Compare commits

..

4 Commits

Author SHA1 Message Date
CICD-at-OPEA
c712c01829 Update vLLM-fork version to v0.7.2+Gaudi-1.21.0
Signed-off-by: CICD-at-OPEA <CICD@opea.dev>
2025-05-20 22:41:44 +00:00
chen, suyue
66ecaf2e6f Merge branch 'main' into update_vLLM-fork 2025-05-20 10:54:35 +08:00
xiguiw
46fab4a736 Merge branch 'main' into update_vLLM-fork 2025-05-16 09:34:11 +08:00
CICD-at-OPEA
8ba40a5bff Update vLLM-fork version to v0.7.2+Gaudi-1.21.0
Signed-off-by: CICD-at-OPEA <CICD@opea.dev>
2025-05-08 08:37:52 +00:00
74 changed files with 656 additions and 632 deletions

View File

@@ -2,4 +2,4 @@
# SPDX-License-Identifier: Apache-2.0
export VLLM_VER=v0.8.3
export VLLM_FORK_VER=v0.6.6.post1+Gaudi-1.20.0
export VLLM_FORK_VER=v0.7.2+Gaudi-1.21.0

View File

@@ -37,7 +37,7 @@ function build_agent_docker_image_gaudi_vllm() {
get_genai_comps
git clone https://github.com/HabanaAI/vllm-fork.git && cd vllm-fork
VLLM_FORK_VER=v0.6.6.post1+Gaudi-1.20.0
VLLM_FORK_VER=v0.7.2+Gaudi-1.21.0
git checkout ${VLLM_FORK_VER} &> /dev/null && cd ../
echo "Build agent image with --no-cache..."

View File

@@ -27,7 +27,7 @@ function build_docker_images() {
git clone https://github.com/HabanaAI/vllm-fork.git
cd vllm-fork/
VLLM_FORK_VER=v0.6.6.post1+Gaudi-1.20.0
VLLM_FORK_VER=v0.7.2+Gaudi-1.21.0
echo "Check out vLLM tag ${VLLM_FORK_VER}"
git checkout ${VLLM_FORK_VER} &> /dev/null && cd ../

View File

@@ -16,7 +16,7 @@ services:
- chatqna-redis-vector-db
- chatqna-tei-embedding-service
ports:
- "${CHATQNA_REDIS_DATAPREP_PORT:-18103}:5000"
- "${CHATQNA_REDIS_DATAPREP_PORT}:5000"
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}

View File

@@ -16,7 +16,7 @@ services:
- chatqna-redis-vector-db
- chatqna-tei-embedding-service
ports:
- "${CHATQNA_REDIS_DATAPREP_PORT:-18103}:5000"
- "${CHATQNA_REDIS_DATAPREP_PORT}:5000"
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}

View File

@@ -16,7 +16,7 @@ services:
- chatqna-redis-vector-db
- chatqna-tei-embedding-service
ports:
- "${CHATQNA_REDIS_DATAPREP_PORT:-18103}:5000"
- "${CHATQNA_REDIS_DATAPREP_PORT}:5000"
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}

View File

@@ -16,7 +16,7 @@ services:
- chatqna-redis-vector-db
- chatqna-tei-embedding-service
ports:
- "${CHATQNA_REDIS_DATAPREP_PORT:-18103}:5000"
- "${CHATQNA_REDIS_DATAPREP_PORT:-5000}:5000"
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}

View File

@@ -2,17 +2,17 @@
# Copyright (C) 2025 Advanced Micro Devices, Inc.
export HOST_IP=${ip_address}
export HOST_IP_EXTERNAL=${ip_address}
export HOST_IP=''
export HOST_IP_EXTERNAL=''
export CHATQNA_EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export CHATQNA_HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export CHATQNA_LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct"
export CHATQNA_RERANK_MODEL_ID="BAAI/bge-reranker-base"
export CHATQNA_BACKEND_SERVICE_PORT=8888
export CHATQNA_FRONTEND_SERVICE_PORT=5173
export CHATQNA_NGINX_PORT=80
export CHATQNA_BACKEND_SERVICE_PORT=18102
export CHATQNA_FRONTEND_SERVICE_PORT=18101
export CHATQNA_NGINX_PORT=18104
export CHATQNA_REDIS_DATAPREP_PORT=18103
export CHATQNA_REDIS_RETRIEVER_PORT=7000
export CHATQNA_REDIS_VECTOR_INSIGHT_PORT=8001

View File

@@ -2,18 +2,18 @@
# Copyright (C) 2025 Advanced Micro Devices, Inc.
export HOST_IP=${ip_address}
export HOST_IP_EXTERNAL=${ip_address}
export HOST_IP=''
export HOST_IP_EXTERNAL=''
export CHATQNA_EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export CHATQNA_HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export CHATQNA_LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct"
export CHATQNA_RERANK_MODEL_ID="BAAI/bge-reranker-base"
export CHATQNA_BACKEND_SERVICE_PORT=8888
export CHATQNA_FRONTEND_SERVICE_PORT=5173
export CHATQNA_BACKEND_SERVICE_PORT=18102
export CHATQNA_FRONTEND_SERVICE_PORT=18101
export CHATQNA_LLM_FAQGEN_PORT=18011
export CHATQNA_NGINX_PORT=80
export CHATQNA_NGINX_PORT=18104
export CHATQNA_REDIS_DATAPREP_PORT=18103
export CHATQNA_REDIS_RETRIEVER_PORT=7000
export CHATQNA_REDIS_VECTOR_INSIGHT_PORT=8001

View File

@@ -2,18 +2,18 @@
# Copyright (C) 2025 Advanced Micro Devices, Inc.
export HOST_IP=${ip_address}
export HOST_IP_EXTERNAL=${ip_address}
export HOST_IP=''
export HOST_IP_EXTERNAL=''
export CHATQNA_EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export CHATQNA_HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export CHATQNA_LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct"
export CHATQNA_RERANK_MODEL_ID="BAAI/bge-reranker-base"
export CHATQNA_BACKEND_SERVICE_PORT=8888
export CHATQNA_FRONTEND_SERVICE_PORT=5173
export CHATQNA_BACKEND_SERVICE_PORT=18102
export CHATQNA_FRONTEND_SERVICE_PORT=18101
export CHATQNA_LLM_FAQGEN_PORT=18011
export CHATQNA_NGINX_PORT=80
export CHATQNA_NGINX_PORT=18104
export CHATQNA_REDIS_DATAPREP_PORT=18103
export CHATQNA_REDIS_RETRIEVER_PORT=7000
export CHATQNA_REDIS_VECTOR_INSIGHT_PORT=8001

View File

@@ -2,17 +2,17 @@
# Copyright (C) 2025 Advanced Micro Devices, Inc.
export HOST_IP=${ip_address}
export HOST_IP_EXTERNAL=${ip_address}
export HOST_IP=''
export HOST_IP_EXTERNAL=''
export CHATQNA_EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export CHATQNA_HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export CHATQNA_LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct"
export CHATQNA_RERANK_MODEL_ID="BAAI/bge-reranker-base"
export CHATQNA_BACKEND_SERVICE_PORT=8888
export CHATQNA_FRONTEND_SERVICE_PORT=5173
export CHATQNA_NGINX_PORT=80
export CHATQNA_BACKEND_SERVICE_PORT=18102
export CHATQNA_FRONTEND_SERVICE_PORT=18101
export CHATQNA_NGINX_PORT=18104
export CHATQNA_REDIS_DATAPREP_PORT=18103
export CHATQNA_REDIS_RETRIEVER_PORT=7000
export CHATQNA_REDIS_VECTOR_INSIGHT_PORT=8001

View File

@@ -1,8 +1,6 @@
# Copyright (C) 2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
if ls *.json 1> /dev/null 2>&1; then
rm *.json
fi
rm *.json
wget https://raw.githubusercontent.com/opea-project/GenAIEval/refs/heads/main/evals/benchmark/grafana/chatqna_megaservice_grafana.json
wget https://raw.githubusercontent.com/opea-project/GenAIEval/refs/heads/main/evals/benchmark/grafana/qdrant_grafana.json
wget https://raw.githubusercontent.com/opea-project/GenAIEval/refs/heads/main/evals/benchmark/grafana/milvus_grafana.json

View File

@@ -7,9 +7,6 @@ pushd "../../../../../" > /dev/null
source .set_env.sh
popd > /dev/null
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export HF_TOKEN=${HF_TOKEN}
export host_ip=${ip_address}
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
export LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct"

