Compare commits

...

109 Commits

Author SHA1 Message Date
letonghan
91940b8058 Merge branch 'main' of https://github.com/opea-project/GenAIExamples into reorg_helm_chart 2024-11-11 13:49:52 +08:00
WenjiaoYue
3744bb8c1b Fix docSum ui error in accessing parsed files (#1079)
Signed-off-by: Xinyao Wang <xinyao.wang@intel.com>
Signed-off-by: ZePan110 <ze.pan@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: chen, suyue <suyue.chen@intel.com>
Co-authored-by: Neo Zhang Jianyu <jianyu.zhang@intel.com>
Co-authored-by: ZhangJianyu <zhang.jianyu@outlook.com>
Co-authored-by: XinyaoWa <xinyao.wang@intel.com>
Co-authored-by: ZePan110 <ze.pan@intel.com>
2024-11-11 09:10:12 +08:00
chen, suyue
82801d0121 image build bug fix (#1105)
Signed-off-by: chensuyue <suyue.chen@intel.com>
2024-11-08 23:54:32 +08:00
Wang, Kai Lawrence
f7026773b8 [ChatQnA] Fix the no_proxy setting for gpu example (#1078)
Signed-off-by: Wang, Kai Lawrence <kai.lawrence.wang@intel.com>
2024-11-08 22:27:51 +08:00
Hoong Tee, Yeoh
edc09ece5c ProductivitySuite: Fix typo in README (#1083)
Signed-off-by: Yeoh, Hoong Tee <hoong.tee.yeoh@intel.com>
2024-11-08 22:26:32 +08:00
dependabot[bot]
dfed2aead2 Bump gradio from 5.0.0 to 5.5.0 in /MultimodalQnA/ui/gradio (#1080)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-11-08 22:24:36 +08:00
ZePan110
049517f977 Improve the robustness of links check workflow (#1096)
Signed-off-by: ZePan110 <ze.pan@intel.com>
2024-11-08 22:19:52 +08:00
Neo Zhang Jianyu
ee83a6d5b4 opt CI to skip none MD and RST files (#1098)
Signed-off-by: ZhangJianyu <zhang.jianyu@outlook.com>
2024-11-08 22:07:17 +08:00
WenjiaoYue
e2bdd19fd4 update faqGen ui response (#1091)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: lvliang-intel <liang1.lv@intel.com>
2024-11-08 21:29:52 +08:00
Zhu Yongbo
c9088eb824 Add EdgeCraftRag as a GenAIExample (#1072)
Signed-off-by: ZePan110 <ze.pan@intel.com>
Signed-off-by: chensuyue <suyue.chen@intel.com>
Signed-off-by: Zhu, Yongbo <yongbo.zhu@intel.com>
Signed-off-by: Wang, Xigui <xigui.wang@intel.com>
Co-authored-by: ZePan110 <ze.pan@intel.com>
Co-authored-by: chen, suyue <suyue.chen@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: xiguiw <111278656+xiguiw@users.noreply.github.com>
Co-authored-by: lvliang-intel <liang1.lv@intel.com>
2024-11-08 21:07:24 +08:00
XinyaoWa
9c3023a12e Fix faq ut bug (#1097)
Signed-off-by: Xinyao Wang <xinyao.wang@intel.com>
2024-11-08 16:27:00 +08:00
letonghan
7d779513f5 add docsum helm charts
Signed-off-by: letonghan <letong.han@intel.com>
2024-11-08 16:04:29 +08:00
Melanie Hart Buehler
bbc95bb708 MultimodalQnA Image and Audio Support Phase 1 (#1071)
Signed-off-by: Melanie Buehler <melanie.h.buehler@intel.com>
Signed-off-by: okhleif-IL <omar.khleif@intel.com>
Signed-off-by: dmsuehir <dina.s.jones@intel.com>
Co-authored-by: Omar Khleif <omar.khleif@intel.com>
Co-authored-by: dmsuehir <dina.s.jones@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Abolfazl Shahbazi <12436063+ashahba@users.noreply.github.com>
2024-11-08 15:54:49 +08:00
ZePan110
dd9623d3d5 Add new image repo clone. (#1093)
Signed-off-by: ZePan110 <ze.pan@intel.com>
2024-11-08 15:27:42 +08:00
XinyaoWa
4c27a3d30c Align faqgen to form input (#1089)
Signed-off-by: Xinyao Wang <xinyao.wang@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-11-08 13:32:26 +08:00
XinyaoWa
40386d9bd6 remove vllm-on-ray (#1084)
Signed-off-by: Xinyao Wang <xinyao.wang@intel.com>
2024-11-08 13:01:48 +08:00
Neo Zhang Jianyu
fe97e88c7a Add CI case to check online doc building, not update online doc (#1087)
Co-authored-by: ZhangJianyu <zhang.jianyu@outlook.com>
2024-11-08 11:57:01 +08:00
Hoong Tee, Yeoh
11d8b24c8a ProductivitySuite: Update TGI CPU image version to 2.4.0 (#1062)
Signed-off-by: Yeoh, Hoong Tee <hoong.tee.yeoh@intel.com>
2024-11-08 09:50:11 +08:00
lvliang-intel
4635a927fa Make embedding run on CPU for aligning with Gaudi performance benchmark (#1057)
Signed-off-by: lvliang-intel <liang1.lv@intel.com>
Co-authored-by: chen, suyue <suyue.chen@intel.com>
2024-11-07 17:39:34 +08:00
ZePan110
1da44d99a1 Remove debug outputs (#1085)
Signed-off-by: ZePan110 <ze.pan@intel.com>
2024-11-07 14:11:46 +08:00
XinyaoWa
e9b164505e align vllm hpu version to latest vllm-fork (#1061)
Signed-off-by: Xinyao Wang <xinyao.wang@intel.com>
2024-11-07 14:08:56 +08:00
Arthur Leung
6263b517b9 [Doc] Add steps to deploy opea services using minikube (#1058)
Signed-off-by: Arthur Leung <arcyleung@gmail.com>
Co-authored-by: Arthur Leung <arcyleung@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-11-07 13:57:34 +08:00
chen, suyue
2de7c0ba89 Enhance CI hardware list detect (#1077)
Signed-off-by: chensuyue <suyue.chen@intel.com>
2024-11-07 09:38:19 +08:00
Wang, Kai Lawrence
944ae47948 [ChatQnA] Fix the service connection issue on GPU and modify the emb backend (#1059)
Signed-off-by: Wang, Kai Lawrence <kai.lawrence.wang@intel.com>
2024-11-06 10:22:21 +08:00
Neo Zhang Jianyu
2d9aeb3715 fix wrong format which break online doc build (#1073)
Co-authored-by: ZhangJianyu <zhang.jianyu@outlook.com>
2024-11-05 17:01:40 +08:00
xiguiw
a0921f127f [Doc] Fix broken build instruction (#1063)
Signed-off-by: Wang, Xigui <xigui.wang@intel.com>
2024-11-05 13:35:12 +08:00
chen, suyue
cf86aceb18 Update nightly image build jobs (#1070)
Signed-off-by: chensuyue <suyue.chen@intel.com>
2024-11-05 09:14:44 +08:00
chen, suyue
c2b7bd25d9 Use docker stop instead of docker compose stop to avoid container clean up issue (#1068)
Signed-off-by: chensuyue <suyue.chen@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-11-04 22:54:19 +08:00
chen, suyue
78331ee678 Add nightly image build and publish action (#1067)
Signed-off-by: chensuyue <suyue.chen@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-11-04 17:22:56 +08:00
ZePan110
7f7ad0e256 Inject commit for the release docker image (#1060)
Signed-off-by: ZePan110 <ze.pan@intel.com>
2024-11-04 17:08:15 +08:00
lvliang-intel
0306c620b5 Update TGI CPU image to latest official release 2.4.0 (#1035)
Signed-off-by: lvliang-intel <liang1.lv@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-11-04 11:28:43 +08:00
lkk
3372b9d480 update accuracy embedding endpoint for no wrapper (#1056)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-11-04 09:18:49 +08:00
minmin-intel
5eb3d2869f Update AgentQnA example for v1.1 release (#885)
Signed-off-by: minmin-intel <minmin.hou@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-11-04 09:17:19 +08:00
Yi Yao
ced68e1834 Add performance benchmark scripts for 4 use cases. (#1052)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-11-03 12:41:02 +08:00
JoshuaL3000
bf5c391e47 Add Workflow Executor Example (#892)
Signed-off-by: JoshuaL3000 <joshua.jian.ern.liew@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-10-31 20:50:20 -05:00
XinyaoWa
c65d7d40fb fix vllm output in chatqna (#1038)
Signed-off-by: Xinyao Wang <xinyao.wang@intel.com>
2024-11-01 09:26:57 +08:00
chen, suyue
9d124161e0 update action for CI (#1050)
Signed-off-by: chensuyue <suyue.chen@intel.com>
2024-10-31 14:54:04 +08:00
chen, suyue
0f5a9c4a5e Fix ChatQnA manifest test issue on Xeon (#1044)
Signed-off-by: chensuyue <suyue.chen@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-10-31 14:23:17 +08:00
rbrugaro
a65640b4a5 Graph rag (#1007)
Signed-off-by: Rita Brugarolas <rita.brugarolas.brufau@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-10-30 08:52:25 -07:00
lvliang-intel
7197286a14 Fix ChatQnA manifest default port issue (#1033)
Signed-off-by: lvliang-intel <liang1.lv@intel.com>
2024-10-30 11:52:04 +08:00
Chun Tao
960805a57b Adding audio and image/video files needed for loading the Gradio UI, and update the UI Python function (#1034)
Signed-off-by: Chun Tao <chun.tao@intel.com>
Signed-off-by: rbrugaro <rita.brugarolas.brufau@intel.com>
Signed-off-by: ZePan110 <ze.pan@intel.com>
Signed-off-by: Louie Tsai <louie.tsai@intel.com>
Signed-off-by: chen, suyue <suyue.chen@intel.com>
Co-authored-by: rbrugaro <rita.brugarolas.brufau@intel.com>
Co-authored-by: ZePan110 <ze.pan@intel.com>
Co-authored-by: kevinintel <hanwen.chang@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Louie Tsai <louie.tsai@intel.com>
Co-authored-by: chen, suyue <suyue.chen@intel.com>
2024-10-30 10:05:02 +08:00
Louie Tsai
002f0e2b11 Update VisualQnA README.md for its workflow (#912)
Signed-off-by: Tsai, Louie <louie.tsai@intel.com>
2024-10-30 09:27:22 +08:00
XinyaoWa
fde5996192 fix FaqGen accuracy scripts bug (#1039)
Signed-off-by: Xinyao Wang <xinyao.wang@intel.com>
2024-10-29 16:34:11 +08:00
Lianhao Lu
bc47930ce1 manifest CI: repopulate the failure from inner test script (#1032)
Signed-off-by: Lianhao Lu <lianhao.lu@intel.com>
2024-10-28 11:51:24 +08:00
Yao Qing
2332d22950 [Codegen] Replace codegen default Model to Qwen/Qwen2.5-Coder-7B-Instruct. (#1013)
Signed-off-by: Yao, Qing <qing.yao@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-10-28 09:18:01 +08:00
XinyaoWa
a2afce1675 update codetrans default model (#1015)
Signed-off-by: Xinyao Wang <xinyao.wang@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-10-28 09:11:54 +08:00
WenjiaoYue
89f4c5fb41 update upload response format and add streaming method in front_end (#1019)
Signed-off-by: Yue, Wenjiao <wenjiao.yue@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-10-25 15:46:56 +08:00
lvliang-intel
98f66405ac Update docsum test command line format (#1027)
Signed-off-by: chensuyue <suyue.chen@intel.com>
Signed-off-by: lvliang-intel <liang1.lv@intel.com>
Co-authored-by: chen, suyue <suyue.chen@intel.com>
2024-10-25 15:39:05 +08:00
Louie Tsai
90c2d49050 Update CodeTrans README.md for workflow (#908)
Signed-off-by: Tsai, Louie <louie.tsai@intel.com>
2024-10-25 12:39:18 +08:00
xiguiw
95b58b51fa Fix AIPC docker container network issue (#1021)
Signed-off-by: Wang, Xigui <xigui.wang@intel.com>
2024-10-25 10:46:57 +08:00
chen, suyue
d3ce6f5357 add new secrets for CI test (#1023)
Signed-off-by: chensuyue <suyue.chen@intel.com>
2024-10-24 18:10:22 +08:00
Louie Tsai
a10b4a1f1d Address request from Issue#971 (#1018) 2024-10-23 23:57:52 -07:00
XinyuYe-Intel
085d859a70 Add example for text2image (#920)
Signed-off-by: Ye, Xinyu <xinyu.ye@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-10-24 11:43:44 +08:00
chen, suyue
15cc457cea fix action path in CI workflow (#1016)
Signed-off-by: chensuyue <suyue.chen@intel.com>
2024-10-23 17:40:08 +08:00
Chun Tao
cfffb4c005 Initiate "AvatarChatbot" (audio) example (#923)
Signed-off-by: Chun Tao <chun.tao@intel.com>
Signed-off-by: rbrugaro <rita.brugarolas.brufau@intel.com>
Signed-off-by: ZePan110 <ze.pan@intel.com>
Signed-off-by: Louie Tsai <louie.tsai@intel.com>
Signed-off-by: chen, suyue <suyue.chen@intel.com>
Co-authored-by: rbrugaro <rita.brugarolas.brufau@intel.com>
Co-authored-by: ZePan110 <ze.pan@intel.com>
Co-authored-by: kevinintel <hanwen.chang@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Louie Tsai <louie.tsai@intel.com>
Co-authored-by: chen, suyue <suyue.chen@intel.com>
2024-10-23 14:58:17 +08:00
Chun Tao
41955f65ad Add a sample UI image for CodeGen's TGI monitoring (#1009)
Signed-off-by: Chun Tao <chun.tao@intel.com>
2024-10-23 14:38:12 +08:00
RuijingGuo
def39cfcdc setup ollama service in aipc docker compose (#1008)
Signed-off-by: Guo Ruijing <ruijing.guo@intel.com>
2024-10-23 14:22:48 +08:00
Louie Tsai
35a4fef70d Update Translation README.md for workflow (#907)
Signed-off-by: Tsai, Louie <louie.tsai@intel.com>
2024-10-23 11:35:15 +08:00
Louie Tsai
a3f9811f7e Update DocIndexRetriever README.md for workflow (#939)
Signed-off-by: Tsai, Louie <louie.tsai@intel.com>
2024-10-22 14:44:36 +08:00
lvliang-intel
0eedbbfce0 Update aipc ollama docker compose and readme (#984)
Signed-off-by: lvliang-intel <liang1.lv@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: chen, suyue <suyue.chen@intel.com>
2024-10-22 10:30:47 +08:00
lvliang-intel
9438d392b4 Update README for some minor issues (#1000)
Signed-off-by: lvliang-intel <liang1.lv@intel.com>
2024-10-22 10:30:18 +08:00
Louie Tsai
1929dfd3a0 Update VideoQnA README.md for workflow (#906)
Signed-off-by: Tsai, Louie <louie.tsai@intel.com>
2024-10-21 13:56:45 -07:00
ZePan110
c7e33647ad Fix script name errors. (#997)
Signed-off-by: ZePan110 <ze.pan@intel.com>
2024-10-21 11:44:50 +08:00
Dina Suehiro Jones
184e9a43b8 Update AudioQnA README to add a couple usage details (#948)
Signed-off-by: Dina Suehiro Jones <dina.s.jones@intel.com>
Co-authored-by: Sihan Chen <39623753+Spycsh@users.noreply.github.com>
2024-10-21 10:22:22 +08:00
Sihan Chen
658867fce4 Add multi-language AudioQnA on Xeon (#982)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-10-21 09:58:14 +08:00
chen, suyue
620ef76d16 open manifest test in CI when dockerfile changed (#985)
Signed-off-by: chensuyue <suyue.chen@intel.com>
2024-10-20 21:58:52 +08:00
Louie Tsai
23b820e740 Update Agent README.md for workflow (#950)
Signed-off-by: Tsai, Louie <louie.tsai@intel.com>
2024-10-18 23:58:04 +08:00
lvliang-intel
3c164f3aa2 Make rerank run on gaudi for hpu docker compose (#980)
Signed-off-by: lvliang-intel <liang1.lv@intel.com>
2024-10-18 21:49:36 +08:00
CharleneHu-42
7669c42085 Update ChatQnA README to add benchmark launcher (#958)
Signed-off-by: CharleneHu-42 <yabai.hu@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Yi Yao <yi.a.yao@intel.com>
2024-10-18 13:33:20 +08:00
lvliang-intel
256b58c07e Replace environment variables with service name for ChatQnA (#977)
Signed-off-by: lvliang-intel <liang1.lv@intel.com>
2024-10-18 11:31:24 +08:00
jiahuit1
3c3a5bed67 Remove deprecated images in docker_images_list.md (#979)
Signed-off-by: jiahuit1 <jia1.hui.tan@intel.com>
2024-10-18 11:21:46 +08:00
ylg
37c74b232c Update ChatQnA yaml and set retriever's TEI_EMBEDDING_ENDPOINT (#953)
Signed-off-by: longguang.yue <bigclouds@163.com>
2024-10-17 16:58:47 +08:00
Sihan Chen
4a265abb73 Fix top_n rerank docs (#976) 2024-10-17 15:49:16 +08:00
Sihan Chen
b0487fe92b fix chatqna accuracy issue with incorrect penalty (#974) 2024-10-17 15:48:44 +08:00
chen, suyue
d486bbbe10 Fix issue find in image build (#978)
Signed-off-by: chensuyue <suyue.chen@intel.com>
2024-10-17 15:01:11 +08:00
XinyaoWa
b0f7c9cfc2 Support Chinese for Docsum (#960)
Signed-off-by: Xinyao Wang <xinyao.wang@intel.com>
2024-10-17 14:58:21 +08:00
chen, suyue
eeced9b31c Enhance CI/CD image build (#961)
Signed-off-by: chensuyue <suyue.chen@intel.com>
2024-10-17 14:33:58 +08:00
WenjiaoYue
b377c2b8f8 Update manifest ui containerPort (#952)
Signed-off-by: Yue, Wenjiao <wenjiao.yue@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-10-17 09:42:55 +08:00
chen, suyue
5dae713793 add PINECONE_KEY_LANGCHAIN_TEST for CI test (#959)
Signed-off-by: chensuyue <suyue.chen@intel.com>
2024-10-16 15:53:20 +08:00
lvliang-intel
c930bea172 Add missing nginx microservice and fix frontend test (#951)
Signed-off-by: lvliang-intel <liang1.lv@intel.com>
2024-10-16 13:29:31 +08:00
Louie Tsai
0edff26ee5 Update Productivity README.md for workflow (#940)
Signed-off-by: Tsai, Louie <louie.tsai@intel.com>
2024-10-16 10:27:42 +08:00
lvliang-intel
778afb50ac Clean no wrapper image in performance benchmark manifests (#955)
Signed-off-by: lvliang-intel <liang1.lv@intel.com>
2024-10-15 18:21:53 +08:00
Louie Tsai
40800b0848 Update MultiModal README.md for workflow (#905)
Signed-off-by: Tsai, Louie <louie.tsai@intel.com>
2024-10-15 11:00:14 +08:00
dependabot[bot]
f2f6c09a0f Bump gradio from 4.44.0 to 5.0.0 in /MultimodalQnA/ui/gradio (#932)
Signed-off-by: dependabot[bot] <support@github.com>
2024-10-15 10:30:02 +08:00
WenjiaoYue
c6fc92d37c Add Text2Image UI, UI tests, Readme, and Docker support (#927)
Signed-off-by: Yue, Wenjiao <wenjiao.yue@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-10-14 13:36:33 +08:00
Supriya-Krishnamurthi
c0643b71e8 Adding DBQnA example in GenAIExamples (#894)
Signed-off-by: supriya-krishnamurthi <supriya.krishnamurthi@intel.com>
Signed-off-by: Yogesh <yogeshpandey@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: lvliang-intel <liang1.lv@intel.com>
Co-authored-by: Yogesh <yogeshpandey@intel.com>
Co-authored-by: Hoong Tee, Yeoh <hoong.tee.yeoh@intel.com>
Co-authored-by: Yogesh Pandey <yogesh.pandey@intel.com>
2024-10-14 13:36:00 +08:00
lkk
088ab98f31 update examples accuracy (#941)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-10-14 13:20:50 +08:00
Sun, Xuehao
441f8cc6ba Freeze docformatter in pre-commit (#937)
Signed-off-by: Sun, Xuehao <xuehao.sun@intel.com>
2024-10-14 09:30:23 +08:00
xiguiw
b056ce6617 [Doc] Update ChatQnA AIPC README (#935)
Signed-off-by: Wang, Xigui <xigui.wang@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-10-12 11:04:53 +08:00
xiguiw
773c32b38b Fix AIPC retriever and UI error (#933)
Signed-off-by: Wang, Xigui <xigui.wang@intel.com>
2024-10-11 13:35:27 +08:00
lvliang-intel
619d941047 Set no wrapper ChatQnA as default (#891)
Signed-off-by: lvliang-intel <liang1.lv@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-10-11 13:30:45 +08:00
Abolfazl Shahbazi
b71a12d424 Remove 'vim' from Dockerfiles (#924)
Signed-off-by: Abolfazl Shahbazi <abolfazl.shahbazi@intel.com>
2024-10-10 18:24:31 -07:00
Louie Tsai
12469c92d8 Update CodeGen README for its workflow (#911)
Signed-off-by: Tsai, Louie <louie.tsai@intel.com>
2024-10-10 08:47:56 -07:00
Louie Tsai
fbde15b40d Update DocSum README.md for its workflow (#904)
Signed-off-by: Tsai, Louie <louie.tsai@intel.com>
2024-10-10 08:46:41 -07:00
feng-intel
ae10712fe8 doc: Update ChatQnA/benchmark/performance doc (#930) 2024-10-10 16:30:40 +08:00
ZePan110
373fa88033 Fix the issue of exiting due to inability to find hyperlinks (#929)
Signed-off-by: ZePan110 <ze.pan@intel.com>
2024-10-10 14:34:26 +08:00
pallavijaini0525
e2f9037344 Added the K8s yaml for vLLM support (#917)
Signed-off-by: desaidhr <dhruv.desai@intel.com>
Co-authored-by: desaidhr <dhruv.desai@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-10-10 11:08:07 +08:00
shaohef
afc39fa4c0 Simplify the deployment ProductivitySuite on kubernetes (#919)
Signed-off-by: Shaohe Feng <shaohe.feng@intel.com>
Co-authored-by: Hoong Tee, Yeoh <hoong.tee.yeoh@intel.com>
2024-10-10 09:23:54 +08:00
ZePan110
e1c476c185 Add missing content (#914)
Signed-off-by: ZePan110 <ze.pan@intel.com>
2024-10-10 09:08:44 +08:00
kevinintel
77920613dc Update CODEOWNERS (#918) 2024-10-10 07:17:08 +08:00
ZePan110
7dec00176e Optimize path and link validity check. (#866)
Signed-off-by: ZePan110 <ze.pan@intel.com>
2024-10-09 10:03:32 +08:00
Louie Tsai
bf28c7f098 Update SearchQnA README.md for its workflow (#913)
Signed-off-by: Tsai, Louie <louie.tsai@intel.com>
2024-10-08 08:50:28 -07:00
Louie Tsai
63bad29794 Update AudioQnA README.md for its workflow (#903) 2024-10-08 08:49:55 -07:00
chen, suyue
36d3ef2b17 fix image name (#909)
Signed-off-by: chensuyue <suyue.chen@intel.com>
2024-10-08 20:48:07 +08:00
Louie Tsai
0c6b044139 Update FaqGen README.md for its workflow (#910)
Signed-off-by: Tsai, Louie <louie.tsai@intel.com>
2024-10-08 20:47:26 +08:00
ZePan110
d23cd799e9 Update docker image list. (#893)
Signed-off-by: ZePan110 <ze.pan@intel.com>
Co-authored-by: kevinintel <hanwen.chang@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-10-08 14:05:28 +08:00
rbrugaro
644c3a67ce instruction finetune README improvement (#897)
Signed-off-by: rbrugaro <rita.brugarolas.brufau@intel.com>
2024-10-08 14:04:47 +08:00
Hoong Tee, Yeoh
ffecd182db [ProductivitySuite]: Update service port number (#879)
Signed-off-by: Yeoh, Hoong Tee <hoong.tee.yeoh@intel.com>
2024-09-30 22:01:09 -07:00
Zhenzhong1
d16c80e493 [ChatQnA] manage your own ChatQnA pipelines. (#878)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-09-30 17:01:44 +09:00
581 changed files with 45913 additions and 7157 deletions

