450 lines
15 KiB
Markdown
450 lines
15 KiB
Markdown
# Build MegaService of ChatQnA on Gaudi
|
||
|
||
This document outlines the deployment process for a ChatQnA application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline on Intel Gaudi server. The steps include Docker image creation, container deployment via Docker Compose, and service execution to integrate microservices such as embedding, retriever, rerank, and llm. We will publish the Docker images to Docker Hub, it will simplify the deployment process for this service.
|
||
|
||
## 🚀 Build Docker Images
|
||
|
||
First of all, you need to build Docker Images locally. This step can be ignored after the Docker images published to Docker hub.
|
||
|
||
### 1. Source Code install GenAIComps
|
||
|
||
```bash
|
||
git clone https://github.com/opea-project/GenAIComps.git
|
||
cd GenAIComps
|
||
```
|
||
|
||
### 2. Build Embedding Image
|
||
|
||
```bash
|
||
docker build --no-cache -t opea/embedding-tei:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/langchain/docker/Dockerfile .
|
||
```
|
||
|
||
### 3. Build Retriever Image
|
||
|
||
```bash
|
||
docker build --no-cache -t opea/retriever-redis:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/retrievers/langchain/redis/docker/Dockerfile .
|
||
```
|
||
|
||
### 4. Build Rerank Image
|
||
|
||
```bash
|
||
docker build --no-cache -t opea/reranking-tei:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/reranks/tei/docker/Dockerfile .
|
||
```
|
||
|
||
### 5. Build LLM Image
|
||
|
||
You can use different LLM serving solutions, choose one of following four options.
|
||
|
||
#### 5.1 Use TGI
|
||
|
||
```bash
|
||
docker build --no-cache -t opea/llm-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/tgi/Dockerfile .
|
||
```
|
||
|
||
#### 5.2 Use VLLM
|
||
|
||
Build vllm docker.
|
||
|
||
```bash
|
||
docker build --no-cache -t opea/llm-vllm-hpu:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/vllm/docker/Dockerfile.hpu .
|
||
```
|
||
|
||
Build microservice docker.
|
||
|
||
```bash
|
||
docker build --no-cache -t opea/llm-vllm:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/vllm/docker/Dockerfile.microservice .
|
||
```
|
||
|
||
#### 5.3 Use VLLM-on-Ray
|
||
|
||
Build vllm-on-ray docker.
|
||
|
||
```bash
|
||
docker build --no-cache -t opea/llm-vllm-ray-hpu:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/vllm-ray/docker/Dockerfile.vllmray .
|
||
```
|
||
|
||
Build microservice docker.
|
||
|
||
```bash
|
||
docker build --no-cache -t opea/llm-vllm-ray:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/vllm-ray/docker/Dockerfile.microservice .
|
||
```
|
||
|
||
### 6. Build Dataprep Image
|
||
|
||
```bash
|
||
docker build --no-cache -t opea/dataprep-redis:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/dataprep/redis/langchain/docker/Dockerfile .
|
||
```
|
||
|
||
### 7. Build TEI Gaudi Image
|
||
|
||
Since a TEI Gaudi Docker image hasn't been published, we'll need to build it from the [tei-gaudi](https://github.com/huggingface/tei-gaudi) repository.
|
||
|
||
```bash
|
||
git clone https://github.com/huggingface/tei-gaudi
|
||
cd tei-gaudi/
|
||
docker build --no-cache -f Dockerfile-hpu -t opea/tei-gaudi:latest .
|
||
cd ../..
|
||
```
|
||
|
||
### 8. Build MegaService Docker Image
|
||
|
||
To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `chatqna.py` Python script. Build the MegaService Docker image using the command below:
|
||
|
||
```bash
|
||
git clone https://github.com/opea-project/GenAIExamples.git
|
||
cd GenAIExamples/ChatQnA/docker
|
||
docker build --no-cache -t opea/chatqna:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
|
||
cd ../../..
|
||
```
|
||
|
||
If you want to enable guardrails microservice in the pipeline, please use the below command instead:
|
||
|
||
```bash
|
||
git clone https://github.com/opea-project/GenAIExamples.git
|
||
cd GenAIExamples/ChatQnA/docker
|
||
docker build --no-cache -t opea/chatqna-guardrails:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile_guardrails .
|
||
cd ../../..
|
||
```
|
||
|
||
### 9. Build UI Docker Image
|
||
|
||
Construct the frontend Docker image using the command below:
|
||
|
||
```bash
|
||
cd GenAIExamples/ChatQnA/docker/ui/
|
||
docker build --no-cache -t opea/chatqna-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile .
|
||
cd ../../../..
