mirror of
https://github.com/langgenius/dify.git
synced 2026-01-14 18:59:49 +00:00
Compare commits
42 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
a4678845dd | ||
|
|
174ebb51db | ||
|
|
626c78a690 | ||
|
|
9eaae770a6 | ||
|
|
ca60610306 | ||
|
|
082f8b17ab | ||
|
|
cf93d8d6e2 | ||
|
|
aae2fb8a30 | ||
|
|
23e52f14e3 | ||
|
|
c5b68fb273 | ||
|
|
6f17c9b2fe | ||
|
|
c98311b325 | ||
|
|
d44d4bd6fd | ||
|
|
2adaceab82 | ||
|
|
d979955c8a | ||
|
|
eae670ea4a | ||
|
|
b5825142d1 | ||
|
|
741e9303d4 | ||
|
|
538e3fc256 | ||
|
|
ba3dc8cae0 | ||
|
|
ae7c0380dc | ||
|
|
23e3413655 | ||
|
|
4fdb37771a | ||
|
|
94b54b7ca9 | ||
|
|
f9412f5fdb | ||
|
|
1d6829f400 | ||
|
|
f8bae897e5 | ||
|
|
dd1172b57e | ||
|
|
67d326a558 | ||
|
|
fe747040bc | ||
|
|
7d6c925cbc | ||
|
|
f488d06b20 | ||
|
|
c00a19ced3 | ||
|
|
e9810a6df2 | ||
|
|
cae15013e0 | ||
|
|
52c84da051 | ||
|
|
026f0bfce9 | ||
|
|
d19181fb29 | ||
|
|
2f9de2229f | ||
|
|
34f55739e0 | ||
|
|
668b059c07 | ||
|
|
753e5f1500 |
@@ -19,7 +19,7 @@ def check_file_for_chinese_comments(file_path):
|
||||
|
||||
def main():
|
||||
has_chinese = False
|
||||
excluded_files = ["model_template.py", 'stopwords.py', 'commands.py', 'indexing_runner.py']
|
||||
excluded_files = ["model_template.py", 'stopwords.py', 'commands.py', 'indexing_runner.py', 'web_reader_tool.py']
|
||||
|
||||
for root, _, files in os.walk("."):
|
||||
for file in files:
|
||||
|
||||
36
LICENSE
36
LICENSE
@@ -1,26 +1,26 @@
|
||||
# Dify Open Source License
|
||||
|
||||
The Dify project uses a combination of the Apache License 2.0, MIT License, and an additional agreement to protect against direct competition with Dify Cloud services.
|
||||
The Dify project is licensed under the Apache License 2.0, with the following additional conditions:
|
||||
|
||||
As a contributor, you should agree that your contributed code:
|
||||
a. Might be subject to a more permissive open source license in the future.
|
||||
1. Dify is permitted to be used for commercialization, such as using Dify as a "backend-as-a-service" for your other applications, or delivering it to enterprises as an application development platform. However, when the following conditions are met, you must contact the producer to obtain a commercial license:
|
||||
|
||||
a. Multi-tenant SaaS service: Unless explicitly authorized by Dify in writing, you may not use the Dify.AI source code to operate a multi-tenant SaaS service that is similar to the Dify.AI service edition.
|
||||
b. LOGO and copyright information: In the process of using Dify, you may not remove or modify the LOGO or copyright information in the Dify console.
|
||||
|
||||
Please contact business@dify.ai by email to inquire about licensing matters.
|
||||
|
||||
2. As a contributor, you should agree that your contributed code:
|
||||
|
||||
a. The producer can adjust the open-source agreement to be more strict or relaxed.
|
||||
b. Can be used for commercial purposes, such as Dify's cloud business.
|
||||
|
||||
The following components are open source under the MIT license, allowing you to build and develop applications based on them:
|
||||
- WebApp elements, e.g., web/app/components/share
|
||||
- Derived WebApp Template projects
|
||||
|
||||
The remaining parts of the project are open source under the Apache License 2.0.
|
||||
|
||||
With the Apache License 2.0, MIT License, and this supplementary agreement, anyone can freely use, modify, and distribute Dify, provided that:
|
||||
|
||||
- If you use Dify solely as a backend service for other applications, no authorization is needed for commercial or closed source purposes.
|
||||
- If you wish to use Dify for commercial and closed source SaaS services similar to Dify Cloud, please contact us for authorization.
|
||||
Apart from this, all other rights and restrictions follow the Apache License 2.0. If you need more detailed information, you can refer to the full version of Apache License 2.0.
|
||||
|
||||
The interactive design of this product is protected by appearance patent.
|
||||
|
||||
© 2023 LangGenius, Inc.
|
||||
|
||||
|
||||
----------
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@@ -34,13 +34,3 @@ distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
|
||||
----------
|
||||
The MIT License
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
|
||||
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
|
||||
@@ -22,7 +22,7 @@ from extensions.ext_database import db
|
||||
from extensions.ext_login import login_manager
|
||||
|
||||
# DO NOT REMOVE BELOW
|
||||
from models import model, account, dataset, web, task, source
|
||||
from models import model, account, dataset, web, task, source, tool
|
||||
from events import event_handlers
|
||||
# DO NOT REMOVE ABOVE
|
||||
|
||||
|
||||
@@ -2,6 +2,7 @@ import datetime
|
||||
import logging
|
||||
import random
|
||||
import string
|
||||
import time
|
||||
|
||||
import click
|
||||
from flask import current_app
|
||||
@@ -13,7 +14,7 @@ from libs.helper import email as email_validate
|
||||
from extensions.ext_database import db
|
||||
from libs.rsa import generate_key_pair
|
||||
from models.account import InvitationCode, Tenant
|
||||
from models.dataset import Dataset
|
||||
from models.dataset import Dataset, DatasetQuery, Document, DocumentSegment
|
||||
from models.model import Account
|
||||
import secrets
|
||||
import base64
|
||||
@@ -172,7 +173,7 @@ def recreate_all_dataset_indexes():
|
||||
page = 1
|
||||
while True:
|
||||
try:
|
||||
datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality')\
|
||||
datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \
|
||||
.order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
|
||||
except NotFound:
|
||||
break
|
||||
@@ -188,12 +189,66 @@ def recreate_all_dataset_indexes():
|
||||
else:
|
||||
click.echo('passed.')
|
||||
except Exception as e:
|
||||
click.echo(click.style('Recreate dataset index error: {} {}'.format(e.__class__.__name__, str(e)), fg='red'))
|
||||
click.echo(
|
||||
click.style('Recreate dataset index error: {} {}'.format(e.__class__.__name__, str(e)), fg='red'))
|
||||
continue
|
||||
|
||||
click.echo(click.style('Congratulations! Recreate {} dataset indexes.'.format(recreate_count), fg='green'))
|
||||
|
||||
|
||||
@click.command('clean-unused-dataset-indexes', help='Clean unused dataset indexes.')
|
||||
def clean_unused_dataset_indexes():
|
||||
click.echo(click.style('Start clean unused dataset indexes.', fg='green'))
|
||||
clean_days = int(current_app.config.get('CLEAN_DAY_SETTING'))
|
||||
start_at = time.perf_counter()
|
||||
thirty_days_ago = datetime.datetime.now() - datetime.timedelta(days=clean_days)
|
||||
page = 1
|
||||
while True:
|
||||
try:
|
||||
datasets = db.session.query(Dataset).filter(Dataset.created_at < thirty_days_ago) \
|
||||
.order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
|
||||
except NotFound:
|
||||
break
|
||||
page += 1
|
||||
for dataset in datasets:
|
||||
dataset_query = db.session.query(DatasetQuery).filter(
|
||||
DatasetQuery.created_at > thirty_days_ago,
|
||||
DatasetQuery.dataset_id == dataset.id
|
||||
).all()
|
||||
if not dataset_query or len(dataset_query) == 0:
|
||||
documents = db.session.query(Document).filter(
|
||||
Document.dataset_id == dataset.id,
|
||||
Document.indexing_status == 'completed',
|
||||
Document.enabled == True,
|
||||
Document.archived == False,
|
||||
Document.updated_at > thirty_days_ago
|
||||
).all()
|
||||
if not documents or len(documents) == 0:
|
||||
try:
|
||||
# remove index
|
||||
vector_index = IndexBuilder.get_index(dataset, 'high_quality')
|
||||
kw_index = IndexBuilder.get_index(dataset, 'economy')
|
||||
# delete from vector index
|
||||
if vector_index:
|
||||
vector_index.delete()
|
||||
kw_index.delete()
|
||||
# update document
|
||||
update_params = {
|
||||
Document.enabled: False
|
||||
}
|
||||
|
||||
Document.query.filter_by(dataset_id=dataset.id).update(update_params)
|
||||
db.session.commit()
|
||||
click.echo(click.style('Cleaned unused dataset {} from db success!'.format(dataset.id),
|
||||
fg='green'))
|
||||
except Exception as e:
|
||||
click.echo(
|
||||
click.style('clean dataset index error: {} {}'.format(e.__class__.__name__, str(e)),
|
||||
fg='red'))
|
||||
end_at = time.perf_counter()
|
||||
click.echo(click.style('Cleaned unused dataset from db success latency: {}'.format(end_at - start_at), fg='green'))
|
||||
|
||||
|
||||
@click.command('sync-anthropic-hosted-providers', help='Sync anthropic hosted providers.')
|
||||
def sync_anthropic_hosted_providers():
|
||||
click.echo(click.style('Start sync anthropic hosted providers.', fg='green'))
|
||||
@@ -218,7 +273,9 @@ def sync_anthropic_hosted_providers():
|
||||
)
|
||||
count += 1
|
||||
except Exception as e:
|
||||
click.echo(click.style('Sync tenant anthropic hosted provider error: {} {}'.format(e.__class__.__name__, str(e)), fg='red'))
|
||||
click.echo(click.style(
|
||||
'Sync tenant anthropic hosted provider error: {} {}'.format(e.__class__.__name__, str(e)),
|
||||
fg='red'))
|
||||
continue
|
||||
|
||||
click.echo(click.style('Congratulations! Synced {} anthropic hosted providers.'.format(count), fg='green'))
|
||||
@@ -231,3 +288,4 @@ def register_commands(app):
|
||||
app.cli.add_command(reset_encrypt_key_pair)
|
||||
app.cli.add_command(recreate_all_dataset_indexes)
|
||||
app.cli.add_command(sync_anthropic_hosted_providers)
|
||||
app.cli.add_command(clean_unused_dataset_indexes)
|
||||
|
||||
@@ -53,7 +53,8 @@ DEFAULTS = {
|
||||
'DEFAULT_LLM_PROVIDER': 'openai',
|
||||
'OPENAI_HOSTED_QUOTA_LIMIT': 200,
|
||||
'ANTHROPIC_HOSTED_QUOTA_LIMIT': 1000,
|
||||
'TENANT_DOCUMENT_COUNT': 100
|
||||
'TENANT_DOCUMENT_COUNT': 100,
|
||||
'CLEAN_DAY_SETTING': 30
|
||||
}
|
||||
|
||||
|
||||
@@ -89,7 +90,7 @@ class Config:
|
||||
self.CONSOLE_URL = get_env('CONSOLE_URL')
|
||||
self.API_URL = get_env('API_URL')
|
||||
self.APP_URL = get_env('APP_URL')
|
||||
self.CURRENT_VERSION = "0.3.10"
|
||||
self.CURRENT_VERSION = "0.3.12"
|
||||
self.COMMIT_SHA = get_env('COMMIT_SHA')
|
||||
self.EDITION = "SELF_HOSTED"
|
||||
self.DEPLOY_ENV = get_env('DEPLOY_ENV')
|
||||
@@ -215,6 +216,7 @@ class Config:
|
||||
self.NOTION_INTEGRATION_TOKEN = get_env('NOTION_INTEGRATION_TOKEN')
|
||||
|
||||
self.TENANT_DOCUMENT_COUNT = get_env('TENANT_DOCUMENT_COUNT')
|
||||
self.CLEAN_DAY_SETTING = get_env('CLEAN_DAY_SETTING')
|
||||
|
||||
|
||||
class CloudEditionConfig(Config):
|
||||
|
||||
@@ -18,7 +18,10 @@ from .auth import login, oauth, data_source_oauth, activate
|
||||
from .datasets import datasets, datasets_document, datasets_segments, file, hit_testing, data_source
|
||||
|
||||
# Import workspace controllers
|
||||
from .workspace import workspace, members, providers, account
|
||||
from .workspace import workspace, members, model_providers, account, tool_providers
|
||||
|
||||
# Import explore controllers
|
||||
from .explore import installed_app, recommended_app, completion, conversation, message, parameter, saved_message, audio
|
||||
|
||||
# Import universal chat controllers
|
||||
from .universal_chat import chat, conversation, message, parameter, audio
|
||||
|
||||
@@ -24,6 +24,7 @@ model_config_fields = {
|
||||
'suggested_questions_after_answer': fields.Raw(attribute='suggested_questions_after_answer_dict'),
|
||||
'speech_to_text': fields.Raw(attribute='speech_to_text_dict'),
|
||||
'more_like_this': fields.Raw(attribute='more_like_this_dict'),
|
||||
'sensitive_word_avoidance': fields.Raw(attribute='sensitive_word_avoidance_dict'),
|
||||
'model': fields.Raw(attribute='model_dict'),
|
||||
'user_input_form': fields.Raw(attribute='user_input_form_list'),
|
||||
'pre_prompt': fields.String,
|
||||
@@ -96,7 +97,8 @@ class AppListApi(Resource):
|
||||
args = parser.parse_args()
|
||||
|
||||
app_models = db.paginate(
|
||||
db.select(App).where(App.tenant_id == current_user.current_tenant_id).order_by(App.created_at.desc()),
|
||||
db.select(App).where(App.tenant_id == current_user.current_tenant_id,
|
||||
App.is_universal == False).order_by(App.created_at.desc()),
|
||||
page=args['page'],
|
||||
per_page=args['limit'],
|
||||
error_out=False)
|
||||
@@ -147,6 +149,7 @@ class AppListApi(Resource):
|
||||
suggested_questions_after_answer=json.dumps(model_configuration['suggested_questions_after_answer']),
|
||||
speech_to_text=json.dumps(model_configuration['speech_to_text']),
|
||||
more_like_this=json.dumps(model_configuration['more_like_this']),
|
||||
sensitive_word_avoidance=json.dumps(model_configuration['sensitive_word_avoidance']),
|
||||
model=json.dumps(model_configuration['model']),
|
||||
user_input_form=json.dumps(model_configuration['user_input_form']),
|
||||
pre_prompt=model_configuration['pre_prompt'],
|
||||
@@ -438,6 +441,7 @@ class AppCopy(Resource):
|
||||
suggested_questions_after_answer=app_config.suggested_questions_after_answer,
|
||||
speech_to_text=app_config.speech_to_text,
|
||||
more_like_this=app_config.more_like_this,
|
||||
sensitive_word_avoidance=app_config.sensitive_word_avoidance,
|
||||
model=app_config.model,
|
||||
user_input_form=app_config.user_input_form,
|
||||
pre_prompt=app_config.pre_prompt,
|
||||
|
||||
@@ -95,6 +95,7 @@ class CompletionConversationApi(Resource):
|
||||
'status': fields.String,
|
||||
'from_source': fields.String,
|
||||
'from_end_user_id': fields.String,
|
||||
'from_end_user_session_id': fields.String(attribute='end_user.session_id'),
|
||||
'from_account_id': fields.String,
|
||||
'read_at': TimestampField,
|
||||
'created_at': TimestampField,
|
||||
@@ -135,6 +136,8 @@ class CompletionConversationApi(Resource):
|
||||
|
||||
query = db.select(Conversation).where(Conversation.app_id == app.id, Conversation.mode == 'completion')
|
||||
|
||||
query = query.options(joinedload(Conversation.end_user))
|
||||
|
||||
if args['keyword']:
|
||||
query = query.join(
|
||||
Message, Message.conversation_id == Conversation.id
|
||||
@@ -160,7 +163,7 @@ class CompletionConversationApi(Resource):
|
||||
|
||||
if args['end']:
|
||||
end_datetime = datetime.strptime(args['end'], '%Y-%m-%d %H:%M')
|
||||
end_datetime = end_datetime.replace(second=0)
|
||||
end_datetime = end_datetime.replace(second=59)
|
||||
|
||||
end_datetime_timezone = timezone.localize(end_datetime)
|
||||
end_datetime_utc = end_datetime_timezone.astimezone(utc_timezone)
|
||||
@@ -246,6 +249,7 @@ class ChatConversationApi(Resource):
|
||||
'status': fields.String,
|
||||
'from_source': fields.String,
|
||||
'from_end_user_id': fields.String,
|
||||
'from_end_user_session_id': fields.String(attribute='end_user.session_id'),
|
||||
'from_account_id': fields.String,
|
||||
'summary': fields.String(attribute='summary_or_query'),
|
||||
'read_at': TimestampField,
|
||||
@@ -288,6 +292,8 @@ class ChatConversationApi(Resource):
|
||||
|
||||
query = db.select(Conversation).where(Conversation.app_id == app.id, Conversation.mode == 'chat')
|
||||
|
||||
query = query.options(joinedload(Conversation.end_user))
|
||||
|
||||
if args['keyword']:
|
||||
query = query.join(
|
||||
Message, Message.conversation_id == Conversation.id
|
||||
@@ -316,7 +322,7 @@ class ChatConversationApi(Resource):
|
||||
|
||||
if args['end']:
|
||||
end_datetime = datetime.strptime(args['end'], '%Y-%m-%d %H:%M')
|
||||
end_datetime = end_datetime.replace(second=0)
|
||||
end_datetime = end_datetime.replace(second=59)
|
||||
|
||||
end_datetime_timezone = timezone.localize(end_datetime)
|
||||
end_datetime_utc = end_datetime_timezone.astimezone(utc_timezone)
|
||||
|
||||
@@ -43,6 +43,7 @@ class ModelConfigResource(Resource):
|
||||
suggested_questions_after_answer=json.dumps(model_configuration['suggested_questions_after_answer']),
|
||||
speech_to_text=json.dumps(model_configuration['speech_to_text']),
|
||||
more_like_this=json.dumps(model_configuration['more_like_this']),
|
||||
sensitive_word_avoidance=json.dumps(model_configuration['sensitive_word_avoidance']),
|
||||
model=json.dumps(model_configuration['model']),
|
||||
user_input_form=json.dumps(model_configuration['user_input_form']),
|
||||
pre_prompt=model_configuration['pre_prompt'],
|
||||
|
||||
@@ -3,7 +3,6 @@ from flask import request
|
||||
from flask_login import login_required, current_user
|
||||
from flask_restful import Resource, reqparse, fields, marshal, marshal_with
|
||||
from werkzeug.exceptions import NotFound, Forbidden
|
||||
|
||||
import services
|
||||
from controllers.console import api
|
||||
from controllers.console.datasets.error import DatasetNameDuplicateError
|
||||
@@ -221,6 +220,7 @@ class DatasetIndexingEstimateApi(Resource):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('info_list', type=dict, required=True, nullable=True, location='json')
|
||||
parser.add_argument('process_rule', type=dict, required=True, nullable=True, location='json')
|
||||
parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
|
||||
args = parser.parse_args()
|
||||
# validate args
|
||||
DocumentService.estimate_args_validate(args)
|
||||
@@ -235,12 +235,12 @@ class DatasetIndexingEstimateApi(Resource):
|
||||
raise NotFound("File not found.")
|
||||
|
||||
indexing_runner = IndexingRunner()
|
||||
response = indexing_runner.file_indexing_estimate(file_details, args['process_rule'])
|
||||
response = indexing_runner.file_indexing_estimate(file_details, args['process_rule'], args['doc_form'])
|
||||
elif args['info_list']['data_source_type'] == 'notion_import':
|
||||
|
||||
indexing_runner = IndexingRunner()
|
||||
response = indexing_runner.notion_indexing_estimate(args['info_list']['notion_info_list'],
|
||||
args['process_rule'])
|
||||
args['process_rule'], args['doc_form'])
|
||||
else:
|
||||
raise ValueError('Data source type not support')
|
||||
return response, 200
|
||||
|
||||
@@ -60,6 +60,7 @@ document_fields = {
|
||||
'display_status': fields.String,
|
||||
'word_count': fields.Integer,
|
||||
'hit_count': fields.Integer,
|
||||
'doc_form': fields.String,
|
||||
}
|
||||
|
||||
document_with_segments_fields = {
|
||||
@@ -86,6 +87,7 @@ document_with_segments_fields = {
|
||||
'total_segments': fields.Integer
|
||||
}
|
||||
|
||||
|
||||
class DocumentResource(Resource):
|
||||
def get_document(self, dataset_id: str, document_id: str) -> Document:
|
||||
dataset = DatasetService.get_dataset(dataset_id)
|
||||
@@ -269,6 +271,7 @@ class DatasetDocumentListApi(Resource):
|
||||
parser.add_argument('process_rule', type=dict, required=False, location='json')
|
||||
parser.add_argument('duplicate', type=bool, nullable=False, location='json')
|
||||
parser.add_argument('original_document_id', type=str, required=False, location='json')
|
||||
parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
if not dataset.indexing_technique and not args['indexing_technique']:
|
||||
@@ -313,6 +316,7 @@ class DatasetInitApi(Resource):
|
||||
nullable=False, location='json')
|
||||
parser.add_argument('data_source', type=dict, required=True, nullable=True, location='json')
|
||||
parser.add_argument('process_rule', type=dict, required=True, nullable=True, location='json')
|
||||
parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
# validate args
|
||||
@@ -488,6 +492,8 @@ class DocumentBatchIndexingStatusApi(DocumentResource):
|
||||
DocumentSegment.status != 're_segment').count()
|
||||
document.completed_segments = completed_segments
|
||||
document.total_segments = total_segments
|
||||
if document.is_paused:
|
||||
document.indexing_status = 'paused'
|
||||
documents_status.append(marshal(document, self.document_status_fields))
|
||||
data = {
|
||||
'data': documents_status
|
||||
@@ -583,7 +589,8 @@ class DocumentDetailApi(DocumentResource):
|
||||
'segment_count': document.segment_count,
|
||||
'average_segment_length': document.average_segment_length,
|
||||
'hit_count': document.hit_count,
|
||||
'display_status': document.display_status
|
||||
'display_status': document.display_status,
|
||||
'doc_form': document.doc_form
|
||||
}
|
||||
else:
|
||||
process_rules = DatasetService.get_process_rules(dataset_id)
|
||||
@@ -614,7 +621,8 @@ class DocumentDetailApi(DocumentResource):
|
||||
'segment_count': document.segment_count,
|
||||
'average_segment_length': document.average_segment_length,
|
||||
'hit_count': document.hit_count,
|
||||
'display_status': document.display_status
|
||||
'display_status': document.display_status,
|
||||
'doc_form': document.doc_form
|
||||
}
|
||||
|
||||
return response, 200
|
||||
|
||||
@@ -15,8 +15,8 @@ from extensions.ext_redis import redis_client
|
||||
from models.dataset import DocumentSegment
|
||||
|
||||
from libs.helper import TimestampField
|
||||
from services.dataset_service import DatasetService, DocumentService
|
||||
from tasks.add_segment_to_index_task import add_segment_to_index_task
|
||||
from services.dataset_service import DatasetService, DocumentService, SegmentService
|
||||
from tasks.enable_segment_to_index_task import enable_segment_to_index_task
|
||||
from tasks.remove_segment_from_index_task import remove_segment_from_index_task
|
||||
|
||||
segment_fields = {
|
||||
@@ -24,6 +24,7 @@ segment_fields = {
|
||||
'position': fields.Integer,
|
||||
'document_id': fields.String,
|
||||
'content': fields.String,
|
||||
'answer': fields.String,
|
||||
'word_count': fields.Integer,
|
||||
'tokens': fields.Integer,
|
||||
'keywords': fields.List(fields.String),
|
||||
@@ -125,6 +126,7 @@ class DatasetDocumentSegmentListApi(Resource):
|
||||
|
||||
return {
|
||||
'data': marshal(segments, segment_fields),
|
||||
'doc_form': document.doc_form,
|
||||
'has_more': has_more,
|
||||
'limit': limit,
|
||||
'total': total
|
||||
@@ -180,7 +182,7 @@ class DatasetDocumentSegmentApi(Resource):
|
||||
# Set cache to prevent indexing the same segment multiple times
|
||||
redis_client.setex(indexing_cache_key, 600, 1)
|
||||
|
||||
add_segment_to_index_task.delay(segment.id)
|
||||
enable_segment_to_index_task.delay(segment.id)
|
||||
|
||||
return {'result': 'success'}, 200
|
||||
elif action == "disable":
|
||||
@@ -202,7 +204,91 @@ class DatasetDocumentSegmentApi(Resource):
|
||||
raise InvalidActionError()
|
||||
|
||||
|
||||
class DatasetDocumentSegmentAddApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self, dataset_id, document_id):
|
||||
# check dataset
|
||||
dataset_id = str(dataset_id)
|
||||
dataset = DatasetService.get_dataset(dataset_id)
|
||||
if not dataset:
|
||||
raise NotFound('Dataset not found.')
|
||||
# check document
|
||||
document_id = str(document_id)
|
||||
document = DocumentService.get_document(dataset_id, document_id)
|
||||
if not document:
|
||||
raise NotFound('Document not found.')
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
raise Forbidden()
|
||||
try:
|
||||
DatasetService.check_dataset_permission(dataset, current_user)
|
||||
except services.errors.account.NoPermissionError as e:
|
||||
raise Forbidden(str(e))
|
||||
# validate args
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('content', type=str, required=True, nullable=False, location='json')
|
||||
parser.add_argument('answer', type=str, required=False, nullable=True, location='json')
|
||||
parser.add_argument('keywords', type=list, required=False, nullable=True, location='json')
|
||||
args = parser.parse_args()
|
||||
SegmentService.segment_create_args_validate(args, document)
|
||||
segment = SegmentService.create_segment(args, document)
|
||||
return {
|
||||
'data': marshal(segment, segment_fields),
|
||||
'doc_form': document.doc_form
|
||||
}, 200
|
||||
|
||||
|
||||
class DatasetDocumentSegmentUpdateApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def patch(self, dataset_id, document_id, segment_id):
|
||||
# check dataset
|
||||
dataset_id = str(dataset_id)
|
||||
dataset = DatasetService.get_dataset(dataset_id)
|
||||
if not dataset:
|
||||
raise NotFound('Dataset not found.')
|
||||
# check document
|
||||
document_id = str(document_id)
|
||||
document = DocumentService.get_document(dataset_id, document_id)
|
||||
if not document:
|
||||
raise NotFound('Document not found.')
|
||||
# check segment
|
||||
segment_id = str(segment_id)
|
||||
segment = DocumentSegment.query.filter(
|
||||
DocumentSegment.id == str(segment_id),
|
||||
DocumentSegment.tenant_id == current_user.current_tenant_id
|
||||
).first()
|
||||
if not segment:
|
||||
raise NotFound('Segment not found.')
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
raise Forbidden()
|
||||
try:
|
||||
DatasetService.check_dataset_permission(dataset, current_user)
|
||||
except services.errors.account.NoPermissionError as e:
|
||||
raise Forbidden(str(e))
|
||||
# validate args
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('content', type=str, required=True, nullable=False, location='json')
|
||||
parser.add_argument('answer', type=str, required=False, nullable=True, location='json')
|
||||
parser.add_argument('keywords', type=list, required=False, nullable=True, location='json')
|
||||
args = parser.parse_args()
|
||||
SegmentService.segment_create_args_validate(args, document)
|
||||
segment = SegmentService.update_segment(args, segment, document)
|
||||
return {
|
||||
'data': marshal(segment, segment_fields),
|
||||
'doc_form': document.doc_form
|
||||
}, 200
|
||||
|
||||
|
||||
api.add_resource(DatasetDocumentSegmentListApi,
|
||||
'/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments')
|
||||
api.add_resource(DatasetDocumentSegmentApi,
|
||||
'/datasets/<uuid:dataset_id>/segments/<uuid:segment_id>/<string:action>')
|
||||
api.add_resource(DatasetDocumentSegmentAddApi,
|
||||
'/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segment')
|
||||
api.add_resource(DatasetDocumentSegmentUpdateApi,
|
||||
'/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/<uuid:segment_id>')
|
||||
|
||||
@@ -28,6 +28,7 @@ segment_fields = {
|
||||
'position': fields.Integer,
|
||||
'document_id': fields.String,
|
||||
'content': fields.String,
|
||||
'answer': fields.String,
|
||||
'word_count': fields.Integer,
|
||||
'tokens': fields.Integer,
|
||||
'keywords': fields.List(fields.String),
|
||||
|
||||
@@ -65,7 +65,10 @@ class ConversationApi(InstalledAppResource):
|
||||
raise NotChatAppError()
|
||||
|
||||
conversation_id = str(c_id)
|
||||
ConversationService.delete(app_model, conversation_id, current_user)
|
||||
try:
|
||||
ConversationService.delete(app_model, conversation_id, current_user)
|
||||
except ConversationNotExistsError:
|
||||
raise NotFound("Conversation Not Exists.")
|
||||
WebConversationService.unpin(app_model, conversation_id, current_user)
|
||||
|
||||
return {"result": "success"}, 204
|
||||
|
||||
@@ -4,6 +4,10 @@ from flask_restful import marshal_with, fields
|
||||
from controllers.console import api
|
||||
from controllers.console.explore.wraps import InstalledAppResource
|
||||
|
||||
from core.llm.llm_builder import LLMBuilder
|
||||
from models.provider import ProviderName
|
||||
from models.model import InstalledApp
|
||||
|
||||
|
||||
class AppParameterApi(InstalledAppResource):
|
||||
"""Resource for app variables."""
|
||||
@@ -27,16 +31,17 @@ class AppParameterApi(InstalledAppResource):
|
||||
}
|
||||
|
||||
@marshal_with(parameters_fields)
|
||||
def get(self, installed_app):
|
||||
def get(self, installed_app: InstalledApp):
|
||||
"""Retrieve app parameters."""
|
||||
app_model = installed_app.app
|
||||
app_model_config = app_model.app_model_config
|
||||
provider_name = LLMBuilder.get_default_provider(installed_app.tenant_id, 'whisper-1')
|
||||
|
||||
return {
|
||||
'opening_statement': app_model_config.opening_statement,
|
||||
'suggested_questions': app_model_config.suggested_questions_list,
|
||||
'suggested_questions_after_answer': app_model_config.suggested_questions_after_answer_dict,
|
||||
'speech_to_text': app_model_config.speech_to_text_dict,
|
||||
'speech_to_text': app_model_config.speech_to_text_dict if provider_name == ProviderName.OPENAI.value else { 'enabled': False },
|
||||
'more_like_this': app_model_config.more_like_this_dict,
|
||||
'user_input_form': app_model_config.user_input_form_list
|
||||
}
|
||||
|
||||
66
api/controllers/console/universal_chat/audio.py
Normal file
66
api/controllers/console/universal_chat/audio.py
Normal file
@@ -0,0 +1,66 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
import logging
|
||||
|
||||
from flask import request
|
||||
from werkzeug.exceptions import InternalServerError
|
||||
|
||||
import services
|
||||
from controllers.console import api
|
||||
from controllers.console.app.error import AppUnavailableError, ProviderNotInitializeError, \
|
||||
ProviderQuotaExceededError, ProviderModelCurrentlyNotSupportError, CompletionRequestError, \
|
||||
NoAudioUploadedError, AudioTooLargeError, \
|
||||
UnsupportedAudioTypeError, ProviderNotSupportSpeechToTextError
|
||||
from controllers.console.universal_chat.wraps import UniversalChatResource
|
||||
from core.llm.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
|
||||
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
|
||||
from services.audio_service import AudioService
|
||||
from services.errors.audio import NoAudioUploadedServiceError, AudioTooLargeServiceError, \
|
||||
UnsupportedAudioTypeServiceError, ProviderNotSupportSpeechToTextServiceError
|
||||
from models.model import AppModelConfig
|
||||
|
||||
|
||||
class UniversalChatAudioApi(UniversalChatResource):
|
||||
def post(self, universal_app):
|
||||
app_model = universal_app
|
||||
app_model_config: AppModelConfig = app_model.app_model_config
|
||||
|
||||
if not app_model_config.speech_to_text_dict['enabled']:
|
||||
raise AppUnavailableError()
|
||||
|
||||
file = request.files['file']
|
||||
|
||||
try:
|
||||
response = AudioService.transcript(
|
||||
tenant_id=app_model.tenant_id,
|
||||
file=file,
|
||||
)
|
||||
|
||||
return response
|
||||
except services.errors.app_model_config.AppModelConfigBrokenError:
|
||||
logging.exception("App model config broken.")
|
||||
raise AppUnavailableError()
|
||||
except NoAudioUploadedServiceError:
|
||||
raise NoAudioUploadedError()
|
||||
except AudioTooLargeServiceError as e:
|
||||
raise AudioTooLargeError(str(e))
|
||||
except UnsupportedAudioTypeServiceError:
|
||||
raise UnsupportedAudioTypeError()
|
||||
except ProviderNotSupportSpeechToTextServiceError:
|
||||
raise ProviderNotSupportSpeechToTextError()
|
||||
except ProviderTokenNotInitError:
|
||||
raise ProviderNotInitializeError()
|
||||
except QuotaExceededError:
|
||||
raise ProviderQuotaExceededError()
|
||||
except ModelCurrentlyNotSupportError:
|
||||
raise ProviderModelCurrentlyNotSupportError()
|
||||
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
|
||||
LLMRateLimitError, LLMAuthorizationError) as e:
|
||||
raise CompletionRequestError(str(e))
|
||||
except ValueError as e:
|
||||
raise e
|
||||
except Exception as e:
|
||||
logging.exception("internal server error.")
|
||||
raise InternalServerError()
|
||||
|
||||
|
||||
api.add_resource(UniversalChatAudioApi, '/universal-chat/audio-to-text')
|
||||
142
api/controllers/console/universal_chat/chat.py
Normal file
142
api/controllers/console/universal_chat/chat.py
Normal file
@@ -0,0 +1,142 @@
|
||||
import json
|
||||
import logging
|
||||
from typing import Generator, Union
|
||||
|
||||
from flask import Response, stream_with_context
|
||||
from flask_login import current_user
|
||||
from flask_restful import reqparse
|
||||
from werkzeug.exceptions import InternalServerError, NotFound
|
||||
|
||||
import services
|
||||
from controllers.console import api
|
||||
from controllers.console.app.error import ConversationCompletedError, AppUnavailableError, ProviderNotInitializeError, \
|
||||
ProviderQuotaExceededError, ProviderModelCurrentlyNotSupportError, CompletionRequestError
|
||||
from controllers.console.universal_chat.wraps import UniversalChatResource
|
||||
from core.constant import llm_constant
|
||||
from core.conversation_message_task import PubHandler
|
||||
from core.llm.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError, \
|
||||
LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError, LLMRateLimitError, LLMAuthorizationError
|
||||
from libs.helper import uuid_value
|
||||
from services.completion_service import CompletionService
|
||||
|
||||
|
||||
class UniversalChatApi(UniversalChatResource):
|
||||
def post(self, universal_app):
|
||||
app_model = universal_app
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('query', type=str, required=True, location='json')
|
||||
parser.add_argument('conversation_id', type=uuid_value, location='json')
|
||||
parser.add_argument('model', type=str, required=True, location='json')
|
||||
parser.add_argument('tools', type=list, required=True, location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
app_model_config = app_model.app_model_config
|
||||
|
||||
# update app model config
|
||||
args['model_config'] = app_model_config.to_dict()
|
||||
args['model_config']['model']['name'] = args['model']
|
||||
|
||||
if not llm_constant.models[args['model']]:
|
||||
raise ValueError("Model not exists.")
|
||||
|
||||
args['model_config']['model']['provider'] = llm_constant.models[args['model']]
|
||||
args['model_config']['agent_mode']['tools'] = args['tools']
|
||||
|
||||
if not args['model_config']['agent_mode']['tools']:
|
||||
args['model_config']['agent_mode']['tools'] = [
|
||||
{
|
||||
"current_datetime": {
|
||||
"enabled": True
|
||||
}
|
||||
}
|
||||
]
|
||||
else:
|
||||
args['model_config']['agent_mode']['tools'].append({
|
||||
"current_datetime": {
|
||||
"enabled": True
|
||||
}
|
||||
})
|
||||
|
||||
args['inputs'] = {}
|
||||
|
||||
del args['model']
|
||||
del args['tools']
|
||||
|
||||
try:
|
||||
response = CompletionService.completion(
|
||||
app_model=app_model,
|
||||
user=current_user,
|
||||
args=args,
|
||||
from_source='console',
|
||||
streaming=True,
|
||||
is_model_config_override=True,
|
||||
)
|
||||
|
||||
return compact_response(response)
|
||||
except services.errors.conversation.ConversationNotExistsError:
|
||||
raise NotFound("Conversation Not Exists.")
|
||||
except services.errors.conversation.ConversationCompletedError:
|
||||
raise ConversationCompletedError()
|
||||
except services.errors.app_model_config.AppModelConfigBrokenError:
|
||||
logging.exception("App model config broken.")
|
||||
raise AppUnavailableError()
|
||||
except ProviderTokenNotInitError:
|
||||
raise ProviderNotInitializeError()
|
||||
except QuotaExceededError:
|
||||
raise ProviderQuotaExceededError()
|
||||
except ModelCurrentlyNotSupportError:
|
||||
raise ProviderModelCurrentlyNotSupportError()
|
||||
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
|
||||
LLMRateLimitError, LLMAuthorizationError) as e:
|
||||
raise CompletionRequestError(str(e))
|
||||
except ValueError as e:
|
||||
raise e
|
||||
except Exception as e:
|
||||
logging.exception("internal server error.")
|
||||
raise InternalServerError()
|
||||
|
||||
|
||||
class UniversalChatStopApi(UniversalChatResource):
|
||||
def post(self, universal_app, task_id):
|
||||
PubHandler.stop(current_user, task_id)
|
||||
|
||||
return {'result': 'success'}, 200
|
||||
|
||||
|
||||
def compact_response(response: Union[dict | Generator]) -> Response:
|
||||
if isinstance(response, dict):
|
||||
return Response(response=json.dumps(response), status=200, mimetype='application/json')
|
||||
else:
|
||||
def generate() -> Generator:
|
||||
try:
|
||||
for chunk in response:
|
||||
yield chunk
|
||||
except services.errors.conversation.ConversationNotExistsError:
|
||||
yield "data: " + json.dumps(api.handle_error(NotFound("Conversation Not Exists.")).get_json()) + "\n\n"
|
||||
except services.errors.conversation.ConversationCompletedError:
|
||||
yield "data: " + json.dumps(api.handle_error(ConversationCompletedError()).get_json()) + "\n\n"
|
||||
except services.errors.app_model_config.AppModelConfigBrokenError:
|
||||
logging.exception("App model config broken.")
|
||||
yield "data: " + json.dumps(api.handle_error(AppUnavailableError()).get_json()) + "\n\n"
|
||||
except ProviderTokenNotInitError:
|
||||
yield "data: " + json.dumps(api.handle_error(ProviderNotInitializeError()).get_json()) + "\n\n"
|
||||
except QuotaExceededError:
|
||||
yield "data: " + json.dumps(api.handle_error(ProviderQuotaExceededError()).get_json()) + "\n\n"
|
||||
except ModelCurrentlyNotSupportError:
|
||||
yield "data: " + json.dumps(api.handle_error(ProviderModelCurrentlyNotSupportError()).get_json()) + "\n\n"
|
||||
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
|
||||
LLMRateLimitError, LLMAuthorizationError) as e:
|
||||
yield "data: " + json.dumps(api.handle_error(CompletionRequestError(str(e))).get_json()) + "\n\n"
|
||||
except ValueError as e:
|
||||
yield "data: " + json.dumps(api.handle_error(e).get_json()) + "\n\n"
|
||||
except Exception:
|
||||
logging.exception("internal server error.")
|
||||
yield "data: " + json.dumps(api.handle_error(InternalServerError()).get_json()) + "\n\n"
|
||||
|
||||
return Response(stream_with_context(generate()), status=200,
|
||||
mimetype='text/event-stream')
|
||||
|
||||
|
||||
api.add_resource(UniversalChatApi, '/universal-chat/messages')
|
||||
api.add_resource(UniversalChatStopApi, '/universal-chat/messages/<string:task_id>/stop')
|
||||
118
api/controllers/console/universal_chat/conversation.py
Normal file
118
api/controllers/console/universal_chat/conversation.py
Normal file
@@ -0,0 +1,118 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
from flask_login import current_user
|
||||
from flask_restful import fields, reqparse, marshal_with
|
||||
from flask_restful.inputs import int_range
|
||||
from werkzeug.exceptions import NotFound
|
||||
|
||||
from controllers.console import api
|
||||
from controllers.console.universal_chat.wraps import UniversalChatResource
|
||||
from libs.helper import TimestampField, uuid_value
|
||||
from services.conversation_service import ConversationService
|
||||
from services.errors.conversation import LastConversationNotExistsError, ConversationNotExistsError
|
||||
from services.web_conversation_service import WebConversationService
|
||||
|
||||
conversation_fields = {
|
||||
'id': fields.String,
|
||||
'name': fields.String,
|
||||
'inputs': fields.Raw,
|
||||
'status': fields.String,
|
||||
'introduction': fields.String,
|
||||
'created_at': TimestampField,
|
||||
'model_config': fields.Raw,
|
||||
}
|
||||
|
||||
conversation_infinite_scroll_pagination_fields = {
|
||||
'limit': fields.Integer,
|
||||
'has_more': fields.Boolean,
|
||||
'data': fields.List(fields.Nested(conversation_fields))
|
||||
}
|
||||
|
||||
|
||||
class UniversalChatConversationListApi(UniversalChatResource):
|
||||
|
||||
@marshal_with(conversation_infinite_scroll_pagination_fields)
|
||||
def get(self, universal_app):
|
||||
app_model = universal_app
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('last_id', type=uuid_value, location='args')
|
||||
parser.add_argument('limit', type=int_range(1, 100), required=False, default=20, location='args')
|
||||
parser.add_argument('pinned', type=str, choices=['true', 'false', None], location='args')
|
||||
args = parser.parse_args()
|
||||
|
||||
pinned = None
|
||||
if 'pinned' in args and args['pinned'] is not None:
|
||||
pinned = True if args['pinned'] == 'true' else False
|
||||
|
||||
try:
|
||||
return WebConversationService.pagination_by_last_id(
|
||||
app_model=app_model,
|
||||
user=current_user,
|
||||
last_id=args['last_id'],
|
||||
limit=args['limit'],
|
||||
pinned=pinned
|
||||
)
|
||||
except LastConversationNotExistsError:
|
||||
raise NotFound("Last Conversation Not Exists.")
|
||||
|
||||
|
||||
class UniversalChatConversationApi(UniversalChatResource):
|
||||
def delete(self, universal_app, c_id):
|
||||
app_model = universal_app
|
||||
conversation_id = str(c_id)
|
||||
|
||||
try:
|
||||
ConversationService.delete(app_model, conversation_id, current_user)
|
||||
except ConversationNotExistsError:
|
||||
raise NotFound("Conversation Not Exists.")
|
||||
|
||||
WebConversationService.unpin(app_model, conversation_id, current_user)
|
||||
|
||||
return {"result": "success"}, 204
|
||||
|
||||
|
||||
class UniversalChatConversationRenameApi(UniversalChatResource):
|
||||
|
||||
@marshal_with(conversation_fields)
|
||||
def post(self, universal_app, c_id):
|
||||
app_model = universal_app
|
||||
conversation_id = str(c_id)
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('name', type=str, required=True, location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
try:
|
||||
return ConversationService.rename(app_model, conversation_id, current_user, args['name'])
|
||||
except ConversationNotExistsError:
|
||||
raise NotFound("Conversation Not Exists.")
|
||||
|
||||
|
||||
class UniversalChatConversationPinApi(UniversalChatResource):
|
||||
|
||||
def patch(self, universal_app, c_id):
|
||||
app_model = universal_app
|
||||
conversation_id = str(c_id)
|
||||
|
||||
try:
|
||||
WebConversationService.pin(app_model, conversation_id, current_user)
|
||||
except ConversationNotExistsError:
|
||||
raise NotFound("Conversation Not Exists.")