8
.github/CODEOWNERS vendored
View File

@@ -1,13 +1,17 @@
/AgentQnA/ xuhui.ren@intel.com
/AgentQnA/ kaokao.lv@intel.com
/AudioQnA/ sihan.chen@intel.com
/ChatQnA/ liang1.lv@intel.com
/CodeGen/ liang1.lv@intel.com
/CodeTrans/ sihan.chen@intel.com
/DocSum/ letong.han@intel.com
/DocIndexRetriever/ xuhui.ren@intel.com chendi.xue@intel.com
/DocIndexRetriever/ kaokao.lv@intel.com chendi.xue@intel.com
/InstructionTuning xinyu.ye@intel.com
/RerankFinetuning xinyu.ye@intel.com
/MultimodalQnA tiep.le@intel.com
/FaqGen/ xinyao.wang@intel.com
/SearchQnA/ sihan.chen@intel.com
/Translation/ liang1.lv@intel.com
/VisualQnA/ liang1.lv@intel.com
/ProductivitySuite/ hoong.tee.yeoh@intel.com
/VideoQnA huiling.bao@intel.com
/*/ liang1.lv@intel.com

View File

@@ -0,0 +1,2 @@
ModelIn
modelin

View File

@@ -12,6 +12,10 @@ on:
example:
required: true
type: string
services:
default: ""
required: false
type: string
tag:
default: "latest"
required: false
@@ -36,6 +40,11 @@ on:
default: "main"
required: false
type: string
inject_commit:
default: false
required: false
type: string
jobs:
####################################################################################################
# Image Build
@@ -68,6 +77,10 @@ jobs:
git clone https://github.com/vllm-project/vllm.git
cd vllm && git rev-parse HEAD && cd ../
fi
if [[ $(grep -c "vllm-hpu:" ${docker_compose_path}) != 0 ]]; then
git clone https://github.com/HabanaAI/vllm-fork.git
cd vllm-fork && git rev-parse HEAD && cd ../
fi
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps && git checkout ${{ inputs.opea_branch }} && git rev-parse HEAD && cd ../
@@ -77,7 +90,9 @@ jobs:
with:
work_dir: ${{ github.workspace }}/${{ inputs.example }}/docker_image_build
docker_compose_path: ${{ github.workspace }}/${{ inputs.example }}/docker_image_build/build.yaml
service_list: ${{ inputs.services }}
registry: ${OPEA_IMAGE_REPO}opea
inject_commit: ${{ inputs.inject_commit }}
tag: ${{ inputs.tag }}
####################################################################################################
@@ -105,7 +120,6 @@ jobs:
example: ${{ inputs.example }}
hardware: ${{ inputs.node }}
tag: ${{ inputs.tag }}
context: "CD"
secrets: inherit
####################################################################################################

View File

@@ -20,11 +20,6 @@ on:
description: "Tag to apply to images, default is latest"
required: false
type: string
context:
default: "CI"
description: "CI or CD"
required: false
type: string
jobs:
manifest-test:
@@ -51,7 +46,7 @@ jobs:
- name: Set variables
run: |
echo "IMAGE_REPO=$OPEA_IMAGE_REPO" >> $GITHUB_ENV
echo "IMAGE_REPO=${OPEA_IMAGE_REPO}opea" >> $GITHUB_ENV
echo "IMAGE_TAG=${{ inputs.tag }}" >> $GITHUB_ENV
lower_example=$(echo "${{ inputs.example }}" | tr '[:upper:]' '[:lower:]')
echo "NAMESPACE=$lower_example-$(tr -dc a-z0-9 </dev/urandom | head -c 16)" >> $GITHUB_ENV
@@ -60,7 +55,6 @@ jobs:
echo "continue_test=true" >> $GITHUB_ENV
echo "should_cleanup=false" >> $GITHUB_ENV
echo "skip_validate=true" >> $GITHUB_ENV
echo "CONTEXT=${{ inputs.context }}" >> $GITHUB_ENV
echo "NAMESPACE=$NAMESPACE"
- name: Kubectl install
@@ -96,10 +90,16 @@ jobs:
echo "Validate ${{ inputs.example }} successful!"
else
echo "Validate ${{ inputs.example }} failure!!!"
.github/workflows/scripts/k8s-utils.sh dump_all_pod_logs $NAMESPACE
echo "Check the logs in 'Dump logs when e2e test failed' step!!!"
exit 1
fi
fi
- name: Dump logs when e2e test failed
if: failure()
run: |
.github/workflows/scripts/k8s-utils.sh dump_all_pod_logs $NAMESPACE
- name: Kubectl uninstall
if: always()
run: |

View File

@@ -118,6 +118,9 @@ jobs:
GOOGLE_CSE_ID: ${{ secrets.GOOGLE_CSE_ID }}
GOOGLE_API_KEY: ${{ secrets.GOOGLE_API_KEY }}
PINECONE_KEY: ${{ secrets.PINECONE_KEY }}
PINECONE_KEY_LANGCHAIN_TEST: ${{ secrets.PINECONE_KEY_LANGCHAIN_TEST }}
SDK_BASE_URL: ${{ secrets.SDK_BASE_URL }}
SERVING_TOKEN: ${{ secrets.SERVING_TOKEN }}
IMAGE_REPO: ${{ inputs.registry }}
IMAGE_TAG: ${{ inputs.tag }}
example: ${{ inputs.example }}
@@ -138,7 +141,11 @@ jobs:
flag=${flag#test_}
yaml_file=$(find . -type f -wholename "*${{ inputs.hardware }}/${flag}.yaml")
echo $yaml_file
docker compose -f $yaml_file stop && docker compose -f $yaml_file rm -f || true
container_list=$(cat $yaml_file | grep container_name | cut -d':' -f2)
for container_name in $container_list; do
cid=$(docker ps -aq --filter "name=$container_name")
if [[ ! -z "$cid" ]]; then docker stop $cid && docker rm $cid && sleep 1s; fi
done
docker system prune -f
docker rmi $(docker images --filter reference="*:5000/*/*" -q) || true

View File

@@ -0,0 +1,35 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
name: Check Online Document Building
permissions: {}
on:
pull_request:
branches: [main]
paths:
- "**.md"
- "**.rst"
jobs:
build:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v4
with:
path: GenAIExamples
- name: Checkout docs
uses: actions/checkout@v4
with:
repository: opea-project/docs
path: docs
- name: Build Online Document
shell: bash
run: |
echo "build online doc"
cd docs
bash scripts/build.sh

View File

@@ -50,6 +50,11 @@ on:
description: 'OPEA branch for image build'
required: false
type: string
inject_commit:
default: true
description: "inject commit to docker images true or false"
required: false
type: string
permissions: read-all
jobs:
@@ -101,4 +106,5 @@ jobs:
test_k8s: ${{ fromJSON(inputs.test_k8s) }}
test_gmc: ${{ fromJSON(inputs.test_gmc) }}
opea_branch: ${{ inputs.opea_branch }}
inject_commit: ${{ inputs.inject_commit }}
secrets: inherit

View File

@@ -0,0 +1,66 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
name: Build specific images on manual event
on:
workflow_dispatch:
inputs:
nodes:
default: "gaudi,xeon"
description: "Hardware to run test"
required: true
type: string
example:
default: "ChatQnA"
description: 'Build images belong to which example?'
required: true
type: string
services:
default: "chatqna,chatqna-without-rerank"
description: 'Service list to build'
required: true
type: string
tag:
default: "latest"
description: "Tag to apply to images"
required: true
type: string
opea_branch:
default: "main"
description: 'OPEA branch for image build'
required: false
type: string
inject_commit:
default: true
description: "inject commit to docker images true or false"
required: false
type: string
jobs:
get-test-matrix:
runs-on: ubuntu-latest
outputs:
nodes: ${{ steps.get-matrix.outputs.nodes }}
steps:
- name: Create Matrix
id: get-matrix
run: |
nodes=($(echo ${{ inputs.nodes }} | tr ',' ' '))
nodes_json=$(printf '%s\n' "${nodes[@]}" | sort -u | jq -R '.' | jq -sc '.')
echo "nodes=$nodes_json" >> $GITHUB_OUTPUT
image-build:
needs: get-test-matrix
strategy:
matrix:
node: ${{ fromJson(needs.get-test-matrix.outputs.nodes) }}
fail-fast: false
uses: ./.github/workflows/_example-workflow.yml
with:
node: ${{ matrix.node }}
example: ${{ inputs.example }}
services: ${{ inputs.services }}
tag: ${{ inputs.tag }}
opea_branch: ${{ inputs.opea_branch }}
inject_commit: ${{ inputs.inject_commit }}
secrets: inherit

