mirror of
https://github.com/langgenius/dify.git
synced 2026-01-08 23:34:11 +00:00
Compare commits
134 Commits
0.15.2
...
feat/upgra
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
295bbc4a8b | ||
|
|
a3d3e30e3a | ||
|
|
2b86465d4c | ||
|
|
6529240da6 | ||
|
|
0751ad1eeb | ||
|
|
786550bdc9 | ||
|
|
bde756a1ab | ||
|
|
423fb2d7bc | ||
|
|
f96b4f287a | ||
|
|
c00e7d3f65 | ||
|
|
1f38d4846b | ||
|
|
47a64610ca | ||
|
|
f0a845f0f9 | ||
|
|
abec23118d | ||
|
|
0957119550 | ||
|
|
f48fa3e4e8 | ||
|
|
5ffc58d6ca | ||
|
|
7d958635f0 | ||
|
|
33990426c1 | ||
|
|
9f3fc7ebf8 | ||
|
|
c8357da13b | ||
|
|
2290f14fb1 | ||
|
|
7796984444 | ||
|
|
75113c26c6 | ||
|
|
939a9ecd21 | ||
|
|
f307c7cd88 | ||
|
|
33ecceb90c | ||
|
|
e0d1cab079 | ||
|
|
811d72a727 | ||
|
|
c3c575c2e1 | ||
|
|
c189629eca | ||
|
|
37117c22d4 | ||
|
|
b05e9d2ab4 | ||
|
|
0451333990 | ||
|
|
ab2e6c19a4 | ||
|
|
f7959bc887 | ||
|
|
45874c699d | ||
|
|
286cdc41ab | ||
|
|
78708eb5d5 | ||
|
|
cf36745770 | ||
|
|
6622c7f98d | ||
|
|
3112b74527 | ||
|
|
b3ae6b634f | ||
|
|
982bca5d40 | ||
|
|
c8dcde6cd0 | ||
|
|
8f9db61688 | ||
|
|
ebdbaf34e6 | ||
|
|
a081b1e79e | ||
|
|
38c31e64db | ||
|
|
ae6f67420c | ||
|
|
ca19bd31d4 | ||
|
|
413dfd5628 | ||
|
|
f9515901cc | ||
|
|
3f42fabff8 | ||
|
|
1caa578771 | ||
|
|
b7c11c1818 | ||
|
|
3eb3db0663 | ||
|
|
be46f32056 | ||
|
|
6e5c915f96 | ||
|
|
04d13a8116 | ||
|
|
e638ede3f2 | ||
|
|
2348abe4bf | ||
|
|
f7e7a399d9 | ||
|
|
ba91f34636 | ||
|
|
16865d43a8 | ||
|
|
0d13aee15c | ||
|
|
49b4144ffd | ||
|
|
186e2d972e | ||
|
|
40dd63ecef | ||
|
|
6d66d6da15 | ||
|
|
03ec3513f3 | ||
|
|
87763fc234 | ||
|
|
f6c44cae2e | ||
|
|
da2ee04fce | ||
|
|
7673c36af3 | ||
|
|
9457b2af2f | ||
|
|
7203991032 | ||
|
|
5a685f7156 | ||
|
|
a6a25030ad | ||
|
|
00458a31d5 | ||
|
|
c6ddf6d6cc | ||
|
|
34b21b3065 | ||
|
|
8fbb355cd2 | ||
|
|
e8b3b7e578 | ||
|
|
59ca44f493 | ||
|
|
9e1457c2c3 | ||
|
|
fac83e14bc | ||
|
|
a97cec57e4 | ||
|
|
38c10b47d3 | ||
|
|
1a2523fd15 | ||
|
|
03243cb422 | ||
|
|
2ad7ee0344 | ||
|
|
55ce3618ce | ||
|
|
e9e34c1ab2 | ||
|
|
d4c916b496 | ||
|
|
8fbc9c9342 | ||
|
|
1b6fd9dfe8 | ||
|
|
304467e3f5 | ||
|
|
7452032d81 | ||
|
|
87e2048f1b | ||
|
|
d876084392 | ||
|
|
840729afa5 | ||
|
|
941ad03f3c | ||
|
|
d73d191f99 | ||
|
|
c2664e0283 | ||
|
|
ee61cede4e | ||
|
|
b47669b80b | ||
|
|
c0d0c63592 | ||
|
|
b09c39c8dc | ||
|
|
b4b09ddc3c | ||
|
|
d0a21086bd | ||
|
|
d44882c1b5 | ||
|
|
23c68efa2d | ||
|
|
560c5de1b7 | ||
|
|
5d91dbd000 | ||
|
|
6c31ee36cd | ||
|
|
edc29780ed | ||
|
|
aad7e4dd1c | ||
|
|
a6a727e8a4 | ||
|
|
d1fc65fabc | ||
|
|
d4be5ef9de | ||
|
|
1374be5a31 | ||
|
|
b2bbc28580 | ||
|
|
59b3e672aa | ||
|
|
a2f8bce8f5 | ||
|
|
a2b9adb3a2 | ||
|
|
28067640b5 | ||
|
|
da67916843 | ||
|
|
e54ce479ad | ||
|
|
6024d8a42d | ||
|
|
f565f08aa0 | ||
|
|
fd4afe09f8 | ||
|
|
dd0904f95c | ||
|
|
4c3076f2a4 |
3
.github/workflows/api-tests.yml
vendored
3
.github/workflows/api-tests.yml
vendored
@@ -26,6 +26,9 @@ jobs:
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
persist-credentials: false
|
||||
|
||||
- name: Setup Poetry and Python ${{ matrix.python-version }}
|
||||
uses: ./.github/actions/setup-poetry
|
||||
|
||||
15
.github/workflows/build-push.yml
vendored
15
.github/workflows/build-push.yml
vendored
@@ -79,10 +79,12 @@ jobs:
|
||||
cache-to: type=gha,mode=max,scope=${{ matrix.service_name }}
|
||||
|
||||
- name: Export digest
|
||||
env:
|
||||
DIGEST: ${{ steps.build.outputs.digest }}
|
||||
run: |
|
||||
mkdir -p /tmp/digests
|
||||
digest="${{ steps.build.outputs.digest }}"
|
||||
touch "/tmp/digests/${digest#sha256:}"
|
||||
sanitized_digest=${DIGEST#sha256:}
|
||||
touch "/tmp/digests/${sanitized_digest}"
|
||||
|
||||
- name: Upload digest
|
||||
uses: actions/upload-artifact@v4
|
||||
@@ -132,10 +134,15 @@ jobs:
|
||||
|
||||
- name: Create manifest list and push
|
||||
working-directory: /tmp/digests
|
||||
env:
|
||||
IMAGE_NAME: ${{ env[matrix.image_name_env] }}
|
||||
run: |
|
||||
docker buildx imagetools create $(jq -cr '.tags | map("-t " + .) | join(" ")' <<< "$DOCKER_METADATA_OUTPUT_JSON") \
|
||||
$(printf '${{ env[matrix.image_name_env] }}@sha256:%s ' *)
|
||||
$(printf "$IMAGE_NAME@sha256:%s " *)
|
||||
|
||||
- name: Inspect image
|
||||
env:
|
||||
IMAGE_NAME: ${{ env[matrix.image_name_env] }}
|
||||
IMAGE_VERSION: ${{ steps.meta.outputs.version }}
|
||||
run: |
|
||||
docker buildx imagetools inspect ${{ env[matrix.image_name_env] }}:${{ steps.meta.outputs.version }}
|
||||
docker buildx imagetools inspect "$IMAGE_NAME:$IMAGE_VERSION"
|
||||
|
||||
3
.github/workflows/db-migration-test.yml
vendored
3
.github/workflows/db-migration-test.yml
vendored
@@ -19,6 +19,9 @@ jobs:
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
persist-credentials: false
|
||||
|
||||
- name: Setup Poetry and Python
|
||||
uses: ./.github/actions/setup-poetry
|
||||
|
||||
47
.github/workflows/docker-build.yml
vendored
Normal file
47
.github/workflows/docker-build.yml
vendored
Normal file
@@ -0,0 +1,47 @@
|
||||
name: Build docker image
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
branches:
|
||||
- "main"
|
||||
paths:
|
||||
- api/Dockerfile
|
||||
- web/Dockerfile
|
||||
|
||||
concurrency:
|
||||
group: docker-build-${{ github.head_ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
build-docker:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- service_name: "api-amd64"
|
||||
platform: linux/amd64
|
||||
context: "api"
|
||||
- service_name: "api-arm64"
|
||||
platform: linux/arm64
|
||||
context: "api"
|
||||
- service_name: "web-amd64"
|
||||
platform: linux/amd64
|
||||
context: "web"
|
||||
- service_name: "web-arm64"
|
||||
platform: linux/arm64
|
||||
context: "web"
|
||||
steps:
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v3
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
- name: Build Docker Image
|
||||
uses: docker/build-push-action@v6
|
||||
with:
|
||||
push: false
|
||||
context: "{{defaultContext}}:${{ matrix.context }}"
|
||||
platforms: ${{ matrix.platform }}
|
||||
cache-from: type=gha
|
||||
cache-to: type=gha,mode=max
|
||||
2
.github/workflows/expose_service_ports.sh
vendored
2
.github/workflows/expose_service_ports.sh
vendored
@@ -9,6 +9,6 @@ yq eval '.services["pgvecto-rs"].ports += ["5431:5432"]' -i docker/docker-compos
|
||||
yq eval '.services["elasticsearch"].ports += ["9200:9200"]' -i docker/docker-compose.yaml
|
||||
yq eval '.services.couchbase-server.ports += ["8091-8096:8091-8096"]' -i docker/docker-compose.yaml
|
||||
yq eval '.services.couchbase-server.ports += ["11210:11210"]' -i docker/docker-compose.yaml
|
||||
yq eval '.services.tidb.ports += ["4000:4000"]' -i docker/docker-compose.yaml
|
||||
yq eval '.services.tidb.ports += ["4000:4000"]' -i docker/tidb/docker-compose.yaml
|
||||
|
||||
echo "Ports exposed for sandbox, weaviate, tidb, qdrant, chroma, milvus, pgvector, pgvecto-rs, elasticsearch, couchbase"
|
||||
|
||||
12
.github/workflows/style.yml
vendored
12
.github/workflows/style.yml
vendored
@@ -17,6 +17,9 @@ jobs:
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
persist-credentials: false
|
||||
|
||||
- name: Check changed files
|
||||
id: changed-files
|
||||
@@ -59,6 +62,9 @@ jobs:
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
persist-credentials: false
|
||||
|
||||
- name: Check changed files
|
||||
id: changed-files
|
||||
@@ -89,6 +95,9 @@ jobs:
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
persist-credentials: false
|
||||
|
||||
- name: Check changed files
|
||||
id: changed-files
|
||||
@@ -117,6 +126,9 @@ jobs:
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
persist-credentials: false
|
||||
|
||||
- name: Check changed files
|
||||
id: changed-files
|
||||
|
||||
3
.github/workflows/tool-test-sdks.yaml
vendored
3
.github/workflows/tool-test-sdks.yaml
vendored
@@ -26,6 +26,9 @@ jobs:
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
persist-credentials: false
|
||||
|
||||
- name: Use Node.js ${{ matrix.node-version }}
|
||||
uses: actions/setup-node@v4
|
||||
|
||||
@@ -16,6 +16,7 @@ jobs:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 2 # last 2 commits
|
||||
persist-credentials: false
|
||||
|
||||
- name: Check for file changes in i18n/en-US
|
||||
id: check_files
|
||||
|
||||
17
.github/workflows/vdb-tests.yml
vendored
17
.github/workflows/vdb-tests.yml
vendored
@@ -28,6 +28,9 @@ jobs:
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
persist-credentials: false
|
||||
|
||||
- name: Setup Poetry and Python ${{ matrix.python-version }}
|
||||
uses: ./.github/actions/setup-poetry
|
||||
@@ -51,7 +54,15 @@ jobs:
|
||||
- name: Expose Service Ports
|
||||
run: sh .github/workflows/expose_service_ports.sh
|
||||
|
||||
- name: Set up Vector Stores (TiDB, Weaviate, Qdrant, PGVector, Milvus, PgVecto-RS, Chroma, MyScale, ElasticSearch, Couchbase)
|
||||
- name: Set up Vector Store (TiDB)
|
||||
uses: hoverkraft-tech/compose-action@v2.0.2
|
||||
with:
|
||||
compose-file: docker/tidb/docker-compose.yaml
|
||||
services: |
|
||||
tidb
|
||||
tiflash
|
||||
|
||||
- name: Set up Vector Stores (Weaviate, Qdrant, PGVector, Milvus, PgVecto-RS, Chroma, MyScale, ElasticSearch, Couchbase)
|
||||
uses: hoverkraft-tech/compose-action@v2.0.2
|
||||
with:
|
||||
compose-file: |
|
||||
@@ -67,7 +78,9 @@ jobs:
|
||||
pgvector
|
||||
chroma
|
||||
elasticsearch
|
||||
tidb
|
||||
|
||||
- name: Check TiDB Ready
|
||||
run: poetry run -P api python api/tests/integration_tests/vdb/tidb_vector/check_tiflash_ready.py
|
||||
|
||||
- name: Test Vector Stores
|
||||
run: poetry run -P api bash dev/pytest/pytest_vdb.sh
|
||||
|
||||
3
.github/workflows/web-tests.yml
vendored
3
.github/workflows/web-tests.yml
vendored
@@ -22,6 +22,9 @@ jobs:
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
persist-credentials: false
|
||||
|
||||
- name: Check changed files
|
||||
id: changed-files
|
||||
|
||||
1
.gitignore
vendored
1
.gitignore
vendored
@@ -163,6 +163,7 @@ docker/volumes/db/data/*
|
||||
docker/volumes/redis/data/*
|
||||
docker/volumes/weaviate/*
|
||||
docker/volumes/qdrant/*
|
||||
docker/tidb/volumes/*
|
||||
docker/volumes/etcd/*
|
||||
docker/volumes/minio/*
|
||||
docker/volumes/milvus/*
|
||||
|
||||
69
README.md
69
README.md
@@ -25,6 +25,9 @@
|
||||
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
|
||||
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
|
||||
alt="follow on X(Twitter)"></a>
|
||||
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
|
||||
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
|
||||
alt="follow on LinkedIn"></a>
|
||||
<a href="https://hub.docker.com/u/langgenius" target="_blank">
|
||||
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
|
||||
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
|
||||
@@ -105,6 +108,72 @@ Please refer to our [FAQ](https://docs.dify.ai/getting-started/install-self-host
|
||||
**7. Backend-as-a-Service**:
|
||||
All of Dify's offerings come with corresponding APIs, so you could effortlessly integrate Dify into your own business logic.
