Revert this PR since the test is not triggered properly due to the false merge of a WIP CI PR, 44a689b0bf, which block the CI test.
This change will be submitted in another PR.
156 lines
5.1 KiB
Markdown
156 lines
5.1 KiB
Markdown
# Build Mega Service of SearchQnA on Xeon
|
|
|
|
This document outlines the deployment process for a SearchQnA application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline on Intel Xeon server.
|
|
|
|
## 🚀 Build Docker images
|
|
|
|
### 1. Build Embedding Image
|
|
|
|
```bash
|
|
git clone https://github.com/opea-project/GenAIComps.git
|
|
cd GenAIComps
|
|
docker build --no-cache -t opea/embedding:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/src/Dockerfile .
|
|
```
|
|
|
|
### 2. Build Retriever Image
|
|
|
|
```bash
|
|
docker build --no-cache -t opea/web-retriever:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/web_retrievers/src/Dockerfile .
|
|
```
|
|
|
|
### 3. Build Rerank Image
|
|
|
|
```bash
|
|
docker build --no-cache -t opea/reranking:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/rerankings/src/Dockerfile .
|
|
```
|
|
|
|
### 4. Build LLM Image
|
|
|
|
```bash
|
|
docker build --no-cache -t opea/llm-textgen:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/src/text-generation/Dockerfile .
|
|
```
|
|
|
|
### 5. Build MegaService Docker Image
|
|
|
|
To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `searchqna.py` Python script. Build the MegaService Docker image using the command below:
|
|
|
|
```bash
|
|
git clone https://github.com/opea-project/GenAIExamples.git
|
|
cd GenAIExamples/SearchQnA
|
|
docker build --no-cache -t opea/searchqna:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
|
|
```
|
|
|
|
### 6. Build UI Docker Image
|
|
|
|
Build frontend Docker image via below command:
|
|
|
|
```bash
|
|
cd GenAIExamples/SearchQnA/ui
|
|
docker build --no-cache -t opea/opea/searchqna-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile .
|
|
```
|
|
|
|
Then run the command `docker images`, you will have following images ready:
|
|
|
|
1. `opea/embedding:latest`
|
|
2. `opea/web-retriever:latest`
|
|
3. `opea/reranking:latest`
|
|
4. `opea/llm-textgen:latest`
|
|
5. `opea/searchqna:latest`
|
|
6. `opea/searchqna-ui:latest`
|
|
|
|
## 🚀 Set the environment variables
|
|
|
|
Before starting the services with `docker compose`, you have to recheck the following environment variables.
|
|
|
|
```bash
|
|
export host_ip=<your External Public IP> # export host_ip=$(hostname -I | awk '{print $1}')
|
|
export GOOGLE_CSE_ID=<your cse id>
|
|
export GOOGLE_API_KEY=<your google api key>
|
|
export HUGGINGFACEHUB_API_TOKEN=<your HF token>
|
|
|
|
export EMBEDDING_MODEL_ID=BAAI/bge-base-en-v1.5
|
|
export TEI_EMBEDDING_ENDPOINT=http://${host_ip}:3001
|
|
export RERANK_MODEL_ID=BAAI/bge-reranker-base
|
|
export TEI_RERANKING_ENDPOINT=http://${host_ip}:3004
|
|
export BACKEND_SERVICE_ENDPOINT=http://${host_ip}:3008/v1/searchqna
|
|
|
|
export TGI_LLM_ENDPOINT=http://${host_ip}:3006
|
|
export LLM_MODEL_ID=Intel/neural-chat-7b-v3-3
|
|
|
|
export MEGA_SERVICE_HOST_IP=${host_ip}
|
|
export EMBEDDING_SERVICE_HOST_IP=${host_ip}
|
|
export WEB_RETRIEVER_SERVICE_HOST_IP=${host_ip}
|
|
export RERANK_SERVICE_HOST_IP=${host_ip}
|
|
export LLM_SERVICE_HOST_IP=${host_ip}
|
|
|
|
export EMBEDDING_SERVICE_PORT=3002
|
|
export WEB_RETRIEVER_SERVICE_PORT=3003
|
|
export RERANK_SERVICE_PORT=3005
|
|
export LLM_SERVICE_PORT=3007
|
|
```
|
|
|
|
## 🚀 Start the MegaService
|
|
|
|
```bash
|
|
cd GenAIExamples/SearchQnA/docker_compose/intel/cpu/xeon
|
|
docker compose up -d
|
|
```
|
|
|
|
## 🚀 Test MicroServices
|
|
|
|
```bash
|
|
# tei
|
|
curl http://${host_ip}:3001/embed \
|
|
-X POST \
|
|
-d '{"inputs":"What is Deep Learning?"}' \
|
|
-H 'Content-Type: application/json'
|
|
|
|
# embedding microservice
|
|
curl http://${host_ip}:3002/v1/embeddings\
|
|
-X POST \
|
|
-d '{"text":"hello"}' \
|
|
-H 'Content-Type: application/json'
|
|
|
|
# web retriever microservice
|
|
export your_embedding=$(python3 -c "import random; embedding = [random.uniform(-1, 1) for _ in range(768)]; print(embedding)")
|
|
curl http://${host_ip}:3003/v1/web_retrieval \
|
|
-X POST \
|
|
-d "{\"text\":\"What is the 2024 holiday schedule?\",\"embedding\":${your_embedding}}" \
|
|
-H 'Content-Type: application/json'
|
|
|
|
|
|
# tei reranking service
|
|
curl http://${host_ip}:3004/rerank \
|
|
-X POST \
|
|
-d '{"query":"What is Deep Learning?", "texts": ["Deep Learning is not...", "Deep learning is..."]}' \
|
|
-H 'Content-Type: application/json'
|
|
|
|
# reranking microservice
|
|
curl http://${host_ip}:3005/v1/reranking\
|
|
-X POST \
|
|
-d '{"initial_query":"What is Deep Learning?", "retrieved_docs": [{"text":"Deep Learning is not..."}, {"text":"Deep learning is..."}]}' \
|
|
-H 'Content-Type: application/json'
|
|
|
|
# tgi service
|
|
curl http://${host_ip}:3006/generate \
|
|
-X POST \
|
|
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}' \
|
|
-H 'Content-Type: application/json'
|
|
|
|
# llm microservice
|
|
curl http://${host_ip}:3007/v1/chat/completions\
|
|
-X POST \
|
|
-d '{"query":"What is Deep Learning?","max_tokens":17,"top_k":10,"top_p":0.95,"typical_p":0.95,"temperature":0.01,"repetition_penalty":1.03,"stream":true}' \
|
|
-H 'Content-Type: application/json'
|
|
|
|
```
|
|
|
|
## 🚀 Test MegaService
|
|
|
|
```bash
|
|
curl http://${host_ip}:3008/v1/searchqna -H "Content-Type: application/json" -d '{
|
|
"messages": "What is the latest news? Give me also the source link.",
|
|
"stream": "True"
|
|
}'
|
|
```
|