View File

@@ -0,0 +1,70 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
name: Nightly build/publish latest docker images
on:
schedule:
- cron: "30 13 * * *" # UTC time
workflow_dispatch:
env:
EXAMPLES: "AgentQnA,AudioQnA,ChatQnA,CodeGen,CodeTrans,DocIndexRetriever,DocSum,FaqGen,InstructionTuning,MultimodalQnA,ProductivitySuite,RerankFinetuning,SearchQnA,Translation,VideoQnA,VisualQnA"
TAG: "latest"
PUBLISH_TAGS: "latest"
jobs:
get-build-matrix:
runs-on: ubuntu-latest
outputs:
examples_json: ${{ steps.get-matrix.outputs.examples_json }}
EXAMPLES: ${{ steps.get-matrix.outputs.EXAMPLES }}
TAG: ${{ steps.get-matrix.outputs.TAG }}
PUBLISH_TAGS: ${{ steps.get-matrix.outputs.PUBLISH_TAGS }}
steps:
- name: Create Matrix
id: get-matrix
run: |
examples=($(echo ${EXAMPLES} | tr ',' ' '))
examples_json=$(printf '%s\n' "${examples[@]}" | sort -u | jq -R '.' | jq -sc '.')
echo "examples_json=$examples_json" >> $GITHUB_OUTPUT
echo "EXAMPLES=$EXAMPLES" >> $GITHUB_OUTPUT
echo "TAG=$TAG" >> $GITHUB_OUTPUT
echo "PUBLISH_TAGS=$PUBLISH_TAGS" >> $GITHUB_OUTPUT
build:
needs: get-build-matrix
strategy:
matrix:
example: ${{ fromJSON(needs.get-build-matrix.outputs.examples_json) }}
fail-fast: false
uses: ./.github/workflows/_example-workflow.yml
with:
node: gaudi
example: ${{ matrix.example }}
secrets: inherit
get-image-list:
needs: get-build-matrix
uses: ./.github/workflows/_get-image-list.yml
with:
examples: ${{ needs.get-build-matrix.outputs.EXAMPLES }}
publish:
needs: [get-build-matrix, get-image-list, build]
strategy:
matrix:
image: ${{ fromJSON(needs.get-image-list.outputs.matrix) }}
runs-on: "docker-build-gaudi"
steps:
- uses: docker/login-action@v3.2.0
with:
username: ${{ secrets.DOCKERHUB_USER }}
password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Image Publish
uses: opea-project/validation/actions/image-publish@main
with:
local_image_ref: ${OPEA_IMAGE_REPO}opea/${{ matrix.image }}:${{ needs.get-build-matrix.outputs.TAG }}
image_name: opea/${{ matrix.image }}
publish_tags: ${{ needs.get-build-matrix.outputs.PUBLISH_TAGS }}

View File

@@ -1,50 +0,0 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
name: Check Requirements
on: [pull_request]
jobs:
check-requirements:
runs-on: ubuntu-latest
steps:
- name: Checkout PR branch
uses: actions/checkout@v4
- name: Save PR requirements
run: |
find . -name "requirements.txt" -exec cat {} \; | \
grep -v '^\s*#' | \
grep -v '^\s*$' | \
grep -v '^\s*-' | \
sed 's/^\s*//' | \
awk -F'[>=<]' '{print $1}' | \
sort -u > pr-requirements.txt
cat pr-requirements.txt
- name: Checkout main branch
uses: actions/checkout@v4
with:
ref: main
path: main-branch
- name: Save main branch requirements
run: |
find ./main-branch -name "requirements.txt" -exec cat {} \; | \
grep -v '^\s*#' | \
grep -v '^\s*$' | \
grep -v '^\s*-' | \
sed 's/^\s*//' | \
awk -F'[>=<]' '{print $1}' | \
sort -u > main-requirements.txt
cat main-requirements.txt
- name: Compare requirements
run: |
comm -23 pr-requirements.txt main-requirements.txt > added-packages.txt
if [ -s added-packages.txt ]; then
echo "New packages found in PR:" && cat added-packages.txt
else
echo "No new packages found😊."
fi

View File

@@ -12,7 +12,7 @@ on:
- "**/tests/test_gmc**"
- "!**.md"
- "!**.txt"
- "!**/kubernetes/**/manifests/**"
- "!**/kubernetes/**/manifest/**"
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}

View File

@@ -8,7 +8,9 @@ on:
branches: ["main", "*rc"]
types: [opened, reopened, ready_for_review, synchronize] # added `ready_for_review` since draft is skipped
paths:
- "**/kubernetes/**/manifests/**"
- "**/Dockerfile**"
- "**.py"
- "**/kubernetes/**/manifest/**"
- "**/tests/test_manifest**"
- "!**.md"
- "!**.txt"

View File

@@ -50,28 +50,40 @@ jobs:
- name: Checkout Repo GenAIExamples
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Check the Validity of Hyperlinks
run: |
cd ${{github.workspace}}
fail="FALSE"
url_lines=$(grep -Eo '\]\(http[s]?://[^)]+\)' --include='*.md' -r .)
if [ -n "$url_lines" ]; then
for url_line in $url_lines; do
url=$(echo "$url_line"|cut -d '(' -f2 | cut -d ')' -f1|sed 's/\.git$//')
path=$(echo "$url_line"|cut -d':' -f1 | cut -d'/' -f2-)
response=$(curl -L -s -o /dev/null -w "%{http_code}" "$url")
if [ "$response" -ne 200 ]; then
echo "**********Validation failed, try again**********"
response_retry=$(curl -s -o /dev/null -w "%{http_code}" "$url")
if [ "$response_retry" -eq 200 ]; then
echo "*****Retry successfully*****"
else
echo "Invalid link from ${{github.workspace}}/$path: $url"
fail="TRUE"
fi
merged_commit=$(git log -1 --format='%H')
changed_files="$(git diff --name-status --diff-filter=ARM ${{ github.event.pull_request.base.sha }} ${merged_commit} | awk '/\.md$/ {print $NF}')"
if [ -n "$changed_files" ]; then
for changed_file in $changed_files; do
# echo $changed_file
url_lines=$(grep -H -Eo '\]\(http[s]?://[^)]+\)' "$changed_file" | grep -Ev 'GenAIExamples/blob/main') || true
if [ -n "$url_lines" ]; then
for url_line in $url_lines; do
# echo $url_line
url=$(echo "$url_line"|cut -d '(' -f2 | cut -d ')' -f1|sed 's/\.git$//')
path=$(echo "$url_line"|cut -d':' -f1 | cut -d'/' -f2-)
response=$(curl -L -s -o /dev/null -w "%{http_code}" "$url")|| true
if [ "$response" -ne 200 ]; then
echo "**********Validation failed, try again**********"
response_retry=$(curl -s -o /dev/null -w "%{http_code}" "$url")
if [ "$response_retry" -eq 200 ]; then
echo "*****Retry successfully*****"
else
echo "Invalid link from ${{github.workspace}}/$path: $url"
fail="TRUE"
fi
fi
done
fi
done
else
echo "No changed .md file."
fi
if [[ "$fail" == "TRUE" ]]; then
@@ -89,6 +101,8 @@ jobs:
- name: Checkout Repo GenAIExamples
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Checking Relative Path Validity
run: |
@@ -102,33 +116,34 @@ jobs:
branch="https://github.com/opea-project/GenAIExamples/blob/${{ github.event.pull_request.head.ref }}"
fi
link_head="https://github.com/opea-project/GenAIExamples/blob/main"
merged_commit=$(git log -1 --format='%H')
changed_files="$(git diff --name-status --diff-filter=ARM ${{ github.event.pull_request.base.sha }} ${merged_commit} | awk '/\.md$/ {print $NF}')"
png_lines=$(grep -Eo '\]\([^)]+\)' --include='*.md' -r .|grep -Ev 'http')
if [ -n "$png_lines" ]; then
for png_line in $png_lines; do
refer_path=$(echo "$png_line"|cut -d':' -f1 | cut -d'/' -f2-)
png_path=$(echo "$png_line"|cut -d '(' -f2 | cut -d ')' -f1)
if [[ "${png_path:0:1}" == "/" ]]; then
check_path=${{github.workspace}}$png_path
elif [[ "${png_path:0:1}" == "#" ]]; then
check_path=${{github.workspace}}/$refer_path$png_path
check_path=$png_path
elif [[ "$png_path" == *#* ]]; then
relative_path=$(echo "$png_path" | cut -d '#' -f1)
if [ -n "$relative_path" ]; then
check_path=$(dirname "$refer_path")/$relative_path
png_path=$(echo "$png_path" | awk -F'#' '{print "#" $2}')
else
check_path=$refer_path
fi
else
check_path=${{github.workspace}}/$(dirname "$refer_path")/$png_path
check_path=$(dirname "$refer_path")/$png_path
fi
real_path=$(realpath $check_path)
if [ $? -ne 0 ]; then
echo "Path $png_path in file ${{github.workspace}}/$refer_path does not exist"
fail="TRUE"
else
url=$link_head$(echo "$real_path" | sed 's|.*/GenAIExamples||')
response=$(curl -I -L -s -o /dev/null -w "%{http_code}" "$url")
if [ "$response" -ne 200 ]; then
echo "**********Validation failed, try again**********"
response_retry=$(curl -s -o /dev/null -w "%{http_code}" "$url")
if [ "$response_retry" -eq 200 ]; then
echo "*****Retry successfully*****"
else
echo "Retry failed. Check branch ${{ github.event.pull_request.head.ref }}"
url_dev=$branch$(echo "$real_path" | sed 's|.*/GenAIExamples||')
if [ -e "$check_path" ]; then
real_path=$(realpath $check_path)
if [[ "$png_line" == *#* ]]; then
if [ -n "changed_files" ] && echo "$changed_files" | grep -q "^${refer_path}$"; then
url_dev=$branch$(echo "$real_path" | sed 's|.*/GenAIExamples||')$png_path
response=$(curl -I -L -s -o /dev/null -w "%{http_code}" "$url_dev")
if [ "$response" -ne 200 ]; then
echo "**********Validation failed, try again**********"
@@ -140,10 +155,13 @@ jobs:
fail="TRUE"
fi
else
echo "Check branch ${{ github.event.pull_request.head.ref }} successfully."
echo "Validation succeed $png_line"
fi
fi
fi
else
echo "${{github.workspace}}/$refer_path:$png_path does not exist"
fail="TRUE"
fi
done
fi

View File

@@ -23,12 +23,10 @@ jobs:
image-build:
needs: job1
strategy:
matrix:
example: ${{ fromJSON(needs.job1.outputs.run_matrix).include.*.example }}
node: ["gaudi","xeon"]
matrix: ${{ fromJSON(needs.job1.outputs.run_matrix) }}
fail-fast: false
uses: ./.github/workflows/_example-workflow.yml
with:
node: ${{ matrix.node }}
node: ${{ matrix.hardware }}
example: ${{ matrix.example }}
secrets: inherit

View File

@@ -9,12 +9,15 @@ set -e
changed_files=$changed_files
test_mode=$test_mode
run_matrix="{\"include\":["
hardware_list="xeon gaudi" # current support hardware list
examples=$(printf '%s\n' "${changed_files[@]}" | grep '/' | cut -d'/' -f1 | sort -u)
for example in ${examples}; do
cd $WORKSPACE/$example
if [[ ! $(find . -type f | grep ${test_mode}) ]]; then continue; fi
cd tests
ls -l
hardware_list=$(find . -type f -name "test_compose*_on_*.sh" | cut -d/ -f2 | cut -d. -f1 | awk -F'_on_' '{print $2}'| sort -u)
echo "Test supported hardware list = ${hardware_list}"
run_hardware=""
if [[ $(printf '%s\n' "${changed_files[@]}" | grep ${example} | cut -d'/' -f2 | grep -E '*.py|Dockerfile*|ui|docker_image_build' ) ]]; then

View File

@@ -79,7 +79,7 @@ repos:
- id: isort
- repo: https://github.com/PyCQA/docformatter
rev: v1.7.5
rev: 06907d0
hooks:
- id: docformatter
args: [

View File

@@ -5,6 +5,73 @@
This example showcases a hierarchical multi-agent system for question-answering applications. The architecture diagram is shown below. The supervisor agent interfaces with the user and dispatch tasks to the worker agent and other tools to gather information and come up with answers. The worker agent uses the retrieval tool to generate answers to the queries posted by the supervisor agent. Other tools used by the supervisor agent may include APIs to interface knowledge graphs, SQL databases, external knowledge bases, etc.
![Architecture Overview](assets/agent_qna_arch.png)
The AgentQnA example is implemented using the component-level microservices defined in [GenAIComps](https://github.com/opea-project/GenAIComps). The flow chart below shows the information flow between different microservices for this example.
```mermaid
---
config:
flowchart:
nodeSpacing: 400
rankSpacing: 100
curve: linear
themeVariables:
fontSize: 50px
---
flowchart LR
%% Colors %%
classDef blue fill:#ADD8E6,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
classDef orange fill:#FBAA60,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
classDef orchid fill:#C26DBC,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
classDef invisible fill:transparent,stroke:transparent;
%% Subgraphs %%
subgraph DocIndexRetriever-MegaService["DocIndexRetriever MegaService "]
direction LR
EM([Embedding MicroService]):::blue
RET([Retrieval MicroService]):::blue
RER([Rerank MicroService]):::blue
end
subgraph UserInput[" User Input "]
direction LR
a([User Input Query]):::orchid
Ingest([Ingest data]):::orchid
end
AG_REACT([Agent MicroService - react]):::blue
AG_RAG([Agent MicroService - rag]):::blue
LLM_gen{{LLM Service <br>}}
DP([Data Preparation MicroService]):::blue
TEI_RER{{Reranking service<br>}}
TEI_EM{{Embedding service <br>}}
VDB{{Vector DB<br><br>}}
R_RET{{Retriever service <br>}}
%% Questions interaction
direction LR
a[User Input Query] --> AG_REACT
AG_REACT --> AG_RAG
AG_RAG --> DocIndexRetriever-MegaService
EM ==> RET
RET ==> RER
Ingest[Ingest data] --> DP
%% Embedding service flow
direction LR
AG_RAG <-.-> LLM_gen
AG_REACT <-.-> LLM_gen
EM <-.-> TEI_EM
RET <-.-> R_RET
RER <-.-> TEI_RER
direction TB
%% Vector DB interaction
R_RET <-.-> VDB
DP <-.-> VDB
```
### Why Agent for question answering?
1. Improve relevancy of retrieved context.
@@ -14,17 +81,13 @@ This example showcases a hierarchical multi-agent system for question-answering
3. Hierarchical agent can further improve performance.
Expert worker agents, such as retrieval agent, knowledge graph agent, SQL agent, etc., can provide high-quality output for different aspects of a complex query, and the supervisor agent can aggregate the information together to provide a comprehensive answer.
### Roadmap
## Deployment with docker
- v0.9: Worker agent uses open-source websearch tool (duckduckgo), agents use OpenAI GPT-4o-mini as llm backend.
- v1.0: Worker agent uses OPEA retrieval megaservice as tool.
- v1.0 or later: agents use open-source llm backend.
- v1.1 or later: add safeguards
1. Build agent docker image
## Getting started
Note: this is optional. The docker images will be automatically pulled when running the docker compose commands. This step is only needed if pulling images failed.
1. Build agent docker image </br>
First, clone the opea GenAIComps repo
First, clone the opea GenAIComps repo.
```
export WORKDIR=<your-work-directory>
@@ -39,35 +102,63 @@ This example showcases a hierarchical multi-agent system for question-answering
docker build -t opea/agent-langchain:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/agent/langchain/Dockerfile .
```
2. Launch tool services </br>
In this example, we will use some of the mock APIs provided in the Meta CRAG KDD Challenge to demonstrate the benefits of gaining additional context from mock knowledge graphs.
```
docker run -d -p=8080:8000 docker.io/aicrowd/kdd-cup-24-crag-mock-api:v0
```
3. Set up environment for this example </br>
First, clone this repo
2. Set up environment for this example </br>
First, clone this repo.
```
cd $WORKDIR
git clone https://github.com/opea-project/GenAIExamples.git
```
Second, set up env vars
Second, set up env vars.
```
export TOOLSET_PATH=$WORKDIR/GenAIExamples/AgentQnA/tools/
# optional: OPANAI_API_KEY
# for using open-source llms
export HUGGINGFACEHUB_API_TOKEN=<your-HF-token>
export HF_CACHE_DIR=<directory-where-llms-are-downloaded> #so that no need to redownload every time
# optional: OPANAI_API_KEY if you want to use OpenAI models
export OPENAI_API_KEY=<your-openai-key>
```
4. Launch agent services</br>
The configurations of the supervisor agent and the worker agent are defined in the docker-compose yaml file. We currently use openAI GPT-4o-mini as LLM, and we plan to add support for llama3.1-70B-instruct (served by TGI-Gaudi) in a subsequent release.
To use openai llm, run command below.
3. Deploy the retrieval tool (i.e., DocIndexRetriever mega-service)
First, launch the mega-service.
```
cd docker_compose/intel/cpu/xeon
cd $WORKDIR/GenAIExamples/AgentQnA/retrieval_tool
bash launch_retrieval_tool.sh
```
Then, ingest data into the vector database. Here we provide an example. You can ingest your own data.
```
bash run_ingest_data.sh
```
4. Launch other tools. </br>
In this example, we will use some of the mock APIs provided in the Meta CRAG KDD Challenge to demonstrate the benefits of gaining additional context from mock knowledge graphs.
```
docker run -d -p=8080:8000 docker.io/aicrowd/kdd-cup-24-crag-mock-api:v0
```
5. Launch agent services</br>
We provide two options for `llm_engine` of the agents: 1. open-source LLMs, 2. OpenAI models via API calls.
To use open-source LLMs on Gaudi2, run commands below.
```
cd $WORKDIR/GenAIExamples/AgentQnA/docker_compose/intel/hpu/gaudi
bash launch_tgi_gaudi.sh
bash launch_agent_service_tgi_gaudi.sh
```
To use OpenAI models, run commands below.
```
cd $WORKDIR/GenAIExamples/AgentQnA/docker_compose/intel/cpu/xeon
bash launch_agent_service_openai.sh
```
@@ -76,10 +167,12 @@ This example showcases a hierarchical multi-agent system for question-answering
First look at logs of the agent docker containers:
```
docker logs docgrader-agent-endpoint
# worker agent
docker logs rag-agent-endpoint
```
```
# supervisor agent
docker logs react-agent-endpoint
```
@@ -103,4 +196,4 @@ curl http://${ip_address}:9090/v1/chat/completions -X POST -H "Content-Type: app
## How to register your own tools with agent
You can take a look at the tools yaml and python files in this example. For more details, please refer to the "Provide your own tools" section in the instructions [here](https://github.com/opea-project/GenAIComps/tree/main/comps/agent/langchain/README.md#5-customize-agent-strategy).
You can take a look at the tools yaml and python files in this example. For more details, please refer to the "Provide your own tools" section in the instructions [here](https://github.com/opea-project/GenAIComps/tree/main/comps/agent/langchain/README.md).

