messages=messages)
|
||||
|
||||
@classmethod
|
||||
def from_llm_and_tools(
|
||||
cls,
|
||||
llm: BaseLanguageModel,
|
||||
tools: Sequence[BaseTool],
|
||||
callback_manager: Optional[BaseCallbackManager] = None,
|
||||
output_parser: Optional[AgentOutputParser] = None,
|
||||
prefix: str = PREFIX,
|
||||
suffix: str = SUFFIX,
|
||||
human_message_template: str = HUMAN_MESSAGE_TEMPLATE,
|
||||
format_instructions: str = FORMAT_INSTRUCTIONS,
|
||||
input_variables: Optional[List[str]] = None,
|
||||
memory_prompts: Optional[List[BasePromptTemplate]] = None,
|
||||
**kwargs: Any,
|
||||
) -> Agent:
|
||||
return super().from_llm_and_tools(
|
||||
llm=llm,
|
||||
tools=tools,
|
||||
callback_manager=callback_manager,
|
||||
output_parser=output_parser,
|
||||
prefix=prefix,
|
||||
suffix=suffix,
|
||||
human_message_template=human_message_template,
|
||||
format_instructions=format_instructions,
|
||||
input_variables=input_variables,
|
||||
memory_prompts=memory_prompts,
|
||||
dataset_tools=tools,
|
||||
**kwargs,
|
||||
)
|
||||
@@ -14,7 +14,7 @@ from langchain.tools import BaseTool
|
||||
from langchain.agents.structured_chat.prompt import PREFIX, SUFFIX
|
||||
|
||||
from core.agent.agent.calc_token_mixin import CalcTokenMixin, ExceededLLMTokensLimitError
|
||||
|
||||
from core.model_providers.models.llm.base import BaseLLM
|
||||
|
||||
FORMAT_INSTRUCTIONS = """Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
|
||||
The nouns in the format of "Thought", "Action", "Action Input", "Final Answer" must be expressed in English.
|
||||
@@ -52,7 +52,13 @@ Action:
|
||||
class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
|
||||
moving_summary_buffer: str = ""
|
||||
moving_summary_index: int = 0
|
||||
summary_llm: BaseLanguageModel
|
||||
summary_llm: BaseLanguageModel = None
|
||||
model_instance: BaseLLM
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
def should_use_agent(self, query: str):
|
||||
"""
|
||||
@@ -83,26 +89,36 @@ class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
|
||||
Action specifying what tool to use.
|
||||
"""
|
||||
full_inputs = self.get_full_inputs(intermediate_steps, **kwargs)
|
||||
|
||||
prompts, _ = self.llm_chain.prep_prompts(input_list=[self.llm_chain.prep_inputs(full_inputs)])
|
||||
|
||||
messages = []
|
||||
if prompts:
|
||||
messages = prompts[0].to_messages()
|
||||
|
||||
rest_tokens = self.get_message_rest_tokens(self.llm_chain.llm, messages)
|
||||
rest_tokens = self.get_message_rest_tokens(self.model_instance, messages)
|
||||
if rest_tokens < 0:
|
||||
full_inputs = self.summarize_messages(intermediate_steps, **kwargs)
|
||||
|
||||
full_output = self.llm_chain.predict(callbacks=callbacks, **full_inputs)
|
||||
try:
|
||||
full_output = self.llm_chain.predict(callbacks=callbacks, **full_inputs)
|
||||
except Exception as e:
|
||||
new_exception = self.model_instance.handle_exceptions(e)
|
||||
raise new_exception
|
||||
|
||||
try:
|
||||
return self.output_parser.parse(full_output)
|
||||
agent_decision = self.output_parser.parse(full_output)
|
||||
if isinstance(agent_decision, AgentAction) and agent_decision.tool == 'dataset':
|
||||
tool_inputs = agent_decision.tool_input
|
||||
if isinstance(tool_inputs, dict) and 'query' in tool_inputs:
|
||||
tool_inputs['query'] = kwargs['input']
|
||||
agent_decision.tool_input = tool_inputs
|
||||
return agent_decision
|
||||
except OutputParserException:
|
||||
return AgentFinish({"output": "I'm sorry, the answer of model is invalid, "
|
||||
"I don't know how to respond to that."}, "")
|
||||
|
||||
def summarize_messages(self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs):
|
||||
if len(intermediate_steps) >= 2:
|
||||
if len(intermediate_steps) >= 2 and self.summary_llm:
|
||||
should_summary_intermediate_steps = intermediate_steps[self.moving_summary_index:-1]
|
||||
should_summary_messages = [AIMessage(content=observation)
|
||||
for _, observation in should_summary_intermediate_steps]
|
||||
|
||||
@@ -3,7 +3,6 @@ import logging
|
||||
from typing import Union, Optional
|
||||
|
||||
from langchain.agents import BaseSingleActionAgent, BaseMultiActionAgent
|
||||
from langchain.base_language import BaseLanguageModel
|
||||
from langchain.callbacks.manager import Callbacks
|
||||
from langchain.memory.chat_memory import BaseChatMemory
|
||||
from langchain.tools import BaseTool
|
||||
@@ -13,14 +12,17 @@ from core.agent.agent.multi_dataset_router_agent import MultiDatasetRouterAgent
|
||||
from core.agent.agent.openai_function_call import AutoSummarizingOpenAIFunctionCallAgent
|
||||
from core.agent.agent.openai_multi_function_call import AutoSummarizingOpenMultiAIFunctionCallAgent
|
||||
from core.agent.agent.output_parser.structured_chat import StructuredChatOutputParser
|
||||
from core.agent.agent.structed_multi_dataset_router_agent import StructuredMultiDatasetRouterAgent
|
||||
from core.agent.agent.structured_chat import AutoSummarizingStructuredChatAgent
|
||||
from langchain.agents import AgentExecutor as LCAgentExecutor
|
||||
|
||||
from core.model_providers.models.llm.base import BaseLLM
|
||||
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
|
||||
|
||||
|
||||
class PlanningStrategy(str, enum.Enum):
|
||||
ROUTER = 'router'
|
||||
REACT_ROUTER = 'react_router'
|
||||
REACT = 'react'
|
||||
FUNCTION_CALL = 'function_call'
|
||||
MULTI_FUNCTION_CALL = 'multi_function_call'
|
||||
@@ -28,10 +30,9 @@ class PlanningStrategy(str, enum.Enum):
|
||||
|
||||
class AgentConfiguration(BaseModel):
|
||||
strategy: PlanningStrategy
|
||||
llm: BaseLanguageModel
|
||||
model_instance: BaseLLM
|
||||
tools: list[BaseTool]
|
||||
summary_llm: BaseLanguageModel
|
||||
dataset_llm: BaseLanguageModel
|
||||
summary_model_instance: BaseLLM = None
|
||||
memory: Optional[BaseChatMemory] = None
|
||||
callbacks: Callbacks = None
|
||||
max_iterations: int = 6
|
||||
@@ -60,36 +61,52 @@ class AgentExecutor:
|
||||
def _init_agent(self) -> Union[BaseSingleActionAgent | BaseMultiActionAgent]:
|
||||
if self.configuration.strategy == PlanningStrategy.REACT:
|
||||
agent = AutoSummarizingStructuredChatAgent.from_llm_and_tools(
|
||||
llm=self.configuration.llm,
|
||||
model_instance=self.configuration.model_instance,
|
||||
llm=self.configuration.model_instance.client,
|
||||
tools=self.configuration.tools,
|
||||
output_parser=StructuredChatOutputParser(),
|
||||
summary_llm=self.configuration.summary_llm,
|
||||
summary_llm=self.configuration.summary_model_instance.client
|
||||
if self.configuration.summary_model_instance else None,
|
||||
verbose=True
|
||||
)
|
||||
elif self.configuration.strategy == PlanningStrategy.FUNCTION_CALL:
|
||||
agent = AutoSummarizingOpenAIFunctionCallAgent.from_llm_and_tools(
|
||||
llm=self.configuration.llm,
|
||||
model_instance=self.configuration.model_instance,
|
||||
llm=self.configuration.model_instance.client,