|
||
```
|
||
|
||
### 10. Build Conversational React UI Docker Image (Optional)
|
||
|
||
Build frontend Docker image that enables Conversational experience with ChatQnA megaservice via below command:
|
||
|
||
**Export the value of the public IP address of your Gaudi node to the `host_ip` environment variable**
|
||
|
||
```bash
|
||
cd GenAIExamples/ChatQnA/docker/ui/
|
||
docker build --no-cache -t opea/chatqna-conversation-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile.react .
|
||
cd ../../../..
|
||
```
|
||
|
||
### 11. Build Guardrails Docker Image (Optional)
|
||
|
||
To fortify AI initiatives in production, Guardrails microservice can secure model inputs and outputs, building Trustworthy, Safe, and Secure LLM-based Applications.
|
||
|
||
```bash
|
||
cd GenAIExamples/ChatQnA/docker
|
||
docker build -t opea/guardrails-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/guardrails/llama_guard/docker/Dockerfile .
|
||
cd ../../..
|
||
```
|
||
|
||
Then run the command `docker images`, you will have the following 8 Docker Images:
|
||
|
||
1. `opea/embedding-tei:latest`
|
||
2. `opea/retriever-redis:latest`
|
||
3. `opea/reranking-tei:latest`
|
||
4. `opea/llm-tgi:latest` or `opea/llm-vllm:latest` or `opea/llm-vllm-ray:latest`
|
||
5. `opea/tei-gaudi:latest`
|
||
6. `opea/dataprep-redis:latest`
|
||
7. `opea/chatqna:latest` or `opea/chatqna-guardrails:latest`
|
||
8. `opea/chatqna-ui:latest`
|
||
|
||
If Conversation React UI is built, you will find one more image:
|
||
|
||
9. `opea/chatqna-conversation-ui:latest`
|
||
|
||
If Guardrails docker image is built, you will find one more image:
|
||
|
||
10. `opea/guardrails-tgi:latest`
|
||
|
||
## 🚀 Start MicroServices and MegaService
|
||
|
||
### Setup Environment Variables
|
||
|
||
Since the `compose.yaml` will consume some environment variables, you need to setup them in advance as below.
|
||
|
||
```bash
|
||
export no_proxy=${your_no_proxy}
|
||
export http_proxy=${your_http_proxy}
|
||
export https_proxy=${your_http_proxy}
|
||
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
|
||
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
|
||
export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
|
||
export LLM_MODEL_ID_NAME="neural-chat-7b-v3-3"
|
||
export TEI_EMBEDDING_ENDPOINT="http://${host_ip}:8090"
|
||
export TEI_RERANKING_ENDPOINT="http://${host_ip}:8808"
|
||
export TGI_LLM_ENDPOINT="http://${host_ip}:8005"
|
||
export vLLM_LLM_ENDPOINT="http://${host_ip}:8007"
|
||
export vLLM_RAY_LLM_ENDPOINT="http://${host_ip}:8006"
|
||
export LLM_SERVICE_PORT=9000
|
||
export REDIS_URL="redis://${host_ip}:6379"
|
||
export INDEX_NAME="rag-redis"
|
||
export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
|
||
export MEGA_SERVICE_HOST_IP=${host_ip}
|
||
export EMBEDDING_SERVICE_HOST_IP=${host_ip}
|
||
export RETRIEVER_SERVICE_HOST_IP=${host_ip}
|
||
export RERANK_SERVICE_HOST_IP=${host_ip}
|
||
export LLM_SERVICE_HOST_IP=${host_ip}
|
||
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:8888/v1/chatqna"
|
||
export DATAPREP_SERVICE_ENDPOINT="http://${host_ip}:6007/v1/dataprep"
|
||
export DATAPREP_GET_FILE_ENDPOINT="http://${host_ip}:6007/v1/dataprep/get_file"
|
||
export DATAPREP_DELETE_FILE_ENDPOINT="http://${host_ip}:6007/v1/dataprep/delete_file"
|
||
```
|
||
|
||
If guardrails microservice is enabled in the pipeline, the below environment variables are necessary to be set.
|
||
|
||
```bash
|
||
export GURADRAILS_MODEL_ID="meta-llama/Meta-Llama-Guard-2-8B"
|
||
export SAFETY_GUARD_MODEL_ID="meta-llama/Meta-Llama-Guard-2-8B"
|
||
export SAFETY_GUARD_ENDPOINT="http://${host_ip}:8088"
|
||
export GUARDRAIL_SERVICE_HOST_IP=${host_ip}
|
||
```
|
||
|
||
Note: Please replace with `host_ip` with you external IP address, do **NOT** use localhost.
|
||
|
||
### Start all the services Docker Containers
|
||
|
||
```bash
|
||
cd GenAIExamples/ChatQnA/docker/gaudi/
|
||
```
|
||
|
||
If use tgi for llm backend.