View File

@@ -43,7 +43,7 @@ Some HuggingFace resources, such as some models, are only accessible if you have
### Configure the Deployment Environment
To set up environment variables for deploying ChatQnA services, source the _setup_env.sh_ script in this directory (If using faqgen or guardrails, source the _set_env_faqgen.sh_):
To set up environment variables for deploying ChatQnA services, source the _setup_env.sh_ script in this directory:
```
source ./set_env.sh

View File

@@ -4,20 +4,12 @@
# SPDX-License-Identifier: Apache-2.0
# Function to prompt for input and set environment variables
NON_INTERACTIVE=${NON_INTERACTIVE:-false}
prompt_for_env_var() {
local var_name="$1"
local prompt_message="$2"
local default_value="$3"
local mandatory="$4"
if [[ "$NON_INTERACTIVE" == "true" ]]; then
echo "Non-interactive environment detected. Setting $var_name to default: $default_value"
export "$var_name"="$default_value"
return
fi
if [[ "$mandatory" == "true" ]]; then
while [[ -z "$value" ]]; do
read -p "$prompt_message [default: \"${default_value}\"]: " value
@@ -42,7 +34,7 @@ popd > /dev/null
# Prompt the user for each required environment variable
prompt_for_env_var "EMBEDDING_MODEL_ID" "Enter the EMBEDDING_MODEL_ID" "BAAI/bge-base-en-v1.5" false
prompt_for_env_var "HUGGINGFACEHUB_API_TOKEN" "Enter the HUGGINGFACEHUB_API_TOKEN" "${HF_TOKEN}" true
prompt_for_env_var "HUGGINGFACEHUB_API_TOKEN" "Enter the HUGGINGFACEHUB_API_TOKEN" "" true
prompt_for_env_var "RERANK_MODEL_ID" "Enter the RERANK_MODEL_ID" "BAAI/bge-reranker-base" false
prompt_for_env_var "LLM_MODEL_ID" "Enter the LLM_MODEL_ID" "meta-llama/Meta-Llama-3-8B-Instruct" false
prompt_for_env_var "INDEX_NAME" "Enter the INDEX_NAME" "rag-redis" false
@@ -50,40 +42,34 @@ prompt_for_env_var "NUM_CARDS" "Enter the number of Gaudi devices" "1" false
prompt_for_env_var "host_ip" "Enter the host_ip" "$(curl ifconfig.me)" false
#Query for enabling http_proxy
prompt_for_env_var "http_proxy" "Enter the http_proxy." "${http_proxy}" false
prompt_for_env_var "http_proxy" "Enter the http_proxy." "" false
#Query for enabling https_proxy
prompt_for_env_var "http_proxy" "Enter the http_proxy." "${https_proxy}" false
prompt_for_env_var "https_proxy" "Enter the https_proxy." "" false
#Query for enabling no_proxy
prompt_for_env_var "no_proxy" "Enter the no_proxy." "${no_proxy}" false
prompt_for_env_var "no_proxy" "Enter the no_proxy." "" false
# Query for enabling logging
if [[ "$NON_INTERACTIVE" == "true" ]]; then
# Query for enabling logging
prompt_for_env_var "LOGFLAG" "Enable logging? (yes/no): " "true" false
export JAEGER_IP=$(ip route get 8.8.8.8 | grep -oP 'src \K[^ ]+')
export OTEL_EXPORTER_OTLP_TRACES_ENDPOINT=grpc://$JAEGER_IP:4317
export TELEMETRY_ENDPOINT=http://$JAEGER_IP:4318/v1/traces
telemetry_flag=true
read -p "Enable logging? (yes/no): " logging && logging=$(echo "$logging" | tr '[:upper:]' '[:lower:]')
if [[ "$logging" == "yes" || "$logging" == "y" ]]; then
export LOGFLAG=true
else
# Query for enabling logging
read -p "Enable logging? (yes/no): " logging && logging=$(echo "$logging" | tr '[:upper:]' '[:lower:]')
if [[ "$logging" == "yes" || "$logging" == "y" ]]; then
export LOGFLAG=true
else
export LOGFLAG=false
fi
# Query for enabling OpenTelemetry Tracing Endpoint
read -p "Enable OpenTelemetry Tracing Endpoint? (yes/no): " telemetry && telemetry=$(echo "$telemetry" | tr '[:upper:]' '[:lower:]')
if [[ "$telemetry" == "yes" || "$telemetry" == "y" ]]; then
export JAEGER_IP=$(ip route get 8.8.8.8 | grep -oP 'src \K[^ ]+')
export OTEL_EXPORTER_OTLP_TRACES_ENDPOINT=grpc://$JAEGER_IP:4317
export TELEMETRY_ENDPOINT=http://$JAEGER_IP:4318/v1/traces
telemetry_flag=true
else
telemetry_flag=false
fi
export LOGFLAG=false
fi
# Query for enabling OpenTelemetry Tracing Endpoint
read -p "Enable OpenTelemetry Tracing Endpoint? (yes/no): " telemetry && telemetry=$(echo "$telemetry" | tr '[:upper:]' '[:lower:]')
if [[ "$telemetry" == "yes" || "$telemetry" == "y" ]]; then
export JAEGER_IP=$(ip route get 8.8.8.8 | grep -oP 'src \K[^ ]+')
export OTEL_EXPORTER_OTLP_TRACES_ENDPOINT=grpc://$JAEGER_IP:4317
export TELEMETRY_ENDPOINT=http://$JAEGER_IP:4318/v1/traces
telemetry_flag=true
pushd "grafana/dashboards" > /dev/null
source download_opea_dashboard.sh
popd > /dev/null
else
telemetry_flag=false
fi
# Generate the .env file

View File

@@ -1,32 +0,0 @@
#!/usr/bin/env bash
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
pushd "../../../../../" > /dev/null
source .set_env.sh
popd > /dev/null
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export HF_TOKEN=${HF_TOKEN}
export host_ip=${ip_address}
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
export LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct"
export INDEX_NAME="rag-redis"
export NUM_CARDS=1
export VLLM_SKIP_WARMUP=true
export LOGFLAG=True
export http_proxy=${http_proxy}
export https_proxy=${https_proxy}
export no_proxy="${ip_address},redis-vector-db,dataprep-redis-service,tei-embedding-service,retriever,tei-reranking-service,tgi-service,vllm-service,guardrails,llm-faqgen,chatqna-gaudi-backend-server,chatqna-gaudi-ui-server,chatqna-gaudi-nginx-server"
export LLM_ENDPOINT_PORT=8010
export LLM_SERVER_PORT=9001
export CHATQNA_BACKEND_PORT=8888
export CHATQNA_REDIS_VECTOR_PORT=6377
export CHATQNA_REDIS_VECTOR_INSIGHT_PORT=8006
export CHATQNA_FRONTEND_SERVICE_PORT=5175
export NGINX_PORT=80
export FAQGen_COMPONENT_NAME="OpeaFaqGenvLLM"
export LLM_ENDPOINT="http://${host_ip}:${LLM_ENDPOINT_PORT}"

View File

@@ -1,123 +0,0 @@
# ChatQnA E2E test scripts
## Set the required environment variable
```bash
export HUGGINGFACEHUB_API_TOKEN="Your_Huggingface_API_Token"
```
## Run test
On Intel Xeon with TGI:
```bash
bash test_compose_tgi_on_xeon.sh
```
On Intel Xeon with vLLM:
```bash
bash test_compose_on_xeon.sh
```
On Intel Xeon with MariaDB Vector:
```bash
bash test_compose_mariadb_on_xeon.sh
```
On Intel Xeon with Pinecone:
```bash
bash test_compose_pinecone_on_xeon.sh
```
On Intel Xeon with Milvus
```bash
bash test_compose_milvus_on_xeon.sh
```
On Intel Xeon with Qdrant
```bash
bash test_compose_qdrant_on_xeon.sh
```
On Intel Xeon without Rerank:
```bash
bash test_compose_without_rerank_on_xeon.sh
```
On Intel Gaudi with TGI:
```bash
bash test_compose_tgi_on_gaudi.sh
```
On Intel Gaudi with vLLM:
```bash
bash test_compose_on_gaudi.sh
```
On Intel Gaudi with Guardrails:
```bash
bash test_compose_guardrails_on_gaudi.sh
```
On Intel Gaudi without Rerank:
```bash
bash test_compose_without_rerank_on_gaudi.sh
```
On AMD ROCm with TGI:
```bash
bash test_compose_on_rocm.sh
```
On AMD ROCm with vLLM:
```bash
bash test_compose_vllm_on_rocm.sh
```
Test FAQ Generation On Intel Xeon with TGI:
```bash
bash test_compose_faqgen_tgi_on_xeon.sh
```
Test FAQ Generation On Intel Xeon with vLLM:
```bash
bash test_compose_faqgen_on_xeon.sh
```
Test FAQ Generation On Intel Gaudi with TGI:
```bash
bash test_compose_faqgen_tgi_on_gaudi.sh
```
Test FAQ Generation On Intel Gaudi with vLLM:
```bash
bash test_compose_faqgen_on_gaudi.sh
```
Test FAQ Generation On AMD ROCm with TGI:
```bash
bash test_compose_faqgen_on_rocm.sh
```
Test FAQ Generation On AMD ROCm with vLLM:
```bash
bash test_compose_faqgen_vllm_on_rocm.sh
```

View File

@@ -24,7 +24,7 @@ function build_docker_images() {
docker build --no-cache -t ${REGISTRY}/comps-base:${TAG} --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
popd && sleep 1s
git clone https://github.com/HabanaAI/vllm-fork.git && cd vllm-fork
VLLM_FORK_VER=v0.6.6.post1+Gaudi-1.20.0
VLLM_FORK_VER=v0.7.2+Gaudi-1.21.0
git checkout ${VLLM_FORK_VER} &> /dev/null && cd ../
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
@@ -36,7 +36,27 @@ function build_docker_images() {
function start_services() {
cd $WORKPATH/docker_compose/intel/hpu/gaudi
source set_env_faqgen.sh
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
export LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct"
export NUM_CARDS=1
export INDEX_NAME="rag-redis"
export host_ip=${ip_address}
export LLM_ENDPOINT_PORT=8010
export LLM_SERVER_PORT=9001
export CHATQNA_BACKEND_PORT=8888
export CHATQNA_REDIS_VECTOR_PORT=6377
export CHATQNA_REDIS_VECTOR_INSIGHT_PORT=8006
export CHATQNA_FRONTEND_SERVICE_PORT=5175
export NGINX_PORT=80
export FAQGen_COMPONENT_NAME="OpeaFaqGenvLLM"
export LLM_ENDPOINT="http://${host_ip}:${LLM_ENDPOINT_PORT}"
export HF_TOKEN=${HF_TOKEN}
export VLLM_SKIP_WARMUP=true
export LOGFLAG=True
export http_proxy=${http_proxy}
export https_proxy=${https_proxy}
export no_proxy="${ip_address},redis-vector-db,dataprep-redis-service,tei-embedding-service,retriever,tei-reranking-service,tgi-service,vllm-service,guardrails,llm-faqgen,chatqna-gaudi-backend-server,chatqna-gaudi-ui-server,chatqna-gaudi-nginx-server"
# Start Docker Containers
docker compose -f compose_faqgen.yaml up -d > ${LOG_PATH}/start_services_with_compose.log

View File

@@ -15,7 +15,44 @@ WORKPATH=$(dirname "$PWD")
LOG_PATH="$WORKPATH/tests"
ip_address=$(hostname -I | awk '{print $1}')
source $WORKPATH/docker_compose/amd/gpu/rocm/set_env_faqgen.sh
export HOST_IP=${ip_address}
export HOST_IP_EXTERNAL=${ip_address}
export CHATQNA_EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export CHATQNA_HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export CHATQNA_LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct"
export CHATQNA_RERANK_MODEL_ID="BAAI/bge-reranker-base"
export CHATQNA_BACKEND_SERVICE_PORT=8888
export CHATQNA_FRONTEND_SERVICE_PORT=5173
export CHATQNA_LLM_FAQGEN_PORT=18011
export CHATQNA_NGINX_PORT=80
export CHATQNA_REDIS_DATAPREP_PORT=18103
export CHATQNA_REDIS_RETRIEVER_PORT=7000
export CHATQNA_REDIS_VECTOR_INSIGHT_PORT=8001
export CHATQNA_REDIS_VECTOR_PORT=6379
export CHATQNA_TEI_EMBEDDING_PORT=18090
export CHATQNA_TEI_RERANKING_PORT=18808
export CHATQNA_TGI_SERVICE_PORT=18008
export CHATQNA_BACKEND_SERVICE_ENDPOINT="http://${HOST_IP_EXTERNAL}:${CHATQNA_BACKEND_SERVICE_PORT}/v1/chatqna"
export CHATQNA_BACKEND_SERVICE_IP=${HOST_IP}
export CHATQNA_DATAPREP_DELETE_FILE_ENDPOINT="http://${HOST_IP_EXTERNAL}:${CHATQNA_REDIS_DATAPREP_PORT}/v1/dataprep/delete"
export CHATQNA_DATAPREP_GET_FILE_ENDPOINT="http://${HOST_IP_EXTERNAL}:${CHATQNA_REDIS_DATAPREP_PORT}/v1/dataprep/get"
export CHATQNA_DATAPREP_SERVICE_ENDPOINT="http://${HOST_IP_EXTERNAL}:${CHATQNA_REDIS_DATAPREP_PORT}/v1/dataprep/ingest"
export CHATQNA_EMBEDDING_SERVICE_HOST_IP=${HOST_IP}
export CHATQNA_FRONTEND_SERVICE_IP=${HOST_IP}
export CHATQNA_LLM_SERVICE_HOST_IP=${HOST_IP}
export CHATQNA_LLM_ENDPOINT="http://${HOST_IP}:${CHATQNA_TGI_SERVICE_PORT}"
export CHATQNA_MEGA_SERVICE_HOST_IP=${HOST_IP}
export CHATQNA_REDIS_URL="redis://${HOST_IP}:${CHATQNA_REDIS_VECTOR_PORT}"
export CHATQNA_RERANK_SERVICE_HOST_IP=${HOST_IP}
export CHATQNA_RETRIEVER_SERVICE_HOST_IP=${HOST_IP}
export CHATQNA_TEI_EMBEDDING_ENDPOINT="http://${HOST_IP}:${CHATQNA_TEI_EMBEDDING_PORT}"
export CHATQNA_BACKEND_SERVICE_NAME=chatqna
export CHATQNA_INDEX_NAME="rag-redis"
export FAQGen_COMPONENT_NAME="OpeaFaqGenTgi"
export PATH="~/miniconda3/bin:$PATH"

View File

@@ -37,16 +37,26 @@ function build_docker_images() {
function start_services() {
cd $WORKPATH/docker_compose/intel/cpu/xeon
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
export LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct"
export INDEX_NAME="rag-redis"
export host_ip=${ip_address}
export LLM_ENDPOINT_PORT=8010
export LLM_SERVER_PORT=9001
export CHATQNA_BACKEND_PORT=8888
export CHATQNA_REDIS_VECTOR_PORT=6377
export CHATQNA_REDIS_VECTOR_INSIGHT_PORT=8006
export CHATQNA_FRONTEND_SERVICE_PORT=5175
export NGINX_PORT=80
export FAQGen_COMPONENT_NAME="OpeaFaqGenvLLM"
export LLM_ENDPOINT="http://${host_ip}:${LLM_ENDPOINT_PORT}"
export HF_TOKEN=${HF_TOKEN}
export VLLM_SKIP_WARMUP=true
export LOGFLAG=True
export http_proxy=${http_proxy}
export https_proxy=${https_proxy}
export no_proxy="${ip_address},redis-vector-db,dataprep-redis-service,tei-embedding-service,retriever,tei-reranking-service,tgi-service,vllm-service,guardrails,llm-faqgen,chatqna-xeon-backend-server,chatqna-xeon-ui-server,chatqna-xeon-nginx-server"
source set_env.sh
# Start Docker Containers
docker compose -f compose_faqgen.yaml up -d > ${LOG_PATH}/start_services_with_compose.log

View File

@@ -33,8 +33,25 @@ function build_docker_images() {
function start_services() {
cd $WORKPATH/docker_compose/intel/hpu/gaudi
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
export LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct"
export INDEX_NAME="rag-redis"
export host_ip=${ip_address}
export LLM_ENDPOINT_PORT=8010
export LLM_SERVER_PORT=9001
export CHATQNA_BACKEND_PORT=8888
export CHATQNA_REDIS_VECTOR_PORT=6377
export CHATQNA_REDIS_VECTOR_INSIGHT_PORT=8006