|
||||
tools=self.configuration.tools,
|
||||
extra_prompt_messages=self.configuration.memory.buffer if self.configuration.memory else None, # used for read chat histories memory
|
||||
summary_llm=self.configuration.summary_llm,
|
||||
summary_llm=self.configuration.summary_model_instance.client
|
||||
if self.configuration.summary_model_instance else None,
|
||||
verbose=True
|
||||
)
|
||||
elif self.configuration.strategy == PlanningStrategy.MULTI_FUNCTION_CALL:
|
||||
agent = AutoSummarizingOpenMultiAIFunctionCallAgent.from_llm_and_tools(
|
||||
llm=self.configuration.llm,
|
||||
model_instance=self.configuration.model_instance,
|
||||
llm=self.configuration.model_instance.client,
|
||||
tools=self.configuration.tools,
|
||||
extra_prompt_messages=self.configuration.memory.buffer if self.configuration.memory else None, # used for read chat histories memory
|
||||
summary_llm=self.configuration.summary_llm,
|
||||
summary_llm=self.configuration.summary_model_instance.client
|
||||
if self.configuration.summary_model_instance else None,
|
||||
verbose=True
|
||||
)
|
||||
elif self.configuration.strategy == PlanningStrategy.ROUTER:
|
||||
self.configuration.tools = [t for t in self.configuration.tools if isinstance(t, DatasetRetrieverTool)]
|
||||
agent = MultiDatasetRouterAgent.from_llm_and_tools(
|
||||
llm=self.configuration.dataset_llm,
|
||||
model_instance=self.configuration.model_instance,
|
||||
llm=self.configuration.model_instance.client,
|
||||
tools=self.configuration.tools,
|
||||
extra_prompt_messages=self.configuration.memory.buffer if self.configuration.memory else None,
|
||||
verbose=True
|
||||
)
|
||||
elif self.configuration.strategy == PlanningStrategy.REACT_ROUTER:
|
||||
self.configuration.tools = [t for t in self.configuration.tools if isinstance(t, DatasetRetrieverTool)]
|
||||
agent = StructuredMultiDatasetRouterAgent.from_llm_and_tools(
|
||||
model_instance=self.configuration.model_instance,
|
||||
llm=self.configuration.model_instance.client,
|
||||
tools=self.configuration.tools,
|
||||
output_parser=StructuredChatOutputParser(),
|
||||
verbose=True
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError(f"Unknown Agent Strategy: {self.configuration.strategy}")
|
||||
|
||||
|
||||
@@ -10,15 +10,17 @@ from langchain.schema import AgentAction, AgentFinish, LLMResult, ChatGeneration
|
||||
|
||||
from core.callback_handler.entity.agent_loop import AgentLoop
|
||||
from core.conversation_message_task import ConversationMessageTask
|
||||
from core.model_providers.models.entity.message import PromptMessage
|
||||
from core.model_providers.models.llm.base import BaseLLM
|
||||
|
||||
|
||||
class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
|
||||
"""Callback Handler that prints to std out."""
|
||||
raise_error: bool = True
|
||||
|
||||
def __init__(self, model_name, conversation_message_task: ConversationMessageTask) -> None:
|
||||
def __init__(self, model_instant: BaseLLM, conversation_message_task: ConversationMessageTask) -> None:
|
||||
"""Initialize callback handler."""
|
||||
self.model_name = model_name
|
||||
self.model_instant = model_instant
|
||||
self.conversation_message_task = conversation_message_task
|
||||
self._agent_loops = []
|
||||
self._current_loop = None
|
||||
@@ -67,6 +69,10 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
|
||||
self._current_loop.status = 'llm_end'
|
||||
if response.llm_output:
|
||||
self._current_loop.prompt_tokens = response.llm_output['token_usage']['prompt_tokens']
|
||||
else:
|
||||
self._current_loop.prompt_tokens = self.model_instant.get_num_tokens(
|
||||
[PromptMessage(content=self._current_loop.prompt)]
|
||||
)
|
||||
completion_generation = response.generations[0][0]
|
||||
if isinstance(completion_generation, ChatGeneration):
|
||||
completion_message = completion_generation.message
|
||||
@@ -80,11 +86,15 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
|
||||
|
||||
if response.llm_output:
|
||||
self._current_loop.completion_tokens = response.llm_output['token_usage']['completion_tokens']
|
||||
else:
|
||||
self._current_loop.completion_tokens = self.model_instant.get_num_tokens(
|
||||
[PromptMessage(content=self._current_loop.completion)]
|
||||
)
|
||||
|
||||
def on_llm_error(
|
||||
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
|
||||
) -> None:
|
||||
logging.error(error)
|
||||
logging.debug("Agent on_llm_error: %s", error)
|
||||
self._agent_loops = []
|
||||
self._current_loop = None
|
||||
self._message_agent_thought = None
|
||||
@@ -152,7 +162,7 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
|
||||
self._current_loop.latency = self._current_loop.completed_at - self._current_loop.started_at
|
||||
|
||||
self.conversation_message_task.on_agent_end(
|
||||
self._message_agent_thought, self.model_name, self._current_loop
|
||||
self._message_agent_thought, self.model_instant, self._current_loop
|
||||
)
|
||||
|
||||
self._agent_loops.append(self._current_loop)
|
||||
@@ -163,7 +173,7 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
|
||||
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
|
||||
) -> None:
|
||||
"""Do nothing."""
|
||||
logging.error(error)
|
||||
logging.debug("Agent on_tool_error: %s", error)
|
||||
self._agent_loops = []
|
||||
self._current_loop = None
|
||||
self._message_agent_thought = None
|
||||
@@ -183,7 +193,7 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
|
||||
)
|
||||
|
||||
self.conversation_message_task.on_agent_end(
|
||||
self._message_agent_thought, self.model_name, self._current_loop
|
||||
self._message_agent_thought, self.model_instant, self._current_loop
|
||||
)
|
||||
|
||||
self._agent_loops.append(self._current_loop)
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import json
|
||||
import logging
|
||||
from json import JSONDecodeError
|
||||
|
||||
from typing import Any, Dict, List, Union, Optional
|
||||
|
||||
@@ -44,10 +45,15 @@ class DatasetToolCallbackHandler(BaseCallbackHandler):
|
||||
input_str: str,
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
# tool_name = serialized.get('name')
|
||||
input_dict = json.loads(input_str.replace("'", "\""))
|
||||
dataset_id = input_dict.get('dataset_id')
|
||||
query = input_dict.get('query')
|
||||
tool_name: str = serialized.get('name')
|
||||
dataset_id = tool_name.removeprefix('dataset-')
|
||||
|
||||
try:
|
||||
input_dict = json.loads(input_str.replace("'", "\""))
|
||||
query = input_dict.get('query')
|
||||
except JSONDecodeError:
|
||||
query = input_str
|
||||
|
||||
self.conversation_message_task.on_dataset_query_end(DatasetQueryObj(dataset_id=dataset_id, query=query))
|
||||
|
||||
def on_tool_end(
|
||||
@@ -68,4 +74,4 @@ class DatasetToolCallbackHandler(BaseCallbackHandler):
|
||||
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
|
||||
) -> None:
|
||||
"""Do nothing."""