View File

@@ -0,0 +1,3 @@
# Deployment on Xeon
We deploy the retrieval tool on Xeon. For LLMs, we support OpenAI models via API calls. For instructions on using open-source LLMs, please refer to the deployment guide [here](../../../../README.md).

View File

@@ -2,11 +2,10 @@
# SPDX-License-Identifier: Apache-2.0
services:
worker-docgrader-agent:
worker-rag-agent:
image: opea/agent-langchain:latest
container_name: docgrader-agent-endpoint
container_name: rag-agent-endpoint
volumes:
- ${WORKDIR}/GenAIComps/comps/agent/langchain/:/home/user/comps/agent/langchain/
- ${TOOLSET_PATH}:/home/user/tools/
ports:
- "9095:9095"
@@ -36,8 +35,9 @@ services:
supervisor-react-agent:
image: opea/agent-langchain:latest
container_name: react-agent-endpoint
depends_on:
- worker-rag-agent
volumes:
- ${WORKDIR}/GenAIComps/comps/agent/langchain/:/home/user/comps/agent/langchain/
- ${TOOLSET_PATH}:/home/user/tools/
ports:
- "9090:9090"

View File

@@ -7,7 +7,7 @@ export recursion_limit_worker=12
export recursion_limit_supervisor=10
export model="gpt-4o-mini-2024-07-18"
export temperature=0
export max_new_tokens=512
export max_new_tokens=4096
export OPENAI_API_KEY=${OPENAI_API_KEY}
export WORKER_AGENT_URL="http://${ip_address}:9095/v1/chat/completions"
export RETRIEVAL_TOOL_URL="http://${ip_address}:8889/v1/retrievaltool"

View File

@@ -2,37 +2,9 @@
# SPDX-License-Identifier: Apache-2.0
services:
tgi-server:
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
container_name: tgi-server
ports:
- "8085:80"
volumes:
- ${HF_CACHE_DIR}:/data
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HUGGING_FACE_HUB_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HF_HUB_DISABLE_PROGRESS_BARS: 1
HF_HUB_ENABLE_HF_TRANSFER: 0
HABANA_VISIBLE_DEVICES: all
OMPI_MCA_btl_vader_single_copy_mechanism: none
PT_HPU_ENABLE_LAZY_COLLECTIVES: true
ENABLE_HPU_GRAPH: true
LIMIT_HPU_GRAPH: true
USE_FLASH_ATTENTION: true
FLASH_ATTENTION_RECOMPUTE: true
runtime: habana
cap_add:
- SYS_NICE
ipc: host
command: --model-id ${LLM_MODEL_ID} --max-input-length 4096 --max-total-tokens 8192 --sharded true --num-shard ${NUM_SHARDS}
worker-docgrader-agent:
worker-rag-agent:
image: opea/agent-langchain:latest
container_name: docgrader-agent-endpoint
depends_on:
- tgi-server
container_name: rag-agent-endpoint
volumes:
# - ${WORKDIR}/GenAIExamples/AgentQnA/docker_image_build/GenAIComps/comps/agent/langchain/:/home/user/comps/agent/langchain/
- ${TOOLSET_PATH}:/home/user/tools/
@@ -41,7 +13,7 @@ services:
ipc: host
environment:
ip_address: ${ip_address}
strategy: rag_agent
strategy: rag_agent_llama
recursion_limit: ${recursion_limit_worker}
llm_engine: tgi
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
@@ -66,8 +38,7 @@ services:
image: opea/agent-langchain:latest
container_name: react-agent-endpoint
depends_on:
- tgi-server
- worker-docgrader-agent
- worker-rag-agent
volumes:
# - ${WORKDIR}/GenAIExamples/AgentQnA/docker_image_build/GenAIComps/comps/agent/langchain/:/home/user/comps/agent/langchain/
- ${TOOLSET_PATH}:/home/user/tools/
@@ -76,7 +47,7 @@ services:
ipc: host
environment:
ip_address: ${ip_address}
strategy: react_langgraph
strategy: react_llama
recursion_limit: ${recursion_limit_supervisor}
llm_engine: tgi
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}

View File

@@ -15,7 +15,7 @@ export LLM_MODEL_ID="meta-llama/Meta-Llama-3.1-70B-Instruct"
export NUM_SHARDS=4
export LLM_ENDPOINT_URL="http://${ip_address}:8085"
export temperature=0.01
export max_new_tokens=512
export max_new_tokens=4096
# agent related environment variables
export TOOLSET_PATH=$WORKDIR/GenAIExamples/AgentQnA/tools/
@@ -27,17 +27,3 @@ export RETRIEVAL_TOOL_URL="http://${ip_address}:8889/v1/retrievaltool"
export CRAG_SERVER=http://${ip_address}:8080
docker compose -f compose.yaml up -d
sleep 5s
echo "Waiting tgi gaudi ready"
n=0
until [[ "$n" -ge 100 ]] || [[ $ready == true ]]; do
docker logs tgi-server &> tgi-gaudi-service.log
n=$((n+1))
if grep -q Connected tgi-gaudi-service.log; then
break
fi
sleep 5s
done
sleep 5s
echo "Service started successfully"

View File

@@ -0,0 +1,25 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
# LLM related environment variables
export HF_CACHE_DIR=${HF_CACHE_DIR}
ls $HF_CACHE_DIR
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export LLM_MODEL_ID="meta-llama/Meta-Llama-3.1-70B-Instruct"
export NUM_SHARDS=4
docker compose -f tgi_gaudi.yaml up -d
sleep 5s
echo "Waiting tgi gaudi ready"
n=0
until [[ "$n" -ge 100 ]] || [[ $ready == true ]]; do
docker logs tgi-server &> tgi-gaudi-service.log
n=$((n+1))
if grep -q Connected tgi-gaudi-service.log; then
break
fi
sleep 5s
done
sleep 5s
echo "Service started successfully"

View File

@@ -0,0 +1,30 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
services:
tgi-server:
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
container_name: tgi-server
ports:
- "8085:80"
volumes:
- ${HF_CACHE_DIR}:/data
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HUGGING_FACE_HUB_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HF_HUB_DISABLE_PROGRESS_BARS: 1
HF_HUB_ENABLE_HF_TRANSFER: 0
HABANA_VISIBLE_DEVICES: all
OMPI_MCA_btl_vader_single_copy_mechanism: none
PT_HPU_ENABLE_LAZY_COLLECTIVES: true
ENABLE_HPU_GRAPH: true
LIMIT_HPU_GRAPH: true
USE_FLASH_ATTENTION: true
FLASH_ATTENTION_RECOMPUTE: true
runtime: habana
cap_add:
- SYS_NICE
ipc: host
command: --model-id ${LLM_MODEL_ID} --max-input-length 4096 --max-total-tokens 8192 --sharded true --num-shard ${NUM_SHARDS}

View File

@@ -17,6 +17,12 @@ if [ ! -d "$HF_CACHE_DIR" ]; then
fi
ls $HF_CACHE_DIR
function start_tgi(){
echo "Starting tgi-gaudi server"
cd $WORKDIR/GenAIExamples/AgentQnA/docker_compose/intel/hpu/gaudi
bash launch_tgi_gaudi.sh
}
function start_agent_and_api_server() {
echo "Starting CRAG server"
@@ -25,6 +31,7 @@ function start_agent_and_api_server() {
echo "Starting Agent services"
cd $WORKDIR/GenAIExamples/AgentQnA/docker_compose/intel/hpu/gaudi
bash launch_agent_service_tgi_gaudi.sh
sleep 10
}
function validate() {
@@ -43,18 +50,22 @@ function validate() {
function validate_agent_service() {
echo "----------------Test agent ----------------"
local CONTENT=$(http_proxy="" curl http://${ip_address}:9095/v1/chat/completions -X POST -H "Content-Type: application/json" -d '{
"query": "Tell me about Michael Jackson song thriller"
}')
local EXIT_CODE=$(validate "$CONTENT" "Thriller" "react-agent-endpoint")
docker logs docgrader-agent-endpoint
# local CONTENT=$(http_proxy="" curl http://${ip_address}:9095/v1/chat/completions -X POST -H "Content-Type: application/json" -d '{
# "query": "Tell me about Michael Jackson song thriller"
# }')
export agent_port="9095"
local CONTENT=$(python3 $WORKDIR/GenAIExamples/AgentQnA/tests/test.py)
local EXIT_CODE=$(validate "$CONTENT" "Thriller" "rag-agent-endpoint")
docker logs rag-agent-endpoint
if [ "$EXIT_CODE" == "1" ]; then
exit 1
fi
local CONTENT=$(http_proxy="" curl http://${ip_address}:9090/v1/chat/completions -X POST -H "Content-Type: application/json" -d '{
"query": "Tell me about Michael Jackson song thriller"
}')
# local CONTENT=$(http_proxy="" curl http://${ip_address}:9090/v1/chat/completions -X POST -H "Content-Type: application/json" -d '{
# "query": "Tell me about Michael Jackson song thriller"
# }')
export agent_port="9090"
local CONTENT=$(python3 $WORKDIR/GenAIExamples/AgentQnA/tests/test.py)
local EXIT_CODE=$(validate "$CONTENT" "Thriller" "react-agent-endpoint")
docker logs react-agent-endpoint
if [ "$EXIT_CODE" == "1" ]; then
@@ -64,6 +75,10 @@ function validate_agent_service() {
}
function main() {
echo "==================== Start TGI ===================="
start_tgi
echo "==================== TGI started ===================="
echo "==================== Start agent ===================="
start_agent_and_api_server
echo "==================== Agent started ===================="

25
AgentQnA/tests/test.py Normal file
View File

@@ -0,0 +1,25 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import os
import requests
def generate_answer_agent_api(url, prompt):
proxies = {"http": ""}
payload = {
"query": prompt,
}
response = requests.post(url, json=payload, proxies=proxies)
answer = response.json()["text"]
return answer
if __name__ == "__main__":
ip_address = os.getenv("ip_address", "localhost")
agent_port = os.getenv("agent_port", "9095")
url = f"http://{ip_address}:{agent_port}/v1/chat/completions"
prompt = "Tell me about Michael Jackson song thriller"
answer = generate_answer_agent_api(url, prompt)
print(answer)

View File

@@ -19,7 +19,6 @@ function stop_crag() {
function stop_agent_docker() {
cd $WORKPATH/docker_compose/intel/hpu/gaudi/
# docker compose -f compose.yaml down
container_list=$(cat compose.yaml | grep container_name | cut -d':' -f2)
for container_name in $container_list; do
cid=$(docker ps -aq --filter "name=$container_name")
@@ -28,11 +27,21 @@ function stop_agent_docker() {
done
}
function stop_tgi(){
cd $WORKPATH/docker_compose/intel/hpu/gaudi/
container_list=$(cat tgi_gaudi.yaml | grep container_name | cut -d':' -f2)
for container_name in $container_list; do
cid=$(docker ps -aq --filter "name=$container_name")
echo "Stopping container $container_name"
if [[ ! -z "$cid" ]]; then docker rm $cid -f && sleep 1s; fi
done
}
function stop_retrieval_tool() {
echo "Stopping Retrieval tool"
local RETRIEVAL_TOOL_PATH=$WORKPATH/../DocIndexRetriever
cd $RETRIEVAL_TOOL_PATH/docker_compose/intel/cpu/xeon/
# docker compose -f compose.yaml down
container_list=$(cat compose.yaml | grep container_name | cut -d':' -f2)
for container_name in $container_list; do
cid=$(docker ps -aq --filter "name=$container_name")
@@ -43,25 +52,26 @@ function stop_retrieval_tool() {
echo "workpath: $WORKPATH"
echo "=================== Stop containers ===================="
stop_crag
stop_tgi
stop_agent_docker
stop_retrieval_tool
cd $WORKPATH/tests
echo "=================== #1 Building docker images===================="
bash 1_build_images.sh
bash step1_build_images.sh
echo "=================== #1 Building docker images completed===================="
echo "=================== #2 Start retrieval tool===================="
bash 2_start_retrieval_tool.sh
bash step2_start_retrieval_tool.sh
echo "=================== #2 Retrieval tool started===================="
echo "=================== #3 Ingest data and validate retrieval===================="
bash 3_ingest_data_and_validate_retrieval.sh
bash step3_ingest_data_and_validate_retrieval.sh
echo "=================== #3 Data ingestion and validation completed===================="
echo "=================== #4 Start agent and API server===================="
bash 4_launch_and_validate_agent_tgi.sh
bash step4_launch_and_validate_agent_tgi.sh
echo "=================== #4 Agent test passed ===================="
echo "=================== #5 Stop agent and API server===================="
@@ -70,4 +80,6 @@ stop_agent_docker
stop_retrieval_tool
echo "=================== #5 Agent and API server stopped===================="
echo y | docker system prune
echo "ALL DONE!"

View File

@@ -25,7 +25,7 @@ get_billboard_rank_date:
args_schema:
rank:
type: int
description: song name
description: the rank of interest, for example 1 for top 1
date:
type: str
description: date

View File

@@ -12,16 +12,31 @@ def search_knowledge_base(query: str) -> str:
print(url)
proxies = {"http": ""}
payload = {
"text": query,
"messages": query,
}
response = requests.post(url, json=payload, proxies=proxies)
print(response)
docs = response.json()["documents"]
context = ""
for i, doc in enumerate(docs):
if i == 0:
context = doc
else:
context += "\n" + doc
print(context)
return context
if "documents" in response.json():
docs = response.json()["documents"]
context = ""
for i, doc in enumerate(docs):
if i == 0:
context = doc
else:
context += "\n" + doc
# print(context)
return context
elif "text" in response.json():
return response.json()["text"]
elif "reranked_docs" in response.json():
docs = response.json()["reranked_docs"]
context = ""
for i, doc in enumerate(docs):
if i == 0:
context = doc["text"]
else:
context += "\n" + doc["text"]
# print(context)
return context
else:
return "Error parsing response from the knowledge base."

