Files
GenAIExamples/VisualQnA/docker_compose/amd/gpu/rocm/README.md
2025-01-13 13:42:06 +08:00

157 lines
5.2 KiB
Markdown

# Build Mega Service of VisualQnA on AMD ROCm
This document outlines the deployment process for a VisualQnA application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline on Intel Xeon server. The steps include Docker image creation, container deployment via Docker Compose, and service execution to integrate microservices such as `llm`. We will publish the Docker images to Docker Hub soon, it will simplify the deployment process for this service.
## 🚀 Build Docker Images
First of all, you need to build Docker Images locally and install the python package of it.
### 1. Build LVM and NGINX Docker Images
```bash
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
docker build --no-cache -t opea/lvm:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/lvms/src/Dockerfile .
docker build --no-cache -t opea/nginx:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/third_parties/nginx/src/Dockerfile .
```
### 2. Build MegaService Docker Image
To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `visualqna.py` Python script. Build MegaService Docker image via below command:
```bash
git clone https://github.com/opea-project/GenAIExamples.git
cd GenAIExamples/VisualQnA
docker build --no-cache -t opea/visualqna:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
```
### 3. Build UI Docker Image
Build frontend Docker image via below command:
```bash
cd GenAIExamples/VisualQnA/ui
docker build --no-cache -t opea/visualqna-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f docker/Dockerfile .
```
### 4. Pull TGI AMD ROCm Image
```bash
docker pull ghcr.io/huggingface/text-generation-inference:2.4.1-rocm
```
Then run the command `docker images`, you will have the following 5 Docker Images:
1. `ghcr.io/huggingface/text-generation-inference:2.4.1-rocm`
2. `opea/lvm:latest`
3. `opea/visualqna:latest`
4. `opea/visualqna-ui:latest`
5. `opea/nginx`
## 🚀 Start Microservices
### Setup Environment Variables
Since the `compose.yaml` will consume some environment variables, you need to setup them in advance as below.
**Export the value of the public IP address of your ROCM server to the `host_ip` environment variable**
> Change the External_Public_IP below with the actual IPV4 value
```
export host_ip="External_Public_IP"
```
**Append the value of the public IP address to the no_proxy list**
```
export your_no_proxy="${your_no_proxy},${host_ip}"
```
```bash
export HOST_IP=${your_host_ip}
export VISUALQNA_TGI_SERVICE_PORT="8399"
export VISUALQNA_HUGGINGFACEHUB_API_TOKEN={your_hugginface_api_token}
export VISUALQNA_CARD_ID="card1"
export VISUALQNA_RENDER_ID="renderD136"
export LVM_MODEL_ID="Xkev/Llama-3.2V-11B-cot"
export MODEL="llava-hf/llava-v1.6-mistral-7b-hf"
export LVM_ENDPOINT="http://${HOST_IP}:8399"
export LVM_SERVICE_PORT=9399
export MEGA_SERVICE_HOST_IP=${HOST_IP}
export LVM_SERVICE_HOST_IP=${HOST_IP}
export BACKEND_SERVICE_ENDPOINT="http://${HOST_IP}:18003/v1/visualqna"
export FRONTEND_SERVICE_IP=${HOST_IP}
export FRONTEND_SERVICE_PORT=18001
export BACKEND_SERVICE_NAME=visualqna
export BACKEND_SERVICE_IP=${HOST_IP}
export BACKEND_SERVICE_PORT=18002
export NGINX_PORT=18003
```
Note: Please replace with `host_ip` with you external IP address, do not use localhost.
Note: You can use set_env.sh file with bash command (. setset_env.sh) to set up needed variables.
### Start all the services Docker Containers
> Before running the docker compose command, you need to be in the folder that has the docker compose yaml file
```bash
cd GenAIExamples/VisualQnA/docker_compose/amd/gpu/rocm
```
```bash
docker compose -f compose.yaml up -d
```
### Validate Microservices
Follow the instructions to validate MicroServices.
> Note: If you see an "Internal Server Error" from the `curl` command, wait a few minutes for the microserver to be ready and then try again.
1. LLM Microservice
```bash
http_proxy="" curl http://${host_ip}:9399/v1/lvm -XPOST -d '{"image": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC", "prompt":"What is this?"}' -H 'Content-Type: application/json'
```
2. MegaService
```bash
curl http://${host_ip}:8888/v1/visualqna -H "Content-Type: application/json" -d '{
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "What'\''s in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "https://www.ilankelman.org/stopsigns/australia.jpg"
}
}
]
}
],
"max_tokens": 300
}'
```
## 🚀 Launch the UI
To access the frontend, open the following URL in your browser: http://{host_ip}:5173. By default, the UI runs on port 5173 internally. If you prefer to use a different host port to access the frontend, you can modify the port mapping in the `compose.yaml` file as shown below:
```yaml
visualqna-gaudi-ui-server:
image: opea/visualqna-ui:latest
...
ports:
- "80:5173"
```