|
||||
logging.error(error)
|
||||
logging.debug("Dataset tool on_llm_error: %s", error)
|
||||
|
||||
@@ -3,18 +3,20 @@ import time
|
||||
from typing import Any, Dict, List, Union
|
||||
|
||||
from langchain.callbacks.base import BaseCallbackHandler
|
||||
from langchain.schema import LLMResult, BaseMessage, BaseLanguageModel
|
||||
from langchain.schema import LLMResult, BaseMessage
|
||||
|
||||
from core.callback_handler.entity.llm_message import LLMMessage
|
||||
from core.conversation_message_task import ConversationMessageTask, ConversationTaskStoppedException
|
||||
from core.model_providers.models.entity.message import to_prompt_messages, PromptMessage
|
||||
from core.model_providers.models.llm.base import BaseLLM
|
||||
|
||||
|
||||
class LLMCallbackHandler(BaseCallbackHandler):
|
||||
raise_error: bool = True
|
||||
|
||||
def __init__(self, llm: BaseLanguageModel,
|
||||
def __init__(self, model_instance: BaseLLM,
|
||||
conversation_message_task: ConversationMessageTask):
|
||||
self.llm = llm
|
||||
self.model_instance = model_instance
|
||||
self.llm_message = LLMMessage()
|
||||
self.start_at = None
|
||||
self.conversation_message_task = conversation_message_task
|
||||
@@ -46,7 +48,7 @@ class LLMCallbackHandler(BaseCallbackHandler):
|
||||
})
|
||||
|
||||
self.llm_message.prompt = real_prompts
|
||||
self.llm_message.prompt_tokens = self.llm.get_num_tokens_from_messages(messages[0])
|
||||
self.llm_message.prompt_tokens = self.model_instance.get_num_tokens(to_prompt_messages(messages[0]))
|
||||
|
||||
def on_llm_start(
|
||||
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
|
||||
@@ -58,7 +60,7 @@ class LLMCallbackHandler(BaseCallbackHandler):
|
||||
"text": prompts[0]
|
||||
}]
|
||||
|
||||
self.llm_message.prompt_tokens = self.llm.get_num_tokens(prompts[0])
|
||||
self.llm_message.prompt_tokens = self.model_instance.get_num_tokens([PromptMessage(content=prompts[0])])
|
||||
|
||||
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
|
||||
end_at = time.perf_counter()
|
||||
@@ -68,7 +70,7 @@ class LLMCallbackHandler(BaseCallbackHandler):
|
||||
self.conversation_message_task.append_message_text(response.generations[0][0].text)
|
||||
self.llm_message.completion = response.generations[0][0].text
|
||||
|
||||
self.llm_message.completion_tokens = self.llm.get_num_tokens(self.llm_message.completion)
|
||||
self.llm_message.completion_tokens = self.model_instance.get_num_tokens([PromptMessage(content=self.llm_message.completion)])
|
||||
|
||||
self.conversation_message_task.save_message(self.llm_message)
|
||||
|
||||
@@ -89,7 +91,9 @@ class LLMCallbackHandler(BaseCallbackHandler):
|
||||
if self.conversation_message_task.streaming:
|
||||
end_at = time.perf_counter()
|
||||
self.llm_message.latency = end_at - self.start_at
|
||||
self.llm_message.completion_tokens = self.llm.get_num_tokens(self.llm_message.completion)
|
||||
self.llm_message.completion_tokens = self.model_instance.get_num_tokens(
|
||||
[PromptMessage(content=self.llm_message.completion)]
|
||||
)
|
||||
self.conversation_message_task.save_message(llm_message=self.llm_message, by_stopped=True)
|
||||
else:
|
||||
logging.error(error)
|
||||
logging.debug("on_llm_error: %s", error)
|
||||
|
||||
@@ -5,9 +5,7 @@ from typing import Any, Dict, Union
|
||||
|
||||
from langchain.callbacks.base import BaseCallbackHandler
|
||||
|
||||
from core.callback_handler.agent_loop_gather_callback_handler import AgentLoopGatherCallbackHandler
|
||||
from core.callback_handler.entity.chain_result import ChainResult
|
||||
from core.constant import llm_constant
|
||||
from core.conversation_message_task import ConversationMessageTask
|
||||
|
||||
|
||||
@@ -74,5 +72,5 @@ class MainChainGatherCallbackHandler(BaseCallbackHandler):
|
||||
def on_chain_error(
|
||||
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
|
||||
) -> None:
|
||||
logging.error(error)
|
||||
self.clear_chain_results()
|
||||
logging.debug("Dataset tool on_chain_error: %s", error)
|
||||
self.clear_chain_results()
|
||||
|
||||
@@ -2,27 +2,19 @@ import logging
|
||||
import re
|
||||
from typing import Optional, List, Union, Tuple
|
||||
|
||||
from langchain.base_language import BaseLanguageModel
|
||||
from langchain.callbacks.base import BaseCallbackHandler
|
||||
from langchain.chat_models.base import BaseChatModel
|
||||
from langchain.llms import BaseLLM
|
||||
from langchain.schema import BaseMessage, HumanMessage
|
||||
from langchain.schema import BaseMessage
|
||||
from requests.exceptions import ChunkedEncodingError
|
||||
|
||||
from core.agent.agent_executor import AgentExecuteResult, PlanningStrategy
|
||||
from core.callback_handler.main_chain_gather_callback_handler import MainChainGatherCallbackHandler
|
||||
from core.constant import llm_constant
|
||||
from core.callback_handler.llm_callback_handler import LLMCallbackHandler
|
||||
from core.callback_handler.std_out_callback_handler import DifyStreamingStdOutCallbackHandler, \
|
||||
DifyStdOutCallbackHandler
|
||||
from core.conversation_message_task import ConversationMessageTask, ConversationTaskStoppedException
|
||||
from core.llm.error import LLMBadRequestError
|
||||
from core.llm.fake import FakeLLM
|
||||
from core.llm.llm_builder import LLMBuilder
|
||||
from core.llm.streamable_chat_open_ai import StreamableChatOpenAI
|
||||
from core.llm.streamable_open_ai import StreamableOpenAI
|
||||
from core.model_providers.error import LLMBadRequestError
|
||||
from core.memory.read_only_conversation_token_db_buffer_shared_memory import \
|
||||
ReadOnlyConversationTokenDBBufferSharedMemory
|
||||
from core.model_providers.model_factory import ModelFactory
|
||||
from core.model_providers.models.entity.message import PromptMessage, to_prompt_messages
|
||||
from core.model_providers.models.llm.base import BaseLLM
|
||||
from core.orchestrator_rule_parser import OrchestratorRuleParser
|
||||
from core.prompt.prompt_builder import PromptBuilder
|
||||
from core.prompt.prompt_template import JinjaPromptTemplate
|
||||
@@ -51,12 +43,10 @@ class Completion:
|
||||
|
||||
inputs = conversation.inputs
|
||||
|
||||
rest_tokens_for_context_and_memory = cls.get_validate_rest_tokens(
|
||||
mode=app.mode,
|
||||
final_model_instance = ModelFactory.get_text_generation_model_from_model_config(
|
||||
tenant_id=app.tenant_id,
|
||||
app_model_config=app_model_config,
|
||||
query=query,
|
||||
inputs=inputs
|
||||
model_config=app_model_config.model_dict,
|
||||
streaming=streaming
|
||||
)
|
||||
|
||||
conversation_message_task = ConversationMessageTask(
|
||||
@@ -68,10 +58,17 @@ class Completion:
|
||||
is_override=is_override,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
streaming=streaming
|
||||
streaming=streaming,
|