View File

@@ -0,0 +1,32 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
FROM python:3.11-slim
RUN apt-get update -y && apt-get install -y --no-install-recommends --fix-missing \
libgl1-mesa-glx \
libjemalloc-dev \
git
RUN useradd -m -s /bin/bash user && \
mkdir -p /home/user && \
chown -R user /home/user/
WORKDIR /home/user/
RUN git clone https://github.com/opea-project/GenAIComps.git
WORKDIR /home/user/GenAIComps
RUN pip install --no-cache-dir --upgrade pip && \
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt
COPY ./audioqna_multilang.py /home/user/audioqna_multilang.py
ENV PYTHONPATH=$PYTHONPATH:/home/user/GenAIComps
USER user
WORKDIR /home/user
ENTRYPOINT ["python", "audioqna_multilang.py"]

View File

@@ -2,6 +2,63 @@
AudioQnA is an example that demonstrates the integration of Generative AI (GenAI) models for performing question-answering (QnA) on audio files, with the added functionality of Text-to-Speech (TTS) for generating spoken responses. The example showcases how to convert audio input to text using Automatic Speech Recognition (ASR), generate answers to user queries using a language model, and then convert those answers back to speech using Text-to-Speech (TTS).
The AudioQnA example is implemented using the component-level microservices defined in [GenAIComps](https://github.com/opea-project/GenAIComps). The flow chart below shows the information flow between different microservices for this example.
```mermaid
---
config:
flowchart:
nodeSpacing: 400
rankSpacing: 100
curve: linear
themeVariables:
fontSize: 50px
---
flowchart LR
%% Colors %%
classDef blue fill:#ADD8E6,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
classDef orange fill:#FBAA60,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
classDef orchid fill:#C26DBC,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
classDef invisible fill:transparent,stroke:transparent;
style AudioQnA-MegaService stroke:#000000
%% Subgraphs %%
subgraph AudioQnA-MegaService["AudioQnA MegaService "]
direction LR
ASR([ASR MicroService]):::blue
LLM([LLM MicroService]):::blue
TTS([TTS MicroService]):::blue
end
subgraph UserInterface[" User Interface "]
direction LR
a([User Input Query]):::orchid
UI([UI server<br>]):::orchid
end
WSP_SRV{{whisper service<br>}}
SPC_SRV{{speecht5 service <br>}}
LLM_gen{{LLM Service <br>}}
GW([AudioQnA GateWay<br>]):::orange
%% Questions interaction
direction LR
a[User Audio Query] --> UI
UI --> GW
GW <==> AudioQnA-MegaService
ASR ==> LLM
LLM ==> TTS
%% Embedding service flow
direction LR
ASR <-.-> WSP_SRV
LLM <-.-> LLM_gen
TTS <-.-> SPC_SRV
```
## Deploy AudioQnA Service
The AudioQnA service can be deployed on either Intel Gaudi2 or Intel Xeon Scalable Processor.

View File

@@ -0,0 +1,98 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import asyncio
import base64
import os
from comps import AudioQnAGateway, MicroService, ServiceOrchestrator, ServiceType
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
WHISPER_SERVER_HOST_IP = os.getenv("WHISPER_SERVER_HOST_IP", "0.0.0.0")
WHISPER_SERVER_PORT = int(os.getenv("WHISPER_SERVER_PORT", 7066))
GPT_SOVITS_SERVER_HOST_IP = os.getenv("GPT_SOVITS_SERVER_HOST_IP", "0.0.0.0")
GPT_SOVITS_SERVER_PORT = int(os.getenv("GPT_SOVITS_SERVER_PORT", 9088))
LLM_SERVER_HOST_IP = os.getenv("LLM_SERVER_HOST_IP", "0.0.0.0")
LLM_SERVER_PORT = int(os.getenv("LLM_SERVER_PORT", 8888))
def align_inputs(self, inputs, cur_node, runtime_graph, llm_parameters_dict, **kwargs):
print(inputs)
if self.services[cur_node].service_type == ServiceType.ASR:
# {'byte_str': 'UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA'}
inputs["audio"] = inputs["byte_str"]
del inputs["byte_str"]
elif self.services[cur_node].service_type == ServiceType.LLM:
# convert TGI/vLLM to unified OpenAI /v1/chat/completions format
next_inputs = {}
next_inputs["model"] = "tgi" # specifically clarify the fake model to make the format unified
next_inputs["messages"] = [{"role": "user", "content": inputs["asr_result"]}]
next_inputs["max_tokens"] = llm_parameters_dict["max_tokens"]
next_inputs["top_p"] = llm_parameters_dict["top_p"]
next_inputs["stream"] = inputs["streaming"] # False as default
next_inputs["frequency_penalty"] = inputs["frequency_penalty"]
# next_inputs["presence_penalty"] = inputs["presence_penalty"]
# next_inputs["repetition_penalty"] = inputs["repetition_penalty"]
next_inputs["temperature"] = inputs["temperature"]
inputs = next_inputs
elif self.services[cur_node].service_type == ServiceType.TTS:
next_inputs = {}
next_inputs["text"] = inputs["choices"][0]["message"]["content"]
next_inputs["text_language"] = kwargs["tts_text_language"] if "tts_text_language" in kwargs else "zh"
inputs = next_inputs
return inputs
def align_outputs(self, data, cur_node, inputs, runtime_graph, llm_parameters_dict, **kwargs):
if self.services[cur_node].service_type == ServiceType.TTS:
audio_base64 = base64.b64encode(data).decode("utf-8")
return {"byte_str": audio_base64}
return data
class AudioQnAService:
def __init__(self, host="0.0.0.0", port=8000):
self.host = host
self.port = port
ServiceOrchestrator.align_inputs = align_inputs
ServiceOrchestrator.align_outputs = align_outputs
self.megaservice = ServiceOrchestrator()
def add_remote_service(self):
asr = MicroService(
name="asr",
host=WHISPER_SERVER_HOST_IP,
port=WHISPER_SERVER_PORT,
# endpoint="/v1/audio/transcriptions",
endpoint="/v1/asr",
use_remote_service=True,
service_type=ServiceType.ASR,
)
llm = MicroService(
name="llm",
host=LLM_SERVER_HOST_IP,
port=LLM_SERVER_PORT,
endpoint="/v1/chat/completions",
use_remote_service=True,
service_type=ServiceType.LLM,
)
tts = MicroService(
name="tts",
host=GPT_SOVITS_SERVER_HOST_IP,
port=GPT_SOVITS_SERVER_PORT,
# endpoint="/v1/audio/speech",
endpoint="/",
use_remote_service=True,
service_type=ServiceType.TTS,
)
self.megaservice.add(asr).add(llm).add(tts)
self.megaservice.flow_to(asr, llm)
self.megaservice.flow_to(llm, tts)
self.gateway = AudioQnAGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
if __name__ == "__main__":
audioqna = AudioQnAService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
audioqna.add_remote_service()

View File

@@ -1,4 +1,4 @@
# AudioQnA accuracy Evaluation
# AudioQnA Accuracy
AudioQnA is an example that demonstrates the integration of Generative AI (GenAI) models for performing question-answering (QnA) on audio scene, which contains Automatic Speech Recognition (ASR) and Text-to-Speech (TTS). The following is the piepline for evaluating the ASR accuracy.
@@ -36,9 +36,9 @@ Evaluate the performance with the LLM:
```py
# validate the offline model
# python offline_evaluate.py
# python offline_eval.py
# validate the online asr microservice accuracy
python online_evaluate.py
python online_eval.py
```
### Performance Result

View File

@@ -0,0 +1,5 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
python online_eval.py

View File

@@ -127,9 +127,13 @@ curl http://${host_ip}:3002/v1/audio/speech \
## 🚀 Test MegaService
Test the AudioQnA megaservice by recording a .wav file, encoding the file into the base64 format, and then sending the
base64 string to the megaservice endpoint. The megaservice will return a spoken response as a base64 string. To listen
to the response, decode the base64 string and save it as a .wav file.
```bash
curl http://${host_ip}:3008/v1/audioqna \
-X POST \
-d '{"audio": "UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA", "max_tokens":64}' \
-H 'Content-Type: application/json'
-H 'Content-Type: application/json' | sed 's/^"//;s/"$//' | base64 -d > output.wav
```

View File

@@ -41,7 +41,7 @@ services:
environment:
TTS_ENDPOINT: ${TTS_ENDPOINT}
tgi-service:
image: ghcr.io/huggingface/text-generation-inference:sha-e4201f4-intel-cpu
image: ghcr.io/huggingface/text-generation-inference:2.4.0-intel-cpu
container_name: tgi-service
ports:
- "3006:80"

View File

@@ -0,0 +1,64 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
services:
whisper-service:
image: ${REGISTRY:-opea}/whisper:${TAG:-latest}
container_name: whisper-service
ports:
- "7066:7066"
ipc: host
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
restart: unless-stopped
command: --language "zh"
gpt-sovits-service:
image: ${REGISTRY:-opea}/gpt-sovits:${TAG:-latest}
container_name: gpt-sovits-service
ports:
- "9880:9880"
ipc: host
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
restart: unless-stopped
tgi-service:
image: ghcr.io/huggingface/text-generation-inference:2.4.0-intel-cpu
container_name: tgi-service
ports:
- "3006:80"
volumes:
- "./data:/data"
shm_size: 1g
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
command: --model-id ${LLM_MODEL_ID} --cuda-graphs 0
audioqna-xeon-backend-server:
image: ${REGISTRY:-opea}/audioqna-multilang:${TAG:-latest}
container_name: audioqna-xeon-backend-server
ports:
- "3008:8888"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- MEGA_SERVICE_HOST_IP=${MEGA_SERVICE_HOST_IP}
- LLM_SERVER_HOST_IP=${LLM_SERVER_HOST_IP}
- LLM_SERVER_PORT=${LLM_SERVER_PORT}
- LLM_MODEL_ID=${LLM_MODEL_ID}
- WHISPER_SERVER_HOST_IP=${WHISPER_SERVER_HOST_IP}
- WHISPER_SERVER_PORT=${WHISPER_SERVER_PORT}
- GPT_SOVITS_SERVER_HOST_IP=${GPT_SOVITS_SERVER_HOST_IP}
- GPT_SOVITS_SERVER_PORT=${GPT_SOVITS_SERVER_PORT}
ipc: host
restart: always
networks:
default:
driver: bridge

View File

@@ -79,6 +79,8 @@ export LLM_SERVICE_PORT=3007
## 🚀 Start the MegaService
> **_NOTE:_** Users will need at least three Gaudi cards for AudioQnA.
```bash
cd GenAIExamples/AudioQnA/docker_compose/intel/hpu/gaudi/
docker compose up -d
@@ -127,9 +129,13 @@ curl http://${host_ip}:3002/v1/audio/speech \
## 🚀 Test MegaService
Test the AudioQnA megaservice by recording a .wav file, encoding the file into the base64 format, and then sending the
base64 string to the megaservice endpoint. The megaservice will return a spoken response as a base64 string. To listen
to the response, decode the base64 string and save it as a .wav file.
```bash
curl http://${host_ip}:3008/v1/audioqna \
-X POST \
-d '{"audio": "UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA", "max_tokens":64}' \
-H 'Content-Type: application/json'
-H 'Content-Type: application/json' | sed 's/^"//;s/"$//' | base64 -d > output.wav
```

View File

@@ -53,3 +53,9 @@ services:
dockerfile: comps/tts/speecht5/Dockerfile
extends: audioqna
image: ${REGISTRY:-opea}/tts:${TAG:-latest}
gpt-sovits:
build:
context: GenAIComps
dockerfile: comps/tts/gpt-sovits/Dockerfile
extends: audioqna
image: ${REGISTRY:-opea}/gpt-sovits:${TAG:-latest}

View File

@@ -7,14 +7,14 @@
## Deploy On Xeon
```
cd GenAIExamples/AudioQnA/kubernetes/intel/cpu/xeon/manifests
cd GenAIExamples/AudioQnA/kubernetes/intel/cpu/xeon/manifest
export HUGGINGFACEHUB_API_TOKEN="YourOwnToken"
sed -i "s/insert-your-huggingface-token-here/${HUGGINGFACEHUB_API_TOKEN}/g" audioqna.yaml
kubectl apply -f audioqna.yaml
```
## Deploy On Gaudi
```
cd GenAIExamples/AudioQnA/kubernetes/intel/hpu/gaudi/manifests
cd GenAIExamples/AudioQnA/kubernetes/intel/hpu/gaudi/manifest
export HUGGINGFACEHUB_API_TOKEN="YourOwnToken"
sed -i "s/insert-your-huggingface-token-here/${HUGGINGFACEHUB_API_TOKEN}/g" audioqna.yaml
kubectl apply -f audioqna.yaml

View File

@@ -247,7 +247,7 @@ spec:
- envFrom:
- configMapRef:
name: audio-qna-config
image: "ghcr.io/huggingface/text-generation-inference:sha-e4201f4-intel-cpu"
image: "ghcr.io/huggingface/text-generation-inference:2.4.0-intel-cpu"
name: llm-dependency-deploy-demo
securityContext:
capabilities:

8
AvatarChatbot/.gitignore vendored Normal file
View File

@@ -0,0 +1,8 @@
*.safetensors
*.bin
*.model
*.log
docker_compose/intel/cpu/xeon/data
docker_compose/intel/hpu/gaudi/data
inputs/
outputs/

View File

@@ -17,13 +17,12 @@ RUN useradd -m -s /bin/bash user && \
WORKDIR /home/user/
RUN git clone https://github.com/opea-project/GenAIComps.git
WORKDIR /home/user/GenAIComps
RUN pip install --no-cache-dir --upgrade pip && \
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt && \
pip install --no-cache-dir langchain_core
COPY ./chatqna_no_wrapper.py /home/user/chatqna_no_wrapper.py
RUN pip install --no-cache-dir --upgrade pip && \
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt
COPY ./avatarchatbot.py /home/user/avatarchatbot.py
ENV PYTHONPATH=$PYTHONPATH:/home/user/GenAIComps
@@ -31,4 +30,4 @@ USER user
WORKDIR /home/user
ENTRYPOINT ["python", "chatqna_no_wrapper.py", "--without-rerank"]
ENTRYPOINT ["python", "avatarchatbot.py"]

105
AvatarChatbot/README.md Normal file
View File

@@ -0,0 +1,105 @@
# AvatarChatbot Application
The AvatarChatbot service can be effortlessly deployed on either Intel Gaudi2 or Intel XEON Scalable Processors.
## AI Avatar Workflow
The AI Avatar example is implemented using both megaservices and the component-level microservices defined in [GenAIComps](https://github.com/opea-project/GenAIComps). The flow chart below shows the information flow between different megaservices and microservices for this example.
```mermaid
---
config:
flowchart:
nodeSpacing: 100
rankSpacing: 100
curve: linear
themeVariables:
fontSize: 42px
---
flowchart LR
classDef blue fill:#ADD8E6,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
classDef thistle fill:#D8BFD8,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
classDef orange fill:#FBAA60,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
classDef orchid fill:#C26DBC,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
classDef invisible fill:transparent,stroke:transparent;
style AvatarChatbot-Megaservice stroke:#000000
subgraph AvatarChatbot-Megaservice["AvatarChatbot Megaservice"]
direction LR
ASR([ASR Microservice]):::blue
LLM([LLM Microservice]):::blue
TTS([TTS Microservice]):::blue
animation([Animation Microservice]):::blue
end
subgraph UserInterface["User Interface"]
direction LR
invis1[ ]:::invisible
USER1([User Audio Query]):::orchid
USER2([User Image/Video Query]):::orchid
UI([UI server<br>]):::orchid
end
GW([AvatarChatbot GateWay<br>]):::orange
subgraph .
direction LR
X([OPEA Microservice]):::blue
Y{{Open Source Service}}:::thistle
Z([OPEA Gateway]):::orange
Z1([UI]):::orchid
end
WHISPER{{Whisper service}}:::thistle
TGI{{LLM service}}:::thistle
T5{{Speecht5 service}}:::thistle
WAV2LIP{{Wav2Lip service}}:::thistle
%% Connections %%
direction LR
USER1 -->|1| UI
UI -->|2| GW
GW <==>|3| AvatarChatbot-Megaservice
ASR ==>|4| LLM ==>|5| TTS ==>|6| animation
direction TB
ASR <-.->|3'| WHISPER
LLM <-.->|4'| TGI
TTS <-.->|5'| T5
animation <-.->|6'| WAV2LIP
USER2 -->|1| UI
UI <-.->|6'| WAV2LIP
```
## Deploy AvatarChatbot Service
The AvatarChatbot service can be deployed on either Intel Gaudi2 AI Accelerator or Intel Xeon Scalable Processor.
### Deploy AvatarChatbot on Gaudi
Refer to the [Gaudi Guide](./docker_compose/intel/hpu/gaudi/README.md) for instructions on deploying AvatarChatbot on Gaudi, and on setting up an UI for the application.
### Deploy AvatarChatbot on Xeon
Refer to the [Xeon Guide](./docker_compose/intel/cpu/xeon/README.md) for instructions on deploying AvatarChatbot on Xeon.
## Supported Models
### ASR
The default model is [openai/whisper-small](https://huggingface.co/openai/whisper-small). It also supports all models in the Whisper family, such as `openai/whisper-large-v3`, `openai/whisper-medium`, `openai/whisper-base`, `openai/whisper-tiny`, etc.
To replace the model, please edit the `compose.yaml` and add the `command` line to pass the name of the model you want to use:
```yaml
services:
whisper-service:
...
command: --model_name_or_path openai/whisper-tiny
```
### TTS
The default model is [microsoft/SpeechT5](https://huggingface.co/microsoft/speecht5_tts). We currently do not support replacing the model. More models under the commercial license will be added in the future.
### Animation
The default model is [Rudrabha/Wav2Lip](https://github.com/Rudrabha/Wav2Lip) and [TencentARC/GFPGAN](https://github.com/TencentARC/GFPGAN). We currently do not support replacing the model. More models under the commercial license such as [OpenTalker/SadTalker](https://github.com/OpenTalker/SadTalker) will be added in the future.