export CHATQNA_FRONTEND_SERVICE_PORT=5175
export NGINX_PORT=80
export FAQGen_COMPONENT_NAME="OpeaFaqGenTgi"
source set_env_faqgen.sh
export LLM_ENDPOINT="http://${host_ip}:${LLM_ENDPOINT_PORT}"
export HF_TOKEN=${HF_TOKEN}
export LOGFLAG=True
export http_proxy=${http_proxy}
export https_proxy=${https_proxy}
export no_proxy="${ip_address},redis-vector-db,dataprep-redis-service,tei-embedding-service,retriever,tei-reranking-service,tgi-service,vllm-service,guardrails,llm-faqgen,chatqna-gaudi-backend-server,chatqna-gaudi-ui-server,chatqna-gaudi-nginx-server"
# Start Docker Containers
docker compose -f compose_faqgen_tgi.yaml up -d > ${LOG_PATH}/start_services_with_compose.log

View File

@@ -37,16 +37,25 @@ function build_docker_images() {
function start_services() {
cd $WORKPATH/docker_compose/intel/cpu/xeon
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
export LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct"
export INDEX_NAME="rag-redis"
export host_ip=${ip_address}
export LLM_ENDPOINT_PORT=8010
export LLM_SERVER_PORT=9001
export CHATQNA_BACKEND_PORT=8888
export CHATQNA_REDIS_VECTOR_PORT=6377
export CHATQNA_REDIS_VECTOR_INSIGHT_PORT=8006
export CHATQNA_FRONTEND_SERVICE_PORT=5175
export NGINX_PORT=80
export FAQGen_COMPONENT_NAME="OpeaFaqGenTgi"
export LLM_ENDPOINT="http://${host_ip}:${LLM_ENDPOINT_PORT}"
export HF_TOKEN=${HF_TOKEN}
export LOGFLAG=True
export http_proxy=${http_proxy}
export https_proxy=${https_proxy}
export no_proxy="${ip_address},redis-vector-db,dataprep-redis-service,tei-embedding-service,retriever,tei-reranking-service,tgi-service,vllm-service,guardrails,llm-faqgen,chatqna-xeon-backend-server,chatqna-xeon-ui-server,chatqna-xeon-nginx-server"
source set_env.sh
# Start Docker Containers
docker compose -f compose_faqgen_tgi.yaml up -d > ${LOG_PATH}/start_services_with_compose.log

View File

@@ -14,7 +14,41 @@ WORKPATH=$(dirname "$PWD")
LOG_PATH="$WORKPATH/tests"
ip_address=$(hostname -I | awk '{print $1}')
source $WORKPATH/docker_compose/amd/gpu/rocm/set_env_faqgen_vllm.sh
export HOST_IP=${ip_address}
export HOST_IP_EXTERNAL=${ip_address}
export CHATQNA_EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export CHATQNA_HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export CHATQNA_LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct"
export CHATQNA_RERANK_MODEL_ID="BAAI/bge-reranker-base"
export CHATQNA_BACKEND_SERVICE_PORT=8888
export CHATQNA_FRONTEND_SERVICE_PORT=5173
export CHATQNA_LLM_FAQGEN_PORT=18011
export CHATQNA_NGINX_PORT=80
export CHATQNA_REDIS_DATAPREP_PORT=18103
export CHATQNA_REDIS_RETRIEVER_PORT=7000
export CHATQNA_REDIS_VECTOR_INSIGHT_PORT=8001
export CHATQNA_REDIS_VECTOR_PORT=6379
export CHATQNA_TEI_EMBEDDING_PORT=18090
export CHATQNA_TEI_RERANKING_PORT=18808
export CHATQNA_VLLM_SERVICE_PORT=18008
export CHATQNA_BACKEND_SERVICE_ENDPOINT="http://${HOST_IP_EXTERNAL}:${CHATQNA_BACKEND_SERVICE_PORT}/v1/chatqna"
export CHATQNA_BACKEND_SERVICE_IP=${HOST_IP_EXTERNAL}
export CHATQNA_DATAPREP_DELETE_FILE_ENDPOINT="http://${HOST_IP_EXTERNAL}:${CHATQNA_REDIS_DATAPREP_PORT}/v1/dataprep/delete"
export CHATQNA_DATAPREP_GET_FILE_ENDPOINT="http://${HOST_IP_EXTERNAL}:${CHATQNA_REDIS_DATAPREP_PORT}/v1/dataprep/get"
export CHATQNA_DATAPREP_SERVICE_ENDPOINT="http://${HOST_IP_EXTERNAL}:${CHATQNA_REDIS_DATAPREP_PORT}/v1/dataprep/ingest"
export CHATQNA_FRONTEND_SERVICE_IP=${HOST_IP}
export CHATQNA_MEGA_SERVICE_HOST_IP=${HOST_IP}
export CHATQNA_REDIS_URL="redis://${HOST_IP}:${CHATQNA_REDIS_VECTOR_PORT}"
export CHATQNA_TEI_EMBEDDING_ENDPOINT="http://${HOST_IP}:${CHATQNA_TEI_EMBEDDING_PORT}"
export LLM_ENDPOINT="http://${HOST_IP}:${CHATQNA_VLLM_SERVICE_PORT}"
export CHATQNA_BACKEND_SERVICE_NAME=chatqna
export CHATQNA_INDEX_NAME="rag-redis"
export CHATQNA_TYPE="CHATQNA_FAQGEN"
export FAQGen_COMPONENT_NAME="OpeaFaqGenvLLM"
function build_docker_images() {
opea_branch=${opea_branch:-"main"}

View File

@@ -2,7 +2,7 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
set -xe
set -e
IMAGE_REPO=${IMAGE_REPO:-"opea"}
IMAGE_TAG=${IMAGE_TAG:-"latest"}
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
@@ -24,7 +24,7 @@ function build_docker_images() {
docker build --no-cache -t ${REGISTRY}/comps-base:${TAG} --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
popd && sleep 1s
git clone https://github.com/HabanaAI/vllm-fork.git && cd vllm-fork
VLLM_FORK_VER=v0.6.6.post1+Gaudi-1.20.0
VLLM_FORK_VER=v0.7.2+Gaudi-1.21.0
git checkout ${VLLM_FORK_VER} &> /dev/null && cd ../
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
@@ -36,8 +36,14 @@ function build_docker_images() {
function start_services() {
cd $WORKPATH/docker_compose/intel/hpu/gaudi
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
export LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct"
export NUM_CARDS=1
export INDEX_NAME="rag-redis"
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export host_ip=${ip_address}
export GURADRAILS_MODEL_ID="meta-llama/Meta-Llama-Guard-2-8B"
source set_env_faqgen.sh
# Start Docker Containers
docker compose -f compose_guardrails.yaml up -d > ${LOG_PATH}/start_services_with_compose.log

View File

@@ -2,7 +2,7 @@
# Copyright (C) 2025 MariaDB Foundation
# SPDX-License-Identifier: Apache-2.0
set -xe
set -e
IMAGE_REPO=${IMAGE_REPO:-"opea"}
IMAGE_TAG=${IMAGE_TAG:-"latest"}
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
@@ -39,8 +39,14 @@ function build_docker_images() {
function start_services() {
cd $WORKPATH/docker_compose/intel/cpu/xeon
export MARIADB_DATABASE="vectordb"
export MARIADB_USER="chatqna"
export MARIADB_PASSWORD="test"
source set_env_mariadb.sh
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
export LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct"
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export host_ip=${ip_address}
# Start Docker Containers
docker compose -f compose_mariadb.yaml up -d > ${LOG_PATH}/start_services_with_compose.log

View File

@@ -2,7 +2,7 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
set -xe
set -e
IMAGE_REPO=${IMAGE_REPO:-"opea"}
IMAGE_TAG=${IMAGE_TAG:-"latest"}
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
@@ -39,8 +39,11 @@ function build_docker_images() {
}
function start_services() {
cd $WORKPATH/docker_compose/intel/cpu/xeon/
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
export LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct"
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export LOGFLAG=true
source set_env.sh
# Start Docker Containers
docker compose -f compose_milvus.yaml up -d > ${LOG_PATH}/start_services_with_compose.log

View File

@@ -2,7 +2,7 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
set -xe
set -e
IMAGE_REPO=${IMAGE_REPO:-"opea"}
IMAGE_TAG=${IMAGE_TAG:-"latest"}
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
@@ -24,7 +24,7 @@ function build_docker_images() {
docker build --no-cache -t ${REGISTRY}/comps-base:${TAG} --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
popd && sleep 1s
git clone https://github.com/HabanaAI/vllm-fork.git && cd vllm-fork
VLLM_FORK_VER=v0.6.6.post1+Gaudi-1.20.0
VLLM_FORK_VER=v0.7.2+Gaudi-1.21.0
git checkout ${VLLM_FORK_VER} &> /dev/null && cd ../
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
@@ -36,10 +36,16 @@ function build_docker_images() {
function start_services() {
cd $WORKPATH/docker_compose/intel/hpu/gaudi
export NON_INTERACTIVE=true
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
export LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct"
export NUM_CARDS=1
export INDEX_NAME="rag-redis"
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export host_ip=${ip_address}
export telemetry=yes
source set_env.sh
export JAEGER_IP=$(ip route get 8.8.8.8 | grep -oP 'src \K[^ ]+')
export OTEL_EXPORTER_OTLP_TRACES_ENDPOINT=grpc://$JAEGER_IP:4317
export TELEMETRY_ENDPOINT=http://$JAEGER_IP:4318/v1/traces
# Start Docker Containers
docker compose -f compose.yaml -f compose.telemetry.yaml up -d > ${LOG_PATH}/start_services_with_compose.log

View File

@@ -15,7 +15,41 @@ WORKPATH=$(dirname "$PWD")
LOG_PATH="$WORKPATH/tests"
ip_address=$(hostname -I | awk '{print $1}')
source $WORKPATH/docker_compose/amd/gpu/rocm/set_env.sh
export HOST_IP=${ip_address}
export HOST_IP_EXTERNAL=${ip_address}
export CHATQNA_EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export CHATQNA_HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export CHATQNA_LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct"
export CHATQNA_RERANK_MODEL_ID="BAAI/bge-reranker-base"
export CHATQNA_BACKEND_SERVICE_PORT=8888
export CHATQNA_FRONTEND_SERVICE_PORT=5173
export CHATQNA_NGINX_PORT=80
export CHATQNA_REDIS_DATAPREP_PORT=18103
export CHATQNA_REDIS_RETRIEVER_PORT=7000
export CHATQNA_REDIS_VECTOR_INSIGHT_PORT=8001
export CHATQNA_REDIS_VECTOR_PORT=6379
export CHATQNA_TEI_EMBEDDING_PORT=18090
export CHATQNA_TEI_RERANKING_PORT=18808
export CHATQNA_TGI_SERVICE_PORT=18008
export CHATQNA_BACKEND_SERVICE_ENDPOINT="http://${HOST_IP_EXTERNAL}:${CHATQNA_BACKEND_SERVICE_PORT}/v1/chatqna"
export CHATQNA_BACKEND_SERVICE_IP=${HOST_IP}
export CHATQNA_DATAPREP_DELETE_FILE_ENDPOINT="http://${HOST_IP_EXTERNAL}:${CHATQNA_REDIS_DATAPREP_PORT}/v1/dataprep/delete"
export CHATQNA_DATAPREP_GET_FILE_ENDPOINT="http://${HOST_IP_EXTERNAL}:${CHATQNA_REDIS_DATAPREP_PORT}/v1/dataprep/get"
export CHATQNA_DATAPREP_SERVICE_ENDPOINT="http://${HOST_IP_EXTERNAL}:${CHATQNA_REDIS_DATAPREP_PORT}/v1/dataprep/ingest"
export CHATQNA_EMBEDDING_SERVICE_HOST_IP=${HOST_IP}
export CHATQNA_FRONTEND_SERVICE_IP=${HOST_IP}
export CHATQNA_LLM_SERVICE_HOST_IP=${HOST_IP}
export CHATQNA_MEGA_SERVICE_HOST_IP=${HOST_IP}
export CHATQNA_REDIS_URL="redis://${HOST_IP}:${CHATQNA_REDIS_VECTOR_PORT}"
export CHATQNA_RERANK_SERVICE_HOST_IP=${HOST_IP}
export CHATQNA_RETRIEVER_SERVICE_HOST_IP=${HOST_IP}
export CHATQNA_TEI_EMBEDDING_ENDPOINT="http://${HOST_IP}:${CHATQNA_TEI_EMBEDDING_PORT}"
export CHATQNA_BACKEND_SERVICE_NAME=chatqna
export CHATQNA_INDEX_NAME="rag-redis"
export PATH="~/miniconda3/bin:$PATH"

View File

@@ -2,7 +2,7 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
set -xe
set -e
IMAGE_REPO=${IMAGE_REPO:-"opea"}
IMAGE_TAG=${IMAGE_TAG:-"latest"}
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
@@ -40,7 +40,15 @@ function build_docker_images() {
function start_services() {
cd $WORKPATH/docker_compose/intel/cpu/xeon
source set_env.sh
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
export LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct"
export INDEX_NAME="rag-redis"
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export host_ip=${ip_address}
export JAEGER_IP=$(ip route get 8.8.8.8 | grep -oP 'src \K[^ ]+')
export OTEL_EXPORTER_OTLP_TRACES_ENDPOINT=grpc://$JAEGER_IP:4317
export TELEMETRY_ENDPOINT=http://$JAEGER_IP:4318/v1/traces
# Start Docker Containers
docker compose -f compose.yaml -f compose.telemetry.yaml up -d > ${LOG_PATH}/start_services_with_compose.log

View File

@@ -2,7 +2,7 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
set -xe
set -e
IMAGE_REPO=${IMAGE_REPO:-"opea"}
IMAGE_TAG=${IMAGE_TAG:-"latest"}
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
@@ -41,11 +41,14 @@ function build_docker_images() {
function start_services() {
cd $WORKPATH/docker_compose/intel/cpu/xeon/
export no_proxy=${no_proxy},${ip_address}
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
export LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct"
export PINECONE_API_KEY=${PINECONE_KEY_LANGCHAIN_TEST}
export PINECONE_INDEX_NAME="langchain-test"
export INDEX_NAME="langchain-test"
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export LOGFLAG=true
source set_env.sh
# Start Docker Containers
docker compose -f compose_pinecone.yaml up -d > ${LOG_PATH}/start_services_with_compose.log

View File

@@ -2,7 +2,7 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
set -xe
set -e
IMAGE_REPO=${IMAGE_REPO:-"opea"}
IMAGE_TAG=${IMAGE_TAG:-"latest"}
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
@@ -40,8 +40,11 @@ function build_docker_images() {
function start_services() {
cd $WORKPATH/docker_compose/intel/cpu/xeon
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
export LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct"
export INDEX_NAME="rag-qdrant"
source set_env.sh
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
sed -i "s/backend_address/$ip_address/g" $WORKPATH/ui/svelte/.env

View File

@@ -2,7 +2,7 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
set -xe
set -e
IMAGE_REPO=${IMAGE_REPO:-"opea"}
IMAGE_TAG=${IMAGE_TAG:-"latest"}
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
@@ -32,10 +32,15 @@ function build_docker_images() {
function start_services() {
cd $WORKPATH/docker_compose/intel/hpu/gaudi