||||
model_instance=final_model_instance
|
||||
)
|
||||
|
||||
chain_callback = MainChainGatherCallbackHandler(conversation_message_task)
|
||||
rest_tokens_for_context_and_memory = cls.get_validate_rest_tokens(
|
||||
mode=app.mode,
|
||||
model_instance=final_model_instance,
|
||||
app_model_config=app_model_config,
|
||||
query=query,
|
||||
inputs=inputs
|
||||
)
|
||||
|
||||
# init orchestrator rule parser
|
||||
orchestrator_rule_parser = OrchestratorRuleParser(
|
||||
@@ -80,6 +77,7 @@ class Completion:
|
||||
)
|
||||
|
||||
# parse sensitive_word_avoidance_chain
|
||||
chain_callback = MainChainGatherCallbackHandler(conversation_message_task)
|
||||
sensitive_word_avoidance_chain = orchestrator_rule_parser.to_sensitive_word_avoidance_chain([chain_callback])
|
||||
if sensitive_word_avoidance_chain:
|
||||
query = sensitive_word_avoidance_chain.run(query)
|
||||
@@ -102,15 +100,14 @@ class Completion:
|
||||
# run the final llm
|
||||
try:
|
||||
cls.run_final_llm(
|
||||
tenant_id=app.tenant_id,
|
||||
model_instance=final_model_instance,
|
||||
mode=app.mode,
|
||||
app_model_config=app_model_config,
|
||||
query=query,
|
||||
inputs=inputs,
|
||||
agent_execute_result=agent_execute_result,
|
||||
conversation_message_task=conversation_message_task,
|
||||
memory=memory,
|
||||
streaming=streaming
|
||||
memory=memory
|
||||
)
|
||||
except ConversationTaskStoppedException:
|
||||
return
|
||||
@@ -121,171 +118,41 @@ class Completion:
|
||||
return
|
||||
|
||||
@classmethod
|
||||
def run_final_llm(cls, tenant_id: str, mode: str, app_model_config: AppModelConfig, query: str, inputs: dict,
|
||||
def run_final_llm(cls, model_instance: BaseLLM, mode: str, app_model_config: AppModelConfig, query: str, inputs: dict,
|
||||
agent_execute_result: Optional[AgentExecuteResult],
|
||||
conversation_message_task: ConversationMessageTask,
|
||||
memory: Optional[ReadOnlyConversationTokenDBBufferSharedMemory], streaming: bool):
|
||||
memory: Optional[ReadOnlyConversationTokenDBBufferSharedMemory]):
|
||||
# When no extra pre prompt is specified,
|
||||
# the output of the agent can be used directly as the main output content without calling LLM again
|
||||
fake_response = None
|
||||
if not app_model_config.pre_prompt and agent_execute_result and agent_execute_result.output \
|
||||
and agent_execute_result.strategy != PlanningStrategy.ROUTER:
|
||||
final_llm = FakeLLM(response=agent_execute_result.output,
|
||||
origin_llm=agent_execute_result.configuration.llm,
|
||||
streaming=streaming)
|
||||
final_llm.callbacks = cls.get_llm_callbacks(final_llm, streaming, conversation_message_task)
|
||||
response = final_llm.generate([[HumanMessage(content=query)]])
|
||||
return response
|
||||
|
||||
final_llm = LLMBuilder.to_llm_from_model(
|
||||
tenant_id=tenant_id,
|
||||
model=app_model_config.model_dict,
|
||||
streaming=streaming
|
||||
)
|
||||
and agent_execute_result.strategy not in [PlanningStrategy.ROUTER, PlanningStrategy.REACT_ROUTER]:
|
||||
fake_response = agent_execute_result.output
|
||||
|
||||
# get llm prompt
|
||||
prompt, stop_words = cls.get_main_llm_prompt(
|
||||
prompt_messages, stop_words = model_instance.get_prompt(
|
||||
mode=mode,
|
||||
llm=final_llm,
|
||||
model=app_model_config.model_dict,
|
||||
pre_prompt=app_model_config.pre_prompt,
|
||||
query=query,
|
||||
inputs=inputs,
|
||||
agent_execute_result=agent_execute_result,
|
||||
query=query,
|
||||
context=agent_execute_result.output if agent_execute_result else None,
|
||||
memory=memory
|
||||
)
|
||||
|
||||
final_llm.callbacks = cls.get_llm_callbacks(final_llm, streaming, conversation_message_task)
|
||||
|
||||
cls.recale_llm_max_tokens(
|
||||
final_llm=final_llm,
|
||||
model=app_model_config.model_dict,
|
||||
prompt=prompt,
|
||||
mode=mode
|
||||
model_instance=model_instance,
|
||||
prompt_messages=prompt_messages,
|
||||
)
|
||||
|
||||
response = final_llm.generate([prompt], stop_words)
|
||||
response = model_instance.run(
|
||||
messages=prompt_messages,
|
||||
stop=stop_words,
|
||||
callbacks=[LLMCallbackHandler(model_instance, conversation_message_task)],
|
||||
fake_response=fake_response
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
@classmethod
|
||||
def get_main_llm_prompt(cls, mode: str, llm: BaseLanguageModel, model: dict,
|
||||
pre_prompt: str, query: str, inputs: dict,
|
||||
agent_execute_result: Optional[AgentExecuteResult],
|
||||
memory: Optional[ReadOnlyConversationTokenDBBufferSharedMemory]) -> \
|
||||
Tuple[Union[str | List[BaseMessage]], Optional[List[str]]]:
|
||||
if mode == 'completion':
|
||||
prompt_template = JinjaPromptTemplate.from_template(
|
||||
template=("""Use the following context as your learned knowledge, inside <context></context> XML tags.
|
||||
|
||||
<context>
|
||||
{{context}}
|
||||
</context>
|
||||
|
||||
When answer to user:
|
||||
- If you don't know, just say that you don't know.
|
||||
- If you don't know when you are not sure, ask for clarification.
|
||||
Avoid mentioning that you obtained the information from the context.
|
||||
And answer according to the language of the user's question.
|
||||
""" if agent_execute_result else "")
|
||||
+ (pre_prompt + "\n" if pre_prompt else "")
|
||||
+ "{{query}}\n"
|
||||
)
|
||||
|
||||
if agent_execute_result:
|
||||
inputs['context'] = agent_execute_result.output
|
||||
|
||||
prompt_inputs = {k: inputs[k] for k in prompt_template.input_variables if k in inputs}
|
||||
prompt_content = prompt_template.format(
|
||||
query=query,
|
||||
**prompt_inputs
|
||||
)
|
||||
|
||||
if isinstance(llm, BaseChatModel):
|
||||
# use chat llm as completion model
|
||||
return [HumanMessage(content=prompt_content)], None
|
||||
else:
|
||||
return prompt_content, None
|
||||
else:
|
||||
messages: List[BaseMessage] = []
|
||||
|
||||
human_inputs = {
|
||||
"query": query
|
||||
}
|
||||
|
||||
human_message_prompt = ""
|
||||
|
||||
if pre_prompt:
|
||||
pre_prompt_inputs = {k: inputs[k] for k in
|
||||
JinjaPromptTemplate.from_template(template=pre_prompt).input_variables
|
||||
if k in inputs}
|
||||
|
||||
if pre_prompt_inputs:
|
||||
human_inputs.update(pre_prompt_inputs)
|
||||
|
||||
if agent_execute_result:
|
||||
human_inputs['context'] = agent_execute_result.output
|
||||
human_message_prompt += """Use the following context as your learned knowledge, inside <context></context> XML tags.
|
||||
|
||||
<context>
|
||||
{{context}}
|
||||
</context>
|
||||
|
||||
When answer to user:
|
||||
- If you don't know, just say that you don't know.
|
||||
- If you don't know when you are not sure, ask for clarification.
|
||||
Avoid mentioning that you obtained the information from the context.
|
||||
And answer according to the language of the user's question.