Binary file not shown.

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

Binary file not shown.

After

Width:  |  Height:  |  Size: 595 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 148 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 158 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.5 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 992 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.7 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.6 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 169 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 121 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 47 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

View File

@@ -0,0 +1,93 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import asyncio
import os
import sys
from comps import AvatarChatbotGateway, MicroService, ServiceOrchestrator, ServiceType
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
ASR_SERVICE_HOST_IP = os.getenv("ASR_SERVICE_HOST_IP", "0.0.0.0")
ASR_SERVICE_PORT = int(os.getenv("ASR_SERVICE_PORT", 9099))
LLM_SERVICE_HOST_IP = os.getenv("LLM_SERVICE_HOST_IP", "0.0.0.0")
LLM_SERVICE_PORT = int(os.getenv("LLM_SERVICE_PORT", 9000))
TTS_SERVICE_HOST_IP = os.getenv("TTS_SERVICE_HOST_IP", "0.0.0.0")
TTS_SERVICE_PORT = int(os.getenv("TTS_SERVICE_PORT", 9088))
ANIMATION_SERVICE_HOST_IP = os.getenv("ANIMATION_SERVICE_HOST_IP", "0.0.0.0")
ANIMATION_SERVICE_PORT = int(os.getenv("ANIMATION_SERVICE_PORT", 9066))
def check_env_vars(env_var_list):
for var in env_var_list:
if os.getenv(var) is None:
print(f"Error: The environment variable '{var}' is not set.")
sys.exit(1) # Exit the program with a non-zero status code
print("All environment variables are set.")
class AvatarChatbotService:
def __init__(self, host="0.0.0.0", port=8000):
self.host = host
self.port = port
self.megaservice = ServiceOrchestrator()
def add_remote_service(self):
asr = MicroService(
name="asr",
host=ASR_SERVICE_HOST_IP,
port=ASR_SERVICE_PORT,
endpoint="/v1/audio/transcriptions",
use_remote_service=True,
service_type=ServiceType.ASR,
)
llm = MicroService(
name="llm",
host=LLM_SERVICE_HOST_IP,
port=LLM_SERVICE_PORT,
endpoint="/v1/chat/completions",
use_remote_service=True,
service_type=ServiceType.LLM,
)
tts = MicroService(
name="tts",
host=TTS_SERVICE_HOST_IP,
port=TTS_SERVICE_PORT,
endpoint="/v1/audio/speech",
use_remote_service=True,
service_type=ServiceType.TTS,
)
animation = MicroService(
name="animation",
host=ANIMATION_SERVICE_HOST_IP,
port=ANIMATION_SERVICE_PORT,
endpoint="/v1/animation",
use_remote_service=True,
service_type=ServiceType.ANIMATION,
)
self.megaservice.add(asr).add(llm).add(tts).add(animation)
self.megaservice.flow_to(asr, llm)
self.megaservice.flow_to(llm, tts)
self.megaservice.flow_to(tts, animation)
self.gateway = AvatarChatbotGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
if __name__ == "__main__":
check_env_vars(
[
"MEGA_SERVICE_HOST_IP",
"MEGA_SERVICE_PORT",
"ASR_SERVICE_HOST_IP",
"ASR_SERVICE_PORT",
"LLM_SERVICE_HOST_IP",
"LLM_SERVICE_PORT",
"TTS_SERVICE_HOST_IP",
"TTS_SERVICE_PORT",
"ANIMATION_SERVICE_HOST_IP",
"ANIMATION_SERVICE_PORT",
]
)
avatarchatbot = AvatarChatbotService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
avatarchatbot.add_remote_service()

View File

@@ -0,0 +1,210 @@
# Build Mega Service of AvatarChatbot on Xeon
This document outlines the deployment process for a AvatarChatbot application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline on Intel Xeon server.
## 🚀 Build Docker images
### 1. Source Code install GenAIComps
```bash
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
```
### 2. Build ASR Image
```bash
docker build -t opea/whisper:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/asr/whisper/dependency/Dockerfile .
docker build -t opea/asr:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/asr/whisper/Dockerfile .
```
### 3. Build LLM Image
```bash
docker build --no-cache -t opea/llm-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/tgi/Dockerfile .
```
### 4. Build TTS Image
```bash
docker build -t opea/speecht5:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/tts/speecht5/dependency/Dockerfile .
docker build -t opea/tts:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/tts/speecht5/Dockerfile .
```
### 5. Build Animation Image
```bash
docker build -t opea/wav2lip:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/animation/wav2lip/dependency/Dockerfile .
docker build -t opea/animation:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/animation/wav2lip/Dockerfile .
```
### 6. Build MegaService Docker Image
To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `audioqna.py` Python script. Build the MegaService Docker image using the command below:
```bash
git clone https://github.com/opea-project/GenAIExamples.git
cd GenAIExamples/AvatarChatbot/
docker build --no-cache -t opea/avatarchatbot:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
```
Then run the command `docker images`, you will have following images ready:
1. `opea/whisper:latest`
2. `opea/asr:latest`
3. `opea/llm-tgi:latest`
4. `opea/speecht5:latest`
5. `opea/tts:latest`
6. `opea/wav2lip:latest`
7. `opea/animation:latest`
8. `opea/avatarchatbot:latest`
## 🚀 Set the environment variables
Before starting the services with `docker compose`, you have to recheck the following environment variables.
```bash
export HUGGINGFACEHUB_API_TOKEN=<your_hf_token>
export host_ip=$(hostname -I | awk '{print $1}')
export TGI_LLM_ENDPOINT=http://$host_ip:3006
export LLM_MODEL_ID=Intel/neural-chat-7b-v3-3
export ASR_ENDPOINT=http://$host_ip:7066
export TTS_ENDPOINT=http://$host_ip:7055
export WAV2LIP_ENDPOINT=http://$host_ip:7860
export MEGA_SERVICE_HOST_IP=${host_ip}
export ASR_SERVICE_HOST_IP=${host_ip}
export TTS_SERVICE_HOST_IP=${host_ip}
export LLM_SERVICE_HOST_IP=${host_ip}
export ANIMATION_SERVICE_HOST_IP=${host_ip}
export MEGA_SERVICE_PORT=8888
export ASR_SERVICE_PORT=3001
export TTS_SERVICE_PORT=3002
export LLM_SERVICE_PORT=3007
export ANIMATION_SERVICE_PORT=3008
```
- Xeon CPU
```bash
export DEVICE="cpu"
export WAV2LIP_PORT=7860
export INFERENCE_MODE='wav2lip_only'
export CHECKPOINT_PATH='/usr/local/lib/python3.11/site-packages/Wav2Lip/checkpoints/wav2lip_gan.pth'
export FACE="assets/img/avatar1.jpg"
# export AUDIO='assets/audio/eg3_ref.wav' # audio file path is optional, will use base64str in the post request as input if is 'None'
export AUDIO='None'
export FACESIZE=96
export OUTFILE="/outputs/result.mp4"
export GFPGAN_MODEL_VERSION=1.4 # latest version, can roll back to v1.3 if needed
export UPSCALE_FACTOR=1
export FPS=10
```
## 🚀 Start the MegaService
```bash
cd GenAIExamples/AvatarChatbot/docker_compose/intel/cpu/xeon/
docker compose -f compose.yaml up -d
```
## 🚀 Test MicroServices
```bash
# whisper service
curl http://${host_ip}:7066/v1/asr \
-X POST \
-d '{"audio": "UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA"}' \
-H 'Content-Type: application/json'
# asr microservice
curl http://${host_ip}:3001/v1/audio/transcriptions \
-X POST \
-d '{"byte_str": "UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA"}' \
-H 'Content-Type: application/json'
# tgi service
curl http://${host_ip}:3006/generate \
-X POST \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}' \
-H 'Content-Type: application/json'
# llm microservice
curl http://${host_ip}:3007/v1/chat/completions\
-X POST \
-d '{"query":"What is Deep Learning?","max_tokens":17,"top_k":10,"top_p":0.95,"typical_p":0.95,"temperature":0.01,"repetition_penalty":1.03,"streaming":false}' \
-H 'Content-Type: application/json'
# speecht5 service
curl http://${host_ip}:7055/v1/tts \
-X POST \
-d '{"text": "Who are you?"}' \
-H 'Content-Type: application/json'
# tts microservice
curl http://${host_ip}:3002/v1/audio/speech \
-X POST \
-d '{"text": "Who are you?"}' \
-H 'Content-Type: application/json'
# wav2lip service
cd ../../../..
curl http://${host_ip}:7860/v1/wav2lip \
-X POST \
-d @assets/audio/sample_minecraft.json \
-H 'Content-Type: application/json'
# animation microservice
curl http://${host_ip}:3008/v1/animation \
-X POST \
-d @assets/audio/sample_question.json \
-H "Content-Type: application/json"
```
## 🚀 Test MegaService
```bash
curl http://${host_ip}:3009/v1/avatarchatbot \
-X POST \
-d @assets/audio/sample_whoareyou.json \
-H 'Content-Type: application/json'
```
If the megaservice is running properly, you should see the following output:
```bash
"/outputs/result.mp4"
```
The output file will be saved in the current working directory, as `${PWD}` is mapped to `/outputs` inside the wav2lip-service Docker container.
## Gradio UI
```bash
cd $WORKPATH/GenAIExamples/AvatarChatbot
python3 ui/gradio/app_gradio_demo_avatarchatbot.py
```
The UI can be viewed at http://${host_ip}:7861
<img src="../../../../assets/img/UI.png" alt="UI Example" width="60%">
In the current version v1.0, you need to set the avatar figure image/video and the DL model choice in the environment variables before starting AvatarChatbot backend service and running the UI. Please just customize the audio question in the UI.
\*\* We will enable change of avatar figure between runs in v2.0
## Troubleshooting
```bash
cd GenAIExamples/AvatarChatbot/tests
export IMAGE_REPO="opea"
export IMAGE_TAG="latest"
export HUGGINGFACEHUB_API_TOKEN=<your_hf_token>
test_avatarchatbot_on_xeon.sh
```

View File

@@ -0,0 +1,138 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
services:
whisper-service:
image: ${REGISTRY:-opea}/whisper:${TAG:-latest}
container_name: whisper-service
ports:
- "7066:7066"
ipc: host
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
restart: unless-stopped
asr:
image: ${REGISTRY:-opea}/asr:${TAG:-latest}
container_name: asr-service
ports:
- "3001:9099"
ipc: host
environment:
ASR_ENDPOINT: ${ASR_ENDPOINT}
speecht5-service:
image: ${REGISTRY:-opea}/speecht5:${TAG:-latest}
container_name: speecht5-service
ports:
- "7055:7055"
ipc: host
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
restart: unless-stopped
tts:
image: ${REGISTRY:-opea}/tts:${TAG:-latest}
container_name: tts-service
ports:
- "3002:9088"
ipc: host
environment:
TTS_ENDPOINT: ${TTS_ENDPOINT}
tgi-service:
image: ghcr.io/huggingface/text-generation-inference:2.4.0-intel-cpu
container_name: tgi-service
ports:
- "3006:80"
volumes:
- "./data:/data"
shm_size: 1g
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
command: --model-id ${LLM_MODEL_ID} --cuda-graphs 0
llm:
image: ${REGISTRY:-opea}/llm-tgi:${TAG:-latest}
container_name: llm-tgi-server
depends_on:
- tgi-service
ports:
- "3007:9000"
ipc: host
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
TGI_LLM_ENDPOINT: ${TGI_LLM_ENDPOINT}
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
restart: unless-stopped
wav2lip-service:
image: ${REGISTRY:-opea}/wav2lip:${TAG:-latest}
container_name: wav2lip-service
ports:
- "7860:7860"
ipc: host
volumes:
- ${PWD}:/outputs
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
DEVICE: ${DEVICE}
INFERENCE_MODE: ${INFERENCE_MODE}
CHECKPOINT_PATH: ${CHECKPOINT_PATH}
FACE: ${FACE}
AUDIO: ${AUDIO}
FACESIZE: ${FACESIZE}
OUTFILE: ${OUTFILE}
GFPGAN_MODEL_VERSION: ${GFPGAN_MODEL_VERSION}
UPSCALE_FACTOR: ${UPSCALE_FACTOR}
FPS: ${FPS}
WAV2LIP_PORT: ${WAV2LIP_PORT}
restart: unless-stopped
animation:
image: ${REGISTRY:-opea}/animation:${TAG:-latest}
container_name: animation-server
ports:
- "3008:9066"
ipc: host
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
WAV2LIP_ENDPOINT: ${WAV2LIP_ENDPOINT}
restart: unless-stopped
avatarchatbot-xeon-backend-server:
image: ${REGISTRY:-opea}/avatarchatbot:${TAG:-latest}
container_name: avatarchatbot-xeon-backend-server
depends_on:
- asr
- llm
- tts
- animation
ports:
- "3009:8888"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- MEGA_SERVICE_HOST_IP=${MEGA_SERVICE_HOST_IP}
- MEGA_SERVICE_PORT=${MEGA_SERVICE_PORT}
- ASR_SERVICE_HOST_IP=${ASR_SERVICE_HOST_IP}
- ASR_SERVICE_PORT=${ASR_SERVICE_PORT}
- LLM_SERVICE_HOST_IP=${LLM_SERVICE_HOST_IP}
- LLM_SERVICE_PORT=${LLM_SERVICE_PORT}
- TTS_SERVICE_HOST_IP=${TTS_SERVICE_HOST_IP}
- TTS_SERVICE_PORT=${TTS_SERVICE_PORT}
- ANIMATION_SERVICE_HOST_IP=${ANIMATION_SERVICE_HOST_IP}
- ANIMATION_SERVICE_PORT=${ANIMATION_SERVICE_PORT}
ipc: host
restart: always
networks:
default:
driver: bridge

