* Fix typos in BaseStatistics method names Signed-off-by: Eero Tamminen <eero.t.tamminen@intel.com> * Add HttpService "inprogress" (pending) request count metrics Signed-off-by: Eero Tamminen <eero.t.tamminen@intel.com> * Add E2E Prometheus metrics to ServiceOrchestrator Signed-off-by: Eero Tamminen <eero.t.tamminen@intel.com> * Fix: support metrics with multiple ServiceOrchestrator instances Unlike apps, CI tests create multiple of them. Signed-off-by: Eero Tamminen <eero.t.tamminen@intel.com> * Fix: require named MicroService -> HTTPService instances Creating multiple MicroService()s creates multiple HTTPService()s which creates multiple Prometheus fastapi instrumentor instances. While latter handled that fine for ChatQnA and normal HTTP metrics, that was not the case for its "inprogress" metrics in CI. Therefore MicroService constructor name argument is now mandatory, so that it can be used to make "inprogress" metrics for HTTPService instances unique. PS. instrumentor requires HTTPService instance specific Starlette instance, so it cannot be made singleton. Signed-off-by: Eero Tamminen <eero.t.tamminen@intel.com> * Fix: update test_token_generator() Signed-off-by: Eero Tamminen <eero.t.tamminen@intel.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Signed-off-by: Eero Tamminen <eero.t.tamminen@intel.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Generative AI Components (GenAIComps)
Build Enterprise-grade Generative AI Applications with Microservice Architecture
This initiative empowers the development of high-quality Generative AI applications for enterprises via microservices, simplifying the scaling and deployment process for production. It abstracts away infrastructure complexities, facilitating the seamless development and deployment of Enterprise AI services.
GenAIComps
GenAIComps provides a suite of microservices, leveraging a service composer to assemble a mega-service tailored for real-world Enterprise AI applications. All the microservices are containerized, allowing cloud native deployment. Checkout how the microservices are used in GenAIExamples.
Installation
- Install from Pypi
pip install opea-comps
- Build from Source
git clone https://github.com/opea-project/GenAIComps
cd GenAIComps
pip install -e .
MicroService
Microservices are akin to building blocks, offering the fundamental services for constructing RAG (Retrieval-Augmented Generation) applications.
Each Microservice is designed to perform a specific function or task within the application architecture. By breaking down the system into smaller, self-contained services, Microservices promote modularity, flexibility, and scalability.
This modular approach allows developers to independently develop, deploy, and scale individual components of the application, making it easier to maintain and evolve over time. Additionally, Microservices facilitate fault isolation, as issues in one service are less likely to impact the entire system.
The initially supported Microservices are described in the below table. More Microservices are on the way.
A Microservices can be created by using the decorator register_microservice. Taking the embedding microservice as an example:
from langchain_community.embeddings import HuggingFaceHubEmbeddings
from comps import register_microservice, EmbedDoc, ServiceType, TextDoc
@register_microservice(
name="opea_service@embedding_tgi_gaudi",
service_type=ServiceType.EMBEDDING,
endpoint="/v1/embeddings",
host="0.0.0.0",
port=6000,
input_datatype=TextDoc,
output_datatype=EmbedDoc,
)
def embedding(input: TextDoc) -> EmbedDoc:
embed_vector = embeddings.embed_query(input.text)
res = EmbedDoc(text=input.text, embedding=embed_vector)
return res
MegaService
A Megaservice is a higher-level architectural construct composed of one or more Microservices, providing the capability to assemble end-to-end applications. Unlike individual Microservices, which focus on specific tasks or functions, a Megaservice orchestrates multiple Microservices to deliver a comprehensive solution.
Megaservices encapsulate complex business logic and workflow orchestration, coordinating the interactions between various Microservices to fulfill specific application requirements. This approach enables the creation of modular yet integrated applications, where each Microservice contributes to the overall functionality of the Megaservice.
Here is a simple example of building Megaservice:
from comps import MicroService, ServiceOrchestrator
EMBEDDING_SERVICE_HOST_IP = os.getenv("EMBEDDING_SERVICE_HOST_IP", "0.0.0.0")
EMBEDDING_SERVICE_PORT = os.getenv("EMBEDDING_SERVICE_PORT", 6000)
LLM_SERVICE_HOST_IP = os.getenv("LLM_SERVICE_HOST_IP", "0.0.0.0")
LLM_SERVICE_PORT = os.getenv("LLM_SERVICE_PORT", 9000)
class ExampleService:
def __init__(self, host="0.0.0.0", port=8000):
self.host = host
self.port = port
self.megaservice = ServiceOrchestrator()
def add_remote_service(self):
embedding = MicroService(
name="embedding",
host=EMBEDDING_SERVICE_HOST_IP,
port=EMBEDDING_SERVICE_PORT,
endpoint="/v1/embeddings",
use_remote_service=True,
service_type=ServiceType.EMBEDDING,
)
llm = MicroService(
name="llm",
host=LLM_SERVICE_HOST_IP,
port=LLM_SERVICE_PORT,
endpoint="/v1/chat/completions",
use_remote_service=True,
service_type=ServiceType.LLM,
)
self.megaservice.add(embedding).add(llm)
self.megaservice.flow_to(embedding, llm)
Gateway
The Gateway serves as the interface for users to access the Megaservice, providing customized access based on user requirements. It acts as the entry point for incoming requests, routing them to the appropriate Microservices within the Megaservice architecture.
Gateways support API definition, API versioning, rate limiting, and request transformation, allowing for fine-grained control over how users interact with the underlying Microservices. By abstracting the complexity of the underlying infrastructure, Gateways provide a seamless and user-friendly experience for interacting with the Megaservice.
For example, the Gateway for ChatQnA can be built like this:
from comps import ChatQnAGateway
self.gateway = ChatQnAGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
Contributing to OPEA
Welcome to the OPEA open-source community! We are thrilled to have you here and excited about the potential contributions you can bring to the OPEA platform. Whether you are fixing bugs, adding new GenAI components, improving documentation, or sharing your unique use cases, your contributions are invaluable.
Together, we can make OPEA the go-to platform for enterprise AI solutions. Let's work together to push the boundaries of what's possible and create a future where AI is accessible, efficient, and impactful for everyone.
Please check the Contributing guidelines for a detailed guide on how to contribute a GenAI example and all the ways you can contribute!
Thank you for being a part of this journey. We can't wait to see what we can achieve together!