|
||||
"""
|
||||
|
||||
if pre_prompt:
|
||||
human_message_prompt += pre_prompt
|
||||
|
||||
query_prompt = "\n\nHuman: {{query}}\n\nAssistant: "
|
||||
|
||||
if memory:
|
||||
# append chat histories
|
||||
tmp_human_message = PromptBuilder.to_human_message(
|
||||
prompt_content=human_message_prompt + query_prompt,
|
||||
inputs=human_inputs
|
||||
)
|
||||
|
||||
curr_message_tokens = memory.llm.get_num_tokens_from_messages([tmp_human_message])
|
||||
model_name = model['name']
|
||||
max_tokens = model.get("completion_params").get('max_tokens')
|
||||
rest_tokens = llm_constant.max_context_token_length[model_name] \
|
||||
- max_tokens - curr_message_tokens
|
||||
rest_tokens = max(rest_tokens, 0)
|
||||
histories = cls.get_history_messages_from_memory(memory, rest_tokens)
|
||||
human_message_prompt += "\n\n" if human_message_prompt else ""
|
||||
human_message_prompt += "Here is the chat histories between human and assistant, " \
|
||||
"inside <histories></histories> XML tags.\n\n<histories>\n"
|
||||
human_message_prompt += histories + "\n</histories>"
|
||||
|
||||
human_message_prompt += query_prompt
|
||||
|
||||
# construct main prompt
|
||||
human_message = PromptBuilder.to_human_message(
|
||||
prompt_content=human_message_prompt,
|
||||
inputs=human_inputs
|
||||
)
|
||||
|
||||
messages.append(human_message)
|
||||
|
||||
for message in messages:
|
||||
message.content = re.sub(r'<\|.*?\|>', '', message.content)
|
||||
|
||||
return messages, ['\nHuman:', '</histories>']
|
||||
|
||||
@classmethod
|
||||
def get_llm_callbacks(cls, llm: BaseLanguageModel,
|
||||
streaming: bool,
|
||||
conversation_message_task: ConversationMessageTask) -> List[BaseCallbackHandler]:
|
||||
llm_callback_handler = LLMCallbackHandler(llm, conversation_message_task)
|
||||
if streaming:
|
||||
return [llm_callback_handler, DifyStreamingStdOutCallbackHandler()]
|
||||
else:
|
||||
return [llm_callback_handler, DifyStdOutCallbackHandler()]
|
||||
|
||||
@classmethod
|
||||
def get_history_messages_from_memory(cls, memory: ReadOnlyConversationTokenDBBufferSharedMemory,
|
||||
max_token_limit: int) -> str:
|
||||
@@ -300,15 +167,15 @@ And answer according to the language of the user's question.
|
||||
conversation: Conversation,
|
||||
**kwargs) -> ReadOnlyConversationTokenDBBufferSharedMemory:
|
||||
# only for calc token in memory
|
||||
memory_llm = LLMBuilder.to_llm_from_model(
|
||||
memory_model_instance = ModelFactory.get_text_generation_model_from_model_config(
|
||||
tenant_id=tenant_id,
|
||||
model=app_model_config.model_dict
|
||||
model_config=app_model_config.model_dict
|
||||
)
|
||||
|
||||
# use llm config from conversation
|
||||
memory = ReadOnlyConversationTokenDBBufferSharedMemory(
|
||||
conversation=conversation,
|
||||
llm=memory_llm,
|
||||
model_instance=memory_model_instance,
|
||||
max_token_limit=kwargs.get("max_token_limit", 2048),
|
||||
memory_key=kwargs.get("memory_key", "chat_history"),
|
||||
return_messages=kwargs.get("return_messages", True),
|
||||
@@ -320,32 +187,28 @@ And answer according to the language of the user's question.
|
||||
return memory
|
||||
|
||||
@classmethod
|
||||
def get_validate_rest_tokens(cls, mode: str, tenant_id: str, app_model_config: AppModelConfig,
|
||||
def get_validate_rest_tokens(cls, mode: str, model_instance: BaseLLM, app_model_config: AppModelConfig,
|
||||
query: str, inputs: dict) -> int:
|
||||
llm = LLMBuilder.to_llm_from_model(
|
||||
tenant_id=tenant_id,
|
||||
model=app_model_config.model_dict
|
||||
)
|
||||
model_limited_tokens = model_instance.model_rules.max_tokens.max
|
||||
max_tokens = model_instance.get_model_kwargs().max_tokens
|
||||
|
||||
model_name = app_model_config.model_dict.get("name")
|
||||
model_limited_tokens = llm_constant.max_context_token_length[model_name]
|
||||
max_tokens = app_model_config.model_dict.get("completion_params").get('max_tokens')
|
||||
if model_limited_tokens is None:
|
||||
return -1
|
||||
|
||||
if max_tokens is None:
|
||||
max_tokens = 0
|
||||
|
||||
# get prompt without memory and context
|
||||
prompt, _ = cls.get_main_llm_prompt(
|
||||
prompt_messages, _ = model_instance.get_prompt(
|
||||
mode=mode,
|
||||
llm=llm,
|
||||
model=app_model_config.model_dict,
|
||||
pre_prompt=app_model_config.pre_prompt,
|
||||
query=query,
|
||||
inputs=inputs,
|
||||
agent_execute_result=None,
|
||||
query=query,
|
||||
context=None,
|
||||
memory=None
|
||||
)
|
||||
|
||||
prompt_tokens = llm.get_num_tokens(prompt) if isinstance(prompt, str) \
|
||||
else llm.get_num_tokens_from_messages(prompt)
|
||||
|
||||
prompt_tokens = model_instance.get_num_tokens(prompt_messages)
|
||||
rest_tokens = model_limited_tokens - max_tokens - prompt_tokens
|
||||
if rest_tokens < 0:
|
||||
raise LLMBadRequestError("Query or prefix prompt is too long, you can reduce the prefix prompt, "
|
||||
@@ -354,52 +217,53 @@ And answer according to the language of the user's question.
|
||||
return rest_tokens
|
||||
|
||||
@classmethod
|
||||
def recale_llm_max_tokens(cls, final_llm: BaseLanguageModel, model: dict,
|
||||
prompt: Union[str, List[BaseMessage]], mode: str):
|
||||
def recale_llm_max_tokens(cls, model_instance: BaseLLM, prompt_messages: List[PromptMessage]):
|
||||
# recalc max_tokens if sum(prompt_token + max_tokens) over model token limit
|
||||
model_name = model.get("name")
|
||||
model_limited_tokens = llm_constant.max_context_token_length[model_name]
|
||||
max_tokens = model.get("completion_params").get('max_tokens')
|
||||
model_limited_tokens = model_instance.model_rules.max_tokens.max
|
||||
max_tokens = model_instance.get_model_kwargs().max_tokens
|
||||
|
||||
if mode == 'completion' and isinstance(final_llm, BaseLLM):
|
||||
prompt_tokens = final_llm.get_num_tokens(prompt)
|
||||
else:
|
||||
prompt_tokens = final_llm.get_num_tokens_from_messages(prompt)
|
||||
if model_limited_tokens is None:
|
||||
return
|
||||
|
||||
if max_tokens is None:
|
||||
max_tokens = 0
|
||||
|
||||
prompt_tokens = model_instance.get_num_tokens(prompt_messages)
|
||||
|
||||
if prompt_tokens + max_tokens > model_limited_tokens:
|
||||
max_tokens = max(model_limited_tokens - prompt_tokens, 16)
|
||||
final_llm.max_tokens = max_tokens
|
||||
|
||||
# update model instance max tokens
|
||||
model_kwargs = model_instance.get_model_kwargs()
|
||||
model_kwargs.max_tokens = max_tokens
|
||||
model_instance.set_model_kwargs(model_kwargs)
|
||||
|
||||
@classmethod
|
||||
def generate_more_like_this(cls, task_id: str, app: App, message: Message, pre_prompt: str,
|
||||
app_model_config: AppModelConfig, user: Account, streaming: bool):
|
||||
|
||||
llm = LLMBuilder.to_llm_from_model(
|
||||
final_model_instance = ModelFactory.get_text_generation_model_from_model_config(
|
||||
tenant_id=app.tenant_id,
|
||||
model=app_model_config.model_dict,
|
||||
model_config=app_model_config.model_dict,
|
||||
streaming=streaming
|
||||
)
|
||||
|
||||
# get llm prompt
|
||||
original_prompt, _ = cls.get_main_llm_prompt(
|
||||
mode="completion",
|
||||
llm=llm,
|
||||
model=app_model_config.model_dict,
|
||||
old_prompt_messages, _ = final_model_instance.get_prompt(
|
||||
mode='completion',
|
||||
pre_prompt=pre_prompt,
|
||||
query=message.query,
|
||||
inputs=message.inputs,
|
||||
chain_output=None,
|
||||
agent_execute_result=None,
|
||||
query=message.query,
|
||||
context=None,
|
||||
memory=None
|
||||
)
|
||||
|
||||
original_completion = message.answer.strip()
|
||||
|
||||
prompt = MORE_LIKE_THIS_GENERATE_PROMPT
|
||||
prompt = prompt.format(prompt=original_prompt, original_completion=original_completion)
|
||||
prompt = prompt.format(prompt=old_prompt_messages[0].content, original_completion=original_completion)
|
||||
|
||||
if isinstance(llm, BaseChatModel):
|
||||
prompt = [HumanMessage(content=prompt)]
|
||||
prompt_messages = [PromptMessage(content=prompt)]
|
||||
|
||||
conversation_message_task = ConversationMessageTask(
|
||||
task_id=task_id,
|
||||
@@ -409,16 +273,16 @@ And answer according to the language of the user's question.