|
||||
|
||||
return {"result": "success"}
|
||||
|
||||
|
||||
class UniversalChatConversationUnPinApi(UniversalChatResource):
|
||||
def patch(self, universal_app, c_id):
|
||||
app_model = universal_app
|
||||
conversation_id = str(c_id)
|
||||
WebConversationService.unpin(app_model, conversation_id, current_user)
|
||||
|
||||
return {"result": "success"}
|
||||
|
||||
|
||||
api.add_resource(UniversalChatConversationRenameApi, '/universal-chat/conversations/<uuid:c_id>/name')
|
||||
api.add_resource(UniversalChatConversationListApi, '/universal-chat/conversations')
|
||||
api.add_resource(UniversalChatConversationApi, '/universal-chat/conversations/<uuid:c_id>')
|
||||
api.add_resource(UniversalChatConversationPinApi, '/universal-chat/conversations/<uuid:c_id>/pin')
|
||||
api.add_resource(UniversalChatConversationUnPinApi, '/universal-chat/conversations/<uuid:c_id>/unpin')
|
||||
127
api/controllers/console/universal_chat/message.py
Normal file
127
api/controllers/console/universal_chat/message.py
Normal file
@@ -0,0 +1,127 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
import logging
|
||||
|
||||
from flask_login import current_user
|
||||
from flask_restful import reqparse, fields, marshal_with
|
||||
from flask_restful.inputs import int_range
|
||||
from werkzeug.exceptions import NotFound, InternalServerError
|
||||
|
||||
import services
|
||||
from controllers.console import api
|
||||
from controllers.console.app.error import ProviderNotInitializeError, \
|
||||
ProviderQuotaExceededError, ProviderModelCurrentlyNotSupportError, CompletionRequestError
|
||||
from controllers.console.explore.error import AppSuggestedQuestionsAfterAnswerDisabledError
|
||||
from controllers.console.universal_chat.wraps import UniversalChatResource
|
||||
from core.llm.error import LLMRateLimitError, LLMBadRequestError, LLMAuthorizationError, LLMAPIConnectionError, \
|
||||
ProviderTokenNotInitError, LLMAPIUnavailableError, QuotaExceededError, ModelCurrentlyNotSupportError
|
||||
from libs.helper import uuid_value, TimestampField
|
||||
from services.errors.conversation import ConversationNotExistsError
|
||||
from services.errors.message import MessageNotExistsError, SuggestedQuestionsAfterAnswerDisabledError
|
||||
from services.message_service import MessageService
|
||||
|
||||
|
||||
class UniversalChatMessageListApi(UniversalChatResource):
|
||||
feedback_fields = {
|
||||
'rating': fields.String
|
||||
}
|
||||
|
||||
agent_thought_fields = {
|
||||
'id': fields.String,
|
||||
'chain_id': fields.String,
|
||||
'message_id': fields.String,
|
||||
'position': fields.Integer,
|
||||
'thought': fields.String,
|
||||
'tool': fields.String,
|
||||
'tool_input': fields.String,
|
||||
'created_at': TimestampField
|
||||
}
|
||||
|
||||
message_fields = {
|
||||
'id': fields.String,
|
||||
'conversation_id': fields.String,
|
||||
'inputs': fields.Raw,
|
||||
'query': fields.String,
|
||||
'answer': fields.String,
|
||||
'feedback': fields.Nested(feedback_fields, attribute='user_feedback', allow_null=True),
|
||||
'created_at': TimestampField,
|
||||
'agent_thoughts': fields.List(fields.Nested(agent_thought_fields))
|
||||
}
|
||||
|
||||
message_infinite_scroll_pagination_fields = {
|
||||
'limit': fields.Integer,
|
||||
'has_more': fields.Boolean,
|
||||
'data': fields.List(fields.Nested(message_fields))
|
||||
}
|
||||
|
||||
@marshal_with(message_infinite_scroll_pagination_fields)
|
||||
def get(self, universal_app):
|
||||
app_model = universal_app
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('conversation_id', required=True, type=uuid_value, location='args')
|
||||
parser.add_argument('first_id', type=uuid_value, location='args')
|
||||
parser.add_argument('limit', type=int_range(1, 100), required=False, default=20, location='args')
|
||||
args = parser.parse_args()
|
||||
|
||||
try:
|
||||
return MessageService.pagination_by_first_id(app_model, current_user,
|
||||
args['conversation_id'], args['first_id'], args['limit'])
|
||||
except services.errors.conversation.ConversationNotExistsError:
|
||||
raise NotFound("Conversation Not Exists.")
|
||||
except services.errors.message.FirstMessageNotExistsError:
|
||||
raise NotFound("First Message Not Exists.")
|
||||
|
||||
|
||||
class UniversalChatMessageFeedbackApi(UniversalChatResource):
|
||||
def post(self, universal_app, message_id):
|
||||
app_model = universal_app
|
||||
message_id = str(message_id)
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('rating', type=str, choices=['like', 'dislike', None], location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
try:
|
||||
MessageService.create_feedback(app_model, message_id, current_user, args['rating'])
|
||||
except services.errors.message.MessageNotExistsError:
|
||||
raise NotFound("Message Not Exists.")
|
||||
|
||||
return {'result': 'success'}
|
||||
|
||||
|
||||
class UniversalChatMessageSuggestedQuestionApi(UniversalChatResource):
|
||||
def get(self, universal_app, message_id):
|
||||
app_model = universal_app
|
||||
message_id = str(message_id)
|
||||
|
||||
try:
|
||||
questions = MessageService.get_suggested_questions_after_answer(
|
||||
app_model=app_model,
|
||||
user=current_user,
|
||||
message_id=message_id
|
||||
)
|
||||
except MessageNotExistsError:
|
||||
raise NotFound("Message not found")
|
||||
except ConversationNotExistsError:
|
||||
raise NotFound("Conversation not found")
|
||||
except SuggestedQuestionsAfterAnswerDisabledError:
|
||||
raise AppSuggestedQuestionsAfterAnswerDisabledError()
|
||||
except ProviderTokenNotInitError:
|
||||
raise ProviderNotInitializeError()
|
||||
except QuotaExceededError:
|
||||
raise ProviderQuotaExceededError()
|
||||
except ModelCurrentlyNotSupportError:
|
||||
raise ProviderModelCurrentlyNotSupportError()
|
||||
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
|
||||
LLMRateLimitError, LLMAuthorizationError) as e:
|
||||
raise CompletionRequestError(str(e))
|
||||
except Exception:
|
||||
logging.exception("internal server error.")
|
||||
raise InternalServerError()
|
||||
|
||||
return {'data': questions}
|
||||
|
||||
|
||||
api.add_resource(UniversalChatMessageListApi, '/universal-chat/messages')
|
||||
api.add_resource(UniversalChatMessageFeedbackApi, '/universal-chat/messages/<uuid:message_id>/feedbacks')
|
||||
api.add_resource(UniversalChatMessageSuggestedQuestionApi, '/universal-chat/messages/<uuid:message_id>/suggested-questions')
|
||||
36
api/controllers/console/universal_chat/parameter.py
Normal file
36
api/controllers/console/universal_chat/parameter.py
Normal file
@@ -0,0 +1,36 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
from flask_restful import marshal_with, fields
|
||||
|
||||
from controllers.console import api
|
||||
from controllers.console.universal_chat.wraps import UniversalChatResource
|
||||
|
||||
from core.llm.llm_builder import LLMBuilder
|
||||
from models.provider import ProviderName
|
||||
from models.model import App
|
||||
|
||||
|
||||
class UniversalChatParameterApi(UniversalChatResource):
|
||||
"""Resource for app variables."""
|
||||
parameters_fields = {
|
||||
'opening_statement': fields.String,
|
||||
'suggested_questions': fields.Raw,
|
||||
'suggested_questions_after_answer': fields.Raw,
|
||||
'speech_to_text': fields.Raw,
|
||||
}
|
||||
|
||||
@marshal_with(parameters_fields)
|
||||
def get(self, universal_app: App):
|
||||
"""Retrieve app parameters."""
|
||||
app_model = universal_app
|
||||
app_model_config = app_model.app_model_config
|
||||
provider_name = LLMBuilder.get_default_provider(universal_app.tenant_id, 'whisper-1')
|
||||
|
||||
return {
|
||||
'opening_statement': app_model_config.opening_statement,
|
||||
'suggested_questions': app_model_config.suggested_questions_list,
|
||||
'suggested_questions_after_answer': app_model_config.suggested_questions_after_answer_dict,
|
||||
'speech_to_text': app_model_config.speech_to_text_dict if provider_name == ProviderName.OPENAI.value else { 'enabled': False },
|
||||
}
|
||||
|
||||
|
||||
api.add_resource(UniversalChatParameterApi, '/universal-chat/parameters')
|
||||
84
api/controllers/console/universal_chat/wraps.py
Normal file
84
api/controllers/console/universal_chat/wraps.py
Normal file
@@ -0,0 +1,84 @@
|
||||
import json
|
||||
from functools import wraps
|
||||
|
||||
from flask_login import login_required, current_user
|
||||
from flask_restful import Resource
|
||||
from controllers.console.setup import setup_required
|
||||
from controllers.console.wraps import account_initialization_required
|
||||
from extensions.ext_database import db
|
||||
from models.model import App, AppModelConfig
|
||||
|
||||
|
||||
def universal_chat_app_required(view=None):
|
||||
def decorator(view):
|
||||
@wraps(view)
|
||||
def decorated(*args, **kwargs):
|
||||
# get universal chat app
|
||||
universal_app = db.session.query(App).filter(
|
||||
App.tenant_id == current_user.current_tenant_id,
|
||||
App.is_universal == True
|
||||
).first()
|
||||
|
||||
if universal_app is None:
|
||||
# create universal app if not exists
|
||||
universal_app = App(
|
||||
tenant_id=current_user.current_tenant_id,
|
||||
name='Universal Chat',
|
||||
mode='chat',
|
||||
is_universal=True,
|
||||
icon='',
|
||||
icon_background='',
|
||||
api_rpm=0,
|
||||
api_rph=0,
|
||||
enable_site=False,
|
||||
enable_api=False,
|
||||
status='normal'
|
||||
)
|
||||
|
||||
db.session.add(universal_app)
|
||||
db.session.flush()
|
||||
|
||||
app_model_config = AppModelConfig(
|
||||
provider="",
|
||||
model_id="",
|
||||
configs={},
|
||||
opening_statement='',
|
||||
suggested_questions=json.dumps([]),
|
||||
suggested_questions_after_answer=json.dumps({'enabled': True}),
|
||||
speech_to_text=json.dumps({'enabled': True}),
|
||||
more_like_this=None,
|
||||
sensitive_word_avoidance=None,
|
||||
model=json.dumps({
|
||||
"provider": "openai",
|
||||
"name": "gpt-3.5-turbo-16k",
|
||||
"completion_params": {
|
||||
"max_tokens": 800,
|
||||
"temperature": 0.8,
|
||||
"top_p": 1,
|
||||
"presence_penalty": 0,
|
||||
"frequency_penalty": 0
|
||||
}
|
||||
}),
|
||||
user_input_form=json.dumps([]),
|
||||
pre_prompt='',
|
||||
agent_mode=json.dumps({"enabled": True, "strategy": "function_call", "tools": []}),
|
||||
)
|
||||
|
||||
app_model_config.app_id = universal_app.id
|
||||
db.session.add(app_model_config)
|
||||
db.session.flush()
|
||||
|
||||
universal_app.app_model_config_id = app_model_config.id
|
||||
db.session.commit()
|
||||
|
||||
return view(universal_app, *args, **kwargs)
|
||||
return decorated
|
||||
|
||||
if view:
|
||||
return decorator(view)
|
||||
return decorator
|
||||
|
||||
|
||||
class UniversalChatResource(Resource):
|
||||
# must be reversed if there are multiple decorators
|
||||
method_decorators = [universal_chat_app_required, account_initialization_required, login_required, setup_required]
|
||||
136
api/controllers/console/workspace/tool_providers.py
Normal file
136
api/controllers/console/workspace/tool_providers.py
Normal file
@@ -0,0 +1,136 @@
|
||||
import json
|
||||
|
||||
from flask_login import login_required, current_user
|
||||
from flask_restful import Resource, abort, reqparse
|
||||
from werkzeug.exceptions import Forbidden
|
||||
|
||||
from controllers.console import api
|
||||
from controllers.console.setup import setup_required
|
||||
from controllers.console.wraps import account_initialization_required
|
||||
from core.tool.provider.errors import ToolValidateFailedError
|
||||
from core.tool.provider.tool_provider_service import ToolProviderService
|
||||
from extensions.ext_database import db
|
||||
from models.tool import ToolProvider, ToolProviderName
|
||||
|
||||
|
||||
class ToolProviderListApi(Resource):
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def get(self):
|
||||
tenant_id = current_user.current_tenant_id
|
||||
|
||||
tool_credential_dict = {}
|
||||
for tool_name in ToolProviderName:
|
||||
tool_credential_dict[tool_name.value] = {
|
||||
'tool_name': tool_name.value,
|
||||
'is_enabled': False,
|
||||
'credentials': None
|
||||
}
|
||||
|
||||
tool_providers = db.session.query(ToolProvider).filter(ToolProvider.tenant_id == tenant_id).all()
|
||||
|
||||
for p in tool_providers:
|
||||
if p.is_enabled:
|
||||
tool_credential_dict[p.tool_name] = {
|
||||
'tool_name': p.tool_name,
|
||||
'is_enabled': p.is_enabled,
|
||||
'credentials': ToolProviderService(tenant_id, p.tool_name).get_credentials(obfuscated=True)
|
||||
}
|
||||
|
||||
return list(tool_credential_dict.values())
|
||||
|
||||
|
||||
class ToolProviderCredentialsApi(Resource):
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self, provider):
|
||||
if provider not in [p.value for p in ToolProviderName]:
|
||||
abort(404)
|
||||
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if current_user.current_tenant.current_role not in ['admin', 'owner']:
|
||||
raise Forbidden(f'User {current_user.id} is not authorized to update provider token, '
|
||||
f'current_role is {current_user.current_tenant.current_role}')
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('credentials', type=dict, required=True, nullable=False, location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
tenant_id = current_user.current_tenant_id
|
||||
|
||||
tool_provider_service = ToolProviderService(tenant_id, provider)
|
||||
|
||||
try:
|
||||
tool_provider_service.credentials_validate(args['credentials'])
|
||||
except ToolValidateFailedError as ex:
|
||||
raise ValueError(str(ex))
|
||||
|
||||
encrypted_credentials = json.dumps(tool_provider_service.encrypt_credentials(args['credentials']))
|
||||
|
||||
tenant = current_user.current_tenant
|
||||
|
||||
tool_provider_model = db.session.query(ToolProvider).filter(
|
||||
ToolProvider.tenant_id == tenant.id,
|
||||
ToolProvider.tool_name == provider,
|
||||
).first()
|
||||
|
||||
# Only allow updating token for CUSTOM provider type
|
||||
if tool_provider_model:
|
||||
tool_provider_model.encrypted_credentials = encrypted_credentials
|
||||
tool_provider_model.is_enabled = True
|
||||
else:
|
||||
tool_provider_model = ToolProvider(
|
||||
tenant_id=tenant.id,
|
||||
tool_name=provider,
|
||||
encrypted_credentials=encrypted_credentials,
|
||||
is_enabled=True
|
||||
)
|
||||
db.session.add(tool_provider_model)
|
||||
|
||||
db.session.commit()
|
||||
|
||||
return {'result': 'success'}, 201
|
||||
|
||||
|
||||
class ToolProviderCredentialsValidateApi(Resource):
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self, provider):
|
||||
if provider not in [p.value for p in ToolProviderName]:
|
||||
abort(404)
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('credentials', type=dict, required=True, nullable=False, location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
result = True
|
||||
error = None
|
||||
|
||||
tenant_id = current_user.current_tenant_id
|
||||
|
||||
tool_provider_service = ToolProviderService(tenant_id, provider)
|
||||
|
||||
try:
|
||||
tool_provider_service.credentials_validate(args['credentials'])
|
||||
except ToolValidateFailedError as ex:
|
||||
result = False
|
||||
error = str(ex)
|
||||
|
||||
response = {'result': 'success' if result else 'error'}
|
||||
|
||||
if not result:
|
||||
response['error'] = error
|
||||
|
||||
return response
|
||||
|
||||
|
||||
api.add_resource(ToolProviderListApi, '/workspaces/current/tool-providers')
|
||||
api.add_resource(ToolProviderCredentialsApi, '/workspaces/current/tool-providers/<provider>/credentials')
|
||||
api.add_resource(ToolProviderCredentialsValidateApi,
|
||||
'/workspaces/current/tool-providers/<provider>/credentials-validate')
|
||||
@@ -4,6 +4,10 @@ from flask_restful import fields, marshal_with
|
||||
from controllers.service_api import api
|
||||
from controllers.service_api.wraps import AppApiResource
|
||||
|
||||
from core.llm.llm_builder import LLMBuilder
|
||||
from models.provider import ProviderName
|
||||
from models.model import App
|
||||
|
||||
|
||||
class AppParameterApi(AppApiResource):
|
||||
"""Resource for app variables."""
|
||||
@@ -28,15 +32,16 @@ class AppParameterApi(AppApiResource):
|
||||
}
|
||||
|
||||
@marshal_with(parameters_fields)
|
||||
def get(self, app_model, end_user):
|
||||
def get(self, app_model: App, end_user):
|
||||
"""Retrieve app parameters."""
|
||||
app_model_config = app_model.app_model_config
|
||||
provider_name = LLMBuilder.get_default_provider(app_model.tenant_id, 'whisper-1')
|
||||
|
||||
return {
|
||||
'opening_statement': app_model_config.opening_statement,
|
||||
'suggested_questions': app_model_config.suggested_questions_list,
|
||||
'suggested_questions_after_answer': app_model_config.suggested_questions_after_answer_dict,
|
||||
'speech_to_text': app_model_config.speech_to_text_dict,
|
||||
'speech_to_text': app_model_config.speech_to_text_dict if provider_name == ProviderName.OPENAI.value else { 'enabled': False },
|
||||
'more_like_this': app_model_config.more_like_this_dict,
|
||||
'user_input_form': app_model_config.user_input_form_list
|
||||
}
|
||||
|
||||
@@ -4,6 +4,10 @@ from flask_restful import marshal_with, fields
|
||||
from controllers.web import api
|
||||
from controllers.web.wraps import WebApiResource
|
||||
|
||||
from core.llm.llm_builder import LLMBuilder
|
||||
from models.provider import ProviderName
|
||||
from models.model import App
|
||||
|
||||
|
||||
class AppParameterApi(WebApiResource):
|
||||
"""Resource for app variables."""
|
||||
@@ -27,15 +31,16 @@ class AppParameterApi(WebApiResource):
|
||||
}
|
||||
|
||||
@marshal_with(parameters_fields)
|
||||
def get(self, app_model, end_user):
|
||||
def get(self, app_model: App, end_user):
|
||||
"""Retrieve app parameters."""
|
||||
app_model_config = app_model.app_model_config
|
||||
provider_name = LLMBuilder.get_default_provider(app_model.tenant_id, 'whisper-1')
|
||||
|
||||
return {
|
||||
'opening_statement': app_model_config.opening_statement,
|
||||
'suggested_questions': app_model_config.suggested_questions_list,
|
||||
'suggested_questions_after_answer': app_model_config.suggested_questions_after_answer_dict,
|
||||
'speech_to_text': app_model_config.speech_to_text_dict,
|
||||
'speech_to_text': app_model_config.speech_to_text_dict if provider_name == ProviderName.OPENAI.value else { 'enabled': False },
|
||||
'more_like_this': app_model_config.more_like_this_dict,
|
||||
'user_input_form': app_model_config.user_input_form_list
|
||||
}
|
||||
|
||||
@@ -62,7 +62,10 @@ class ConversationApi(WebApiResource):
|
||||
raise NotChatAppError()
|
||||
|
||||
conversation_id = str(c_id)
|
||||
ConversationService.delete(app_model, conversation_id, end_user)
|
||||
try:
|
||||
ConversationService.delete(app_model, conversation_id, end_user)
|
||||
except ConversationNotExistsError:
|
||||
raise NotFound("Conversation Not Exists.")
|
||||
WebConversationService.unpin(app_model, conversation_id, end_user)
|
||||
|
||||
return {"result": "success"}, 204
|
||||
|
||||
@@ -38,6 +38,8 @@ def decode_jwt_token():
|
||||
app_model = db.session.query(App).filter(App.id == decoded['app_id']).first()
|
||||
if not app_model:
|
||||
raise NotFound()
|
||||
if app_model.enable_site is False:
|
||||
raise Unauthorized('Site is disabled.')
|
||||
end_user = db.session.query(EndUser).filter(EndUser.id == decoded['end_user_id']).first()
|
||||
if not end_user:
|
||||
raise NotFound()
|
||||
|
||||
35
api/core/agent/agent/calc_token_mixin.py
Normal file
35
api/core/agent/agent/calc_token_mixin.py
Normal file
@@ -0,0 +1,35 @@
|
||||
from typing import cast, List
|
||||
|
||||
from langchain import OpenAI
|
||||
from langchain.base_language import BaseLanguageModel
|
||||
from langchain.chat_models.openai import ChatOpenAI
|
||||
from langchain.schema import BaseMessage
|
||||
|
||||
from core.constant import llm_constant
|
||||
|
||||
|
||||
class CalcTokenMixin:
|
||||
|
||||
def get_num_tokens_from_messages(self, llm: BaseLanguageModel, messages: List[BaseMessage], **kwargs) -> int:
|
||||
llm = cast(ChatOpenAI, llm)
|
||||
return llm.get_num_tokens_from_messages(messages)
|
||||
|
||||
def get_message_rest_tokens(self, llm: BaseLanguageModel, messages: List[BaseMessage], **kwargs) -> int:
|
||||
"""
|
||||
Got the rest tokens available for the model after excluding messages tokens and completion max tokens
|
||||
|
||||
:param llm:
|
||||
:param messages:
|
||||
:return:
|
||||
"""
|
||||
llm = cast(ChatOpenAI, llm)
|
||||
llm_max_tokens = llm_constant.max_context_token_length[llm.model_name]
|
||||
completion_max_tokens = llm.max_tokens
|
||||
used_tokens = self.get_num_tokens_from_messages(llm, messages, **kwargs)
|
||||
rest_tokens = llm_max_tokens - completion_max_tokens - used_tokens
|
||||
|
||||
return rest_tokens
|
||||
|
||||
|
||||
class ExceededLLMTokensLimitError(Exception):
|
||||
pass
|
||||
83
api/core/agent/agent/multi_dataset_router_agent.py
Normal file
83
api/core/agent/agent/multi_dataset_router_agent.py
Normal file
@@ -0,0 +1,83 @@
|
||||
from typing import Tuple, List, Any, Union, Sequence, Optional, cast
|
||||
|
||||
from langchain.agents import OpenAIFunctionsAgent, BaseSingleActionAgent
|
||||
from langchain.callbacks.base import BaseCallbackManager
|
||||
from langchain.callbacks.manager import Callbacks
|
||||
from langchain.prompts.chat import BaseMessagePromptTemplate
|
||||
from langchain.schema import AgentAction, AgentFinish, BaseLanguageModel, SystemMessage
|
||||
from langchain.tools import BaseTool
|
||||
|
||||
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
|
||||
|
||||
|
||||
class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
|
||||
"""
|
||||
An Multi Dataset Retrieve Agent driven by Router.
|
||||
"""
|
||||
|
||||
def should_use_agent(self, query: str):
|
||||
"""
|
||||
return should use agent
|
||||
|
||||
:param query:
|
||||
:return:
|
||||
"""
|
||||
return True
|
||||
|
||||
def plan(
|
||||
self,
|
||||
intermediate_steps: List[Tuple[AgentAction, str]],
|
||||
callbacks: Callbacks = None,
|
||||
**kwargs: Any,
|
||||
) -> Union[AgentAction, AgentFinish]:
|
||||
"""Given input, decided what to do.
|
||||
|
||||
Args:
|
||||
intermediate_steps: Steps the LLM has taken to date, along with observations
|
||||
**kwargs: User inputs.
|
||||
|
||||
Returns:
|
||||
Action specifying what tool to use.
|
||||
"""
|
||||
if len(self.tools) == 0:
|
||||
return AgentFinish(return_values={"output": ''}, log='')
|
||||
elif len(self.tools) == 1:
|
||||
tool = next(iter(self.tools))
|
||||
tool = cast(DatasetRetrieverTool, tool)
|
||||
rst = tool.run(tool_input={'dataset_id': tool.dataset_id, 'query': kwargs['input']})
|
||||
return AgentFinish(return_values={"output": rst}, log=rst)
|
||||
|
||||
if intermediate_steps:
|
||||
_, observation = intermediate_steps[-1]
|
||||
return AgentFinish(return_values={"output": observation}, log=observation)
|
||||
|
||||
return super().plan(intermediate_steps, callbacks, **kwargs)
|
||||
|
||||
async def aplan(
|
||||
self,
|
||||
intermediate_steps: List[Tuple[AgentAction, str]],
|
||||
callbacks: Callbacks = None,
|
||||
**kwargs: Any,
|
||||
) -> Union[AgentAction, AgentFinish]:
|
||||
raise NotImplementedError()
|
||||
|
||||
@classmethod
|
||||
def from_llm_and_tools(
|
||||
cls,
|
||||
llm: BaseLanguageModel,
|
||||
tools: Sequence[BaseTool],
|
||||
callback_manager: Optional[BaseCallbackManager] = None,
|
||||
extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None,
|
||||
system_message: Optional[SystemMessage] = SystemMessage(
|
||||
content="You are a helpful AI assistant."
|
||||
),
|
||||
**kwargs: Any,
|
||||
) -> BaseSingleActionAgent:
|
||||
return super().from_llm_and_tools(
|
||||
llm=llm,
|
||||
tools=tools,
|
||||
callback_manager=callback_manager,
|
||||
extra_prompt_messages=extra_prompt_messages,
|
||||
system_message=system_message,
|
||||
**kwargs,
|
||||
)
|
||||
112
api/core/agent/agent/openai_function_call.py
Normal file
112
api/core/agent/agent/openai_function_call.py
Normal file
@@ -0,0 +1,112 @@
|
||||
from typing import List, Tuple, Any, Union, Sequence, Optional
|
||||
|
||||
from langchain.agents import OpenAIFunctionsAgent, BaseSingleActionAgent
|
||||
from langchain.agents.openai_functions_agent.base import _parse_ai_message, \
|
||||
_format_intermediate_steps
|
||||
from langchain.callbacks.base import BaseCallbackManager
|
||||
from langchain.callbacks.manager import Callbacks
|
||||
from langchain.prompts.chat import BaseMessagePromptTemplate
|
||||
from langchain.schema import AgentAction, AgentFinish, SystemMessage, BaseLanguageModel
|
||||
from langchain.tools import BaseTool
|
||||
|
||||
from core.agent.agent.calc_token_mixin import ExceededLLMTokensLimitError
|
||||
from core.agent.agent.openai_function_call_summarize_mixin import OpenAIFunctionCallSummarizeMixin
|
||||
|
||||
|
||||
class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, OpenAIFunctionCallSummarizeMixin):
|
||||
|
||||
@classmethod
|
||||
def from_llm_and_tools(
|
||||
cls,
|
||||
llm: BaseLanguageModel,
|
||||
tools: Sequence[BaseTool],
|
||||
callback_manager: Optional[BaseCallbackManager] = None,
|
||||
extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None,
|
||||
system_message: Optional[SystemMessage] = SystemMessage(
|
||||
content="You are a helpful AI assistant."
|
||||
),
|
||||
**kwargs: Any,
|
||||
) -> BaseSingleActionAgent:
|
||||
return super().from_llm_and_tools(
|
||||
llm=llm,
|
||||
tools=tools,
|
||||
callback_manager=callback_manager,
|
||||
extra_prompt_messages=extra_prompt_messages,
|
||||
system_message=cls.get_system_message(),
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def should_use_agent(self, query: str):
|
||||
"""
|
||||
return should use agent
|
||||
|
||||
:param query:
|
||||
:return:
|
||||
"""
|
||||
original_max_tokens = self.llm.max_tokens
|
||||
self.llm.max_tokens = 15
|
||||
|
||||
prompt = self.prompt.format_prompt(input=query, agent_scratchpad=[])
|
||||
messages = prompt.to_messages()
|
||||
|
||||
predicted_message = self.llm.predict_messages(
|
||||
messages, functions=self.functions, callbacks=None
|
||||
)
|
||||
|
||||
function_call = predicted_message.additional_kwargs.get("function_call", {})
|
||||
|
||||
self.llm.max_tokens = original_max_tokens
|
||||
|
||||
return True if function_call else False
|
||||
|
||||
def plan(
|
||||
self,
|
||||
intermediate_steps: List[Tuple[AgentAction, str]],
|
||||
callbacks: Callbacks = None,
|
||||
**kwargs: Any,
|
||||
) -> Union[AgentAction, AgentFinish]:
|
||||
"""Given input, decided what to do.
|
||||
|
||||
Args:
|
||||
intermediate_steps: Steps the LLM has taken to date, along with observations
|
||||
**kwargs: User inputs.
|
||||
|
||||
Returns:
|
||||
Action specifying what tool to use.
|
||||
"""
|
||||
agent_scratchpad = _format_intermediate_steps(intermediate_steps)
|
||||
selected_inputs = {
|
||||
k: kwargs[k] for k in self.prompt.input_variables if k != "agent_scratchpad"
|
||||
}
|
||||
full_inputs = dict(**selected_inputs, agent_scratchpad=agent_scratchpad)
|
||||
prompt = self.prompt.format_prompt(**full_inputs)
|
||||
messages = prompt.to_messages()
|
||||
|
||||
# summarize messages if rest_tokens < 0
|
||||
try:
|
||||
messages = self.summarize_messages_if_needed(self.llm, messages, functions=self.functions)
|
||||
except ExceededLLMTokensLimitError as e:
|
||||
return AgentFinish(return_values={"output": str(e)}, log=str(e))
|
||||
|
||||
predicted_message = self.llm.predict_messages(
|
||||
messages, functions=self.functions, callbacks=callbacks
|
||||
)
|
||||
agent_decision = _parse_ai_message(predicted_message)
|
||||
return agent_decision
|
||||
|
||||
@classmethod
|
||||
def get_system_message(cls):
|
||||
return SystemMessage(content="You are a helpful AI assistant.\n"
|
||||
"The current date or current time you know is wrong.\n"
|
||||
"Respond directly if appropriate.")
|
||||
|
||||
def return_stopped_response(
|
||||
self,
|
||||
early_stopping_method: str,
|
||||
intermediate_steps: List[Tuple[AgentAction, str]],
|
||||
**kwargs: Any,
|
||||
) -> AgentFinish:
|
||||
try:
|
||||
return super().return_stopped_response(early_stopping_method, intermediate_steps, **kwargs)
|
||||
except ValueError:
|
||||
return AgentFinish({"output": "I'm sorry, I don't know how to respond to that."}, "")
|
||||
132
api/core/agent/agent/openai_function_call_summarize_mixin.py
Normal file
132
api/core/agent/agent/openai_function_call_summarize_mixin.py
Normal file
@@ -0,0 +1,132 @@
|
||||
from typing import cast, List
|
||||
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.chat_models.openai import _convert_message_to_dict
|
||||
from langchain.memory.summary import SummarizerMixin
|
||||
from langchain.schema import SystemMessage, HumanMessage, BaseMessage, AIMessage, BaseLanguageModel
|
||||
from pydantic import BaseModel
|
||||
|
||||
from core.agent.agent.calc_token_mixin import ExceededLLMTokensLimitError, CalcTokenMixin
|
||||
|
||||
|
||||
class OpenAIFunctionCallSummarizeMixin(BaseModel, CalcTokenMixin):
|
||||
moving_summary_buffer: str = ""
|
||||
moving_summary_index: int = 0
|
||||
summary_llm: BaseLanguageModel
|
||||
|
||||
def summarize_messages_if_needed(self, llm: BaseLanguageModel, messages: List[BaseMessage], **kwargs) -> List[BaseMessage]:
|
||||
# calculate rest tokens and summarize previous function observation messages if rest_tokens < 0
|
||||
rest_tokens = self.get_message_rest_tokens(llm, messages, **kwargs)
|
||||
rest_tokens = rest_tokens - 20 # to deal with the inaccuracy of rest_tokens
|
||||
if rest_tokens >= 0:
|
||||
return messages
|
||||
|
||||
system_message = None
|
||||
human_message = None
|
||||
should_summary_messages = []
|
||||
for message in messages:
|
||||
if isinstance(message, SystemMessage):
|
||||
system_message = message
|
||||
elif isinstance(message, HumanMessage):
|
||||
human_message = message
|
||||
else:
|
||||
should_summary_messages.append(message)
|
||||
|
||||
if len(should_summary_messages) > 2:
|
||||
ai_message = should_summary_messages[-2]
|
||||
function_message = should_summary_messages[-1]
|
||||
should_summary_messages = should_summary_messages[self.moving_summary_index:-2]
|
||||
self.moving_summary_index = len(should_summary_messages)
|
||||
else:
|
||||
error_msg = "Exceeded LLM tokens limit, stopped."
|
||||
raise ExceededLLMTokensLimitError(error_msg)
|
||||
|
||||
new_messages = [system_message, human_message]
|
||||
|
||||
if self.moving_summary_index == 0:
|
||||
should_summary_messages.insert(0, human_message)
|
||||
|
||||
summary_handler = SummarizerMixin(llm=self.summary_llm)
|
||||
self.moving_summary_buffer = summary_handler.predict_new_summary(
|
||||
messages=should_summary_messages,
|
||||
existing_summary=self.moving_summary_buffer
|
||||
)
|
||||
|
||||
new_messages.append(AIMessage(content=self.moving_summary_buffer))
|
||||
new_messages.append(ai_message)
|
||||
new_messages.append(function_message)
|
||||
|
||||
return new_messages
|
||||
|
||||
def get_num_tokens_from_messages(self, llm: BaseLanguageModel, messages: List[BaseMessage], **kwargs) -> int:
|
||||
"""Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package.
|
||||
|
||||
Official documentation: https://github.com/openai/openai-cookbook/blob/
|
||||
main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb"""
|
||||
llm = cast(ChatOpenAI, llm)
|
||||
model, encoding = llm._get_encoding_model()
|
||||
if model.startswith("gpt-3.5-turbo"):
|
||||
# every message follows <im_start>{role/name}\n{content}<im_end>\n
|
||||
tokens_per_message = 4
|
||||
# if there's a name, the role is omitted
|
||||
tokens_per_name = -1
|
||||
elif model.startswith("gpt-4"):
|
||||
tokens_per_message = 3
|
||||
tokens_per_name = 1
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"get_num_tokens_from_messages() is not presently implemented "
|
||||
f"for model {model}."
|
||||
"See https://github.com/openai/openai-python/blob/main/chatml.md for "
|
||||
"information on how messages are converted to tokens."
|
||||
)
|
||||
num_tokens = 0
|
||||
for m in messages:
|
||||
message = _convert_message_to_dict(m)
|
||||
num_tokens += tokens_per_message
|
||||
for key, value in message.items():
|
||||
if key == "function_call":
|
||||
for f_key, f_value in value.items():
|
||||
num_tokens += len(encoding.encode(f_key))
|
||||
num_tokens += len(encoding.encode(f_value))
|
||||
else:
|
||||
num_tokens += len(encoding.encode(value))
|
||||
|
||||
if key == "name":
|
||||
num_tokens += tokens_per_name
|
||||
# every reply is primed with <im_start>assistant
|
||||
num_tokens += 3
|
||||
|
||||
if kwargs.get('functions'):
|
||||
for function in kwargs.get('functions'):
|
||||
num_tokens += len(encoding.encode('name'))
|
||||
num_tokens += len(encoding.encode(function.get("name")))
|
||||
num_tokens += len(encoding.encode('description'))
|
||||
num_tokens += len(encoding.encode(function.get("description")))
|
||||
parameters = function.get("parameters")
|
||||
num_tokens += len(encoding.encode('parameters'))
|
||||
if 'title' in parameters:
|
||||
num_tokens += len(encoding.encode('title'))
|
||||
num_tokens += len(encoding.encode(parameters.get("title")))
|
||||
num_tokens += len(encoding.encode('type'))
|
||||
num_tokens += len(encoding.encode(parameters.get("type")))
|
||||
if 'properties' in parameters:
|
||||
num_tokens += len(encoding.encode('properties'))
|
||||
for key, value in parameters.get('properties').items():
|
||||
num_tokens += len(encoding.encode(key))
|
||||
for field_key, field_value in value.items():
|
||||
num_tokens += len(encoding.encode(field_key))
|
||||
if field_key == 'enum':
|
||||
for enum_field in field_value:
|
||||
num_tokens += 3
|
||||
num_tokens += len(encoding.encode(enum_field))
|
||||
else:
|
||||
num_tokens += len(encoding.encode(field_key))
|
||||
num_tokens += len(encoding.encode(str(field_value)))
|
||||
if 'required' in parameters:
|
||||
num_tokens += len(encoding.encode('required'))
|
||||
for required_field in parameters['required']:
|
||||
num_tokens += 3
|
||||
num_tokens += len(encoding.encode(required_field))
|
||||
|
||||
return num_tokens
|
||||
102
api/core/agent/agent/openai_multi_function_call.py
Normal file
102
api/core/agent/agent/openai_multi_function_call.py
Normal file
@@ -0,0 +1,102 @@
|
||||
from typing import List, Tuple, Any, Union, Sequence, Optional
|
||||
|
||||
from langchain.agents import BaseMultiActionAgent
|
||||
from langchain.agents.openai_functions_multi_agent.base import OpenAIMultiFunctionsAgent, _format_intermediate_steps, \
|
||||
_parse_ai_message
|
||||
from langchain.callbacks.base import BaseCallbackManager
|
||||
from langchain.callbacks.manager import Callbacks
|
||||
from langchain.prompts.chat import BaseMessagePromptTemplate
|
||||
from langchain.schema import AgentAction, AgentFinish, SystemMessage, BaseLanguageModel
|
||||
from langchain.tools import BaseTool
|
||||
|
||||
from core.agent.agent.calc_token_mixin import ExceededLLMTokensLimitError
|
||||
from core.agent.agent.openai_function_call_summarize_mixin import OpenAIFunctionCallSummarizeMixin
|
||||
|
||||
|
||||
class AutoSummarizingOpenMultiAIFunctionCallAgent(OpenAIMultiFunctionsAgent, OpenAIFunctionCallSummarizeMixin):
|
||||
|
||||
@classmethod
|
||||
def from_llm_and_tools(
|
||||
cls,
|
||||
llm: BaseLanguageModel,
|
||||
tools: Sequence[BaseTool],
|
||||
callback_manager: Optional[BaseCallbackManager] = None,
|
||||
extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None,
|
||||
system_message: Optional[SystemMessage] = SystemMessage(
|
||||
content="You are a helpful AI assistant."
|
||||
),
|
||||
**kwargs: Any,
|
||||
) -> BaseMultiActionAgent:
|
||||
return super().from_llm_and_tools(
|
||||
llm=llm,
|
||||
tools=tools,
|
||||
callback_manager=callback_manager,
|
||||
extra_prompt_messages=extra_prompt_messages,
|
||||
system_message=cls.get_system_message(),
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def should_use_agent(self, query: str):
|
||||
"""
|
||||
return should use agent
|
||||
|
||||
:param query:
|
||||
:return:
|
||||
"""
|
||||
original_max_tokens = self.llm.max_tokens
|
||||
self.llm.max_tokens = 15
|
||||
|
||||
prompt = self.prompt.format_prompt(input=query, agent_scratchpad=[])
|
||||
messages = prompt.to_messages()
|
||||
|
||||
predicted_message = self.llm.predict_messages(
|
||||
messages, functions=self.functions, callbacks=None
|
||||
)
|
||||
|
||||
function_call = predicted_message.additional_kwargs.get("function_call", {})
|
||||
|
||||
self.llm.max_tokens = original_max_tokens
|
||||
|
||||
return True if function_call else False
|
||||
|
||||
def plan(
|
||||
self,
|
||||
intermediate_steps: List[Tuple[AgentAction, str]],
|
||||
callbacks: Callbacks = None,
|
||||
**kwargs: Any,
|
||||
) -> Union[AgentAction, AgentFinish]:
|
||||
"""Given input, decided what to do.
|
||||
|
||||
Args:
|
||||
intermediate_steps: Steps the LLM has taken to date, along with observations
|
||||
**kwargs: User inputs.
|
||||
|
||||
Returns:
|
||||
Action specifying what tool to use.
|
||||
"""
|
||||
agent_scratchpad = _format_intermediate_steps(intermediate_steps)
|
||||
selected_inputs = {
|
||||
k: kwargs[k] for k in self.prompt.input_variables if k != "agent_scratchpad"
|
||||
}
|
||||
full_inputs = dict(**selected_inputs, agent_scratchpad=agent_scratchpad)
|
||||
prompt = self.prompt.format_prompt(**full_inputs)
|
||||
messages = prompt.to_messages()
|
||||
|
||||
# summarize messages if rest_tokens < 0
|
||||
try:
|
||||
messages = self.summarize_messages_if_needed(self.llm, messages, functions=self.functions)
|
||||
except ExceededLLMTokensLimitError as e:
|
||||
return AgentFinish(return_values={"output": str(e)}, log=str(e))
|
||||
|
||||
predicted_message = self.llm.predict_messages(
|
||||
messages, functions=self.functions, callbacks=callbacks
|
||||
)
|
||||
agent_decision = _parse_ai_message(predicted_message)
|
||||
return agent_decision
|
||||
|
||||
@classmethod
|
||||
def get_system_message(cls):
|
||||
# get current time
|
||||
return SystemMessage(content="You are a helpful AI assistant.\n"
|
||||
"The current date or current time you know is wrong.\n"
|
||||
"Respond directly if appropriate.")
|
||||
29
api/core/agent/agent/output_parser/structured_chat.py
Normal file
29
api/core/agent/agent/output_parser/structured_chat.py
Normal file
@@ -0,0 +1,29 @@
|
||||
import json
|
||||
import re
|
||||
from typing import Union
|
||||
|
||||
from langchain.agents.structured_chat.output_parser import StructuredChatOutputParser as LCStructuredChatOutputParser, \
|
||||
logger
|
||||
from langchain.schema import AgentAction, AgentFinish, OutputParserException
|
||||
|
||||
|
||||
class StructuredChatOutputParser(LCStructuredChatOutputParser):
|
||||
def parse(self, text: str) -> Union[AgentAction, AgentFinish]:
|
||||
try:
|
||||
action_match = re.search(r"```(.*?)\n(.*?)```?", text, re.DOTALL)
|
||||
if action_match is not None:
|
||||
response = json.loads(action_match.group(2).strip(), strict=False)
|
||||
if isinstance(response, list):
|
||||
# gpt turbo frequently ignores the directive to emit a single action
|
||||
logger.warning("Got multiple action responses: %s", response)
|
||||
response = response[0]
|
||||
if response["action"] == "Final Answer":
|
||||
return AgentFinish({"output": response["action_input"]}, text)
|
||||
else:
|
||||
return AgentAction(
|
||||
response["action"], response.get("action_input", {}), text
|
||||
)
|
||||
else:
|
||||
return AgentFinish({"output": text}, text)
|
||||
except Exception as e:
|
||||
raise OutputParserException(f"Could not parse LLM output: {text}") from e
|
||||
187
api/core/agent/agent/structured_chat.py
Normal file
187
api/core/agent/agent/structured_chat.py
Normal file
@@ -0,0 +1,187 @@
|
||||
import re
|
||||
from typing import List, Tuple, Any, Union, Sequence, Optional
|
||||
|
||||
from langchain import BasePromptTemplate
|
||||
from langchain.agents import StructuredChatAgent, AgentOutputParser, Agent
|
||||
from langchain.agents.structured_chat.base import HUMAN_MESSAGE_TEMPLATE
|
||||
from langchain.base_language import BaseLanguageModel
|
||||
from langchain.callbacks.base import BaseCallbackManager
|
||||
from langchain.callbacks.manager import Callbacks
|
||||
from langchain.memory.summary import SummarizerMixin
|
||||
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate
|
||||
from langchain.schema import AgentAction, AgentFinish, AIMessage, HumanMessage, OutputParserException
|
||||
from langchain.tools import BaseTool
|
||||
from langchain.agents.structured_chat.prompt import PREFIX, SUFFIX
|
||||
|
||||
from core.agent.agent.calc_token_mixin import CalcTokenMixin, ExceededLLMTokensLimitError
|
||||
|
||||
|
||||
FORMAT_INSTRUCTIONS = """Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
|
||||
The nouns in the format of "Thought", "Action", "Action Input", "Final Answer" must be expressed in English.
|
||||
Valid "action" values: "Final Answer" or {tool_names}
|
||||
|
||||
Provide only ONE action per $JSON_BLOB, as shown:
|
||||
|
||||
```
|
||||
{{{{
|
||||
"action": $TOOL_NAME,
|
||||
"action_input": $INPUT
|
||||
}}}}
|
||||
```
|
||||
|
||||
Follow this format:
|
||||
|
||||
Question: input question to answer
|
||||
Thought: consider previous and subsequent steps
|
||||
Action:
|
||||
```
|
||||
$JSON_BLOB
|
||||
```
|
||||
Observation: action result
|
||||
... (repeat Thought/Action/Observation N times)
|
||||
Thought: I know what to respond
|
||||
Action:
|
||||
```
|
||||
{{{{
|
||||
"action": "Final Answer",
|
||||
"action_input": "Final response to human"
|
||||
}}}}
|
||||
```"""
|
||||
|
||||
|
||||
class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
|
||||
moving_summary_buffer: str = ""
|
||||
moving_summary_index: int = 0
|
||||
summary_llm: BaseLanguageModel
|
||||
|
||||
def should_use_agent(self, query: str):
|
||||
"""
|
||||
return should use agent
|
||||
Using the ReACT mode to determine whether an agent is needed is costly,
|
||||
so it's better to just use an Agent for reasoning, which is cheaper.
|
||||
|
||||
:param query:
|
||||
:return:
|
||||
"""
|
||||
return True
|
||||
|
||||
def plan(
|
||||
self,
|
||||
intermediate_steps: List[Tuple[AgentAction, str]],
|
||||
callbacks: Callbacks = None,
|
||||
**kwargs: Any,
|
||||
) -> Union[AgentAction, AgentFinish]:
|
||||
"""Given input, decided what to do.