export NON_INTERACTIVE=true
export host_ip=${ip_address}
export telemetry=yes
source set_env.sh
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
export LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct"
export NUM_CARDS=1
export INDEX_NAME="rag-redis"
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export JAEGER_IP=$(ip route get 8.8.8.8 | grep -oP 'src \K[^ ]+')
export OTEL_EXPORTER_OTLP_TRACES_ENDPOINT=grpc://$JAEGER_IP:4317
export TELEMETRY_ENDPOINT=http://$JAEGER_IP:4318/v1/traces
# Start Docker Containers
docker compose -f compose_tgi.yaml -f compose_tgi.telemetry.yaml up -d > ${LOG_PATH}/start_services_with_compose.log

View File

@@ -2,7 +2,7 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
set -xe
set -e
IMAGE_REPO=${IMAGE_REPO:-"opea"}
IMAGE_TAG=${IMAGE_TAG:-"latest"}
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
@@ -33,7 +33,14 @@ function build_docker_images() {
function start_services() {
cd $WORKPATH/docker_compose/intel/cpu/xeon
source set_env.sh
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
export LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct"
export INDEX_NAME="rag-redis"
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export JAEGER_IP=$(ip route get 8.8.8.8 | grep -oP 'src \K[^ ]+')
export OTEL_EXPORTER_OTLP_TRACES_ENDPOINT=grpc://$JAEGER_IP:4317
export TELEMETRY_ENDPOINT=http://$JAEGER_IP:4318/v1/traces
# Start Docker Containers
docker compose -f compose_tgi.yaml -f compose_tgi.telemetry.yaml up -d > ${LOG_PATH}/start_services_with_compose.log

View File

@@ -2,7 +2,7 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
set -xe
set -e
IMAGE_REPO=${IMAGE_REPO:-"opea"}
IMAGE_TAG=${IMAGE_TAG:-"latest"}
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
@@ -14,7 +14,42 @@ WORKPATH=$(dirname "$PWD")
LOG_PATH="$WORKPATH/tests"
ip_address=$(hostname -I | awk '{print $1}')
source $WORKPATH/docker_compose/amd/gpu/rocm/set_env_vllm.sh
export HOST_IP=${ip_address}
export HOST_IP_EXTERNAL=${ip_address}
export CHATQNA_EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export CHATQNA_HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export CHATQNA_LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct"
export CHATQNA_RERANK_MODEL_ID="BAAI/bge-reranker-base"
export CHATQNA_BACKEND_SERVICE_PORT=8888
export CHATQNA_FRONTEND_SERVICE_PORT=5173
export CHATQNA_NGINX_PORT=80
export CHATQNA_REDIS_DATAPREP_PORT=18103
export CHATQNA_REDIS_RETRIEVER_PORT=7000
export CHATQNA_REDIS_VECTOR_INSIGHT_PORT=8001
export CHATQNA_REDIS_VECTOR_PORT=6379
export CHATQNA_TEI_EMBEDDING_PORT=18090
export CHATQNA_TEI_RERANKING_PORT=18808
export CHATQNA_VLLM_SERVICE_PORT=18008
export CHATQNA_BACKEND_SERVICE_ENDPOINT="http://${HOST_IP_EXTERNAL}:${CHATQNA_BACKEND_SERVICE_PORT}/v1/chatqna"
export CHATQNA_BACKEND_SERVICE_IP=${HOST_IP_EXTERNAL}
export CHATQNA_DATAPREP_DELETE_FILE_ENDPOINT="http://${HOST_IP_EXTERNAL}:${CHATQNA_REDIS_DATAPREP_PORT}/v1/dataprep/delete"
export CHATQNA_DATAPREP_GET_FILE_ENDPOINT="http://${HOST_IP_EXTERNAL}:${CHATQNA_REDIS_DATAPREP_PORT}/v1/dataprep/get"
export CHATQNA_DATAPREP_SERVICE_ENDPOINT="http://${HOST_IP_EXTERNAL}:${CHATQNA_REDIS_DATAPREP_PORT}/v1/dataprep/ingest"
export CHATQNA_EMBEDDING_SERVICE_HOST_IP=${HOST_IP}
export CHATQNA_FRONTEND_SERVICE_IP=${HOST_IP}
export CHATQNA_LLM_SERVICE_HOST_IP=${HOST_IP}
export CHATQNA_MEGA_SERVICE_HOST_IP=${HOST_IP}
export CHATQNA_REDIS_URL="redis://${HOST_IP}:${CHATQNA_REDIS_VECTOR_PORT}"
export CHATQNA_RERANK_SERVICE_HOST_IP=${HOST_IP}
export CHATQNA_RETRIEVER_SERVICE_HOST_IP=${HOST_IP}
export CHATQNA_TEI_EMBEDDING_ENDPOINT="http://${HOST_IP}:${CHATQNA_TEI_EMBEDDING_PORT}"
export CHATQNA_BACKEND_SERVICE_NAME=chatqna
export CHATQNA_INDEX_NAME="rag-redis"
function build_docker_images() {
opea_branch=${opea_branch:-"main"}

View File

@@ -2,7 +2,7 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
set -xe
set -e
IMAGE_REPO=${IMAGE_REPO:-"opea"}
IMAGE_TAG=${IMAGE_TAG:-"latest"}
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
@@ -24,7 +24,7 @@ function build_docker_images() {
docker build --no-cache -t ${REGISTRY}/comps-base:${TAG} --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
popd && sleep 1s
git clone https://github.com/HabanaAI/vllm-fork.git && cd vllm-fork
VLLM_FORK_VER=v0.6.6.post1+Gaudi-1.20.0
VLLM_FORK_VER=v0.7.2+Gaudi-1.21.0
git checkout ${VLLM_FORK_VER} &> /dev/null && cd ../
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
@@ -36,8 +36,11 @@ function build_docker_images() {
function start_services() {
cd $WORKPATH/docker_compose/intel/hpu/gaudi
export NON_INTERACTIVE=true
source set_env.sh
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct"
export NUM_CARDS=1
export INDEX_NAME="rag-redis"
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
# Start Docker Containers
docker compose -f compose_without_rerank.yaml up -d > ${LOG_PATH}/start_services_with_compose.log

View File

@@ -2,7 +2,7 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
set -xe
set -e
IMAGE_REPO=${IMAGE_REPO:-"opea"}
IMAGE_TAG=${IMAGE_TAG:-"latest"}
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
@@ -41,7 +41,10 @@ function build_docker_images() {
function start_services() {
cd $WORKPATH/docker_compose/intel/cpu/xeon
source set_env.sh
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct"
export INDEX_NAME="rag-redis"
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
# Start Docker Containers
docker compose -f compose_without_rerank.yaml up -d > ${LOG_PATH}/start_services_with_compose.log

View File

@@ -5,8 +5,8 @@
# SPDX-License-Identifier: Apache-2.0
### The IP address or domain name of the server on which the application is running
export HOST_IP=${ip_address}
export EXTERNAL_HOST_IP=${ip_address}
export HOST_IP=''
export EXTERNAL_HOST_IP=''
### The port of the TGI service. On this port, the TGI service will accept connections
export CODEGEN_TGI_SERVICE_PORT=8028
@@ -27,7 +27,7 @@ export CODEGEN_TGI_LLM_ENDPOINT="http://${HOST_IP}:${CODEGEN_TGI_SERVICE_PORT}"
export CODEGEN_MEGA_SERVICE_HOST_IP=${HOST_IP}
### The port for CodeGen backend service
export CODEGEN_BACKEND_SERVICE_PORT=7778
export CODEGEN_BACKEND_SERVICE_PORT=18150
### The URL of CodeGen backend service, used by the frontend service
export CODEGEN_BACKEND_SERVICE_URL="http://${EXTERNAL_HOST_IP}:${CODEGEN_BACKEND_SERVICE_PORT}/v1/codegen"
@@ -36,4 +36,4 @@ export CODEGEN_BACKEND_SERVICE_URL="http://${EXTERNAL_HOST_IP}:${CODEGEN_BACKEND
export CODEGEN_LLM_SERVICE_HOST_IP=${HOST_IP}
### The CodeGen service UI port
export CODEGEN_UI_SERVICE_PORT=5173
export CODEGEN_UI_SERVICE_PORT=18151

View File

@@ -5,8 +5,8 @@
# SPDX-License-Identifier: Apache-2.0
### The IP address or domain name of the server on which the application is running
export HOST_IP=${ip_address}
export EXTERNAL_HOST_IP=${ip_address}
export HOST_IP=''
export EXTERNAL_HOST_IP=''
### The port of the vLLM service. On this port, the TGI service will accept connections
export CODEGEN_VLLM_SERVICE_PORT=8028
@@ -25,7 +25,7 @@ export CODEGEN_LLM_SERVICE_PORT=9000
export CODEGEN_MEGA_SERVICE_HOST_IP=${HOST_IP}
### The port for CodeGen backend service
export CODEGEN_BACKEND_SERVICE_PORT=7778
export CODEGEN_BACKEND_SERVICE_PORT=18150
### The URL of CodeGen backend service, used by the frontend service
export CODEGEN_BACKEND_SERVICE_URL="http://${EXTERNAL_HOST_IP}:${CODEGEN_BACKEND_SERVICE_PORT}/v1/codegen"
@@ -34,4 +34,4 @@ export CODEGEN_BACKEND_SERVICE_URL="http://${EXTERNAL_HOST_IP}:${CODEGEN_BACKEND
export CODEGEN_LLM_SERVICE_HOST_IP=${HOST_IP}
### The CodeGen service UI port
export CODEGEN_UI_SERVICE_PORT=5173
export CODEGEN_UI_SERVICE_PORT=18151

View File

@@ -6,10 +6,22 @@ This README provides instructions for deploying the CodeGen application using Do
- [Overview](#overview)
- [Prerequisites](#prerequisites)
- [Quick Start Deployment](#quick-start-deployment)
- [Quick Start](#quick-start)
- [Available Deployment Options](#available-deployment-options)
- [Default: vLLM-based Deployment (`--profile codegen-xeon-vllm`)](#default-vllm-based-deployment---profile-codegen-xeon-vllm)
- [TGI-based Deployment (`--profile codegen-xeon-tgi`)](#tgi-based-deployment---profile-codegen-xeon-tgi)
- [Configuration Parameters](#configuration-parameters)
- [Environment Variables](#environment-variables)
- [Compose Profiles](#compose-profiles)
- [Building Custom Images (Optional)](#building-custom-images-optional)
- [Validate Services](#validate-services)
- [Check Container Status](#check-container-status)
- [Run Validation Script/Commands](#run-validation-scriptcommands)
- [Accessing the User Interface (UI)](#accessing-the-user-interface-ui)
- [Gradio UI (Default)](#gradio-ui-default)
- [Svelte UI (Optional)](#svelte-ui-optional)
- [React UI (Optional)](#react-ui-optional)
- [VS Code Extension (Optional)](#vs-code-extension-optional)
- [Troubleshooting](#troubleshooting)
- [Stopping the Application](#stopping-the-application)
- [Next Steps](#next-steps)
@@ -31,37 +43,27 @@ This guide focuses on running the pre-configured CodeGen service using Docker Co
cd GenAIExamples/CodeGen/docker_compose/intel/cpu/xeon
```
## Quick Start Deployment
## Quick Start
This uses the default vLLM-based deployment profile (`codegen-xeon-vllm`).
1. **Configure Environment:**
Set required environment variables in your shell:
```bash
# Replace with your host's external IP address (do not use localhost or 127.0.0.1)
export HOST_IP="your_external_ip_address"
# Replace with your Hugging Face Hub API token
export HUGGINGFACEHUB_API_TOKEN="your_huggingface_token"
```bash
# Replace with your host's external IP address (do not use localhost or 127.0.0.1)
export HOST_IP="your_external_ip_address"
# Replace with your Hugging Face Hub API token
export HUGGINGFACEHUB_API_TOKEN="your_huggingface_token"
# Optional: Configure proxy if needed
# export http_proxy="your_http_proxy"
# export https_proxy="your_https_proxy"
# export no_proxy="localhost,127.0.0.1,${HOST_IP}" # Add other hosts if necessary
source ../../set_env.sh
```
# Optional: Configure proxy if needed
# export http_proxy="your_http_proxy"
# export https_proxy="your_https_proxy"
# export no_proxy="localhost,127.0.0.1,${HOST_IP}" # Add other hosts if necessary
source ../../../set_env.sh
```
_Note: The compose file might read additional variables from set_env.sh. Ensure all required variables like ports (`LLM_SERVICE_PORT`, `MEGA_SERVICE_PORT`, etc.) are set if not using defaults from the compose file._
For instance, edit the set_env.sh to change the LLM model
```
export LLM_MODEL_ID="Qwen/Qwen2.5-Coder-7B-Instruct"
```
can be changed to other model if needed
```
export LLM_MODEL_ID="Qwen/Qwen2.5-Coder-32B-Instruct"
```
_Note: The compose file might read additional variables from a `.env` file or expect them defined elsewhere. Ensure all required variables like ports (`LLM_SERVICE_PORT`, `MEGA_SERVICE_PORT`, etc.) are set if not using defaults from the compose file._
2. **Start Services (vLLM Profile):**
@@ -72,17 +74,17 @@ This uses the default vLLM-based deployment profile (`codegen-xeon-vllm`).
3. **Validate:**
Wait several minutes for models to download (especially the first time) and services to initialize. Check container logs (`docker compose logs -f <service_name>`) or proceed to the validation steps below.
### Available Deployment Options
## Available Deployment Options
The `compose.yaml` file uses Docker Compose profiles to select the LLM serving backend.
#### Default: vLLM-based Deployment (`--profile codegen-xeon-vllm`)
### Default: vLLM-based Deployment (`--profile codegen-xeon-vllm`)
- **Profile:** `codegen-xeon-vllm`
- **Description:** Uses vLLM optimized for Intel CPUs as the LLM serving engine. This is the default profile used in the Quick Start.
- **Services Deployed:** `codegen-vllm-server`, `codegen-llm-server`, `codegen-tei-embedding-server`, `codegen-retriever-server`, `redis-vector-db`, `codegen-dataprep-server`, `codegen-backend-server`, `codegen-gradio-ui-server`.
#### TGI-based Deployment (`--profile codegen-xeon-tgi`)
### TGI-based Deployment (`--profile codegen-xeon-tgi`)
- **Profile:** `codegen-xeon-tgi`
- **Description:** Uses Hugging Face Text Generation Inference (TGI) optimized for Intel CPUs as the LLM serving engine.
@@ -93,24 +95,24 @@ The `compose.yaml` file uses Docker Compose profiles to select the LLM serving b
docker compose --profile codegen-xeon-tgi up -d
```
### Configuration Parameters
## Configuration Parameters
#### Environment Variables
### Environment Variables
Key parameters are configured via environment variables set before running `docker compose up`.
| Environment Variable | Description | Default (Set Externally) |