|
||||
inputs=message.inputs,
|
||||
query=message.query,
|
||||
is_override=True if message.override_model_configs else False,
|
||||
streaming=streaming
|
||||
streaming=streaming,
|
||||
model_instance=final_model_instance
|
||||
)
|
||||
|
||||
llm.callbacks = cls.get_llm_callbacks(llm, streaming, conversation_message_task)
|
||||
|
||||
cls.recale_llm_max_tokens(
|
||||
final_llm=llm,
|
||||
model=app_model_config.model_dict,
|
||||
prompt=prompt,
|
||||
mode='completion'
|
||||
model_instance=final_model_instance,
|
||||
prompt_messages=prompt_messages
|
||||
)
|
||||
|
||||
llm.generate([prompt])
|
||||
final_model_instance.run(
|
||||
messages=prompt_messages,
|
||||
callbacks=[LLMCallbackHandler(final_model_instance, conversation_message_task)]
|
||||
)
|
||||
|
||||
@@ -1,109 +0,0 @@
|
||||
from _decimal import Decimal
|
||||
|
||||
models = {
|
||||
'claude-instant-1': 'anthropic', # 100,000 tokens
|
||||
'claude-2': 'anthropic', # 100,000 tokens
|
||||
'gpt-4': 'openai', # 8,192 tokens
|
||||
'gpt-4-32k': 'openai', # 32,768 tokens
|
||||
'gpt-3.5-turbo': 'openai', # 4,096 tokens
|
||||
'gpt-3.5-turbo-16k': 'openai', # 16384 tokens
|
||||
'text-davinci-003': 'openai', # 4,097 tokens
|
||||
'text-davinci-002': 'openai', # 4,097 tokens
|
||||
'text-curie-001': 'openai', # 2,049 tokens
|
||||
'text-babbage-001': 'openai', # 2,049 tokens
|
||||
'text-ada-001': 'openai', # 2,049 tokens
|
||||
'text-embedding-ada-002': 'openai', # 8191 tokens, 1536 dimensions
|
||||
'whisper-1': 'openai'
|
||||
}
|
||||
|
||||
max_context_token_length = {
|
||||
'claude-instant-1': 100000,
|
||||
'claude-2': 100000,
|
||||
'gpt-4': 8192,
|
||||
'gpt-4-32k': 32768,
|
||||
'gpt-3.5-turbo': 4096,
|
||||
'gpt-3.5-turbo-16k': 16384,
|
||||
'text-davinci-003': 4097,
|
||||
'text-davinci-002': 4097,
|
||||
'text-curie-001': 2049,
|
||||
'text-babbage-001': 2049,
|
||||
'text-ada-001': 2049,
|
||||
'text-embedding-ada-002': 8191,
|
||||
}
|
||||
|
||||
models_by_mode = {
|
||||
'chat': [
|
||||
'claude-instant-1', # 100,000 tokens
|
||||
'claude-2', # 100,000 tokens
|
||||
'gpt-4', # 8,192 tokens
|
||||
'gpt-4-32k', # 32,768 tokens
|
||||
'gpt-3.5-turbo', # 4,096 tokens
|
||||
'gpt-3.5-turbo-16k', # 16,384 tokens
|
||||
],
|
||||
'completion': [
|
||||
'claude-instant-1', # 100,000 tokens
|
||||
'claude-2', # 100,000 tokens
|
||||
'gpt-4', # 8,192 tokens
|
||||
'gpt-4-32k', # 32,768 tokens
|
||||
'gpt-3.5-turbo', # 4,096 tokens
|
||||
'gpt-3.5-turbo-16k', # 16,384 tokens
|
||||
'text-davinci-003', # 4,097 tokens
|
||||
'text-davinci-002' # 4,097 tokens
|
||||
'text-curie-001', # 2,049 tokens
|
||||
'text-babbage-001', # 2,049 tokens
|
||||
'text-ada-001' # 2,049 tokens
|
||||
],
|
||||
'embedding': [
|
||||
'text-embedding-ada-002' # 8191 tokens, 1536 dimensions
|
||||
]
|
||||
}
|
||||
|
||||
model_currency = 'USD'
|
||||
|
||||
model_prices = {
|
||||
'claude-instant-1': {
|
||||
'prompt': Decimal('0.00163'),
|
||||
'completion': Decimal('0.00551'),
|
||||
},
|
||||
'claude-2': {
|
||||
'prompt': Decimal('0.01102'),
|
||||
'completion': Decimal('0.03268'),
|
||||
},
|
||||
'gpt-4': {
|
||||
'prompt': Decimal('0.03'),
|
||||
'completion': Decimal('0.06'),
|
||||
},
|
||||
'gpt-4-32k': {
|
||||
'prompt': Decimal('0.06'),
|
||||
'completion': Decimal('0.12')
|
||||
},
|
||||
'gpt-3.5-turbo': {
|
||||
'prompt': Decimal('0.0015'),
|
||||
'completion': Decimal('0.002')
|
||||
},
|
||||
'gpt-3.5-turbo-16k': {
|
||||
'prompt': Decimal('0.003'),
|
||||
'completion': Decimal('0.004')
|
||||
},
|
||||
'text-davinci-003': {
|
||||
'prompt': Decimal('0.02'),
|
||||
'completion': Decimal('0.02')
|
||||
},
|
||||
'text-curie-001': {
|
||||
'prompt': Decimal('0.002'),
|
||||
'completion': Decimal('0.002')
|
||||
},
|
||||
'text-babbage-001': {
|
||||
'prompt': Decimal('0.0005'),
|
||||
'completion': Decimal('0.0005')
|
||||
},
|
||||
'text-ada-001': {
|
||||
'prompt': Decimal('0.0004'),
|
||||
'completion': Decimal('0.0004')
|
||||
},
|
||||
'text-embedding-ada-002': {
|
||||
'usage': Decimal('0.0001'),
|
||||
}
|
||||
}
|
||||
|
||||
agent_model_name = 'text-davinci-003'
|
||||
@@ -6,9 +6,9 @@ from core.callback_handler.entity.agent_loop import AgentLoop
|
||||
from core.callback_handler.entity.dataset_query import DatasetQueryObj
|
||||
from core.callback_handler.entity.llm_message import LLMMessage
|
||||
from core.callback_handler.entity.chain_result import ChainResult
|
||||
from core.constant import llm_constant
|
||||
from core.llm.llm_builder import LLMBuilder
|
||||
from core.llm.provider.llm_provider_service import LLMProviderService
|
||||
from core.model_providers.model_factory import ModelFactory
|
||||
from core.model_providers.models.entity.message import to_prompt_messages, MessageType
|
||||
from core.model_providers.models.llm.base import BaseLLM
|
||||
from core.prompt.prompt_builder import PromptBuilder
|
||||
from core.prompt.prompt_template import JinjaPromptTemplate
|
||||
from events.message_event import message_was_created
|
||||
@@ -16,12 +16,11 @@ from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import DatasetQuery
|
||||
from models.model import AppModelConfig, Conversation, Account, Message, EndUser, App, MessageAgentThought, MessageChain
|
||||
from models.provider import ProviderType, Provider
|
||||
|
||||
|
||||
class ConversationMessageTask:
|
||||
def __init__(self, task_id: str, app: App, app_model_config: AppModelConfig, user: Account,
|
||||
inputs: dict, query: str, streaming: bool,
|
||||
inputs: dict, query: str, streaming: bool, model_instance: BaseLLM,
|
||||
conversation: Optional[Conversation] = None, is_override: bool = False):
|
||||
self.task_id = task_id
|
||||
|
||||
@@ -38,9 +37,12 @@ class ConversationMessageTask:
|
||||
self.conversation = conversation
|
||||
self.is_new_conversation = False
|
||||
|
||||
self.model_instance = model_instance
|
||||
|
||||
self.message = None
|
||||
|
||||
self.model_dict = self.app_model_config.model_dict
|
||||
self.provider_name = self.model_dict.get('provider')
|
||||
self.model_name = self.model_dict.get('name')