|
||||
|
||||
## Feature Comparison
|
||||
<table style="width: 100%;">
|
||||
<tr>
|
||||
<th align="center">Feature</th>
|
||||
<th align="center">Dify.AI</th>
|
||||
<th align="center">LangChain</th>
|
||||
<th align="center">Flowise</th>
|
||||
<th align="center">OpenAI Assistants API</th>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="center">Programming Approach</td>
|
||||
<td align="center">API + App-oriented</td>
|
||||
<td align="center">Python Code</td>
|
||||
<td align="center">App-oriented</td>
|
||||
<td align="center">API-oriented</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="center">Supported LLMs</td>
|
||||
<td align="center">Rich Variety</td>
|
||||
<td align="center">Rich Variety</td>
|
||||
<td align="center">Rich Variety</td>
|
||||
<td align="center">OpenAI-only</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="center">RAG Engine</td>
|
||||
<td align="center">✅</td>
|
||||
<td align="center">✅</td>
|
||||
<td align="center">✅</td>
|
||||
<td align="center">✅</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="center">Agent</td>
|
||||
<td align="center">✅</td>
|
||||
<td align="center">✅</td>
|
||||
<td align="center">❌</td>
|
||||
<td align="center">✅</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="center">Workflow</td>
|
||||
<td align="center">✅</td>
|
||||
<td align="center">❌</td>
|
||||
<td align="center">✅</td>
|
||||
<td align="center">❌</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="center">Observability</td>
|
||||
<td align="center">✅</td>
|
||||
<td align="center">✅</td>
|
||||
<td align="center">❌</td>
|
||||
<td align="center">❌</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="center">Enterprise Feature (SSO/Access control)</td>
|
||||
<td align="center">✅</td>
|
||||
<td align="center">❌</td>
|
||||
<td align="center">❌</td>
|
||||
<td align="center">❌</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="center">Local Deployment</td>
|
||||
<td align="center">✅</td>
|
||||
<td align="center">✅</td>
|
||||
<td align="center">✅</td>
|
||||
<td align="center">❌</td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
## Using Dify
|
||||
|
||||
|
||||
@@ -21,6 +21,9 @@
|
||||
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
|
||||
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
|
||||
alt="follow on X(Twitter)"></a>
|
||||
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
|
||||
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
|
||||
alt="follow on LinkedIn"></a>
|
||||
<a href="https://hub.docker.com/u/langgenius" target="_blank">
|
||||
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
|
||||
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
|
||||
|
||||
@@ -21,6 +21,9 @@
|
||||
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
|
||||
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
|
||||
alt="follow on X(Twitter)"></a>
|
||||
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
|
||||
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
|
||||
alt="follow on LinkedIn"></a>
|
||||
<a href="https://hub.docker.com/u/langgenius" target="_blank">
|
||||
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
|
||||
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
|
||||
|
||||
@@ -21,6 +21,9 @@
|
||||
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
|
||||
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
|
||||
alt="seguir en X(Twitter)"></a>
|
||||
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
|
||||
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
|
||||
alt="seguir en LinkedIn"></a>
|
||||
<a href="https://hub.docker.com/u/langgenius" target="_blank">
|
||||
<img alt="Descargas de Docker" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
|
||||
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
|
||||
|
||||
@@ -21,6 +21,9 @@
|
||||
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
|
||||
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
|
||||
alt="suivre sur X(Twitter)"></a>
|
||||
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
|
||||
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
|
||||
alt="suivre sur LinkedIn"></a>
|
||||
<a href="https://hub.docker.com/u/langgenius" target="_blank">
|
||||
<img alt="Tirages Docker" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
|
||||
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
|
||||
|
||||
@@ -21,6 +21,9 @@
|
||||
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
|
||||
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
|
||||
alt="X(Twitter)でフォロー"></a>
|
||||
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
|
||||
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
|
||||
alt="LinkedInでフォロー"></a>
|
||||
<a href="https://hub.docker.com/u/langgenius" target="_blank">
|
||||
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
|
||||
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
|
||||
|
||||
@@ -21,6 +21,9 @@
|
||||
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
|
||||
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
|
||||
alt="follow on X(Twitter)"></a>
|
||||
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
|
||||
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
|
||||
alt="follow on LinkedIn"></a>
|
||||
<a href="https://hub.docker.com/u/langgenius" target="_blank">
|
||||
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
|
||||
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
|
||||
@@ -84,9 +87,7 @@ Dify is an open-source LLM app development platform. Its intuitive interface com
|
||||
|
||||
## Feature Comparison
|
||||
<table style="width: 100%;">
|
||||
<tr
|
||||
|
||||
>
|
||||
<tr>
|
||||
<th align="center">Feature</th>
|
||||
<th align="center">Dify.AI</th>
|
||||
<th align="center">LangChain</th>
|
||||
|
||||
@@ -21,6 +21,9 @@
|
||||
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
|
||||
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
|
||||
alt="follow on X(Twitter)"></a>
|
||||
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
|
||||
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
|
||||
alt="follow on LinkedIn"></a>
|
||||
<a href="https://hub.docker.com/u/langgenius" target="_blank">
|
||||
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
|
||||
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
|
||||
|
||||
@@ -25,6 +25,9 @@
|
||||
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
|
||||
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
|
||||
alt="follow on X(Twitter)"></a>
|
||||
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
|
||||
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
|
||||
alt="follow on LinkedIn"></a>
|
||||
<a href="https://hub.docker.com/u/langgenius" target="_blank">
|
||||
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
|
||||
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
|
||||
|
||||
72
README_SI.md
72
README_SI.md
@@ -22,6 +22,9 @@
|
||||
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
|
||||
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
|
||||
alt="follow on X(Twitter)"></a>
|
||||
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
|
||||
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
|
||||
alt="follow on LinkedIn"></a>
|
||||
<a href="https://hub.docker.com/u/langgenius" target="_blank">
|
||||
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
|
||||
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
|
||||
@@ -103,6 +106,73 @@ Prosimo, glejte naša pogosta vprašanja [FAQ](https://docs.dify.ai/getting-star
|
||||
**7. Backend-as-a-Service**:
|
||||
AVse ponudbe Difyja so opremljene z ustreznimi API-ji, tako da lahko Dify brez težav integrirate v svojo poslovno logiko.
|
||||
|
||||
## Primerjava Funkcij
|
||||
|
||||
<table style="width: 100%;">
|
||||
<tr>
|
||||
<th align="center">Funkcija</th>
|
||||
<th align="center">Dify.AI</th>
|
||||
<th align="center">LangChain</th>
|
||||
<th align="center">Flowise</th>
|
||||
<th align="center">OpenAI Assistants API</th>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="center">Programski pristop</td>
|
||||
<td align="center">API + usmerjeno v aplikacije</td>
|
||||
<td align="center">Python koda</td>
|
||||
<td align="center">Usmerjeno v aplikacije</td>
|
||||
<td align="center">Usmerjeno v API</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="center">Podprti LLM-ji</td>
|
||||
<td align="center">Bogata izbira</td>
|
||||
<td align="center">Bogata izbira</td>
|
||||
<td align="center">Bogata izbira</td>
|
||||
<td align="center">Samo OpenAI</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="center">RAG pogon</td>
|
||||
<td align="center">✅</td>
|
||||
<td align="center">✅</td>
|
||||
<td align="center">✅</td>
|
||||
<td align="center">✅</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="center">Agent</td>
|
||||
<td align="center">✅</td>
|
||||
<td align="center">✅</td>
|
||||
<td align="center">❌</td>
|
||||
<td align="center">✅</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="center">Potek dela</td>
|
||||
<td align="center">✅</td>
|
||||
<td align="center">❌</td>
|
||||
<td align="center">✅</td>
|
||||
<td align="center">❌</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="center">Spremljanje</td>
|
||||
<td align="center">✅</td>
|
||||
<td align="center">✅</td>
|
||||
<td align="center">❌</td>
|
||||
<td align="center">❌</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="center">Funkcija za podjetja (SSO/nadzor dostopa)</td>
|
||||
<td align="center">✅</td>
|
||||
<td align="center">❌</td>
|
||||
<td align="center">❌</td>
|
||||
<td align="center">❌</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="center">Lokalna namestitev</td>
|
||||
<td align="center">✅</td>
|
||||
<td align="center">✅</td>
|
||||
<td align="center">✅</td>
|
||||
<td align="center">❌</td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
## Uporaba Dify
|
||||
|
||||
@@ -184,4 +254,4 @@ Zaradi zaščite vaše zasebnosti se izogibajte objavljanju varnostnih vprašanj
|
||||
|
||||
## Licenca
|
||||
|
||||
To skladišče je na voljo pod [odprtokodno licenco Dify](LICENSE) , ki je v bistvu Apache 2.0 z nekaj dodatnimi omejitvami.
|
||||
To skladišče je na voljo pod [odprtokodno licenco Dify](LICENSE) , ki je v bistvu Apache 2.0 z nekaj dodatnimi omejitvami.
|
||||
|
||||
@@ -21,6 +21,9 @@
|
||||
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
|
||||
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
|
||||
alt="X(Twitter)'da takip et"></a>
|
||||
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
|
||||
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
|
||||
alt="LinkedIn'da takip et"></a>
|
||||
<a href="https://hub.docker.com/u/langgenius" target="_blank">
|
||||
<img alt="Docker Çekmeleri" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
|
||||
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
|
||||
@@ -62,8 +65,6 @@ Görsel bir arayüz üzerinde güçlü AI iş akışları oluşturun ve test edi
|
||||

|
||||
|
||||
|
||||
Özür dilerim, haklısınız. Daha anlamlı ve akıcı bir çeviri yapmaya çalışayım. İşte güncellenmiş çeviri:
|
||||
|
||||
**3. Prompt IDE**:
|
||||
Komut istemlerini oluşturmak, model performansını karşılaştırmak ve sohbet tabanlı uygulamalara metin-konuşma gibi ek özellikler eklemek için kullanıcı dostu bir arayüz.
|
||||
|
||||
@@ -150,8 +151,6 @@ Görsel bir arayüz üzerinde güçlü AI iş akışları oluşturun ve test edi
|
||||
## Dify'ı Kullanma
|
||||
|
||||
- **Cloud </br>**
|
||||
İşte verdiğiniz metnin Türkçe çevirisi, kod bloğu içinde:
|
||||
-
|
||||
Herkesin sıfır kurulumla denemesi için bir [Dify Cloud](https://dify.ai) hizmeti sunuyoruz. Bu hizmet, kendi kendine dağıtılan versiyonun tüm yeteneklerini sağlar ve sandbox planında 200 ücretsiz GPT-4 çağrısı içerir.
|
||||
|
||||
- **Dify Topluluk Sürümünü Kendi Sunucunuzda Barındırma</br>**
|
||||
@@ -177,8 +176,6 @@ GitHub'da Dify'a yıldız verin ve yeni sürümlerden anında haberdar olun.
|
||||
>- RAM >= 4GB
|
||||
|
||||
</br>
|
||||
İşte verdiğiniz metnin Türkçe çevirisi, kod bloğu içinde:
|
||||
|
||||
Dify sunucusunu başlatmanın en kolay yolu, [docker-compose.yml](docker/docker-compose.yaml) dosyamızı çalıştırmaktır. Kurulum komutunu çalıştırmadan önce, makinenizde [Docker](https://docs.docker.com/get-docker/) ve [Docker Compose](https://docs.docker.com/compose/install/)'un kurulu olduğundan emin olun:
|
||||
|
||||
```bash
|
||||
|
||||
@@ -21,6 +21,9 @@
|
||||
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
|
||||
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
|
||||
alt="theo dõi trên X(Twitter)"></a>
|
||||
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
|
||||
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
|
||||
alt="theo dõi trên LinkedIn"></a>
|
||||
<a href="https://hub.docker.com/u/langgenius" target="_blank">
|
||||
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
|
||||
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
|
||||
|
||||
@@ -48,16 +48,18 @@ ENV TZ=UTC
|
||||
|
||||
WORKDIR /app/api
|
||||
|
||||
RUN apt-get update \
|
||||
&& apt-get install -y --no-install-recommends curl nodejs libgmp-dev libmpfr-dev libmpc-dev \
|
||||
# if you located in China, you can use aliyun mirror to speed up
|
||||
# && echo "deb http://mirrors.aliyun.com/debian testing main" > /etc/apt/sources.list \
|
||||
&& echo "deb http://deb.debian.org/debian testing main" > /etc/apt/sources.list \
|
||||
&& apt-get update \
|
||||
# For Security
|
||||
&& apt-get install -y --no-install-recommends expat=2.6.4-1 libldap-2.5-0=2.5.19+dfsg-1 perl=5.40.0-8 libsqlite3-0=3.46.1-1 zlib1g=1:1.3.dfsg+really1.3.1-1+b1 \
|
||||
# install a chinese font to support the use of tools like matplotlib
|
||||
&& apt-get install -y fonts-noto-cjk \
|
||||
RUN \
|
||||
apt-get update \
|
||||
# Install dependencies
|
||||
&& apt-get install -y --no-install-recommends \
|
||||
# basic environment
|
||||
curl nodejs libgmp-dev libmpfr-dev libmpc-dev \
|
||||
# For Security
|
||||
expat libldap-2.5-0 perl libsqlite3-0 zlib1g \
|
||||
# install a chinese font to support the use of tools like matplotlib
|
||||
fonts-noto-cjk \
|
||||
# install libmagic to support the use of python-magic guess MIMETYPE
|
||||
libmagic1 \
|
||||
&& apt-get autoremove -y \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
@@ -76,7 +78,6 @@ COPY . /app/api/
|
||||
COPY docker/entrypoint.sh /entrypoint.sh
|
||||
RUN chmod +x /entrypoint.sh
|
||||
|
||||
|
||||
ARG COMMIT_SHA
|
||||
ENV COMMIT_SHA=${COMMIT_SHA}
|
||||
|
||||
|
||||
@@ -37,7 +37,13 @@
|
||||
|
||||
4. Create environment.
|
||||
|
||||
Dify API service uses [Poetry](https://python-poetry.org/docs/) to manage dependencies. You can execute `poetry shell` to activate the environment.