View File

@@ -0,0 +1,220 @@
# Build Mega Service of AvatarChatbot on Gaudi
This document outlines the deployment process for a AvatarChatbot application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline on Intel Gaudi server.
## 🚀 Build Docker images
### 1. Source Code install GenAIComps
```bash
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
```
### 2. Build ASR Image
```bash
docker build -t opea/whisper-gaudi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/asr/whisper/dependency/Dockerfile.intel_hpu .
docker build -t opea/asr:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/asr/whisper/Dockerfile .
```
### 3. Build LLM Image
```bash
docker build --no-cache -t opea/llm-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/tgi/Dockerfile .
```
### 4. Build TTS Image
```bash
docker build -t opea/speecht5-gaudi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/tts/speecht5/dependency/Dockerfile.intel_hpu .
docker build -t opea/tts:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/tts/speecht5/Dockerfile .
```
### 5. Build Animation Image
```bash
docker build -t opea/wav2lip-gaudi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/animation/wav2lip/dependency/Dockerfile.intel_hpu .
docker build -t opea/animation:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/animation/wav2lip/Dockerfile .
```
### 6. Build MegaService Docker Image
To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `audioqna.py` Python script. Build the MegaService Docker image using the command below:
```bash
git clone https://github.com/opea-project/GenAIExamples.git
cd GenAIExamples/AvatarChatbot/
docker build --no-cache -t opea/avatarchatbot:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
```
Then run the command `docker images`, you will have following images ready:
1. `opea/whisper-gaudi:latest`
2. `opea/asr:latest`
3. `opea/llm-tgi:latest`
4. `opea/speecht5-gaudi:latest`
5. `opea/tts:latest`
6. `opea/wav2lip-gaudi:latest`
7. `opea/animation:latest`
8. `opea/avatarchatbot:latest`
## 🚀 Set the environment variables
Before starting the services with `docker compose`, you have to recheck the following environment variables.
```bash
export HUGGINGFACEHUB_API_TOKEN=<your_hf_token>
export host_ip=$(hostname -I | awk '{print $1}')
export TGI_LLM_ENDPOINT=http://$host_ip:3006
export LLM_MODEL_ID=Intel/neural-chat-7b-v3-3
export ASR_ENDPOINT=http://$host_ip:7066
export TTS_ENDPOINT=http://$host_ip:7055
export WAV2LIP_ENDPOINT=http://$host_ip:7860
export MEGA_SERVICE_HOST_IP=${host_ip}
export ASR_SERVICE_HOST_IP=${host_ip}
export TTS_SERVICE_HOST_IP=${host_ip}
export LLM_SERVICE_HOST_IP=${host_ip}
export ANIMATION_SERVICE_HOST_IP=${host_ip}
export MEGA_SERVICE_PORT=8888
export ASR_SERVICE_PORT=3001
export TTS_SERVICE_PORT=3002
export LLM_SERVICE_PORT=3007
export ANIMATION_SERVICE_PORT=3008
```
- Gaudi2 HPU
```bash
export DEVICE="hpu"
export WAV2LIP_PORT=7860
export INFERENCE_MODE='wav2lip_only'
export CHECKPOINT_PATH='/usr/local/lib/python3.10/dist-packages/Wav2Lip/checkpoints/wav2lip_gan.pth'
export FACE="assets/img/avatar1.jpg"
# export AUDIO='assets/audio/eg3_ref.wav' # audio file path is optional, will use base64str in the post request as input if is 'None'
export AUDIO='None'
export FACESIZE=96
export OUTFILE="/outputs/result.mp4"
export GFPGAN_MODEL_VERSION=1.4 # latest version, can roll back to v1.3 if needed
export UPSCALE_FACTOR=1
export FPS=10
```
## 🚀 Start the MegaService
```bash
cd GenAIExamples/AvatarChatbot/docker_compose/intel/hpu/gaudi/
docker compose -f compose.yaml up -d
```
## 🚀 Test MicroServices
```bash
# whisper service
curl http://${host_ip}:7066/v1/asr \
-X POST \
-d '{"audio": "UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA"}' \
-H 'Content-Type: application/json'
# asr microservice
curl http://${host_ip}:3001/v1/audio/transcriptions \
-X POST \
-d '{"byte_str": "UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA"}' \
-H 'Content-Type: application/json'
# tgi service
curl http://${host_ip}:3006/generate \
-X POST \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}' \
-H 'Content-Type: application/json'
# llm microservice
curl http://${host_ip}:3007/v1/chat/completions\
-X POST \
-d '{"query":"What is Deep Learning?","max_tokens":17,"top_k":10,"top_p":0.95,"typical_p":0.95,"temperature":0.01,"repetition_penalty":1.03,"streaming":false}' \
-H 'Content-Type: application/json'
# speecht5 service
curl http://${host_ip}:7055/v1/tts \
-X POST \
-d '{"text": "Who are you?"}' \
-H 'Content-Type: application/json'
# tts microservice
curl http://${host_ip}:3002/v1/audio/speech \
-X POST \
-d '{"text": "Who are you?"}' \
-H 'Content-Type: application/json'
# wav2lip service
cd ../../../..
curl http://${host_ip}:7860/v1/wav2lip \
-X POST \
-d @assets/audio/sample_minecraft.json \
-H 'Content-Type: application/json'
# animation microservice
curl http://${host_ip}:3008/v1/animation \
-X POST \
-d @assets/audio/sample_question.json \
-H "Content-Type: application/json"
```
## 🚀 Test MegaService
```bash
curl http://${host_ip}:3009/v1/avatarchatbot \
-X POST \
-d @assets/audio/sample_whoareyou.json \
-H 'Content-Type: application/json'
```
If the megaservice is running properly, you should see the following output:
```bash
"/outputs/result.mp4"
```
The output file will be saved in the current working directory, as `${PWD}` is mapped to `/outputs` inside the wav2lip-service Docker container.
## Gradio UI
```bash
sudo apt update
sudo apt install -y yasm pkg-config libx264-dev nasm
cd $WORKPATH
git clone https://github.com/FFmpeg/FFmpeg.git
cd FFmpeg
sudo ./configure --enable-gpl --enable-libx264 && sudo make -j$(nproc-1) && sudo make install && hash -r
pip install gradio==4.38.1 soundfile
```
```bash
cd $WORKPATH/GenAIExamples/AvatarChatbot
python3 ui/gradio/app_gradio_demo_avatarchatbot.py
```
The UI can be viewed at http://${host_ip}:7861
<img src="../../../../assets/img/UI.png" alt="UI Example" width="60%">
In the current version v1.0, you need to set the avatar figure image/video and the DL model choice in the environment variables before starting AvatarChatbot backend service and running the UI. Please just customize the audio question in the UI.
\*\* We will enable change of avatar figure between runs in v2.0
## Troubleshooting
```bash
cd GenAIExamples/AvatarChatbot/tests
export IMAGE_REPO="opea"
export IMAGE_TAG="latest"
export HUGGINGFACEHUB_API_TOKEN=<your_hf_token>
test_avatarchatbot_on_gaudi.sh
```

View File

@@ -0,0 +1,171 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
version: "3.8"
services:
whisper-service:
image: ${REGISTRY:-opea}/whisper-gaudi:${TAG:-latest}
container_name: whisper-service
ports:
- "7066:7066"
ipc: host
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HABANA_VISIBLE_MODULES: all
OMPI_MCA_btl_vader_single_copy_mechanism: none
runtime: habana
cap_add:
- SYS_NICE
restart: unless-stopped
asr:
image: ${REGISTRY:-opea}/asr:${TAG:-latest}
container_name: asr-service
ports:
- "3001:9099"
ipc: host
environment:
ASR_ENDPOINT: ${ASR_ENDPOINT}
speecht5-service:
image: ${REGISTRY:-opea}/speecht5-gaudi:${TAG:-latest}
container_name: speecht5-service
ports:
- "7055:7055"
ipc: host
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HABANA_VISIBLE_MODULES: all
OMPI_MCA_btl_vader_single_copy_mechanism: none
runtime: habana
cap_add:
- SYS_NICE
restart: unless-stopped
tts:
image: ${REGISTRY:-opea}/tts:${TAG:-latest}
container_name: tts-service
ports:
- "3002:9088"
ipc: host
environment:
TTS_ENDPOINT: ${TTS_ENDPOINT}
tgi-service:
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
container_name: tgi-gaudi-server
ports:
- "3006:80"
volumes:
- "./data:/data"
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HUGGING_FACE_HUB_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HF_HUB_DISABLE_PROGRESS_BARS: 1
HF_HUB_ENABLE_HF_TRANSFER: 0
HABANA_VISIBLE_MODULES: all
OMPI_MCA_btl_vader_single_copy_mechanism: none
ENABLE_HPU_GRAPH: true
LIMIT_HPU_GRAPH: true
USE_FLASH_ATTENTION: true
FLASH_ATTENTION_RECOMPUTE: true
runtime: habana
cap_add:
- SYS_NICE
ipc: host
command: --model-id ${LLM_MODEL_ID} --max-input-length 128 --max-total-tokens 256
llm:
image: ${REGISTRY:-opea}/llm-tgi:${TAG:-latest}
container_name: llm-tgi-gaudi-server
depends_on:
- tgi-service
ports:
- "3007:9000"
ipc: host
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
TGI_LLM_ENDPOINT: ${TGI_LLM_ENDPOINT}
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
restart: unless-stopped
wav2lip-service:
image: ${REGISTRY:-opea}/wav2lip-gaudi:${TAG:-latest}
container_name: wav2lip-service
ports:
- "7860:7860"
ipc: host
volumes:
- ${PWD}:/outputs
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HABANA_VISIBLE_MODULES: all
OMPI_MCA_btl_vader_single_copy_mechanism: none
DEVICE: ${DEVICE}
INFERENCE_MODE: ${INFERENCE_MODE}
CHECKPOINT_PATH: ${CHECKPOINT_PATH}
FACE: ${FACE}
AUDIO: ${AUDIO}
FACESIZE: ${FACESIZE}
OUTFILE: ${OUTFILE}
GFPGAN_MODEL_VERSION: ${GFPGAN_MODEL_VERSION}
UPSCALE_FACTOR: ${UPSCALE_FACTOR}
FPS: ${FPS}
WAV2LIP_PORT: ${WAV2LIP_PORT}
runtime: habana
cap_add:
- SYS_NICE
restart: unless-stopped
animation:
image: ${REGISTRY:-opea}/animation:${TAG:-latest}
container_name: animation-gaudi-server
ports:
- "3008:9066"
ipc: host
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HABANA_VISIBLE_MODULES: all
OMPI_MCA_btl_vader_single_copy_mechanism: none
WAV2LIP_ENDPOINT: ${WAV2LIP_ENDPOINT}
runtime: habana
cap_add:
- SYS_NICE
restart: unless-stopped
avatarchatbot-gaudi-backend-server:
image: ${REGISTRY:-opea}/avatarchatbot:${TAG:-latest}
container_name: avatarchatbot-gaudi-backend-server
depends_on:
- asr
- llm
- tts
- animation
ports:
- "3009:8888"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- MEGA_SERVICE_HOST_IP=${MEGA_SERVICE_HOST_IP}
- MEGA_SERVICE_PORT=${MEGA_SERVICE_PORT}
- ASR_SERVICE_HOST_IP=${ASR_SERVICE_HOST_IP}
- ASR_SERVICE_PORT=${ASR_SERVICE_PORT}
- LLM_SERVICE_HOST_IP=${LLM_SERVICE_HOST_IP}
- LLM_SERVICE_PORT=${LLM_SERVICE_PORT}
- TTS_SERVICE_HOST_IP=${TTS_SERVICE_HOST_IP}
- TTS_SERVICE_PORT=${TTS_SERVICE_PORT}
- ANIMATION_SERVICE_HOST_IP=${ANIMATION_SERVICE_HOST_IP}
- ANIMATION_SERVICE_PORT=${ANIMATION_SERVICE_PORT}
ipc: host
restart: always
networks:
default:
driver: bridge

View File

@@ -0,0 +1,73 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
services:
avatarchatbot:
build:
args:
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
no_proxy: ${no_proxy}
context: ../
dockerfile: ./Dockerfile
image: ${REGISTRY:-opea}/avatarchatbot:${TAG:-latest}
whisper-gaudi:
build:
context: GenAIComps
dockerfile: comps/asr/whisper/dependency/Dockerfile.intel_hpu
extends: avatarchatbot
image: ${REGISTRY:-opea}/whisper-gaudi:${TAG:-latest}
whisper:
build:
context: GenAIComps
dockerfile: comps/asr/whisper/dependency/Dockerfile
extends: avatarchatbot
image: ${REGISTRY:-opea}/whisper:${TAG:-latest}
asr:
build:
context: GenAIComps
dockerfile: comps/asr/whisper/Dockerfile
extends: avatarchatbot
image: ${REGISTRY:-opea}/asr:${TAG:-latest}
llm-tgi:
build:
context: GenAIComps
dockerfile: comps/llms/text-generation/tgi/Dockerfile
extends: avatarchatbot
image: ${REGISTRY:-opea}/llm-tgi:${TAG:-latest}
speecht5-gaudi:
build:
context: GenAIComps
dockerfile: comps/tts/speecht5/dependency/Dockerfile.intel_hpu
extends: avatarchatbot
image: ${REGISTRY:-opea}/speecht5-gaudi:${TAG:-latest}
speecht5:
build:
context: GenAIComps
dockerfile: comps/tts/speecht5/dependency/Dockerfile
extends: avatarchatbot
image: ${REGISTRY:-opea}/speecht5:${TAG:-latest}
tts:
build:
context: GenAIComps
dockerfile: comps/tts/speecht5/Dockerfile
extends: avatarchatbot
image: ${REGISTRY:-opea}/tts:${TAG:-latest}
wav2lip-gaudi:
build:
context: GenAIComps
dockerfile: comps/animation/wav2lip/dependency/Dockerfile.intel_hpu
extends: avatarchatbot
image: ${REGISTRY:-opea}/wav2lip-gaudi:${TAG:-latest}
wav2lip:
build:
context: GenAIComps
dockerfile: comps/animation/wav2lip/dependency/Dockerfile
extends: avatarchatbot
image: ${REGISTRY:-opea}/wav2lip:${TAG:-latest}
animation:
build:
context: GenAIComps
dockerfile: comps/animation/wav2lip/Dockerfile
extends: avatarchatbot
image: ${REGISTRY:-opea}/animation:${TAG:-latest}

View File

@@ -0,0 +1,147 @@
#!/bin/bash
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
set -e
IMAGE_REPO=${IMAGE_REPO:-"opea"}
IMAGE_TAG=${IMAGE_TAG:-"latest"}
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
echo "TAG=IMAGE_TAG=${IMAGE_TAG}"
export REGISTRY=${IMAGE_REPO}
export TAG=${IMAGE_TAG}
WORKPATH=$(dirname "$PWD")
LOG_PATH="$WORKPATH/tests"
if ls $LOG_PATH/*.log 1> /dev/null 2>&1; then
rm $LOG_PATH/*.log
echo "Log files removed."
else
echo "No log files to remove."
fi
ip_address=$(hostname -I | awk '{print $1}')
function build_docker_images() {
cd $WORKPATH/docker_image_build
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
service_list="avatarchatbot whisper-gaudi asr llm-tgi speecht5-gaudi tts wav2lip-gaudi animation"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker images && sleep 1s
}
function start_services() {
cd $WORKPATH/docker_compose/intel/hpu/gaudi
export HUGGINGFACEHUB_API_TOKEN=$HUGGINGFACEHUB_API_TOKEN
export host_ip=$(hostname -I | awk '{print $1}')
export TGI_LLM_ENDPOINT=http://$host_ip:3006
export LLM_MODEL_ID=Intel/neural-chat-7b-v3-3
export ASR_ENDPOINT=http://$host_ip:7066
export TTS_ENDPOINT=http://$host_ip:7055
export WAV2LIP_ENDPOINT=http://$host_ip:7860
export MEGA_SERVICE_HOST_IP=${host_ip}
export ASR_SERVICE_HOST_IP=${host_ip}
export TTS_SERVICE_HOST_IP=${host_ip}
export LLM_SERVICE_HOST_IP=${host_ip}
export ANIMATION_SERVICE_HOST_IP=${host_ip}
export MEGA_SERVICE_PORT=8888
export ASR_SERVICE_PORT=3001
export TTS_SERVICE_PORT=3002
export LLM_SERVICE_PORT=3007
export ANIMATION_SERVICE_PORT=3008
export DEVICE="hpu"
export WAV2LIP_PORT=7860
export INFERENCE_MODE='wav2lip+gfpgan'
export CHECKPOINT_PATH='/usr/local/lib/python3.10/dist-packages/Wav2Lip/checkpoints/wav2lip_gan.pth'
export FACE="assets/img/avatar1.jpg"
# export AUDIO='assets/audio/eg3_ref.wav' # audio file path is optional, will use base64str in the post request as input if is 'None'
export AUDIO='None'
export FACESIZE=96
export OUTFILE="/outputs/result.mp4"
export GFPGAN_MODEL_VERSION=1.4 # latest version, can roll back to v1.3 if needed
export UPSCALE_FACTOR=1
export FPS=10
# Start Docker Containers
docker compose up -d
n=0
until [[ "$n" -ge 100 ]]; do
docker logs tgi-gaudi-server > $LOG_PATH/tgi_service_start.log
if grep -q Connected $LOG_PATH/tgi_service_start.log; then
break
fi
sleep 5s
n=$((n+1))
done
# sleep 5m
echo "All services are up and running"
sleep 5s
}
function validate_megaservice() {
cd $WORKPATH
result=$(http_proxy="" curl http://${ip_address}:3009/v1/avatarchatbot -X POST -d @assets/audio/sample_whoareyou.json -H 'Content-Type: application/json')
echo "result is === $result"
if [[ $result == *"mp4"* ]]; then
echo "Result correct."
else
docker logs whisper-service > $LOG_PATH/whisper-service.log
docker logs asr-service > $LOG_PATH/asr-service.log
docker logs speecht5-service > $LOG_PATH/speecht5-service.log
docker logs tts-service > $LOG_PATH/tts-service.log
docker logs tgi-gaudi-server > $LOG_PATH/tgi-gaudi-server.log
docker logs llm-tgi-gaudi-server > $LOG_PATH/llm-tgi-gaudi-server.log
docker logs wav2lip-service > $LOG_PATH/wav2lip-service.log
docker logs animation-gaudi-server > $LOG_PATH/animation-gaudi-server.log
echo "Result wrong."
exit 1
fi
}
#function validate_frontend() {
#}
function stop_docker() {
cd $WORKPATH/docker_compose/intel/hpu/gaudi
docker compose down
}
function main() {
stop_docker
echo y | docker builder prune --all
echo y | docker image prune
if [[ "$IMAGE_REPO" == "opea" ]]; then build_docker_images; fi
start_services
# validate_microservices
validate_megaservice
# validate_frontend
stop_docker
echo y | docker builder prune --all
echo y | docker image prune
}
main