|
||
|
||
```bash
|
||
TAG=v0.9 docker compose -f compose.yaml up -d
|
||
```
|
||
|
||
If use vllm for llm backend.
|
||
|
||
```bash
|
||
TAG=v0.9 docker compose -f compose_vllm.yaml up -d
|
||
```
|
||
|
||
If use vllm-on-ray for llm backend.
|
||
|
||
```bash
|
||
TAG=v0.9 docker compose -f compose_vllm_ray.yaml up -d
|
||
```
|
||
|
||
If you want to enable guardrails microservice in the pipeline, please follow the below command instead:
|
||
|
||
```bash
|
||
cd GenAIExamples/ChatQnA/docker/gaudi/
|
||
TAG=v0.9 docker compose -f compose_guardrails.yaml up -d
|
||
```
|
||
|
||
> **_NOTE:_** Users need at least two Gaudi cards to run the ChatQnA successfully.
|
||
|
||
### Validate MicroServices and MegaService
|
||
|
||
Follow the instructions to validate MicroServices.
|
||
For validation details, please refer to [how-to-validate_service](./how_to_validate_service.md).
|
||
|
||
1. TEI Embedding Service
|
||
|
||
```bash
|
||
curl ${host_ip}:8090/embed \
|
||
-X POST \
|
||
-d '{"inputs":"What is Deep Learning?"}' \
|
||
-H 'Content-Type: application/json'
|
||
```
|
||
|
||
2. Embedding Microservice
|
||
|
||
```bash
|
||
curl http://${host_ip}:6000/v1/embeddings \
|
||
-X POST \
|
||
-d '{"text":"hello"}' \
|
||
-H 'Content-Type: application/json'
|
||
```
|
||
|
||
3. Retriever Microservice
|
||
|
||
To consume the retriever microservice, you need to generate a mock embedding vector by Python script. The length of embedding vector
|
||
is determined by the embedding model.
|
||
Here we use the model `EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"`, which vector size is 768.
|
||
|
||
Check the vecotor dimension of your embedding model, set `your_embedding` dimension equals to it.
|
||
|
||
```bash
|
||
export your_embedding=$(python3 -c "import random; embedding = [random.uniform(-1, 1) for _ in range(768)]; print(embedding)")
|
||
curl http://${host_ip}:7000/v1/retrieval \
|
||
-X POST \
|
||
-d "{\"text\":\"test\",\"embedding\":${your_embedding}}" \
|
||
-H 'Content-Type: application/json'
|
||
```
|
||
|
||
4. TEI Reranking Service
|
||
|
||
```bash
|
||
curl http://${host_ip}:8808/rerank \
|
||
-X POST \
|
||
-d '{"query":"What is Deep Learning?", "texts": ["Deep Learning is not...", "Deep learning is..."]}' \
|
||
-H 'Content-Type: application/json'
|
||
```
|
||
|
||
5. Reranking Microservice
|
||
|
||
```bash
|
||
curl http://${host_ip}:8000/v1/reranking \
|
||
-X POST \
|
||
-d '{"initial_query":"What is Deep Learning?", "retrieved_docs": [{"text":"Deep Learning is not..."}, {"text":"Deep learning is..."}]}' \
|
||
-H 'Content-Type: application/json'
|
||
```
|
||
|
||
6. LLM backend Service
|
||
|
||
```bash
|
||
#TGI Service
|
||
curl http://${host_ip}:8005/generate \
|
||
-X POST \
|
||
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":64, "do_sample": true}}' \
|
||
-H 'Content-Type: application/json'
|
||
```
|
||
|
||
```bash
|
||
#vLLM Service
|
||
curl http://${host_ip}:8007/v1/completions \
|
||
-H "Content-Type: application/json" \
|
||
-d '{
|
||
"model": "${LLM_MODEL_ID}",
|
||
"prompt": "What is Deep Learning?",
|
||
"max_tokens": 32,
|
||
"temperature": 0
|
||
}'
|
||
```
|
||
|
||
```bash
|
||
#vLLM-on-Ray Service
|
||
curl http://${host_ip}:8006/v1/chat/completions \
|
||
-H "Content-Type: application/json" \
|
||
-d '{"model": "${LLM_MODEL_ID}", "messages": [{"role": "user", "content": "What is Deep Learning?"}]}'
|
||
```
|
||
|
||
7. LLM Microservice
|
||
|
||
```bash
|
||
curl http://${host_ip}:9000/v1/chat/completions \
|
||
-X POST \
|
||
-d '{"query":"What is Deep Learning?","max_new_tokens":17,"top_k":10,"top_p":0.95,"typical_p":0.95,"temperature":0.01,"repetition_penalty":1.03,"streaming":true}' \
|
||
-H 'Content-Type: application/json'
|
||
```
|
||
|
||
8. MegaService
|
||
|
||
```bash
|
||
curl http://${host_ip}:8888/v1/chatqna -H "Content-Type: application/json" -d '{
|
||
"messages": "What is the revenue of Nike in 2023?"