|
||||
Dify API service uses [Poetry](https://python-poetry.org/docs/) to manage dependencies. First, you need to add the poetry shell plugin, if you don't have it already, in order to run in a virtual environment. [Note: Poetry shell is no longer a native command so you need to install the poetry plugin beforehand]
|
||||
|
||||
```bash
|
||||
poetry self add poetry-plugin-shell
|
||||
```
|
||||
|
||||
Then, You can execute `poetry shell` to activate the environment.
|
||||
|
||||
5. Install dependencies
|
||||
|
||||
|
||||
@@ -315,8 +315,8 @@ class HttpConfig(BaseSettings):
|
||||
)
|
||||
|
||||
RESPECT_XFORWARD_HEADERS_ENABLED: bool = Field(
|
||||
description="Enable or disable the X-Forwarded-For Proxy Fix middleware from Werkzeug"
|
||||
" to respect X-* headers to redirect clients",
|
||||
description="Enable handling of X-Forwarded-For, X-Forwarded-Proto, and X-Forwarded-Port headers"
|
||||
" when the app is behind a single trusted reverse proxy.",
|
||||
default=False,
|
||||
)
|
||||
|
||||
@@ -498,6 +498,11 @@ class AuthConfig(BaseSettings):
|
||||
default=86400,
|
||||
)
|
||||
|
||||
FORGOT_PASSWORD_LOCKOUT_DURATION: PositiveInt = Field(
|
||||
description="Time (in seconds) a user must wait before retrying password reset after exceeding the rate limit.",
|
||||
default=86400,
|
||||
)
|
||||
|
||||
|
||||
class ModerationConfig(BaseSettings):
|
||||
"""
|
||||
|
||||
@@ -1,9 +1,40 @@
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import Field, NonNegativeInt
|
||||
from pydantic import Field, NonNegativeInt, computed_field
|
||||
from pydantic_settings import BaseSettings
|
||||
|
||||
|
||||
class HostedCreditConfig(BaseSettings):
|
||||
HOSTED_MODEL_CREDIT_CONFIG: str = Field(
|
||||
description="Model credit configuration in format 'model:credits,model:credits', e.g., 'gpt-4:20,gpt-4o:10'",
|
||||
default="",
|
||||
)
|
||||
|
||||
def get_model_credits(self, model_name: str) -> int:
|
||||
"""
|
||||
Get credit value for a specific model name.
|
||||
Returns 1 if model is not found in configuration (default credit).
|
||||
|
||||
:param model_name: The name of the model to search for
|
||||
:return: The credit value for the model
|
||||
"""
|
||||
if not self.HOSTED_MODEL_CREDIT_CONFIG:
|
||||
return 1
|
||||
|
||||
try:
|
||||
credit_map = dict(
|
||||
item.strip().split(":", 1) for item in self.HOSTED_MODEL_CREDIT_CONFIG.split(",") if ":" in item
|
||||
)
|
||||
|
||||
# Search for matching model pattern
|
||||
for pattern, credit in credit_map.items():
|
||||
if pattern.strip() == model_name:
|
||||
return int(credit)
|
||||
return 1 # Default quota if no match found
|
||||
except (ValueError, AttributeError):
|
||||
return 1 # Return default quota if parsing fails
|
||||
|
||||
|
||||
class HostedOpenAiConfig(BaseSettings):
|
||||
"""
|
||||
Configuration for hosted OpenAI service
|
||||
@@ -202,5 +233,7 @@ class HostedServiceConfig(
|
||||
HostedZhipuAIConfig,
|
||||
# moderation
|
||||
HostedModerationConfig,
|
||||
# credit config
|
||||
HostedCreditConfig,
|
||||
):
|
||||
pass
|
||||
|
||||
@@ -9,7 +9,7 @@ class PackagingInfo(BaseSettings):
|
||||
|
||||
CURRENT_VERSION: str = Field(
|
||||
description="Dify version",
|
||||
default="0.15.2",
|
||||
default="0.15.3",
|
||||
)
|
||||
|
||||
COMMIT_SHA: str = Field(
|
||||
|
||||
@@ -15,7 +15,7 @@ AUDIO_EXTENSIONS.extend([ext.upper() for ext in AUDIO_EXTENSIONS])
|
||||
|
||||
if dify_config.ETL_TYPE == "Unstructured":
|
||||
DOCUMENT_EXTENSIONS = ["txt", "markdown", "md", "mdx", "pdf", "html", "htm", "xlsx", "xls"]
|
||||
DOCUMENT_EXTENSIONS.extend(("docx", "csv", "eml", "msg", "pptx", "xml", "epub"))
|
||||
DOCUMENT_EXTENSIONS.extend(("doc", "docx", "csv", "eml", "msg", "pptx", "xml", "epub"))
|
||||
if dify_config.UNSTRUCTURED_API_URL:
|
||||
DOCUMENT_EXTENSIONS.append("ppt")
|
||||
DOCUMENT_EXTENSIONS.extend([ext.upper() for ext in DOCUMENT_EXTENSIONS])
|
||||
|
||||
@@ -1,12 +1,32 @@
|
||||
import mimetypes
|
||||
import os
|
||||
import platform
|
||||
import re
|
||||
import urllib.parse
|
||||
import warnings
|
||||
from collections.abc import Mapping
|
||||
from typing import Any
|
||||
from uuid import uuid4
|
||||
|
||||
import httpx
|
||||
|
||||
try:
|
||||
import magic
|
||||
except ImportError:
|
||||
if platform.system() == "Windows":
|
||||
warnings.warn(
|
||||
"To use python-magic guess MIMETYPE, you need to run `pip install python-magic-bin`", stacklevel=2
|
||||
)
|
||||
elif platform.system() == "Darwin":
|
||||
warnings.warn("To use python-magic guess MIMETYPE, you need to run `brew install libmagic`", stacklevel=2)
|
||||
elif platform.system() == "Linux":
|
||||
warnings.warn(
|
||||
"To use python-magic guess MIMETYPE, you need to run `sudo apt-get install libmagic1`", stacklevel=2
|
||||
)
|
||||
else:
|
||||
warnings.warn("To use python-magic guess MIMETYPE, you need to install `libmagic`", stacklevel=2)
|
||||
magic = None # type: ignore
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from configs import dify_config
|
||||
@@ -47,6 +67,13 @@ def guess_file_info_from_response(response: httpx.Response):
|
||||
# If guessing fails, use Content-Type from response headers
|
||||
mimetype = response.headers.get("Content-Type", "application/octet-stream")
|
||||
|
||||
# Use python-magic to guess MIME type if still unknown or generic
|
||||
if mimetype == "application/octet-stream" and magic is not None:
|
||||
try:
|
||||
mimetype = magic.from_buffer(response.content[:1024], mime=True)
|
||||
except magic.MagicException:
|
||||
pass
|
||||
|
||||
extension = os.path.splitext(filename)[1]
|
||||
|
||||
# Ensure filename has an extension
|
||||
|
||||
@@ -59,3 +59,9 @@ class EmailCodeAccountDeletionRateLimitExceededError(BaseHTTPException):
|
||||
error_code = "email_code_account_deletion_rate_limit_exceeded"
|
||||
description = "Too many account deletion emails have been sent. Please try again in 5 minutes."
|
||||
code = 429
|
||||
|
||||
|
||||
class EmailPasswordResetLimitError(BaseHTTPException):
|
||||
error_code = "email_password_reset_limit"
|
||||
description = "Too many failed password reset attempts. Please try again in 24 hours."
|
||||
code = 429
|
||||
|
||||
@@ -6,7 +6,13 @@ from flask_restful import Resource, reqparse # type: ignore
|
||||
|
||||
from constants.languages import languages
|
||||
from controllers.console import api
|
||||
from controllers.console.auth.error import EmailCodeError, InvalidEmailError, InvalidTokenError, PasswordMismatchError
|
||||
from controllers.console.auth.error import (
|
||||
EmailCodeError,
|
||||
EmailPasswordResetLimitError,
|
||||
InvalidEmailError,
|
||||
InvalidTokenError,
|
||||
PasswordMismatchError,
|
||||
)
|
||||
from controllers.console.error import AccountInFreezeError, AccountNotFound, EmailSendIpLimitError
|
||||
from controllers.console.wraps import setup_required
|
||||
from events.tenant_event import tenant_was_created
|
||||
@@ -62,6 +68,10 @@ class ForgotPasswordCheckApi(Resource):
|
||||
|
||||
user_email = args["email"]
|
||||
|
||||
is_forgot_password_error_rate_limit = AccountService.is_forgot_password_error_rate_limit(args["email"])
|
||||
if is_forgot_password_error_rate_limit:
|
||||
raise EmailPasswordResetLimitError()
|
||||
|
||||
token_data = AccountService.get_reset_password_data(args["token"])
|
||||
if token_data is None:
|
||||
raise InvalidTokenError()
|
||||
@@ -70,8 +80,10 @@ class ForgotPasswordCheckApi(Resource):
|
||||
raise InvalidEmailError()
|
||||
|
||||
if args["code"] != token_data.get("code"):
|
||||
AccountService.add_forgot_password_error_rate_limit(args["email"])
|
||||
raise EmailCodeError()
|
||||
|
||||
AccountService.reset_forgot_password_error_rate_limit(args["email"])
|
||||
return {"is_valid": True, "email": token_data.get("email")}
|
||||
|
||||
|
||||
|
||||
@@ -620,7 +620,6 @@ class DatasetRetrievalSettingApi(Resource):
|
||||
match vector_type:
|
||||
case (
|
||||
VectorType.RELYT
|
||||
| VectorType.PGVECTOR
|
||||
| VectorType.TIDB_VECTOR
|
||||
| VectorType.CHROMA
|
||||
| VectorType.TENCENT
|
||||
|
||||
@@ -50,7 +50,7 @@ class MessageListApi(InstalledAppResource):
|
||||
|
||||
try:
|
||||
return MessageService.pagination_by_first_id(
|
||||
app_model, current_user, args["conversation_id"], args["first_id"], args["limit"], "desc"
|
||||
app_model, current_user, args["conversation_id"], args["first_id"], args["limit"]
|
||||
)
|
||||
except services.errors.conversation.ConversationNotExistsError:
|
||||
raise NotFound("Conversation Not Exists.")
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
import json
|
||||
|
||||
from flask_restful import Resource, reqparse # type: ignore
|
||||
|
||||
from controllers.console.wraps import setup_required
|
||||
@@ -29,4 +31,34 @@ class EnterpriseWorkspace(Resource):
|
||||
return {"message": "enterprise workspace created."}
|
||||
|
||||
|
||||
class EnterpriseWorkspaceNoOwnerEmail(Resource):
|
||||
@setup_required
|
||||
@inner_api_only
|
||||
def post(self):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument("name", type=str, required=True, location="json")
|
||||
args = parser.parse_args()
|
||||
|
||||
tenant = TenantService.create_tenant(args["name"], is_from_dashboard=True)
|
||||
|
||||
tenant_was_created.send(tenant)
|
||||
|
||||
resp = {
|
||||
"id": tenant.id,
|
||||
"name": tenant.name,
|
||||
"encrypt_public_key": tenant.encrypt_public_key,
|
||||
"plan": tenant.plan,
|
||||
"status": tenant.status,
|
||||
"custom_config": json.loads(tenant.custom_config) if tenant.custom_config else {},
|
||||
"created_at": tenant.created_at.isoformat() + "Z" if tenant.created_at else None,
|
||||
"updated_at": tenant.updated_at.isoformat() + "Z" if tenant.updated_at else None,
|
||||
}
|
||||
|
||||
return {
|
||||
"message": "enterprise workspace created.",
|
||||
"tenant": resp,
|
||||
}
|
||||
|
||||
|
||||
api.add_resource(EnterpriseWorkspace, "/enterprise/workspace")
|
||||
api.add_resource(EnterpriseWorkspaceNoOwnerEmail, "/enterprise/workspace/ownerless")
|
||||
|
||||
@@ -18,6 +18,7 @@ from controllers.service_api.app.error import (
|
||||
from controllers.service_api.dataset.error import (
|
||||
ArchivedDocumentImmutableError,
|
||||
DocumentIndexingError,
|
||||
InvalidMetadataError,
|
||||
)
|
||||
from controllers.service_api.wraps import DatasetApiResource, cloud_edition_billing_resource_check
|
||||
from core.errors.error import ProviderTokenNotInitError
|
||||
@@ -50,6 +51,9 @@ class DocumentAddByTextApi(DatasetApiResource):
|
||||
"indexing_technique", type=str, choices=Dataset.INDEXING_TECHNIQUE_LIST, nullable=False, location="json"
|
||||
)
|
||||
parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
|
||||
parser.add_argument("doc_type", type=str, required=False, nullable=True, location="json")
|
||||
parser.add_argument("doc_metadata", type=dict, required=False, nullable=True, location="json")
|
||||
|
||||
args = parser.parse_args()
|
||||
dataset_id = str(dataset_id)
|
||||
tenant_id = str(tenant_id)
|
||||
@@ -61,6 +65,28 @@ class DocumentAddByTextApi(DatasetApiResource):
|
||||
if not dataset.indexing_technique and not args["indexing_technique"]:
|
||||
raise ValueError("indexing_technique is required.")
