FEAT: Tencent Vector optimize BM25 initialization to reduce loading time (#24915)
Some checks are pending
Build and Push API & Web / build (api, DIFY_API_IMAGE_NAME, linux/amd64, build-api-amd64) (push) Waiting to run
Build and Push API & Web / build (api, DIFY_API_IMAGE_NAME, linux/arm64, build-api-arm64) (push) Waiting to run
Build and Push API & Web / build (web, DIFY_WEB_IMAGE_NAME, linux/amd64, build-web-amd64) (push) Waiting to run
Build and Push API & Web / build (web, DIFY_WEB_IMAGE_NAME, linux/arm64, build-web-arm64) (push) Waiting to run
Build and Push API & Web / create-manifest (api, DIFY_API_IMAGE_NAME, merge-api-images) (push) Blocked by required conditions
Build and Push API & Web / create-manifest (web, DIFY_WEB_IMAGE_NAME, merge-web-images) (push) Blocked by required conditions
Main CI Pipeline / Check Changed Files (push) Waiting to run
Main CI Pipeline / API Tests (push) Blocked by required conditions
Main CI Pipeline / Web Tests (push) Blocked by required conditions
Main CI Pipeline / Style Check (push) Waiting to run
Main CI Pipeline / VDB Tests (push) Blocked by required conditions
Main CI Pipeline / DB Migration Test (push) Blocked by required conditions

Co-authored-by: wlleiiwang <wlleiiwang@tencent.com>
This commit is contained in:
wlleiiwang
2025-09-01 21:08:41 +08:00
committed by GitHub
parent 64319c0d56
commit 9486715929

View File

@@ -39,6 +39,9 @@ class TencentConfig(BaseModel):
return {"url": self.url, "username": self.username, "key": self.api_key, "timeout": self.timeout}
bm25 = BM25Encoder.default("zh")
class TencentVector(BaseVector):
field_id: str = "id"
field_vector: str = "vector"
@@ -53,7 +56,6 @@ class TencentVector(BaseVector):
self._dimension = 1024
self._init_database()
self._load_collection()
self._bm25 = BM25Encoder.default("zh")
def _load_collection(self):
"""
@@ -186,7 +188,7 @@ class TencentVector(BaseVector):
metadata=metadata,
)
if self._enable_hybrid_search:
doc.__dict__["sparse_vector"] = self._bm25.encode_texts(texts[i])
doc.__dict__["sparse_vector"] = bm25.encode_texts(texts[i])
docs.append(doc)
self._client.upsert(
database_name=self._client_config.database,
@@ -264,7 +266,7 @@ class TencentVector(BaseVector):
match=[
KeywordSearch(
field_name="sparse_vector",
data=self._bm25.encode_queries(query),
data=bm25.encode_queries(query),
),
],
rerank=WeightedRerank(