| :-------------------------------------- | :------------------------------------------------------------------------------------------------------------------ | :--------------------------------------------- | ------------------------------------ |
| `HOST_IP` | External IP address of the host machine. **Required.** | `your_external_ip_address` |
| `HUGGINGFACEHUB_API_TOKEN` | Your Hugging Face Hub token for model access. **Required.** | `your_huggingface_token` |
| `LLM_MODEL_ID` | Hugging Face model ID for the CodeGen LLM (used by TGI/vLLM service). Configured within `compose.yaml` environment. | `Qwen/Qwen2.5-Coder-7B-Instruct` |
| `EMBEDDING_MODEL_ID` | Hugging Face model ID for the embedding model (used by TEI service). Configured within `compose.yaml` environment. | `BAAI/bge-base-en-v1.5` |
| `LLM_ENDPOINT` | Internal URL for the LLM serving endpoint (used by `codegen-llm-server`). Configured in `compose.yaml`. | `http://codegen-vllm | tgi-server:9000/v1/chat/completions` |
| `TEI_EMBEDDING_ENDPOINT` | Internal URL for the Embedding service. Configured in `compose.yaml`. | `http://codegen-tei-embedding-server:80/embed` |
| `DATAPREP_ENDPOINT` | Internal URL for the Data Preparation service. Configured in `compose.yaml`. | `http://codegen-dataprep-server:80/dataprep` |
| `BACKEND_SERVICE_ENDPOINT` | External URL for the CodeGen Gateway (MegaService). Derived from `HOST_IP` and port `7778`. | `http://${HOST_IP}:7778/v1/codegen` |
| `*_PORT` (Internal) | Internal container ports (e.g., `80`, `6379`). Defined in `compose.yaml`. | N/A |
| `http_proxy` / `https_proxy`/`no_proxy` | Network proxy settings (if required). | `""` |
| Environment Variable | Description | Default (Set Externally) |
| :-------------------------------------- | :------------------------------------------------------------------------------------------------------------------ | :----------------------------------------------------------------------------------------------- |
| `HOST_IP` | External IP address of the host machine. **Required.** | `your_external_ip_address` |
| `HUGGINGFACEHUB_API_TOKEN` | Your Hugging Face Hub token for model access. **Required.** | `your_huggingface_token` |
| `LLM_MODEL_ID` | Hugging Face model ID for the CodeGen LLM (used by TGI/vLLM service). Configured within `compose.yaml` environment. | `Qwen/Qwen2.5-Coder-7B-Instruct` |
| `EMBEDDING_MODEL_ID` | Hugging Face model ID for the embedding model (used by TEI service). Configured within `compose.yaml` environment. | `BAAI/bge-base-en-v1.5` |
| `LLM_ENDPOINT` | Internal URL for the LLM serving endpoint (used by `codegen-llm-server`). Configured in `compose.yaml`. | `http://codegen-tgi-server:80/generate` or `http://codegen-vllm-server:8000/v1/chat/completions` |
| `TEI_EMBEDDING_ENDPOINT` | Internal URL for the Embedding service. Configured in `compose.yaml`. | `http://codegen-tei-embedding-server:80/embed` |
| `DATAPREP_ENDPOINT` | Internal URL for the Data Preparation service. Configured in `compose.yaml`. | `http://codegen-dataprep-server:80/dataprep` |
| `BACKEND_SERVICE_ENDPOINT` | External URL for the CodeGen Gateway (MegaService). Derived from `HOST_IP` and port `7778`. | `http://${HOST_IP}:7778/v1/codegen` |
| `*_PORT` (Internal) | Internal container ports (e.g., `80`, `6379`). Defined in `compose.yaml`. | N/A |
| `http_proxy` / `https_proxy`/`no_proxy` | Network proxy settings (if required). | `""` |
Most of these parameters are in `set_env.sh`, you can either modify this file or overwrite the env variables by setting them.
@@ -118,7 +120,7 @@ Most of these parameters are in `set_env.sh`, you can either modify this file or
source CodeGen/docker_compose/set_env.sh
```
#### Compose Profiles
### Compose Profiles
Docker Compose profiles (`codegen-xeon-vllm`, `codegen-xeon-tgi`) control which LLM serving backend (vLLM or TGI) and its associated dependencies are started. Only one profile should typically be active.
@@ -150,11 +152,11 @@ Check logs for specific services: `docker compose logs <service_name>`
Use `curl` commands to test the main service endpoints. Ensure `HOST_IP` is correctly set in your environment.
1. **Validate LLM Serving Endpoint (Example for vLLM on default port 9000 internally, exposed differently):**
1. **Validate LLM Serving Endpoint (Example for vLLM on default port 8000 internally, exposed differently):**
```bash
# This command structure targets the OpenAI-compatible vLLM endpoint
curl http://${HOST_IP}:9000/v1/chat/completions \
curl http://${HOST_IP}:8000/v1/chat/completions \
-X POST \
-H 'Content-Type: application/json' \
-d '{"model": "Qwen/Qwen2.5-Coder-7B-Instruct", "messages": [{"role": "user", "content": "Implement a basic Python class"}], "max_tokens":32}'
@@ -177,8 +179,8 @@ Multiple UI options can be configured via the `compose.yaml`.
### Gradio UI (Default)
Access the default Gradio UI by navigating to:
`http://{HOST_IP}:5173`
_(Port `5173` is the default host mapping for `codegen-gradio-ui-server`)_
`http://{HOST_IP}:8080`
_(Port `8080` is the default host mapping for `codegen-gradio-ui-server`)_
![Gradio UI - Code Generation](../../../../assets/img/codegen_gradio_ui_main.png)
![Gradio UI - Resource Management](../../../../assets/img/codegen_gradio_ui_dataprep.png)

View File

@@ -6,10 +6,23 @@ This README provides instructions for deploying the CodeGen application using Do
- [Overview](#overview)
- [Prerequisites](#prerequisites)
- [Quick Start Deployment](#quick-start-deployment)
- [Quick Start](#quick-start)
- [Available Deployment Options](#available-deployment-options)
- [Default: vLLM-based Deployment (`--profile codegen-gaudi-vllm`)](#default-vllm-based-deployment---profile-codegen-gaudi-vllm)
- [TGI-based Deployment (`--profile codegen-gaudi-tgi`)](#tgi-based-deployment---profile-codegen-gaudi-tgi)
- [Configuration Parameters](#configuration-parameters)
- [Environment Variables](#environment-variables)
- [Compose Profiles](#compose-profiles)
- [Docker Compose Gaudi Configuration](#docker-compose-gaudi-configuration)
- [Building Custom Images (Optional)](#building-custom-images-optional)
- [Validate Services](#validate-services)
- [Check Container Status](#check-container-status)
- [Run Validation Script/Commands](#run-validation-scriptcommands)
- [Accessing the User Interface (UI)](#accessing-the-user-interface-ui)
- [Gradio UI (Default)](#gradio-ui-default)
- [Svelte UI (Optional)](#svelte-ui-optional)
- [React UI (Optional)](#react-ui-optional)
- [VS Code Extension (Optional)](#vs-code-extension-optional)
- [Troubleshooting](#troubleshooting)
- [Stopping the Application](#stopping-the-application)
- [Next Steps](#next-steps)
@@ -31,7 +44,7 @@ This guide focuses on running the pre-configured CodeGen service using Docker Co
cd GenAIExamples/CodeGen/docker_compose/intel/hpu/gaudi
```
## Quick Start Deployment
## Quick Start
This uses the default vLLM-based deployment profile (`codegen-gaudi-vllm`).
@@ -48,21 +61,10 @@ This uses the default vLLM-based deployment profile (`codegen-gaudi-vllm`).
# export http_proxy="your_http_proxy"
# export https_proxy="your_https_proxy"
# export no_proxy="localhost,127.0.0.1,${HOST_IP}" # Add other hosts if necessary
source ../../set_env.sh
source ../../../set_env.sh
```
_Note: The compose file might read additional variables from set_env.sh. Ensure all required variables like ports (`LLM_SERVICE_PORT`, `MEGA_SERVICE_PORT`, etc.) are set if not using defaults from the compose file._
For instance, edit the set_env.sh to change the LLM model
```
export LLM_MODEL_ID="Qwen/Qwen2.5-Coder-7B-Instruct"
```
can be changed to other model if needed
```
export LLM_MODEL_ID="Qwen/Qwen2.5-Coder-32B-Instruct"
```
_Note: Ensure all required variables like ports (`LLM_SERVICE_PORT`, `MEGA_SERVICE_PORT`, etc.) are set if not using defaults from the compose file._
2. **Start Services (vLLM Profile):**
@@ -102,18 +104,18 @@ The `compose.yaml` file uses Docker Compose profiles to select the LLM serving b
Key parameters are configured via environment variables set before running `docker compose up`.
| Environment Variable | Description | Default (Set Externally) |
| :-------------------------------------- | :------------------------------------------------------------------------------------------------------------------ | :--------------------------------------------- | ------------------------------------ |
| `HOST_IP` | External IP address of the host machine. **Required.** | `your_external_ip_address` |
| `HUGGINGFACEHUB_API_TOKEN` | Your Hugging Face Hub token for model access. **Required.** | `your_huggingface_token` |
| `LLM_MODEL_ID` | Hugging Face model ID for the CodeGen LLM (used by TGI/vLLM service). Configured within `compose.yaml` environment. | `Qwen/Qwen2.5-Coder-7B-Instruct` |
| `EMBEDDING_MODEL_ID` | Hugging Face model ID for the embedding model (used by TEI service). Configured within `compose.yaml` environment. | `BAAI/bge-base-en-v1.5` |
| `LLM_ENDPOINT` | Internal URL for the LLM serving endpoint (used by `llm-codegen-vllm-server`). Configured in `compose.yaml`. | http://codegen-vllm | tgi-server:9000/v1/chat/completions` |
| `TEI_EMBEDDING_ENDPOINT` | Internal URL for the Embedding service. Configured in `compose.yaml`. | `http://codegen-tei-embedding-server:80/embed` |
| `DATAPREP_ENDPOINT` | Internal URL for the Data Preparation service. Configured in `compose.yaml`. | `http://codegen-dataprep-server:80/dataprep` |
| `BACKEND_SERVICE_ENDPOINT` | External URL for the CodeGen Gateway (MegaService). Derived from `HOST_IP` and port `7778`. | `http://${HOST_IP}:7778/v1/codegen` |
| `*_PORT` (Internal) | Internal container ports (e.g., `80`, `6379`). Defined in `compose.yaml`. | N/A |
| `http_proxy` / `https_proxy`/`no_proxy` | Network proxy settings (if required). | `""` |
| Environment Variable | Description | Default (Set Externally) |
| :-------------------------------------- | :------------------------------------------------------------------------------------------------------------------ | :----------------------------------------------------------------------------------------------- |
| `HOST_IP` | External IP address of the host machine. **Required.** | `your_external_ip_address` |
| `HUGGINGFACEHUB_API_TOKEN` | Your Hugging Face Hub token for model access. **Required.** | `your_huggingface_token` |
| `LLM_MODEL_ID` | Hugging Face model ID for the CodeGen LLM (used by TGI/vLLM service). Configured within `compose.yaml` environment. | `Qwen/Qwen2.5-Coder-7B-Instruct` |
| `EMBEDDING_MODEL_ID` | Hugging Face model ID for the embedding model (used by TEI service). Configured within `compose.yaml` environment. | `BAAI/bge-base-en-v1.5` |
| `LLM_ENDPOINT` | Internal URL for the LLM serving endpoint (used by `codegen-llm-server`). Configured in `compose.yaml`. | `http://codegen-tgi-server:80/generate` or `http://codegen-vllm-server:8000/v1/chat/completions` |
| `TEI_EMBEDDING_ENDPOINT` | Internal URL for the Embedding service. Configured in `compose.yaml`. | `http://codegen-tei-embedding-server:80/embed` |
| `DATAPREP_ENDPOINT` | Internal URL for the Data Preparation service. Configured in `compose.yaml`. | `http://codegen-dataprep-server:80/dataprep` |
| `BACKEND_SERVICE_ENDPOINT` | External URL for the CodeGen Gateway (MegaService). Derived from `HOST_IP` and port `7778`. | `http://${HOST_IP}:7778/v1/codegen` |
| `*_PORT` (Internal) | Internal container ports (e.g., `80`, `6379`). Defined in `compose.yaml`. | N/A |
| `http_proxy` / `https_proxy`/`no_proxy` | Network proxy settings (if required). | `""` |
Most of these parameters are in `set_env.sh`, you can either modify this file or overwrite the env variables by setting them.
@@ -170,11 +172,11 @@ Check logs: `docker compose logs <service_name>`. Pay attention to `vllm-gaudi-s
Use `curl` commands targeting the main service endpoints. Ensure `HOST_IP` is correctly set.
1. **Validate LLM Serving Endpoint (Example for vLLM on default port 9000 internally, exposed differently):**
1. **Validate LLM Serving Endpoint (Example for vLLM on default port 8000 internally, exposed differently):**
```bash
# This command structure targets the OpenAI-compatible vLLM endpoint
curl http://${HOST_IP}:9000/v1/chat/completions \
curl http://${HOST_IP}:8000/v1/chat/completions \
-X POST \
-H 'Content-Type: application/json' \
-d '{"model": "Qwen/Qwen2.5-Coder-7B-Instruct", "messages": [{"role": "user", "content": "Implement a basic Python class"}], "max_tokens":32}'
@@ -195,8 +197,8 @@ UI options are similar to the Xeon deployment.
### Gradio UI (Default)
Access the default Gradio UI:
`http://{HOST_IP}:5173`
_(Port `5173` is the default host mapping)_
`http://{HOST_IP}:8080`
_(Port `8080` is the default host mapping)_
![Gradio UI](../../../../assets/img/codegen_gradio_ui_main.png)