|
||||
|
||||
# Validate metadata if provided
|
||||
if args.get("doc_type") or args.get("doc_metadata"):
|
||||
if not args.get("doc_type") or not args.get("doc_metadata"):
|
||||
raise InvalidMetadataError("Both doc_type and doc_metadata must be provided when adding metadata")
|
||||
|
||||
if args["doc_type"] not in DocumentService.DOCUMENT_METADATA_SCHEMA:
|
||||
raise InvalidMetadataError(
|
||||
"Invalid doc_type. Must be one of: " + ", ".join(DocumentService.DOCUMENT_METADATA_SCHEMA.keys())
|
||||
)
|
||||
|
||||
if not isinstance(args["doc_metadata"], dict):
|
||||
raise InvalidMetadataError("doc_metadata must be a dictionary")
|
||||
|
||||
# Validate metadata schema based on doc_type
|
||||
if args["doc_type"] != "others":
|
||||
metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[args["doc_type"]]
|
||||
for key, value in args["doc_metadata"].items():
|
||||
if key in metadata_schema and not isinstance(value, metadata_schema[key]):
|
||||
raise InvalidMetadataError(f"Invalid type for metadata field {key}")
|
||||
# set to MetaDataConfig
|
||||
args["metadata"] = {"doc_type": args["doc_type"], "doc_metadata": args["doc_metadata"]}
|
||||
|
||||
text = args.get("text")
|
||||
name = args.get("name")
|
||||
if text is None or name is None:
|
||||
@@ -107,6 +133,8 @@ class DocumentUpdateByTextApi(DatasetApiResource):
|
||||
"doc_language", type=str, default="English", required=False, nullable=False, location="json"
|
||||
)
|
||||
parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
|
||||
parser.add_argument("doc_type", type=str, required=False, nullable=True, location="json")
|
||||
parser.add_argument("doc_metadata", type=dict, required=False, nullable=True, location="json")
|
||||
args = parser.parse_args()
|
||||
dataset_id = str(dataset_id)
|
||||
tenant_id = str(tenant_id)
|
||||
@@ -115,6 +143,32 @@ class DocumentUpdateByTextApi(DatasetApiResource):
|
||||
if not dataset:
|
||||
raise ValueError("Dataset is not exist.")
|
||||
|
||||
# indexing_technique is already set in dataset since this is an update
|
||||
args["indexing_technique"] = dataset.indexing_technique
|
||||
|
||||
# Validate metadata if provided
|
||||
if args.get("doc_type") or args.get("doc_metadata"):
|
||||
if not args.get("doc_type") or not args.get("doc_metadata"):
|
||||
raise InvalidMetadataError("Both doc_type and doc_metadata must be provided when adding metadata")
|
||||
|
||||
if args["doc_type"] not in DocumentService.DOCUMENT_METADATA_SCHEMA:
|
||||
raise InvalidMetadataError(
|
||||
"Invalid doc_type. Must be one of: " + ", ".join(DocumentService.DOCUMENT_METADATA_SCHEMA.keys())
|
||||
)
|
||||
|
||||
if not isinstance(args["doc_metadata"], dict):
|
||||
raise InvalidMetadataError("doc_metadata must be a dictionary")
|
||||
|
||||
# Validate metadata schema based on doc_type
|
||||
if args["doc_type"] != "others":
|
||||
metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[args["doc_type"]]
|
||||
for key, value in args["doc_metadata"].items():
|
||||
if key in metadata_schema and not isinstance(value, metadata_schema[key]):
|
||||
raise InvalidMetadataError(f"Invalid type for metadata field {key}")
|
||||
|
||||
# set to MetaDataConfig
|
||||
args["metadata"] = {"doc_type": args["doc_type"], "doc_metadata": args["doc_metadata"]}
|
||||
|
||||
if args["text"]:
|
||||
text = args.get("text")
|
||||
name = args.get("name")
|
||||
@@ -161,6 +215,30 @@ class DocumentAddByFileApi(DatasetApiResource):
|
||||
args["doc_form"] = "text_model"
|
||||
if "doc_language" not in args:
|
||||
args["doc_language"] = "English"
|
||||
|
||||
# Validate metadata if provided
|
||||
if args.get("doc_type") or args.get("doc_metadata"):
|
||||
if not args.get("doc_type") or not args.get("doc_metadata"):
|
||||
raise InvalidMetadataError("Both doc_type and doc_metadata must be provided when adding metadata")
|
||||
|
||||
if args["doc_type"] not in DocumentService.DOCUMENT_METADATA_SCHEMA:
|
||||
raise InvalidMetadataError(
|
||||
"Invalid doc_type. Must be one of: " + ", ".join(DocumentService.DOCUMENT_METADATA_SCHEMA.keys())
|
||||
)
|
||||
|
||||
if not isinstance(args["doc_metadata"], dict):
|
||||
raise InvalidMetadataError("doc_metadata must be a dictionary")
|
||||
|
||||
# Validate metadata schema based on doc_type
|
||||
if args["doc_type"] != "others":
|
||||
metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[args["doc_type"]]
|
||||
for key, value in args["doc_metadata"].items():
|
||||
if key in metadata_schema and not isinstance(value, metadata_schema[key]):
|
||||
raise InvalidMetadataError(f"Invalid type for metadata field {key}")
|
||||
|
||||
# set to MetaDataConfig
|
||||
args["metadata"] = {"doc_type": args["doc_type"], "doc_metadata": args["doc_metadata"]}
|
||||
|
||||
# get dataset info
|
||||
dataset_id = str(dataset_id)
|
||||
tenant_id = str(tenant_id)
|
||||
@@ -228,6 +306,29 @@ class DocumentUpdateByFileApi(DatasetApiResource):
|
||||
if "doc_language" not in args:
|
||||
args["doc_language"] = "English"
|
||||
|
||||
# Validate metadata if provided
|
||||
if args.get("doc_type") or args.get("doc_metadata"):
|
||||
if not args.get("doc_type") or not args.get("doc_metadata"):
|
||||
raise InvalidMetadataError("Both doc_type and doc_metadata must be provided when adding metadata")
|
||||
|
||||
if args["doc_type"] not in DocumentService.DOCUMENT_METADATA_SCHEMA:
|
||||
raise InvalidMetadataError(
|
||||
"Invalid doc_type. Must be one of: " + ", ".join(DocumentService.DOCUMENT_METADATA_SCHEMA.keys())
|
||||
)
|
||||
|
||||
if not isinstance(args["doc_metadata"], dict):
|
||||
raise InvalidMetadataError("doc_metadata must be a dictionary")
|
||||
|
||||
# Validate metadata schema based on doc_type
|
||||
if args["doc_type"] != "others":
|
||||
metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[args["doc_type"]]
|
||||
for key, value in args["doc_metadata"].items():
|
||||
if key in metadata_schema and not isinstance(value, metadata_schema[key]):
|
||||
raise InvalidMetadataError(f"Invalid type for metadata field {key}")
|
||||
|
||||
# set to MetaDataConfig
|
||||
args["metadata"] = {"doc_type": args["doc_type"], "doc_metadata": args["doc_metadata"]}
|
||||
|
||||
# get dataset info
|
||||
dataset_id = str(dataset_id)
|
||||
tenant_id = str(tenant_id)
|
||||
|
||||
@@ -91,7 +91,7 @@ class MessageListApi(WebApiResource):
|
||||
|
||||
try:
|
||||
return MessageService.pagination_by_first_id(
|
||||
app_model, end_user, args["conversation_id"], args["first_id"], args["limit"], "desc"
|
||||
app_model, end_user, args["conversation_id"], args["first_id"], args["limit"]
|
||||
)
|
||||
except services.errors.conversation.ConversationNotExistsError:
|
||||
raise NotFound("Conversation Not Exists.")
|
||||
|
||||
@@ -140,9 +140,7 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
|
||||
app_config=app_config,
|
||||
file_upload_config=file_extra_config,
|
||||
conversation_id=conversation.id if conversation else None,
|
||||
inputs=conversation.inputs
|
||||
if conversation
|
||||
else self._prepare_user_inputs(
|
||||
inputs=self._prepare_user_inputs(
|
||||
user_inputs=inputs, variables=app_config.variables, tenant_id=app_model.tenant_id
|
||||
),
|
||||
query=query,
|
||||
|
||||
@@ -148,9 +148,7 @@ class AgentChatAppGenerator(MessageBasedAppGenerator):
|
||||
model_conf=ModelConfigConverter.convert(app_config),
|
||||
file_upload_config=file_extra_config,
|
||||
conversation_id=conversation.id if conversation else None,
|
||||
inputs=conversation.inputs
|
||||
if conversation
|
||||
else self._prepare_user_inputs(
|
||||
inputs=self._prepare_user_inputs(
|
||||
user_inputs=inputs, variables=app_config.variables, tenant_id=app_model.tenant_id
|
||||
),
|
||||
query=query,
|
||||
|
||||
@@ -202,7 +202,7 @@ class AgentChatAppRunner(AppRunner):
|
||||
# change function call strategy based on LLM model
|
||||
llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
|
||||
model_schema = llm_model.get_model_schema(model_instance.model, model_instance.credentials)
|
||||
if not model_schema or not model_schema.features:
|
||||
if not model_schema:
|
||||
raise ValueError("Model schema not found")
|
||||
|
||||
if {ModelFeature.MULTI_TOOL_CALL, ModelFeature.TOOL_CALL}.intersection(model_schema.features or []):
|
||||
|
||||
@@ -141,9 +141,7 @@ class ChatAppGenerator(MessageBasedAppGenerator):
|
||||
model_conf=ModelConfigConverter.convert(app_config),
|
||||
file_upload_config=file_extra_config,
|
||||
conversation_id=conversation.id if conversation else None,
|
||||
inputs=conversation.inputs
|
||||
if conversation
|
||||
else self._prepare_user_inputs(
|
||||
inputs=self._prepare_user_inputs(
|
||||
user_inputs=inputs, variables=app_config.variables, tenant_id=app_model.tenant_id
|
||||
),
|
||||
query=query,
|
||||
|
||||
@@ -842,4 +842,4 @@ class WorkflowCycleManage:
|
||||
if node_execution_id not in self._workflow_node_executions:
|
||||
raise ValueError(f"Workflow node execution not found: {node_execution_id}")
|
||||
cached_workflow_node_execution = self._workflow_node_executions[node_execution_id]
|
||||
return cached_workflow_node_execution
|
||||
return session.merge(cached_workflow_node_execution)
|
||||
|
||||
@@ -11,15 +11,6 @@ from configs import dify_config
|
||||
|
||||
SSRF_DEFAULT_MAX_RETRIES = dify_config.SSRF_DEFAULT_MAX_RETRIES
|
||||
|
||||
proxy_mounts = (
|
||||
{
|
||||
"http://": httpx.HTTPTransport(proxy=dify_config.SSRF_PROXY_HTTP_URL),
|
||||
"https://": httpx.HTTPTransport(proxy=dify_config.SSRF_PROXY_HTTPS_URL),
|
||||
}
|
||||
if dify_config.SSRF_PROXY_HTTP_URL and dify_config.SSRF_PROXY_HTTPS_URL
|
||||
else None
|
||||
)
|
||||
|
||||
BACKOFF_FACTOR = 0.5
|
||||
STATUS_FORCELIST = [429, 500, 502, 503, 504]
|
||||
|
||||
@@ -51,7 +42,11 @@ def make_request(method, url, max_retries=SSRF_DEFAULT_MAX_RETRIES, **kwargs):
|
||||
if dify_config.SSRF_PROXY_ALL_URL:
|
||||
with httpx.Client(proxy=dify_config.SSRF_PROXY_ALL_URL) as client:
|
||||
response = client.request(method=method, url=url, **kwargs)
|
||||
elif proxy_mounts:
|
||||
elif dify_config.SSRF_PROXY_HTTP_URL and dify_config.SSRF_PROXY_HTTPS_URL:
|
||||
proxy_mounts = {
|
||||
"http://": httpx.HTTPTransport(proxy=dify_config.SSRF_PROXY_HTTP_URL),
|
||||
"https://": httpx.HTTPTransport(proxy=dify_config.SSRF_PROXY_HTTPS_URL),
|
||||
}
|
||||
with httpx.Client(mounts=proxy_mounts) as client:
|
||||
response = client.request(method=method, url=url, **kwargs)
|
||||
else:
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from .llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
|
||||
from .llm_entities import LLMMode, LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
|
||||
from .message_entities import (
|
||||
AssistantPromptMessage,
|
||||
AudioPromptMessageContent,
|
||||
@@ -23,6 +23,7 @@ __all__ = [
|
||||
"AudioPromptMessageContent",
|
||||
"DocumentPromptMessageContent",
|
||||
"ImagePromptMessageContent",
|
||||
"LLMMode",
|
||||
"LLMResult",
|
||||
"LLMResultChunk",
|
||||
"LLMResultChunkDelta",
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
from decimal import Decimal
|
||||
from enum import Enum
|
||||
from enum import StrEnum
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import BaseModel
|
||||
@@ -8,7 +8,7 @@ from core.model_runtime.entities.message_entities import AssistantPromptMessage,
|
||||
from core.model_runtime.entities.model_entities import ModelUsage, PriceInfo
|
||||
|
||||
|
||||
class LLMMode(Enum):
|
||||
class LLMMode(StrEnum):
|
||||
"""
|
||||
Enum class for large language model mode.
|
||||
"""
|
||||
|
||||
@@ -221,13 +221,12 @@ class AIModel(ABC):
|
||||
:param credentials: model credentials
|
||||
:return: model schema
|
||||
"""
|
||||
# get predefined models (predefined_models)
|
||||
models = self.predefined_models()
|
||||
|
||||
model_map = {model.model: model for model in models}
|
||||
if model in model_map:
|
||||
return model_map[model]
|
||||
# Try to get model schema from predefined models
|
||||
for predefined_model in self.predefined_models():
|
||||
if model == predefined_model.model:
|
||||
return predefined_model
|
||||
|
||||
# Try to get model schema from credentials
|
||||
if credentials:
|
||||
model_schema = self.get_customizable_model_schema_from_credentials(model, credentials)
|
||||
if model_schema:
|
||||
|
||||
@@ -400,6 +400,32 @@ if you are not sure about the structure.
|
||||
),
|
||||
)
|
||||
|
||||
def _wrap_thinking_by_reasoning_content(self, delta: dict, is_reasoning: bool) -> tuple[str, bool]:
|
||||
"""
|
||||
If the reasoning response is from delta.get("reasoning_content"), we wrap
|
||||
it with HTML think tag.