|
||||
|
||||
Args:
|
||||
intermediate_steps: Steps the LLM has taken to date,
|
||||
along with observations
|
||||
callbacks: Callbacks to run.
|
||||
**kwargs: User inputs.
|
||||
|
||||
Returns:
|
||||
Action specifying what tool to use.
|
||||
"""
|
||||
full_inputs = self.get_full_inputs(intermediate_steps, **kwargs)
|
||||
|
||||
prompts, _ = self.llm_chain.prep_prompts(input_list=[self.llm_chain.prep_inputs(full_inputs)])
|
||||
messages = []
|
||||
if prompts:
|
||||
messages = prompts[0].to_messages()
|
||||
|
||||
rest_tokens = self.get_message_rest_tokens(self.llm_chain.llm, messages)
|
||||
if rest_tokens < 0:
|
||||
full_inputs = self.summarize_messages(intermediate_steps, **kwargs)
|
||||
|
||||
full_output = self.llm_chain.predict(callbacks=callbacks, **full_inputs)
|
||||
|
||||
try:
|
||||
return self.output_parser.parse(full_output)
|
||||
except OutputParserException:
|
||||
return AgentFinish({"output": "I'm sorry, the answer of model is invalid, "
|
||||
"I don't know how to respond to that."}, "")
|
||||
|
||||
def summarize_messages(self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs):
|
||||
if len(intermediate_steps) >= 2:
|
||||
should_summary_intermediate_steps = intermediate_steps[self.moving_summary_index:-1]
|
||||
should_summary_messages = [AIMessage(content=observation)
|
||||
for _, observation in should_summary_intermediate_steps]
|
||||
if self.moving_summary_index == 0:
|
||||
should_summary_messages.insert(0, HumanMessage(content=kwargs.get("input")))
|
||||
|
||||
self.moving_summary_index = len(intermediate_steps)
|
||||
else:
|
||||
error_msg = "Exceeded LLM tokens limit, stopped."
|
||||
raise ExceededLLMTokensLimitError(error_msg)
|
||||
|
||||
summary_handler = SummarizerMixin(llm=self.summary_llm)
|
||||
if self.moving_summary_buffer and 'chat_history' in kwargs:
|
||||
kwargs["chat_history"].pop()
|
||||
|
||||
self.moving_summary_buffer = summary_handler.predict_new_summary(
|
||||
messages=should_summary_messages,
|
||||
existing_summary=self.moving_summary_buffer
|
||||
)
|
||||
|
||||
if 'chat_history' in kwargs:
|
||||
kwargs["chat_history"].append(AIMessage(content=self.moving_summary_buffer))
|
||||
|
||||
return self.get_full_inputs([intermediate_steps[-1]], **kwargs)
|
||||
|
||||
@classmethod
|
||||
def create_prompt(
|
||||
cls,
|
||||
tools: Sequence[BaseTool],
|
||||
prefix: str = PREFIX,
|
||||
suffix: str = SUFFIX,
|
||||
human_message_template: str = HUMAN_MESSAGE_TEMPLATE,
|
||||
format_instructions: str = FORMAT_INSTRUCTIONS,
|
||||
input_variables: Optional[List[str]] = None,
|
||||
memory_prompts: Optional[List[BasePromptTemplate]] = None,
|
||||
) -> BasePromptTemplate:
|
||||
tool_strings = []
|
||||
for tool in tools:
|
||||
args_schema = re.sub("}", "}}}}", re.sub("{", "{{{{", str(tool.args)))
|
||||
tool_strings.append(f"{tool.name}: {tool.description}, args: {args_schema}")
|
||||
formatted_tools = "\n".join(tool_strings)
|
||||
tool_names = ", ".join([('"' + tool.name + '"') for tool in tools])
|
||||
format_instructions = format_instructions.format(tool_names=tool_names)
|
||||
template = "\n\n".join([prefix, formatted_tools, format_instructions, suffix])
|
||||
if input_variables is None:
|
||||
input_variables = ["input", "agent_scratchpad"]
|
||||
_memory_prompts = memory_prompts or []
|
||||
messages = [
|
||||
SystemMessagePromptTemplate.from_template(template),
|
||||
*_memory_prompts,
|
||||
HumanMessagePromptTemplate.from_template(human_message_template),
|
||||
]
|
||||
return ChatPromptTemplate(input_variables=input_variables, messages=messages)
|
||||
|
||||
@classmethod
|
||||
def from_llm_and_tools(
|
||||
cls,
|
||||
llm: BaseLanguageModel,
|
||||
tools: Sequence[BaseTool],
|
||||
callback_manager: Optional[BaseCallbackManager] = None,
|
||||
output_parser: Optional[AgentOutputParser] = None,
|
||||
prefix: str = PREFIX,
|
||||
suffix: str = SUFFIX,
|
||||
human_message_template: str = HUMAN_MESSAGE_TEMPLATE,
|
||||
format_instructions: str = FORMAT_INSTRUCTIONS,
|
||||
input_variables: Optional[List[str]] = None,
|
||||
memory_prompts: Optional[List[BasePromptTemplate]] = None,
|
||||
**kwargs: Any,
|
||||
) -> Agent:
|
||||
return super().from_llm_and_tools(
|
||||
llm=llm,
|
||||
tools=tools,
|
||||
callback_manager=callback_manager,
|
||||
output_parser=output_parser,
|
||||
prefix=prefix,
|
||||
suffix=suffix,
|
||||
human_message_template=human_message_template,
|
||||
format_instructions=format_instructions,
|
||||
input_variables=input_variables,
|
||||
memory_prompts=memory_prompts,
|
||||
**kwargs,
|
||||
)
|
||||
@@ -1,86 +0,0 @@
|
||||
from typing import Optional
|
||||
|
||||
from langchain import LLMChain
|
||||
from langchain.agents import ZeroShotAgent, AgentExecutor, ConversationalAgent
|
||||
from langchain.callbacks.manager import CallbackManager
|
||||
from langchain.memory.chat_memory import BaseChatMemory
|
||||
|
||||
from core.callback_handler.agent_loop_gather_callback_handler import AgentLoopGatherCallbackHandler
|
||||
from core.callback_handler.dataset_tool_callback_handler import DatasetToolCallbackHandler
|
||||
from core.callback_handler.std_out_callback_handler import DifyStdOutCallbackHandler
|
||||
from core.llm.llm_builder import LLMBuilder
|
||||
|
||||
|
||||
class AgentBuilder:
|
||||
@classmethod
|
||||
def to_agent_chain(cls, tenant_id: str, tools, memory: Optional[BaseChatMemory],
|
||||
dataset_tool_callback_handler: DatasetToolCallbackHandler,
|
||||
agent_loop_gather_callback_handler: AgentLoopGatherCallbackHandler):
|
||||
llm = LLMBuilder.to_llm(
|
||||
tenant_id=tenant_id,
|
||||
model_name=agent_loop_gather_callback_handler.model_name,
|
||||
temperature=0,
|
||||
max_tokens=1024,
|
||||
callbacks=[agent_loop_gather_callback_handler, DifyStdOutCallbackHandler()]
|
||||
)
|
||||
|
||||
for tool in tools:
|
||||
tool.callbacks = [
|
||||
agent_loop_gather_callback_handler,
|
||||
dataset_tool_callback_handler,
|
||||
DifyStdOutCallbackHandler()
|
||||
]
|
||||
|
||||
prompt = cls.build_agent_prompt_template(
|
||||
tools=tools,
|
||||
memory=memory,
|
||||
)
|
||||
|
||||
agent_llm_chain = LLMChain(
|
||||
llm=llm,
|
||||
prompt=prompt,
|
||||
)
|
||||
|
||||
agent = cls.build_agent(agent_llm_chain=agent_llm_chain, memory=memory)
|
||||
|
||||
agent_callback_manager = CallbackManager(
|
||||
[agent_loop_gather_callback_handler, DifyStdOutCallbackHandler()]
|
||||
)
|
||||
|
||||
agent_chain = AgentExecutor.from_agent_and_tools(
|
||||
tools=tools,
|
||||
agent=agent,
|
||||
memory=memory,
|
||||
callbacks=agent_callback_manager,
|
||||
max_iterations=6,
|
||||
early_stopping_method="generate",
|
||||
# `generate` will continue to complete the last inference after reaching the iteration limit or request time limit
|
||||
)
|
||||
|
||||
return agent_chain
|
||||
|
||||
@classmethod
|
||||
def build_agent_prompt_template(cls, tools, memory: Optional[BaseChatMemory]):
|
||||
if memory:
|
||||
prompt = ConversationalAgent.create_prompt(
|
||||
tools=tools,
|
||||
)
|
||||
else:
|
||||
prompt = ZeroShotAgent.create_prompt(
|
||||
tools=tools,
|
||||
)
|
||||
|
||||
return prompt
|
||||
|
||||
@classmethod
|
||||
def build_agent(cls, agent_llm_chain: LLMChain, memory: Optional[BaseChatMemory]):
|
||||
if memory:
|
||||
agent = ConversationalAgent(
|
||||
llm_chain=agent_llm_chain
|
||||
)
|
||||
else:
|
||||
agent = ZeroShotAgent(
|
||||
llm_chain=agent_llm_chain
|
||||
)
|
||||
|
||||
return agent
|
||||
122
api/core/agent/agent_executor.py
Normal file
122
api/core/agent/agent_executor.py
Normal file
@@ -0,0 +1,122 @@
|
||||
import enum
|
||||
import logging
|
||||
from typing import Union, Optional
|
||||
|
||||
from langchain.agents import BaseSingleActionAgent, BaseMultiActionAgent
|
||||
from langchain.base_language import BaseLanguageModel
|
||||
from langchain.callbacks.manager import Callbacks
|
||||
from langchain.memory.chat_memory import BaseChatMemory
|
||||
from langchain.tools import BaseTool
|
||||
from pydantic import BaseModel, Extra
|
||||
|
||||
from core.agent.agent.multi_dataset_router_agent import MultiDatasetRouterAgent
|
||||
from core.agent.agent.openai_function_call import AutoSummarizingOpenAIFunctionCallAgent
|
||||
from core.agent.agent.openai_multi_function_call import AutoSummarizingOpenMultiAIFunctionCallAgent
|
||||
from core.agent.agent.output_parser.structured_chat import StructuredChatOutputParser
|
||||
from core.agent.agent.structured_chat import AutoSummarizingStructuredChatAgent
|
||||
from langchain.agents import AgentExecutor as LCAgentExecutor
|
||||
|
||||
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
|
||||
|
||||
|
||||
class PlanningStrategy(str, enum.Enum):
|
||||
ROUTER = 'router'
|
||||
REACT = 'react'
|
||||
FUNCTION_CALL = 'function_call'
|
||||
MULTI_FUNCTION_CALL = 'multi_function_call'
|
||||
|
||||
|
||||
class AgentConfiguration(BaseModel):
|
||||
strategy: PlanningStrategy
|
||||
llm: BaseLanguageModel
|
||||
tools: list[BaseTool]
|
||||
summary_llm: BaseLanguageModel
|
||||
dataset_llm: BaseLanguageModel
|
||||
memory: Optional[BaseChatMemory] = None
|
||||
callbacks: Callbacks = None
|
||||
max_iterations: int = 6
|
||||
max_execution_time: Optional[float] = None
|
||||
early_stopping_method: str = "generate"
|
||||
# `generate` will continue to complete the last inference after reaching the iteration limit or request time limit
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.forbid
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
|
||||
class AgentExecuteResult(BaseModel):
|
||||
strategy: PlanningStrategy
|
||||
output: Optional[str]
|
||||
configuration: AgentConfiguration
|
||||
|
||||
|
||||
class AgentExecutor:
|
||||
def __init__(self, configuration: AgentConfiguration):
|
||||
self.configuration = configuration
|
||||
self.agent = self._init_agent()
|
||||
|
||||
def _init_agent(self) -> Union[BaseSingleActionAgent | BaseMultiActionAgent]:
|
||||
if self.configuration.strategy == PlanningStrategy.REACT:
|
||||
agent = AutoSummarizingStructuredChatAgent.from_llm_and_tools(
|
||||
llm=self.configuration.llm,
|
||||
tools=self.configuration.tools,
|
||||
output_parser=StructuredChatOutputParser(),
|
||||
summary_llm=self.configuration.summary_llm,
|
||||
verbose=True
|
||||
)
|
||||
elif self.configuration.strategy == PlanningStrategy.FUNCTION_CALL:
|
||||
agent = AutoSummarizingOpenAIFunctionCallAgent.from_llm_and_tools(
|
||||
llm=self.configuration.llm,
|
||||
tools=self.configuration.tools,
|
||||
extra_prompt_messages=self.configuration.memory.buffer if self.configuration.memory else None, # used for read chat histories memory
|
||||
summary_llm=self.configuration.summary_llm,
|
||||
verbose=True
|
||||
)
|
||||
elif self.configuration.strategy == PlanningStrategy.MULTI_FUNCTION_CALL:
|
||||
agent = AutoSummarizingOpenMultiAIFunctionCallAgent.from_llm_and_tools(
|
||||
llm=self.configuration.llm,
|
||||
tools=self.configuration.tools,
|
||||
extra_prompt_messages=self.configuration.memory.buffer if self.configuration.memory else None, # used for read chat histories memory
|
||||
summary_llm=self.configuration.summary_llm,
|
||||
verbose=True
|
||||
)
|
||||
elif self.configuration.strategy == PlanningStrategy.ROUTER:
|
||||
self.configuration.tools = [t for t in self.configuration.tools if isinstance(t, DatasetRetrieverTool)]
|
||||
agent = MultiDatasetRouterAgent.from_llm_and_tools(
|
||||
llm=self.configuration.dataset_llm,
|
||||
tools=self.configuration.tools,
|
||||
extra_prompt_messages=self.configuration.memory.buffer if self.configuration.memory else None,
|
||||
verbose=True
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError(f"Unknown Agent Strategy: {self.configuration.strategy}")
|
||||
|
||||
return agent
|
||||
|
||||
def should_use_agent(self, query: str) -> bool:
|
||||
return self.agent.should_use_agent(query)
|
||||
|
||||
def run(self, query: str) -> AgentExecuteResult:
|
||||
agent_executor = LCAgentExecutor.from_agent_and_tools(
|
||||
agent=self.agent,
|
||||
tools=self.configuration.tools,
|
||||
memory=self.configuration.memory,
|
||||
max_iterations=self.configuration.max_iterations,
|
||||
max_execution_time=self.configuration.max_execution_time,
|
||||
early_stopping_method=self.configuration.early_stopping_method,
|
||||
callbacks=self.configuration.callbacks
|
||||
)
|
||||
|
||||
try:
|
||||
output = agent_executor.run(query)
|
||||
except Exception:
|
||||
logging.exception("agent_executor run failed")
|
||||
output = None
|
||||
|
||||
return AgentExecuteResult(
|
||||
output=output,
|
||||
strategy=self.configuration.strategy,
|
||||
configuration=self.configuration
|
||||
)
|
||||
@@ -1,10 +1,12 @@
|
||||
import json
|
||||
import logging
|
||||
import time
|
||||
|
||||
from typing import Any, Dict, List, Union, Optional
|
||||
|
||||
from langchain.agents import openai_functions_agent, openai_functions_multi_agent
|
||||
from langchain.callbacks.base import BaseCallbackHandler
|
||||
from langchain.schema import AgentAction, AgentFinish, LLMResult
|
||||
from langchain.schema import AgentAction, AgentFinish, LLMResult, ChatGeneration
|
||||
|
||||
from core.callback_handler.entity.agent_loop import AgentLoop
|
||||
from core.conversation_message_task import ConversationMessageTask
|
||||
@@ -20,6 +22,7 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
|
||||
self.conversation_message_task = conversation_message_task
|
||||
self._agent_loops = []
|
||||
self._current_loop = None
|
||||
self._message_agent_thought = None
|
||||
self.current_chain = None
|
||||
|
||||
@property
|
||||
@@ -29,6 +32,7 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
|
||||
def clear_agent_loops(self) -> None:
|
||||
self._agent_loops = []
|
||||
self._current_loop = None
|
||||
self._message_agent_thought = None
|
||||
|
||||
@property
|
||||
def always_verbose(self) -> bool:
|
||||
@@ -61,9 +65,21 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
|
||||
# kwargs={}
|
||||
if self._current_loop and self._current_loop.status == 'llm_started':
|
||||
self._current_loop.status = 'llm_end'
|
||||
self._current_loop.prompt_tokens = response.llm_output['token_usage']['prompt_tokens']
|
||||
self._current_loop.completion = response.generations[0][0].text
|
||||
self._current_loop.completion_tokens = response.llm_output['token_usage']['completion_tokens']
|
||||
if response.llm_output:
|
||||
self._current_loop.prompt_tokens = response.llm_output['token_usage']['prompt_tokens']
|
||||
completion_generation = response.generations[0][0]
|
||||
if isinstance(completion_generation, ChatGeneration):
|
||||
completion_message = completion_generation.message
|
||||
if 'function_call' in completion_message.additional_kwargs:
|
||||
self._current_loop.completion \
|
||||
= json.dumps({'function_call': completion_message.additional_kwargs['function_call']})
|
||||
else:
|
||||
self._current_loop.completion = response.generations[0][0].text
|
||||
else:
|
||||
self._current_loop.completion = completion_generation.text
|
||||
|
||||
if response.llm_output:
|
||||
self._current_loop.completion_tokens = response.llm_output['token_usage']['completion_tokens']
|
||||
|
||||
def on_llm_error(
|
||||
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
|
||||
@@ -71,6 +87,7 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
|
||||
logging.error(error)
|
||||
self._agent_loops = []
|
||||
self._current_loop = None
|
||||
self._message_agent_thought = None
|
||||
|
||||
def on_tool_start(
|
||||
self,
|
||||
@@ -89,15 +106,29 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
|
||||
) -> Any:
|
||||
"""Run on agent action."""
|
||||
tool = action.tool
|
||||
tool_input = action.tool_input
|
||||
action_name_position = action.log.index("\nAction:") + 1 if action.log else -1
|
||||
thought = action.log[:action_name_position].strip() if action.log else ''
|
||||
tool_input = json.dumps({"query": action.tool_input}
|
||||
if isinstance(action.tool_input, str) else action.tool_input)
|
||||
completion = None
|
||||
if isinstance(action, openai_functions_agent.base._FunctionsAgentAction) \
|
||||
or isinstance(action, openai_functions_multi_agent.base._FunctionsAgentAction):
|
||||
thought = action.log.strip()
|
||||
completion = json.dumps({'function_call': action.message_log[0].additional_kwargs['function_call']})
|
||||
else:
|
||||
action_name_position = action.log.index("Action:") if action.log else -1
|
||||
thought = action.log[:action_name_position].strip() if action.log else ''
|
||||
|
||||
if self._current_loop and self._current_loop.status == 'llm_end':
|
||||
self._current_loop.status = 'agent_action'
|
||||
self._current_loop.thought = thought
|
||||
self._current_loop.tool_name = tool
|
||||
self._current_loop.tool_input = tool_input
|
||||
if completion is not None:
|
||||
self._current_loop.completion = completion
|
||||
|
||||
self._message_agent_thought = self.conversation_message_task.on_agent_start(
|
||||
self.current_chain,
|
||||
self._current_loop
|
||||
)
|
||||
|
||||
def on_tool_end(
|
||||
self,
|
||||
@@ -120,10 +151,13 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
|
||||
self._current_loop.completed_at = time.perf_counter()
|
||||
self._current_loop.latency = self._current_loop.completed_at - self._current_loop.started_at
|
||||
|
||||
self.conversation_message_task.on_agent_end(self.current_chain, self.model_name, self._current_loop)
|
||||
self.conversation_message_task.on_agent_end(
|
||||
self._message_agent_thought, self.model_name, self._current_loop
|
||||
)
|
||||
|
||||
self._agent_loops.append(self._current_loop)
|
||||
self._current_loop = None
|
||||
self._message_agent_thought = None
|
||||
|
||||
def on_tool_error(
|
||||
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
|
||||
@@ -132,6 +166,7 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
|
||||
logging.error(error)
|
||||
self._agent_loops = []
|
||||
self._current_loop = None
|
||||
self._message_agent_thought = None
|
||||
|
||||
def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> Any:
|
||||
"""Run on agent end."""
|
||||
@@ -141,10 +176,18 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
|
||||
self._current_loop.completed = True
|
||||
self._current_loop.completed_at = time.perf_counter()
|
||||
self._current_loop.latency = self._current_loop.completed_at - self._current_loop.started_at
|
||||
self._current_loop.thought = '[DONE]'
|
||||
self._message_agent_thought = self.conversation_message_task.on_agent_start(
|
||||
self.current_chain,
|
||||
self._current_loop
|
||||
)
|
||||
|
||||
self.conversation_message_task.on_agent_end(self.current_chain, self.model_name, self._current_loop)
|
||||
self.conversation_message_task.on_agent_end(
|
||||
self._message_agent_thought, self.model_name, self._current_loop
|
||||
)
|
||||
|
||||
self._agent_loops.append(self._current_loop)
|
||||
self._current_loop = None
|
||||
self._message_agent_thought = None
|
||||
elif not self._current_loop and self._agent_loops:
|
||||
self._agent_loops[-1].status = 'agent_finish'
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import json
|
||||
import logging
|
||||
|
||||
from typing import Any, Dict, List, Union, Optional
|
||||
@@ -43,9 +44,11 @@ class DatasetToolCallbackHandler(BaseCallbackHandler):
|
||||
input_str: str,
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
tool_name = serialized.get('name')
|
||||
dataset_id = tool_name[len("dataset-"):]
|
||||
self.conversation_message_task.on_dataset_query_end(DatasetQueryObj(dataset_id=dataset_id, query=input_str))
|
||||
# tool_name = serialized.get('name')
|
||||
input_dict = json.loads(input_str.replace("'", "\""))
|
||||
dataset_id = input_dict.get('dataset_id')
|
||||
query = input_dict.get('query')
|
||||
self.conversation_message_task.on_dataset_query_end(DatasetQueryObj(dataset_id=dataset_id, query=query))
|
||||
|
||||
def on_tool_end(
|
||||
self,
|
||||
|
||||
@@ -10,9 +10,9 @@ class AgentLoop(BaseModel):
|
||||
tool_output: str = None
|
||||
|
||||
prompt: str = None
|
||||
prompt_tokens: int = None
|
||||
prompt_tokens: int = 0
|
||||
completion: str = None
|
||||
completion_tokens: int = None
|
||||
completion_tokens: int = 0
|
||||
|
||||
latency: float = None
|
||||
|
||||
|
||||
@@ -1,20 +1,18 @@
|
||||
import logging
|
||||
import time
|
||||
from typing import Any, Dict, List, Union, Optional
|
||||
from typing import Any, Dict, List, Union
|
||||
|
||||
from langchain.callbacks.base import BaseCallbackHandler
|
||||
from langchain.schema import AgentAction, AgentFinish, LLMResult, HumanMessage, AIMessage, SystemMessage, BaseMessage
|
||||
from langchain.schema import LLMResult, BaseMessage, BaseLanguageModel
|
||||
|
||||
from core.callback_handler.entity.llm_message import LLMMessage
|
||||
from core.conversation_message_task import ConversationMessageTask, ConversationTaskStoppedException
|
||||
from core.llm.streamable_chat_open_ai import StreamableChatOpenAI
|
||||
from core.llm.streamable_open_ai import StreamableOpenAI
|
||||
|
||||
|
||||
class LLMCallbackHandler(BaseCallbackHandler):
|
||||
raise_error: bool = True
|
||||
|
||||
def __init__(self, llm: Union[StreamableOpenAI, StreamableChatOpenAI],
|
||||
def __init__(self, llm: BaseLanguageModel,
|
||||
conversation_message_task: ConversationMessageTask):
|
||||
self.llm = llm
|
||||
self.llm_message = LLMMessage()
|
||||
|
||||
@@ -20,15 +20,13 @@ class MainChainGatherCallbackHandler(BaseCallbackHandler):
|
||||
self._current_chain_result = None
|
||||
self._current_chain_message = None
|
||||
self.conversation_message_task = conversation_message_task
|
||||
self.agent_loop_gather_callback_handler = AgentLoopGatherCallbackHandler(
|
||||
llm_constant.agent_model_name,
|
||||
conversation_message_task
|
||||
)
|
||||
self.agent_callback = None
|
||||
|
||||
def clear_chain_results(self) -> None:
|
||||
self._current_chain_result = None
|
||||
self._current_chain_message = None
|
||||
self.agent_loop_gather_callback_handler.current_chain = None
|
||||
if self.agent_callback:
|
||||
self.agent_callback.current_chain = None
|
||||
|
||||
@property
|
||||
def always_verbose(self) -> bool:
|
||||
@@ -58,7 +56,8 @@ class MainChainGatherCallbackHandler(BaseCallbackHandler):
|
||||
started_at=time.perf_counter()
|
||||
)
|
||||
self._current_chain_message = self.conversation_message_task.init_chain(self._current_chain_result)
|
||||
self.agent_loop_gather_callback_handler.current_chain = self._current_chain_message
|
||||
if self.agent_callback:
|
||||
self.agent_callback.current_chain = self._current_chain_message
|
||||
|
||||
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
|
||||
"""Print out that we finished a chain."""
|
||||
|
||||
@@ -1,32 +0,0 @@
|
||||
from typing import Optional
|
||||
|
||||
from core.callback_handler.std_out_callback_handler import DifyStdOutCallbackHandler
|
||||
from core.chain.sensitive_word_avoidance_chain import SensitiveWordAvoidanceChain
|
||||
from core.chain.tool_chain import ToolChain
|
||||
|
||||
|
||||
class ChainBuilder:
|
||||
@classmethod
|
||||
def to_tool_chain(cls, tool, **kwargs) -> ToolChain:
|
||||
return ToolChain(
|
||||
tool=tool,
|
||||
input_key=kwargs.get('input_key', 'input'),
|
||||
output_key=kwargs.get('output_key', 'tool_output'),
|
||||
callbacks=[DifyStdOutCallbackHandler()]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def to_sensitive_word_avoidance_chain(cls, tool_config: dict, **kwargs) -> Optional[
|
||||
SensitiveWordAvoidanceChain]:
|
||||
sensitive_words = tool_config.get("words", "")
|
||||
if tool_config.get("enabled", False) \
|
||||
and sensitive_words:
|
||||
return SensitiveWordAvoidanceChain(
|
||||
sensitive_words=sensitive_words.split(","),
|
||||
canned_response=tool_config.get("canned_response", ''),
|
||||
output_key="sensitive_word_avoidance_output",
|
||||
callbacks=[DifyStdOutCallbackHandler()],
|
||||
**kwargs
|
||||
)
|
||||
|
||||
return None
|
||||
@@ -1,111 +0,0 @@
|
||||
"""Base classes for LLM-powered router chains."""
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Any, Dict, List, Optional, Type, cast, NamedTuple
|
||||
|
||||
from langchain.base_language import BaseLanguageModel
|
||||
from langchain.callbacks.manager import CallbackManagerForChainRun
|
||||
from langchain.chains.base import Chain
|
||||
from pydantic import root_validator
|
||||
|
||||
from langchain.chains import LLMChain
|
||||
from langchain.prompts import BasePromptTemplate
|
||||
from langchain.schema import BaseOutputParser, OutputParserException
|
||||
|
||||
from libs.json_in_md_parser import parse_and_check_json_markdown
|
||||
|
||||
|
||||
class Route(NamedTuple):
|
||||
destination: Optional[str]
|
||||
next_inputs: Dict[str, Any]
|
||||
|
||||
|
||||
class LLMRouterChain(Chain):
|
||||
"""A router chain that uses an LLM chain to perform routing."""
|
||||
|
||||
llm_chain: LLMChain
|
||||
"""LLM chain used to perform routing"""
|
||||
|
||||
@root_validator()
|
||||
def validate_prompt(cls, values: dict) -> dict:
|
||||
prompt = values["llm_chain"].prompt
|
||||
if prompt.output_parser is None:
|
||||
raise ValueError(
|
||||
"LLMRouterChain requires base llm_chain prompt to have an output"
|
||||
" parser that converts LLM text output to a dictionary with keys"
|
||||
" 'destination' and 'next_inputs'. Received a prompt with no output"
|
||||
" parser."
|
||||
)
|
||||
return values
|
||||
|
||||
@property
|
||||
def input_keys(self) -> List[str]:
|
||||
"""Will be whatever keys the LLM chain prompt expects.
|
||||
|
||||
:meta private:
|
||||
"""
|
||||
return self.llm_chain.input_keys
|
||||
|
||||
def _validate_outputs(self, outputs: Dict[str, Any]) -> None:
|
||||
super()._validate_outputs(outputs)
|
||||
if not isinstance(outputs["next_inputs"], dict):
|
||||
raise ValueError
|
||||
|
||||
def _call(
|
||||
self,
|
||||
inputs: Dict[str, Any],
|
||||
run_manager: Optional[CallbackManagerForChainRun] = None,
|
||||
) -> Dict[str, Any]:
|
||||
output = cast(
|
||||
Dict[str, Any],
|
||||
self.llm_chain.predict_and_parse(**inputs),
|
||||
)
|
||||
return output
|
||||
|
||||
@classmethod
|
||||
def from_llm(
|
||||
cls, llm: BaseLanguageModel, prompt: BasePromptTemplate, **kwargs: Any
|
||||
) -> LLMRouterChain:
|
||||
"""Convenience constructor."""
|
||||
llm_chain = LLMChain(llm=llm, prompt=prompt)
|
||||
return cls(llm_chain=llm_chain, **kwargs)
|
||||
|
||||
@property
|
||||
def output_keys(self) -> List[str]:
|
||||
return ["destination", "next_inputs"]
|
||||
|
||||
def route(self, inputs: Dict[str, Any]) -> Route:
|
||||
result = self(inputs)
|
||||
return Route(result["destination"], result["next_inputs"])
|
||||
|
||||
|
||||
class RouterOutputParser(BaseOutputParser[Dict[str, str]]):
|
||||
"""Parser for output of router chain int he multi-prompt chain."""
|
||||
|
||||
default_destination: str = "DEFAULT"
|
||||
next_inputs_type: Type = str
|
||||
next_inputs_inner_key: str = "input"
|
||||
|
||||
def parse(self, text: str) -> Dict[str, Any]:
|
||||
try:
|
||||
expected_keys = ["destination", "next_inputs"]
|
||||
parsed = parse_and_check_json_markdown(text, expected_keys)
|
||||
if not isinstance(parsed["destination"], str):
|
||||
raise ValueError("Expected 'destination' to be a string.")
|
||||
if not isinstance(parsed["next_inputs"], self.next_inputs_type):
|
||||
raise ValueError(
|
||||
f"Expected 'next_inputs' to be {self.next_inputs_type}."
|
||||
)
|
||||
parsed["next_inputs"] = {self.next_inputs_inner_key: parsed["next_inputs"]}
|
||||
if (
|
||||
parsed["destination"].strip().lower()
|
||||
== self.default_destination.lower()
|
||||
):
|
||||
parsed["destination"] = None
|
||||
else:
|
||||
parsed["destination"] = parsed["destination"].strip()
|
||||
return parsed
|
||||
except Exception as e:
|
||||
raise OutputParserException(
|
||||
f"Parsing text\n{text}\n of llm router raised following error:\n{e}"
|
||||
)
|
||||
@@ -1,110 +0,0 @@
|
||||
from typing import Optional, List, cast
|
||||
|
||||
from langchain.chains import SequentialChain
|
||||
from langchain.chains.base import Chain
|
||||
from langchain.memory.chat_memory import BaseChatMemory
|
||||
|
||||
from core.callback_handler.main_chain_gather_callback_handler import MainChainGatherCallbackHandler
|
||||
from core.callback_handler.std_out_callback_handler import DifyStdOutCallbackHandler
|
||||
from core.chain.chain_builder import ChainBuilder
|
||||
from core.chain.multi_dataset_router_chain import MultiDatasetRouterChain
|
||||
from core.conversation_message_task import ConversationMessageTask
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import Dataset
|
||||
|
||||
|
||||
class MainChainBuilder:
|
||||
@classmethod
|
||||
def to_langchain_components(cls, tenant_id: str, agent_mode: dict, memory: Optional[BaseChatMemory],
|
||||
rest_tokens: int,
|
||||
conversation_message_task: ConversationMessageTask):
|
||||
first_input_key = "input"
|
||||
final_output_key = "output"
|
||||
|
||||
chains = []
|
||||
|
||||
chain_callback_handler = MainChainGatherCallbackHandler(conversation_message_task)
|
||||
|
||||
# agent mode
|
||||
tool_chains, chains_output_key = cls.get_agent_chains(
|
||||
tenant_id=tenant_id,
|
||||
agent_mode=agent_mode,
|
||||
rest_tokens=rest_tokens,
|
||||
memory=memory,
|
||||
conversation_message_task=conversation_message_task
|
||||
)
|
||||
chains += tool_chains
|
||||
|
||||
if chains_output_key:
|
||||
final_output_key = chains_output_key
|
||||
|
||||
if len(chains) == 0:
|
||||
return None
|
||||
|
||||
for chain in chains:
|
||||
chain = cast(Chain, chain)
|
||||
chain.callbacks.append(chain_callback_handler)
|
||||
|
||||
# build main chain
|
||||
overall_chain = SequentialChain(
|
||||
chains=chains,
|
||||
input_variables=[first_input_key],
|
||||
output_variables=[final_output_key],
|
||||
memory=memory, # only for use the memory prompt input key
|
||||
)
|
||||
|
||||
return overall_chain
|
||||
|
||||
@classmethod
|
||||
def get_agent_chains(cls, tenant_id: str, agent_mode: dict,
|
||||
rest_tokens: int,
|
||||
memory: Optional[BaseChatMemory],
|
||||
conversation_message_task: ConversationMessageTask):
|
||||
# agent mode
|
||||
chains = []
|
||||
if agent_mode and agent_mode.get('enabled'):
|
||||
tools = agent_mode.get('tools', [])
|
||||
|
||||
pre_fixed_chains = []
|
||||
# agent_tools = []
|
||||
datasets = []
|
||||
for tool in tools:
|
||||
tool_type = list(tool.keys())[0]
|
||||
tool_config = list(tool.values())[0]
|
||||
if tool_type == 'sensitive-word-avoidance':
|
||||
chain = ChainBuilder.to_sensitive_word_avoidance_chain(tool_config)
|
||||
if chain:
|
||||
pre_fixed_chains.append(chain)
|
||||
elif tool_type == "dataset":
|
||||
# get dataset from dataset id
|
||||
dataset = db.session.query(Dataset).filter(
|
||||
Dataset.tenant_id == tenant_id,
|
||||
Dataset.id == tool_config.get("id")
|
||||
).first()
|
||||
|
||||
if dataset:
|
||||
datasets.append(dataset)
|
||||
|
||||
# add pre-fixed chains
|
||||
chains += pre_fixed_chains
|
||||
|
||||
if len(datasets) > 0:
|
||||
# tool to chain
|
||||
multi_dataset_router_chain = MultiDatasetRouterChain.from_datasets(
|
||||
tenant_id=tenant_id,
|
||||
datasets=datasets,
|
||||
conversation_message_task=conversation_message_task,
|
||||
rest_tokens=rest_tokens,
|
||||
callbacks=[DifyStdOutCallbackHandler()]
|
||||
)
|
||||
chains.append(multi_dataset_router_chain)
|
||||
|
||||
final_output_key = cls.get_chains_output_key(chains)
|
||||
|
||||
return chains, final_output_key
|
||||
|
||||
@classmethod
|
||||
def get_chains_output_key(cls, chains: List[Chain]):
|
||||
if len(chains) > 0:
|
||||
return chains[-1].output_keys[0]
|
||||
return None
|
||||
@@ -1,198 +0,0 @@
|
||||
import math
|
||||
import re
|
||||
from typing import Mapping, List, Dict, Any, Optional
|
||||
|
||||
from langchain import PromptTemplate
|
||||
from langchain.callbacks.manager import CallbackManagerForChainRun
|
||||
from langchain.chains.base import Chain
|
||||
from pydantic import Extra
|
||||
|
||||
from core.callback_handler.dataset_tool_callback_handler import DatasetToolCallbackHandler
|
||||
from core.callback_handler.std_out_callback_handler import DifyStdOutCallbackHandler
|
||||
from core.chain.llm_router_chain import LLMRouterChain, RouterOutputParser
|
||||
from core.conversation_message_task import ConversationMessageTask
|
||||
from core.llm.llm_builder import LLMBuilder
|
||||
from core.tool.dataset_index_tool import DatasetTool
|
||||
from models.dataset import Dataset, DatasetProcessRule
|
||||
|
||||
DEFAULT_K = 2
|
||||
CONTEXT_TOKENS_PERCENT = 0.3
|
||||
MULTI_PROMPT_ROUTER_TEMPLATE = """
|
||||
Given a raw text input to a language model select the model prompt best suited for \
|
||||
the input. You will be given the names of the available prompts and a description of \
|
||||
what the prompt is best suited for. You may also revise the original input if you \
|
||||
think that revising it will ultimately lead to a better response from the language \
|
||||
model.
|
||||
|
||||
<< FORMATTING >>
|
||||
Return a markdown code snippet with a JSON object formatted to look like, \
|
||||
no any other string out of markdown code snippet:
|
||||
```json
|
||||
{{{{
|
||||
"destination": string \\ name of the prompt to use or "DEFAULT"
|
||||
"next_inputs": string \\ a potentially modified version of the original input
|
||||
}}}}
|
||||
```
|
||||
|
||||
REMEMBER: "destination" MUST be one of the candidate prompt names specified below OR \
|
||||
it can be "DEFAULT" if the input is not well suited for any of the candidate prompts.
|
||||
REMEMBER: "next_inputs" can just be the original input if you don't think any \
|
||||
modifications are needed.
|
||||
|
||||
<< CANDIDATE PROMPTS >>
|
||||
{destinations}
|
||||
|
||||
<< INPUT >>
|
||||
{{input}}
|
||||
|
||||
<< OUTPUT >>
|
||||
"""
|
||||
|
||||
|
||||
class MultiDatasetRouterChain(Chain):
|
||||
"""Use a single chain to route an input to one of multiple candidate chains."""
|
||||
|
||||
router_chain: LLMRouterChain
|
||||
"""Chain for deciding a destination chain and the input to it."""
|
||||
dataset_tools: Mapping[str, DatasetTool]
|
||||
"""Map of name to candidate chains that inputs can be routed to."""
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.forbid
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
@property
|
||||
def input_keys(self) -> List[str]:
|
||||
"""Will be whatever keys the router chain prompt expects.
|
||||
|
||||
:meta private:
|
||||
"""
|
||||
return self.router_chain.input_keys
|
||||
|
||||
@property
|
||||
def output_keys(self) -> List[str]:
|
||||
return ["text"]
|
||||
|
||||
@classmethod
|
||||
def from_datasets(
|
||||
cls,
|
||||
tenant_id: str,
|
||||
datasets: List[Dataset],
|
||||
conversation_message_task: ConversationMessageTask,
|
||||
rest_tokens: int,
|
||||
**kwargs: Any,
|
||||
):
|
||||
"""Convenience constructor for instantiating from destination prompts."""
|
||||
llm = LLMBuilder.to_llm(
|
||||
tenant_id=tenant_id,
|
||||
model_name='gpt-3.5-turbo',
|
||||
temperature=0,
|
||||
max_tokens=1024,
|
||||
callbacks=[DifyStdOutCallbackHandler()]
|
||||
)
|
||||
|
||||
destinations = ["[[{}]]: {}".format(d.id, d.description.replace('\n', ' ') if d.description
|
||||
else ('useful for when you want to answer queries about the ' + d.name))
|
||||
for d in datasets]
|
||||
destinations_str = "\n".join(destinations)
|
||||
router_template = MULTI_PROMPT_ROUTER_TEMPLATE.format(
|
||||
destinations=destinations_str
|
||||
)
|
||||
|
||||
router_prompt = PromptTemplate(
|
||||
template=router_template,
|
||||
input_variables=["input"],
|
||||
output_parser=RouterOutputParser(),
|
||||
)
|
||||
|
||||
router_chain = LLMRouterChain.from_llm(llm, router_prompt)
|
||||
dataset_tools = {}
|
||||
for dataset in datasets:
|
||||
# fulfill description when it is empty
|
||||
if dataset.available_document_count == 0 or dataset.available_document_count == 0:
|
||||
continue
|
||||
|
||||
description = dataset.description
|
||||
if not description:
|
||||
description = 'useful for when you want to answer queries about the ' + dataset.name
|
||||
|
||||
k = cls._dynamic_calc_retrieve_k(dataset, rest_tokens)
|
||||
if k == 0:
|
||||
continue
|
||||
|
||||
dataset_tool = DatasetTool(
|
||||
name=f"dataset-{dataset.id}",
|
||||
description=description,
|
||||
k=k,
|
||||
dataset=dataset,
|
||||
callbacks=[DatasetToolCallbackHandler(conversation_message_task), DifyStdOutCallbackHandler()]
|
||||
)
|
||||
|
||||
dataset_tools[str(dataset.id)] = dataset_tool
|
||||
|
||||
return cls(
|
||||
router_chain=router_chain,
|
||||
dataset_tools=dataset_tools,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _dynamic_calc_retrieve_k(cls, dataset: Dataset, rest_tokens: int) -> int:
|
||||
processing_rule = dataset.latest_process_rule
|
||||
if not processing_rule:
|
||||
return DEFAULT_K
|
||||
|
||||
if processing_rule.mode == "custom":
|
||||
rules = processing_rule.rules_dict
|
||||
if not rules:
|
||||
return DEFAULT_K
|
||||
|
||||
segmentation = rules["segmentation"]
|
||||
segment_max_tokens = segmentation["max_tokens"]
|
||||
else:
|
||||
segment_max_tokens = DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens']
|
||||
|
||||
# when rest_tokens is less than default context tokens
|
||||
if rest_tokens < segment_max_tokens * DEFAULT_K:
|
||||
return rest_tokens // segment_max_tokens
|
||||
|
||||
context_limit_tokens = math.floor(rest_tokens * CONTEXT_TOKENS_PERCENT)
|
||||
|
||||
# when context_limit_tokens is less than default context tokens, use default_k
|
||||
if context_limit_tokens <= segment_max_tokens * DEFAULT_K:
|
||||
return DEFAULT_K
|
||||
|
||||
# Expand the k value when there's still some room left in the 30% rest tokens space
|
||||
return context_limit_tokens // segment_max_tokens
|
||||
|
||||
def _call(
|
||||
self,
|
||||
inputs: Dict[str, Any],
|
||||
run_manager: Optional[CallbackManagerForChainRun] = None,
|
||||
) -> Dict[str, Any]:
|
||||
if len(self.dataset_tools) == 0:
|
||||
return {"text": ''}
|
||||
elif len(self.dataset_tools) == 1:
|
||||
return {"text": next(iter(self.dataset_tools.values())).run(inputs['input'])}
|
||||
|
||||
route = self.router_chain.route(inputs)
|
||||
|
||||
destination = ''
|
||||
if route.destination:
|
||||
pattern = r'\b[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}\b'
|
||||
match = re.search(pattern, route.destination, re.IGNORECASE)
|
||||
if match:
|
||||
destination = match.group()
|
||||
|
||||
if not destination:
|
||||
return {"text": ''}
|
||||
elif destination in self.dataset_tools:
|
||||
return {"text": self.dataset_tools[destination].run(
|
||||
route.next_inputs['input']
|
||||
)}
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Received invalid destination chain name '{destination}'"
|
||||
)
|
||||
@@ -1,51 +0,0 @@
|
||||
from typing import List, Dict, Optional, Any
|
||||
|
||||
from langchain.callbacks.manager import CallbackManagerForChainRun, AsyncCallbackManagerForChainRun
|
||||
from langchain.chains.base import Chain
|
||||
from langchain.tools import BaseTool
|
||||
|
||||
|
||||
class ToolChain(Chain):
|
||||
input_key: str = "input" #: :meta private:
|
||||
output_key: str = "output" #: :meta private:
|
||||
|
||||
tool: BaseTool
|
||||
|
||||
@property
|
||||
def _chain_type(self) -> str:
|
||||
return "tool_chain"
|
||||
|
||||
@property
|
||||
def input_keys(self) -> List[str]:
|
||||
"""Expect input key.
|
||||
|
||||
:meta private:
|
||||
"""
|
||||
return [self.input_key]
|
||||
|
||||
@property
|
||||
def output_keys(self) -> List[str]:
|
||||
"""Return output key.
|
||||
|
||||
:meta private:
|
||||
"""
|
||||
return [self.output_key]
|
||||
|
||||
def _call(
|
||||
self,
|
||||
inputs: Dict[str, Any],
|
||||
run_manager: Optional[CallbackManagerForChainRun] = None,
|
||||
) -> Dict[str, Any]:
|
||||
input = inputs[self.input_key]
|
||||
output = self.tool.run(input, self.verbose)
|
||||
return {self.output_key: output}
|
||||
|
||||
async def _acall(
|
||||
self,
|
||||
inputs: Dict[str, Any],
|
||||
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
|
||||
) -> Dict[str, Any]:
|
||||
"""Run the logic of this chain and return the output."""