View File

@@ -1,51 +0,0 @@
#!/usr/bin/env bash
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
pushd "../../" > /dev/null
source .set_env.sh
popd > /dev/null
export HOST_IP=$(hostname -I | awk '{print $1}')
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
if [ -z "${HUGGINGFACEHUB_API_TOKEN}" ]; then
echo "Error: HUGGINGFACEHUB_API_TOKEN is not set. Please set HUGGINGFACEHUB_API_TOKEN"
fi
if [ -z "${HOST_IP}" ]; then
echo "Error: HOST_IP is not set. Please set HOST_IP first."
fi
export no_proxy=${no_proxy},${HOST_IP}
export http_proxy=${http_proxy}
export https_proxy=${https_proxy}
export LLM_MODEL_ID="Qwen/Qwen2.5-Coder-7B-Instruct"
export LLM_SERVICE_PORT=9000
export LLM_ENDPOINT="http://${HOST_IP}:8028"
export LLM_SERVICE_HOST_IP=${HOST_IP}
export TGI_LLM_ENDPOINT="http://${HOST_IP}:8028"
export MEGA_SERVICE_PORT=7778
export MEGA_SERVICE_HOST_IP=${HOST_IP}
export BACKEND_SERVICE_ENDPOINT="http://${HOST_IP}:7778/v1/codegen"
export REDIS_DB_PORT=6379
export REDIS_INSIGHTS_PORT=8001
export REDIS_RETRIEVER_PORT=7000
export REDIS_URL="redis://${HOST_IP}:${REDIS_DB_PORT}"
export RETRIEVAL_SERVICE_HOST_IP=${HOST_IP}
export RETRIEVER_COMPONENT_NAME="OPEA_RETRIEVER_REDIS"
export INDEX_NAME="CodeGen"
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export EMBEDDER_PORT=6000
export TEI_EMBEDDER_PORT=8090
export TEI_EMBEDDING_HOST_IP=${HOST_IP}
export TEI_EMBEDDING_ENDPOINT="http://${HOST_IP}:${TEI_EMBEDDER_PORT}"
export DATAPREP_REDIS_PORT=6007
export DATAPREP_ENDPOINT="http://${HOST_IP}:${DATAPREP_REDIS_PORT}/v1/dataprep"
export LOGFLAG=false
export MODEL_CACHE=${model_cache:-"./data"}
export NUM_CARDS=1

View File

@@ -0,0 +1,50 @@
#!/usr/bin/env bash
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
pushd "../../" > /dev/null
source .set_env.sh
popd > /dev/null
export host_ip=$(hostname -I | awk '{print $1}')
if [ -z "${HUGGINGFACEHUB_API_TOKEN}" ]; then
echo "Error: HUGGINGFACEHUB_API_TOKEN is not set. Please set HUGGINGFACEHUB_API_TOKEN"
fi
if [ -z "${host_ip}" ]; then
echo "Error: host_ip is not set. Please set host_ip first."
fi
export no_proxy=${no_proxy},${host_ip}
export http_proxy=${http_proxy}
export https_proxy=${https_proxy}
export LLM_MODEL_ID="Qwen/Qwen2.5-Coder-32B-Instruct"
export LLM_SERVICE_PORT=9000
export LLM_ENDPOINT="http://${host_ip}:8028"
export LLM_SERVICE_HOST_IP=${host_ip}
export TGI_LLM_ENDPOINT="http://${host_ip}:8028"
export MEGA_SERVICE_PORT=7778
export MEGA_SERVICE_HOST_IP=${host_ip}
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:7778/v1/codegen"
export REDIS_DB_PORT=6379
export REDIS_INSIGHTS_PORT=8001
export REDIS_RETRIEVER_PORT=7000
export REDIS_URL="redis://${host_ip}:${REDIS_DB_PORT}"
export RETRIEVAL_SERVICE_HOST_IP=${host_ip}
export RETRIEVER_COMPONENT_NAME="OPEA_RETRIEVER_REDIS"
export INDEX_NAME="CodeGen"
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export EMBEDDER_PORT=6000
export TEI_EMBEDDER_PORT=8090
export TEI_EMBEDDING_HOST_IP=${host_ip}
export TEI_EMBEDDING_ENDPOINT="http://${host_ip}:${TEI_EMBEDDER_PORT}"
export DATAPREP_REDIS_PORT=6007
export DATAPREP_ENDPOINT="http://${host_ip}:${DATAPREP_REDIS_PORT}/v1/dataprep"
export LOGFLAG=false
export MODEL_CACHE="./data"
export NUM_CARDS=1

View File

@@ -1,33 +0,0 @@
# CodeGen E2E test scripts
## Set the required environment variable
```bash
export HUGGINGFACEHUB_API_TOKEN="Your_Huggingface_API_Token"
```
## Run test
On Intel Xeon with TGI:
```bash
bash test_compose_on_xeon.sh
```
On Intel Gaudi with TGI:
```bash
bash test_compose_on_gaudi.sh
```
On AMD ROCm with TGI:
```bash
bash test_compose_on_rocm.sh
```
On AMD ROCm with vLLM:
```bash
bash test_compose_vllm_on_rocm.sh
```

View File

@@ -10,11 +10,21 @@ echo "TAG=IMAGE_TAG=${IMAGE_TAG}"
export REGISTRY=${IMAGE_REPO}
export TAG=${IMAGE_TAG}
export MODEL_CACHE=${model_cache:-"./data"}
export REDIS_DB_PORT=6379
export REDIS_INSIGHTS_PORT=8001
export REDIS_RETRIEVER_PORT=7000
export EMBEDDER_PORT=6000
export TEI_EMBEDDER_PORT=8090
export DATAPREP_REDIS_PORT=6007
WORKPATH=$(dirname "$PWD")
LOG_PATH="$WORKPATH/tests"
ip_address=$(hostname -I | awk '{print $1}')
source $WORKPATH/docker_compose/intel/set_env.sh
export http_proxy=${http_proxy}
export https_proxy=${https_proxy}
export no_proxy=${no_proxy},${ip_address}
function build_docker_images() {
opea_branch=${opea_branch:-"main"}
@@ -27,7 +37,7 @@ function build_docker_images() {
# Download Gaudi vllm of latest tag
git clone https://github.com/HabanaAI/vllm-fork.git && cd vllm-fork
VLLM_FORK_VER=v0.6.6.post1+Gaudi-1.20.0
VLLM_FORK_VER=v0.7.2+Gaudi-1.21.0
echo "Check out vLLM tag ${VLLM_FORK_VER}"
git checkout ${VLLM_FORK_VER} &> /dev/null && cd ../
@@ -44,6 +54,28 @@ function start_services() {
cd $WORKPATH/docker_compose/intel/hpu/gaudi
export LLM_MODEL_ID="Qwen/Qwen2.5-Coder-7B-Instruct"
export LLM_ENDPOINT="http://${ip_address}:8028"
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export MEGA_SERVICE_PORT=7778
export MEGA_SERVICE_HOST_IP=${ip_address}
export LLM_SERVICE_HOST_IP=${ip_address}
export BACKEND_SERVICE_ENDPOINT="http://${ip_address}:${MEGA_SERVICE_PORT}/v1/codegen"
export NUM_CARDS=1
export host_ip=${ip_address}
export REDIS_URL="redis://${host_ip}:${REDIS_DB_PORT}"
export RETRIEVAL_SERVICE_HOST_IP=${host_ip}
export RETRIEVER_COMPONENT_NAME="OPEA_RETRIEVER_REDIS"
export INDEX_NAME="CodeGen"
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export TEI_EMBEDDING_HOST_IP=${host_ip}
export TEI_EMBEDDING_ENDPOINT="http://${host_ip}:${TEI_EMBEDDER_PORT}"
export DATAPREP_ENDPOINT="http://${host_ip}:${DATAPREP_REDIS_PORT}/v1/dataprep"
export INDEX_NAME="CodeGen"
# Start Docker Containers
docker compose --profile ${compose_profile} up -d | tee ${LOG_PATH}/start_services_with_compose.log