|
||||
|
||||
:param delta: delta dictionary from LLM streaming response
|
||||
:param is_reasoning: is reasoning
|
||||
:return: tuple of (processed_content, is_reasoning)
|
||||
"""
|
||||
|
||||
content = delta.get("content") or ""
|
||||
reasoning_content = delta.get("reasoning_content")
|
||||
|
||||
if reasoning_content:
|
||||
if not is_reasoning:
|
||||
content = "<think>\n" + reasoning_content
|
||||
is_reasoning = True
|
||||
else:
|
||||
content = reasoning_content
|
||||
elif is_reasoning and content:
|
||||
# do not end reasoning when content is empty
|
||||
# there may be more reasoning_content later that follows previous reasoning closely
|
||||
content = "\n</think>" + content
|
||||
is_reasoning = False
|
||||
return content, is_reasoning
|
||||
|
||||
def _invoke_result_generator(
|
||||
self,
|
||||
model: str,
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
- openai
|
||||
- deepseek
|
||||
- anthropic
|
||||
- azure_openai
|
||||
- google
|
||||
@@ -32,7 +33,6 @@
|
||||
- localai
|
||||
- volcengine_maas
|
||||
- openai_api_compatible
|
||||
- deepseek
|
||||
- hunyuan
|
||||
- siliconflow
|
||||
- perfxcloud
|
||||
|
||||
@@ -51,6 +51,40 @@ model_credential_schema:
|
||||
show_on:
|
||||
- variable: __model_type
|
||||
value: llm
|
||||
- variable: mode
|
||||
show_on:
|
||||
- variable: __model_type
|
||||
value: llm
|
||||
label:
|
||||
en_US: Completion mode
|
||||
type: select
|
||||
required: false
|
||||
default: chat
|
||||
placeholder:
|
||||
zh_Hans: 选择对话类型
|
||||
en_US: Select completion mode
|
||||
options:
|
||||
- value: completion
|
||||
label:
|
||||
en_US: Completion
|
||||
zh_Hans: 补全
|
||||
- value: chat
|
||||
label:
|
||||
en_US: Chat
|
||||
zh_Hans: 对话
|
||||
- variable: context_size
|
||||
label:
|
||||
zh_Hans: 模型上下文长度
|
||||
en_US: Model context size
|
||||
required: true
|
||||
show_on:
|
||||
- variable: __model_type
|
||||
value: llm
|
||||
type: text-input
|
||||
default: "4096"
|
||||
placeholder:
|
||||
zh_Hans: 在此输入您的模型上下文长度
|
||||
en_US: Enter your Model context size
|
||||
- variable: jwt_token
|
||||
required: true
|
||||
label:
|
||||
|
||||
@@ -1,9 +1,9 @@
|
||||
import logging
|
||||
from collections.abc import Generator
|
||||
from collections.abc import Generator, Sequence
|
||||
from typing import Any, Optional, Union
|
||||
|
||||
from azure.ai.inference import ChatCompletionsClient
|
||||
from azure.ai.inference.models import StreamingChatCompletionsUpdate
|
||||
from azure.ai.inference.models import StreamingChatCompletionsUpdate, SystemMessage, UserMessage
|
||||
from azure.core.credentials import AzureKeyCredential
|
||||
from azure.core.exceptions import (
|
||||
ClientAuthenticationError,
|
||||
@@ -20,7 +20,7 @@ from azure.core.exceptions import (
|
||||
)
|
||||
|
||||
from core.model_runtime.callbacks.base_callback import Callback
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
|
||||
from core.model_runtime.entities.llm_entities import LLMMode, LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
|
||||
from core.model_runtime.entities.message_entities import (
|
||||
AssistantPromptMessage,
|
||||
PromptMessage,
|
||||
@@ -30,6 +30,7 @@ from core.model_runtime.entities.model_entities import (
|
||||
AIModelEntity,
|
||||
FetchFrom,
|
||||
I18nObject,
|
||||
ModelPropertyKey,
|
||||
ModelType,
|
||||
ParameterRule,
|
||||
ParameterType,
|
||||
@@ -60,10 +61,10 @@ class AzureAIStudioLargeLanguageModel(LargeLanguageModel):
|
||||
self,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
prompt_messages: list[PromptMessage],
|
||||
prompt_messages: Sequence[PromptMessage],
|
||||
model_parameters: dict,
|
||||
tools: Optional[list[PromptMessageTool]] = None,
|
||||
stop: Optional[list[str]] = None,
|
||||
tools: Optional[Sequence[PromptMessageTool]] = None,
|
||||
stop: Optional[Sequence[str]] = None,
|
||||
stream: bool = True,
|
||||
user: Optional[str] = None,
|
||||
) -> Union[LLMResult, Generator]:
|
||||
@@ -82,8 +83,8 @@ class AzureAIStudioLargeLanguageModel(LargeLanguageModel):
|
||||
"""
|
||||
|
||||
if not self.client:
|
||||
endpoint = credentials.get("endpoint")
|
||||
api_key = credentials.get("api_key")
|
||||
endpoint = str(credentials.get("endpoint"))
|
||||
api_key = str(credentials.get("api_key"))
|
||||
self.client = ChatCompletionsClient(endpoint=endpoint, credential=AzureKeyCredential(api_key))
|
||||
|
||||
messages = [{"role": msg.role.value, "content": msg.content} for msg in prompt_messages]
|
||||
@@ -94,6 +95,7 @@ class AzureAIStudioLargeLanguageModel(LargeLanguageModel):
|
||||
"temperature": model_parameters.get("temperature", 0),
|
||||
"top_p": model_parameters.get("top_p", 1),
|
||||
"stream": stream,
|
||||
"model": model,
|
||||
}
|
||||
|
||||
if stop:
|
||||
@@ -255,10 +257,16 @@ class AzureAIStudioLargeLanguageModel(LargeLanguageModel):
|
||||
:return:
|
||||
"""
|
||||
try:
|
||||
endpoint = credentials.get("endpoint")
|
||||
api_key = credentials.get("api_key")
|
||||
endpoint = str(credentials.get("endpoint"))
|
||||
api_key = str(credentials.get("api_key"))
|
||||
client = ChatCompletionsClient(endpoint=endpoint, credential=AzureKeyCredential(api_key))
|
||||
client.get_model_info()
|
||||
client.complete(
|
||||
messages=[
|
||||
SystemMessage(content="I say 'ping', you say 'pong'"),
|
||||
UserMessage(content="ping"),
|
||||
],
|
||||
model=model,
|
||||
)
|
||||
except Exception as ex:
|
||||
raise CredentialsValidateFailedError(str(ex))
|
||||
|
||||
@@ -327,7 +335,10 @@ class AzureAIStudioLargeLanguageModel(LargeLanguageModel):
|
||||
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
|
||||
model_type=ModelType.LLM,
|
||||
features=[],
|
||||
model_properties={},
|
||||
model_properties={
|
||||
ModelPropertyKey.CONTEXT_SIZE: int(credentials.get("context_size", "4096")),
|
||||
ModelPropertyKey.MODE: credentials.get("mode", LLMMode.CHAT),
|
||||
},
|
||||
parameter_rules=rules,
|
||||
)
|
||||
|
||||
|
||||
@@ -53,6 +53,9 @@ model_credential_schema:
|
||||
type: select
|
||||
required: true
|
||||
options:
|
||||
- label:
|
||||
en_US: 2024-12-01-preview
|
||||
value: 2024-12-01-preview
|
||||
- label:
|
||||
en_US: 2024-10-01-preview
|
||||
value: 2024-10-01-preview
|
||||
@@ -135,6 +138,18 @@ model_credential_schema:
|
||||
show_on:
|
||||
- variable: __model_type
|
||||
value: llm
|
||||
- label:
|
||||
en_US: o3-mini
|
||||
value: o3-mini
|
||||
show_on:
|
||||
- variable: __model_type
|
||||
value: llm
|
||||
- label:
|
||||
en_US: o3-mini-2025-01-31
|
||||
value: o3-mini-2025-01-31
|
||||
show_on:
|
||||
- variable: __model_type
|
||||
value: llm
|
||||
- label:
|
||||
en_US: o1-preview
|
||||
value: o1-preview
|
||||
|
||||
@@ -44,6 +44,7 @@ provider_credential_schema:
|
||||
label:
|
||||
en_US: AWS Region
|
||||
zh_Hans: AWS 地区
|
||||
ja_JP: AWS リージョン
|
||||
type: select
|
||||
default: us-east-1
|
||||
options:
|
||||
@@ -51,62 +52,86 @@ provider_credential_schema:
|
||||
label:
|
||||
en_US: US East (N. Virginia)
|
||||
zh_Hans: 美国东部 (弗吉尼亚北部)
|
||||
ja_JP: 米国 (バージニア北部)
|
||||
- value: us-east-2
|
||||
label:
|
||||
en_US: US East (Ohio)
|
||||
zh_Hans: 美国东部 (弗吉尼亚北部)
|
||||
zh_Hans: 美国东部 (俄亥俄)
|
||||
ja_JP: 米国 (オハイオ)
|
||||
- value: us-west-2
|
||||
label:
|
||||
en_US: US West (Oregon)
|
||||
zh_Hans: 美国西部 (俄勒冈州)
|
||||
ja_JP: 米国 (オレゴン)
|
||||
- value: ap-south-1
|
||||
label:
|
||||
en_US: Asia Pacific (Mumbai)
|
||||
zh_Hans: 亚太地区(孟买)
|
||||
ja_JP: アジアパシフィック (ムンバイ)
|
||||
- value: ap-southeast-1
|
||||
label:
|
||||
en_US: Asia Pacific (Singapore)
|
||||
zh_Hans: 亚太地区 (新加坡)
|
||||
ja_JP: アジアパシフィック (シンガポール)
|
||||
- value: ap-southeast-2
|
||||
label:
|
||||
en_US: Asia Pacific (Sydney)
|
||||
zh_Hans: 亚太地区 (悉尼)
|
||||
ja_JP: アジアパシフィック (シドニー)
|
||||
- value: ap-northeast-1
|
||||
label:
|
||||
en_US: Asia Pacific (Tokyo)
|
||||
zh_Hans: 亚太地区 (东京)
|
||||
ja_JP: アジアパシフィック (東京)
|
||||
- value: ap-northeast-2
|
||||
label:
|
||||
en_US: Asia Pacific (Seoul)
|
||||
zh_Hans: 亚太地区(首尔)
|
||||
ja_JP: アジアパシフィック (ソウル)
|
||||
- value: ca-central-1
|
||||
label:
|
||||
en_US: Canada (Central)
|
||||
zh_Hans: 加拿大(中部)
|
||||
ja_JP: カナダ (中部)
|
||||
- value: eu-central-1
|
||||
label:
|
||||
en_US: Europe (Frankfurt)
|
||||
zh_Hans: 欧洲 (法兰克福)
|
||||
ja_JP: 欧州 (フランクフルト)
|
||||
- value: eu-west-1
|
||||
label:
|
||||
en_US: Europe (Ireland)
|
||||
zh_Hans: 欧洲(爱尔兰)
|
||||
ja_JP: 欧州 (アイルランド)
|
||||
- value: eu-west-2
|
||||
label:
|
||||
en_US: Europe (London)
|
||||
zh_Hans: 欧洲西部 (伦敦)
|
||||
ja_JP: 欧州 (ロンドン)
|
||||
- value: eu-west-3
|
||||
label:
|
||||
en_US: Europe (Paris)
|
||||
zh_Hans: 欧洲(巴黎)
|
||||
ja_JP: 欧州 (パリ)
|
||||
- value: sa-east-1
|
||||
label:
|
||||
en_US: South America (São Paulo)
|
||||
zh_Hans: 南美洲(圣保罗)
|
||||
ja_JP: 南米 (サンパウロ)
|
||||
- value: us-gov-west-1
|
||||
label:
|
||||
en_US: AWS GovCloud (US-West)
|
||||
zh_Hans: AWS GovCloud (US-West)
|
||||
ja_JP: AWS GovCloud (米国西部)
|
||||
- variable: bedrock_endpoint_url
|
||||
label:
|
||||
zh_Hans: Bedrock Endpoint URL
|
||||
en_US: Bedrock Endpoint URL
|
||||
type: text-input
|
||||
required: false
|
||||
placeholder:
|
||||
zh_Hans: 在此输入您的 Bedrock Endpoint URL, 如:https://123456.cloudfront.net
|
||||
en_US: Enter your Bedrock Endpoint URL, e.g. https://123456.cloudfront.net
|
||||
- variable: model_for_validation
|
||||
required: false
|
||||
label:
|
||||
|
||||
@@ -13,6 +13,7 @@ def get_bedrock_client(service_name: str, credentials: Mapping[str, str]):
|
||||
client_config = Config(region_name=region_name)
|
||||
aws_access_key_id = credentials.get("aws_access_key_id")
|
||||
aws_secret_access_key = credentials.get("aws_secret_access_key")
|
||||
bedrock_endpoint_url = credentials.get("bedrock_endpoint_url")
|
||||
|
||||
if aws_access_key_id and aws_secret_access_key:
|
||||
# use aksk to call bedrock
|
||||
@@ -21,6 +22,7 @@ def get_bedrock_client(service_name: str, credentials: Mapping[str, str]):
|
||||
config=client_config,
|
||||
aws_access_key_id=aws_access_key_id,
|
||||
aws_secret_access_key=aws_secret_access_key,
|
||||
**({"endpoint_url": bedrock_endpoint_url} if bedrock_endpoint_url else {}),
|
||||
)
|
||||
else:
|
||||
# use iam without aksk to call
|
||||
|
||||
@@ -677,16 +677,17 @@ class CohereLargeLanguageModel(LargeLanguageModel):
|
||||
|
||||
:return: model schema
|
||||
"""
|
||||
# get model schema
|
||||
models = self.predefined_models()
|
||||
model_map = {model.model: model for model in models}
|
||||
|
||||
mode = credentials.get("mode")
|
||||
base_model_schema = None
|
||||
for predefined_model in self.predefined_models():
|
||||
if (
|
||||
mode == "chat" and predefined_model.model == "command-light-chat"
|
||||
) or predefined_model.model == "command-light":
|
||||
base_model_schema = predefined_model
|
||||
break
|
||||
|
||||
if mode == "chat":
|
||||
base_model_schema = model_map["command-light-chat"]
|
||||
else:
|
||||
base_model_schema = model_map["command-light"]
|
||||
if not base_model_schema:
|
||||
raise ValueError("Model not found")
|
||||
|
||||
base_model_schema = cast(AIModelEntity, base_model_schema)
|
||||
|
||||
|
||||
@@ -1,4 +1,7 @@
|
||||
- gemini-2.0-flash-001
|
||||
- gemini-2.0-flash-exp
|
||||
- gemini-2.0-flash-lite-preview-02-05
|
||||
- gemini-2.0-pro-exp-02-05
|
||||
- gemini-2.0-flash-thinking-exp-1219
|
||||
- gemini-2.0-flash-thinking-exp-01-21
|
||||
- gemini-1.5-pro
|
||||
|
||||
@@ -0,0 +1,41 @@
|
||||
model: gemini-2.0-flash-001
|
||||
label:
|
||||
en_US: Gemini 2.0 Flash 001
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