|
||||
input = inputs[self.input_key]
|
||||
output = await self.tool.arun(input, self.verbose)
|
||||
return {self.output_key: output}
|
||||
@@ -1,4 +1,5 @@
|
||||
import logging
|
||||
import re
|
||||
from typing import Optional, List, Union, Tuple
|
||||
|
||||
from langchain.base_language import BaseLanguageModel
|
||||
@@ -8,30 +9,31 @@ from langchain.llms import BaseLLM
|
||||
from langchain.schema import BaseMessage, HumanMessage
|
||||
from requests.exceptions import ChunkedEncodingError
|
||||
|
||||
from core.agent.agent_executor import AgentExecuteResult, PlanningStrategy
|
||||
from core.callback_handler.main_chain_gather_callback_handler import MainChainGatherCallbackHandler
|
||||
from core.constant import llm_constant
|
||||
from core.callback_handler.llm_callback_handler import LLMCallbackHandler
|
||||
from core.callback_handler.std_out_callback_handler import DifyStreamingStdOutCallbackHandler, \
|
||||
DifyStdOutCallbackHandler
|
||||
from core.conversation_message_task import ConversationMessageTask, ConversationTaskStoppedException
|
||||
from core.llm.error import LLMBadRequestError
|
||||
from core.llm.fake import FakeLLM
|
||||
from core.llm.llm_builder import LLMBuilder
|
||||
from core.chain.main_chain_builder import MainChainBuilder
|
||||
from core.llm.streamable_chat_open_ai import StreamableChatOpenAI
|
||||
from core.llm.streamable_open_ai import StreamableOpenAI
|
||||
from core.memory.read_only_conversation_token_db_buffer_shared_memory import \
|
||||
ReadOnlyConversationTokenDBBufferSharedMemory
|
||||
from core.memory.read_only_conversation_token_db_string_buffer_shared_memory import \
|
||||
ReadOnlyConversationTokenDBStringBufferSharedMemory
|
||||
from core.orchestrator_rule_parser import OrchestratorRuleParser
|
||||
from core.prompt.prompt_builder import PromptBuilder
|
||||
from core.prompt.prompt_template import JinjaPromptTemplate
|
||||
from core.prompt.prompts import MORE_LIKE_THIS_GENERATE_PROMPT
|
||||
from models.model import App, AppModelConfig, Account, Conversation, Message
|
||||
from models.model import App, AppModelConfig, Account, Conversation, Message, EndUser
|
||||
|
||||
|
||||
class Completion:
|
||||
@classmethod
|
||||
def generate(cls, task_id: str, app: App, app_model_config: AppModelConfig, query: str, inputs: dict,
|
||||
user: Account, conversation: Optional[Conversation], streaming: bool, is_override: bool = False):
|
||||
user: Union[Account, EndUser], conversation: Optional[Conversation], streaming: bool, is_override: bool = False):
|
||||
"""
|
||||
errors: ProviderTokenNotInitError
|
||||
"""
|
||||
@@ -69,18 +71,33 @@ class Completion:
|
||||
streaming=streaming
|
||||
)
|
||||
|
||||
# build main chain include agent
|
||||
main_chain = MainChainBuilder.to_langchain_components(
|
||||
chain_callback = MainChainGatherCallbackHandler(conversation_message_task)
|
||||
|
||||
# init orchestrator rule parser
|
||||
orchestrator_rule_parser = OrchestratorRuleParser(
|
||||
tenant_id=app.tenant_id,
|
||||
agent_mode=app_model_config.agent_mode_dict,
|
||||
rest_tokens=rest_tokens_for_context_and_memory,
|
||||
memory=ReadOnlyConversationTokenDBStringBufferSharedMemory(memory=memory) if memory else None,
|
||||
conversation_message_task=conversation_message_task
|
||||
app_model_config=app_model_config
|
||||
)
|
||||
|
||||
chain_output = ''
|
||||
if main_chain:
|
||||
chain_output = main_chain.run(query)
|
||||
# parse sensitive_word_avoidance_chain
|
||||
sensitive_word_avoidance_chain = orchestrator_rule_parser.to_sensitive_word_avoidance_chain([chain_callback])
|
||||
if sensitive_word_avoidance_chain:
|
||||
query = sensitive_word_avoidance_chain.run(query)
|
||||
|
||||
# get agent executor
|
||||
agent_executor = orchestrator_rule_parser.to_agent_executor(
|
||||
conversation_message_task=conversation_message_task,
|
||||
memory=memory,
|
||||
rest_tokens=rest_tokens_for_context_and_memory,
|
||||
chain_callback=chain_callback
|
||||
)
|
||||
|
||||
# run agent executor
|
||||
agent_execute_result = None
|
||||
if agent_executor:
|
||||
should_use_agent = agent_executor.should_use_agent(query)
|
||||
if should_use_agent:
|
||||
agent_execute_result = agent_executor.run(query)
|
||||
|
||||
# run the final llm
|
||||
try:
|
||||
@@ -90,7 +107,7 @@ class Completion:
|
||||
app_model_config=app_model_config,
|
||||
query=query,
|
||||
inputs=inputs,
|
||||
chain_output=chain_output,
|
||||
agent_execute_result=agent_execute_result,
|
||||
conversation_message_task=conversation_message_task,
|
||||
memory=memory,
|
||||
streaming=streaming
|
||||
@@ -105,9 +122,20 @@ class Completion:
|
||||
|
||||
@classmethod
|
||||
def run_final_llm(cls, tenant_id: str, mode: str, app_model_config: AppModelConfig, query: str, inputs: dict,
|
||||
chain_output: str,
|
||||
agent_execute_result: Optional[AgentExecuteResult],
|
||||
conversation_message_task: ConversationMessageTask,
|
||||
memory: Optional[ReadOnlyConversationTokenDBBufferSharedMemory], streaming: bool):
|
||||
# When no extra pre prompt is specified,
|
||||
# the output of the agent can be used directly as the main output content without calling LLM again
|
||||
if not app_model_config.pre_prompt and agent_execute_result and agent_execute_result.output \
|
||||
and agent_execute_result.strategy != PlanningStrategy.ROUTER:
|
||||
final_llm = FakeLLM(response=agent_execute_result.output,
|
||||
origin_llm=agent_execute_result.configuration.llm,
|
||||
streaming=streaming)
|
||||
final_llm.callbacks = cls.get_llm_callbacks(final_llm, streaming, conversation_message_task)
|
||||
response = final_llm.generate([[HumanMessage(content=query)]])
|
||||
return response
|
||||
|
||||
final_llm = LLMBuilder.to_llm_from_model(
|
||||
tenant_id=tenant_id,
|
||||
model=app_model_config.model_dict,
|
||||
@@ -122,7 +150,7 @@ class Completion:
|
||||
pre_prompt=app_model_config.pre_prompt,
|
||||
query=query,
|
||||
inputs=inputs,
|
||||
chain_output=chain_output,
|
||||
agent_execute_result=agent_execute_result,
|
||||
memory=memory
|
||||
)
|
||||
|
||||
@@ -142,16 +170,9 @@ class Completion:
|
||||
@classmethod
|
||||
def get_main_llm_prompt(cls, mode: str, llm: BaseLanguageModel, model: dict,
|
||||
pre_prompt: str, query: str, inputs: dict,
|
||||
chain_output: Optional[str],
|
||||
agent_execute_result: Optional[AgentExecuteResult],
|
||||
memory: Optional[ReadOnlyConversationTokenDBBufferSharedMemory]) -> \
|
||||
Tuple[Union[str | List[BaseMessage]], Optional[List[str]]]:
|
||||
# disable template string in query
|
||||
# query_params = JinjaPromptTemplate.from_template(template=query).input_variables
|
||||
# if query_params:
|
||||
# for query_param in query_params:
|
||||
# if query_param not in inputs:
|
||||
# inputs[query_param] = '{{' + query_param + '}}'
|
||||
|
||||
if mode == 'completion':
|
||||
prompt_template = JinjaPromptTemplate.from_template(
|
||||
template=("""Use the following context as your learned knowledge, inside <context></context> XML tags.
|
||||
@@ -165,18 +186,13 @@ When answer to user:
|
||||
- If you don't know when you are not sure, ask for clarification.
|
||||
Avoid mentioning that you obtained the information from the context.
|
||||
And answer according to the language of the user's question.
|
||||
""" if chain_output else "")
|
||||
""" if agent_execute_result else "")
|
||||
+ (pre_prompt + "\n" if pre_prompt else "")
|
||||
+ "{{query}}\n"
|
||||
)
|
||||
|
||||
if chain_output:
|
||||
inputs['context'] = chain_output
|
||||
# context_params = JinjaPromptTemplate.from_template(template=chain_output).input_variables
|
||||
# if context_params:
|
||||
# for context_param in context_params:
|
||||
# if context_param not in inputs:
|
||||
# inputs[context_param] = '{{' + context_param + '}}'
|
||||
if agent_execute_result:
|
||||
inputs['context'] = agent_execute_result.output
|
||||
|
||||
prompt_inputs = {k: inputs[k] for k in prompt_template.input_variables if k in inputs}
|
||||
prompt_content = prompt_template.format(
|
||||
@@ -206,8 +222,8 @@ And answer according to the language of the user's question.
|
||||
if pre_prompt_inputs:
|
||||
human_inputs.update(pre_prompt_inputs)
|
||||
|
||||
if chain_output:
|
||||
human_inputs['context'] = chain_output
|
||||
if agent_execute_result:
|
||||
human_inputs['context'] = agent_execute_result.output
|
||||
human_message_prompt += """Use the following context as your learned knowledge, inside <context></context> XML tags.
|
||||
|
||||
<context>
|
||||
@@ -240,18 +256,10 @@ And answer according to the language of the user's question.
|
||||
- max_tokens - curr_message_tokens
|
||||
rest_tokens = max(rest_tokens, 0)
|
||||
histories = cls.get_history_messages_from_memory(memory, rest_tokens)
|
||||
|
||||
# disable template string in query
|
||||
# histories_params = JinjaPromptTemplate.from_template(template=histories).input_variables
|
||||
# if histories_params:
|
||||
# for histories_param in histories_params:
|
||||
# if histories_param not in human_inputs:
|
||||
# human_inputs[histories_param] = '{{' + histories_param + '}}'
|
||||
|
||||
human_message_prompt += "\n\n" if human_message_prompt else ""
|
||||
human_message_prompt += "Here is the chat histories between human and assistant, " \
|
||||
"inside <histories></histories> XML tags.\n\n<histories>"
|
||||
human_message_prompt += histories + "</histories>"
|
||||
"inside <histories></histories> XML tags.\n\n<histories>\n"
|
||||
human_message_prompt += histories + "\n</histories>"
|
||||
|
||||
human_message_prompt += query_prompt
|
||||
|
||||
@@ -263,10 +271,13 @@ And answer according to the language of the user's question.
|
||||
|
||||
messages.append(human_message)
|
||||
|
||||
return messages, ['\nHuman:']
|
||||
for message in messages:
|
||||
message.content = re.sub(r'<\|.*?\|>', '', message.content)
|
||||
|
||||
return messages, ['\nHuman:', '</histories>']
|
||||
|
||||
@classmethod
|
||||
def get_llm_callbacks(cls, llm: Union[StreamableOpenAI, StreamableChatOpenAI],
|
||||
def get_llm_callbacks(cls, llm: BaseLanguageModel,
|
||||
streaming: bool,
|
||||
conversation_message_task: ConversationMessageTask) -> List[BaseCallbackHandler]:
|
||||
llm_callback_handler = LLMCallbackHandler(llm, conversation_message_task)
|
||||
@@ -277,8 +288,7 @@ And answer according to the language of the user's question.
|
||||
|
||||
@classmethod
|
||||
def get_history_messages_from_memory(cls, memory: ReadOnlyConversationTokenDBBufferSharedMemory,
|
||||
max_token_limit: int) -> \
|
||||
str:
|
||||
max_token_limit: int) -> str:
|
||||
"""Get memory messages."""
|
||||
memory.max_token_limit = max_token_limit
|
||||
memory_key = memory.memory_variables[0]
|
||||
@@ -329,7 +339,7 @@ And answer according to the language of the user's question.
|
||||
pre_prompt=app_model_config.pre_prompt,
|
||||
query=query,
|
||||
inputs=inputs,
|
||||
chain_output=None,
|
||||
agent_execute_result=None,
|
||||
memory=None
|
||||
)
|
||||
|
||||
@@ -379,6 +389,7 @@ And answer according to the language of the user's question.
|
||||
query=message.query,
|
||||
inputs=message.inputs,
|
||||
chain_output=None,
|
||||
agent_execute_result=None,
|
||||
memory=None
|
||||
)
|
||||
|
||||
|
||||
@@ -52,7 +52,7 @@ class ConversationMessageTask:
|
||||
message=self.message,
|
||||
conversation=self.conversation,
|
||||
chain_pub=False, # disabled currently
|
||||
agent_thought_pub=False # disabled currently
|
||||
agent_thought_pub=True
|
||||
)
|
||||
|
||||
def init(self):
|
||||
@@ -69,6 +69,7 @@ class ConversationMessageTask:
|
||||
"suggested_questions": self.app_model_config.suggested_questions_list,
|
||||
"suggested_questions_after_answer": self.app_model_config.suggested_questions_after_answer_dict,
|
||||
"more_like_this": self.app_model_config.more_like_this_dict,
|
||||
"sensitive_word_avoidance": self.app_model_config.sensitive_word_avoidance_dict,
|
||||
"user_input_form": self.app_model_config.user_input_form_list,
|
||||
}
|
||||
|
||||
@@ -207,7 +208,28 @@ class ConversationMessageTask:
|
||||
|
||||
self._pub_handler.pub_chain(message_chain)
|
||||
|
||||
def on_agent_end(self, message_chain: MessageChain, agent_model_name: str,
|
||||
def on_agent_start(self, message_chain: MessageChain, agent_loop: AgentLoop) -> MessageAgentThought:
|
||||
message_agent_thought = MessageAgentThought(
|
||||
message_id=self.message.id,
|
||||
message_chain_id=message_chain.id,
|
||||
position=agent_loop.position,
|
||||
thought=agent_loop.thought,
|
||||
tool=agent_loop.tool_name,
|
||||
tool_input=agent_loop.tool_input,
|
||||
message=agent_loop.prompt,
|
||||
answer=agent_loop.completion,
|
||||
created_by_role=('account' if isinstance(self.user, Account) else 'end_user'),
|
||||
created_by=self.user.id
|
||||
)
|
||||
|
||||
db.session.add(message_agent_thought)
|
||||
db.session.flush()
|
||||
|
||||
self._pub_handler.pub_agent_thought(message_agent_thought)
|
||||
|
||||
return message_agent_thought
|
||||
|
||||
def on_agent_end(self, message_agent_thought: MessageAgentThought, agent_model_name: str,
|
||||
agent_loop: AgentLoop):
|
||||
agent_message_unit_price = llm_constant.model_prices[agent_model_name]['prompt']
|
||||
agent_answer_unit_price = llm_constant.model_prices[agent_model_name]['completion']
|
||||
@@ -222,34 +244,18 @@ class ConversationMessageTask:
|
||||
agent_answer_unit_price
|
||||
)
|
||||
|
||||
message_agent_loop = MessageAgentThought(
|
||||
message_id=self.message.id,
|
||||
message_chain_id=message_chain.id,
|
||||
position=agent_loop.position,
|
||||
thought=agent_loop.thought,
|
||||
tool=agent_loop.tool_name,
|
||||
tool_input=agent_loop.tool_input,
|
||||
observation=agent_loop.tool_output,
|
||||
tool_process_data='', # currently not support
|
||||
message=agent_loop.prompt,
|
||||
message_token=loop_message_tokens,
|
||||
message_unit_price=agent_message_unit_price,
|
||||
answer=agent_loop.completion,
|
||||
answer_token=loop_answer_tokens,
|
||||
answer_unit_price=agent_answer_unit_price,
|
||||
latency=agent_loop.latency,
|
||||
tokens=agent_loop.prompt_tokens + agent_loop.completion_tokens,
|
||||
total_price=loop_total_price,
|
||||
currency=llm_constant.model_currency,
|
||||
created_by_role=('account' if isinstance(self.user, Account) else 'end_user'),
|
||||
created_by=self.user.id
|
||||
)
|
||||
|
||||
db.session.add(message_agent_loop)
|
||||
message_agent_thought.observation = agent_loop.tool_output
|
||||
message_agent_thought.tool_process_data = '' # currently not support
|
||||
message_agent_thought.message_token = loop_message_tokens
|
||||
message_agent_thought.message_unit_price = agent_message_unit_price
|
||||
message_agent_thought.answer_token = loop_answer_tokens
|
||||
message_agent_thought.answer_unit_price = agent_answer_unit_price
|
||||
message_agent_thought.latency = agent_loop.latency
|
||||
message_agent_thought.tokens = agent_loop.prompt_tokens + agent_loop.completion_tokens
|
||||
message_agent_thought.total_price = loop_total_price
|
||||
message_agent_thought.currency = llm_constant.model_currency
|
||||
db.session.flush()
|
||||
|
||||
self._pub_handler.pub_agent_thought(message_agent_loop)
|
||||
|
||||
def on_dataset_query_end(self, dataset_query_obj: DatasetQueryObj):
|
||||
dataset_query = DatasetQuery(
|
||||
dataset_id=dataset_query_obj.dataset_id,
|
||||
@@ -346,16 +352,14 @@ class PubHandler:
|
||||
content = {
|
||||
'event': 'agent_thought',
|
||||
'data': {
|
||||
'id': message_agent_thought.id,
|
||||
'task_id': self._task_id,
|
||||
'message_id': self._message.id,
|
||||
'chain_id': message_agent_thought.message_chain_id,
|
||||
'agent_thought_id': message_agent_thought.id,
|
||||
'position': message_agent_thought.position,
|
||||
'thought': message_agent_thought.thought,
|
||||
'tool': message_agent_thought.tool,
|
||||
'tool_input': message_agent_thought.tool_input,
|
||||
'observation': message_agent_thought.observation,
|
||||
'answer': message_agent_thought.answer,
|
||||
'mode': self._conversation.mode,
|
||||
'conversation_id': self._conversation.id
|
||||
}
|
||||
@@ -388,6 +392,15 @@ class PubHandler:
|
||||
def _is_stopped(self):
|
||||
return redis_client.get(self._stopped_cache_key) is not None
|
||||
|
||||
@classmethod
|
||||
def ping(cls, user: Union[Account | EndUser], task_id: str):
|
||||
content = {
|
||||
'event': 'ping'
|
||||
}
|
||||
|
||||
channel = cls.generate_channel_name(user, task_id)
|
||||
redis_client.publish(channel, json.dumps(content))
|
||||
|
||||
@classmethod
|
||||
def stop(cls, user: Union[Account | EndUser], task_id: str):
|
||||
stopped_cache_key = cls.generate_stopped_cache_key(user, task_id)
|
||||
|
||||
@@ -1,7 +1,8 @@
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
from typing import List, Union
|
||||
from typing import List, Union, Optional
|
||||
|
||||
import requests
|
||||
from langchain.document_loaders import TextLoader, Docx2txtLoader
|
||||
from langchain.schema import Document
|
||||
|
||||
@@ -13,6 +14,9 @@ from core.data_loader.loader.pdf import PdfLoader
|
||||
from extensions.ext_storage import storage
|
||||
from models.model import UploadFile
|
||||
|
||||
SUPPORT_URL_CONTENT_TYPES = ['application/pdf', 'text/plain']
|
||||
USER_AGENT = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
|
||||
|
||||
|
||||
class FileExtractor:
|
||||
@classmethod
|
||||
@@ -22,22 +26,41 @@ class FileExtractor:
|
||||
file_path = f"{temp_dir}/{next(tempfile._get_candidate_names())}{suffix}"
|
||||
storage.download(upload_file.key, file_path)
|
||||
|
||||
input_file = Path(file_path)
|
||||
delimiter = '\n'
|
||||
if input_file.suffix == '.xlsx':
|
||||
loader = ExcelLoader(file_path)
|
||||
elif input_file.suffix == '.pdf':
|
||||
loader = PdfLoader(file_path, upload_file=upload_file)
|
||||
elif input_file.suffix in ['.md', '.markdown']:
|
||||
loader = MarkdownLoader(file_path, autodetect_encoding=True)
|
||||
elif input_file.suffix in ['.htm', '.html']:
|
||||
loader = HTMLLoader(file_path)
|
||||
elif input_file.suffix == '.docx':
|
||||
loader = Docx2txtLoader(file_path)
|
||||
elif input_file.suffix == '.csv':
|
||||
loader = CSVLoader(file_path, autodetect_encoding=True)
|
||||
else:
|
||||
# txt
|
||||
loader = TextLoader(file_path, autodetect_encoding=True)
|
||||
return cls.load_from_file(file_path, return_text, upload_file)
|
||||
|
||||
return delimiter.join([document.page_content for document in loader.load()]) if return_text else loader.load()
|
||||
@classmethod
|
||||
def load_from_url(cls, url: str, return_text: bool = False) -> Union[List[Document] | str]:
|
||||
response = requests.get(url, headers={
|
||||
"User-Agent": USER_AGENT
|
||||
})
|
||||
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
suffix = Path(url).suffix
|
||||
file_path = f"{temp_dir}/{next(tempfile._get_candidate_names())}{suffix}"
|
||||
with open(file_path, 'wb') as file:
|
||||
file.write(response.content)
|
||||
|
||||
return cls.load_from_file(file_path, return_text)
|
||||
|
||||
@classmethod
|
||||
def load_from_file(cls, file_path: str, return_text: bool = False,
|
||||
upload_file: Optional[UploadFile] = None) -> Union[List[Document] | str]:
|
||||
input_file = Path(file_path)
|
||||
delimiter = '\n'
|
||||
if input_file.suffix == '.xlsx':
|
||||
loader = ExcelLoader(file_path)
|
||||
elif input_file.suffix == '.pdf':
|
||||
loader = PdfLoader(file_path, upload_file=upload_file)
|
||||
elif input_file.suffix in ['.md', '.markdown']:
|
||||
loader = MarkdownLoader(file_path, autodetect_encoding=True)
|
||||
elif input_file.suffix in ['.htm', '.html']:
|
||||
loader = HTMLLoader(file_path)
|
||||
elif input_file.suffix == '.docx':
|
||||
loader = Docx2txtLoader(file_path)
|
||||
elif input_file.suffix == '.csv':
|
||||
loader = CSVLoader(file_path, autodetect_encoding=True)
|
||||
else:
|
||||
# txt
|
||||
loader = TextLoader(file_path, autodetect_encoding=True)
|
||||
|
||||
return delimiter.join([document.page_content for document in loader.load()]) if return_text else loader.load()
|
||||
|
||||
@@ -39,7 +39,7 @@ class ExcelLoader(BaseLoader):
|
||||
row_dict = dict(zip(keys, list(map(str, row))))
|
||||
row_dict = {k: v for k, v in row_dict.items() if v}
|
||||
item = ''.join(f'{k}:{v}\n' for k, v in row_dict.items())
|
||||
document = Document(page_content=item)
|
||||
document = Document(page_content=item, metadata={'source': self._file_path})
|
||||
data.append(document)
|
||||
|
||||
return data
|
||||
|
||||
@@ -68,7 +68,7 @@ class DatesetDocumentStore:
|
||||
self, docs: Sequence[Document], allow_update: bool = True
|
||||
) -> None:
|
||||
max_position = db.session.query(func.max(DocumentSegment.position)).filter(
|
||||
DocumentSegment.document == self._document_id
|
||||
DocumentSegment.document_id == self._document_id
|
||||
).scalar()
|
||||
|
||||
if max_position is None:
|
||||
@@ -105,9 +105,14 @@ class DatesetDocumentStore:
|
||||
tokens=tokens,
|
||||
created_by=self._user_id,
|
||||
)
|
||||
if 'answer' in doc.metadata and doc.metadata['answer']:
|
||||
segment_document.answer = doc.metadata.pop('answer', '')
|
||||
|
||||
db.session.add(segment_document)
|
||||
else:
|
||||
segment_document.content = doc.page_content
|
||||
if 'answer' in doc.metadata and doc.metadata['answer']:
|
||||
segment_document.answer = doc.metadata.pop('answer', '')
|
||||
segment_document.index_node_hash = doc.metadata['doc_hash']
|
||||
segment_document.word_count = len(doc.page_content)
|
||||
segment_document.tokens = tokens
|
||||
|
||||
@@ -2,7 +2,7 @@ import logging
|
||||
|
||||
from langchain import PromptTemplate
|
||||
from langchain.chat_models.base import BaseChatModel
|
||||
from langchain.schema import HumanMessage, OutputParserException, BaseMessage
|
||||
from langchain.schema import HumanMessage, OutputParserException, BaseMessage, SystemMessage
|
||||
|
||||
from core.constant import llm_constant
|
||||
from core.llm.llm_builder import LLMBuilder
|
||||
@@ -12,8 +12,8 @@ from core.prompt.output_parser.rule_config_generator import RuleConfigGeneratorO
|
||||
|
||||
from core.prompt.output_parser.suggested_questions_after_answer import SuggestedQuestionsAfterAnswerOutputParser
|
||||
from core.prompt.prompt_template import JinjaPromptTemplate, OutLinePromptTemplate
|
||||
from core.prompt.prompts import CONVERSATION_TITLE_PROMPT, CONVERSATION_SUMMARY_PROMPT, INTRODUCTION_GENERATE_PROMPT
|
||||
|
||||
from core.prompt.prompts import CONVERSATION_TITLE_PROMPT, CONVERSATION_SUMMARY_PROMPT, INTRODUCTION_GENERATE_PROMPT, \
|
||||
GENERATOR_QA_PROMPT
|
||||
|
||||
# gpt-3.5-turbo works not well
|
||||
generate_base_model = 'text-davinci-003'
|
||||
@@ -31,7 +31,8 @@ class LLMGenerator:
|
||||
llm: StreamableOpenAI = LLMBuilder.to_llm(
|
||||
tenant_id=tenant_id,
|
||||
model_name='gpt-3.5-turbo',
|
||||
max_tokens=50
|
||||
max_tokens=50,
|
||||
timeout=600
|
||||
)
|
||||
|
||||
if isinstance(llm, BaseChatModel):
|
||||
@@ -185,3 +186,27 @@ class LLMGenerator:
|
||||
}
|
||||
|
||||
return rule_config
|
||||
|
||||
@classmethod
|
||||
async def generate_qa_document(cls, llm: StreamableOpenAI, query):
|
||||
prompt = GENERATOR_QA_PROMPT
|
||||
|
||||
|
||||
if isinstance(llm, BaseChatModel):
|
||||
prompt = [SystemMessage(content=prompt), HumanMessage(content=query)]
|
||||
|
||||
response = llm.generate([prompt])
|
||||
answer = response.generations[0][0].text
|
||||
return answer.strip()
|
||||
|
||||
@classmethod
|
||||
def generate_qa_document_sync(cls, llm: StreamableOpenAI, query):
|
||||
prompt = GENERATOR_QA_PROMPT
|
||||
|
||||
|
||||
if isinstance(llm, BaseChatModel):
|
||||
prompt = [SystemMessage(content=prompt), HumanMessage(content=query)]
|
||||
|
||||
response = llm.generate([prompt])
|
||||
answer = response.generations[0][0].text
|
||||
return answer.strip()
|
||||
|
||||
@@ -205,6 +205,16 @@ class KeywordTableIndex(BaseIndex):
|
||||
document_segment.keywords = keywords
|
||||
db.session.commit()
|
||||
|
||||
def create_segment_keywords(self, node_id: str, keywords: List[str]):
|
||||
keyword_table = self._get_dataset_keyword_table()
|
||||
self._update_segment_keywords(node_id, keywords)
|
||||
keyword_table = self._add_text_to_keyword_table(keyword_table, node_id, keywords)
|
||||
self._save_dataset_keyword_table(keyword_table)
|
||||
|
||||
def update_segment_keywords_index(self, node_id: str, keywords: List[str]):
|
||||
keyword_table = self._get_dataset_keyword_table()
|
||||
keyword_table = self._add_text_to_keyword_table(keyword_table, node_id, keywords)
|
||||
self._save_dataset_keyword_table(keyword_table)
|
||||
|
||||
class KeywordTableRetriever(BaseRetriever, BaseModel):
|
||||
index: KeywordTableIndex
|
||||
|
||||
@@ -1,26 +1,26 @@
|
||||
import concurrent
|
||||
import datetime
|
||||
import json
|
||||
import logging
|
||||
import re
|
||||
import threading
|
||||
import time
|
||||
import uuid
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from typing import Optional, List, cast
|
||||
|
||||
from flask import current_app
|
||||
from flask_login import current_user
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
from langchain.schema import Document
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter
|
||||
|
||||
from core.data_loader.file_extractor import FileExtractor
|
||||
from core.data_loader.loader.notion import NotionLoader
|
||||
from core.docstore.dataset_docstore import DatesetDocumentStore
|
||||
from core.embedding.cached_embedding import CacheEmbedding
|
||||
from core.generator.llm_generator import LLMGenerator
|
||||
from core.index.index import IndexBuilder
|
||||
from core.index.keyword_table_index.keyword_table_index import KeywordTableIndex, KeywordTableConfig
|
||||
from core.index.vector_index.vector_index import VectorIndex
|
||||
from core.llm.error import ProviderTokenNotInitError
|
||||
from core.llm.llm_builder import LLMBuilder
|
||||
from core.llm.streamable_open_ai import StreamableOpenAI
|
||||
from core.spiltter.fixed_text_splitter import FixedRecursiveCharacterTextSplitter
|
||||
from core.llm.token_calculator import TokenCalculator
|
||||
from extensions.ext_database import db
|
||||
@@ -70,7 +70,13 @@ class IndexingRunner:
|
||||
dataset_document=dataset_document,
|
||||
processing_rule=processing_rule
|
||||
)
|
||||
|
||||
# new_documents = []
|
||||
# for document in documents:
|
||||
# response = LLMGenerator.generate_qa_document(dataset.tenant_id, document.page_content)
|
||||
# document_qa_list = self.format_split_text(response)
|
||||
# for result in document_qa_list:
|
||||
# document = Document(page_content=result['question'], metadata={'source': result['answer']})
|
||||
# new_documents.append(document)
|
||||
# build index
|
||||
self._build_index(
|
||||
dataset=dataset,
|
||||
@@ -91,6 +97,22 @@ class IndexingRunner:
|
||||
dataset_document.stopped_at = datetime.datetime.utcnow()
|
||||
db.session.commit()
|
||||
|
||||
def format_split_text(self, text):
|
||||
regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q|$)"
|
||||
matches = re.findall(regex, text, re.MULTILINE)
|
||||
|
||||
result = []
|
||||
for match in matches:
|
||||
q = match[0]
|
||||
a = match[1]
|
||||
if q and a:
|
||||
result.append({
|
||||
"question": q,
|
||||
"answer": re.sub(r"\n\s*", "\n", a.strip())
|
||||
})
|
||||
|
||||
return result
|
||||
|
||||
def run_in_splitting_status(self, dataset_document: DatasetDocument):
|
||||
"""Run the indexing process when the index_status is splitting."""
|
||||
try:
|
||||
@@ -205,7 +227,8 @@ class IndexingRunner:
|
||||
dataset_document.stopped_at = datetime.datetime.utcnow()
|
||||
db.session.commit()
|
||||
|
||||
def file_indexing_estimate(self, file_details: List[UploadFile], tmp_processing_rule: dict) -> dict:
|
||||
def file_indexing_estimate(self, file_details: List[UploadFile], tmp_processing_rule: dict,
|
||||
doc_form: str = None) -> dict:
|
||||
"""
|
||||
Estimate the indexing for the document.
|
||||
"""
|
||||
@@ -225,7 +248,7 @@ class IndexingRunner:
|
||||
splitter = self._get_splitter(processing_rule)
|
||||
|
||||
# split to documents
|
||||
documents = self._split_to_documents(
|
||||
documents = self._split_to_documents_for_estimate(
|
||||
text_docs=text_docs,
|
||||
splitter=splitter,
|
||||
processing_rule=processing_rule
|
||||
@@ -237,7 +260,25 @@ class IndexingRunner:
|
||||
|
||||
tokens += TokenCalculator.get_num_tokens(self.embedding_model_name,
|
||||
self.filter_string(document.page_content))
|
||||
|
||||
if doc_form and doc_form == 'qa_model':
|
||||
if len(preview_texts) > 0:
|
||||
# qa model document
|
||||
llm: StreamableOpenAI = LLMBuilder.to_llm(
|
||||
tenant_id=current_user.current_tenant_id,
|
||||
model_name='gpt-3.5-turbo',
|
||||
max_tokens=2000
|
||||
)
|
||||
response = LLMGenerator.generate_qa_document_sync(llm, preview_texts[0])
|
||||
document_qa_list = self.format_split_text(response)
|
||||
return {
|
||||
"total_segments": total_segments * 20,
|
||||
"tokens": total_segments * 2000,
|
||||
"total_price": '{:f}'.format(
|
||||
TokenCalculator.get_token_price('gpt-3.5-turbo', total_segments * 2000, 'completion')),
|
||||
"currency": TokenCalculator.get_currency(self.embedding_model_name),
|
||||
"qa_preview": document_qa_list,
|
||||
"preview": preview_texts
|
||||
}
|
||||
return {
|
||||
"total_segments": total_segments,
|
||||
"tokens": tokens,
|
||||
@@ -246,7 +287,7 @@ class IndexingRunner:
|
||||
"preview": preview_texts
|
||||
}
|
||||
|
||||
def notion_indexing_estimate(self, notion_info_list: list, tmp_processing_rule: dict) -> dict:
|
||||
def notion_indexing_estimate(self, notion_info_list: list, tmp_processing_rule: dict, doc_form: str = None) -> dict:
|
||||
"""
|
||||
Estimate the indexing for the document.
|
||||
"""
|
||||
@@ -285,7 +326,7 @@ class IndexingRunner:
|
||||
splitter = self._get_splitter(processing_rule)
|
||||
|
||||
# split to documents
|
||||
documents = self._split_to_documents(
|
||||
documents = self._split_to_documents_for_estimate(
|
||||
text_docs=documents,
|
||||
splitter=splitter,
|
||||
processing_rule=processing_rule
|
||||
@@ -296,7 +337,25 @@ class IndexingRunner:
|
||||
preview_texts.append(document.page_content)
|
||||
|
||||
tokens += TokenCalculator.get_num_tokens(self.embedding_model_name, document.page_content)
|
||||
|
||||
if doc_form and doc_form == 'qa_model':
|
||||
if len(preview_texts) > 0:
|
||||
# qa model document
|
||||
llm: StreamableOpenAI = LLMBuilder.to_llm(
|
||||
tenant_id=current_user.current_tenant_id,
|
||||
model_name='gpt-3.5-turbo',
|
||||
max_tokens=2000
|
||||
)
|
||||
response = LLMGenerator.generate_qa_document_sync(llm, preview_texts[0])
|
||||
document_qa_list = self.format_split_text(response)
|
||||
return {
|
||||
"total_segments": total_segments * 20,
|
||||
"tokens": total_segments * 2000,
|
||||
"total_price": '{:f}'.format(
|
||||
TokenCalculator.get_token_price('gpt-3.5-turbo', total_segments * 2000, 'completion')),
|
||||
"currency": TokenCalculator.get_currency(self.embedding_model_name),
|
||||
"qa_preview": document_qa_list,
|
||||
"preview": preview_texts
|
||||
}
|
||||
return {
|
||||
"total_segments": total_segments,
|
||||
"tokens": tokens,
|
||||
@@ -391,7 +450,9 @@ class IndexingRunner:
|
||||
documents = self._split_to_documents(
|
||||
text_docs=text_docs,
|
||||
splitter=splitter,
|
||||
processing_rule=processing_rule
|
||||
processing_rule=processing_rule,
|
||||
tenant_id=dataset.tenant_id,
|
||||
document_form=dataset_document.doc_form
|
||||
)
|
||||
|
||||
# save node to document segment
|
||||
@@ -428,7 +489,74 @@ class IndexingRunner:
|
||||
return documents
|
||||
|
||||
def _split_to_documents(self, text_docs: List[Document], splitter: TextSplitter,
|
||||
processing_rule: DatasetProcessRule) -> List[Document]:
|
||||
processing_rule: DatasetProcessRule, tenant_id: str, document_form: str) -> List[Document]:
|
||||
"""
|
||||
Split the text documents into nodes.
|
||||
"""
|
||||
all_documents = []
|
||||
all_qa_documents = []
|
||||
for text_doc in text_docs:
|
||||
# document clean
|
||||
document_text = self._document_clean(text_doc.page_content, processing_rule)
|
||||
text_doc.page_content = document_text
|
||||
|
||||
# parse document to nodes
|
||||
documents = splitter.split_documents([text_doc])
|
||||
split_documents = []
|
||||
for document_node in documents:
|
||||
doc_id = str(uuid.uuid4())
|
||||
hash = helper.generate_text_hash(document_node.page_content)
|
||||
document_node.metadata['doc_id'] = doc_id
|
||||
document_node.metadata['doc_hash'] = hash
|
||||
|
||||
split_documents.append(document_node)
|
||||
all_documents.extend(split_documents)
|
||||
# processing qa document
|
||||
if document_form == 'qa_model':
|
||||
llm: StreamableOpenAI = LLMBuilder.to_llm(
|
||||
tenant_id=tenant_id,
|
||||
model_name='gpt-3.5-turbo',
|
||||
max_tokens=2000
|
||||
)
|
||||
for i in range(0, len(all_documents), 10):
|
||||
threads = []
|
||||
sub_documents = all_documents[i:i + 10]
|
||||
for doc in sub_documents:
|
||||
document_format_thread = threading.Thread(target=self.format_qa_document, kwargs={
|
||||
'llm': llm, 'document_node': doc, 'all_qa_documents': all_qa_documents})
|
||||
threads.append(document_format_thread)
|
||||
document_format_thread.start()
|
||||
for thread in threads:
|
||||
thread.join()
|
||||
return all_qa_documents
|
||||
return all_documents
|
||||
|
||||
def format_qa_document(self, llm: StreamableOpenAI, document_node, all_qa_documents):
|
||||
format_documents = []
|
||||
if document_node.page_content is None or not document_node.page_content.strip():
|
||||
return
|
||||
try:
|
||||
# qa model document
|
||||
response = LLMGenerator.generate_qa_document_sync(llm, document_node.page_content)
|
||||
document_qa_list = self.format_split_text(response)
|
||||
qa_documents = []
|
||||
for result in document_qa_list:
|
||||
qa_document = Document(page_content=result['question'], metadata=document_node.metadata.copy())
|
||||
doc_id = str(uuid.uuid4())
|
||||
hash = helper.generate_text_hash(result['question'])
|
||||
qa_document.metadata['answer'] = result['answer']
|
||||
qa_document.metadata['doc_id'] = doc_id
|
||||
qa_document.metadata['doc_hash'] = hash
|
||||
qa_documents.append(qa_document)
|
||||
format_documents.extend(qa_documents)
|
||||
except Exception as e:
|
||||
logging.error(str(e))
|
||||
|
||||
all_qa_documents.extend(format_documents)
|
||||
|
||||
|
||||
def _split_to_documents_for_estimate(self, text_docs: List[Document], splitter: TextSplitter,
|
||||
processing_rule: DatasetProcessRule) -> List[Document]:
|
||||
"""
|
||||
Split the text documents into nodes.
|
||||
"""
|
||||
@@ -445,7 +573,6 @@ class IndexingRunner:
|
||||
for document in documents:
|
||||
if document.page_content is None or not document.page_content.strip():
|
||||
continue
|
||||
|
||||
doc_id = str(uuid.uuid4())
|
||||
hash = helper.generate_text_hash(document.page_content)
|
||||
|
||||
@@ -487,6 +614,23 @@ class IndexingRunner:
|
||||
|
||||
return text
|
||||
|
||||
def format_split_text(self, text):
|
||||
regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q|$)" # 匹配Q和A的正则表达式
|
||||
matches = re.findall(regex, text, re.MULTILINE) # 获取所有匹配到的结果
|
||||
|
||||
result = [] # 存储最终的结果
|
||||
for match in matches:
|
||||
q = match[0]
|
||||
a = match[1]
|
||||
if q and a:
|
||||
# 如果Q和A都存在,就将其添加到结果中
|
||||
result.append({
|
||||
"question": q,
|
||||
"answer": re.sub(r"\n\s*", "\n", a.strip())
|
||||
})
|
||||
|
||||
return result
|
||||
|
||||
def _build_index(self, dataset: Dataset, dataset_document: DatasetDocument, documents: List[Document]) -> None:
|
||||
"""
|
||||
Build the index for the document.
|
||||
|
||||
59
api/core/llm/fake.py
Normal file
59
api/core/llm/fake.py
Normal file
@@ -0,0 +1,59 @@
|
||||
import time
|
||||
from typing import List, Optional, Any, Mapping
|
||||
|
||||
from langchain.callbacks.manager import CallbackManagerForLLMRun
|
||||
from langchain.chat_models.base import SimpleChatModel
|
||||
from langchain.schema import BaseMessage, ChatResult, AIMessage, ChatGeneration, BaseLanguageModel
|
||||
|
||||
|
||||
class FakeLLM(SimpleChatModel):
|
||||
"""Fake ChatModel for testing purposes."""
|
||||
|
||||
streaming: bool = False
|
||||
"""Whether to stream the results or not."""
|
||||
response: str
|
||||
origin_llm: Optional[BaseLanguageModel] = None
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
return "fake-chat-model"
|
||||
|
||||
def _call(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
"""First try to lookup in queries, else return 'foo' or 'bar'."""
|
||||
return self.response
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Mapping[str, Any]:
|
||||
return {"response": self.response}
|
||||
|
||||
def get_num_tokens(self, text: str) -> int:
|
||||
return self.origin_llm.get_num_tokens(text) if self.origin_llm else 0
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> ChatResult:
|
||||
output_str = self._call(messages, stop=stop, run_manager=run_manager, **kwargs)
|
||||
if self.streaming:
|
||||
for token in output_str:
|
||||
if run_manager:
|
||||
run_manager.on_llm_new_token(token)
|
||||
time.sleep(0.01)
|
||||
|
||||
message = AIMessage(content=output_str)
|
||||
generation = ChatGeneration(message=message)
|
||||
llm_output = {"token_usage": {
|
||||
'prompt_tokens': 0,
|
||||
'completion_tokens': 0,
|
||||
'total_tokens': 0,
|
||||
}}
|
||||
return ChatResult(generations=[generation], llm_output=llm_output)
|
||||
@@ -2,6 +2,7 @@ import json
|
||||
import logging
|
||||
from typing import Optional, Union
|
||||
|
||||
import openai
|
||||
import requests
|
||||
|
||||
from core.llm.provider.base import BaseProvider
|
||||
@@ -9,32 +10,42 @@ from core.llm.provider.errors import ValidateFailedError
|
||||
from models.provider import ProviderName
|
||||
|
||||
|
||||
AZURE_OPENAI_API_VERSION = '2023-07-01-preview'
|
||||
|
||||
|
||||
class AzureProvider(BaseProvider):
|
||||
def get_models(self, model_id: Optional[str] = None, credentials: Optional[dict] = None) -> list[dict]:
|
||||
credentials = self.get_credentials(model_id) if not credentials else credentials
|
||||
url = "{}/openai/deployments?api-version={}".format(
|
||||
str(credentials.get('openai_api_base')),
|
||||
str(credentials.get('openai_api_version'))
|
||||
)
|
||||
return []
|
||||
|
||||
headers = {
|
||||
"api-key": str(credentials.get('openai_api_key')),
|
||||
"content-type": "application/json; charset=utf-8"
|
||||
}
|
||||
|
||||
response = requests.get(url, headers=headers)
|
||||
|
||||
if response.status_code == 200:
|
||||
result = response.json()
|
||||
return [{
|
||||
'id': deployment['id'],
|
||||
'name': '{} ({})'.format(deployment['id'], deployment['model'])
|
||||
} for deployment in result['data'] if deployment['status'] == 'succeeded']
|
||||
else:
|
||||
if response.status_code == 401:
|
||||
raise AzureAuthenticationError()
|
||||
def check_embedding_model(self, credentials: Optional[dict] = None):
|
||||
credentials = self.get_credentials('text-embedding-ada-002') if not credentials else credentials
|
||||
try:
|
||||
result = openai.Embedding.create(input=['test'],
|
||||
engine='text-embedding-ada-002',
|
||||
timeout=60,
|
||||
api_key=str(credentials.get('openai_api_key')),
|
||||
api_base=str(credentials.get('openai_api_base')),
|
||||
api_type='azure',
|
||||
api_version=str(credentials.get('openai_api_version')))["data"][0][
|
||||
"embedding"]
|
||||
except openai.error.AuthenticationError as e:
|
||||
raise AzureAuthenticationError(str(e))
|
||||
except openai.error.APIConnectionError as e:
|
||||
raise AzureRequestFailedError(
|
||||
'Failed to request Azure OpenAI, please check your API Base Endpoint, The format is `https://xxx.openai.azure.com/`')
|
||||
except openai.error.InvalidRequestError as e:
|
||||
if e.http_status == 404:
|
||||
raise AzureRequestFailedError("Please check your 'gpt-3.5-turbo' or 'text-embedding-ada-002' "
|
||||
"deployment name is exists in Azure AI")
|
||||
else:
|
||||
raise AzureRequestFailedError('Failed to request Azure OpenAI. Status code: {}'.format(response.status_code))
|
||||
raise AzureRequestFailedError(
|
||||
'Failed to request Azure OpenAI. cause: {}'.format(str(e)))
|
||||
except openai.error.OpenAIError as e:
|
||||
raise AzureRequestFailedError(
|
||||
'Failed to request Azure OpenAI. cause: {}'.format(str(e)))
|
||||
|
||||
if not isinstance(result, list):
|
||||
raise AzureRequestFailedError('Failed to request Azure OpenAI.')
|
||||
|
||||
def get_credentials(self, model_id: Optional[str] = None) -> dict:
|
||||
"""
|
||||
@@ -42,9 +53,10 @@ class AzureProvider(BaseProvider):
|
||||
"""
|
||||
config = self.get_provider_api_key(model_id=model_id)
|
||||
config['openai_api_type'] = 'azure'
|
||||
config['openai_api_version'] = AZURE_OPENAI_API_VERSION
|
||||
if model_id == 'text-embedding-ada-002':
|
||||
config['deployment'] = model_id.replace('.', '') if model_id else None
|
||||
config['chunk_size'] = 1
|
||||
config['chunk_size'] = 16
|
||||
else:
|
||||
config['deployment_name'] = model_id.replace('.', '') if model_id else None
|
||||
return config
|
||||
@@ -61,7 +73,7 @@ class AzureProvider(BaseProvider):
|
||||
except:
|
||||
config = {
|
||||
'openai_api_type': 'azure',
|
||||
'openai_api_version': '2023-03-15-preview',
|
||||
'openai_api_version': AZURE_OPENAI_API_VERSION,
|
||||
'openai_api_base': '',
|
||||
'openai_api_key': ''
|
||||
}
|
||||
@@ -70,7 +82,7 @@ class AzureProvider(BaseProvider):
|
||||
if not config.get('openai_api_key'):
|
||||
config = {
|
||||
'openai_api_type': 'azure',
|
||||
'openai_api_version': '2023-03-15-preview',
|
||||
'openai_api_version': AZURE_OPENAI_API_VERSION,
|
||||
'openai_api_base': '',
|
||||
'openai_api_key': ''
|
||||
}
|
||||
@@ -92,33 +104,13 @@ class AzureProvider(BaseProvider):
|
||||
raise ValueError('Config must be a object.')
|
||||
|
||||
if 'openai_api_version' not in config:
|
||||
config['openai_api_version'] = '2023-03-15-preview'
|
||||
config['openai_api_version'] = AZURE_OPENAI_API_VERSION
|
||||
|
||||
models = self.get_models(credentials=config)
|
||||
|
||||
if not models:
|
||||
raise ValidateFailedError("Please add deployments for "
|
||||
"'gpt-3.5-turbo', 'text-embedding-ada-002' (required) "
|
||||
"and 'gpt-4', 'gpt-35-turbo-16k', 'text-davinci-003' (optional).")
|
||||
|
||||
fixed_model_ids = [
|
||||
'gpt-35-turbo',
|
||||
'text-embedding-ada-002'
|
||||
]
|
||||
|
||||
current_model_ids = [model['id'] for model in models]
|
||||
|
||||
missing_model_ids = [fixed_model_id for fixed_model_id in fixed_model_ids if
|
||||
fixed_model_id not in current_model_ids]
|
||||
|
||||
if missing_model_ids:
|
||||
raise ValidateFailedError("Please add deployments for '{}'.".format(", ".join(missing_model_ids)))
|
||||
self.check_embedding_model(credentials=config)
|
||||
except ValidateFailedError as e:
|
||||
raise e
|
||||
except AzureAuthenticationError:
|
||||
raise ValidateFailedError('Validation failed, please check your API Key.')
|
||||
except (requests.ConnectionError, requests.RequestException):
|
||||
raise ValidateFailedError('Validation failed, please check your API Base Endpoint.')
|
||||
except AzureRequestFailedError as ex:
|
||||
raise ValidateFailedError('Validation failed, error: {}.'.format(str(ex)))
|
||||
except Exception as ex:
|
||||
@@ -131,7 +123,7 @@ class AzureProvider(BaseProvider):
|
||||
"""
|
||||
return json.dumps({
|
||||
'openai_api_type': 'azure',
|
||||
'openai_api_version': '2023-03-15-preview',
|
||||
'openai_api_version': AZURE_OPENAI_API_VERSION,
|
||||
'openai_api_base': config['openai_api_base'],
|
||||
'openai_api_key': self.encrypt_token(config['openai_api_key'])
|
||||
})
|
||||
|
||||
@@ -1,7 +1,8 @@
|
||||
from langchain.callbacks.manager import Callbacks
|
||||
from langchain.schema import BaseMessage, LLMResult
|
||||
from langchain.callbacks.manager import Callbacks, CallbackManagerForLLMRun
|
||||
from langchain.chat_models.openai import _convert_dict_to_message
|
||||
from langchain.schema import BaseMessage, LLMResult, ChatResult, ChatGeneration
|
||||
from langchain.chat_models import AzureChatOpenAI
|
||||
from typing import Optional, List, Dict, Any
|
||||
from typing import Optional, List, Dict, Any, Tuple, Union
|
||||
|
||||
from pydantic import root_validator
|
||||
|
||||
@@ -9,6 +10,11 @@ from core.llm.wrappers.openai_wrapper import handle_openai_exceptions
|
||||
|
||||
|
||||
class StreamableAzureChatOpenAI(AzureChatOpenAI):
|
||||
request_timeout: Optional[Union[float, Tuple[float, float]]] = (5.0, 300.0)
|
||||
"""Timeout for requests to OpenAI completion API. Default is 600 seconds."""
|
||||
max_retries: int = 1
|
||||
"""Maximum number of retries to make when generating."""