|
||||
self.mode = app.mode
|
||||
|
||||
@@ -56,22 +58,9 @@ class ConversationMessageTask:
|
||||
)
|
||||
|
||||
def init(self):
|
||||
provider_name = LLMBuilder.get_default_provider(self.app.tenant_id, self.model_name)
|
||||
self.model_dict['provider'] = provider_name
|
||||
|
||||
override_model_configs = None
|
||||
if self.is_override:
|
||||
override_model_configs = {
|
||||
"model": self.app_model_config.model_dict,
|
||||
"pre_prompt": self.app_model_config.pre_prompt,
|
||||
"agent_mode": self.app_model_config.agent_mode_dict,
|
||||
"opening_statement": self.app_model_config.opening_statement,
|
||||
"suggested_questions": self.app_model_config.suggested_questions_list,
|
||||
"suggested_questions_after_answer": self.app_model_config.suggested_questions_after_answer_dict,
|
||||
"more_like_this": self.app_model_config.more_like_this_dict,
|
||||
"sensitive_word_avoidance": self.app_model_config.sensitive_word_avoidance_dict,
|
||||
"user_input_form": self.app_model_config.user_input_form_list,
|
||||
}
|
||||
override_model_configs = self.app_model_config.to_dict()
|
||||
|
||||
introduction = ''
|
||||
system_instruction = ''
|
||||
@@ -89,15 +78,19 @@ class ConversationMessageTask:
|
||||
if self.app_model_config.pre_prompt:
|
||||
system_message = PromptBuilder.to_system_message(self.app_model_config.pre_prompt, self.inputs)
|
||||
system_instruction = system_message.content
|
||||
llm = LLMBuilder.to_llm(self.tenant_id, self.model_name)
|
||||
system_instruction_tokens = llm.get_num_tokens_from_messages([system_message])
|
||||
model_instance = ModelFactory.get_text_generation_model(
|
||||
tenant_id=self.tenant_id,
|
||||
model_provider_name=self.provider_name,
|
||||
model_name=self.model_name
|
||||
)
|
||||
system_instruction_tokens = model_instance.get_num_tokens(to_prompt_messages([system_message]))
|
||||
|
||||
if not self.conversation:
|
||||
self.is_new_conversation = True
|
||||
self.conversation = Conversation(
|
||||
app_id=self.app_model_config.app_id,
|
||||
app_model_config_id=self.app_model_config.id,
|
||||
model_provider=self.model_dict.get('provider'),
|
||||
model_provider=self.provider_name,
|
||||
model_id=self.model_name,
|
||||
override_model_configs=json.dumps(override_model_configs) if override_model_configs else None,
|
||||
mode=self.mode,
|
||||
@@ -117,7 +110,7 @@ class ConversationMessageTask:
|
||||
|
||||
self.message = Message(
|
||||
app_id=self.app_model_config.app_id,
|
||||
model_provider=self.model_dict.get('provider'),
|
||||
model_provider=self.provider_name,
|
||||
model_id=self.model_name,
|
||||
override_model_configs=json.dumps(override_model_configs) if override_model_configs else None,
|
||||
conversation_id=self.conversation.id,
|
||||
@@ -126,12 +119,14 @@ class ConversationMessageTask:
|
||||
message="",
|
||||
message_tokens=0,
|
||||
message_unit_price=0,
|
||||
message_price_unit=0,
|
||||
answer="",
|
||||
answer_tokens=0,
|
||||
answer_unit_price=0,
|
||||
answer_price_unit=0,
|
||||
provider_response_latency=0,
|
||||
total_price=0,
|
||||
currency=llm_constant.model_currency,
|
||||
currency=self.model_instance.get_currency(),
|
||||
from_source=('console' if isinstance(self.user, Account) else 'api'),
|
||||
from_end_user_id=(self.user.id if isinstance(self.user, EndUser) else None),
|
||||
from_account_id=(self.user.id if isinstance(self.user, Account) else None),
|
||||
@@ -142,29 +137,33 @@ class ConversationMessageTask:
|
||||
db.session.flush()
|
||||
|
||||
def append_message_text(self, text: str):
|
||||
self._pub_handler.pub_text(text)
|
||||
if text is not None:
|
||||
self._pub_handler.pub_text(text)
|
||||
|
||||
def save_message(self, llm_message: LLMMessage, by_stopped: bool = False):
|
||||
model_name = self.app_model_config.model_dict.get('name')
|
||||
|
||||
message_tokens = llm_message.prompt_tokens
|
||||
answer_tokens = llm_message.completion_tokens
|
||||
message_unit_price = llm_constant.model_prices[model_name]['prompt']
|
||||
answer_unit_price = llm_constant.model_prices[model_name]['completion']
|
||||
|
||||
total_price = self.calc_total_price(message_tokens, message_unit_price, answer_tokens, answer_unit_price)
|
||||
message_unit_price = self.model_instance.get_tokens_unit_price(MessageType.HUMAN)
|
||||
message_price_unit = self.model_instance.get_price_unit(MessageType.HUMAN)
|
||||
answer_unit_price = self.model_instance.get_tokens_unit_price(MessageType.ASSISTANT)
|
||||
answer_price_unit = self.model_instance.get_price_unit(MessageType.ASSISTANT)
|
||||
|
||||
message_total_price = self.model_instance.calc_tokens_price(message_tokens, MessageType.HUMAN)
|
||||
answer_total_price = self.model_instance.calc_tokens_price(answer_tokens, MessageType.ASSISTANT)
|
||||
total_price = message_total_price + answer_total_price
|
||||
|
||||
self.message.message = llm_message.prompt
|
||||
self.message.message_tokens = message_tokens
|
||||
self.message.message_unit_price = message_unit_price
|
||||
self.message.message_price_unit = message_price_unit
|
||||
self.message.answer = PromptBuilder.process_template(llm_message.completion.strip()) if llm_message.completion else ''
|
||||
self.message.answer_tokens = answer_tokens
|
||||
self.message.answer_unit_price = answer_unit_price
|
||||
self.message.answer_price_unit = answer_price_unit
|
||||
self.message.provider_response_latency = llm_message.latency
|
||||
self.message.total_price = total_price
|
||||
|
||||
self.update_provider_quota()
|
||||
|
||||
db.session.commit()
|
||||
|
||||
message_was_created.send(
|
||||
@@ -176,20 +175,6 @@ class ConversationMessageTask:
|
||||
if not by_stopped:
|
||||
self.end()
|
||||
|
||||
def update_provider_quota(self):
|
||||
llm_provider_service = LLMProviderService(
|
||||
tenant_id=self.app.tenant_id,
|
||||
provider_name=self.message.model_provider,
|
||||
)
|
||||
|
||||
provider = llm_provider_service.get_provider_db_record()
|
||||
if provider and provider.provider_type == ProviderType.SYSTEM.value:
|
||||
db.session.query(Provider).filter(
|
