#!/bin/bash # Copyright (C) 2024 Intel Corporation # SPDX-License-Identifier: Apache-2.0 set -x WORKPATH=$(dirname "$PWD") LOG_PATH="$WORKPATH/tests" ip_address=$(hostname -I | awk '{print $1}') function build_docker_images() { cd $WORKPATH git clone https://github.com/opea-project/GenAIComps.git cd GenAIComps docker build --no-cache -t opea/llm-docsum-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/summarization/tgi/Dockerfile . cd $WORKPATH/docker docker build --no-cache -t opea/docsum:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile . cd $WORKPATH/docker/ui docker build --no-cache -t opea/docsum-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f docker/Dockerfile . docker images } function start_services() { cd $WORKPATH/docker/xeon export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3" export TGI_LLM_ENDPOINT="http://${ip_address}:8008" export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN} export MEGA_SERVICE_HOST_IP=${ip_address} export LLM_SERVICE_HOST_IP=${ip_address} export BACKEND_SERVICE_ENDPOINT="http://${ip_address}:8888/v1/docsum" sed -i "s/backend_address/$ip_address/g" $WORKPATH/docker/ui/svelte/.env if [[ "$IMAGE_REPO" != "" ]]; then # Replace the container name with a test-specific name echo "using image repository $IMAGE_REPO and image tag $IMAGE_TAG" sed -i "s#image: opea/docsum:latest#image: opea/docsum:${IMAGE_TAG}#g" docker_compose.yaml sed -i "s#image: opea/docsum-ui:latest#image: opea/docsum-ui:${IMAGE_TAG}#g" docker_compose.yaml sed -i "s#image: opea/*#image: ${IMAGE_REPO}opea/#g" docker_compose.yaml echo "cat docker_compose.yaml" cat docker_compose.yaml fi # Start Docker Containers docker compose -f docker_compose.yaml up -d sleep 2m # Waits 2 minutes } function validate_services() { local URL="$1" local EXPECTED_RESULT="$2" local SERVICE_NAME="$3" local DOCKER_NAME="$4" local INPUT_DATA="$5" local HTTP_STATUS=$(curl -s -o /dev/null -w "%{http_code}" -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL") if [ "$HTTP_STATUS" -eq 200 ]; then echo "[ $SERVICE_NAME ] HTTP status is 200. Checking content..." local CONTENT=$(curl -s -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL" | tee ${LOG_PATH}/${SERVICE_NAME}.log) if echo "$CONTENT" | grep -q "$EXPECTED_RESULT"; then echo "[ $SERVICE_NAME ] Content is as expected." else echo "[ $SERVICE_NAME ] Content does not match the expected result: $CONTENT" docker logs ${DOCKER_NAME} >> ${LOG_PATH}/${SERVICE_NAME}.log exit 1 fi else echo "[ $SERVICE_NAME ] HTTP status is not 200. Received status was $HTTP_STATUS" docker logs ${DOCKER_NAME} >> ${LOG_PATH}/${SERVICE_NAME}.log exit 1 fi sleep 1s } function validate_microservices() { # Check if the microservices are running correctly. # tgi for llm service validate_services \ "${ip_address}:8008/generate" \ "generated_text" \ "tgi-llm" \ "tgi_service" \ '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}' # llm microservice validate_services \ "${ip_address}:9000/v1/chat/docsum" \ "data: " \ "llm" \ "llm-docsum-server" \ '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."}' } function validate_megaservice() { # Curl the Mega Service validate_services \ "${ip_address}:8888/v1/docsum" \ "versatile toolkit" \ "mega-docsum" \ "docsum-xeon-backend-server" \ '{"messages": "Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."}' } function validate_frontend() { cd $WORKPATH/docker/ui/svelte local conda_env_name="OPEA_e2e" export PATH=${HOME}/miniforge3/bin/:$PATH # conda remove -n ${conda_env_name} --all -y # conda create -n ${conda_env_name} python=3.12 -y source activate ${conda_env_name} sed -i "s/localhost/$ip_address/g" playwright.config.ts # conda install -c conda-forge nodejs -y npm install && npm ci && npx playwright install --with-deps node -v && npm -v && pip list exit_status=0 npx playwright test || exit_status=$? if [ $exit_status -ne 0 ]; then echo "[TEST INFO]: ---------frontend test failed---------" exit $exit_status else echo "[TEST INFO]: ---------frontend test passed---------" fi } function stop_docker() { cd $WORKPATH/docker/xeon container_list=$(cat docker_compose.yaml | grep container_name | cut -d':' -f2) for container_name in $container_list; do cid=$(docker ps -aq --filter "name=$container_name") if [[ ! -z "$cid" ]]; then docker stop $cid && docker rm $cid && sleep 1s; fi done } function main() { stop_docker if [[ "$IMAGE_REPO" == "" ]]; then build_docker_images; fi start_services validate_microservices validate_megaservice validate_frontend stop_docker echo y | docker system prune } main