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that api key and python package exists in environment."""
|
||||
@@ -71,3 +77,43 @@ class StreamableAzureChatOpenAI(AzureChatOpenAI):
|
||||
params['model_kwargs'] = model_kwargs
|
||||
|
||||
return params
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> ChatResult:
|
||||
message_dicts, params = self._create_message_dicts(messages, stop)
|
||||
params = {**params, **kwargs}
|
||||
if self.streaming:
|
||||
inner_completion = ""
|
||||
role = "assistant"
|
||||
params["stream"] = True
|
||||
function_call: Optional[dict] = None
|
||||
for stream_resp in self.completion_with_retry(
|
||||
messages=message_dicts, **params
|
||||
):
|
||||
if len(stream_resp["choices"]) > 0:
|
||||
role = stream_resp["choices"][0]["delta"].get("role", role)
|
||||
token = stream_resp["choices"][0]["delta"].get("content") or ""
|
||||
inner_completion += token
|
||||
_function_call = stream_resp["choices"][0]["delta"].get("function_call")
|
||||
if _function_call:
|
||||
if function_call is None:
|
||||
function_call = _function_call
|
||||
else:
|
||||
function_call["arguments"] += _function_call["arguments"]
|
||||
if run_manager:
|
||||
run_manager.on_llm_new_token(token)
|
||||
message = _convert_dict_to_message(
|
||||
{
|
||||
"content": inner_completion,
|
||||
"role": role,
|
||||
"function_call": function_call,
|
||||
}
|
||||
)
|
||||
return ChatResult(generations=[ChatGeneration(message=message)])
|
||||
response = self.completion_with_retry(messages=message_dicts, **params)
|
||||
return self._create_chat_result(response)
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
from langchain.callbacks.manager import Callbacks
|
||||
from langchain.llms import AzureOpenAI
|
||||
from langchain.schema import LLMResult
|
||||
from typing import Optional, List, Dict, Mapping, Any
|
||||
from typing import Optional, List, Dict, Mapping, Any, Union, Tuple
|
||||
|
||||
from pydantic import root_validator
|
||||
|
||||
@@ -11,6 +11,10 @@ from core.llm.wrappers.openai_wrapper import handle_openai_exceptions
|
||||
class StreamableAzureOpenAI(AzureOpenAI):
|
||||
openai_api_type: str = "azure"
|
||||
openai_api_version: str = ""
|
||||
request_timeout: Optional[Union[float, Tuple[float, float]]] = (5.0, 300.0)
|
||||
"""Timeout for requests to OpenAI completion API. Default is 600 seconds."""
|
||||
max_retries: int = 1
|
||||
"""Maximum number of retries to make when generating."""
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
|
||||
@@ -1,8 +1,10 @@
|
||||
from typing import List, Optional, Any, Dict
|
||||
|
||||
from httpx import Timeout
|
||||
from langchain.callbacks.manager import Callbacks
|
||||
from langchain.chat_models import ChatAnthropic
|
||||
from langchain.schema import BaseMessage, LLMResult
|
||||
from langchain.schema import BaseMessage, LLMResult, SystemMessage, AIMessage, HumanMessage, ChatMessage
|
||||
from pydantic import root_validator
|
||||
|
||||
from core.llm.wrappers.anthropic_wrapper import handle_anthropic_exceptions
|
||||
|
||||
@@ -12,6 +14,14 @@ class StreamableChatAnthropic(ChatAnthropic):
|
||||
Wrapper around Anthropic's large language model.
|
||||
"""
|
||||
|
||||
default_request_timeout: Optional[float] = Timeout(timeout=300.0, connect=5.0)
|
||||
|
||||
@root_validator()
|
||||
def prepare_params(cls, values: Dict) -> Dict:
|
||||
values['model_name'] = values.get('model')
|
||||
values['max_tokens'] = values.get('max_tokens_to_sample')
|
||||
return values
|
||||
|
||||
@handle_anthropic_exceptions
|
||||
def generate(
|
||||
self,
|
||||
@@ -37,3 +47,16 @@ class StreamableChatAnthropic(ChatAnthropic):
|
||||
del params['presence_penalty']
|
||||
|
||||
return params
|
||||
|
||||
def _convert_one_message_to_text(self, message: BaseMessage) -> str:
|
||||
if isinstance(message, ChatMessage):
|
||||
message_text = f"\n\n{message.role.capitalize()}: {message.content}"
|
||||
elif isinstance(message, HumanMessage):
|
||||
message_text = f"{self.HUMAN_PROMPT} {message.content}"
|
||||
elif isinstance(message, AIMessage):
|
||||
message_text = f"{self.AI_PROMPT} {message.content}"
|
||||
elif isinstance(message, SystemMessage):
|
||||
message_text = f"<admin>{message.content}</admin>"
|
||||
else:
|
||||
raise ValueError(f"Got unknown type {message}")
|
||||
return message_text
|
||||
@@ -3,7 +3,7 @@ import os
|
||||
from langchain.callbacks.manager import Callbacks
|
||||
from langchain.schema import BaseMessage, LLMResult
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from typing import Optional, List, Dict, Any
|
||||
from typing import Optional, List, Dict, Any, Union, Tuple
|
||||
|
||||
from pydantic import root_validator
|
||||
|
||||
@@ -11,6 +11,10 @@ from core.llm.wrappers.openai_wrapper import handle_openai_exceptions
|
||||
|
||||
|
||||
class StreamableChatOpenAI(ChatOpenAI):
|
||||
request_timeout: Optional[Union[float, Tuple[float, float]]] = (5.0, 300.0)
|
||||
"""Timeout for requests to OpenAI completion API. Default is 600 seconds."""
|
||||
max_retries: int = 1
|
||||
"""Maximum number of retries to make when generating."""
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
|
||||
@@ -2,7 +2,7 @@ import os
|
||||
|
||||
from langchain.callbacks.manager import Callbacks
|
||||
from langchain.schema import LLMResult
|
||||
from typing import Optional, List, Dict, Any, Mapping
|
||||
from typing import Optional, List, Dict, Any, Mapping, Union, Tuple
|
||||
from langchain import OpenAI
|
||||
from pydantic import root_validator
|
||||
|
||||
@@ -10,6 +10,10 @@ from core.llm.wrappers.openai_wrapper import handle_openai_exceptions
|
||||
|
||||
|
||||
class StreamableOpenAI(OpenAI):
|
||||
request_timeout: Optional[Union[float, Tuple[float, float]]] = (5.0, 300.0)
|
||||
"""Timeout for requests to OpenAI completion API. Default is 600 seconds."""
|
||||
max_retries: int = 1
|
||||
"""Maximum number of retries to make when generating."""
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
|
||||
301
api/core/orchestrator_rule_parser.py
Normal file
301
api/core/orchestrator_rule_parser.py
Normal file
@@ -0,0 +1,301 @@
|
||||
import math
|
||||
from typing import Optional
|
||||
|
||||
from langchain import WikipediaAPIWrapper
|
||||
from langchain.callbacks.manager import Callbacks
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.memory.chat_memory import BaseChatMemory
|
||||
from langchain.tools import BaseTool, Tool, WikipediaQueryRun
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from core.agent.agent_executor import AgentExecutor, PlanningStrategy, AgentConfiguration
|
||||
from core.callback_handler.agent_loop_gather_callback_handler import AgentLoopGatherCallbackHandler
|
||||
from core.callback_handler.dataset_tool_callback_handler import DatasetToolCallbackHandler
|
||||
from core.callback_handler.main_chain_gather_callback_handler import MainChainGatherCallbackHandler
|
||||
from core.callback_handler.std_out_callback_handler import DifyStdOutCallbackHandler
|
||||
from core.chain.sensitive_word_avoidance_chain import SensitiveWordAvoidanceChain
|
||||
from core.conversation_message_task import ConversationMessageTask
|
||||
from core.llm.llm_builder import LLMBuilder
|
||||
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
|
||||
from core.tool.provider.serpapi_provider import SerpAPIToolProvider
|
||||
from core.tool.serpapi_wrapper import OptimizedSerpAPIWrapper, OptimizedSerpAPIInput
|
||||
from core.tool.web_reader_tool import WebReaderTool
|
||||
from extensions.ext_database import db
|
||||
from libs import helper
|
||||
from models.dataset import Dataset, DatasetProcessRule
|
||||
from models.model import AppModelConfig
|
||||
|
||||
|
||||
class OrchestratorRuleParser:
|
||||
"""Parse the orchestrator rule to entities."""
|
||||
|
||||
def __init__(self, tenant_id: str, app_model_config: AppModelConfig):
|
||||
self.tenant_id = tenant_id
|
||||
self.app_model_config = app_model_config
|
||||
self.agent_summary_model_name = "gpt-3.5-turbo-16k"
|
||||
self.dataset_retrieve_model_name = "gpt-3.5-turbo"
|
||||
|
||||
def to_agent_executor(self, conversation_message_task: ConversationMessageTask, memory: Optional[BaseChatMemory],
|
||||
rest_tokens: int, chain_callback: MainChainGatherCallbackHandler) \
|
||||
-> Optional[AgentExecutor]:
|
||||
if not self.app_model_config.agent_mode_dict:
|
||||
return None
|
||||
|
||||
agent_mode_config = self.app_model_config.agent_mode_dict
|
||||
model_dict = self.app_model_config.model_dict
|
||||
|
||||
chain = None
|
||||
if agent_mode_config and agent_mode_config.get('enabled'):
|
||||
tool_configs = agent_mode_config.get('tools', [])
|
||||
agent_model_name = model_dict.get('name', 'gpt-4')
|
||||
|
||||
# add agent callback to record agent thoughts
|
||||
agent_callback = AgentLoopGatherCallbackHandler(
|
||||
model_name=agent_model_name,
|
||||
conversation_message_task=conversation_message_task
|
||||
)
|
||||
|
||||
chain_callback.agent_callback = agent_callback
|
||||
|
||||
agent_llm = LLMBuilder.to_llm(
|
||||
tenant_id=self.tenant_id,
|
||||
model_name=agent_model_name,
|
||||
temperature=0,
|
||||
max_tokens=1500,
|
||||
callbacks=[agent_callback, DifyStdOutCallbackHandler()]
|
||||
)
|
||||
|
||||
planning_strategy = PlanningStrategy(agent_mode_config.get('strategy', 'router'))
|
||||
|
||||
# only OpenAI chat model (include Azure) support function call, use ReACT instead
|
||||
if not isinstance(agent_llm, ChatOpenAI) \
|
||||
and planning_strategy in [PlanningStrategy.FUNCTION_CALL, PlanningStrategy.MULTI_FUNCTION_CALL]:
|
||||
planning_strategy = PlanningStrategy.REACT
|
||||
|
||||
summary_llm = LLMBuilder.to_llm(
|
||||
tenant_id=self.tenant_id,
|
||||
model_name=self.agent_summary_model_name,
|
||||
temperature=0,
|
||||
max_tokens=500,
|
||||
callbacks=[DifyStdOutCallbackHandler()]
|
||||
)
|
||||
|
||||
tools = self.to_tools(
|
||||
tool_configs=tool_configs,
|
||||
conversation_message_task=conversation_message_task,
|
||||
model_name=self.agent_summary_model_name,
|
||||
rest_tokens=rest_tokens,
|
||||
callbacks=[agent_callback, DifyStdOutCallbackHandler()]
|
||||
)
|
||||
|
||||
if len(tools) == 0:
|
||||
return None
|
||||
|
||||
dataset_llm = LLMBuilder.to_llm(
|
||||
tenant_id=self.tenant_id,
|
||||
model_name=self.dataset_retrieve_model_name,
|
||||
temperature=0,
|
||||
max_tokens=500,
|
||||
callbacks=[DifyStdOutCallbackHandler()]
|
||||
)
|
||||
|
||||
agent_configuration = AgentConfiguration(
|
||||
strategy=planning_strategy,
|
||||
llm=agent_llm,
|
||||
tools=tools,
|
||||
summary_llm=summary_llm,
|
||||
dataset_llm=dataset_llm,
|
||||
memory=memory,
|
||||
callbacks=[chain_callback, agent_callback],
|
||||
max_iterations=10,
|
||||
max_execution_time=400.0,
|
||||
early_stopping_method="generate"
|
||||
)
|
||||
|
||||
return AgentExecutor(agent_configuration)
|
||||
|
||||
return chain
|
||||
|
||||
def to_sensitive_word_avoidance_chain(self, callbacks: Callbacks = None, **kwargs) \
|
||||
-> Optional[SensitiveWordAvoidanceChain]:
|
||||
"""
|
||||
Convert app sensitive word avoidance config to chain
|
||||
|
||||
:param kwargs:
|
||||
:return:
|
||||
"""
|
||||
if not self.app_model_config.sensitive_word_avoidance_dict:
|
||||
return None
|
||||
|
||||
sensitive_word_avoidance_config = self.app_model_config.sensitive_word_avoidance_dict
|
||||
sensitive_words = sensitive_word_avoidance_config.get("words", "")
|
||||
if sensitive_word_avoidance_config.get("enabled", False) and sensitive_words:
|
||||
return SensitiveWordAvoidanceChain(
|
||||
sensitive_words=sensitive_words.split(","),
|
||||
canned_response=sensitive_word_avoidance_config.get("canned_response", ''),
|
||||
output_key="sensitive_word_avoidance_output",
|
||||
callbacks=callbacks,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
return None
|
||||
|
||||
def to_tools(self, tool_configs: list, conversation_message_task: ConversationMessageTask,
|
||||
model_name: str, rest_tokens: int, callbacks: Callbacks = None) -> list[BaseTool]:
|
||||
"""
|
||||
Convert app agent tool configs to tools
|
||||
|
||||
:param rest_tokens:
|
||||
:param tool_configs: app agent tool configs
|
||||
:param model_name:
|
||||
:param conversation_message_task:
|
||||
:param callbacks:
|
||||
:return:
|
||||
"""
|
||||
tools = []
|
||||
for tool_config in tool_configs:
|
||||
tool_type = list(tool_config.keys())[0]
|
||||
tool_val = list(tool_config.values())[0]
|
||||
if not tool_val.get("enabled") or tool_val.get("enabled") is not True:
|
||||
continue
|
||||
|
||||
tool = None
|
||||
if tool_type == "dataset":
|
||||
tool = self.to_dataset_retriever_tool(tool_val, conversation_message_task, rest_tokens)
|
||||
elif tool_type == "web_reader":
|
||||
tool = self.to_web_reader_tool(model_name)
|
||||
elif tool_type == "google_search":
|
||||
tool = self.to_google_search_tool()
|
||||
elif tool_type == "wikipedia":
|
||||
tool = self.to_wikipedia_tool()
|
||||
elif tool_type == "current_datetime":
|
||||
tool = self.to_current_datetime_tool()
|
||||
|
||||
if tool:
|
||||
tool.callbacks.extend(callbacks)
|
||||
tools.append(tool)
|
||||
|
||||
return tools
|
||||
|
||||
def to_dataset_retriever_tool(self, tool_config: dict, conversation_message_task: ConversationMessageTask,
|
||||
rest_tokens: int) \
|
||||
-> Optional[BaseTool]:
|
||||
"""
|
||||
A dataset tool is a tool that can be used to retrieve information from a dataset
|
||||
:param rest_tokens:
|
||||
:param tool_config:
|
||||
:param conversation_message_task:
|
||||
:return:
|
||||
"""
|
||||
# get dataset from dataset id
|
||||
dataset = db.session.query(Dataset).filter(
|
||||
Dataset.tenant_id == self.tenant_id,
|
||||
Dataset.id == tool_config.get("id")
|
||||
).first()
|
||||
|
||||
if dataset and dataset.available_document_count == 0 and dataset.available_document_count == 0:
|
||||
return None
|
||||
|
||||
k = self._dynamic_calc_retrieve_k(dataset, rest_tokens)
|
||||
tool = DatasetRetrieverTool.from_dataset(
|
||||
dataset=dataset,
|
||||
k=k,
|
||||
callbacks=[DatasetToolCallbackHandler(conversation_message_task)]
|
||||
)
|
||||
|
||||
return tool
|
||||
|
||||
def to_web_reader_tool(self, model_name: str) -> Optional[BaseTool]:
|
||||
"""
|
||||
A tool for reading web pages
|
||||
|
||||
:return:
|
||||
"""
|
||||
summary_llm = LLMBuilder.to_llm(
|
||||
tenant_id=self.tenant_id,
|
||||
model_name=model_name,
|
||||
temperature=0,
|
||||
max_tokens=500,
|
||||
callbacks=[DifyStdOutCallbackHandler()]
|
||||
)
|
||||
|
||||
tool = WebReaderTool(
|
||||
llm=summary_llm,
|
||||
max_chunk_length=4000,
|
||||
continue_reading=True,
|
||||
callbacks=[DifyStdOutCallbackHandler()]
|
||||
)
|
||||
|
||||
return tool
|
||||
|
||||
def to_google_search_tool(self) -> Optional[BaseTool]:
|
||||
tool_provider = SerpAPIToolProvider(tenant_id=self.tenant_id)
|
||||
func_kwargs = tool_provider.credentials_to_func_kwargs()
|
||||
if not func_kwargs:
|
||||
return None
|
||||
|
||||
tool = Tool(
|
||||
name="google_search",
|
||||
description="A tool for performing a Google search and extracting snippets and webpages "
|
||||
"when you need to search for something you don't know or when your information "
|
||||
"is not up to date. "
|
||||
"Input should be a search query.",
|
||||
func=OptimizedSerpAPIWrapper(**func_kwargs).run,
|
||||
args_schema=OptimizedSerpAPIInput,
|
||||
callbacks=[DifyStdOutCallbackHandler()]
|
||||
)
|
||||
|
||||
return tool
|
||||
|
||||
def to_current_datetime_tool(self) -> Optional[BaseTool]:
|
||||
tool = Tool(
|
||||
name="current_datetime",
|
||||
description="A tool when you want to get the current date, time, week, month or year, "
|
||||
"and the time zone is UTC. Result is \"<date> <time> <timezone> <week>\".",
|
||||
func=helper.get_current_datetime,
|
||||
callbacks=[DifyStdOutCallbackHandler()]
|
||||
)
|
||||
|
||||
return tool
|
||||
|
||||
def to_wikipedia_tool(self) -> Optional[BaseTool]:
|
||||
class WikipediaInput(BaseModel):
|
||||
query: str = Field(..., description="search query.")
|
||||
|
||||
return WikipediaQueryRun(
|
||||
name="wikipedia",
|
||||
api_wrapper=WikipediaAPIWrapper(doc_content_chars_max=4000),
|
||||
args_schema=WikipediaInput,
|
||||
callbacks=[DifyStdOutCallbackHandler()]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _dynamic_calc_retrieve_k(cls, dataset: Dataset, rest_tokens: int) -> int:
|
||||
DEFAULT_K = 2
|
||||
CONTEXT_TOKENS_PERCENT = 0.3
|
||||
processing_rule = dataset.latest_process_rule
|
||||
if not processing_rule:
|
||||
return DEFAULT_K
|
||||
|
||||
if processing_rule.mode == "custom":
|
||||
rules = processing_rule.rules_dict
|
||||
if not rules:
|
||||
return DEFAULT_K
|
||||
|
||||
segmentation = rules["segmentation"]
|
||||
segment_max_tokens = segmentation["max_tokens"]
|
||||
else:
|
||||
segment_max_tokens = DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens']
|
||||
|
||||
# when rest_tokens is less than default context tokens
|
||||
if rest_tokens < segment_max_tokens * DEFAULT_K:
|
||||
return rest_tokens // segment_max_tokens
|
||||
|
||||
context_limit_tokens = math.floor(rest_tokens * CONTEXT_TOKENS_PERCENT)
|
||||
|
||||
# when context_limit_tokens is less than default context tokens, use default_k
|
||||
if context_limit_tokens <= segment_max_tokens * DEFAULT_K:
|
||||
return DEFAULT_K
|
||||
|
||||
# Expand the k value when there's still some room left in the 30% rest tokens space
|
||||
return context_limit_tokens // segment_max_tokens
|
||||
@@ -43,6 +43,16 @@ SUGGESTED_QUESTIONS_AFTER_ANSWER_INSTRUCTION_PROMPT = (
|
||||
"[\"question1\",\"question2\",\"question3\"]\n"
|
||||
)
|
||||
|
||||
GENERATOR_QA_PROMPT = (
|
||||
"Please respond according to the language of the user's input text. If the text is in language [A], you must also reply in language [A].\n"
|
||||
'Step 1: Understand and summarize the main content of this text.\n'
|
||||
'Step 2: What key information or concepts are mentioned in this text?\n'
|
||||
'Step 3: Decompose or combine multiple pieces of information and concepts.\n'
|
||||
'Step 4: Generate 20 questions and answers based on these key information and concepts.'
|
||||
'The questions should be clear and detailed, and the answers should be detailed and complete.\n'
|
||||
"Answer in the following format: Q1:\nA1:\nQ2:\nA2:...\n"
|
||||
)
|
||||
|
||||
RULE_CONFIG_GENERATE_TEMPLATE = """Given MY INTENDED AUDIENCES and HOPING TO SOLVE using a language model, please select \
|
||||
the model prompt that best suits the input.
|
||||
You will be provided with the prompt, variables, and an opening statement.
|
||||
|
||||
@@ -7,7 +7,7 @@ from core.embedding.cached_embedding import CacheEmbedding
|
||||
from core.index.keyword_table_index.keyword_table_index import KeywordTableIndex, KeywordTableConfig
|
||||
from core.index.vector_index.vector_index import VectorIndex
|
||||
from core.llm.llm_builder import LLMBuilder
|
||||
from models.dataset import Dataset
|
||||
from models.dataset import Dataset, DocumentSegment
|
||||
|
||||
|
||||
class DatasetTool(BaseTool):
|
||||
@@ -27,6 +27,7 @@ class DatasetTool(BaseTool):
|
||||
)
|
||||
|
||||
documents = kw_table_index.search(tool_input, search_kwargs={'k': self.k})
|
||||
return str("\n".join([document.page_content for document in documents]))
|
||||
else:
|
||||
model_credentials = LLMBuilder.get_model_credentials(
|
||||
tenant_id=self.dataset.tenant_id,
|
||||
@@ -54,8 +55,22 @@ class DatasetTool(BaseTool):
|
||||
|
||||
hit_callback = DatasetIndexToolCallbackHandler(self.dataset.id)
|
||||
hit_callback.on_tool_end(documents)
|
||||
document_context_list = []
|
||||
index_node_ids = [document.metadata['doc_id'] for document in documents]
|
||||
segments = DocumentSegment.query.filter(DocumentSegment.completed_at.isnot(None),
|
||||
DocumentSegment.status == 'completed',
|
||||
DocumentSegment.enabled == True,
|
||||
DocumentSegment.index_node_id.in_(index_node_ids)
|
||||
).all()
|
||||
|
||||
return str("\n".join([document.page_content for document in documents]))
|
||||
if segments:
|
||||
for segment in segments:
|
||||
if segment.answer:
|
||||
document_context_list.append(segment.answer)
|
||||
else:
|
||||
document_context_list.append(segment.content)
|
||||
|
||||
return str("\n".join(document_context_list))
|
||||
|
||||
async def _arun(self, tool_input: str) -> str:
|
||||
model_credentials = LLMBuilder.get_model_credentials(
|
||||
|
||||
121
api/core/tool/dataset_retriever_tool.py
Normal file
121
api/core/tool/dataset_retriever_tool.py
Normal file
@@ -0,0 +1,121 @@
|
||||
import re
|
||||
from typing import Type
|
||||
|
||||
from flask import current_app
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
from langchain.tools import BaseTool
|
||||
from pydantic import Field, BaseModel
|
||||
|
||||
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
|
||||
from core.embedding.cached_embedding import CacheEmbedding
|
||||
from core.index.keyword_table_index.keyword_table_index import KeywordTableIndex, KeywordTableConfig
|
||||
from core.index.vector_index.vector_index import VectorIndex
|
||||
from core.llm.llm_builder import LLMBuilder
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import Dataset, DocumentSegment
|
||||
|
||||
|
||||
class DatasetRetrieverToolInput(BaseModel):
|
||||
dataset_id: str = Field(..., description="ID of dataset to be queried. MUST be UUID format.")
|
||||
query: str = Field(..., description="Query for the dataset to be used to retrieve the dataset.")
|
||||
|
||||
|
||||
class DatasetRetrieverTool(BaseTool):
|
||||
"""Tool for querying a Dataset."""
|
||||
name: str = "dataset"
|
||||
args_schema: Type[BaseModel] = DatasetRetrieverToolInput
|
||||
description: str = "use this to retrieve a dataset. "
|
||||
|
||||
tenant_id: str
|
||||
dataset_id: str
|
||||
k: int = 3
|
||||
|
||||
@classmethod
|
||||
def from_dataset(cls, dataset: Dataset, **kwargs):
|
||||
description = dataset.description
|
||||
if not description:
|
||||
description = 'useful for when you want to answer queries about the ' + dataset.name
|
||||
|
||||
description = description.replace('\n', '').replace('\r', '')
|
||||
description += '\nID of dataset MUST be ' + dataset.id
|
||||
return cls(
|
||||
tenant_id=dataset.tenant_id,
|
||||
dataset_id=dataset.id,
|
||||
description=description,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
def _run(self, dataset_id: str, query: str) -> str:
|
||||
pattern = r'\b[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}\b'
|
||||
match = re.search(pattern, dataset_id, re.IGNORECASE)
|
||||
if match:
|
||||
dataset_id = match.group()
|
||||
|
||||
dataset = db.session.query(Dataset).filter(
|
||||
Dataset.tenant_id == self.tenant_id,
|
||||
Dataset.id == dataset_id
|
||||
).first()
|
||||
|
||||
if not dataset:
|
||||
return f'[{self.name} failed to find dataset with id {dataset_id}.]'
|
||||
|
||||
if dataset.indexing_technique == "economy":
|
||||
# use keyword table query
|
||||
kw_table_index = KeywordTableIndex(
|
||||
dataset=dataset,
|
||||
config=KeywordTableConfig(
|
||||
max_keywords_per_chunk=5
|
||||
)
|
||||
)
|
||||
|
||||
documents = kw_table_index.search(query, search_kwargs={'k': self.k})
|
||||
return str("\n".join([document.page_content for document in documents]))
|
||||
else:
|
||||
model_credentials = LLMBuilder.get_model_credentials(
|
||||
tenant_id=dataset.tenant_id,
|
||||
model_provider=LLMBuilder.get_default_provider(dataset.tenant_id, 'text-embedding-ada-002'),
|
||||
model_name='text-embedding-ada-002'
|
||||
)
|
||||
|
||||
embeddings = CacheEmbedding(OpenAIEmbeddings(
|
||||
**model_credentials
|
||||
))
|
||||
|
||||
vector_index = VectorIndex(
|
||||
dataset=dataset,
|
||||
config=current_app.config,
|
||||
embeddings=embeddings
|
||||
)
|
||||
|
||||
if self.k > 0:
|
||||
documents = vector_index.search(
|
||||
query,
|
||||
search_type='similarity',
|
||||
search_kwargs={
|
||||
'k': self.k
|
||||
}
|
||||
)
|
||||
else:
|
||||
documents = []
|
||||
|
||||
hit_callback = DatasetIndexToolCallbackHandler(dataset.id)
|
||||
hit_callback.on_tool_end(documents)
|
||||
document_context_list = []
|
||||
index_node_ids = [document.metadata['doc_id'] for document in documents]
|
||||
segments = DocumentSegment.query.filter(DocumentSegment.completed_at.isnot(None),
|
||||
DocumentSegment.status == 'completed',
|
||||
DocumentSegment.enabled == True,
|
||||
DocumentSegment.index_node_id.in_(index_node_ids)
|
||||
).all()
|
||||
|
||||
if segments:
|
||||
for segment in segments:
|
||||
if segment.answer:
|
||||
document_context_list.append(f'question:{segment.content} \nanswer:{segment.answer}')
|
||||
else:
|
||||
document_context_list.append(segment.content)
|
||||
|
||||
return str("\n".join(document_context_list))
|
||||
|
||||
async def _arun(self, tool_input: str) -> str:
|
||||
raise NotImplementedError()
|
||||
63
api/core/tool/provider/base.py
Normal file
63
api/core/tool/provider/base.py
Normal file
@@ -0,0 +1,63 @@
|
||||
import base64
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Optional
|
||||
|
||||
from extensions.ext_database import db
|
||||
from libs import rsa
|
||||
from models.account import Tenant
|
||||
from models.tool import ToolProvider, ToolProviderName
|
||||
|
||||
|
||||
class BaseToolProvider(ABC):
|
||||
def __init__(self, tenant_id: str):
|
||||
self.tenant_id = tenant_id
|
||||
|
||||
@abstractmethod
|
||||
def get_provider_name(self) -> ToolProviderName:
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def encrypt_credentials(self, credentials: dict) -> Optional[dict]:
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def get_credentials(self, obfuscated: bool = False) -> Optional[dict]:
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def credentials_to_func_kwargs(self) -> Optional[dict]:
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def credentials_validate(self, credentials: dict):
|
||||
raise NotImplementedError
|
||||
|
||||
def get_provider(self, must_enabled: bool = False) -> Optional[ToolProvider]:
|
||||
"""
|
||||
Returns the Provider instance for the given tenant_id and tool_name.
|
||||
"""
|
||||
query = db.session.query(ToolProvider).filter(
|
||||
ToolProvider.tenant_id == self.tenant_id,
|
||||
ToolProvider.tool_name == self.get_provider_name().value
|
||||
)
|
||||
|
||||
if must_enabled:
|
||||
query = query.filter(ToolProvider.is_enabled == True)
|
||||
|
||||
return query.first()
|
||||
|
||||
def encrypt_token(self, token) -> str:
|
||||
tenant = db.session.query(Tenant).filter(Tenant.id == self.tenant_id).first()
|
||||
encrypted_token = rsa.encrypt(token, tenant.encrypt_public_key)
|
||||
return base64.b64encode(encrypted_token).decode()
|
||||
|
||||
def decrypt_token(self, token: str, obfuscated: bool = False) -> str:
|
||||
token = rsa.decrypt(base64.b64decode(token), self.tenant_id)
|
||||
|
||||
if obfuscated:
|
||||
return self._obfuscated_token(token)
|
||||
|
||||
return token
|
||||
|
||||
def _obfuscated_token(self, token: str) -> str:
|
||||
return token[:6] + '*' * (len(token) - 8) + token[-2:]
|
||||
2
api/core/tool/provider/errors.py
Normal file
2
api/core/tool/provider/errors.py
Normal file
@@ -0,0 +1,2 @@
|
||||
class ToolValidateFailedError(Exception):
|
||||
description = "Tool Provider Validate failed"
|
||||
77
api/core/tool/provider/serpapi_provider.py
Normal file
77
api/core/tool/provider/serpapi_provider.py
Normal file
@@ -0,0 +1,77 @@
|
||||
from typing import Optional
|
||||
|
||||
from core.tool.provider.base import BaseToolProvider
|
||||
from core.tool.provider.errors import ToolValidateFailedError
|
||||
from core.tool.serpapi_wrapper import OptimizedSerpAPIWrapper
|
||||
from models.tool import ToolProviderName
|
||||
|
||||
|
||||
class SerpAPIToolProvider(BaseToolProvider):
|
||||
def get_provider_name(self) -> ToolProviderName:
|
||||
"""
|
||||
Returns the name of the provider.
|
||||
|
||||
:return:
|
||||
"""
|
||||
return ToolProviderName.SERPAPI
|
||||
|
||||
def get_credentials(self, obfuscated: bool = False) -> Optional[dict]:
|
||||
"""
|
||||
Returns the credentials for SerpAPI as a dictionary.
|
||||
|
||||
:param obfuscated: obfuscate credentials if True
|
||||
:return:
|
||||
"""
|
||||
tool_provider = self.get_provider(must_enabled=True)
|
||||
if not tool_provider:
|
||||
return None
|
||||
|
||||
credentials = tool_provider.credentials
|
||||
if not credentials:
|
||||
return None
|
||||
|
||||
if credentials.get('api_key'):
|
||||
credentials['api_key'] = self.decrypt_token(credentials.get('api_key'), obfuscated)
|
||||
|
||||
return credentials
|
||||
|
||||
def credentials_to_func_kwargs(self) -> Optional[dict]:
|
||||
"""
|
||||
Returns the credentials function kwargs as a dictionary.
|
||||
|
||||
:return:
|
||||
"""
|
||||
credentials = self.get_credentials()
|
||||
if not credentials:
|
||||
return None
|
||||
|
||||
return {
|
||||
'serpapi_api_key': credentials.get('api_key')
|
||||
}
|
||||
|
||||
def credentials_validate(self, credentials: dict):
|
||||
"""
|
||||
Validates the given credentials.
|
||||
|
||||
:param credentials:
|
||||
:return:
|
||||
"""
|
||||
if 'api_key' not in credentials or not credentials.get('api_key'):
|
||||
raise ToolValidateFailedError("SerpAPI api_key is required.")
|
||||
|
||||
api_key = credentials.get('api_key')
|
||||
|
||||
try:
|
||||
OptimizedSerpAPIWrapper(serpapi_api_key=api_key).run(query='test')
|
||||
except Exception as e:
|
||||
raise ToolValidateFailedError("SerpAPI api_key is invalid. {}".format(e))
|
||||
|
||||
def encrypt_credentials(self, credentials: dict) -> Optional[dict]:
|
||||
"""
|
||||
Encrypts the given credentials.
|
||||
|
||||
:param credentials:
|
||||
:return:
|
||||
"""
|
||||
credentials['api_key'] = self.encrypt_token(credentials.get('api_key'))
|
||||
return credentials
|
||||
43
api/core/tool/provider/tool_provider_service.py
Normal file
43
api/core/tool/provider/tool_provider_service.py
Normal file
@@ -0,0 +1,43 @@
|
||||
from typing import Optional
|
||||
|
||||
from core.tool.provider.base import BaseToolProvider
|
||||
from core.tool.provider.serpapi_provider import SerpAPIToolProvider
|
||||
|
||||
|
||||
class ToolProviderService:
|
||||
|
||||
def __init__(self, tenant_id: str, provider_name: str):
|
||||
self.provider = self._init_provider(tenant_id, provider_name)
|
||||
|
||||
def _init_provider(self, tenant_id: str, provider_name: str) -> BaseToolProvider:
|
||||
if provider_name == 'serpapi':
|
||||
return SerpAPIToolProvider(tenant_id)
|
||||
else:
|
||||
raise Exception('tool provider {} not found'.format(provider_name))
|
||||
|
||||
def get_credentials(self, obfuscated: bool = False) -> Optional[dict]:
|
||||
"""
|
||||
Returns the credentials for Tool as a dictionary.
|
||||
|
||||
:param obfuscated:
|
||||
:return:
|
||||
"""
|
||||
return self.provider.get_credentials(obfuscated)
|
||||
|
||||
def credentials_validate(self, credentials: dict):
|
||||
"""
|
||||
Validates the given credentials.
|
||||
|
||||
:param credentials:
|
||||
:raises: ValidateFailedError
|
||||
"""
|
||||
return self.provider.credentials_validate(credentials)
|
||||
|
||||
def encrypt_credentials(self, credentials: dict):
|
||||
"""
|
||||
Encrypts the given credentials.
|
||||
|
||||
:param credentials:
|
||||
:return:
|
||||
"""
|
||||
return self.provider.encrypt_credentials(credentials)
|
||||
51
api/core/tool/serpapi_wrapper.py
Normal file
51
api/core/tool/serpapi_wrapper.py
Normal file
@@ -0,0 +1,51 @@
|
||||
from langchain import SerpAPIWrapper
|
||||
from pydantic import Field, BaseModel
|
||||
|
||||
|
||||
class OptimizedSerpAPIInput(BaseModel):
|
||||
query: str = Field(..., description="search query.")
|
||||
|
||||
|
||||
class OptimizedSerpAPIWrapper(SerpAPIWrapper):
|
||||
|
||||
@staticmethod
|
||||
def _process_response(res: dict, num_results: int = 5) -> str:
|
||||
"""Process response from SerpAPI."""
|
||||
if "error" in res.keys():
|
||||
raise ValueError(f"Got error from SerpAPI: {res['error']}")
|
||||
if "answer_box" in res.keys() and type(res["answer_box"]) == list:
|
||||
res["answer_box"] = res["answer_box"][0]
|
||||
if "answer_box" in res.keys() and "answer" in res["answer_box"].keys():
|
||||
toret = res["answer_box"]["answer"]
|
||||
elif "answer_box" in res.keys() and "snippet" in res["answer_box"].keys():
|
||||
toret = res["answer_box"]["snippet"]
|
||||
elif (
|
||||
"answer_box" in res.keys()
|
||||
and "snippet_highlighted_words" in res["answer_box"].keys()
|
||||
):
|
||||
toret = res["answer_box"]["snippet_highlighted_words"][0]
|
||||
elif (
|
||||
"sports_results" in res.keys()
|
||||
and "game_spotlight" in res["sports_results"].keys()
|
||||
):
|
||||
toret = res["sports_results"]["game_spotlight"]
|
||||
elif (
|
||||
"shopping_results" in res.keys()
|
||||
and "title" in res["shopping_results"][0].keys()
|
||||
):
|
||||
toret = res["shopping_results"][:3]
|
||||
elif (
|
||||
"knowledge_graph" in res.keys()
|
||||
and "description" in res["knowledge_graph"].keys()
|
||||
):
|
||||
toret = res["knowledge_graph"]["description"]
|
||||
elif 'organic_results' in res.keys() and len(res['organic_results']) > 0:
|
||||
toret = ""
|
||||
for result in res["organic_results"][:num_results]:
|
||||
if "link" in result:
|
||||
toret += "----------------\nlink: " + result["link"] + "\n"
|
||||
if "snippet" in result:
|
||||
toret += "snippet: " + result["snippet"] + "\n"
|
||||
else:
|
||||
toret = "No good search result found"
|
||||
return "search result:\n" + toret
|
||||
419
api/core/tool/web_reader_tool.py
Normal file
419
api/core/tool/web_reader_tool.py
Normal file
@@ -0,0 +1,419 @@
|
||||
import hashlib
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import site
|
||||
import subprocess
|
||||
import tempfile
|
||||
import unicodedata
|
||||
from contextlib import contextmanager
|
||||
from typing import Type
|
||||
|
||||
import requests
|
||||
from bs4 import BeautifulSoup, NavigableString, Comment, CData
|
||||
from langchain.base_language import BaseLanguageModel
|
||||
from langchain.chains.summarize import load_summarize_chain
|
||||
from langchain.schema import Document
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
from langchain.tools.base import BaseTool
|
||||
from newspaper import Article
|
||||
from pydantic import BaseModel, Field
|
||||
from regex import regex
|
||||
|
||||
from core.data_loader import file_extractor
|
||||
from core.data_loader.file_extractor import FileExtractor
|
||||
|
||||
FULL_TEMPLATE = """
|
||||
TITLE: {title}
|
||||
AUTHORS: {authors}
|
||||
PUBLISH DATE: {publish_date}
|
||||
TOP_IMAGE_URL: {top_image}
|
||||
TEXT:
|
||||
|
||||
{text}
|
||||
"""
|
||||
|
||||
|
||||
class WebReaderToolInput(BaseModel):
|
||||
url: str = Field(..., description="URL of the website to read")
|
||||
summary: bool = Field(
|
||||
default=False,
|
||||
description="When the user's question requires extracting the summarizing content of the webpage, "
|
||||
"set it to true."
|
||||
)
|
||||
cursor: int = Field(
|
||||
default=0,
|
||||
description="Start reading from this character."
|
||||
"Use when the first response was truncated"
|
||||
"and you want to continue reading the page."
|
||||
"The value cannot exceed 24000.",
|
||||
)
|
||||
|
||||
|
||||
class WebReaderTool(BaseTool):
|
||||
"""Reader tool for getting website title and contents. Gives more control than SimpleReaderTool."""
