Files
GenAIExamples/DocSum/tests/test_docsum_on_xeon.sh
2024-07-22 15:36:03 +08:00

164 lines
5.6 KiB
Bash

#!/bin/bash
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
set -x
WORKPATH=$(dirname "$PWD")
LOG_PATH="$WORKPATH/tests"
ip_address=$(hostname -I | awk '{print $1}')
function build_docker_images() {
cd $WORKPATH
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
docker build --no-cache -t opea/llm-docsum-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/summarization/tgi/Dockerfile .
cd $WORKPATH/docker
docker build --no-cache -t opea/docsum:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
cd $WORKPATH/docker/ui
docker build --no-cache -t opea/docsum-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f docker/Dockerfile .
docker images
}
function start_services() {
cd $WORKPATH/docker/xeon
export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
export TGI_LLM_ENDPOINT="http://${ip_address}:8008"
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export MEGA_SERVICE_HOST_IP=${ip_address}
export LLM_SERVICE_HOST_IP=${ip_address}
export BACKEND_SERVICE_ENDPOINT="http://${ip_address}:8888/v1/docsum"
sed -i "s/backend_address/$ip_address/g" $WORKPATH/docker/ui/svelte/.env
if [[ "$IMAGE_REPO" != "" ]]; then
# Replace the container name with a test-specific name
echo "using image repository $IMAGE_REPO and image tag $IMAGE_TAG"
sed -i "s#image: opea/docsum:latest#image: opea/docsum:${IMAGE_TAG}#g" docker_compose.yaml
sed -i "s#image: opea/docsum-ui:latest#image: opea/docsum-ui:${IMAGE_TAG}#g" docker_compose.yaml
sed -i "s#image: opea/*#image: ${IMAGE_REPO}opea/#g" docker_compose.yaml
echo "cat docker_compose.yaml"
cat docker_compose.yaml
fi
# Start Docker Containers
docker compose -f docker_compose.yaml up -d
sleep 2m # Waits 2 minutes
}
function validate_services() {
local URL="$1"
local EXPECTED_RESULT="$2"
local SERVICE_NAME="$3"
local DOCKER_NAME="$4"
local INPUT_DATA="$5"
local HTTP_STATUS=$(curl -s -o /dev/null -w "%{http_code}" -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL")
if [ "$HTTP_STATUS" -eq 200 ]; then
echo "[ $SERVICE_NAME ] HTTP status is 200. Checking content..."
local CONTENT=$(curl -s -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL" | tee ${LOG_PATH}/${SERVICE_NAME}.log)
if echo "$CONTENT" | grep -q "$EXPECTED_RESULT"; then
echo "[ $SERVICE_NAME ] Content is as expected."
else
echo "[ $SERVICE_NAME ] Content does not match the expected result: $CONTENT"
docker logs ${DOCKER_NAME} >> ${LOG_PATH}/${SERVICE_NAME}.log
exit 1
fi
else
echo "[ $SERVICE_NAME ] HTTP status is not 200. Received status was $HTTP_STATUS"
docker logs ${DOCKER_NAME} >> ${LOG_PATH}/${SERVICE_NAME}.log
exit 1
fi
sleep 1s
}
function validate_microservices() {
# Check if the microservices are running correctly.
# tgi for llm service
validate_services \
"${ip_address}:8008/generate" \
"generated_text" \
"tgi-llm" \
"tgi_service" \
'{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}'
# llm microservice
validate_services \
"${ip_address}:9000/v1/chat/docsum" \
"data: " \
"llm" \
"llm-docsum-server" \
'{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."}'
}
function validate_megaservice() {
# Curl the Mega Service
validate_services \
"${ip_address}:8888/v1/docsum" \
"versatile toolkit" \
"mega-docsum" \
"docsum-xeon-backend-server" \
'{"messages": "Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."}'
}
function validate_frontend() {
cd $WORKPATH/docker/ui/svelte
local conda_env_name="OPEA_e2e"
export PATH=${HOME}/miniforge3/bin/:$PATH
# conda remove -n ${conda_env_name} --all -y
# conda create -n ${conda_env_name} python=3.12 -y
source activate ${conda_env_name}
sed -i "s/localhost/$ip_address/g" playwright.config.ts
# conda install -c conda-forge nodejs -y
npm install && npm ci && npx playwright install --with-deps
node -v && npm -v && pip list
exit_status=0
npx playwright test || exit_status=$?
if [ $exit_status -ne 0 ]; then
echo "[TEST INFO]: ---------frontend test failed---------"
exit $exit_status
else
echo "[TEST INFO]: ---------frontend test passed---------"
fi
}
function stop_docker() {
cd $WORKPATH/docker/xeon
container_list=$(cat docker_compose.yaml | grep container_name | cut -d':' -f2)
for container_name in $container_list; do
cid=$(docker ps -aq --filter "name=$container_name")
if [[ ! -z "$cid" ]]; then docker stop $cid && docker rm $cid && sleep 1s; fi
done
}
function main() {
stop_docker
if [[ "$IMAGE_REPO" == "" ]]; then build_docker_images; fi
start_services
validate_microservices
validate_megaservice
validate_frontend
stop_docker
echo y | docker system prune
}
main