|
||
}'
|
||
```
|
||
|
||
9. Dataprep Microservice(Optional)
|
||
|
||
If you want to update the default knowledge base, you can use the following commands:
|
||
|
||
Update Knowledge Base via Local File Upload:
|
||
|
||
```bash
|
||
curl -X POST "http://${host_ip}:6007/v1/dataprep" \
|
||
-H "Content-Type: multipart/form-data" \
|
||
-F "files=@./nke-10k-2023.pdf"
|
||
```
|
||
|
||
This command updates a knowledge base by uploading a local file for processing. Update the file path according to your environment.
|
||
|
||
Add Knowledge Base via HTTP Links:
|
||
|
||
```bash
|
||
curl -X POST "http://${host_ip}:6007/v1/dataprep" \
|
||
-H "Content-Type: multipart/form-data" \
|
||
-F 'link_list=["https://opea.dev"]'
|
||
```
|
||
|
||
This command updates a knowledge base by submitting a list of HTTP links for processing.
|
||
|
||
Also, you are able to get the file/link list that you uploaded:
|
||
|
||
```bash
|
||
curl -X POST "http://${host_ip}:6007/v1/dataprep/get_file" \
|
||
-H "Content-Type: application/json"
|
||
```
|
||
|
||
To delete the file/link you uploaded:
|
||
|
||
```bash
|
||
# delete link
|
||
curl -X POST "http://${host_ip}:6007/v1/dataprep/delete_file" \
|
||
-d '{"file_path": "https://opea.dev"}' \
|
||
-H "Content-Type: application/json"
|
||
|
||
# delete file
|
||
curl -X POST "http://${host_ip}:6007/v1/dataprep/delete_file" \
|
||
-d '{"file_path": "nke-10k-2023.pdf"}' \
|
||
-H "Content-Type: application/json"
|
||
|
||
# delete all uploaded files and links
|
||
curl -X POST "http://${host_ip}:6007/v1/dataprep/delete_file" \
|
||
-d '{"file_path": "all"}' \
|
||
-H "Content-Type: application/json"
|
||
```
|
||
|
||
10. Guardrails (Optional)
|
||
|
||
```bash
|
||
curl http://${host_ip}:9090/v1/guardrails\
|
||
-X POST \
|
||
-d '{"text":"How do you buy a tiger in the US?","parameters":{"max_new_tokens":32}}' \
|
||
-H 'Content-Type: application/json'
|
||
```
|
||
|
||
## 🚀 Launch the UI
|
||
|
||
To access the frontend, open the following URL in your browser: http://{host_ip}:5173. By default, the UI runs on port 5173 internally. If you prefer to use a different host port to access the frontend, you can modify the port mapping in the `compose.yaml` file as shown below:
|
||
|
||
```yaml
|
||
chaqna-gaudi-ui-server:
|
||
image: opea/chatqna-ui:latest
|
||
...
|
||
ports:
|
||
- "80:5173"
|
||
```
|
||
|
||

|
||
|
||
Here is an example of running ChatQnA:
|
||
|
||

|
||
|
||
## 🚀 Launch the Conversational UI (Optional)
|
||
|
||
To access the Conversational UI (react based) frontend, modify the UI service in the `compose.yaml` file. Replace `chaqna-gaudi-ui-server` service with the `chatqna-gaudi-conversation-ui-server` service as per the config below:
|
||
|
||
```yaml
|
||
chaqna-gaudi-conversation-ui-server:
|
||
image: opea/chatqna-conversation-ui:latest
|
||
container_name: chatqna-gaudi-conversation-ui-server
|
||
environment:
|
||
- APP_BACKEND_SERVICE_ENDPOINT=${BACKEND_SERVICE_ENDPOINT}
|
||
- APP_DATA_PREP_SERVICE_URL=${DATAPREP_SERVICE_ENDPOINT}
|
||
ports:
|
||
- "5174:80"
|
||
depends_on:
|
||
- chaqna-gaudi-backend-server
|
||
ipc: host
|
||
restart: always
|
||
```
|
||
|
||
Once the services are up, open the following URL in your browser: http://{host_ip}:5174. By default, the UI runs on port 80 internally. If you prefer to use a different host port to access the frontend, you can modify the port mapping in the `compose.yaml` file as shown below:
|
||
|
||
```yaml
|
||
chaqna-gaudi-conversation-ui-server:
|
||
image: opea/chatqna-conversation-ui:latest
|
||
...
|
||
ports:
|
||
- "80:80"
|
||
```
|
||
|
||
Here is an example of running ChatQnA with Conversational UI (React):
|
||
|
||

|