|
||||
|
||||
name: str = "web_reader"
|
||||
args_schema: Type[BaseModel] = WebReaderToolInput
|
||||
description: str = "use this to read a website. " \
|
||||
"If you can answer the question based on the information provided, " \
|
||||
"there is no need to use."
|
||||
page_contents: str = None
|
||||
url: str = None
|
||||
max_chunk_length: int = 4000
|
||||
summary_chunk_tokens: int = 4000
|
||||
summary_chunk_overlap: int = 0
|
||||
summary_separators: list[str] = ["\n\n", "。", ".", " ", ""]
|
||||
continue_reading: bool = True
|
||||
llm: BaseLanguageModel
|
||||
|
||||
def _run(self, url: str, summary: bool = False, cursor: int = 0) -> str:
|
||||
try:
|
||||
if not self.page_contents or self.url != url:
|
||||
page_contents = get_url(url)
|
||||
self.page_contents = page_contents
|
||||
self.url = url
|
||||
else:
|
||||
page_contents = self.page_contents
|
||||
except Exception as e:
|
||||
return f'Read this website failed, caused by: {str(e)}.'
|
||||
|
||||
if summary:
|
||||
character_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
|
||||
chunk_size=self.summary_chunk_tokens,
|
||||
chunk_overlap=self.summary_chunk_overlap,
|
||||
separators=self.summary_separators
|
||||
)
|
||||
|
||||
texts = character_splitter.split_text(page_contents)
|
||||
docs = [Document(page_content=t) for t in texts]
|
||||
|
||||
# only use first 5 docs
|
||||
if len(docs) > 5:
|
||||
docs = docs[:5]
|
||||
|
||||
chain = load_summarize_chain(self.llm, chain_type="refine", callbacks=self.callbacks)
|
||||
try:
|
||||
page_contents = chain.run(docs)
|
||||
# todo use cache
|
||||
except Exception as e:
|
||||
return f'Read this website failed, caused by: {str(e)}.'
|
||||
else:
|
||||
page_contents = page_result(page_contents, cursor, self.max_chunk_length)
|
||||
|
||||
if self.continue_reading and len(page_contents) >= self.max_chunk_length:
|
||||
page_contents += f"\nPAGE WAS TRUNCATED. IF YOU FIND INFORMATION THAT CAN ANSWER QUESTION " \
|
||||
f"THEN DIRECT ANSWER AND STOP INVOKING web_reader TOOL, OTHERWISE USE " \
|
||||
f"CURSOR={cursor+len(page_contents)} TO CONTINUE READING."
|
||||
|
||||
return page_contents
|
||||
|
||||
async def _arun(self, url: str) -> str:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
def page_result(text: str, cursor: int, max_length: int) -> str:
|
||||
"""Page through `text` and return a substring of `max_length` characters starting from `cursor`."""
|
||||
return text[cursor: cursor + max_length]
|
||||
|
||||
|
||||
def get_url(url: str) -> str:
|
||||
"""Fetch URL and return the contents as a string."""
|
||||
headers = {
|
||||
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
|
||||
}
|
||||
supported_content_types = file_extractor.SUPPORT_URL_CONTENT_TYPES + ["text/html"]
|
||||
|
||||
head_response = requests.head(url, headers=headers, allow_redirects=True, timeout=(5, 10))
|
||||
|
||||
if head_response.status_code != 200:
|
||||
return "URL returned status code {}.".format(head_response.status_code)
|
||||
|
||||
# check content-type
|
||||
main_content_type = head_response.headers.get('Content-Type').split(';')[0].strip()
|
||||
if main_content_type not in supported_content_types:
|
||||
return "Unsupported content-type [{}] of URL.".format(main_content_type)
|
||||
|
||||
if main_content_type in file_extractor.SUPPORT_URL_CONTENT_TYPES:
|
||||
return FileExtractor.load_from_url(url, return_text=True)
|
||||
|
||||
response = requests.get(url, headers=headers, allow_redirects=True, timeout=(5, 30))
|
||||
a = extract_using_readabilipy(response.text)
|
||||
|
||||
if not a['plain_text'] or not a['plain_text'].strip():
|
||||
return get_url_from_newspaper3k(url)
|
||||
|
||||
res = FULL_TEMPLATE.format(
|
||||
title=a['title'],
|
||||
authors=a['byline'],
|
||||
publish_date=a['date'],
|
||||
top_image="",
|
||||
text=a['plain_text'] if a['plain_text'] else "",
|
||||
)
|
||||
|
||||
return res
|
||||
|
||||
|
||||
def get_url_from_newspaper3k(url: str) -> str:
|
||||
|
||||
a = Article(url)
|
||||
a.download()
|
||||
a.parse()
|
||||
|
||||
res = FULL_TEMPLATE.format(
|
||||
title=a.title,
|
||||
authors=a.authors,
|
||||
publish_date=a.publish_date,
|
||||
top_image=a.top_image,
|
||||
text=a.text,
|
||||
)
|
||||
|
||||
return res
|
||||
|
||||
|
||||
def extract_using_readabilipy(html):
|
||||
with tempfile.NamedTemporaryFile(delete=False, mode='w+') as f_html:
|
||||
f_html.write(html)
|
||||
f_html.close()
|
||||
html_path = f_html.name
|
||||
|
||||
# Call Mozilla's Readability.js Readability.parse() function via node, writing output to a temporary file
|
||||
article_json_path = html_path + ".json"
|
||||
jsdir = os.path.join(find_module_path('readabilipy'), 'javascript')
|
||||
with chdir(jsdir):
|
||||
subprocess.check_call(["node", "ExtractArticle.js", "-i", html_path, "-o", article_json_path])
|
||||
|
||||
# Read output of call to Readability.parse() from JSON file and return as Python dictionary
|
||||
with open(article_json_path, "r", encoding="utf-8") as json_file:
|
||||
input_json = json.loads(json_file.read())
|
||||
|
||||
# Deleting files after processing
|
||||
os.unlink(article_json_path)
|
||||
os.unlink(html_path)
|
||||
|
||||
article_json = {
|
||||
"title": None,
|
||||
"byline": None,
|
||||
"date": None,
|
||||
"content": None,
|
||||
"plain_content": None,
|
||||
"plain_text": None
|
||||
}
|
||||
# Populate article fields from readability fields where present
|
||||
if input_json:
|
||||
if "title" in input_json and input_json["title"]:
|
||||
article_json["title"] = input_json["title"]
|
||||
if "byline" in input_json and input_json["byline"]:
|
||||
article_json["byline"] = input_json["byline"]
|
||||
if "date" in input_json and input_json["date"]:
|
||||
article_json["date"] = input_json["date"]
|
||||
if "content" in input_json and input_json["content"]:
|
||||
article_json["content"] = input_json["content"]
|
||||
article_json["plain_content"] = plain_content(article_json["content"], False, False)
|
||||
article_json["plain_text"] = extract_text_blocks_as_plain_text(article_json["plain_content"])
|
||||
if "textContent" in input_json and input_json["textContent"]:
|
||||
article_json["plain_text"] = input_json["textContent"]
|
||||
article_json["plain_text"] = re.sub(r'\n\s*\n', '\n', article_json["plain_text"])
|
||||
|
||||
return article_json
|
||||
|
||||
|
||||
def find_module_path(module_name):
|
||||
for package_path in site.getsitepackages():
|
||||
potential_path = os.path.join(package_path, module_name)
|
||||
if os.path.exists(potential_path):
|
||||
return potential_path
|
||||
|
||||
return None
|
||||
|
||||
@contextmanager
|
||||
def chdir(path):
|
||||
"""Change directory in context and return to original on exit"""
|
||||
# From https://stackoverflow.com/a/37996581, couldn't find a built-in
|
||||
original_path = os.getcwd()
|
||||
os.chdir(path)
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
os.chdir(original_path)
|
||||
|
||||
|
||||
def extract_text_blocks_as_plain_text(paragraph_html):
|
||||
# Load article as DOM
|
||||
soup = BeautifulSoup(paragraph_html, 'html.parser')
|
||||
# Select all lists
|
||||
list_elements = soup.find_all(['ul', 'ol'])
|
||||
# Prefix text in all list items with "* " and make lists paragraphs
|
||||
for list_element in list_elements:
|
||||
plain_items = "".join(list(filter(None, [plain_text_leaf_node(li)["text"] for li in list_element.find_all('li')])))
|
||||
list_element.string = plain_items
|
||||
list_element.name = "p"
|
||||
# Select all text blocks
|
||||
text_blocks = [s.parent for s in soup.find_all(string=True)]
|
||||
text_blocks = [plain_text_leaf_node(block) for block in text_blocks]
|
||||
# Drop empty paragraphs
|
||||
text_blocks = list(filter(lambda p: p["text"] is not None, text_blocks))
|
||||
return text_blocks
|
||||
|
||||
|
||||
def plain_text_leaf_node(element):
|
||||
# Extract all text, stripped of any child HTML elements and normalise it
|
||||
plain_text = normalise_text(element.get_text())
|
||||
if plain_text != "" and element.name == "li":
|
||||
plain_text = "* {}, ".format(plain_text)
|
||||
if plain_text == "":
|
||||
plain_text = None
|
||||
if "data-node-index" in element.attrs:
|
||||
plain = {"node_index": element["data-node-index"], "text": plain_text}
|
||||
else:
|
||||
plain = {"text": plain_text}
|
||||
return plain
|
||||
|
||||
|
||||
def plain_content(readability_content, content_digests, node_indexes):
|
||||
# Load article as DOM
|
||||
soup = BeautifulSoup(readability_content, 'html.parser')
|
||||
# Make all elements plain
|
||||
elements = plain_elements(soup.contents, content_digests, node_indexes)
|
||||
if node_indexes:
|
||||
# Add node index attributes to nodes
|
||||
elements = [add_node_indexes(element) for element in elements]
|
||||
# Replace article contents with plain elements
|
||||
soup.contents = elements
|
||||
return str(soup)
|
||||
|
||||
|
||||
def plain_elements(elements, content_digests, node_indexes):
|
||||
# Get plain content versions of all elements
|
||||
elements = [plain_element(element, content_digests, node_indexes)
|
||||
for element in elements]
|
||||
if content_digests:
|
||||
# Add content digest attribute to nodes
|
||||
elements = [add_content_digest(element) for element in elements]
|
||||
return elements
|
||||
|
||||
|
||||
def plain_element(element, content_digests, node_indexes):
|
||||
# For lists, we make each item plain text
|
||||
if is_leaf(element):
|
||||
# For leaf node elements, extract the text content, discarding any HTML tags
|
||||
# 1. Get element contents as text
|
||||
plain_text = element.get_text()
|
||||
# 2. Normalise the extracted text string to a canonical representation
|
||||
plain_text = normalise_text(plain_text)
|
||||
# 3. Update element content to be plain text
|
||||
element.string = plain_text
|
||||
elif is_text(element):
|
||||
if is_non_printing(element):
|
||||
# The simplified HTML may have come from Readability.js so might
|
||||
# have non-printing text (e.g. Comment or CData). In this case, we
|
||||
# keep the structure, but ensure that the string is empty.
|
||||
element = type(element)("")
|
||||
else:
|
||||
plain_text = element.string
|
||||
plain_text = normalise_text(plain_text)
|
||||
element = type(element)(plain_text)
|
||||
else:
|
||||
# If not a leaf node or leaf type call recursively on child nodes, replacing
|
||||
element.contents = plain_elements(element.contents, content_digests, node_indexes)
|
||||
return element
|
||||
|
||||
|
||||
def add_node_indexes(element, node_index="0"):
|
||||
# Can't add attributes to string types
|
||||
if is_text(element):
|
||||
return element
|
||||
# Add index to current element
|
||||
element["data-node-index"] = node_index
|
||||
# Add index to child elements
|
||||
for local_idx, child in enumerate(
|
||||
[c for c in element.contents if not is_text(c)], start=1):
|
||||
# Can't add attributes to leaf string types
|
||||
child_index = "{stem}.{local}".format(
|
||||
stem=node_index, local=local_idx)
|
||||
add_node_indexes(child, node_index=child_index)
|
||||
return element
|
||||
|
||||
|
||||
def normalise_text(text):
|
||||
"""Normalise unicode and whitespace."""
|
||||
# Normalise unicode first to try and standardise whitespace characters as much as possible before normalising them
|
||||
text = strip_control_characters(text)
|
||||
text = normalise_unicode(text)
|
||||
text = normalise_whitespace(text)
|
||||
return text
|
||||
|
||||
|
||||
def strip_control_characters(text):
|
||||
"""Strip out unicode control characters which might break the parsing."""
|
||||
# Unicode control characters
|
||||
# [Cc]: Other, Control [includes new lines]
|
||||
# [Cf]: Other, Format
|
||||
# [Cn]: Other, Not Assigned
|
||||
# [Co]: Other, Private Use
|
||||
# [Cs]: Other, Surrogate
|
||||
control_chars = set(['Cc', 'Cf', 'Cn', 'Co', 'Cs'])
|
||||
retained_chars = ['\t', '\n', '\r', '\f']
|
||||
|
||||
# Remove non-printing control characters
|
||||
return "".join(["" if (unicodedata.category(char) in control_chars) and (char not in retained_chars) else char for char in text])
|
||||
|
||||
|
||||
def normalise_unicode(text):
|
||||
"""Normalise unicode such that things that are visually equivalent map to the same unicode string where possible."""
|
||||
normal_form = "NFKC"
|
||||
text = unicodedata.normalize(normal_form, text)
|
||||
return text
|
||||
|
||||
|
||||
def normalise_whitespace(text):
|
||||
"""Replace runs of whitespace characters with a single space as this is what happens when HTML text is displayed."""
|
||||
text = regex.sub(r"\s+", " ", text)
|
||||
# Remove leading and trailing whitespace
|
||||
text = text.strip()
|
||||
return text
|
||||
|
||||
def is_leaf(element):
|
||||
return (element.name in ['p', 'li'])
|
||||
|
||||
|
||||
def is_text(element):
|
||||
return isinstance(element, NavigableString)
|
||||
|
||||
|
||||
def is_non_printing(element):
|
||||
return any(isinstance(element, _e) for _e in [Comment, CData])
|
||||
|
||||
|
||||
def add_content_digest(element):
|
||||
if not is_text(element):
|
||||
element["data-content-digest"] = content_digest(element)
|
||||
return element
|
||||
|
||||
|
||||
def content_digest(element):
|
||||
if is_text(element):
|
||||
# Hash
|
||||
trimmed_string = element.string.strip()
|
||||
if trimmed_string == "":
|
||||
digest = ""
|
||||
else:
|
||||
digest = hashlib.sha256(trimmed_string.encode('utf-8')).hexdigest()
|
||||
else:
|
||||
contents = element.contents
|
||||
num_contents = len(contents)
|
||||
if num_contents == 0:
|
||||
# No hash when no child elements exist
|
||||
digest = ""
|
||||
elif num_contents == 1:
|
||||
# If single child, use digest of child
|
||||
digest = content_digest(contents[0])
|
||||
else:
|
||||
# Build content digest from the "non-empty" digests of child nodes
|
||||
digest = hashlib.sha256()
|
||||
child_digests = list(
|
||||
filter(lambda x: x != "", [content_digest(content) for content in contents]))
|
||||
for child in child_digests:
|
||||
digest.update(child.encode('utf-8'))
|
||||
digest = digest.hexdigest()
|
||||
return digest
|
||||
@@ -7,3 +7,4 @@ from .clean_when_dataset_deleted import handle
|
||||
from .update_app_dataset_join_when_app_model_config_updated import handle
|
||||
from .generate_conversation_name_when_first_message_created import handle
|
||||
from .generate_conversation_summary_when_few_message_created import handle
|
||||
from .create_document_index import handle
|
||||
|
||||
48
api/events/event_handlers/create_document_index.py
Normal file
48
api/events/event_handlers/create_document_index.py
Normal file
@@ -0,0 +1,48 @@
|
||||
from events.dataset_event import dataset_was_deleted
|
||||
from events.event_handlers.document_index_event import document_index_created
|
||||
from tasks.clean_dataset_task import clean_dataset_task
|
||||
import datetime
|
||||
import logging
|
||||
import time
|
||||
|
||||
import click
|
||||
from celery import shared_task
|
||||
from werkzeug.exceptions import NotFound
|
||||
|
||||
from core.indexing_runner import IndexingRunner, DocumentIsPausedException
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import Document
|
||||
|
||||
|
||||
@document_index_created.connect
|
||||
def handle(sender, **kwargs):
|
||||
dataset_id = sender
|
||||
document_ids = kwargs.get('document_ids', None)
|
||||
documents = []
|
||||
start_at = time.perf_counter()
|
||||
for document_id in document_ids:
|
||||
logging.info(click.style('Start process document: {}'.format(document_id), fg='green'))
|
||||
|
||||
document = db.session.query(Document).filter(
|
||||
Document.id == document_id,
|
||||
Document.dataset_id == dataset_id
|
||||
).first()
|
||||
|
||||
if not document:
|
||||
raise NotFound('Document not found')
|
||||
|
||||
document.indexing_status = 'parsing'
|
||||
document.processing_started_at = datetime.datetime.utcnow()
|
||||
documents.append(document)
|
||||
db.session.add(document)
|
||||
db.session.commit()
|
||||
|
||||
try:
|
||||
indexing_runner = IndexingRunner()
|
||||
indexing_runner.run(documents)
|
||||
end_at = time.perf_counter()
|
||||
logging.info(click.style('Processed dataset: {} latency: {}'.format(dataset_id, end_at - start_at), fg='green'))
|
||||
except DocumentIsPausedException as ex:
|
||||
logging.info(click.style(str(ex), fg='yellow'))
|
||||
except Exception:
|
||||
pass
|
||||
4
api/events/event_handlers/document_index_event.py
Normal file
4
api/events/event_handlers/document_index_event.py
Normal file
@@ -0,0 +1,4 @@
|
||||
from blinker import signal
|
||||
|
||||
# sender: document
|
||||
document_index_created = signal('document-index-created')
|
||||
@@ -153,3 +153,9 @@ def get_remote_ip(request):
|
||||
def generate_text_hash(text: str) -> str:
|
||||
hash_text = str(text) + 'None'
|
||||
return sha256(hash_text.encode()).hexdigest()
|
||||
|
||||
|
||||
def get_current_datetime(type: str) -> str:
|
||||
# get current time
|
||||
current_time = datetime.utcnow()
|
||||
return current_time.strftime("%Y-%m-%d %H:%M:%S UTC+0000 %A")
|
||||
|
||||
@@ -0,0 +1,32 @@
|
||||
"""add is_universal in apps
|
||||
|
||||
Revision ID: 2beac44e5f5f
|
||||
Revises: d3d503a3471c
|
||||
Create Date: 2023-07-07 12:11:29.156057
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = '2beac44e5f5f'
|
||||
down_revision = 'a5b56fb053ef'
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade():
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table('apps', schema=None) as batch_op:
|
||||
batch_op.add_column(sa.Column('is_universal', sa.Boolean(), server_default=sa.text('false'), nullable=False))
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade():
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table('apps', schema=None) as batch_op:
|
||||
batch_op.drop_column('is_universal')
|
||||
|
||||
# ### end Alembic commands ###
|
||||
44
api/migrations/versions/7ce5a52e4eee_add_tool_providers.py
Normal file
44
api/migrations/versions/7ce5a52e4eee_add_tool_providers.py
Normal file
@@ -0,0 +1,44 @@
|
||||
"""add tool providers
|
||||
|
||||
Revision ID: 7ce5a52e4eee
|
||||
Revises: 2beac44e5f5f
|
||||
Create Date: 2023-07-10 10:26:50.074515
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy.dialects import postgresql
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = '7ce5a52e4eee'
|
||||
down_revision = '2beac44e5f5f'
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade():
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
op.create_table('tool_providers',
|
||||
sa.Column('id', postgresql.UUID(), server_default=sa.text('uuid_generate_v4()'), nullable=False),
|
||||
sa.Column('tenant_id', postgresql.UUID(), nullable=False),
|
||||
sa.Column('tool_name', sa.String(length=40), nullable=False),
|
||||
sa.Column('encrypted_credentials', sa.Text(), nullable=True),
|
||||
sa.Column('is_enabled', sa.Boolean(), server_default=sa.text('false'), nullable=False),
|
||||
sa.Column('created_at', sa.DateTime(), server_default=sa.text('CURRENT_TIMESTAMP(0)'), nullable=False),
|
||||
sa.Column('updated_at', sa.DateTime(), server_default=sa.text('CURRENT_TIMESTAMP(0)'), nullable=False),
|
||||
sa.PrimaryKeyConstraint('id', name='tool_provider_pkey'),
|
||||
sa.UniqueConstraint('tenant_id', 'tool_name', name='unique_tool_provider_tool_name')
|
||||
)
|
||||
with op.batch_alter_table('app_model_configs', schema=None) as batch_op:
|
||||
batch_op.add_column(sa.Column('sensitive_word_avoidance', sa.Text(), nullable=True))
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade():
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table('app_model_configs', schema=None) as batch_op:
|
||||
batch_op.drop_column('sensitive_word_avoidance')
|
||||
|
||||
op.drop_table('tool_providers')
|
||||
# ### end Alembic commands ###
|
||||
42
api/migrations/versions/8d2d099ceb74_add_qa_model_support.py
Normal file
42
api/migrations/versions/8d2d099ceb74_add_qa_model_support.py
Normal file
@@ -0,0 +1,42 @@
|
||||
"""add_qa_model_support
|
||||
|
||||
Revision ID: 8d2d099ceb74
|
||||
Revises: a5b56fb053ef
|
||||
Create Date: 2023-07-18 15:25:15.293438
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy.dialects import postgresql
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = '8d2d099ceb74'
|
||||
down_revision = '7ce5a52e4eee'
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade():
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table('document_segments', schema=None) as batch_op:
|
||||
batch_op.add_column(sa.Column('answer', sa.Text(), nullable=True))
|
||||
batch_op.add_column(sa.Column('updated_by', postgresql.UUID(), nullable=True))
|
||||
batch_op.add_column(sa.Column('updated_at', sa.DateTime(), server_default=sa.text('CURRENT_TIMESTAMP(0)'), nullable=False))
|
||||
|
||||
with op.batch_alter_table('documents', schema=None) as batch_op:
|
||||
batch_op.add_column(sa.Column('doc_form', sa.String(length=255), server_default=sa.text("'text_model'::character varying"), nullable=False))
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade():
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table('documents', schema=None) as batch_op:
|
||||
batch_op.drop_column('doc_form')
|
||||
|
||||
with op.batch_alter_table('document_segments', schema=None) as batch_op:
|
||||
batch_op.drop_column('updated_at')
|
||||
batch_op.drop_column('updated_by')
|
||||
batch_op.drop_column('answer')
|
||||
|
||||
# ### end Alembic commands ###
|
||||
@@ -206,6 +206,8 @@ class Document(db.Model):
|
||||
server_default=db.text('CURRENT_TIMESTAMP(0)'))
|
||||
doc_type = db.Column(db.String(40), nullable=True)
|
||||
doc_metadata = db.Column(db.JSON, nullable=True)
|
||||
doc_form = db.Column(db.String(
|
||||
255), nullable=False, server_default=db.text("'text_model'::character varying"))
|
||||
|
||||
DATA_SOURCES = ['upload_file', 'notion_import']
|
||||
|
||||
@@ -308,6 +310,7 @@ class DocumentSegment(db.Model):
|
||||
document_id = db.Column(UUID, nullable=False)
|
||||
position = db.Column(db.Integer, nullable=False)
|
||||
content = db.Column(db.Text, nullable=False)
|
||||
answer = db.Column(db.Text, nullable=True)
|
||||
word_count = db.Column(db.Integer, nullable=False)
|
||||
tokens = db.Column(db.Integer, nullable=False)
|
||||
|
||||
@@ -327,6 +330,9 @@ class DocumentSegment(db.Model):
|
||||
created_by = db.Column(UUID, nullable=False)
|
||||
created_at = db.Column(db.DateTime, nullable=False,
|
||||
server_default=db.text('CURRENT_TIMESTAMP(0)'))
|
||||
updated_by = db.Column(UUID, nullable=True)
|
||||
updated_at = db.Column(db.DateTime, nullable=False,
|
||||
server_default=db.text('CURRENT_TIMESTAMP(0)'))
|
||||
indexing_at = db.Column(db.DateTime, nullable=True)
|
||||
completed_at = db.Column(db.DateTime, nullable=True)
|
||||
error = db.Column(db.Text, nullable=True)
|
||||
@@ -442,4 +448,4 @@ class Embedding(db.Model):
|
||||
self.embedding = pickle.dumps(embedding_data, protocol=pickle.HIGHEST_PROTOCOL)
|
||||
|
||||
def get_embedding(self) -> list[float]:
|
||||
return pickle.loads(self.embedding)
|
||||
return pickle.loads(self.embedding)
|
||||
@@ -40,6 +40,7 @@ class App(db.Model):
|
||||
api_rph = db.Column(db.Integer, nullable=False)
|
||||
is_demo = db.Column(db.Boolean, nullable=False, server_default=db.text('false'))
|
||||
is_public = db.Column(db.Boolean, nullable=False, server_default=db.text('false'))
|
||||
is_universal = db.Column(db.Boolean, nullable=False, server_default=db.text('false'))
|
||||
created_at = db.Column(db.DateTime, nullable=False, server_default=db.text('CURRENT_TIMESTAMP(0)'))
|
||||
updated_at = db.Column(db.DateTime, nullable=False, server_default=db.text('CURRENT_TIMESTAMP(0)'))
|
||||
|
||||
@@ -88,6 +89,7 @@ class AppModelConfig(db.Model):
|
||||
user_input_form = db.Column(db.Text)
|
||||
pre_prompt = db.Column(db.Text)
|
||||
agent_mode = db.Column(db.Text)
|
||||
sensitive_word_avoidance = db.Column(db.Text)
|
||||
|
||||
@property
|
||||
def app(self):
|
||||
@@ -116,14 +118,35 @@ class AppModelConfig(db.Model):
|
||||
def more_like_this_dict(self) -> dict:
|
||||
return json.loads(self.more_like_this) if self.more_like_this else {"enabled": False}
|
||||
|
||||
@property
|
||||
def sensitive_word_avoidance_dict(self) -> dict:
|
||||
return json.loads(self.sensitive_word_avoidance) if self.sensitive_word_avoidance \
|
||||
else {"enabled": False, "words": [], "canned_response": []}
|
||||
|
||||
@property
|
||||
def user_input_form_list(self) -> dict:
|
||||
return json.loads(self.user_input_form) if self.user_input_form else []
|
||||
|
||||
@property
|
||||
def agent_mode_dict(self) -> dict:
|
||||
return json.loads(self.agent_mode) if self.agent_mode else {"enabled": False, "tools": []}
|
||||
return json.loads(self.agent_mode) if self.agent_mode else {"enabled": False, "strategy": None, "tools": []}
|
||||
|
||||
def to_dict(self) -> dict:
|
||||
return {
|
||||
"provider": "",
|
||||
"model_id": "",
|
||||
"configs": {},
|
||||
"opening_statement": self.opening_statement,
|
||||
"suggested_questions": self.suggested_questions_list,
|
||||
"suggested_questions_after_answer": self.suggested_questions_after_answer_dict,
|
||||
"speech_to_text": self.speech_to_text_dict,
|
||||
"more_like_this": self.more_like_this_dict,
|
||||
"sensitive_word_avoidance": self.sensitive_word_avoidance_dict,
|
||||
"model": self.model_dict,
|
||||
"user_input_form": self.user_input_form_list,
|
||||
"pre_prompt": self.pre_prompt,
|
||||
"agent_mode": self.agent_mode_dict
|
||||
}
|
||||
|
||||
class RecommendedApp(db.Model):
|
||||
__tablename__ = 'recommended_apps'
|
||||
@@ -203,7 +226,7 @@ class Conversation(db.Model):
|
||||
system_instruction_tokens = db.Column(db.Integer, nullable=False, server_default=db.text('0'))
|
||||
status = db.Column(db.String(255), nullable=False)
|
||||
from_source = db.Column(db.String(255), nullable=False)
|
||||
from_end_user_id = db.Column(UUID)
|
||||
from_end_user_id = db.Column(UUID, db.ForeignKey('end_users.id'))
|
||||
from_account_id = db.Column(UUID)
|
||||
read_at = db.Column(db.DateTime)
|
||||
read_account_id = db.Column(UUID)
|
||||
@@ -213,6 +236,8 @@ class Conversation(db.Model):
|
||||
messages = db.relationship("Message", backref="conversation", lazy='select', passive_deletes="all")
|
||||
message_annotations = db.relationship("MessageAnnotation", backref="conversation", lazy='select', passive_deletes="all")
|
||||
|
||||
end_user = db.relationship("EndUser", backref="conversations")
|
||||
|
||||
is_deleted = db.Column(db.Boolean, nullable=False, server_default=db.text('false'))
|
||||
|
||||
@property
|
||||
@@ -235,6 +260,9 @@ class Conversation(db.Model):
|
||||
if 'speech_to_text' in override_model_configs else {"enabled": False}
|
||||
model_config['more_like_this'] = override_model_configs['more_like_this'] \
|
||||
if 'more_like_this' in override_model_configs else {"enabled": False}
|
||||
model_config['sensitive_word_avoidance'] = override_model_configs['sensitive_word_avoidance'] \
|
||||
if 'sensitive_word_avoidance' in override_model_configs \
|
||||
else {"enabled": False, "words": [], "canned_response": []}
|
||||
model_config['user_input_form'] = override_model_configs['user_input_form']
|
||||
else:
|
||||
model_config['configs'] = override_model_configs
|
||||
@@ -251,6 +279,7 @@ class Conversation(db.Model):
|
||||
model_config['suggested_questions_after_answer'] = app_model_config.suggested_questions_after_answer_dict
|
||||
model_config['speech_to_text'] = app_model_config.speech_to_text_dict
|
||||
model_config['more_like_this'] = app_model_config.more_like_this_dict
|
||||
model_config['sensitive_word_avoidance'] = app_model_config.sensitive_word_avoidance_dict
|
||||
model_config['user_input_form'] = app_model_config.user_input_form_list
|
||||
|
||||
model_config['model_id'] = self.model_id
|
||||
@@ -391,6 +420,11 @@ class Message(db.Model):
|
||||
def in_debug_mode(self):
|
||||
return self.override_model_configs is not None
|
||||
|
||||
@property
|
||||
def agent_thoughts(self):
|
||||
return db.session.query(MessageAgentThought).filter(MessageAgentThought.message_id == self.id)\
|
||||
.order_by(MessageAgentThought.position.asc()).all()
|
||||
|
||||
|
||||
class MessageFeedback(db.Model):
|
||||
__tablename__ = 'message_feedbacks'
|
||||
|
||||
47
api/models/tool.py
Normal file
47
api/models/tool.py
Normal file
@@ -0,0 +1,47 @@
|
||||
import json
|
||||
from enum import Enum
|
||||
|
||||
from sqlalchemy.dialects.postgresql import UUID
|
||||
|
||||
from extensions.ext_database import db
|
||||
|
||||
|
||||
class ToolProviderName(Enum):
|
||||
SERPAPI = 'serpapi'
|
||||
|
||||
@staticmethod
|
||||
def value_of(value):
|
||||
for member in ToolProviderName:
|
||||
if member.value == value:
|
||||
return member
|
||||
raise ValueError(f"No matching enum found for value '{value}'")
|
||||
|
||||
|
||||
class ToolProvider(db.Model):
|
||||
__tablename__ = 'tool_providers'
|
||||
__table_args__ = (
|
||||
db.PrimaryKeyConstraint('id', name='tool_provider_pkey'),
|
||||
db.UniqueConstraint('tenant_id', 'tool_name', name='unique_tool_provider_tool_name')
|
||||
)
|
||||
|
||||
id = db.Column(UUID, server_default=db.text('uuid_generate_v4()'))
|
||||
tenant_id = db.Column(UUID, nullable=False)
|
||||
tool_name = db.Column(db.String(40), nullable=False)
|
||||
encrypted_credentials = db.Column(db.Text, nullable=True)
|
||||
is_enabled = db.Column(db.Boolean, nullable=False, server_default=db.text('false'))
|
||||
created_at = db.Column(db.DateTime, nullable=False, server_default=db.text('CURRENT_TIMESTAMP(0)'))
|
||||
updated_at = db.Column(db.DateTime, nullable=False, server_default=db.text('CURRENT_TIMESTAMP(0)'))
|
||||
|
||||
@property
|
||||
def credentials_is_set(self):
|
||||
"""
|
||||
Returns True if the encrypted_config is not None, indicating that the token is set.
|
||||
"""
|
||||
return self.encrypted_credentials is not None
|
||||
|
||||
@property
|
||||
def credentials(self):
|
||||
"""
|
||||
Returns the decrypted config.