View File

@@ -35,7 +35,18 @@ function build_docker_images() {
function start_services() {
cd $WORKPATH/docker_compose/amd/gpu/rocm/
source set_env.sh
export CODEGEN_LLM_MODEL_ID="Qwen/Qwen2.5-Coder-7B-Instruct"
export CODEGEN_TGI_SERVICE_PORT=8028
export CODEGEN_TGI_LLM_ENDPOINT="http://${ip_address}:${CODEGEN_TGI_SERVICE_PORT}"
export CODEGEN_LLM_SERVICE_PORT=9000
export CODEGEN_HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export CODEGEN_MEGA_SERVICE_HOST_IP=${ip_address}
export CODEGEN_LLM_SERVICE_HOST_IP=${ip_address}
export CODEGEN_BACKEND_SERVICE_PORT=7778
export CODEGEN_BACKEND_SERVICE_URL="http://${ip_address}:${CODEGEN_BACKEND_SERVICE_PORT}/v1/codegen"
export CODEGEN_UI_SERVICE_PORT=5173
export HOST_IP=${ip_address}
sed -i "s/backend_address/$ip_address/g" $WORKPATH/ui/svelte/.env

View File

@@ -10,11 +10,20 @@ echo "TAG=IMAGE_TAG=${IMAGE_TAG}"
export REGISTRY=${IMAGE_REPO}
export TAG=${IMAGE_TAG}
export MODEL_CACHE=${model_cache:-"./data"}
export REDIS_DB_PORT=6379
export REDIS_INSIGHTS_PORT=8001
export REDIS_RETRIEVER_PORT=7000
export EMBEDDER_PORT=6000
export TEI_EMBEDDER_PORT=8090
export DATAPREP_REDIS_PORT=6007
WORKPATH=$(dirname "$PWD")
LOG_PATH="$WORKPATH/tests"
ip_address=$(hostname -I | awk '{print $1}')
source $WORKPATH/docker_compose/intel/set_env.sh
export http_proxy=${http_proxy}
export https_proxy=${https_proxy}
export no_proxy=${no_proxy},${ip_address}
function build_docker_images() {
opea_branch=${opea_branch:-"main"}
@@ -47,6 +56,25 @@ function start_services() {
cd $WORKPATH/docker_compose/intel/cpu/xeon/
export LLM_MODEL_ID="Qwen/Qwen2.5-Coder-7B-Instruct"
export LLM_ENDPOINT="http://${ip_address}:8028"
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export MEGA_SERVICE_PORT=7778
export MEGA_SERVICE_HOST_IP=${ip_address}
export LLM_SERVICE_HOST_IP=${ip_address}
export BACKEND_SERVICE_ENDPOINT="http://${ip_address}:${MEGA_SERVICE_PORT}/v1/codegen"
export host_ip=${ip_address}
export REDIS_URL="redis://${host_ip}:${REDIS_DB_PORT}"
export RETRIEVAL_SERVICE_HOST_IP=${host_ip}
export RETRIEVER_COMPONENT_NAME="OPEA_RETRIEVER_REDIS"
export INDEX_NAME="CodeGen"
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export TEI_EMBEDDING_HOST_IP=${host_ip}
export TEI_EMBEDDING_ENDPOINT="http://${host_ip}:${TEI_EMBEDDER_PORT}"
export DATAPREP_ENDPOINT="http://${host_ip}:${DATAPREP_REDIS_PORT}/v1/dataprep"
# Start Docker Containers
docker compose --profile ${compose_profile} up -d > ${LOG_PATH}/start_services_with_compose.log

View File

@@ -34,7 +34,18 @@ function build_docker_images() {
function start_services() {
cd $WORKPATH/docker_compose/amd/gpu/rocm/
source set_env_vllm.sh
export CODEGEN_LLM_MODEL_ID="Qwen/Qwen2.5-Coder-7B-Instruct"
export CODEGEN_VLLM_SERVICE_PORT=8028
export CODEGEN_VLLM_ENDPOINT="http://${ip_address}:${CODEGEN_VLLM_SERVICE_PORT}"
export CODEGEN_LLM_SERVICE_PORT=9000
export CODEGEN_HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export CODEGEN_MEGA_SERVICE_HOST_IP=${ip_address}
export CODEGEN_LLM_SERVICE_HOST_IP=${ip_address}
export CODEGEN_BACKEND_SERVICE_PORT=7778
export CODEGEN_BACKEND_SERVICE_URL="http://${ip_address}:${CODEGEN_BACKEND_SERVICE_PORT}/v1/codegen"
export CODEGEN_UI_SERVICE_PORT=5173
export HOST_IP=${ip_address}
sed -i "s/backend_address/$ip_address/g" $WORKPATH/ui/svelte/.env

View File

@@ -22,11 +22,12 @@ This Code Translation use case demonstrates Text Generation Inference across mul
The table below lists currently available deployment options. They outline in detail the implementation of this example on selected hardware.
| Category | Deployment Option | Description |
| ---------------------- | -------------------- | --------------------------------------------------------------------------- |
| On-premise Deployments | Docker compose | [CodeTrans deployment on Xeon](./docker_compose/intel/cpu/xeon/README.md) |
| | | [CodeTrans deployment on Gaudi](./docker_compose/intel/hpu/gaudi/README.md) |
| | | [CodeTrans deployment on AMD ROCm](./docker_compose/amd/gpu/rocm/README.md) |
| | Kubernetes | [Helm Charts](./kubernetes/helm/README.md) |
| | Azure | Work-in-progress |
| | Intel Tiber AI Cloud | Work-in-progress |
| Category | Deployment Option | Description |
| ---------------------- | -------------------- | ----------------------------------------------------------------- |
| On-premise Deployments | Docker compose | [CodeTrans deployment on Xeon](./docker_compose/intel/cpu/xeon) |
| | | [CodeTrans deployment on Gaudi](./docker_compose/intel/hpu/gaudi) |
| | | [CodeTrans deployment on AMD ROCm](./docker_compose/amd/gpu/rocm) |
| | Kubernetes | [Helm Charts](./kubernetes/helm) |
| | | [GMC](./kubernetes/gmc) |
| | Azure | Work-in-progress |
| | Intel Tiber AI Cloud | Work-in-progress |

View File

@@ -44,38 +44,3 @@ Some HuggingFace resources, such as some models, are only accessible if the deve
2. (Docker only) If all microservices work well, check the port ${host_ip}:7777, the port may be allocated by other users, you can modify the `compose.yaml`.
3. (Docker only) If you get errors like "The container name is in use", change container name in `compose.yaml`.
## Monitoring OPEA Services with Prometheus and Grafana Dashboard
OPEA microservice deployment can easily be monitored through Grafana dashboards using data collected via Prometheus. Follow the [README](https://github.com/opea-project/GenAIEval/blob/main/evals/benchmark/grafana/README.md) to setup Prometheus and Grafana servers and import dashboards to monitor the OPEA services.
![example dashboards](./assets/img/example_dashboards.png)
![tgi dashboard](./assets/img/tgi_dashboard.png)
## Tracing with OpenTelemetry and Jaeger
> NOTE: This feature is disabled by default. Please use the compose.telemetry.yaml file to enable this feature.
OPEA microservice and [TGI](https://huggingface.co/docs/text-generation-inference/en/index)/[TEI](https://huggingface.co/docs/text-embeddings-inference/en/index) serving can easily be traced through [Jaeger](https://www.jaegertracing.io/) dashboards in conjunction with [OpenTelemetry](https://opentelemetry.io/) Tracing feature. Follow the [README](https://github.com/opea-project/GenAIComps/tree/main/comps/cores/telemetry#tracing) to trace additional functions if needed.
Tracing data is exported to http://{EXTERNAL_IP}:4318/v1/traces via Jaeger.
Users could also get the external IP via below command.
```bash
ip route get 8.8.8.8 | grep -oP 'src \K[^ ]+'
```
Access the Jaeger dashboard UI at http://{EXTERNAL_IP}:16686
For TGI serving on Gaudi, users could see different services like opea, TEI and TGI.
![Screenshot from 2024-12-27 11-58-18](https://github.com/user-attachments/assets/6126fa70-e830-4780-bd3f-83cb6eff064e)
Here is a screenshot for one tracing of TGI serving request.
![Screenshot from 2024-12-27 11-26-25](https://github.com/user-attachments/assets/3a7c51c6-f422-41eb-8e82-c3df52cd48b8)
There are also OPEA related tracings. Users could understand the time breakdown of each service request by looking into each opea:schedule operation.
![image](https://github.com/user-attachments/assets/6137068b-b374-4ff8-b345-993343c0c25f)
There could be asynchronous function such as `llm/MicroService_asyn_generate` and user needs to check the trace of the asynchronous function in another operation like
opea:llm_generate_stream.
![image](https://github.com/user-attachments/assets/a973d283-198f-4ce2-a7eb-58515b77503e)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 90 KiB

After

Width:  |  Height:  |  Size: 120 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 100 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 414 KiB

View File

@@ -26,7 +26,7 @@ function build_docker_images() {
popd && sleep 1s
git clone https://github.com/HabanaAI/vllm-fork.git && cd vllm-fork
VLLM_FORK_VER=v0.6.6.post1+Gaudi-1.20.0
VLLM_FORK_VER=v0.7.2+Gaudi-1.21.0
git checkout ${VLLM_FORK_VER} &> /dev/null && cd ../
echo "Build all the images with --no-cache, check docker_image_build.log for details..."