- vision
|
||||
- tool-call
|
||||
- stream-tool-call
|
||||
- document
|
||||
- video
|
||||
- audio
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 1048576
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: max_output_tokens
|
||||
use_template: max_tokens
|
||||
default: 8192
|
||||
min: 1
|
||||
max: 8192
|
||||
- name: json_schema
|
||||
use_template: json_schema
|
||||
pricing:
|
||||
input: '0.00'
|
||||
output: '0.00'
|
||||
unit: '0.000001'
|
||||
currency: USD
|
||||
@@ -0,0 +1,41 @@
|
||||
model: gemini-2.0-flash-lite-preview-02-05
|
||||
label:
|
||||
en_US: Gemini 2.0 Flash Lite Preview 0205
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
- vision
|
||||
- tool-call
|
||||
- stream-tool-call
|
||||
- document
|
||||
- video
|
||||
- audio
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 1048576
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: max_output_tokens
|
||||
use_template: max_tokens
|
||||
default: 8192
|
||||
min: 1
|
||||
max: 8192
|
||||
- name: json_schema
|
||||
use_template: json_schema
|
||||
pricing:
|
||||
input: '0.00'
|
||||
output: '0.00'
|
||||
unit: '0.000001'
|
||||
currency: USD
|
||||
@@ -0,0 +1,41 @@
|
||||
model: gemini-2.0-pro-exp-02-05
|
||||
label:
|
||||
en_US: Gemini 2.0 pro exp 02-05
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
- vision
|
||||
- tool-call
|
||||
- stream-tool-call
|
||||
- document
|
||||
- video
|
||||
- audio
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 1048576
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: max_output_tokens
|
||||
use_template: max_tokens
|
||||
default: 8192
|
||||
min: 1
|
||||
max: 8192
|
||||
- name: json_schema
|
||||
use_template: json_schema
|
||||
pricing:
|
||||
input: '0.00'
|
||||
output: '0.00'
|
||||
unit: '0.000001'
|
||||
currency: USD
|
||||
@@ -1,3 +1,4 @@
|
||||
- deepseek-r1-distill-llama-70b
|
||||
- llama-3.1-405b-reasoning
|
||||
- llama-3.3-70b-versatile
|
||||
- llama-3.1-70b-versatile
|
||||
|
||||
@@ -0,0 +1,36 @@
|
||||
model: deepseek-r1-distill-llama-70b
|
||||
label:
|
||||
en_US: DeepSeek R1 Distill Llama 70b
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 128000
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
default: 512
|
||||
min: 1
|
||||
max: 8192
|
||||
- name: response_format
|
||||
label:
|
||||
zh_Hans: 回复格式
|
||||
en_US: Response Format
|
||||
type: string
|
||||
help:
|
||||
zh_Hans: 指定模型必须输出的格式
|
||||
en_US: specifying the format that the model must output
|
||||
required: false
|
||||
options:
|
||||
- text
|
||||
- json_object
|
||||
pricing:
|
||||
input: '3.00'
|
||||
output: '3.00'
|
||||
unit: '0.000001'
|
||||
currency: USD
|
||||
@@ -1,19 +1,11 @@
|
||||
<svg width="162" height="36" viewBox="0 0 162 36" fill="none" xmlns="http://www.w3.org/2000/svg">
|
||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M2 0C0.895431 0 0 0.895432 0 2V29.1891C0 30.2937 0.895433 31.1891 2 31.1891H5.51171L16.0608 35.1377C16.7145 35.3824 17.4114 34.8991 17.4114 34.2012V11.3669C17.4114 10.533 16.894 9.78665 16.1131 9.49405L5.51171 5.52152H25.58V31.1891H29.0917C30.1963 31.1891 31.0917 30.2937 31.0917 29.1891V2C31.0917 0.895431 30.1963 0 29.0917 0H2ZM14.6022 23.7351C15.0558 23.956 15.4239 23.6812 15.4239 23.1185C15.4239 22.5557 15.0558 21.9204 14.6022 21.6995C14.1486 21.4775 13.7804 21.7545 13.7804 22.3161C13.7804 22.8777 14.1486 23.513 14.6022 23.7351Z" fill="white"/>
|
||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M2 0C0.895431 0 0 0.895432 0 2V29.1891C0 30.2937 0.895433 31.1891 2 31.1891H5.51171L16.0608 35.1377C16.7145 35.3824 17.4114 34.8991 17.4114 34.2012V11.3669C17.4114 10.533 16.894 9.78665 16.1131 9.49405L5.51171 5.52152H25.58V31.1891H29.0917C30.1963 31.1891 31.0917 30.2937 31.0917 29.1891V2C31.0917 0.895431 30.1963 0 29.0917 0H2ZM14.6022 23.7351C15.0558 23.956 15.4239 23.6812 15.4239 23.1185C15.4239 22.5557 15.0558 21.9204 14.6022 21.6995C14.1486 21.4775 13.7804 21.7545 13.7804 22.3161C13.7804 22.8777 14.1486 23.513 14.6022 23.7351Z" fill="url(#paint0_linear_1473_71)"/>
|
||||
<path d="M55.9397 27.8804H59.0566V19.0803C59.0566 14.9105 56.381 12.7172 52.8228 12.7172C51.0023 12.7172 49.3197 13.4483 48.2991 14.6668V12.9609H45.1546V27.8804H48.2991V19.5406C48.2991 16.8059 49.8162 15.3978 52.1332 15.3978C54.4226 15.3978 55.9397 16.8059 55.9397 19.5406V27.8804Z" fill="#11101A"/>
|
||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M69.7881 12.7172C74.1187 12.7172 77.539 15.7228 77.539 20.4071C77.539 25.0915 74.0083 28.1241 69.6502 28.1241C65.3196 28.1241 62.0372 25.0915 62.0372 20.4071C62.0372 15.7228 65.4575 12.7172 69.7881 12.7172ZM69.7342 15.3979C67.362 15.3979 65.2381 17.0225 65.2381 20.4071C65.2381 23.7918 67.2793 25.4435 69.6514 25.4435C71.996 25.4435 74.313 23.7918 74.313 20.4071C74.313 17.0225 72.0788 15.3979 69.7342 15.3979Z" fill="#11101A"/>
|
||||
<path d="M78.861 12.9609L84.6259 27.8804H88.3772L94.1697 12.9609H90.8321L86.5291 25.1185L82.2261 12.9609H78.861Z" fill="#11101A"/>
|
||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M100.13 9.00761C100.13 10.1178 99.2477 10.9842 98.1443 10.9842C97.0134 10.9842 96.1308 10.1178 96.1308 9.00761C96.1308 7.89745 97.0134 7.03098 98.1443 7.03098C99.2477 7.03098 100.13 7.89745 100.13 9.00761ZM99.6882 27.8804H96.5437V12.9609H99.6882V27.8804Z" fill="#11101A"/>
|
||||
<path d="M104.322 23.7376C104.322 26.7702 106.004 27.8804 108.708 27.8804H111.19V25.308H109.259C107.935 25.308 107.494 24.8477 107.494 23.7376V15.479H111.19V12.9609H107.494V9.25128H104.322V12.9609H102.529V15.479H104.322V23.7376Z" fill="#11101A"/>
|
||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M120.154 28.1241C116.209 28.1241 113.037 24.9561 113.037 20.353C113.037 15.7498 116.209 12.7172 120.209 12.7172C122.774 12.7172 124.539 13.9086 125.477 15.1271V12.9609H128.649V27.8804H125.477V25.6601C124.512 26.9327 122.691 28.1241 120.154 28.1241ZM120.87 25.4435C123.242 25.4435 125.476 23.6293 125.476 20.4071C125.476 17.212 123.242 15.3979 120.87 15.3979C118.526 15.3979 116.264 17.1308 116.264 20.353C116.264 23.5752 118.526 25.4435 120.87 25.4435Z" fill="#11101A"/>
|
||||
<path d="M136.043 26.0933C136.043 24.9832 135.16 24.1167 134.057 24.1167C132.926 24.1167 132.043 24.9832 132.043 26.0933C132.043 27.2035 132.926 28.07 134.057 28.07C135.16 28.07 136.043 27.2035 136.043 26.0933Z" fill="#11101A"/>
|
||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M145.502 28.1241C141.558 28.1241 138.386 24.9561 138.386 20.353C138.386 15.7498 141.558 12.7172 145.557 12.7172C148.123 12.7172 149.888 13.9086 150.826 15.1271V12.9609H153.998V27.8804H150.826V25.6601C149.86 26.9327 148.04 28.1241 145.502 28.1241ZM146.219 25.4435C148.591 25.4435 150.825 23.6293 150.825 20.4071C150.825 17.212 148.591 15.3979 146.219 15.3979C143.874 15.3979 141.612 17.1308 141.612 20.353C141.612 23.5752 143.874 25.4435 146.219 25.4435Z" fill="#11101A"/>
|
||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M161.722 9.00761C161.722 10.1178 160.84 10.9842 159.736 10.9842C158.605 10.9842 157.723 10.1178 157.723 9.00761C157.723 7.89745 158.605 7.03098 159.736 7.03098C160.84 7.03098 161.722 7.89745 161.722 9.00761ZM161.28 27.8804H158.136V12.9609H161.28V27.8804Z" fill="#11101A"/>
|
||||
<svg width="88" height="24" viewBox="0 0 88 24" fill="none" xmlns="http://www.w3.org/2000/svg">
|
||||
<g clip-path="url(#clip0_1923_1287)">
|
||||
<path d="M24 18.8323V18.8326H14.3246L9.16716 13.6751V18.8326H0V18.8314L9.16716 9.66422V4H9.16774L24 18.8323Z" fill="black"/>
|
||||
</g>
|
||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M73.2505 16.8061H76.5869V18.9145H73.9391C72.0857 18.9145 70.9202 17.8952 70.9202 15.9977V10.3921H69.0316V8.26609H70.9202L71.4677 5.47209H73.2329V8.26609H76.5869V10.3921H73.2505V16.8061ZM33.8133 4.85699L38.6679 15.681H38.809V4.85699H41.3333V18.9145H37.52L32.6654 8.09046H32.5243V18.9145H30V4.85699H33.8133ZM47.812 19.1254C44.7225 19.1254 42.7457 16.9641 42.7457 13.6079C42.7457 10.2517 44.6873 8.05518 47.812 8.05518C50.9367 8.05518 52.8429 10.1635 52.8429 13.6079C52.8429 17.0523 50.9014 19.1254 47.812 19.1254ZM47.812 17.017C49.1891 17.017 50.3363 16.5423 50.3715 15.1894V12.0265C50.3715 10.6383 49.2068 10.1635 47.812 10.1635C46.4172 10.1635 45.2171 10.6383 45.2171 12.0265V15.1894C45.2524 16.5599 46.4348 17.017 47.812 17.017ZM55.5444 8.24846L58.2979 16.6826H58.439L61.1926 8.24846H63.7346L59.9389 18.8968H56.7966L53.0186 8.24846H55.5429H55.5444ZM65.0419 8.26609H67.3722V18.9145H65.0419V8.26609ZM64.9001 4.85699H67.5126V6.86027H64.9001V4.85699ZM82.3064 19.143C79.4639 19.143 77.6458 16.9817 77.6458 13.6079C77.6458 10.2341 79.4286 8.07282 82.3064 8.07282C83.6483 8.07282 84.7425 8.59973 85.3958 9.58373H85.5369L85.9962 8.26609H87.7614V18.9145H85.9962L85.5369 17.6314H85.3958C84.6896 18.5625 83.5072 19.1423 82.3064 19.1423V19.143ZM82.7826 17.017C84.1774 17.017 85.3951 16.5776 85.4304 15.1894V12.0265C85.4304 10.603 84.159 10.1988 82.7297 10.1988C81.3004 10.1988 80.1172 10.6383 80.1172 12.0265V15.1894C80.1525 16.5952 81.3709 17.017 82.7826 17.017Z" fill="black"/>
|
||||
<defs>
|
||||
<linearGradient id="paint0_linear_1473_71" x1="31" y1="-2" x2="0.975591" y2="14.2625" gradientUnits="userSpaceOnUse">
|
||||
<stop stop-color="#2622FF"/>
|
||||
<stop offset="1" stop-color="#A717FF"/>
|
||||
</linearGradient>
|
||||
<clipPath id="clip0_1923_1287">
|
||||
<rect width="24" height="14.8326" fill="white" transform="translate(0 4)"/>
|
||||
</clipPath>
|
||||
</defs>
|
||||
</svg>
|
||||
|
||||
|
Before Width: | Height: | Size: 4.5 KiB After Width: | Height: | Size: 1.9 KiB |
@@ -1,10 +1,3 @@
|
||||
<svg width="32" height="36" viewBox="0 0 32 36" fill="none" xmlns="http://www.w3.org/2000/svg">
|
||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M2 0C0.895431 0 0 0.895432 0 2V29.1891C0 30.2937 0.895433 31.1891 2 31.1891H5.51171L16.0608 35.1377C16.7145 35.3824 17.4114 34.8991 17.4114 34.2012V11.3669C17.4114 10.533 16.894 9.78665 16.1131 9.49405L5.51171 5.52152H25.58V31.1891H29.0917C30.1963 31.1891 31.0917 30.2937 31.0917 29.1891V2C31.0917 0.895431 30.1963 0 29.0917 0H2ZM14.6022 23.7351C15.0558 23.956 15.4239 23.6812 15.4239 23.1185C15.4239 22.5557 15.0558 21.9204 14.6022 21.6995C14.1486 21.4775 13.7804 21.7545 13.7804 22.3161C13.7804 22.8777 14.1486 23.513 14.6022 23.7351Z" fill="white"/>
|
||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M2 0C0.895431 0 0 0.895432 0 2V29.1891C0 30.2937 0.895433 31.1891 2 31.1891H5.51171L16.0608 35.1377C16.7145 35.3824 17.4114 34.8991 17.4114 34.2012V11.3669C17.4114 10.533 16.894 9.78665 16.1131 9.49405L5.51171 5.52152H25.58V31.1891H29.0917C30.1963 31.1891 31.0917 30.2937 31.0917 29.1891V2C31.0917 0.895431 30.1963 0 29.0917 0H2ZM14.6022 23.7351C15.0558 23.956 15.4239 23.6812 15.4239 23.1185C15.4239 22.5557 15.0558 21.9204 14.6022 21.6995C14.1486 21.4775 13.7804 21.7545 13.7804 22.3161C13.7804 22.8777 14.1486 23.513 14.6022 23.7351Z" fill="url(#paint0_linear_1473_97)"/>
|
||||
<defs>
|
||||
<linearGradient id="paint0_linear_1473_97" x1="31" y1="-2" x2="0.975591" y2="14.2625" gradientUnits="userSpaceOnUse">
|
||||
<stop stop-color="#2622FF"/>
|
||||
<stop offset="1" stop-color="#A717FF"/>
|
||||
</linearGradient>
|
||||
</defs>
|
||||
<svg width="24" height="15" viewBox="0 0 24 15" fill="none" xmlns="http://www.w3.org/2000/svg">
|
||||
<path d="M24 14.8323V14.8326H14.3246L9.16716 9.67507V14.8326H0V14.8314L9.16716 5.66422V0H9.16774L24 14.8323Z" fill="black"/>
|
||||
</svg>
|
||||
|
||||
|
Before Width: | Height: | Size: 1.5 KiB After Width: | Height: | Size: 228 B |