|
||||
"""
|
||||
return json.loads(self.encrypted_credentials) if self.encrypted_credentials is not None else None
|
||||
@@ -10,8 +10,8 @@ flask-session2==1.3.1
|
||||
flask-cors==3.0.10
|
||||
gunicorn~=20.1.0
|
||||
gevent~=22.10.2
|
||||
langchain==0.0.230
|
||||
openai~=0.27.5
|
||||
langchain==0.0.239
|
||||
openai~=0.27.8
|
||||
psycopg2-binary~=2.9.6
|
||||
pycryptodome==3.17
|
||||
python-dotenv==1.0.0
|
||||
@@ -36,3 +36,8 @@ pypdfium2==4.16.0
|
||||
resend~=0.5.1
|
||||
pyjwt~=2.6.0
|
||||
anthropic~=0.3.4
|
||||
newspaper3k==0.2.8
|
||||
google-api-python-client==2.90.0
|
||||
wikipedia==1.4.0
|
||||
readabilipy==0.2.0
|
||||
google-search-results==2.4.2
|
||||
@@ -1,6 +1,7 @@
|
||||
import re
|
||||
import uuid
|
||||
|
||||
from core.agent.agent_executor import PlanningStrategy
|
||||
from core.constant import llm_constant
|
||||
from models.account import Account
|
||||
from services.dataset_service import DatasetService
|
||||
@@ -31,6 +32,16 @@ MODELS_BY_APP_MODE = {
|
||||
]
|
||||
}
|
||||
|
||||
SUPPORT_AGENT_MODELS = [
|
||||
"gpt-4",
|
||||
"gpt-4-32k",
|
||||
"gpt-3.5-turbo",
|
||||
"gpt-3.5-turbo-16k",
|
||||
]
|
||||
|
||||
SUPPORT_TOOLS = ["dataset", "google_search", "web_reader", "wikipedia", "current_datetime"]
|
||||
|
||||
|
||||
class AppModelConfigService:
|
||||
@staticmethod
|
||||
def is_dataset_exists(account: Account, dataset_id: str) -> bool:
|
||||
@@ -58,7 +69,8 @@ class AppModelConfigService:
|
||||
if not isinstance(cp["max_tokens"], int) or cp["max_tokens"] <= 0 or cp["max_tokens"] > \
|
||||
llm_constant.max_context_token_length[model_name]:
|
||||
raise ValueError(
|
||||
"max_tokens must be an integer greater than 0 and not exceeding the maximum value of the corresponding model")
|
||||
"max_tokens must be an integer greater than 0 "
|
||||
"and not exceeding the maximum value of the corresponding model")
|
||||
|
||||
# temperature
|
||||
if 'temperature' not in cp:
|
||||
@@ -148,11 +160,6 @@ class AppModelConfigService:
|
||||
|
||||
if not isinstance(config["speech_to_text"]["enabled"], bool):
|
||||
raise ValueError("enabled in speech_to_text must be of boolean type")
|
||||
|
||||
provider_name = LLMBuilder.get_default_provider(account.current_tenant_id, 'whisper-1')
|
||||
|
||||
if config["speech_to_text"]["enabled"] and provider_name != 'openai':
|
||||
raise ValueError("provider not support speech to text")
|
||||
|
||||
# more_like_this
|
||||
if 'more_like_this' not in config or not config["more_like_this"]:
|
||||
@@ -169,6 +176,33 @@ class AppModelConfigService:
|
||||
if not isinstance(config["more_like_this"]["enabled"], bool):
|
||||
raise ValueError("enabled in more_like_this must be of boolean type")
|
||||
|
||||
# sensitive_word_avoidance
|
||||
if 'sensitive_word_avoidance' not in config or not config["sensitive_word_avoidance"]:
|
||||
config["sensitive_word_avoidance"] = {
|
||||
"enabled": False
|
||||
}
|
||||
|
||||
if not isinstance(config["sensitive_word_avoidance"], dict):
|
||||
raise ValueError("sensitive_word_avoidance must be of dict type")
|
||||
|
||||
if "enabled" not in config["sensitive_word_avoidance"] or not config["sensitive_word_avoidance"]["enabled"]:
|
||||
config["sensitive_word_avoidance"]["enabled"] = False
|
||||
|
||||
if not isinstance(config["sensitive_word_avoidance"]["enabled"], bool):
|
||||
raise ValueError("enabled in sensitive_word_avoidance must be of boolean type")
|
||||
|
||||
if "words" not in config["sensitive_word_avoidance"] or not config["sensitive_word_avoidance"]["words"]:
|
||||
config["sensitive_word_avoidance"]["words"] = ""
|
||||
|
||||
if not isinstance(config["sensitive_word_avoidance"]["words"], str):
|
||||
raise ValueError("words in sensitive_word_avoidance must be of string type")
|
||||
|
||||
if "canned_response" not in config["sensitive_word_avoidance"] or not config["sensitive_word_avoidance"]["canned_response"]:
|
||||
config["sensitive_word_avoidance"]["canned_response"] = ""
|
||||
|
||||
if not isinstance(config["sensitive_word_avoidance"]["canned_response"], str):
|
||||
raise ValueError("canned_response in sensitive_word_avoidance must be of string type")
|
||||
|
||||
# model
|
||||
if 'model' not in config:
|
||||
raise ValueError("model is required")
|
||||
@@ -274,6 +308,12 @@ class AppModelConfigService:
|
||||
if not isinstance(config["agent_mode"]["enabled"], bool):
|
||||
raise ValueError("enabled in agent_mode must be of boolean type")
|
||||
|
||||
if "strategy" not in config["agent_mode"] or not config["agent_mode"]["strategy"]:
|
||||
config["agent_mode"]["strategy"] = PlanningStrategy.ROUTER.value
|
||||
|
||||
if config["agent_mode"]["strategy"] not in [member.value for member in list(PlanningStrategy.__members__.values())]:
|
||||
raise ValueError("strategy in agent_mode must be in the specified strategy list")
|
||||
|
||||
if "tools" not in config["agent_mode"] or not config["agent_mode"]["tools"]:
|
||||
config["agent_mode"]["tools"] = []
|
||||
|
||||
@@ -282,8 +322,8 @@ class AppModelConfigService:
|
||||
|
||||
for tool in config["agent_mode"]["tools"]:
|
||||
key = list(tool.keys())[0]
|
||||
if key not in ["sensitive-word-avoidance", "dataset"]:
|
||||
raise ValueError("Keys in agent_mode.tools list can only be 'sensitive-word-avoidance' or 'dataset'")
|
||||
if key not in SUPPORT_TOOLS:
|
||||
raise ValueError("Keys in agent_mode.tools must be in the specified tool list")
|
||||
|
||||
tool_item = tool[key]
|
||||
|
||||
@@ -293,19 +333,7 @@ class AppModelConfigService:
|
||||
if not isinstance(tool_item["enabled"], bool):
|
||||
raise ValueError("enabled in agent_mode.tools must be of boolean type")
|
||||
|
||||
if key == "sensitive-word-avoidance":
|
||||
if "words" not in tool_item or not tool_item["words"]:
|
||||
tool_item["words"] = ""
|
||||
|
||||
if not isinstance(tool_item["words"], str):
|
||||
raise ValueError("words in sensitive-word-avoidance must be of string type")
|
||||
|
||||
if "canned_response" not in tool_item or not tool_item["canned_response"]:
|
||||
tool_item["canned_response"] = ""
|
||||
|
||||
if not isinstance(tool_item["canned_response"], str):
|
||||
raise ValueError("canned_response in sensitive-word-avoidance must be of string type")
|
||||
elif key == "dataset":
|
||||
if key == "dataset":
|
||||
if 'id' not in tool_item:
|
||||
raise ValueError("id is required in dataset")
|
||||
|
||||
@@ -324,6 +352,7 @@ class AppModelConfigService:
|
||||
"suggested_questions_after_answer": config["suggested_questions_after_answer"],
|
||||
"speech_to_text": config["speech_to_text"],
|
||||
"more_like_this": config["more_like_this"],
|
||||
"sensitive_word_avoidance": config["sensitive_word_avoidance"],
|
||||
"model": {
|
||||
"provider": config["model"]["provider"],
|
||||
"name": config["model"]["name"],
|
||||
|
||||
@@ -37,6 +37,8 @@ class CompletionService:
|
||||
if not query:
|
||||
raise ValueError('query is required')
|
||||
|
||||
query = query.replace('\x00', '')
|
||||
|
||||
conversation_id = args['conversation_id'] if 'conversation_id' in args else None
|
||||
|
||||
conversation = None
|
||||
@@ -140,6 +142,7 @@ class CompletionService:
|
||||
suggested_questions=json.dumps(model_config['suggested_questions']),
|
||||
suggested_questions_after_answer=json.dumps(model_config['suggested_questions_after_answer']),
|
||||
more_like_this=json.dumps(model_config['more_like_this']),
|
||||
sensitive_word_avoidance=json.dumps(model_config['sensitive_word_avoidance']),
|
||||
model=json.dumps(model_config['model']),
|
||||
user_input_form=json.dumps(model_config['user_input_form']),
|
||||
pre_prompt=model_config['pre_prompt'],
|
||||
@@ -171,7 +174,7 @@ class CompletionService:
|
||||
|
||||
generate_worker_thread.start()
|
||||
|
||||
# wait for 5 minutes to close the thread
|
||||
# wait for 10 minutes to close the thread
|
||||
cls.countdown_and_close(generate_worker_thread, pubsub, user, generate_task_id)
|
||||
|
||||
return cls.compact_response(pubsub, streaming)
|
||||
@@ -179,9 +182,9 @@ class CompletionService:
|
||||
@classmethod
|
||||
def get_real_user_instead_of_proxy_obj(cls, user: Union[Account, EndUser]):
|
||||
if isinstance(user, Account):
|
||||
user = db.session.query(Account).get(user.id)
|
||||
user = db.session.query(Account).filter(Account.id == user.id).first()
|
||||
elif isinstance(user, EndUser):
|
||||
user = db.session.query(EndUser).get(user.id)
|
||||
user = db.session.query(EndUser).filter(EndUser.id == user.id).first()
|
||||
else:
|
||||
raise Exception("Unknown user type")
|
||||
|
||||
@@ -198,6 +201,7 @@ class CompletionService:
|
||||
conversation = db.session.query(Conversation).filter_by(id=conversation.id).first()
|
||||
|
||||
# run
|
||||
|
||||
Completion.generate(
|
||||
task_id=generate_task_id,
|
||||
app=app_model,
|
||||
@@ -226,12 +230,15 @@ class CompletionService:
|
||||
|
||||
@classmethod
|
||||
def countdown_and_close(cls, worker_thread, pubsub, user, generate_task_id) -> threading.Thread:
|
||||
# wait for 5 minutes to close the thread
|
||||
timeout = 300
|
||||
# wait for 10 minutes to close the thread
|
||||
timeout = 600
|
||||
|
||||
def close_pubsub():
|
||||
sleep_iterations = 0
|
||||
while sleep_iterations < timeout and worker_thread.is_alive():
|
||||
if sleep_iterations > 0 and sleep_iterations % 10 == 0:
|
||||
PubHandler.ping(user, generate_task_id)
|
||||
|
||||
time.sleep(1)
|
||||
sleep_iterations += 1
|
||||
|
||||
@@ -369,7 +376,7 @@ class CompletionService:
|
||||
if len(value) > max_length:
|
||||
raise ValueError(f'{variable} in input form must be less than {max_length} characters')
|
||||
|
||||
filtered_inputs[variable] = value
|
||||
filtered_inputs[variable] = value.replace('\x00', '') if value else None
|
||||
|
||||
return filtered_inputs
|
||||
|
||||
@@ -384,8 +391,8 @@ class CompletionService:
|
||||
result = json.loads(result)
|
||||
if result.get('error'):
|
||||
cls.handle_error(result)
|
||||
|
||||
return cls.get_message_response_data(result.get('data'))
|
||||
if 'data' in result:
|
||||
return cls.get_message_response_data(result.get('data'))
|
||||
except ValueError as e:
|
||||
if e.args[0] != "I/O operation on closed file.": # ignore this error
|
||||
raise CompletionStoppedError()
|
||||
@@ -418,6 +425,10 @@ class CompletionService:
|
||||
yield "data: " + json.dumps(cls.get_chain_response_data(result.get('data'))) + "\n\n"
|
||||
elif event == 'agent_thought':
|
||||
yield "data: " + json.dumps(cls.get_agent_thought_response_data(result.get('data'))) + "\n\n"
|
||||
elif event == 'ping':
|
||||
yield "event: ping\n\n"
|
||||
else:
|
||||
yield "data: " + json.dumps(result) + "\n\n"
|
||||
except ValueError as e:
|
||||
if e.args[0] != "I/O operation on closed file.": # ignore this error
|
||||
logging.exception(e)
|
||||
@@ -467,16 +478,14 @@ class CompletionService:
|
||||
def get_agent_thought_response_data(cls, data: dict):
|
||||
response_data = {
|
||||
'event': 'agent_thought',
|
||||
'id': data.get('agent_thought_id'),
|
||||
'id': data.get('id'),
|
||||
'chain_id': data.get('chain_id'),
|
||||
'task_id': data.get('task_id'),
|
||||
'message_id': data.get('message_id'),
|
||||
'position': data.get('position'),
|
||||
'thought': data.get('thought'),
|
||||
'tool': data.get('tool'), # todo use real dataset obj replace it
|
||||
'tool': data.get('tool'),
|
||||
'tool_input': data.get('tool_input'),
|
||||
'observation': data.get('observation'),
|
||||
'answer': data.get('answer') if not data.get('thought') else '',
|
||||
'created_at': int(time.time())
|
||||
}
|
||||
|
||||
|
||||
@@ -3,16 +3,21 @@ import logging
|
||||
import datetime
|
||||
import time
|
||||
import random
|
||||
import uuid
|
||||
from typing import Optional, List
|
||||
|
||||
from flask import current_app
|
||||
from sqlalchemy import func
|
||||
|
||||
from core.llm.token_calculator import TokenCalculator
|
||||
from events.event_handlers.document_index_event import document_index_created
|
||||
from extensions.ext_redis import redis_client
|
||||
from flask_login import current_user
|
||||
|
||||
from events.dataset_event import dataset_was_deleted
|
||||
from events.document_event import document_was_deleted
|
||||
from extensions.ext_database import db
|
||||
from libs import helper
|
||||
from models.account import Account
|
||||
from models.dataset import Dataset, Document, DatasetQuery, DatasetProcessRule, AppDatasetJoin, DocumentSegment
|
||||
from models.model import UploadFile
|
||||
@@ -25,6 +30,10 @@ from tasks.clean_notion_document_task import clean_notion_document_task
|
||||
from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
|
||||
from tasks.document_indexing_task import document_indexing_task
|
||||
from tasks.document_indexing_update_task import document_indexing_update_task
|
||||
from tasks.create_segment_to_index_task import create_segment_to_index_task
|
||||
from tasks.update_segment_index_task import update_segment_index_task
|
||||
from tasks.update_segment_keyword_index_task\
|
||||
import update_segment_keyword_index_task
|
||||
|
||||
|
||||
class DatasetService:
|
||||
@@ -308,6 +317,7 @@ class DocumentService:
|
||||
).all()
|
||||
|
||||
return documents
|
||||
|
||||
@staticmethod
|
||||
def get_document_file_detail(file_id: str):
|
||||
file_detail = db.session.query(UploadFile). \
|
||||
@@ -440,6 +450,7 @@ class DocumentService:
|
||||
}
|
||||
document = DocumentService.save_document(dataset, dataset_process_rule.id,
|
||||
document_data["data_source"]["type"],
|
||||
document_data["doc_form"],
|
||||
data_source_info, created_from, position,
|
||||
account, file_name, batch)
|
||||
db.session.add(document)
|
||||
@@ -484,6 +495,7 @@ class DocumentService:
|
||||
}
|
||||
document = DocumentService.save_document(dataset, dataset_process_rule.id,
|
||||
document_data["data_source"]["type"],
|
||||
document_data["doc_form"],
|
||||
data_source_info, created_from, position,
|
||||
account, page['page_name'], batch)
|
||||
# if page['type'] == 'database':
|
||||
@@ -509,13 +521,15 @@ class DocumentService:
|
||||
db.session.commit()
|
||||
|
||||
# trigger async task
|
||||
#document_index_created.send(dataset.id, document_ids=document_ids)
|
||||
document_indexing_task.delay(dataset.id, document_ids)
|
||||
|
||||
return documents, batch
|
||||
|
||||
@staticmethod
|
||||
def save_document(dataset: Dataset, process_rule_id: str, data_source_type: str, data_source_info: dict,
|
||||
created_from: str, position: int, account: Account, name: str, batch: str):
|
||||
def save_document(dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str,
|
||||
data_source_info: dict, created_from: str, position: int, account: Account, name: str,
|
||||
batch: str):
|
||||
document = Document(
|
||||
tenant_id=dataset.tenant_id,
|
||||
dataset_id=dataset.id,
|
||||
@@ -527,6 +541,7 @@ class DocumentService:
|
||||
name=name,
|
||||
created_from=created_from,
|
||||
created_by=account.id,
|
||||
doc_form=document_form
|
||||
)
|
||||
return document
|
||||
|
||||
@@ -618,6 +633,7 @@ class DocumentService:
|
||||
document.splitting_completed_at = None
|
||||
document.updated_at = datetime.datetime.utcnow()
|
||||
document.created_from = created_from
|
||||
document.doc_form = document_data['doc_form']
|
||||
db.session.add(document)
|
||||
db.session.commit()
|
||||
# update document segment
|
||||
@@ -667,7 +683,7 @@ class DocumentService:
|
||||
DocumentService.data_source_args_validate(args)
|
||||
DocumentService.process_rule_args_validate(args)
|
||||
else:
|
||||
if ('data_source' not in args and not args['data_source'])\
|
||||
if ('data_source' not in args and not args['data_source']) \
|
||||
and ('process_rule' not in args and not args['process_rule']):
|
||||
raise ValueError("Data source or Process rule is required")
|
||||
else:
|
||||
@@ -694,10 +710,12 @@ class DocumentService:
|
||||
raise ValueError("Data source info is required")
|
||||
|
||||
if args['data_source']['type'] == 'upload_file':
|
||||
if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list']['file_info_list']:
|
||||
if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
|
||||
'file_info_list']:
|
||||
raise ValueError("File source info is required")
|
||||
if args['data_source']['type'] == 'notion_import':
|
||||
if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list']['notion_info_list']:
|
||||
if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
|
||||
'notion_info_list']:
|
||||
raise ValueError("Notion source info is required")
|
||||
|
||||
@classmethod
|
||||
@@ -843,3 +861,80 @@ class DocumentService:
|
||||
|
||||
if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
|
||||
raise ValueError("Process rule segmentation max_tokens is invalid")
|
||||
|
||||
|
||||
class SegmentService:
|
||||
@classmethod
|
||||
def segment_create_args_validate(cls, args: dict, document: Document):
|
||||
if document.doc_form == 'qa_model':
|
||||
if 'answer' not in args or not args['answer']:
|
||||
raise ValueError("Answer is required")
|
||||
|
||||
@classmethod
|
||||
def create_segment(cls, args: dict, document: Document):
|
||||
content = args['content']
|
||||
doc_id = str(uuid.uuid4())
|
||||
segment_hash = helper.generate_text_hash(content)
|
||||
# calc embedding use tokens
|
||||
tokens = TokenCalculator.get_num_tokens('text-embedding-ada-002', content)
|
||||
max_position = db.session.query(func.max(DocumentSegment.position)).filter(
|
||||
DocumentSegment.document_id == document.id
|
||||
).scalar()
|
||||
segment_document = DocumentSegment(
|
||||
tenant_id=current_user.current_tenant_id,
|
||||
dataset_id=document.dataset_id,
|
||||
document_id=document.id,
|
||||
index_node_id=doc_id,
|
||||
index_node_hash=segment_hash,
|
||||
position=max_position + 1 if max_position else 1,
|
||||
content=content,
|
||||
word_count=len(content),
|
||||
tokens=tokens,
|
||||
created_by=current_user.id
|
||||
)
|
||||
if document.doc_form == 'qa_model':
|
||||
segment_document.answer = args['answer']
|
||||
|
||||
db.session.add(segment_document)
|
||||
db.session.commit()
|
||||
indexing_cache_key = 'segment_{}_indexing'.format(segment_document.id)
|
||||
redis_client.setex(indexing_cache_key, 600, 1)
|
||||
create_segment_to_index_task.delay(segment_document.id, args['keywords'])
|
||||
return segment_document
|
||||
|
||||
@classmethod
|
||||
def update_segment(cls, args: dict, segment: DocumentSegment, document: Document):
|
||||
indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
|
||||
cache_result = redis_client.get(indexing_cache_key)
|
||||
if cache_result is not None:
|
||||
raise ValueError("Segment is indexing, please try again later")
|
||||
content = args['content']
|
||||
if segment.content == content:
|
||||
if document.doc_form == 'qa_model':
|
||||
segment.answer = args['answer']
|
||||
if args['keywords']:
|
||||
segment.keywords = args['keywords']
|
||||
db.session.add(segment)
|
||||
db.session.commit()
|
||||
# update segment index task
|
||||
redis_client.setex(indexing_cache_key, 600, 1)
|
||||
update_segment_keyword_index_task.delay(segment.id)
|
||||
else:
|
||||
segment_hash = helper.generate_text_hash(content)
|
||||
# calc embedding use tokens
|
||||
tokens = TokenCalculator.get_num_tokens('text-embedding-ada-002', content)
|
||||
segment.content = content
|
||||
segment.index_node_hash = segment_hash
|
||||
segment.word_count = len(content)
|
||||
segment.tokens = tokens
|
||||
segment.status = 'updating'
|
||||
segment.updated_by = current_user.id
|
||||
segment.updated_at = datetime.datetime.utcnow()
|
||||
if document.doc_form == 'qa_model':
|
||||
segment.answer = args['answer']
|
||||
db.session.add(segment)
|
||||
db.session.commit()
|
||||
# update segment index task
|
||||
redis_client.setex(indexing_cache_key, 600, 1)
|
||||
update_segment_index_task.delay(segment.id, args['keywords'])
|
||||
return segment
|
||||
|
||||
102
api/tasks/create_segment_to_index_task.py
Normal file
102
api/tasks/create_segment_to_index_task.py
Normal file
@@ -0,0 +1,102 @@
|
||||
import datetime
|
||||
import logging
|
||||
import time
|
||||
from typing import Optional, List
|
||||
|
||||
import click
|
||||
from celery import shared_task
|
||||
from langchain.schema import Document
|
||||
from werkzeug.exceptions import NotFound
|
||||
|
||||
from core.index.index import IndexBuilder
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import DocumentSegment
|
||||
|
||||
|
||||
@shared_task
|
||||
def create_segment_to_index_task(segment_id: str, keywords: Optional[List[str]] = None):
|
||||
"""
|
||||
Async create segment to index
|
||||
:param segment_id:
|
||||
:param keywords:
|
||||
Usage: create_segment_to_index_task.delay(segment_id)
|
||||
"""
|
||||
logging.info(click.style('Start create segment to index: {}'.format(segment_id), fg='green'))
|
||||
start_at = time.perf_counter()
|
||||
|
||||
segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_id).first()
|
||||
if not segment:
|
||||
raise NotFound('Segment not found')
|
||||
|
||||
if segment.status != 'waiting':
|
||||
return
|
||||
|
||||
indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
|
||||
|
||||
try:
|
||||
# update segment status to indexing
|
||||
update_params = {
|
||||
DocumentSegment.status: "indexing",
|
||||
DocumentSegment.indexing_at: datetime.datetime.utcnow()
|
||||
}
|
||||
DocumentSegment.query.filter_by(id=segment.id).update(update_params)
|
||||
db.session.commit()
|
||||
document = Document(
|
||||
page_content=segment.content,
|
||||
metadata={
|
||||
"doc_id": segment.index_node_id,
|
||||
"doc_hash": segment.index_node_hash,
|
||||
"document_id": segment.document_id,
|
||||
"dataset_id": segment.dataset_id,
|
||||
}
|
||||
)
|
||||
|
||||
dataset = segment.dataset
|
||||
|
||||
if not dataset:
|
||||
logging.info(click.style('Segment {} has no dataset, pass.'.format(segment.id), fg='cyan'))
|
||||
return
|
||||
|
||||
dataset_document = segment.document
|
||||
|
||||
if not dataset_document:
|
||||
logging.info(click.style('Segment {} has no document, pass.'.format(segment.id), fg='cyan'))
|
||||
return
|
||||
|
||||
if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != 'completed':
|
||||
logging.info(click.style('Segment {} document status is invalid, pass.'.format(segment.id), fg='cyan'))
|
||||
return
|
||||
|
||||
# save vector index
|
||||
index = IndexBuilder.get_index(dataset, 'high_quality')
|
||||
if index:
|
||||
index.add_texts([document], duplicate_check=True)
|
||||
|
||||
# save keyword index
|
||||
index = IndexBuilder.get_index(dataset, 'economy')
|
||||
if index:
|
||||
if keywords and len(keywords) > 0:
|
||||
index.create_segment_keywords(segment.index_node_id, keywords)
|
||||
else:
|
||||
index.add_texts([document])
|
||||
|
||||
# update segment to completed
|
||||
update_params = {
|
||||
DocumentSegment.status: "completed",
|
||||
DocumentSegment.completed_at: datetime.datetime.utcnow()
|
||||
}
|
||||
DocumentSegment.query.filter_by(id=segment.id).update(update_params)
|
||||
db.session.commit()
|
||||
|
||||
end_at = time.perf_counter()
|
||||
logging.info(click.style('Segment created to index: {} latency: {}'.format(segment.id, end_at - start_at), fg='green'))
|
||||
except Exception as e:
|
||||
logging.exception("create segment to index failed")
|
||||
segment.enabled = False
|
||||
segment.disabled_at = datetime.datetime.utcnow()
|
||||
segment.status = 'error'
|
||||
segment.error = str(e)
|
||||
db.session.commit()
|
||||
finally:
|
||||
redis_client.delete(indexing_cache_key)
|
||||
@@ -14,14 +14,14 @@ from models.dataset import DocumentSegment
|
||||
|
||||
|
||||
@shared_task
|
||||
def add_segment_to_index_task(segment_id: str):
|
||||
def enable_segment_to_index_task(segment_id: str):
|
||||
"""
|
||||
Async Add segment to index
|
||||
Async enable segment to index
|
||||
:param segment_id:
|
||||
|
||||
Usage: add_segment_to_index.delay(segment_id)
|
||||
Usage: enable_segment_to_index_task.delay(segment_id)
|
||||
"""
|
||||
logging.info(click.style('Start add segment to index: {}'.format(segment_id), fg='green'))
|
||||
logging.info(click.style('Start enable segment to index: {}'.format(segment_id), fg='green'))
|
||||
start_at = time.perf_counter()
|
||||
|
||||
segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_id).first()
|
||||
@@ -71,9 +71,9 @@ def add_segment_to_index_task(segment_id: str):
|
||||
index.add_texts([document])
|
||||
|
||||
end_at = time.perf_counter()
|
||||
logging.info(click.style('Segment added to index: {} latency: {}'.format(segment.id, end_at - start_at), fg='green'))
|
||||
logging.info(click.style('Segment enabled to index: {} latency: {}'.format(segment.id, end_at - start_at), fg='green'))
|
||||
except Exception as e:
|
||||
logging.exception("add segment to index failed")
|
||||
logging.exception("enable segment to index failed")
|
||||
segment.enabled = False
|
||||
segment.disabled_at = datetime.datetime.utcnow()
|
||||
segment.status = 'error'
|
||||
114
api/tasks/update_segment_index_task.py
Normal file
114
api/tasks/update_segment_index_task.py
Normal file
@@ -0,0 +1,114 @@
|
||||
import datetime
|
||||
import logging
|
||||
import time
|
||||
from typing import List, Optional
|
||||
|
||||
import click
|
||||
from celery import shared_task
|
||||
from langchain.schema import Document
|
||||
from werkzeug.exceptions import NotFound
|
||||
|
||||
from core.index.index import IndexBuilder
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import DocumentSegment
|
||||
|
||||
|
||||
@shared_task
|
||||
def update_segment_index_task(segment_id: str, keywords: Optional[List[str]] = None):
|
||||
"""
|
||||
Async update segment index
|
||||
:param segment_id:
|
||||
:param keywords:
|
||||
Usage: update_segment_index_task.delay(segment_id)
|
||||
"""
|
||||
logging.info(click.style('Start update segment index: {}'.format(segment_id), fg='green'))
|
||||
start_at = time.perf_counter()
|
||||
|
||||
segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_id).first()
|
||||
if not segment:
|
||||
raise NotFound('Segment not found')
|
||||
|
||||
if segment.status != 'updating':
|
||||
return
|
||||
|
||||
indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
|
||||
|
||||
try:
|
||||
dataset = segment.dataset
|
||||
|
||||
if not dataset:
|
||||
logging.info(click.style('Segment {} has no dataset, pass.'.format(segment.id), fg='cyan'))
|
||||
return
|
||||
|
||||
dataset_document = segment.document
|
||||
|
||||
if not dataset_document:
|
||||
logging.info(click.style('Segment {} has no document, pass.'.format(segment.id), fg='cyan'))
|
||||
return
|
||||
|
||||
if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != 'completed':
|
||||
logging.info(click.style('Segment {} document status is invalid, pass.'.format(segment.id), fg='cyan'))
|
||||
return
|
||||
|
||||
# update segment status to indexing
|
||||
update_params = {
|
||||
DocumentSegment.status: "indexing",
|
||||
DocumentSegment.indexing_at: datetime.datetime.utcnow()
|
||||
}
|
||||
DocumentSegment.query.filter_by(id=segment.id).update(update_params)
|
||||
db.session.commit()
|
||||
|
||||
vector_index = IndexBuilder.get_index(dataset, 'high_quality')
|
||||
kw_index = IndexBuilder.get_index(dataset, 'economy')
|
||||
|
||||
# delete from vector index
|
||||
if vector_index:
|
||||
vector_index.delete_by_ids([segment.index_node_id])
|
||||
|
||||
# delete from keyword index
|
||||
kw_index.delete_by_ids([segment.index_node_id])
|
||||
|
||||
# add new index
|
||||
document = Document(
|
||||
page_content=segment.content,
|
||||
metadata={
|
||||
"doc_id": segment.index_node_id,
|
||||
"doc_hash": segment.index_node_hash,
|
||||
"document_id": segment.document_id,
|
||||
"dataset_id": segment.dataset_id,
|
||||
}
|
||||
)
|
||||
|
||||
# save vector index
|
||||
index = IndexBuilder.get_index(dataset, 'high_quality')
|
||||
if index:
|
||||
index.add_texts([document], duplicate_check=True)
|
||||
|
||||
# save keyword index
|
||||
index = IndexBuilder.get_index(dataset, 'economy')
|
||||
if index:
|
||||
if keywords and len(keywords) > 0:
|
||||
index.create_segment_keywords(segment.index_node_id, keywords)
|
||||
else:
|
||||
index.add_texts([document])
|
||||
|
||||
# update segment to completed
|
||||
update_params = {
|
||||
DocumentSegment.status: "completed",
|
||||
DocumentSegment.completed_at: datetime.datetime.utcnow()
|
||||
}
|
||||
DocumentSegment.query.filter_by(id=segment.id).update(update_params)
|
||||
db.session.commit()
|
||||
|
||||
end_at = time.perf_counter()
|
||||
logging.info(click.style('Segment update index: {} latency: {}'.format(segment.id, end_at - start_at), fg='green'))
|
||||
except Exception as e:
|
||||
logging.exception("update segment index failed")
|
||||
segment.enabled = False
|
||||
segment.disabled_at = datetime.datetime.utcnow()
|
||||
segment.status = 'error'
|
||||
segment.error = str(e)
|
||||
db.session.commit()
|
||||
finally:
|
||||
redis_client.delete(indexing_cache_key)
|
||||
81
api/tasks/update_segment_keyword_index_task.py
Normal file
81
api/tasks/update_segment_keyword_index_task.py
Normal file
@@ -0,0 +1,81 @@
|
||||
import datetime
|
||||
import logging
|
||||
import time
|
||||
from typing import List, Optional
|
||||
|
||||
import click
|
||||
from celery import shared_task
|
||||
from langchain.schema import Document
|
||||
from werkzeug.exceptions import NotFound
|
||||
|
||||
from core.index.index import IndexBuilder
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import DocumentSegment
|
||||
|
||||
|
||||
@shared_task
|
||||
def update_segment_keyword_index_task(segment_id: str):
|
||||
"""
|
||||
Async update segment index
|
||||
:param segment_id:
|
||||
Usage: update_segment_keyword_index_task.delay(segment_id)
|
||||
"""
|
||||
logging.info(click.style('Start update segment keyword index: {}'.format(segment_id), fg='green'))
|
||||
start_at = time.perf_counter()
|
||||
|
||||
segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_id).first()
|
||||
if not segment:
|
||||
raise NotFound('Segment not found')
|
||||
|
||||
indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
|
||||
|
||||
try:
|
||||
dataset = segment.dataset
|
||||
|
||||
if not dataset:
|
||||
logging.info(click.style('Segment {} has no dataset, pass.'.format(segment.id), fg='cyan'))
|
||||
return
|
||||
|
||||
dataset_document = segment.document
|
||||
|
||||
if not dataset_document:
|
||||
logging.info(click.style('Segment {} has no document, pass.'.format(segment.id), fg='cyan'))
|
||||
return
|
||||
|
||||
if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != 'completed':
|
||||
logging.info(click.style('Segment {} document status is invalid, pass.'.format(segment.id), fg='cyan'))
|
||||
return
|
||||
|
||||
kw_index = IndexBuilder.get_index(dataset, 'economy')
|
||||
|
||||
# delete from keyword index
|
||||
kw_index.delete_by_ids([segment.index_node_id])
|
||||
|
||||
# add new index
|
||||
document = Document(
|
||||
page_content=segment.content,
|
||||
metadata={
|
||||
"doc_id": segment.index_node_id,
|
||||
"doc_hash": segment.index_node_hash,
|
||||
"document_id": segment.document_id,
|
||||
"dataset_id": segment.dataset_id,
|
||||
}
|
||||
)
|
||||
|
||||
# save keyword index
|
||||
index = IndexBuilder.get_index(dataset, 'economy')
|
||||
if index:
|
||||
index.update_segment_keywords_index(segment.index_node_id, segment.keywords)
|
||||
|
||||
end_at = time.perf_counter()
|
||||
logging.info(click.style('Segment update index: {} latency: {}'.format(segment.id, end_at - start_at), fg='green'))
|
||||
except Exception as e:
|
||||
logging.exception("update segment index failed")
|
||||
segment.enabled = False
|
||||
segment.disabled_at = datetime.datetime.utcnow()
|
||||
segment.status = 'error'
|
||||
segment.error = str(e)
|
||||
db.session.commit()
|
||||
finally:
|
||||
redis_client.delete(indexing_cache_key)
|
||||
@@ -2,7 +2,7 @@ version: '3.1'
|
||||
services:
|
||||
# API service
|
||||
api:
|
||||
image: langgenius/dify-api:0.3.10
|
||||
image: langgenius/dify-api:0.3.12
|
||||
restart: always
|
||||
environment:
|
||||
# Startup mode, 'api' starts the API server.
|
||||
@@ -124,7 +124,7 @@ services:
|
||||
# worker service
|
||||
# The Celery worker for processing the queue.
|
||||
worker:
|
||||
image: langgenius/dify-api:0.3.10
|
||||
image: langgenius/dify-api:0.3.12
|
||||
restart: always
|
||||
environment:
|
||||
# Startup mode, 'worker' starts the Celery worker for processing the queue.
|
||||
@@ -176,7 +176,7 @@ services:
|
||||
|
||||
# Frontend web application.
|
||||
web:
|
||||
image: langgenius/dify-web:0.3.10
|
||||
image: langgenius/dify-web:0.3.12
|
||||
restart: always
|
||||
environment:
|
||||
EDITION: SELF_HOSTED
|
||||
|
||||
13
web/app/(commonLayout)/explore/chat/page.tsx
Normal file
13
web/app/(commonLayout)/explore/chat/page.tsx
Normal file
@@ -0,0 +1,13 @@
|
||||
import type { FC } from 'react'
|
||||
import React from 'react'
|
||||
import UniversalChat from '@/app/components/explore/universal-chat'
|
||||
|
||||
const Chat: FC = () => {
|
||||
return (
|
||||
<div className='h-full p-2'>
|
||||
<UniversalChat />
|
||||
</div>
|
||||
)
|
||||
}
|
||||
|
||||
export default React.memo(Chat)
|
||||
@@ -5,6 +5,8 @@ import { AppContextProvider } from '@/context/app-context'
|
||||
import GA, { GaType } from '@/app/components/base/ga'
|
||||
import HeaderWrapper from '@/app/components/header/HeaderWrapper'
|
||||
import Header from '@/app/components/header'
|
||||
import { EventEmitterContextProvider } from '@/context/event-emitter'
|
||||
import { ProviderContextProvider } from '@/context/provider-context'
|
||||
|
||||
const Layout = ({ children }: { children: ReactNode }) => {
|
||||
return (
|
||||
@@ -12,10 +14,14 @@ const Layout = ({ children }: { children: ReactNode }) => {
|
||||
<GA gaType={GaType.admin} />
|
||||
<SwrInitor>
|
||||
<AppContextProvider>
|
||||
<HeaderWrapper>
|
||||
<Header />
|
||||
</HeaderWrapper>
|
||||
{children}
|
||||
<EventEmitterContextProvider>
|
||||
<ProviderContextProvider>
|
||||
<HeaderWrapper>
|
||||
<Header />
|
||||
</HeaderWrapper>
|
||||
{children}
|
||||
</ProviderContextProvider>
|
||||
</EventEmitterContextProvider>
|
||||
</AppContextProvider>
|
||||
</SwrInitor>
|
||||
</>
|
||||
|
||||
262
web/app/components/app/chat/answer/index.tsx
Normal file
262
web/app/components/app/chat/answer/index.tsx
Normal file
@@ -0,0 +1,262 @@
|
||||
'use client'
|
||||
import type { FC } from 'react'
|
||||
import React, { useState } from 'react'
|
||||
import { useTranslation } from 'react-i18next'
|
||||
import { useContext } from 'use-context-selector'
|
||||
import { UserCircleIcon } from '@heroicons/react/24/solid'
|
||||
import cn from 'classnames'
|
||||
import type { DisplayScene, FeedbackFunc, Feedbacktype, IChatItem, SubmitAnnotationFunc, ThoughtItem } from '../type'
|
||||
import { randomString } from '../../../app-sidebar/basic'
|
||||
import OperationBtn from '../operation'
|
||||
import LoadingAnim from '../loading-anim'
|
||||
import { EditIcon, EditIconSolid, OpeningStatementIcon, RatingIcon } from '../icon-component'
|
||||
import s from '../style.module.css'
|
||||
import MoreInfo from '../more-info'
|
||||
import CopyBtn from '../copy-btn'
|
||||
import Thought from '../thought'
|
||||
import type { Annotation, MessageRating } from '@/models/log'
|
||||
import AppContext from '@/context/app-context'
|
||||
import Tooltip from '@/app/components/base/tooltip'
|
||||
import { Markdown } from '@/app/components/base/markdown'
|
||||
import AutoHeightTextarea from '@/app/components/base/auto-height-textarea'
|
||||
import Button from '@/app/components/base/button'
|
||||
import type { DataSet } from '@/models/datasets'
|
||||
const Divider: FC<{ name: string }> = ({ name }) => {
|
||||
const { t } = useTranslation()
|
||||
return <div className='flex items-center my-2'>
|
||||
<span className='text-xs text-gray-500 inline-flex items-center mr-2'>
|
||||
<EditIconSolid className='mr-1' />{t('appLog.detail.annotationTip', { user: name })}
|
||||
</span>
|
||||
<div className='h-[1px] bg-gray-200 flex-1'></div>
|
||||
</div>
|
||||
}
|
||||
const IconWrapper: FC<{ children: React.ReactNode | string }> = ({ children }) => {
|
||||
return <div className={'rounded-lg h-6 w-6 flex items-center justify-center hover:bg-gray-100'}>
|
||||
{children}
|
||||
</div>
|
||||
}
|
||||
export type IAnswerProps = {
|
||||
item: IChatItem
|
||||
feedbackDisabled: boolean
|
||||
isHideFeedbackEdit: boolean
|
||||
onFeedback?: FeedbackFunc
|
||||
onSubmitAnnotation?: SubmitAnnotationFunc
|
||||
displayScene: DisplayScene
|
||||
isResponsing?: boolean
|
||||
answerIconClassName?: string
|
||||
thoughts?: ThoughtItem[]
|
||||
isThinking?: boolean
|
||||
dataSets?: DataSet[]
|
||||
}
|
||||
// The component needs to maintain its own state to control whether to display input component
|
||||
const Answer: FC<IAnswerProps> = ({ item, feedbackDisabled = false, isHideFeedbackEdit = false, onFeedback, onSubmitAnnotation, displayScene = 'web', isResponsing, answerIconClassName, thoughts, isThinking, dataSets }) => {
|
||||
const { id, content, more, feedback, adminFeedback, annotation: initAnnotation } = item
|
||||
const [showEdit, setShowEdit] = useState(false)
|
||||
const [loading, setLoading] = useState(false)
|
||||
const [annotation, setAnnotation] = useState<Annotation | undefined | null>(initAnnotation)
|
||||
const [inputValue, setInputValue] = useState<string>(initAnnotation?.content ?? '')
|
||||
const [localAdminFeedback, setLocalAdminFeedback] = useState<Feedbacktype | undefined | null>(adminFeedback)
|
||||
const { userProfile } = useContext(AppContext)
|
||||
const { t } = useTranslation()
|
||||
|
||||
/**
|
||||
* Render feedback results (distinguish between users and administrators)
|
||||
* User reviews cannot be cancelled in Console
|
||||
* @param rating feedback result
|
||||
* @param isUserFeedback Whether it is user's feedback
|
||||
* @param isWebScene Whether it is web scene
|
||||
* @returns comp
|
||||
*/
|
||||
const renderFeedbackRating = (rating: MessageRating | undefined, isUserFeedback = true, isWebScene = true) => {
|
||||
if (!rating)
|
||||
return null
|
||||
|
||||
const isLike = rating === 'like'
|
||||
const ratingIconClassname = isLike ? 'text-primary-600 bg-primary-100 hover:bg-primary-200' : 'text-red-600 bg-red-100 hover:bg-red-200'
|
||||
const UserSymbol = <UserCircleIcon className='absolute top-[-2px] left-[18px] w-3 h-3 rounded-lg text-gray-400 bg-white' />
|
||||
// The tooltip is always displayed, but the content is different for different scenarios.
|
||||
return (
|
||||
<Tooltip
|
||||
selector={`user-feedback-${randomString(16)}`}
|
||||
content={((isWebScene || (!isUserFeedback && !isWebScene)) ? isLike ? t('appDebug.operation.cancelAgree') : t('appDebug.operation.cancelDisagree') : (!isWebScene && isUserFeedback) ? `${t('appDebug.operation.userAction')}${isLike ? t('appDebug.operation.agree') : t('appDebug.operation.disagree')}` : '') as string}
|
||||
>
|
||||
<div
|
||||
className={`relative box-border flex items-center justify-center h-7 w-7 p-0.5 rounded-lg bg-white cursor-pointer text-gray-500 hover:text-gray-800 ${(!isWebScene && isUserFeedback) ? '!cursor-default' : ''}`}
|
||||
style={{ boxShadow: '0px 4px 6px -1px rgba(0, 0, 0, 0.1), 0px 2px 4px -2px rgba(0, 0, 0, 0.05)' }}
|
||||
{...((isWebScene || (!isUserFeedback && !isWebScene))
|
||||
? {
|
||||
onClick: async () => {
|
||||
const res = await onFeedback?.(id, { rating: null })
|
||||
if (res && !isWebScene)
|
||||
setLocalAdminFeedback({ rating: null })
|
||||
},
|
||||
}
|
||||
: {})}
|
||||
>
|
||||
<div className={`${ratingIconClassname} rounded-lg h-6 w-6 flex items-center justify-center`}>
|
||||
<RatingIcon isLike={isLike} />
|
||||
</div>
|
||||
{!isWebScene && isUserFeedback && UserSymbol}
|
||||
</div>
|
||||
</Tooltip>
|
||||
)
|
||||
}
|
||||
|
||||
/**
|
||||
* Different scenarios have different operation items.
