Update all the names for classes and files in llm comps to follow the standard format, related GenAIComps PR opea-project/GenAIComps#1162 Signed-off-by: Xinyao Wang <xinyao.wang@intel.com>
134 lines
4.6 KiB
Markdown
134 lines
4.6 KiB
Markdown
# Build and deploy FaqGen Application on AMD GPU (ROCm)
|
|
|
|
## Build images
|
|
|
|
### Build the LLM Docker Image
|
|
|
|
```bash
|
|
### Cloning repo
|
|
git clone https://github.com/opea-project/GenAIComps.git
|
|
cd GenAIComps
|
|
|
|
### Build Docker image
|
|
docker build -t opea/llm-textgen:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/src/text-generation/Dockerfile .
|
|
```
|
|
|
|
## 🚀 Start Microservices and MegaService
|
|
|
|
### Required Models
|
|
|
|
Default model is "meta-llama/Meta-Llama-3-8B-Instruct". Change "LLM_MODEL_ID" in environment variables below if you want to use another model.
|
|
|
|
For gated models, you also need to provide [HuggingFace token](https://huggingface.co/docs/hub/security-tokens) in "HUGGINGFACEHUB_API_TOKEN" environment variable.
|
|
|
|
### Setup Environment Variables
|
|
|
|
Since the `compose.yaml` will consume some environment variables, you need to setup them in advance as below.
|
|
|
|
```bash
|
|
export FAQGEN_LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct"
|
|
export HOST_IP=${your_no_proxy}
|
|
export FAQGEN_TGI_SERVICE_PORT=8008
|
|
export FAQGEN_LLM_SERVER_PORT=9000
|
|
export FAQGEN_HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
|
|
export FAQGEN_BACKEND_SERVER_PORT=8888
|
|
export FAGGEN_UI_PORT=5173
|
|
export LLM_ENDPOINT="http://${HOST_IP}:${FAQGEN_TGI_SERVICE_PORT}"
|
|
export FAQGen_COMPONENT_NAME="OpeaFaqGenTgi"
|
|
```
|
|
|
|
Note: Please replace with `host_ip` with your external IP address, do not use localhost.
|
|
|
|
Note: In order to limit access to a subset of GPUs, please pass each device individually using one or more -device /dev/dri/rendered<node>, where <node> is the card index, starting from 128. (https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html#docker-restrict-gpus)
|
|
|
|
Example for set isolation for 1 GPU
|
|
|
|
```
|
|
- /dev/dri/card0:/dev/dri/card0
|
|
- /dev/dri/renderD128:/dev/dri/renderD128
|
|
```
|
|
|
|
Example for set isolation for 2 GPUs
|
|
|
|
```
|
|
- /dev/dri/card0:/dev/dri/card0
|
|
- /dev/dri/renderD128:/dev/dri/renderD128
|
|
- /dev/dri/card0:/dev/dri/card0
|
|
- /dev/dri/renderD129:/dev/dri/renderD129
|
|
```
|
|
|
|
Please find more information about accessing and restricting AMD GPUs in the link (https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html#docker-restrict-gpus)
|
|
|
|
### Start Microservice Docker Containers
|
|
|
|
```bash
|
|
cd GenAIExamples/FaqGen/docker_compose/amd/gpu/rocm/
|
|
docker compose up -d
|
|
```
|
|
|
|
### Validate Microservices
|
|
|
|
1. TGI Service
|
|
|
|
```bash
|
|
curl http://${host_ip}:8008/generate \
|
|
-X POST \
|
|
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}' \
|
|
-H 'Content-Type: application/json'
|
|
```
|
|
|
|
2. LLM Microservice
|
|
|
|
```bash
|
|
curl http://${host_ip}:9000/v1/faqgen \
|
|
-X POST \
|
|
-d '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."}' \
|
|
-H 'Content-Type: application/json'
|
|
```
|
|
|
|
3. MegaService
|
|
|
|
```bash
|
|
curl http://${host_ip}:8888/v1/faqgen \
|
|
-H "Content-Type: multipart/form-data" \
|
|
-F "messages=Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5." \
|
|
-F "max_tokens=32" \
|
|
-F "stream=false"
|
|
```
|
|
|
|
Following the validation of all aforementioned microservices, we are now prepared to construct a mega-service.
|
|
|
|
## 🚀 Launch the UI
|
|
|
|
Open this URL `http://{host_ip}:5173` in your browser to access the frontend.
|
|
|
|

|
|
|
|
## 🚀 Launch the React UI (Optional)
|
|
|
|
To access the FAQGen (react based) frontend, modify the UI service in the `compose.yaml` file. Replace `faqgen-rocm-ui-server` service with the `faqgen-rocm-react-ui-server` service as per the config below:
|
|
|
|
```bash
|
|
faqgen-rocm-react-ui-server:
|
|
image: opea/faqgen-react-ui:latest
|
|
container_name: faqgen-rocm-react-ui-server
|
|
environment:
|
|
- no_proxy=${no_proxy}
|
|
- https_proxy=${https_proxy}
|
|
- http_proxy=${http_proxy}
|
|
ports:
|
|
- 5174:80
|
|
depends_on:
|
|
- faqgen-rocm-backend-server
|
|
ipc: host
|
|
restart: always
|
|
```
|
|
|
|
Open this URL `http://{host_ip}:5174` in your browser to access the react based frontend.
|
|
|
|
- Create FAQs from Text input
|
|

|
|
|
|
- Create FAQs from Text Files
|
|

|