@@ -0,0 +1,41 @@
|
||||
model: Sao10K/L3-8B-Stheno-v3.2
|
||||
label:
|
||||
zh_Hans: L3 8B Stheno V3.2
|
||||
en_US: L3 8B Stheno V3.2
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 8192
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
min: 0
|
||||
max: 2
|
||||
default: 1
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
min: 0
|
||||
max: 1
|
||||
default: 1
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
min: 1
|
||||
max: 2048
|
||||
default: 512
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
min: -2
|
||||
max: 2
|
||||
default: 0
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
min: -2
|
||||
max: 2
|
||||
default: 0
|
||||
pricing:
|
||||
input: '0.0005'
|
||||
output: '0.0005'
|
||||
unit: '0.0001'
|
||||
currency: USD
|
||||
@@ -0,0 +1,41 @@
|
||||
# Deepseek Models
|
||||
- deepseek/deepseek-r1
|
||||
- deepseek/deepseek_v3
|
||||
|
||||
# LLaMA Models
|
||||
- meta-llama/llama-3.3-70b-instruct
|
||||
- meta-llama/llama-3.2-11b-vision-instruct
|
||||
- meta-llama/llama-3.2-3b-instruct
|
||||
- meta-llama/llama-3.2-1b-instruct
|
||||
- meta-llama/llama-3.1-70b-instruct
|
||||
- meta-llama/llama-3.1-8b-instruct
|
||||
- meta-llama/llama-3.1-8b-instruct-max
|
||||
- meta-llama/llama-3.1-8b-instruct-bf16
|
||||
- meta-llama/llama-3-70b-instruct
|
||||
- meta-llama/llama-3-8b-instruct
|
||||
|
||||
# Mistral Models
|
||||
- mistralai/mistral-nemo
|
||||
- mistralai/mistral-7b-instruct
|
||||
|
||||
# Qwen Models
|
||||
- qwen/qwen-2.5-72b-instruct
|
||||
- qwen/qwen-2-72b-instruct
|
||||
- qwen/qwen-2-vl-72b-instruct
|
||||
- qwen/qwen-2-7b-instruct
|
||||
|
||||
# Other Models
|
||||
- sao10k/L3-8B-Stheno-v3.2
|
||||
- sao10k/l3-70b-euryale-v2.1
|
||||
- sao10k/l31-70b-euryale-v2.2
|
||||
- sao10k/l3-8b-lunaris
|
||||
- jondurbin/airoboros-l2-70b
|
||||
- cognitivecomputations/dolphin-mixtral-8x22b
|
||||
- google/gemma-2-9b-it
|
||||
- nousresearch/hermes-2-pro-llama-3-8b
|
||||
- sophosympatheia/midnight-rose-70b
|
||||
- gryphe/mythomax-l2-13b
|
||||
- nousresearch/nous-hermes-llama2-13b
|
||||
- openchat/openchat-7b
|
||||
- teknium/openhermes-2.5-mistral-7b
|
||||
- microsoft/wizardlm-2-8x22b
|
||||
@@ -1,7 +1,7 @@
|
||||
model: jondurbin/airoboros-l2-70b
|
||||
label:
|
||||
zh_Hans: jondurbin/airoboros-l2-70b
|
||||
en_US: jondurbin/airoboros-l2-70b
|
||||
zh_Hans: Airoboros L2 70B
|
||||
en_US: Airoboros L2 70B
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
|
||||
@@ -0,0 +1,41 @@
|
||||
model: deepseek/deepseek-r1
|
||||
label:
|
||||
zh_Hans: DeepSeek R1
|
||||
en_US: DeepSeek R1
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 64000
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
min: 0
|
||||
max: 2
|
||||
default: 1
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
min: 0
|
||||
max: 1
|
||||
default: 1
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
min: 1
|
||||
max: 2048
|
||||
default: 512
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
min: -2
|
||||
max: 2
|
||||
default: 0
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
min: -2
|
||||
max: 2
|
||||
default: 0
|
||||
pricing:
|
||||
input: '0.04'
|
||||
output: '0.04'
|
||||
unit: '0.0001'
|
||||
currency: USD
|
||||
@@ -0,0 +1,41 @@
|
||||
model: deepseek/deepseek_v3
|
||||
label:
|
||||
zh_Hans: DeepSeek V3
|
||||
en_US: DeepSeek V3
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 64000
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
min: 0
|
||||
max: 2
|
||||
default: 1
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
min: 0
|
||||
max: 1
|
||||
default: 1
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
min: 1
|
||||
max: 2048
|
||||
default: 512
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
min: -2
|
||||
max: 2
|
||||
default: 0
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
min: -2
|
||||
max: 2
|
||||
default: 0
|
||||
pricing:
|
||||
input: '0.0089'
|
||||
output: '0.0089'
|
||||
unit: '0.0001'
|
||||
currency: USD
|
||||
@@ -1,7 +1,7 @@
|
||||
model: cognitivecomputations/dolphin-mixtral-8x22b
|
||||
label:
|
||||
zh_Hans: cognitivecomputations/dolphin-mixtral-8x22b
|
||||
en_US: cognitivecomputations/dolphin-mixtral-8x22b
|
||||
zh_Hans: Dolphin Mixtral 8x22B
|
||||
en_US: Dolphin Mixtral 8x22B
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
model: google/gemma-2-9b-it
|
||||
label:
|
||||
zh_Hans: google/gemma-2-9b-it
|
||||
en_US: google/gemma-2-9b-it
|
||||
zh_Hans: Gemma 2 9B
|
||||
en_US: Gemma 2 9B
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
model: nousresearch/hermes-2-pro-llama-3-8b
|
||||
label:
|
||||
zh_Hans: nousresearch/hermes-2-pro-llama-3-8b
|
||||
en_US: nousresearch/hermes-2-pro-llama-3-8b
|
||||
zh_Hans: Hermes 2 Pro Llama 3 8B
|
||||
en_US: Hermes 2 Pro Llama 3 8B
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
model: sao10k/l3-70b-euryale-v2.1
|
||||
label:
|
||||
zh_Hans: sao10k/l3-70b-euryale-v2.1
|
||||
en_US: sao10k/l3-70b-euryale-v2.1
|
||||
zh_Hans: "L3 70B Euryale V2.1\t"
|
||||
en_US: "L3 70B Euryale V2.1\t"
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
|
||||
@@ -0,0 +1,41 @@
|
||||
model: sao10k/l3-8b-lunaris
|
||||
label:
|
||||
zh_Hans: "Sao10k L3 8B Lunaris"
|
||||
en_US: "Sao10k L3 8B Lunaris"
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 8192
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
min: 0
|
||||
max: 2
|
||||
default: 1
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
min: 0
|
||||
max: 1
|
||||
default: 1
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
min: 1
|
||||
max: 2048
|
||||
default: 512
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
min: -2
|
||||
max: 2
|
||||
default: 0
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
min: -2
|
||||
max: 2
|
||||
default: 0
|
||||
pricing:
|
||||
input: '0.0005'
|
||||
output: '0.0005'
|
||||
unit: '0.0001'
|
||||
currency: USD
|
||||
@@ -0,0 +1,41 @@
|
||||
model: sao10k/l31-70b-euryale-v2.2
|
||||
label:
|
||||
zh_Hans: L31 70B Euryale V2.2
|
||||
en_US: L31 70B Euryale V2.2
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 16000
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
min: 0
|
||||
max: 2
|
||||
default: 1
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
min: 0
|
||||
max: 1
|
||||
default: 1
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
min: 1
|
||||
max: 2048
|
||||
default: 512
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
min: -2
|
||||
max: 2
|
||||
default: 0
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
min: -2
|
||||
max: 2
|
||||
default: 0
|
||||
pricing:
|
||||
input: '0.0148'
|
||||
output: '0.0148'
|
||||
unit: '0.0001'
|
||||
currency: USD
|
||||
@@ -1,7 +1,7 @@
|
||||
model: meta-llama/llama-3-70b-instruct
|
||||
label:
|
||||
zh_Hans: meta-llama/llama-3-70b-instruct
|
||||
en_US: meta-llama/llama-3-70b-instruct
|
||||
zh_Hans: Llama3 70b Instruct
|
||||
en_US: Llama3 70b Instruct
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
model: meta-llama/llama-3-8b-instruct
|
||||
label:
|
||||
zh_Hans: meta-llama/llama-3-8b-instruct
|
||||
en_US: meta-llama/llama-3-8b-instruct
|
||||
zh_Hans: Llama 3 8B Instruct
|
||||
en_US: Llama 3 8B Instruct
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
@@ -35,7 +35,7 @@ parameter_rules:
|
||||
max: 2
|
||||
default: 0
|
||||
pricing:
|
||||
input: '0.00063'
|
||||
output: '0.00063'
|
||||
input: '0.0004'
|
||||
output: '0.0004'
|
||||
unit: '0.0001'
|
||||
currency: USD
|
||||
|
||||
@@ -1,13 +1,13 @@
|
||||
model: meta-llama/llama-3.1-70b-instruct
|
||||
label:
|
||||
zh_Hans: meta-llama/llama-3.1-70b-instruct
|
||||
en_US: meta-llama/llama-3.1-70b-instruct
|
||||
zh_Hans: Llama 3.1 70B Instruct
|
||||
en_US: Llama 3.1 70B Instruct
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 8192
|
||||
context_size: 32768
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
@@ -35,7 +35,7 @@ parameter_rules:
|
||||
max: 2
|
||||
default: 0
|
||||
pricing:
|
||||
input: '0.0055'
|
||||
output: '0.0076'
|
||||
input: '0.0034'
|
||||
output: '0.0039'
|
||||
unit: '0.0001'
|
||||
currency: USD
|
||||
|
||||
@@ -0,0 +1,41 @@
|
||||
model: meta-llama/llama-3.1-8b-instruct-bf16
|
||||
label:
|
||||
zh_Hans: Llama 3.1 8B Instruct BF16
|
||||
en_US: Llama 3.1 8B Instruct BF16
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 8192
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
min: 0
|
||||
max: 2
|
||||
default: 1
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
min: 0
|
||||
max: 1
|
||||
default: 1
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
min: 1
|
||||
max: 2048
|
||||
default: 512
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
min: -2
|
||||
max: 2
|
||||
default: 0
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
min: -2
|
||||
max: 2
|
||||
default: 0
|
||||
pricing:
|
||||
input: '0.0006'
|
||||
output: '0.0006'
|
||||
unit: '0.0001'
|
||||
currency: USD
|
||||
@@ -0,0 +1,41 @@
|
||||
model: meta-llama/llama-3.1-8b-instruct-max
|
||||
label:
|
||||
zh_Hans: "Llama3.1 8B Instruct Max\t"
|
||||
en_US: "Llama3.1 8B Instruct Max\t"
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 16384
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
min: 0
|
||||
max: 2
|
||||
default: 1
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
min: 0
|
||||
max: 1
|
||||
default: 1
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
min: 1
|
||||
max: 2048
|
||||
default: 512
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
min: -2
|
||||
max: 2
|
||||
default: 0
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
min: -2
|
||||
max: 2
|
||||
default: 0
|
||||
pricing:
|
||||
input: '0.0005'
|
||||
output: '0.0005'
|
||||
unit: '0.0001'
|
||||
currency: USD
|
||||
@@ -1,13 +1,13 @@
|
||||
model: meta-llama/llama-3.1-8b-instruct
|
||||
label:
|
||||
zh_Hans: meta-llama/llama-3.1-8b-instruct
|
||||
en_US: meta-llama/llama-3.1-8b-instruct
|
||||
zh_Hans: Llama 3.1 8B Instruct
|
||||
en_US: Llama 3.1 8B Instruct
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 8192
|
||||
context_size: 16384
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
@@ -35,7 +35,7 @@ parameter_rules:
|
||||
max: 2
|
||||
default: 0
|
||||
pricing:
|
||||
input: '0.001'
|
||||
output: '0.001'
|
||||
input: '0.0005'
|
||||
output: '0.0005'
|
||||
unit: '0.0001'
|
||||
currency: USD
|
||||
|
||||
@@ -0,0 +1,41 @@
|
||||
model: meta-llama/llama-3.2-11b-vision-instruct
|
||||
label:
|
||||
zh_Hans: "Llama 3.2 11B Vision Instruct\t"
|
||||
en_US: "Llama 3.2 11B Vision Instruct\t"
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 32768
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
min: 0
|
||||
max: 2
|
||||
default: 1
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
min: 0
|
||||
max: 1
|
||||
default: 1
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
min: 1
|
||||
max: 2048
|
||||
default: 512
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
min: -2
|
||||
max: 2
|
||||
default: 0
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
min: -2
|
||||
max: 2
|
||||
default: 0
|
||||
pricing:
|
||||
input: '0.0006'
|
||||
output: '0.0006'
|
||||
unit: '0.0001'
|
||||
currency: USD
|
||||
@@ -0,0 +1,41 @@
|
||||
model: meta-llama/llama-3.2-1b-instruct
|
||||
label:
|
||||
zh_Hans: "Llama 3.2 1B Instruct\t"
|
||||
en_US: "Llama 3.2 1B Instruct\t"
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 131000
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
min: 0
|
||||
max: 2
|
||||