||||
Provider.tenant_id == self.app.tenant_id,
|
||||
Provider.provider_name == provider.provider_name,
|
||||
Provider.quota_limit > Provider.quota_used
|
||||
).update({'quota_used': Provider.quota_used + 1})
|
||||
|
||||
def init_chain(self, chain_result: ChainResult):
|
||||
message_chain = MessageChain(
|
||||
message_id=self.message.id,
|
||||
@@ -217,7 +202,9 @@ class ConversationMessageTask:
|
||||
tool=agent_loop.tool_name,
|
||||
tool_input=agent_loop.tool_input,
|
||||
message=agent_loop.prompt,
|
||||
message_price_unit=0,
|
||||
answer=agent_loop.completion,
|
||||
answer_price_unit=0,
|
||||
created_by_role=('account' if isinstance(self.user, Account) else 'end_user'),
|
||||
created_by=self.user.id
|
||||
)
|
||||
@@ -229,31 +216,32 @@ class ConversationMessageTask:
|
||||
|
||||
return message_agent_thought
|
||||
|
||||
def on_agent_end(self, message_agent_thought: MessageAgentThought, agent_model_name: str,
|
||||
def on_agent_end(self, message_agent_thought: MessageAgentThought, agent_model_instant: BaseLLM,
|
||||
agent_loop: AgentLoop):
|
||||
agent_message_unit_price = llm_constant.model_prices[agent_model_name]['prompt']
|
||||
agent_answer_unit_price = llm_constant.model_prices[agent_model_name]['completion']
|
||||
agent_message_unit_price = agent_model_instant.get_tokens_unit_price(MessageType.HUMAN)
|
||||
agent_message_price_unit = agent_model_instant.get_price_unit(MessageType.HUMAN)
|
||||
agent_answer_unit_price = agent_model_instant.get_tokens_unit_price(MessageType.ASSISTANT)
|
||||
agent_answer_price_unit = agent_model_instant.get_price_unit(MessageType.ASSISTANT)
|
||||
|
||||
loop_message_tokens = agent_loop.prompt_tokens
|
||||
loop_answer_tokens = agent_loop.completion_tokens
|
||||
|
||||
loop_total_price = self.calc_total_price(
|
||||
loop_message_tokens,
|
||||
agent_message_unit_price,
|
||||
loop_answer_tokens,
|
||||
agent_answer_unit_price
|
||||
)
|
||||
loop_message_total_price = agent_model_instant.calc_tokens_price(loop_message_tokens, MessageType.HUMAN)
|
||||
loop_answer_total_price = agent_model_instant.calc_tokens_price(loop_answer_tokens, MessageType.ASSISTANT)
|
||||
loop_total_price = loop_message_total_price + loop_answer_total_price
|
||||
|
||||
message_agent_thought.observation = agent_loop.tool_output
|
||||
message_agent_thought.tool_process_data = '' # currently not support
|
||||
message_agent_thought.message_token = loop_message_tokens
|
||||
message_agent_thought.message_unit_price = agent_message_unit_price
|
||||
message_agent_thought.message_price_unit = agent_message_price_unit
|
||||
message_agent_thought.answer_token = loop_answer_tokens
|
||||
message_agent_thought.answer_unit_price = agent_answer_unit_price
|
||||
message_agent_thought.answer_price_unit = agent_answer_price_unit
|
||||
message_agent_thought.latency = agent_loop.latency
|
||||
message_agent_thought.tokens = agent_loop.prompt_tokens + agent_loop.completion_tokens
|
||||
message_agent_thought.total_price = loop_total_price
|
||||
message_agent_thought.currency = llm_constant.model_currency
|
||||
message_agent_thought.currency = agent_model_instant.get_currency()
|
||||
db.session.flush()
|
||||
|
||||
def on_dataset_query_end(self, dataset_query_obj: DatasetQueryObj):
|
||||
@@ -268,15 +256,6 @@ class ConversationMessageTask:
|
||||
|
||||
db.session.add(dataset_query)
|
||||
|
||||
def calc_total_price(self, message_tokens, message_unit_price, answer_tokens, answer_unit_price):
|
||||
message_tokens_per_1k = (decimal.Decimal(message_tokens) / 1000).quantize(decimal.Decimal('0.001'),
|
||||
rounding=decimal.ROUND_HALF_UP)
|
||||
answer_tokens_per_1k = (decimal.Decimal(answer_tokens) / 1000).quantize(decimal.Decimal('0.001'),
|
||||
rounding=decimal.ROUND_HALF_UP)
|
||||
|
||||
total_price = message_tokens_per_1k * message_unit_price + answer_tokens_per_1k * answer_unit_price
|
||||
return total_price.quantize(decimal.Decimal('0.0000001'), rounding=decimal.ROUND_HALF_UP)
|
||||
|
||||
def end(self):
|
||||
self._pub_handler.pub_end()
|
||||
|
||||
|
||||
@@ -6,7 +6,7 @@ import requests
|
||||
from langchain.document_loaders import TextLoader, Docx2txtLoader
|
||||
from langchain.schema import Document
|
||||
|
||||
from core.data_loader.loader.csv import CSVLoader
|
||||
from core.data_loader.loader.csv_loader import CSVLoader
|
||||
from core.data_loader.loader.excel import ExcelLoader
|
||||
from core.data_loader.loader.html import HTMLLoader
|
||||
from core.data_loader.loader.markdown import MarkdownLoader
|
||||
@@ -47,17 +47,18 @@ class FileExtractor:
|
||||
upload_file: Optional[UploadFile] = None) -> Union[List[Document] | str]:
|
||||
input_file = Path(file_path)
|
||||
delimiter = '\n'
|
||||
if input_file.suffix == '.xlsx':
|
||||
file_extension = input_file.suffix.lower()
|
||||
if file_extension == '.xlsx':
|
||||
loader = ExcelLoader(file_path)
|
||||
elif input_file.suffix == '.pdf':
|
||||
elif file_extension == '.pdf':
|
||||
loader = PdfLoader(file_path, upload_file=upload_file)
|
||||
elif input_file.suffix in ['.md', '.markdown']:
|
||||
elif file_extension in ['.md', '.markdown']:
|
||||
loader = MarkdownLoader(file_path, autodetect_encoding=True)
|
||||
elif input_file.suffix in ['.htm', '.html']:
|
||||
elif file_extension in ['.htm', '.html']:
|
||||
loader = HTMLLoader(file_path)
|
||||
elif input_file.suffix == '.docx':
|
||||
elif file_extension == '.docx':
|
||||
loader = Docx2txtLoader(file_path)
|
||||
elif input_file.suffix == '.csv':
|
||||
elif file_extension == '.csv':
|
||||
loader = CSVLoader(file_path, autodetect_encoding=True)
|
||||
else:
|
||||
# txt
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
import logging
|
||||
import csv
|
||||
from typing import Optional, Dict, List
|
||||
|
||||
from langchain.document_loaders import CSVLoader as LCCSVLoader
|
||||
from langchain.document_loaders.helpers import detect_file_encodings
|
||||
|
||||
from models.dataset import Document
|
||||
from langchain.schema import Document
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user