|
||||
* @param isWebScene Whether it is web scene
|
||||
* @returns comp
|
||||
*/
|
||||
const renderItemOperation = (isWebScene = true) => {
|
||||
const userOperation = () => {
|
||||
return feedback?.rating
|
||||
? null
|
||||
: <div className='flex gap-1'>
|
||||
<Tooltip selector={`user-feedback-${randomString(16)}`} content={t('appLog.detail.operation.like') as string}>
|
||||
{OperationBtn({ innerContent: <IconWrapper><RatingIcon isLike={true} /></IconWrapper>, onClick: () => onFeedback?.(id, { rating: 'like' }) })}
|
||||
</Tooltip>
|
||||
<Tooltip selector={`user-feedback-${randomString(16)}`} content={t('appLog.detail.operation.dislike') as string}>
|
||||
{OperationBtn({ innerContent: <IconWrapper><RatingIcon isLike={false} /></IconWrapper>, onClick: () => onFeedback?.(id, { rating: 'dislike' }) })}
|
||||
</Tooltip>
|
||||
</div>
|
||||
}
|
||||
|
||||
const adminOperation = () => {
|
||||
return <div className='flex gap-1'>
|
||||
<Tooltip selector={`user-feedback-${randomString(16)}`} content={t('appLog.detail.operation.addAnnotation') as string}>
|
||||
{OperationBtn({
|
||||
innerContent: <IconWrapper><EditIcon className='hover:text-gray-800' /></IconWrapper>,
|
||||
onClick: () => setShowEdit(true),
|
||||
})}
|
||||
</Tooltip>
|
||||
{!localAdminFeedback?.rating && <>
|
||||
<Tooltip selector={`user-feedback-${randomString(16)}`} content={t('appLog.detail.operation.like') as string}>
|
||||
{OperationBtn({
|
||||
innerContent: <IconWrapper><RatingIcon isLike={true} /></IconWrapper>,
|
||||
onClick: async () => {
|
||||
const res = await onFeedback?.(id, { rating: 'like' })
|
||||
if (res)
|
||||
setLocalAdminFeedback({ rating: 'like' })
|
||||
},
|
||||
})}
|
||||
</Tooltip>
|
||||
<Tooltip selector={`user-feedback-${randomString(16)}`} content={t('appLog.detail.operation.dislike') as string}>
|
||||
{OperationBtn({
|
||||
innerContent: <IconWrapper><RatingIcon isLike={false} /></IconWrapper>,
|
||||
onClick: async () => {
|
||||
const res = await onFeedback?.(id, { rating: 'dislike' })
|
||||
if (res)
|
||||
setLocalAdminFeedback({ rating: 'dislike' })
|
||||
},
|
||||
})}
|
||||
</Tooltip>
|
||||
</>}
|
||||
</div>
|
||||
}
|
||||
|
||||
return (
|
||||
<div className={`${s.itemOperation} flex gap-2`}>
|
||||
{isWebScene ? userOperation() : adminOperation()}
|
||||
</div>
|
||||
)
|
||||
}
|
||||
|
||||
return (
|
||||
<div key={id}>
|
||||
<div className='flex items-start'>
|
||||
<div className={`${s.answerIcon} ${answerIconClassName} w-10 h-10 shrink-0`}>
|
||||
{isResponsing
|
||||
&& <div className={s.typeingIcon}>
|
||||
<LoadingAnim type='avatar' />
|
||||
</div>
|
||||
}
|
||||
</div>
|
||||
<div className={s.answerWrapWrap}>
|
||||
<div className={`${s.answerWrap} ${showEdit ? 'w-full' : ''}`}>
|
||||
<div className={`${s.answer} relative text-sm text-gray-900`}>
|
||||
<div className={'ml-2 py-3 px-4 bg-gray-100 rounded-tr-2xl rounded-b-2xl'}>
|
||||
{item.isOpeningStatement && (
|
||||
<div className='flex items-center mb-1 gap-1'>
|
||||
<OpeningStatementIcon />
|
||||
<div className='text-xs text-gray-500'>{t('appDebug.openingStatement.title')}</div>
|
||||
</div>
|
||||
)}
|
||||
{(thoughts && thoughts.length > 0) && (
|
||||
<Thought
|
||||
list={thoughts || []}
|
||||
isThinking={isThinking}
|
||||
dataSets={dataSets}
|
||||
/>
|
||||
)}
|
||||
{(isResponsing && !content)
|
||||
? (
|
||||
<div className='flex items-center justify-center w-6 h-5'>
|
||||
<LoadingAnim type='text' />
|
||||
</div>
|
||||
)
|
||||
: (
|
||||
<div>
|
||||
<Markdown content={content} />
|
||||
</div>
|
||||
)}
|
||||
{!showEdit
|
||||
? (annotation?.content
|
||||
&& <>
|
||||
<Divider name={annotation?.account?.name || userProfile?.name} />
|
||||
{annotation.content}
|
||||
</>)
|
||||
: <>
|
||||
<Divider name={annotation?.account?.name || userProfile?.name} />
|
||||
<AutoHeightTextarea
|
||||
placeholder={t('appLog.detail.operation.annotationPlaceholder') as string}
|
||||
value={inputValue}
|
||||
onChange={e => setInputValue(e.target.value)}
|
||||
minHeight={58}
|
||||
className={`${cn(s.textArea)} !py-2 resize-none block w-full !px-3 bg-gray-50 border border-gray-200 rounded-md shadow-sm focus:outline-none focus:ring-blue-500 focus:border-blue-500 sm:text-sm text-gray-700 tracking-[0.2px]`}
|
||||
/>
|
||||
<div className="mt-2 flex flex-row">
|
||||
<Button
|
||||
type='primary'
|
||||
className='mr-2'
|
||||
loading={loading}
|
||||
onClick={async () => {
|
||||
if (!inputValue)
|
||||
return
|
||||
setLoading(true)
|
||||
const res = await onSubmitAnnotation?.(id, inputValue)
|
||||
if (res)
|
||||
setAnnotation({ ...annotation, content: inputValue } as any)
|
||||
setLoading(false)
|
||||
setShowEdit(false)
|
||||
}}>{t('common.operation.confirm')}</Button>
|
||||
<Button
|
||||
onClick={() => {
|
||||
setInputValue(annotation?.content ?? '')
|
||||
setShowEdit(false)
|
||||
}}>{t('common.operation.cancel')}</Button>
|
||||
</div>
|
||||
</>
|
||||
}
|
||||
</div>
|
||||
<div className='absolute top-[-14px] right-[-14px] flex flex-row justify-end gap-1'>
|
||||
{!item.isOpeningStatement && (
|
||||
<CopyBtn
|
||||
value={content}
|
||||
className={cn(s.copyBtn, 'mr-1')}
|
||||
/>
|
||||
)}
|
||||
{!feedbackDisabled && !item.feedbackDisabled && renderItemOperation(displayScene !== 'console')}
|
||||
{/* Admin feedback is displayed only in the background. */}
|
||||
{!feedbackDisabled && renderFeedbackRating(localAdminFeedback?.rating, false, false)}
|
||||
{/* User feedback must be displayed */}
|
||||
{!feedbackDisabled && renderFeedbackRating(feedback?.rating, !isHideFeedbackEdit, displayScene !== 'console')}
|
||||
</div>
|
||||
</div>
|
||||
{more && <MoreInfo more={more} isQuestion={false} />}
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
)
|
||||
}
|
||||
export default React.memo(Answer)
|
||||
37
web/app/components/app/chat/icon-component/index.tsx
Normal file
37
web/app/components/app/chat/icon-component/index.tsx
Normal file
@@ -0,0 +1,37 @@
|
||||
import type { FC } from 'react'
|
||||
import { HandThumbDownIcon, HandThumbUpIcon } from '@heroicons/react/24/outline'
|
||||
|
||||
export const stopIcon = (
|
||||
<svg width="14" height="14" viewBox="0 0 14 14" fill="none" xmlns="http://www.w3.org/2000/svg">
|
||||
<path fillRule="evenodd" clipRule="evenodd" d="M7.00004 0.583313C3.45621 0.583313 0.583374 3.45615 0.583374 6.99998C0.583374 10.5438 3.45621 13.4166 7.00004 13.4166C10.5439 13.4166 13.4167 10.5438 13.4167 6.99998C13.4167 3.45615 10.5439 0.583313 7.00004 0.583313ZM4.73029 4.98515C4.66671 5.10993 4.66671 5.27328 4.66671 5.59998V8.39998C4.66671 8.72668 4.66671 8.89003 4.73029 9.01481C4.78621 9.12457 4.87545 9.21381 4.98521 9.26973C5.10999 9.33331 5.27334 9.33331 5.60004 9.33331H8.40004C8.72674 9.33331 8.89009 9.33331 9.01487 9.26973C9.12463 9.21381 9.21387 9.12457 9.2698 9.01481C9.33337 8.89003 9.33337 8.72668 9.33337 8.39998V5.59998C9.33337 5.27328 9.33337 5.10993 9.2698 4.98515C9.21387 4.87539 9.12463 4.78615 9.01487 4.73023C8.89009 4.66665 8.72674 4.66665 8.40004 4.66665H5.60004C5.27334 4.66665 5.10999 4.66665 4.98521 4.73023C4.87545 4.78615 4.78621 4.87539 4.73029 4.98515Z" fill="#667085" />
|
||||
</svg>
|
||||
)
|
||||
|
||||
export const OpeningStatementIcon: FC<{ className?: string }> = ({ className }) => (
|
||||
<svg className={className} width="12" height="12" viewBox="0 0 12 12" fill="none" xmlns="http://www.w3.org/2000/svg">
|
||||
<path fillRule="evenodd" clipRule="evenodd" d="M6.25002 1C3.62667 1 1.50002 3.12665 1.50002 5.75C1.50002 6.28 1.58702 6.79071 1.7479 7.26801C1.7762 7.35196 1.79285 7.40164 1.80368 7.43828L1.80722 7.45061L1.80535 7.45452C1.79249 7.48102 1.77339 7.51661 1.73766 7.58274L0.911727 9.11152C0.860537 9.20622 0.807123 9.30503 0.770392 9.39095C0.733879 9.47635 0.674738 9.63304 0.703838 9.81878C0.737949 10.0365 0.866092 10.2282 1.05423 10.343C1.21474 10.4409 1.38213 10.4461 1.475 10.4451C1.56844 10.444 1.68015 10.4324 1.78723 10.4213L4.36472 10.1549C4.406 10.1506 4.42758 10.1484 4.44339 10.1472L4.44542 10.147L4.45161 10.1492C4.47103 10.1562 4.49738 10.1663 4.54285 10.1838C5.07332 10.3882 5.64921 10.5 6.25002 10.5C8.87338 10.5 11 8.37335 11 5.75C11 3.12665 8.87338 1 6.25002 1ZM4.48481 4.29111C5.04844 3.81548 5.7986 3.9552 6.24846 4.47463C6.69831 3.9552 7.43879 3.82048 8.01211 4.29111C8.58544 4.76175 8.6551 5.562 8.21247 6.12453C7.93825 6.47305 7.24997 7.10957 6.76594 7.54348C6.58814 7.70286 6.49924 7.78255 6.39255 7.81466C6.30103 7.84221 6.19589 7.84221 6.10436 7.81466C5.99767 7.78255 5.90878 7.70286 5.73098 7.54348C5.24694 7.10957 4.55867 6.47305 4.28444 6.12453C3.84182 5.562 3.92117 4.76675 4.48481 4.29111Z" fill="#667085" />
|
||||
</svg>
|
||||
)
|
||||
|
||||
export const RatingIcon: FC<{ isLike: boolean }> = ({ isLike }) => {
|
||||
return isLike ? <HandThumbUpIcon className='w-4 h-4' /> : <HandThumbDownIcon className='w-4 h-4' />
|
||||
}
|
||||
|
||||
export const EditIcon: FC<{ className?: string }> = ({ className }) => {
|
||||
return <svg width="16" height="16" viewBox="0 0 16 16" fill="none" xmlns="http://www.w3.org/2000/svg" className={className}>
|
||||
<path d="M14 11.9998L13.3332 12.7292C12.9796 13.1159 12.5001 13.3332 12.0001 13.3332C11.5001 13.3332 11.0205 13.1159 10.6669 12.7292C10.3128 12.3432 9.83332 12.1265 9.33345 12.1265C8.83359 12.1265 8.35409 12.3432 7.99998 12.7292M2 13.3332H3.11636C3.44248 13.3332 3.60554 13.3332 3.75899 13.2963C3.89504 13.2637 4.0251 13.2098 4.1444 13.1367C4.27895 13.0542 4.39425 12.9389 4.62486 12.7083L13 4.33316C13.5523 3.78087 13.5523 2.88544 13 2.33316C12.4477 1.78087 11.5523 1.78087 11 2.33316L2.62484 10.7083C2.39424 10.9389 2.27894 11.0542 2.19648 11.1888C2.12338 11.3081 2.0695 11.4381 2.03684 11.5742C2 11.7276 2 11.8907 2 12.2168V13.3332Z" stroke="#6B7280" strokeLinecap="round" strokeLinejoin="round" />
|
||||
</svg>
|
||||
}
|
||||
|
||||
export const EditIconSolid: FC<{ className?: string }> = ({ className }) => {
|
||||
return <svg width="12" height="12" viewBox="0 0 12 12" fill="none" xmlns="http://www.w3.org/2000/svg" className={className}>
|
||||
<path fillRule="evenodd" clipRule="evenodd" d="M10.8374 8.63108C11.0412 8.81739 11.0554 9.13366 10.8691 9.33747L10.369 9.88449C10.0142 10.2725 9.52293 10.5001 9.00011 10.5001C8.47746 10.5001 7.98634 10.2727 7.63157 9.8849C7.45561 9.69325 7.22747 9.59515 7.00014 9.59515C6.77271 9.59515 6.54446 9.69335 6.36846 9.88517C6.18177 10.0886 5.86548 10.1023 5.66201 9.91556C5.45853 9.72888 5.44493 9.41259 5.63161 9.20911C5.98678 8.82201 6.47777 8.59515 7.00014 8.59515C7.52251 8.59515 8.0135 8.82201 8.36867 9.20911L8.36924 9.20974C8.54486 9.4018 8.77291 9.50012 9.00011 9.50012C9.2273 9.50012 9.45533 9.40182 9.63095 9.20979L10.131 8.66276C10.3173 8.45895 10.6336 8.44476 10.8374 8.63108Z" fill="#6B7280" />
|
||||
<path fillRule="evenodd" clipRule="evenodd" d="M7.89651 1.39656C8.50599 0.787085 9.49414 0.787084 10.1036 1.39656C10.7131 2.00604 10.7131 2.99419 10.1036 3.60367L3.82225 9.88504C3.81235 9.89494 3.80254 9.90476 3.79281 9.91451C3.64909 10.0585 3.52237 10.1855 3.3696 10.2791C3.23539 10.3613 3.08907 10.4219 2.93602 10.4587C2.7618 10.5005 2.58242 10.5003 2.37897 10.5001C2.3652 10.5001 2.35132 10.5001 2.33732 10.5001H1.50005C1.22391 10.5001 1.00005 10.2763 1.00005 10.0001V9.16286C1.00005 9.14886 1.00004 9.13497 1.00003 9.1212C0.999836 8.91776 0.999669 8.73838 1.0415 8.56416C1.07824 8.4111 1.13885 8.26479 1.22109 8.13058C1.31471 7.97781 1.44166 7.85109 1.58566 7.70736C1.5954 7.69764 1.60523 7.68783 1.61513 7.67793L7.89651 1.39656Z" fill="#6B7280" />
|
||||
</svg>
|
||||
}
|
||||
|
||||
export const TryToAskIcon = (
|
||||
<svg width="11" height="10" viewBox="0 0 11 10" fill="none" xmlns="http://www.w3.org/2000/svg">
|
||||
<path d="M5.88889 0.683718C5.827 0.522805 5.67241 0.416626 5.5 0.416626C5.3276 0.416626 5.173 0.522805 5.11111 0.683718L4.27279 2.86334C4.14762 3.18877 4.10829 3.28255 4.05449 3.35821C4.00051 3.43413 3.93418 3.50047 3.85826 3.55445C3.78259 3.60825 3.68881 3.64758 3.36338 3.77275L1.18376 4.61106C1.02285 4.67295 0.916668 4.82755 0.916668 4.99996C0.916668 5.17236 1.02285 5.32696 1.18376 5.38885L3.36338 6.22717C3.68881 6.35234 3.78259 6.39167 3.85826 6.44547C3.93418 6.49945 4.00051 6.56578 4.05449 6.6417C4.10829 6.71737 4.14762 6.81115 4.27279 7.13658L5.11111 9.3162C5.173 9.47711 5.3276 9.58329 5.5 9.58329C5.67241 9.58329 5.82701 9.47711 5.8889 9.3162L6.72721 7.13658C6.85238 6.81115 6.89171 6.71737 6.94551 6.6417C6.99949 6.56578 7.06583 6.49945 7.14175 6.44547C7.21741 6.39167 7.31119 6.35234 7.63662 6.22717L9.81624 5.38885C9.97715 5.32696 10.0833 5.17236 10.0833 4.99996C10.0833 4.82755 9.97715 4.67295 9.81624 4.61106L7.63662 3.77275C7.31119 3.64758 7.21741 3.60825 7.14175 3.55445C7.06583 3.50047 6.99949 3.43413 6.94551 3.35821C6.89171 3.28255 6.85238 3.18877 6.72721 2.86334L5.88889 0.683718Z" fill="#667085" />
|
||||
</svg>
|
||||
)
|
||||
@@ -4,43 +4,25 @@ import React, { useEffect, useLayoutEffect, useRef, useState } from 'react'
|
||||
import { useContext } from 'use-context-selector'
|
||||
import cn from 'classnames'
|
||||
import Recorder from 'js-audio-recorder'
|
||||
import { HandThumbDownIcon, HandThumbUpIcon } from '@heroicons/react/24/outline'
|
||||
import { UserCircleIcon } from '@heroicons/react/24/solid'
|
||||
import { useTranslation } from 'react-i18next'
|
||||
import { randomString } from '../../app-sidebar/basic'
|
||||
import s from './style.module.css'
|
||||
import LoadingAnim from './loading-anim'
|
||||
import CopyBtn from './copy-btn'
|
||||
import type { DisplayScene, FeedbackFunc, IChatItem, SubmitAnnotationFunc } from './type'
|
||||
import { TryToAskIcon, stopIcon } from './icon-component'
|
||||
import Answer from './answer'
|
||||
import Question from './question'
|
||||
import Tooltip from '@/app/components/base/tooltip'
|
||||
import { ToastContext } from '@/app/components/base/toast'
|
||||
import AutoHeightTextarea from '@/app/components/base/auto-height-textarea'
|
||||
import Button from '@/app/components/base/button'
|
||||
import type { Annotation, MessageRating } from '@/models/log'
|
||||
import AppContext from '@/context/app-context'
|
||||
import { Markdown } from '@/app/components/base/markdown'
|
||||
import { formatNumber } from '@/utils/format'
|
||||
import useBreakpoints, { MediaType } from '@/hooks/use-breakpoints'
|
||||
import VoiceInput from '@/app/components/base/voice-input'
|
||||
import { Microphone01 } from '@/app/components/base/icons/src/vender/line/mediaAndDevices'
|
||||
import { Microphone01 as Microphone01Solid } from '@/app/components/base/icons/src/vender/solid/mediaAndDevices'
|
||||
import { XCircle } from '@/app/components/base/icons/src/vender/solid/general'
|
||||
|
||||
const stopIcon = (
|
||||
<svg width="14" height="14" viewBox="0 0 14 14" fill="none" xmlns="http://www.w3.org/2000/svg">
|
||||
<path fillRule="evenodd" clipRule="evenodd" d="M7.00004 0.583313C3.45621 0.583313 0.583374 3.45615 0.583374 6.99998C0.583374 10.5438 3.45621 13.4166 7.00004 13.4166C10.5439 13.4166 13.4167 10.5438 13.4167 6.99998C13.4167 3.45615 10.5439 0.583313 7.00004 0.583313ZM4.73029 4.98515C4.66671 5.10993 4.66671 5.27328 4.66671 5.59998V8.39998C4.66671 8.72668 4.66671 8.89003 4.73029 9.01481C4.78621 9.12457 4.87545 9.21381 4.98521 9.26973C5.10999 9.33331 5.27334 9.33331 5.60004 9.33331H8.40004C8.72674 9.33331 8.89009 9.33331 9.01487 9.26973C9.12463 9.21381 9.21387 9.12457 9.2698 9.01481C9.33337 8.89003 9.33337 8.72668 9.33337 8.39998V5.59998C9.33337 5.27328 9.33337 5.10993 9.2698 4.98515C9.21387 4.87539 9.12463 4.78615 9.01487 4.73023C8.89009 4.66665 8.72674 4.66665 8.40004 4.66665H5.60004C5.27334 4.66665 5.10999 4.66665 4.98521 4.73023C4.87545 4.78615 4.78621 4.87539 4.73029 4.98515Z" fill="#667085" />
|
||||
</svg>
|
||||
)
|
||||
export type Feedbacktype = {
|
||||
rating: MessageRating
|
||||
content?: string | null
|
||||
}
|
||||
|
||||
export type FeedbackFunc = (messageId: string, feedback: Feedbacktype) => Promise<any>
|
||||
export type SubmitAnnotationFunc = (messageId: string, content: string) => Promise<any>
|
||||
|
||||
export type DisplayScene = 'web' | 'console'
|
||||
import type { DataSet } from '@/models/datasets'
|
||||
|
||||
export type IChatProps = {
|
||||
configElem?: React.ReactNode
|
||||
chatList: IChatItem[]
|
||||
/**
|
||||
* Whether to display the editing area and rating status
|
||||
@@ -66,352 +48,12 @@ export type IChatProps = {
|
||||
suggestionList?: string[]
|
||||
isShowSpeechToText?: boolean
|
||||
answerIconClassName?: string
|
||||
}
|
||||
|
||||
export type MessageMore = {
|
||||
time: string
|
||||
tokens: number
|
||||
latency: number | string
|
||||
}
|
||||
|
||||
export type IChatItem = {
|
||||
id: string
|
||||
content: string
|
||||
/**
|
||||
* Specific message type
|
||||
*/
|
||||
isAnswer: boolean
|
||||
/**
|
||||
* The user feedback result of this message
|
||||
*/
|
||||
feedback?: Feedbacktype
|
||||
/**
|
||||
* The admin feedback result of this message
|
||||
*/
|
||||
adminFeedback?: Feedbacktype
|
||||
/**
|
||||
* Whether to hide the feedback area
|
||||
*/
|
||||
feedbackDisabled?: boolean
|
||||
/**
|
||||
* More information about this message
|
||||
*/
|
||||
more?: MessageMore
|
||||
annotation?: Annotation
|
||||
useCurrentUserAvatar?: boolean
|
||||
isOpeningStatement?: boolean
|
||||
}
|
||||
|
||||
const OperationBtn = ({ innerContent, onClick, className }: { innerContent: React.ReactNode; onClick?: () => void; className?: string }) => (
|
||||
<div
|
||||
className={`relative box-border flex items-center justify-center h-7 w-7 p-0.5 rounded-lg bg-white cursor-pointer text-gray-500 hover:text-gray-800 ${className ?? ''}`}
|
||||
style={{ boxShadow: '0px 4px 6px -1px rgba(0, 0, 0, 0.1), 0px 2px 4px -2px rgba(0, 0, 0, 0.05)' }}
|
||||
onClick={onClick && onClick}
|
||||
>
|
||||
{innerContent}
|
||||
</div>
|
||||
)
|
||||
|
||||
const MoreInfo: FC<{ more: MessageMore; isQuestion: boolean }> = ({ more, isQuestion }) => {
|
||||
const { t } = useTranslation()
|
||||
return (<div className={`mt-1 space-x-2 text-xs text-gray-400 ${isQuestion ? 'mr-2 text-right ' : 'ml-2 text-left float-right'}`}>
|
||||
<span>{`${t('appLog.detail.timeConsuming')} ${more.latency}${t('appLog.detail.second')}`}</span>
|
||||
<span>{`${t('appLog.detail.tokenCost')} ${formatNumber(more.tokens)}`}</span>
|
||||
<span>· </span>
|
||||
<span>{more.time} </span>
|
||||
</div>)
|
||||
}
|
||||
|
||||
const OpeningStatementIcon: FC<{ className?: string }> = ({ className }) => (
|
||||
<svg width="12" height="12" viewBox="0 0 12 12" fill="none" xmlns="http://www.w3.org/2000/svg">
|
||||
<path fillRule="evenodd" clipRule="evenodd" d="M6.25002 1C3.62667 1 1.50002 3.12665 1.50002 5.75C1.50002 6.28 1.58702 6.79071 1.7479 7.26801C1.7762 7.35196 1.79285 7.40164 1.80368 7.43828L1.80722 7.45061L1.80535 7.45452C1.79249 7.48102 1.77339 7.51661 1.73766 7.58274L0.911727 9.11152C0.860537 9.20622 0.807123 9.30503 0.770392 9.39095C0.733879 9.47635 0.674738 9.63304 0.703838 9.81878C0.737949 10.0365 0.866092 10.2282 1.05423 10.343C1.21474 10.4409 1.38213 10.4461 1.475 10.4451C1.56844 10.444 1.68015 10.4324 1.78723 10.4213L4.36472 10.1549C4.406 10.1506 4.42758 10.1484 4.44339 10.1472L4.44542 10.147L4.45161 10.1492C4.47103 10.1562 4.49738 10.1663 4.54285 10.1838C5.07332 10.3882 5.64921 10.5 6.25002 10.5C8.87338 10.5 11 8.37335 11 5.75C11 3.12665 8.87338 1 6.25002 1ZM4.48481 4.29111C5.04844 3.81548 5.7986 3.9552 6.24846 4.47463C6.69831 3.9552 7.43879 3.82048 8.01211 4.29111C8.58544 4.76175 8.6551 5.562 8.21247 6.12453C7.93825 6.47305 7.24997 7.10957 6.76594 7.54348C6.58814 7.70286 6.49924 7.78255 6.39255 7.81466C6.30103 7.84221 6.19589 7.84221 6.10436 7.81466C5.99767 7.78255 5.90878 7.70286 5.73098 7.54348C5.24694 7.10957 4.55867 6.47305 4.28444 6.12453C3.84182 5.562 3.92117 4.76675 4.48481 4.29111Z" fill="#667085" />
|
||||
</svg>
|
||||
)
|
||||
|
||||
const RatingIcon: FC<{ isLike: boolean }> = ({ isLike }) => {
|
||||
return isLike ? <HandThumbUpIcon className='w-4 h-4' /> : <HandThumbDownIcon className='w-4 h-4' />
|
||||
}
|
||||
|
||||
const EditIcon: FC<{ className?: string }> = ({ className }) => {
|
||||
return <svg width="16" height="16" viewBox="0 0 16 16" fill="none" xmlns="http://www.w3.org/2000/svg" className={className}>
|
||||
<path d="M14 11.9998L13.3332 12.7292C12.9796 13.1159 12.5001 13.3332 12.0001 13.3332C11.5001 13.3332 11.0205 13.1159 10.6669 12.7292C10.3128 12.3432 9.83332 12.1265 9.33345 12.1265C8.83359 12.1265 8.35409 12.3432 7.99998 12.7292M2 13.3332H3.11636C3.44248 13.3332 3.60554 13.3332 3.75899 13.2963C3.89504 13.2637 4.0251 13.2098 4.1444 13.1367C4.27895 13.0542 4.39425 12.9389 4.62486 12.7083L13 4.33316C13.5523 3.78087 13.5523 2.88544 13 2.33316C12.4477 1.78087 11.5523 1.78087 11 2.33316L2.62484 10.7083C2.39424 10.9389 2.27894 11.0542 2.19648 11.1888C2.12338 11.3081 2.0695 11.4381 2.03684 11.5742C2 11.7276 2 11.8907 2 12.2168V13.3332Z" stroke="#6B7280" strokeLinecap="round" strokeLinejoin="round" />
|
||||
</svg>
|
||||
}
|
||||
|
||||
export const EditIconSolid: FC<{ className?: string }> = ({ className }) => {
|
||||
return <svg width="12" height="12" viewBox="0 0 12 12" fill="none" xmlns="http://www.w3.org/2000/svg" className={className}>
|
||||
<path fillRule="evenodd" clipRule="evenodd" d="M10.8374 8.63108C11.0412 8.81739 11.0554 9.13366 10.8691 9.33747L10.369 9.88449C10.0142 10.2725 9.52293 10.5001 9.00011 10.5001C8.47746 10.5001 7.98634 10.2727 7.63157 9.8849C7.45561 9.69325 7.22747 9.59515 7.00014 9.59515C6.77271 9.59515 6.54446 9.69335 6.36846 9.88517C6.18177 10.0886 5.86548 10.1023 5.66201 9.91556C5.45853 9.72888 5.44493 9.41259 5.63161 9.20911C5.98678 8.82201 6.47777 8.59515 7.00014 8.59515C7.52251 8.59515 8.0135 8.82201 8.36867 9.20911L8.36924 9.20974C8.54486 9.4018 8.77291 9.50012 9.00011 9.50012C9.2273 9.50012 9.45533 9.40182 9.63095 9.20979L10.131 8.66276C10.3173 8.45895 10.6336 8.44476 10.8374 8.63108Z" fill="#6B7280" />
|
||||
<path fillRule="evenodd" clipRule="evenodd" d="M7.89651 1.39656C8.50599 0.787085 9.49414 0.787084 10.1036 1.39656C10.7131 2.00604 10.7131 2.99419 10.1036 3.60367L3.82225 9.88504C3.81235 9.89494 3.80254 9.90476 3.79281 9.91451C3.64909 10.0585 3.52237 10.1855 3.3696 10.2791C3.23539 10.3613 3.08907 10.4219 2.93602 10.4587C2.7618 10.5005 2.58242 10.5003 2.37897 10.5001C2.3652 10.5001 2.35132 10.5001 2.33732 10.5001H1.50005C1.22391 10.5001 1.00005 10.2763 1.00005 10.0001V9.16286C1.00005 9.14886 1.00004 9.13497 1.00003 9.1212C0.999836 8.91776 0.999669 8.73838 1.0415 8.56416C1.07824 8.4111 1.13885 8.26479 1.22109 8.13058C1.31471 7.97781 1.44166 7.85109 1.58566 7.70736C1.5954 7.69764 1.60523 7.68783 1.61513 7.67793L7.89651 1.39656Z" fill="#6B7280" />
|
||||
</svg>
|
||||
}
|
||||
|
||||
const TryToAskIcon = (
|
||||
<svg width="11" height="10" viewBox="0 0 11 10" fill="none" xmlns="http://www.w3.org/2000/svg">
|
||||
<path d="M5.88889 0.683718C5.827 0.522805 5.67241 0.416626 5.5 0.416626C5.3276 0.416626 5.173 0.522805 5.11111 0.683718L4.27279 2.86334C4.14762 3.18877 4.10829 3.28255 4.05449 3.35821C4.00051 3.43413 3.93418 3.50047 3.85826 3.55445C3.78259 3.60825 3.68881 3.64758 3.36338 3.77275L1.18376 4.61106C1.02285 4.67295 0.916668 4.82755 0.916668 4.99996C0.916668 5.17236 1.02285 5.32696 1.18376 5.38885L3.36338 6.22717C3.68881 6.35234 3.78259 6.39167 3.85826 6.44547C3.93418 6.49945 4.00051 6.56578 4.05449 6.6417C4.10829 6.71737 4.14762 6.81115 4.27279 7.13658L5.11111 9.3162C5.173 9.47711 5.3276 9.58329 5.5 9.58329C5.67241 9.58329 5.82701 9.47711 5.8889 9.3162L6.72721 7.13658C6.85238 6.81115 6.89171 6.71737 6.94551 6.6417C6.99949 6.56578 7.06583 6.49945 7.14175 6.44547C7.21741 6.39167 7.31119 6.35234 7.63662 6.22717L9.81624 5.38885C9.97715 5.32696 10.0833 5.17236 10.0833 4.99996C10.0833 4.82755 9.97715 4.67295 9.81624 4.61106L7.63662 3.77275C7.31119 3.64758 7.21741 3.60825 7.14175 3.55445C7.06583 3.50047 6.99949 3.43413 6.94551 3.35821C6.89171 3.28255 6.85238 3.18877 6.72721 2.86334L5.88889 0.683718Z" fill="#667085" />
|
||||
</svg>
|
||||
)
|
||||
|
||||
const Divider: FC<{ name: string }> = ({ name }) => {
|
||||
const { t } = useTranslation()
|
||||
return <div className='flex items-center my-2'>
|
||||
<span className='text-xs text-gray-500 inline-flex items-center mr-2'>
|
||||
<EditIconSolid className='mr-1' />{t('appLog.detail.annotationTip', { user: name })}
|
||||
</span>
|
||||
<div className='h-[1px] bg-gray-200 flex-1'></div>
|
||||
</div>
|
||||
}
|
||||
|
||||
const IconWrapper: FC<{ children: React.ReactNode | string }> = ({ children }) => {
|
||||
return <div className={'rounded-lg h-6 w-6 flex items-center justify-center hover:bg-gray-100'}>
|
||||
{children}
|
||||
</div>
|
||||
}
|
||||
|
||||
type IAnswerProps = {
|
||||
item: IChatItem
|
||||
feedbackDisabled: boolean
|
||||
isHideFeedbackEdit: boolean
|
||||
onFeedback?: FeedbackFunc
|
||||
onSubmitAnnotation?: SubmitAnnotationFunc
|
||||
displayScene: DisplayScene
|
||||
isResponsing?: boolean
|
||||
answerIconClassName?: string
|
||||
}
|
||||
|
||||
// The component needs to maintain its own state to control whether to display input component
|
||||
const Answer: FC<IAnswerProps> = ({ item, feedbackDisabled = false, isHideFeedbackEdit = false, onFeedback, onSubmitAnnotation, displayScene = 'web', isResponsing, answerIconClassName }) => {
|
||||
const { id, content, more, feedback, adminFeedback, annotation: initAnnotation } = item
|
||||
const [showEdit, setShowEdit] = useState(false)
|
||||
const [loading, setLoading] = useState(false)
|
||||
const [annotation, setAnnotation] = useState<Annotation | undefined | null>(initAnnotation)
|
||||
const [inputValue, setInputValue] = useState<string>(initAnnotation?.content ?? '')
|
||||
const [localAdminFeedback, setLocalAdminFeedback] = useState<Feedbacktype | undefined | null>(adminFeedback)
|
||||
const { userProfile } = useContext(AppContext)
|
||||
const { t } = useTranslation()
|
||||
|
||||
/**
|
||||
* Render feedback results (distinguish between users and administrators)
|
||||
* User reviews cannot be cancelled in Console
|
||||
* @param rating feedback result
|
||||
* @param isUserFeedback Whether it is user's feedback
|
||||
* @param isWebScene Whether it is web scene
|
||||
* @returns comp
|
||||
*/
|
||||
const renderFeedbackRating = (rating: MessageRating | undefined, isUserFeedback = true, isWebScene = true) => {
|
||||
if (!rating)
|
||||
return null
|
||||
|
||||
const isLike = rating === 'like'
|
||||
const ratingIconClassname = isLike ? 'text-primary-600 bg-primary-100 hover:bg-primary-200' : 'text-red-600 bg-red-100 hover:bg-red-200'
|
||||
const UserSymbol = <UserCircleIcon className='absolute top-[-2px] left-[18px] w-3 h-3 rounded-lg text-gray-400 bg-white' />
|
||||
// The tooltip is always displayed, but the content is different for different scenarios.
|
||||
return (
|
||||
<Tooltip
|
||||
selector={`user-feedback-${randomString(16)}`}
|
||||
content={((isWebScene || (!isUserFeedback && !isWebScene)) ? isLike ? t('appDebug.operation.cancelAgree') : t('appDebug.operation.cancelDisagree') : (!isWebScene && isUserFeedback) ? `${t('appDebug.operation.userAction')}${isLike ? t('appDebug.operation.agree') : t('appDebug.operation.disagree')}` : '') as string}
|
||||
>
|
||||
<div
|
||||
className={`relative box-border flex items-center justify-center h-7 w-7 p-0.5 rounded-lg bg-white cursor-pointer text-gray-500 hover:text-gray-800 ${(!isWebScene && isUserFeedback) ? '!cursor-default' : ''}`}
|
||||
style={{ boxShadow: '0px 4px 6px -1px rgba(0, 0, 0, 0.1), 0px 2px 4px -2px rgba(0, 0, 0, 0.05)' }}
|
||||
{...((isWebScene || (!isUserFeedback && !isWebScene))
|
||||
? {
|
||||
onClick: async () => {
|
||||
const res = await onFeedback?.(id, { rating: null })
|
||||
if (res && !isWebScene)
|
||||
setLocalAdminFeedback({ rating: null })
|
||||
},
|
||||
}
|
||||
: {})}
|
||||
>
|
||||
<div className={`${ratingIconClassname} rounded-lg h-6 w-6 flex items-center justify-center`}>
|
||||
<RatingIcon isLike={isLike} />
|
||||
</div>
|
||||
{!isWebScene && isUserFeedback && UserSymbol}
|
||||
</div>
|
||||
</Tooltip>
|
||||
)
|
||||
}
|
||||
|
||||
/**
|
||||
* Different scenarios have different operation items.
|
||||
* @param isWebScene Whether it is web scene
|
||||
* @returns comp
|
||||
*/
|
||||
const renderItemOperation = (isWebScene = true) => {
|
||||
const userOperation = () => {
|
||||
return feedback?.rating
|
||||
? null
|
||||
: <div className='flex gap-1'>
|
||||
<Tooltip selector={`user-feedback-${randomString(16)}`} content={t('appLog.detail.operation.like') as string}>
|
||||
{OperationBtn({ innerContent: <IconWrapper><RatingIcon isLike={true} /></IconWrapper>, onClick: () => onFeedback?.(id, { rating: 'like' }) })}
|
||||
</Tooltip>
|
||||
<Tooltip selector={`user-feedback-${randomString(16)}`} content={t('appLog.detail.operation.dislike') as string}>
|
||||
{OperationBtn({ innerContent: <IconWrapper><RatingIcon isLike={false} /></IconWrapper>, onClick: () => onFeedback?.(id, { rating: 'dislike' }) })}
|
||||
</Tooltip>
|
||||
</div>
|
||||
}
|
||||
|
||||
const adminOperation = () => {
|
||||
return <div className='flex gap-1'>
|
||||
<Tooltip selector={`user-feedback-${randomString(16)}`} content={t('appLog.detail.operation.addAnnotation') as string}>
|
||||
{OperationBtn({
|
||||
innerContent: <IconWrapper><EditIcon className='hover:text-gray-800' /></IconWrapper>,
|
||||
onClick: () => setShowEdit(true),
|
||||
})}
|
||||
</Tooltip>
|
||||
{!localAdminFeedback?.rating && <>
|
||||
<Tooltip selector={`user-feedback-${randomString(16)}`} content={t('appLog.detail.operation.like') as string}>
|
||||
{OperationBtn({
|
||||
innerContent: <IconWrapper><RatingIcon isLike={true} /></IconWrapper>,
|
||||
onClick: async () => {
|
||||
const res = await onFeedback?.(id, { rating: 'like' })
|
||||
if (res)
|
||||
setLocalAdminFeedback({ rating: 'like' })
|
||||
},
|
||||
})}
|
||||
</Tooltip>
|
||||
<Tooltip selector={`user-feedback-${randomString(16)}`} content={t('appLog.detail.operation.dislike') as string}>
|
||||
{OperationBtn({
|
||||
innerContent: <IconWrapper><RatingIcon isLike={false} /></IconWrapper>,
|
||||
onClick: async () => {
|
||||
const res = await onFeedback?.(id, { rating: 'dislike' })
|
||||
if (res)
|
||||
setLocalAdminFeedback({ rating: 'dislike' })
|
||||
},
|
||||
})}
|
||||
</Tooltip>
|
||||
</>}
|
||||
</div>
|
||||
}
|
||||
|
||||
return (
|
||||
<div className={`${s.itemOperation} flex gap-2`}>
|
||||
{isWebScene ? userOperation() : adminOperation()}
|
||||
</div>
|
||||
)
|
||||
}
|
||||
|
||||
return (
|
||||
<div key={id}>
|
||||
<div className='flex items-start'>
|
||||
<div className={`${s.answerIcon} ${answerIconClassName} w-10 h-10 shrink-0`}>
|
||||
{isResponsing
|
||||
&& <div className={s.typeingIcon}>
|
||||
<LoadingAnim type='avatar' />
|
||||
</div>
|
||||
}
|
||||
</div>
|
||||
<div className={s.answerWrapWrap}>
|
||||
<div className={`${s.answerWrap} ${showEdit ? 'w-full' : ''}`}>
|
||||
<div className={`${s.answer} relative text-sm text-gray-900`}>
|
||||
<div className={'ml-2 py-3 px-4 bg-gray-100 rounded-tr-2xl rounded-b-2xl'}>
|
||||
{item.isOpeningStatement && (
|
||||
<div className='flex items-center mb-1 gap-1'>
|
||||
<OpeningStatementIcon />
|
||||
<div className='text-xs text-gray-500'>{t('appDebug.openingStatement.title')}</div>
|
||||
</div>
|
||||
)}
|
||||
{(isResponsing && !content)
|
||||
? (
|
||||
<div className='flex items-center justify-center w-6 h-5'>
|
||||
<LoadingAnim type='text' />
|
||||
</div>
|
||||
)
|
||||
: (
|
||||
<Markdown content={content} />
|
||||
)}
|
||||
{!showEdit
|
||||
? (annotation?.content
|
||||
&& <>
|
||||
<Divider name={annotation?.account?.name || userProfile?.name} />
|
||||
{annotation.content}
|
||||
</>)
|
||||
: <>
|
||||
<Divider name={annotation?.account?.name || userProfile?.name} />
|
||||
<AutoHeightTextarea
|
||||
placeholder={t('appLog.detail.operation.annotationPlaceholder') as string}
|
||||
value={inputValue}
|
||||
onChange={e => setInputValue(e.target.value)}
|
||||
minHeight={58}
|
||||
className={`${cn(s.textArea)} !py-2 resize-none block w-full !px-3 bg-gray-50 border border-gray-200 rounded-md shadow-sm focus:outline-none focus:ring-blue-500 focus:border-blue-500 sm:text-sm text-gray-700 tracking-[0.2px]`}
|
||||
/>
|
||||
<div className="mt-2 flex flex-row">
|
||||
<Button
|
||||
type='primary'
|
||||
className='mr-2'
|
||||
loading={loading}
|
||||
onClick={async () => {
|
||||
if (!inputValue)
|
||||
return
|
||||
setLoading(true)
|
||||
const res = await onSubmitAnnotation?.(id, inputValue)
|
||||
if (res)
|
||||
setAnnotation({ ...annotation, content: inputValue } as any)
|
||||
setLoading(false)
|
||||
setShowEdit(false)
|
||||
}}>{t('common.operation.confirm')}</Button>
|
||||
<Button
|
||||
onClick={() => {
|
||||
setInputValue(annotation?.content ?? '')
|
||||
setShowEdit(false)
|
||||
}}>{t('common.operation.cancel')}</Button>
|
||||
</div>
|
||||
</>
|
||||
}
|
||||
</div>
|
||||
<div className='absolute top-[-14px] right-[-14px] flex flex-row justify-end gap-1'>
|
||||
{!item.isOpeningStatement && (
|
||||
<CopyBtn
|
||||
value={content}
|
||||
className={cn(s.copyBtn, 'mr-1')}
|
||||
/>
|
||||
)}
|
||||
{!feedbackDisabled && !item.feedbackDisabled && renderItemOperation(displayScene !== 'console')}
|
||||
{/* Admin feedback is displayed only in the background. */}
|
||||
{!feedbackDisabled && renderFeedbackRating(localAdminFeedback?.rating, false, false)}
|
||||
{/* User feedback must be displayed */}
|
||||
{!feedbackDisabled && renderFeedbackRating(feedback?.rating, !isHideFeedbackEdit, displayScene !== 'console')}
|
||||
</div>
|
||||
</div>
|
||||
{more && <MoreInfo more={more} isQuestion={false} />}
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
)
|
||||
}
|
||||
|
||||
type IQuestionProps = Pick<IChatItem, 'id' | 'content' | 'more' | 'useCurrentUserAvatar'>
|
||||
|
||||
const Question: FC<IQuestionProps> = ({ id, content, more, useCurrentUserAvatar }) => {
|
||||
const { userProfile } = useContext(AppContext)
|
||||
const userName = userProfile?.name
|
||||
return (
|
||||
<div className='flex items-start justify-end' key={id}>
|
||||
<div className={s.questionWrapWrap}>
|
||||
<div className={`${s.question} relative text-sm text-gray-900`}>
|
||||
<div
|
||||
className={'mr-2 py-3 px-4 bg-blue-500 rounded-tl-2xl rounded-b-2xl'}
|
||||
>
|
||||
<Markdown content={content} />
|
||||
</div>
|
||||
</div>
|
||||
{more && <MoreInfo more={more} isQuestion={true} />}
|
||||
</div>
|
||||
{useCurrentUserAvatar
|
||||
? (
|
||||
<div className='w-10 h-10 shrink-0 leading-10 text-center mr-2 rounded-full bg-primary-600 text-white'>
|
||||
{userName?.[0].toLocaleUpperCase()}
|
||||
</div>
|
||||
)
|
||||
: (
|
||||
<div className={`${s.questionIcon} w-10 h-10 shrink-0 `}></div>
|
||||
)}
|
||||
</div>
|
||||
)
|
||||
isShowConfigElem?: boolean
|
||||
dataSets?: DataSet[]
|
||||
}
|
||||
|
||||
const Chat: FC<IChatProps> = ({
|
||||
configElem,
|
||||
chatList,
|
||||
feedbackDisabled = false,
|
||||
isHideFeedbackEdit = false,
|
||||
@@ -431,6 +73,8 @@ const Chat: FC<IChatProps> = ({
|
||||
suggestionList,
|
||||
isShowSpeechToText,
|
||||
answerIconClassName,
|
||||
isShowConfigElem,
|
||||
dataSets,
|
||||
}) => {
|
||||
const { t } = useTranslation()
|
||||
const { notify } = useContext(ToastContext)
|
||||
@@ -509,11 +153,14 @@ const Chat: FC<IChatProps> = ({
|
||||
|
||||
return (
|
||||
<div className={cn('px-3.5', 'h-full')}>
|
||||
{isShowConfigElem && (configElem || null)}
|
||||
{/* Chat List */}
|
||||
<div className="h-full space-y-[30px]">
|
||||
<div className={cn((isShowConfigElem && configElem) ? 'h-0' : 'h-full', 'space-y-[30px]')}>
|
||||
{chatList.map((item) => {
|
||||
if (item.isAnswer) {
|
||||
const isLast = item.id === chatList[chatList.length - 1].id
|
||||
const thoughts = item.agent_thoughts?.filter(item => item.thought !== '[DONE]')
|
||||
const isThinking = !item.content && item.agent_thoughts && item.agent_thoughts?.length > 0 && !item.agent_thoughts.some(item => item.thought === '[DONE]')
|
||||
return <Answer
|
||||
key={item.id}
|
||||
item={item}
|
||||
@@ -524,6 +171,9 @@ const Chat: FC<IChatProps> = ({
|
||||
displayScene={displayScene ?? 'web'}
|
||||
isResponsing={isResponsing && isLast}
|
||||
answerIconClassName={answerIconClassName}
|
||||
thoughts={thoughts}
|
||||
isThinking={isThinking}
|
||||
dataSets={dataSets}
|
||||
/>
|
||||
}
|
||||
return <Question key={item.id} id={item.id} content={item.content} more={item.more} useCurrentUserAvatar={useCurrentUserAvatar} />
|
||||
@@ -532,7 +182,8 @@ const Chat: FC<IChatProps> = ({
|
||||
{
|
||||
!isHideSendInput && (
|
||||
<div className={cn(!feedbackDisabled && '!left-3.5 !right-3.5', 'absolute z-10 bottom-0 left-0 right-0')}>
|
||||
{(isResponsing && canStopResponsing) && (
|
||||
{/* Thinking is sync and can not be stopped */}
|
||||
{(isResponsing && canStopResponsing && !!chatList[chatList.length - 1]?.content) && (
|
||||
<div className='flex justify-center mb-4'>
|
||||
<Button className='flex items-center space-x-1 bg-white' onClick={() => abortResponsing?.()}>
|
||||
{stopIcon}
|
||||
@@ -560,7 +211,7 @@ const Chat: FC<IChatProps> = ({
|
||||
{/* has scrollbar would hide part of first item */}
|
||||
<div ref={suggestionListRef} className={cn(!hasScrollbar && 'justify-center', 'flex overflow-x-auto pb-2')}>
|
||||
{suggestionList?.map((item, index) => (
|
||||
<div className='shrink-0 flex justify-center mr-2'>
|
||||
<div key={item} className='shrink-0 flex justify-center mr-2'>
|
||||
<Button
|
||||
key={index}
|
||||
onClick={() => setQuery(item)}
|
||||
|
||||
19
web/app/components/app/chat/more-info/index.tsx
Normal file
19
web/app/components/app/chat/more-info/index.tsx
Normal file
@@ -0,0 +1,19 @@
|
||||
'use client'
|
||||
import type { FC } from 'react'
|
||||
import React from 'react'
|
||||
import { useTranslation } from 'react-i18next'
|
||||
import type { MessageMore } from '../type'
|
||||
import { formatNumber } from '@/utils/format'
|
||||
|
||||
export type IMoreInfoProps = { more: MessageMore; isQuestion: boolean }
|
||||
|
||||
const MoreInfo: FC<IMoreInfoProps> = ({ more, isQuestion }) => {
|
||||
const { t } = useTranslation()
|
||||
return (<div className={`mt-1 space-x-2 text-xs text-gray-400 ${isQuestion ? 'mr-2 text-right ' : 'ml-2 text-left float-right'}`}>
|
||||
<span>{`${t('appLog.detail.timeConsuming')} ${more.latency}${t('appLog.detail.second')}`}</span>
|
||||
<span>{`${t('appLog.detail.tokenCost')} ${formatNumber(more.tokens)}`}</span>
|
||||
<span>· </span>
|
||||
<span>{more.time} </span>
|
||||
</div>)
|
||||
}
|
||||
export default React.memo(MoreInfo)
|
||||
14
web/app/components/app/chat/operation/index.tsx
Normal file
14
web/app/components/app/chat/operation/index.tsx
Normal file
@@ -0,0 +1,14 @@
|
||||
'use client'
|
||||
import React from 'react'
|
||||
|
||||
const OperationBtn = ({ innerContent, onClick, className }: { innerContent: React.ReactNode; onClick?: () => void; className?: string }) => (
|
||||
<div
|
||||
className={`relative box-border flex items-center justify-center h-7 w-7 p-0.5 rounded-lg bg-white cursor-pointer text-gray-500 hover:text-gray-800 ${className ?? ''}`}
|
||||
style={{ boxShadow: '0px 4px 6px -1px rgba(0, 0, 0, 0.1), 0px 2px 4px -2px rgba(0, 0, 0, 0.05)' }}
|
||||
onClick={onClick && onClick}
|
||||
>
|
||||
{innerContent}
|
||||
</div>
|
||||
)
|
||||
|
||||
export default OperationBtn
|
||||
40
web/app/components/app/chat/question/index.tsx
Normal file
40
web/app/components/app/chat/question/index.tsx
Normal file
@@ -0,0 +1,40 @@
|
||||
'use client'
|
||||
import type { FC } from 'react'
|
||||
import React from 'react'
|
||||
import { useContext } from 'use-context-selector'
|
||||
import s from '../style.module.css'
|
||||
import type { IChatItem } from '../type'
|
||||
import MoreInfo from '../more-info'
|
||||
import AppContext from '@/context/app-context'
|
||||
import { Markdown } from '@/app/components/base/markdown'
|
||||
|
||||
type IQuestionProps = Pick<IChatItem, 'id' | 'content' | 'more' | 'useCurrentUserAvatar'>
|
||||
|
||||
const Question: FC<IQuestionProps> = ({ id, content, more, useCurrentUserAvatar }) => {
|
||||
const { userProfile } = useContext(AppContext)
|
||||
const userName = userProfile?.name
|
||||
return (
|
||||
<div className='flex items-start justify-end' key={id}>
|
||||
<div className={s.questionWrapWrap}>
|
||||
<div className={`${s.question} relative text-sm text-gray-900`}>
|
||||
<div
|
||||
className={'mr-2 py-3 px-4 bg-blue-500 rounded-tl-2xl rounded-b-2xl'}
|
||||
>
|
||||
<Markdown content={content} />
|
||||
</div>
|
||||
</div>
|
||||
{more && <MoreInfo more={more} isQuestion={true} />}
|
||||
</div>
|
||||
{useCurrentUserAvatar
|
||||
? (
|
||||
<div className='w-10 h-10 shrink-0 leading-10 text-center mr-2 rounded-full bg-primary-600 text-white'>
|
||||
{userName?.[0].toLocaleUpperCase()}
|
||||
</div>
|
||||
)
|
||||
: (
|
||||
<div className={`${s.questionIcon} w-10 h-10 shrink-0 `}></div>
|
||||
)}
|
||||
</div>
|
||||
)
|
||||
}
|
||||
export default React.memo(Question)
|
||||
92
web/app/components/app/chat/thought/index.tsx
Normal file
92
web/app/components/app/chat/thought/index.tsx
Normal file
@@ -0,0 +1,92 @@
|
||||
'use client'
|
||||
import type { FC } from 'react'
|
||||
import React from 'react'
|
||||
import cn from 'classnames'
|
||||
import { useTranslation } from 'react-i18next'
|
||||
import type { ThoughtItem } from '../type'
|
||||
import s from './style.module.css'
|
||||
import { DataSet as DataSetIcon, Loading as LodingIcon, Search, ThoughtList, WebReader } from '@/app/components/base/icons/src/public/thought'
|
||||
import { ChevronDown } from '@/app/components/base/icons/src/vender/line/arrows'
|
||||
import type { DataSet } from '@/models/datasets'
|
||||
|
||||
export type IThoughtProps = {
|
||||
list: ThoughtItem[]
|
||||
isThinking?: boolean
|
||||
dataSets?: DataSet[]
|
||||
}
|
||||
|
||||
const getIcon = (toolId: string) => {
|
||||
switch (toolId) {
|
||||
case 'dataset':
|
||||
return <DataSetIcon />
|
||||
case 'web_reader':
|
||||
return <WebReader />
|
||||
default:
|
||||
return <Search />
|
||||
}
|
||||
}
|
||||
|
||||
const Thought: FC<IThoughtProps> = ({
|
||||
list,
|
||||
isThinking,
|
||||
dataSets,
|
||||
}) => {
|
||||
const { t } = useTranslation()
|
||||
const [isShowDetail, setIsShowDetail] = React.useState(false)
|
||||
|
||||
const getThoughtText = (item: ThoughtItem) => {
|
||||
try {
|
||||
const input = JSON.parse(item.tool_input)
|
||||
|
||||
switch (item.tool) {
|
||||
case 'dataset':
|
||||
// eslint-disable-next-line no-case-declarations
|
||||
const datasetName = dataSets?.find(item => item.id === input.dataset_id)?.name || 'unknown dataset'
|
||||
return t('explore.universalChat.thought.res.dataset').replace('{datasetName}', `<span class="text-gray-700">${datasetName}</span>`)
|
||||
case 'web_reader':
|
||||
return t(`explore.universalChat.thought.res.webReader.${!input.cursor ? 'normal' : 'hasPageInfo'}`).replace('{url}', `<a href="${input.url}" class="text-[#155EEF]">${input.url}</a>`)
|
||||
case 'google_search':
|
||||
return t('explore.universalChat.thought.res.google', { query: input.query })
|
||||
case 'wikipedia':
|
||||
return t('explore.universalChat.thought.res.wikipedia', { query: input.query })
|
||||
case 'current_datetime':
|
||||
return t('explore.universalChat.thought.res.date')
|
||||
default:
|
||||
return `Unknown tool: ${item.tool}`
|
||||
}
|
||||
}
|
||||
catch (error) {
|
||||
console.error(error)
|
||||
return item
|
||||
}
|
||||
}
|
||||
const renderItem = (item: ThoughtItem) => (
|
||||
<div className='flex space-x-1 py-[3px] leading-[18px]' key={item.id}>
|
||||
<div className='flex items-center h-[18px] shrink-0'>{getIcon(item.tool)}</div>
|
||||
<div dangerouslySetInnerHTML={{
|
||||
__html: getThoughtText(item),
|
||||
// item.thought.replace(urlRegex, (url) => {
|
||||
// return `<a href="${url}" class="text-[#155EEF]">${url}</a>`
|
||||
// }),
|
||||
}}></div>
|
||||
</div>
|
||||
)
|
||||
return (
|
||||
<div className={cn(s.wrap, !isShowDetail && s.wrapHoverEffect, 'inline-block mb-2 px-2 py-0.5 rounded-md text-xs text-gray-500 font-medium')} >
|
||||
<div className='flex items-center h-6 space-x-1 cursor-pointer' onClick={() => setIsShowDetail(!isShowDetail)} >
|
||||
{!isThinking ? <ThoughtList /> : <div className='animate-spin'><LodingIcon /></div>}
|
||||
<div dangerouslySetInnerHTML= {{
|
||||
__html: isThinking ? getThoughtText(list[list.length - 1]) : (t(`explore.universalChat.thought.${isShowDetail ? 'hide' : 'show'}`) + t('explore.universalChat.thought.processOfThought')),
|
||||
}}
|
||||
></div>
|
||||
<ChevronDown className={isShowDetail ? 'rotate-180' : '' } />
|
||||
</div>
|
||||
{isShowDetail && (
|
||||
<div>
|
||||
{list.map(item => renderItem(item))}
|
||||
</div>
|
||||
)}
|
||||
</div>
|
||||
)
|
||||
}
|
||||
export default React.memo(Thought)
|
||||
7
web/app/components/app/chat/thought/style.module.css
Normal file
7
web/app/components/app/chat/thought/style.module.css
Normal file
@@ -0,0 +1,7 @@
|
||||
.wrap {
|
||||
background-color: rgba(255, 255, 255, 0.92);
|
||||
}
|
||||
|
||||
.wrapHoverEffect:hover{
|
||||
box-shadow: 0px 1px 2px 0px rgba(16, 24, 40, 0.06), 0px 1px 3px 0px rgba(16, 24, 40, 0.1);
|
||||
}
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user