default: 1
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
min: 0
|
||||
max: 1
|
||||
default: 1
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
min: 1
|
||||
max: 2048
|
||||
default: 512
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
min: -2
|
||||
max: 2
|
||||
default: 0
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
min: -2
|
||||
max: 2
|
||||
default: 0
|
||||
pricing:
|
||||
input: '0.0002'
|
||||
output: '0.0002'
|
||||
unit: '0.0001'
|
||||
currency: USD
|
||||
@@ -1,7 +1,7 @@
|
||||
model: Nous-Hermes-2-Mixtral-8x7B-DPO
|
||||
model: meta-llama/llama-3.2-3b-instruct
|
||||
label:
|
||||
zh_Hans: Nous-Hermes-2-Mixtral-8x7B-DPO
|
||||
en_US: Nous-Hermes-2-Mixtral-8x7B-DPO
|
||||
zh_Hans: Llama 3.2 3B Instruct
|
||||
en_US: Llama 3.2 3B Instruct
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
@@ -35,7 +35,7 @@ parameter_rules:
|
||||
max: 2
|
||||
default: 0
|
||||
pricing:
|
||||
input: '0.0027'
|
||||
output: '0.0027'
|
||||
input: '0.0003'
|
||||
output: '0.0005'
|
||||
unit: '0.0001'
|
||||
currency: USD
|
||||
@@ -0,0 +1,41 @@
|
||||
model: meta-llama/llama-3.3-70b-instruct
|
||||
label:
|
||||
zh_Hans: Llama 3.3 70B Instruct
|
||||
en_US: Llama 3.3 70B Instruct
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 131072
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
min: 0
|
||||
max: 2
|
||||
default: 1
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
min: 0
|
||||
max: 1
|
||||
default: 1
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
min: 1
|
||||
max: 2048
|
||||
default: 512
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
min: -2
|
||||
max: 2
|
||||
default: 0
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
min: -2
|
||||
max: 2
|
||||
default: 0
|
||||
pricing:
|
||||
input: '0.0039'
|
||||
output: '0.0039'
|
||||
unit: '0.0001'
|
||||
currency: USD
|
||||
@@ -1,7 +1,7 @@
|
||||
model: sophosympatheia/midnight-rose-70b
|
||||
label:
|
||||
zh_Hans: sophosympatheia/midnight-rose-70b
|
||||
en_US: sophosympatheia/midnight-rose-70b
|
||||
zh_Hans: Midnight Rose 70B
|
||||
en_US: Midnight Rose 70B
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
model: mistralai/mistral-7b-instruct
|
||||
label:
|
||||
zh_Hans: mistralai/mistral-7b-instruct
|
||||
en_US: mistralai/mistral-7b-instruct
|
||||
zh_Hans: Mistral 7B Instruct
|
||||
en_US: Mistral 7B Instruct
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
|
||||
@@ -0,0 +1,41 @@
|
||||
model: mistralai/mistral-nemo
|
||||
label:
|
||||
zh_Hans: Mistral Nemo
|
||||
en_US: Mistral Nemo
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 131072
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
min: 0
|
||||
max: 2
|
||||
default: 1
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
min: 0
|
||||
max: 1
|
||||
default: 1
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
min: 1
|
||||
max: 2048
|
||||
default: 512
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
min: -2
|
||||
max: 2
|
||||
default: 0
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
min: -2
|
||||
max: 2
|
||||
default: 0
|
||||
pricing:
|
||||
input: '0.0017'
|
||||
output: '0.0017'
|
||||
unit: '0.0001'
|
||||
currency: USD
|
||||
@@ -1,7 +1,7 @@
|
||||
model: gryphe/mythomax-l2-13b
|
||||
label:
|
||||
zh_Hans: gryphe/mythomax-l2-13b
|
||||
en_US: gryphe/mythomax-l2-13b
|
||||
zh_Hans: Mythomax L2 13B
|
||||
en_US: Mythomax L2 13B
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
@@ -35,7 +35,7 @@ parameter_rules:
|
||||
max: 2
|
||||
default: 0
|
||||
pricing:
|
||||
input: '0.00119'
|
||||
output: '0.00119'
|
||||
input: '0.0009'
|
||||
output: '0.0009'
|
||||
unit: '0.0001'
|
||||
currency: USD
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
model: nousresearch/nous-hermes-llama2-13b
|
||||
label:
|
||||
zh_Hans: nousresearch/nous-hermes-llama2-13b
|
||||
en_US: nousresearch/nous-hermes-llama2-13b
|
||||
zh_Hans: Nous Hermes Llama2 13B
|
||||
en_US: Nous Hermes Llama2 13B
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
model: lzlv_70b
|
||||
model: openchat/openchat-7b
|
||||
label:
|
||||
zh_Hans: lzlv_70b
|
||||
en_US: lzlv_70b
|
||||
zh_Hans: OpenChat 7B
|
||||
en_US: OpenChat 7B
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
@@ -35,7 +35,7 @@ parameter_rules:
|
||||
max: 2
|
||||
default: 0
|
||||
pricing:
|
||||
input: '0.0058'
|
||||
output: '0.0078'
|
||||
input: '0.0006'
|
||||
output: '0.0006'
|
||||
unit: '0.0001'
|
||||
currency: USD
|
||||
@@ -1,7 +1,7 @@
|
||||
model: teknium/openhermes-2.5-mistral-7b
|
||||
label:
|
||||
zh_Hans: teknium/openhermes-2.5-mistral-7b
|
||||
en_US: teknium/openhermes-2.5-mistral-7b
|
||||
zh_Hans: Openhermes2.5 Mistral 7B
|
||||
en_US: Openhermes2.5 Mistral 7B
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
model: meta-llama/llama-3.1-405b-instruct
|
||||
model: qwen/qwen-2-72b-instruct
|
||||
label:
|
||||
zh_Hans: meta-llama/llama-3.1-405b-instruct
|
||||
en_US: meta-llama/llama-3.1-405b-instruct
|
||||
zh_Hans: Qwen2 72B Instruct
|
||||
en_US: Qwen2 72B Instruct
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
@@ -35,7 +35,7 @@ parameter_rules:
|
||||
max: 2
|
||||
default: 0
|
||||
pricing:
|
||||
input: '0.03'
|
||||
output: '0.05'
|
||||
input: '0.0034'
|
||||
output: '0.0039'
|
||||
unit: '0.0001'
|
||||
currency: USD
|
||||
@@ -0,0 +1,41 @@
|
||||
model: qwen/qwen-2-7b-instruct
|
||||
label:
|
||||
zh_Hans: Qwen 2 7B Instruct
|
||||
en_US: Qwen 2 7B Instruct
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 32768
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
min: 0
|
||||
max: 2
|
||||
default: 1
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
min: 0
|
||||
max: 1
|
||||
default: 1
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
min: 1
|
||||
max: 2048
|
||||
default: 512
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
min: -2
|
||||
max: 2
|
||||
default: 0
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
min: -2
|
||||
max: 2
|
||||
default: 0
|
||||
pricing:
|
||||
input: '0.00054'
|
||||
output: '0.00054'
|
||||
unit: '0.0001'
|
||||
currency: USD
|
||||
@@ -0,0 +1,41 @@
|
||||
model: qwen/qwen-2-vl-72b-instruct
|
||||
label:
|
||||
zh_Hans: Qwen 2 VL 72B Instruct
|
||||
en_US: Qwen 2 VL 72B Instruct
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 32768
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
min: 0
|
||||
max: 2
|
||||
default: 1
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
min: 0
|
||||
max: 1
|
||||
default: 1
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
min: 1
|
||||
max: 2048
|
||||
default: 512
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
min: -2
|
||||
max: 2
|
||||
default: 0
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
min: -2
|
||||
max: 2
|
||||
default: 0
|
||||
pricing:
|
||||
input: '0.0045'
|
||||
output: '0.0045'
|
||||
unit: '0.0001'
|
||||
currency: USD
|
||||
@@ -0,0 +1,41 @@
|
||||
model: qwen/qwen-2.5-72b-instruct
|
||||
label:
|
||||
zh_Hans: Qwen 2.5 72B Instruct
|
||||
en_US: Qwen 2.5 72B Instruct
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 32000
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
min: 0
|
||||
max: 2
|
||||
default: 1
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
min: 0
|
||||
max: 1
|
||||
default: 1
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
min: 1
|
||||
max: 2048
|
||||
default: 512
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
min: -2
|
||||
max: 2
|
||||
default: 0
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
min: -2
|
||||
max: 2
|
||||
default: 0
|
||||
pricing:
|
||||
input: '0.0038'
|
||||
output: '0.004'
|
||||
unit: '0.0001'
|
||||
currency: USD
|
||||
@@ -1,7 +1,7 @@
|
||||
model: microsoft/wizardlm-2-8x22b
|
||||
label:
|
||||
zh_Hans: microsoft/wizardlm-2-8x22b
|
||||
en_US: microsoft/wizardlm-2-8x22b
|
||||
zh_Hans: Wizardlm 2 8x22B
|
||||
en_US: Wizardlm 2 8x22B
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
@@ -35,7 +35,7 @@ parameter_rules:
|
||||
max: 2
|
||||
default: 0
|
||||
pricing:
|
||||
input: '0.0064'
|
||||
output: '0.0064'
|
||||
input: '0.0062'
|
||||
output: '0.0062'
|
||||
unit: '0.0001'
|
||||
currency: USD
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
provider: novita
|
||||
label:
|
||||
en_US: novita.ai
|
||||
en_US: Novita AI
|
||||
description:
|
||||
en_US: An LLM API that matches various application scenarios with high cost-effectiveness.
|
||||
zh_Hans: 适配多种海外应用场景的高性价比 LLM API
|
||||
@@ -8,13 +8,13 @@ icon_small:
|
||||
en_US: icon_s_en.svg
|
||||
icon_large:
|
||||
en_US: icon_l_en.svg
|
||||
background: "#eadeff"
|
||||
background: "#c7fce2"
|
||||
help:
|
||||
title:
|
||||
en_US: Get your API key from novita.ai
|
||||
zh_Hans: 从 novita.ai 获取 API Key
|
||||
en_US: Get your API key from Novita AI
|
||||
zh_Hans: 从 Novita AI 获取 API Key
|
||||
url:
|
||||
en_US: https://novita.ai/settings#key-management?utm_source=dify&utm_medium=ch&utm_campaign=api
|
||||
en_US: https://novita.ai/settings/key-management?utm_source=dify&utm_medium=ch&utm_campaign=api
|
||||
supported_model_types:
|
||||
- llm
|
||||
configurate_methods:
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
- deepseek-ai/deepseek-r1
|
||||
- google/gemma-7b
|
||||
- google/codegemma-7b
|
||||
- google/recurrentgemma-2b
|
||||
|
||||
@@ -0,0 +1,35 @@
|
||||
model: deepseek-ai/deepseek-r1
|
||||
label:
|
||||
en_US: deepseek-ai/deepseek-r1
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 128000
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
min: 0
|
||||
max: 1
|
||||
default: 0.5
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
min: 0
|
||||
max: 1
|
||||
default: 1
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
min: 1
|
||||
max: 1024
|
||||
default: 1024
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
min: -2
|
||||
max: 2
|
||||
default: 0
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
min: -2
|
||||
max: 2
|
||||
default: 0
|
||||
@@ -83,7 +83,7 @@ class NVIDIALargeLanguageModel(OAIAPICompatLargeLanguageModel):
|
||||
def _add_custom_parameters(self, credentials: dict, model: str) -> None:
|
||||
credentials["mode"] = "chat"
|
||||
|
||||
if self.MODEL_SUFFIX_MAP[model]:
|
||||
if self.MODEL_SUFFIX_MAP.get(model):
|
||||
credentials["server_url"] = f"https://ai.api.nvidia.com/v1/{self.MODEL_SUFFIX_MAP[model]}"
|
||||
credentials.pop("endpoint_url")
|
||||
else:
|
||||
|
||||
@@ -0,0 +1,52 @@
|
||||
model: cohere.command-r-08-2024
|
||||
label:
|
||||
en_US: cohere.command-r-08-2024 v1.7
|
||||
model_type: llm
|
||||
features:
|
||||
- multi-tool-call
|
||||
- agent-thought
|
||||
- stream-tool-call
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 128000
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
default: 1
|
||||
max: 1.0
|
||||
- name: topP
|
||||
use_template: top_p
|
||||
default: 0.75
|
||||
min: 0
|
||||
max: 1
|
||||
- name: topK
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
default: 0
|
||||
min: 0
|
||||
max: 500
|
||||
- name: presencePenalty
|
||||
use_template: presence_penalty
|
||||
min: 0
|
||||
max: 1
|
||||
default: 0
|
||||
- name: frequencyPenalty
|
||||
use_template: frequency_penalty
|
||||
min: 0
|
||||
max: 1
|
||||
default: 0
|
||||
- name: maxTokens
|
||||
use_template: max_tokens
|
||||
default: 600
|
||||
max: 4000
|
||||
pricing:
|
||||
input: '0.0009'
|
||||
output: '0.0009'
|
||||
unit: '0.0001'
|
||||
currency: USD
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user