View File

@@ -2,11 +2,7 @@
DocRetriever are the most widely adopted use case for leveraging the different methodologies to match user query against a set of free-text records. DocRetriever is essential to RAG system, which bridges the knowledge gap by dynamically fetching relevant information from external sources, ensuring that responses generated remain factual and current. The core of this architecture are vector databases, which are instrumental in enabling efficient and semantic retrieval of information. These databases store data as vectors, allowing RAG to swiftly access the most pertinent documents or data points based on semantic similarity.
\_Note:
As the related docker images were published to Docker Hub, you can ignore the below step 1 and 2 quick start from step 3.
## 1. Build Images for necessary microservices. (Optional)
## 1. Build Images for necessary microservices. (Optional after docker image release)
- Embedding TEI Image
@@ -34,7 +30,7 @@ As the related docker images were published to Docker Hub, you can ignore the be
docker build -t opea/dataprep:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/dataprep/src/Dockerfile .
```
## 2. Build Images for MegaService (Optional)
## 2. Build Images for MegaService
```bash
cd ..
@@ -48,19 +44,6 @@ docker build --no-cache -t opea/doc-index-retriever:latest --build-arg https_pro
```bash
export host_ip="YOUR IP ADDR"
export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
```
Set environment variables by
```
cd GenAIExamples/DocIndexRetriever/docker_compose/intel/cpu/xeon
source set_env.sh
```
Note: set_env.sh will help to set all required variables. Please ensure all required variables like ports (LLM_SERVICE_PORT, MEGA_SERVICE_PORT, etc.) are set if not using defaults from the compose file.
or Set environment variables manually
```
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
export TEI_EMBEDDING_ENDPOINT="http://${host_ip}:6006"

View File

@@ -40,7 +40,6 @@ services:
LLM_ENDPOINT: ${LLM_ENDPOINT}
LLM_MODEL_ID: ${LLM_MODEL_ID}
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
MAX_INPUT_TOKENS: ${MAX_INPUT_TOKENS}
MAX_TOTAL_TOKENS: ${MAX_TOTAL_TOKENS}
DocSum_COMPONENT_NAME: ${DocSum_COMPONENT_NAME}

View File

@@ -40,7 +40,6 @@ services:
LLM_ENDPOINT: ${LLM_ENDPOINT}
LLM_MODEL_ID: ${LLM_MODEL_ID}
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
MAX_INPUT_TOKENS: ${MAX_INPUT_TOKENS}
MAX_TOTAL_TOKENS: ${MAX_TOTAL_TOKENS}
DocSum_COMPONENT_NAME: ${DocSum_COMPONENT_NAME}

View File

@@ -45,7 +45,6 @@ services:
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
MAX_INPUT_TOKENS: ${MAX_INPUT_TOKENS}
MAX_TOTAL_TOKENS: ${MAX_TOTAL_TOKENS}
LLM_ENDPOINT: ${LLM_ENDPOINT}

View File

@@ -49,7 +49,6 @@ services:
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
MAX_INPUT_TOKENS: ${MAX_INPUT_TOKENS}
MAX_TOTAL_TOKENS: ${MAX_TOTAL_TOKENS}
LLM_ENDPOINT: ${LLM_ENDPOINT}

View File

@@ -13,7 +13,7 @@ export https_proxy=$https_proxy
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export LLM_ENDPOINT_PORT=8008
export LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct"
export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
export MAX_INPUT_TOKENS=1024
export MAX_TOTAL_TOKENS=2048

View File

@@ -50,7 +50,7 @@ function build_docker_images() {
popd && sleep 1s
git clone https://github.com/HabanaAI/vllm-fork.git && cd vllm-fork
VLLM_FORK_VER=v0.6.6.post1+Gaudi-1.20.0
VLLM_FORK_VER=v0.7.2+Gaudi-1.21.0
git checkout ${VLLM_FORK_VER} &> /dev/null && cd ../
echo "Build all the images with --no-cache, check docker_image_build.log for details..."

View File

@@ -60,7 +60,7 @@ function build_vllm_docker_image() {
fi
cd ./vllm-fork
VLLM_FORK_VER=v0.6.6.post1+Gaudi-1.20.0
VLLM_FORK_VER=v0.7.2+Gaudi-1.21.0
git checkout ${VLLM_FORK_VER} &> /dev/null
docker build --no-cache -f Dockerfile.hpu -t $vllm_image --shm-size=128g . --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy
if [ $? -ne 0 ]; then

View File

@@ -30,38 +30,66 @@ The architecture of the SearchQnA Application is illustrated below:
The SearchQnA example is implemented using the component-level microservices defined in [GenAIComps](https://github.com/opea-project/GenAIComps). The flow chart below shows the information flow between different microservices for this example.
```mermaid
%% Orange are microservices from third parties that are 'wrapped' as OPEA components.
---
config:
flowchart:
nodeSpacing: 400
rankSpacing: 100
curve: linear
themeVariables:
fontSize: 50px
---
flowchart LR
User["User"] --> Nginx["Nginx<br>searchqna-nginx-server"]
Nginx --> UI["UI<br>searchqna-ui-server"] & Gateway & User
UI --> Nginx
Gateway --> Nginx & Embedding
Embedding --> Retriever
Retriever --> Reranker
Reranker --> LLM
LLM --> Gateway
LLM <-.-> TGI_Service["LLM<br>tgi-service"]
Embedding <-.-> TEI_Embedding["TEI Embedding<br>tei-embedding-server"]
Reranker <-.-> TEI_Reranker["TEI Reranker<br>tei-reranking-server"]
%% Colors %%
classDef blue fill:#ADD8E6,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
classDef orange fill:#FBAA60,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
classDef orchid fill:#C26DBC,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
classDef invisible fill:transparent,stroke:transparent;
style SearchQnA-MegaService stroke:#000000
TEI_Embedding:::ext
TEI_Reranker:::ext
TGI_Service:::ext
%% Subgraphs %%
subgraph SearchQnA-MegaService["SearchQnA MegaService "]
direction LR
EM([Embedding MicroService]):::blue
RET([Web Retrieval MicroService]):::blue
RER([Rerank MicroService]):::blue
LLM([LLM MicroService]):::blue
end
subgraph UserInterface[" User Interface "]
direction LR
a([User Input Query]):::orchid
UI([UI server<br>]):::orchid
end
TEI_RER{{Reranking service<br>}}
TEI_EM{{Embedding service <br>}}
VDB{{Vector DB<br><br>}}
R_RET{{Web Retriever service <br>}}
LLM_gen{{LLM Service <br>}}
GW([SearchQnA GateWay<br>]):::orange
%% Questions interaction
direction LR
a[User Input Query] --> UI
UI --> GW
GW <==> SearchQnA-MegaService
EM ==> RET
RET ==> RER
RER ==> LLM
%% Embedding service flow
direction LR
EM <-.-> TEI_EM
RET <-.-> R_RET
RER <-.-> TEI_RER
LLM <-.-> LLM_gen
subgraph MegaService["MegaService"]
LLM["LLM<br>llm-textgen-server"]
Reranker["Reranker<br>reranking-tei-server"]
Retriever["Retriever<br>web-retriever-server"]
Embedding["Embedding<br>embedding-server"]
end
subgraph Backend["searchqna-backend-server"]
direction TB
MegaService
Gateway["Backend Endpoint"]
end
classDef default fill:#fff,stroke:#000,color:#000
classDef ext fill:#f9cb9c,stroke:#000,color:#000
style MegaService margin-top:20px,margin-bottom:20px
%% Vector DB interaction
R_RET <-.-> VDB
```
This SearchQnA use case performs Search-augmented Question Answering across multiple platforms. Currently, we provide the example for Intel® Gaudi® 2 and Intel® Xeon® Scalable Processors, and we invite contributions from other hardware vendors to expand OPEA ecosystem.
@@ -70,8 +98,8 @@ This SearchQnA use case performs Search-augmented Question Answering across mult
The table below lists the available deployment options and their implementation details for different hardware platforms.
| Category | Deployment Option | Description |
| ---------------------- | ---------------------- | --------------------------------------------------------------------------- |
| On-premise Deployments | Docker Compose (Xeon) | [SearchQnA deployment on Xeon](./docker_compose/intel/cpu/xeon/README.md) |
| | Docker Compose (Gaudi) | [SearchQnA deployment on Gaudi](./docker_compose/intel/hpu/gaudi/README.md) |
| | Docker Compose (ROCm) | [SearchQnA deployment on AMD ROCm](./docker_compose/amd/gpu/rocm/README.md) |
| Category | Deployment Option | Description |
| ---------------------- | ---------------------- | -------------------------------------------------------------- |
| On-premise Deployments | Docker Compose (Xeon) | [DocSum deployment on Xeon](./docker_compose/intel/cpu/xeon) |
| | Docker Compose (Gaudi) | [DocSum deployment on Gaudi](./docker_compose/intel/hpu/gaudi) |
| | Docker Compose (ROCm) | [DocSum deployment on AMD ROCm](./docker_compose/amd/gpu/rocm) |

View File

@@ -170,25 +170,7 @@ services:
no_proxy: ${no_proxy}
https_proxy: ${https_proxy}
http_proxy: ${http_proxy}
ipc: host
restart: always
search-nginx-server:
image: ${REGISTRY:-opea}/nginx:${TAG:-latest}
container_name: search-nginx-server
depends_on:
- search-backend-server
- search-ui-server
ports:
- "${NGINX_PORT:-80}:80"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- FRONTEND_SERVICE_IP=search-ui-server
- FRONTEND_SERVICE_PORT=5173
- BACKEND_SERVICE_NAME=search
- BACKEND_SERVICE_IP=search-backend-server
- BACKEND_SERVICE_PORT=8888
BACKEND_BASE_URL: ${SEARCH_BACKEND_SERVICE_ENDPOINT}
ipc: host
restart: always

View File

@@ -176,27 +176,10 @@ services:
no_proxy: ${no_proxy}
https_proxy: ${https_proxy}
http_proxy: ${http_proxy}
BACKEND_BASE_URL: ${SEARCH_BACKEND_SERVICE_ENDPOINT}
ipc: host
restart: always
search-nginx-server:
image: ${REGISTRY:-opea}/nginx:${TAG:-latest}
container_name: search-nginx-server
depends_on:
- search-backend-server
- search-ui-server
ports:
- "${NGINX_PORT:-80}:80"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- FRONTEND_SERVICE_IP=search-ui-server
- FRONTEND_SERVICE_PORT=5173
- BACKEND_SERVICE_NAME=search
- BACKEND_SERVICE_IP=search-backend-server
- BACKEND_SERVICE_PORT=8888
ipc: host
restart: always
networks:
default:
driver: bridge

View File

@@ -168,27 +168,10 @@ services:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- BACKEND_BASE_URL=${BACKEND_SERVICE_ENDPOINT}
ipc: host
restart: always
searchqna-xeon-nginx-server:
image: ${REGISTRY:-opea}/nginx:${TAG:-latest}
container_name: searchqna-xeon-nginx-server
depends_on:
- searchqna-xeon-backend-server
- searchqna-xeon-ui-server
ports:
- "${NGINX_PORT:-80}:80"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- FRONTEND_SERVICE_IP=searchqna-xeon-ui-server
- FRONTEND_SERVICE_PORT=5173
- BACKEND_SERVICE_NAME=searchqna
- BACKEND_SERVICE_IP=searchqna-xeon-backend-server
- BACKEND_SERVICE_PORT=8888
ipc: host
restart: always
networks:
default:

View File

@@ -187,25 +187,7 @@ services:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
ipc: host
restart: always
searchqna-gaudi-nginx-server:
image: ${REGISTRY:-opea}/nginx:${TAG:-latest}
container_name: searchqna-gaudi-nginx-server
depends_on:
- searchqna-gaudi-backend-server
- searchqna-gaudi-ui-server
ports:
- "${NGINX_PORT:-80}:80"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- FRONTEND_SERVICE_IP=searchqna-gaudi-ui-server
- FRONTEND_SERVICE_PORT=5173
- BACKEND_SERVICE_NAME=searchqna
- BACKEND_SERVICE_IP=searchqna-gaudi-backend-server
- BACKEND_SERVICE_PORT=8888
- BACKEND_BASE_URL=${BACKEND_SERVICE_ENDPOINT}
ipc: host
restart: always

View File

@@ -46,9 +46,3 @@ services:
context: GenAIComps
dockerfile: comps/third_parties/vllm/src/Dockerfile.amd_gpu
image: ${REGISTRY:-opea}/vllm-rocm:${TAG:-latest}
nginx:
build:
context: GenAIComps
dockerfile: comps/third_parties/nginx/src/Dockerfile
extends: searchqna
image: ${REGISTRY:-opea}/nginx:${TAG:-latest}

View File

@@ -32,7 +32,7 @@ function build_docker_images() {
git clone --depth 1 --branch ${opea_branch} https://github.com/opea-project/GenAIComps.git
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
service_list="searchqna searchqna-ui embedding web-retriever reranking llm-textgen nginx"
service_list="searchqna searchqna-ui embedding web-retriever reranking llm-textgen"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.6

View File

@@ -20,7 +20,7 @@ function build_docker_images() {
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
service_list="searchqna searchqna-ui embedding web-retriever reranking llm-textgen nginx"
service_list="searchqna searchqna-ui embedding web-retriever reranking llm-textgen"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.6

View File

@@ -32,7 +32,7 @@ function build_docker_images() {
git clone --depth 1 --branch ${opea_branch} https://github.com/opea-project/GenAIComps.git
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
service_list="searchqna searchqna-ui embedding web-retriever reranking llm-textgen nginx"
service_list="searchqna searchqna-ui embedding web-retriever reranking llm-textgen"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.6

View File

@@ -20,7 +20,7 @@ function build_docker_images() {
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
service_list="searchqna searchqna-ui embedding web-retriever reranking llm-textgen vllm-rocm nginx"
service_list="searchqna searchqna-ui embedding web-retriever reranking llm-textgen vllm-rocm"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.5

View File

@@ -1 +1 @@
BACKEND_BASE_URL = '/v1/searchqna'
BACKEND_BASE_URL = 'http://backend_address:3008/v1/searchqna'

View File

@@ -38,7 +38,7 @@ export default defineConfig({
/* Maximum time each action such as `click()` can take. Defaults to 0 (no limit). */
actionTimeout: 0,
/* Base URL to use in actions like `await page.goto('/')`. */
baseURL: "http://localhost:80",
baseURL: "http://localhost:5173",
/* Collect trace when retrying the failed test. See https://playwright.dev/docs/trace-viewer */
trace: "on-first-retry",

View File

@@ -27,7 +27,7 @@ function build_docker_images() {
popd && sleep 1s
git clone https://github.com/HabanaAI/vllm-fork.git && cd vllm-fork
VLLM_FORK_VER=v0.6.6.post1+Gaudi-1.20.0
VLLM_FORK_VER=v0.7.2+Gaudi-1.21.0
git checkout ${VLLM_FORK_VER} &> /dev/null && cd ../
service_list="visualqna visualqna-ui lvm nginx vllm-gaudi"