View File

@@ -0,0 +1,142 @@
#!/bin/bash
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
set -e
IMAGE_REPO=${IMAGE_REPO:-"opea"}
IMAGE_TAG=${IMAGE_TAG:-"latest"}
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
echo "TAG=IMAGE_TAG=${IMAGE_TAG}"
export REGISTRY=${IMAGE_REPO}
export TAG=${IMAGE_TAG}
WORKPATH=$(dirname "$PWD")
LOG_PATH="$WORKPATH/tests"
if ls $LOG_PATH/*.log 1> /dev/null 2>&1; then
rm $LOG_PATH/*.log
echo "Log files removed."
else
echo "No log files to remove."
fi
ip_address=$(hostname -I | awk '{print $1}')
function build_docker_images() {
cd $WORKPATH/docker_image_build
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
service_list="avatarchatbot whisper asr llm-tgi speecht5 tts wav2lip animation"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker images && sleep 1s
}
function start_services() {
cd $WORKPATH/docker_compose/intel/cpu/xeon
export HUGGINGFACEHUB_API_TOKEN=$HUGGINGFACEHUB_API_TOKEN
export host_ip=$(hostname -I | awk '{print $1}')
export TGI_LLM_ENDPOINT=http://$host_ip:3006
export LLM_MODEL_ID=Intel/neural-chat-7b-v3-3
export ASR_ENDPOINT=http://$host_ip:7066
export TTS_ENDPOINT=http://$host_ip:7055
export WAV2LIP_ENDPOINT=http://$host_ip:7860
export MEGA_SERVICE_HOST_IP=${host_ip}
export ASR_SERVICE_HOST_IP=${host_ip}
export TTS_SERVICE_HOST_IP=${host_ip}
export LLM_SERVICE_HOST_IP=${host_ip}
export ANIMATION_SERVICE_HOST_IP=${host_ip}
export MEGA_SERVICE_PORT=8888
export ASR_SERVICE_PORT=3001
export TTS_SERVICE_PORT=3002
export LLM_SERVICE_PORT=3007
export ANIMATION_SERVICE_PORT=3008
export DEVICE="cpu"
export WAV2LIP_PORT=7860
export INFERENCE_MODE='wav2lip+gfpgan'
export CHECKPOINT_PATH='/usr/local/lib/python3.11/site-packages/Wav2Lip/checkpoints/wav2lip_gan.pth'
export FACE="assets/img/avatar5.png"
# export AUDIO='assets/audio/eg3_ref.wav' # audio file path is optional, will use base64str in the post request as input if is 'None'
export AUDIO='None'
export FACESIZE=96
export OUTFILE="/outputs/result.mp4"
export GFPGAN_MODEL_VERSION=1.4 # latest version, can roll back to v1.3 if needed
export UPSCALE_FACTOR=1
export FPS=10
# Start Docker Containers
docker compose up -d
n=0
until [[ "$n" -ge 100 ]]; do
docker logs tgi-service > $LOG_PATH/tgi_service_start.log
if grep -q Connected $LOG_PATH/tgi_service_start.log; then
break
fi
sleep 5s
n=$((n+1))
done
echo "All services are up and running"
sleep 5s
}
function validate_megaservice() {
cd $WORKPATH
result=$(http_proxy="" curl http://${ip_address}:3009/v1/avatarchatbot -X POST -d @assets/audio/sample_whoareyou.json -H 'Content-Type: application/json')
echo "result is === $result"
if [[ $result == *"mp4"* ]]; then
echo "Result correct."
else
docker logs whisper-service > $LOG_PATH/whisper-service.log
docker logs asr-service > $LOG_PATH/asr-service.log
docker logs speecht5-service > $LOG_PATH/speecht5-service.log
docker logs tts-service > $LOG_PATH/tts-service.log
docker logs tgi-service > $LOG_PATH/tgi-service.log
docker logs llm-tgi-server > $LOG_PATH/llm-tgi-server.log
docker logs wav2lip-service > $LOG_PATH/wav2lip-service.log
docker logs animation-server > $LOG_PATH/animation-server.log
echo "Result wrong."
exit 1
fi
}
#function validate_frontend() {
#}
function stop_docker() {
cd $WORKPATH/docker_compose/intel/cpu/xeon
docker compose down
}
function main() {
stop_docker
if [[ "$IMAGE_REPO" == "opea" ]]; then build_docker_images; fi
start_services
# validate_microservices
validate_megaservice
# validate_frontend
stop_docker
echo y | docker builder prune --all
echo y | docker image prune
}
main

View File

@@ -0,0 +1,349 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import asyncio
import base64
import io
import os
import shutil
import subprocess
import time
import aiohttp
import docker
import ffmpeg
import gradio as gr
import numpy as np
import soundfile as sf
from PIL import Image
# %% Docker Management
def update_env_var_in_container(container_name, env_var, new_value):
return
# %% AudioQnA functions
def preprocess_audio(audio):
"""The audio data is a 16-bit integer array with values ranging from -32768 to 32767 and the shape of the audio data array is (samples,)"""
sr, y = audio
# Convert to normalized float32 audio
y = y.astype(np.float32)
y /= np.max(np.abs(y))
# Save to memory
buf = io.BytesIO()
sf.write(buf, y, sr, format="WAV")
buf.seek(0) # Reset the buffer position to the beginning
# Encode the WAV file to base64 string
base64_bytes = base64.b64encode(buf.read())
base64_string = base64_bytes.decode("utf-8")
return base64_string
def base64_to_int16(base64_string):
wav_bytes = base64.b64decode(base64_string)
buf = io.BytesIO(wav_bytes)
y, sr = sf.read(buf, dtype="int16")
return sr, y
async def transcribe(audio_input, face_input, model_choice):
"""Input: mic audio; Output: ai audio, text, text"""
global ai_chatbot_url, chat_history, count
chat_history = ""
# Preprocess the audio
base64bytestr = preprocess_audio(audio_input)
# Send the audio to the AvatarChatbot backend server endpoint
initial_inputs = {"audio": base64bytestr, "max_tokens": 64}
# TO-DO: update wav2lip-service with the chosen face_input
# update_env_var_in_container("wav2lip-service", "DEVICE", "new_device_value")
async with aiohttp.ClientSession() as session:
async with session.post(ai_chatbot_url, json=initial_inputs) as response:
# Check the response status code
if response.status == 200:
# response_json = await response.json()
# # Decode the base64 string
# sampling_rate, audio_int16 = base64_to_int16(response_json["byte_str"])
# chat_history += f"User: {response_json['query']}\n\n"
# chat_ai = response_json["text"]
# hitted_ends = [",", ".", "?", "!", "。", ";"]
# last_punc_idx = max([chat_ai.rfind(punc) for punc in hitted_ends])
# if last_punc_idx != -1:
# chat_ai = chat_ai[: last_punc_idx + 1]
# chat_history += f"AI: {chat_ai}"
# chat_history = chat_history.replace("OPEX", "OPEA")
# return (sampling_rate, audio_int16) # handle the response
result = await response.text()
return "docker_compose/intel/hpu/gaudi/result.mp4"
else:
return {"error": "Failed to transcribe audio", "status_code": response.status_code}
def resize_image(image_pil, size=(720, 720)):
"""Resize the image to the specified size."""
return image_pil.resize(size, Image.LANCZOS)
def resize_video(video_path, save_path, size=(720, 1280)):
"""Resize the video to the specified size, and save to the save path."""
ffmpeg.input(video_path).output(save_path, vf=f"scale={size[0]}:{size[1]}").overwrite_output().run()
# %% AI Avatar demo function
async def aiavatar_demo(audio_input, face_input, model_choice):
"""Input: mic/preloaded audio, avatar file path;
Output: ai video"""
# Wait for response from AvatarChatbot backend
output_video = await transcribe(audio_input, face_input, model_choice) # output video path
if isinstance(output_video, dict): # in case of an error
return None, None
else:
return output_video
# %% Main
if __name__ == "__main__":
# HOST_IP = os.getenv("host_ip")
HOST_IP = subprocess.check_output("hostname -I | awk '{print $1}'", shell=True).decode("utf-8").strip()
# Fetch the AudioQnA backend server
ai_chatbot_url = f"http://{HOST_IP}:3009/v1/avatarchatbot"
# Collect chat history to print in the interface
chat_history = ""
# Prepare 3 image paths and 3 video paths
# image_pils = [
# Image.open(os.path.join("assets/img/woman1.png")),
# Image.open(os.path.join("assets/img/man1.png")),
# Image.open(os.path.join("assets/img/woman2.png")),
# ]
# video_paths = [
# os.path.join("assets/video/man1.mp4"),
# os.path.join("assets/video/woman2.mp4"),
# os.path.join("assets/video/man4.mp4"),
# ]
def image_to_base64(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
# Convert your images to Base64
xeon_base64 = image_to_base64("assets/img/xeon.jpg")
gaudi_base64 = image_to_base64("assets/img/gaudi.png")
# List of prerecorded WAV files containing audio questions
# audio_filepaths = [
# "assets/audio/intel2.wav",
# "assets/audio/intel4.wav",
# ]
# audio_questions = [
# "1. What's the objective of the Open Platform for Enterprise AI? How is it helpful to enterprises building AI solutions?",
# "2. What kinds of Intel AI tools are available to accelerate AI workloads?",
# ]
# Demo frontend
demo = gr.Blocks()
with demo:
# Define processing functions
count = 0
# Make necessary folders:
if not os.path.exists("inputs"):
os.makedirs("inputs")
if not os.path.exists("outputs"):
os.makedirs("outputs")
def initial_process(audio_input, face_input, model_choice):
global count
start_time = time.time()
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
video_file = loop.run_until_complete(aiavatar_demo(audio_input, face_input, model_choice))
count += 1
end_time = time.time()
return video_file, f"The entire application took {(end_time - start_time):.1f} seconds"
# def update_selected_image_state(image_index):
# image_index = int(image_index)
# selected_image_state.value = image_index
# # change image_input here
# if image_index < len(image_pils):
# return f"inputs/face_{image_index}.png"
# else:
# return f"inputs/video_{image_index - len(image_pils)}.mp4"
# def update_audio_input(audio_choice):
# if audio_choice:
# audio_index = int(audio_choice.split(".")[0]) - 1
# audio_filepath_gradio = f"inputs/audio_{audio_index:d}.wav"
# shutil.copyfile(audio_filepaths[audio_index], audio_filepath_gradio)
# return audio_filepath_gradio
# UI Components
# Title & Introduction
gr.Markdown("<h1 style='font-size: 36px;'>A PyTorch and OPEA based AI Avatar Audio Chatbot</h1>")
with gr.Row():
with gr.Column(scale=8):
gr.Markdown(
"""
<p style='font-size: 24px;'>Welcome to our AI Avatar Audio Chatbot! This application leverages PyTorch and <strong>OPEA (Open Platform for Enterprise AI) v0.8</strong> to provide you with a human-like conversational experience. It's run on Intel® Gaudi® AI Accelerator and Intel® Xeon® Processor, with hardware and software optimizations.<br>
Please feel free to interact with the AI avatar by choosing your own avatar and talking into the mic.</p>
"""
)
with gr.Column(scale=1):
# with gr.Row():
# gr.Markdown(f"""
# <img src='data:image/png;base64,{opea_qr_base64}' alt='OPEA QR Code' style='width: 150px; height: auto;'>
# """, label="OPEA QR Code")
# gr.Markdown(f"""
# <img src='data:image/png;base64,{opea_gh_qr_base64}' alt='OPEA GitHub QR Code' style='width: 150px; height: auto;'>
# """, label="OPEA GitHub QR Code")
with gr.Row():
gr.Markdown(
f"""
<img src='data:image/png;base64,{gaudi_base64}' alt='Intel®Gaudi' style='width: 120px; height: auto;'>""",
label="Intel®Gaudi",
)
gr.Markdown(
f"""
<img src='data:image/png;base64,{xeon_base64}' alt='Intel®Xeon' style='width: 120px; height: auto;'>""",
label="Intel®Xeon",
)
gr.Markdown("<hr>") # Divider
# Inputs
# Image gallery
selected_image_state = gr.State(value=-1)
image_clicks = []
image_click_buttons = []
video_clicks = []
video_click_buttons = []
with gr.Row():
with gr.Column(scale=1):
audio_input = gr.Audio(
sources=["upload", "microphone"], format="wav", label="🎤 or 📤 for your Input audio!"
)
# audio_choice = gr.Dropdown(
# choices=audio_questions,
# label="Choose an audio question",
# value=None, # default value
# )
# Update audio_input when a selection is made from the dropdown
# audio_choice.change(fn=update_audio_input, inputs=audio_choice, outputs=audio_input)
face_input = gr.File(
file_count="single",
file_types=["image", "video"],
label="Choose an avatar or 📤 an image or video!",
)
model_choice = gr.Dropdown(
choices=["wav2lip", "wav2lip+GAN", "wav2lip+GFPGAN"],
label="Choose a DL model",
)
# with gr.Column(scale=2):
# # Display 3 images and buttons
# with gr.Row():
# for i, image_pil in enumerate(image_pils):
# image_pil = resize_image(image_pil)
# save_path = f"inputs/face_{int(i)}.png"
# image_pil.save(save_path, "PNG")
# image_clicks.append(gr.Image(type="filepath", value=save_path, label=f"Avatar {int(i)+1}"))
# with gr.Row():
# for i in range(len(image_pils)):
# image_click_buttons.append(gr.Button(f"Use Image {i+1}"))
# # Display 3 videos and buttons
# with gr.Row():
# for i, video_path in enumerate(video_paths):
# save_path = f"inputs/video_{int(i)}.mp4"
# resize_video(video_path, save_path)
# video_clicks.append(gr.Video(value=save_path, label=f"Video {int(i)+1}"))
# with gr.Row():
# for i in range(len(video_paths)):
# video_click_buttons.append(gr.Button(f"Use Video {int(i)+1}"))
submit_button = gr.Button("Submit")
# Outputs
gr.Markdown("<hr>") # Divider
with gr.Row():
with gr.Column():
video_output = gr.Video(label="Your AI Avatar video: ", format="mp4", width=1280, height=720)
video_time_text = gr.Textbox(label="Video processing time", value="0.0 seconds")
# Technical details
gr.Markdown("<hr>") # Divider
with gr.Row():
gr.Markdown(
"""
<p style='font-size: 24px;'>OPEA megaservice deployed: <br>
<ul style='font-size: 24px;'>
<li><strong>AvatarChatbot</strong></li>
</ul></p>
<p style='font-size: 24px;'>OPEA microservices deployed:
<ul style='font-size: 24px;'>
<li><strong>ASR</strong> (service: opea/whisper-gaudi, model: openai/whisper-small)</li>
<li><strong>LLM 'text-generation'</strong> (service: opea/llm-tgi, model: Intel/neural-chat-7b-v3-3)</li>
<li><strong>TTS</strong> (service: opea/speecht5-gaudi, model: microsoft/speecht5_tts)</li>
<li><strong>Animation</strong> (service: opea/animation, model: wav2lip+gfpgan)</li>
</ul></p>
"""
)
with gr.Row():
gr.Image("assets/img/flowchart.png", label="Megaservice Flowchart")
with gr.Row():
gr.Markdown(
"""
<p style='font-size: 24px;'>The AI Avatar Audio Chatbot is powered by the following Intel® AI software:<br>
<ul style='font-size: 24px;'>
<li><strong>Intel Gaudi Software v1.17.0</strong></li>
<li><strong>PyTorch v2.3.1 (Eager mode + torch.compile) </strong></li>
<li><strong>HPU Graph</strong></li>
<li><strong>Intel Neural Compressor (INC)</strong></li>
</ul></p>
"""
)
# Disclaimer
gr.Markdown("<hr>") # Divider
gr.Markdown("<h2 style='font-size: 24px;'>Notices & Disclaimers</h1>")
gr.Markdown(
"""
<p style='font-size: 20px;'>Intel is committed to respecting human rights and avoiding complicity in human rights abuses. See Intel's Global Human Rights Principles. Intel's products and software are intended only to be used in applications that do not cause or contribute to a violation of an internationally recognized human right.<br></p>
<p style='font-size: 20px;'>© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.<br></p>
<p style='font-size: 20px;'>You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.<br></p>
"""
)
# State transitions
# for i in range(len(image_pils)):
# image_click_buttons[i].click(
# update_selected_image_state, inputs=[gr.Number(value=i, visible=False)], outputs=[face_input]
# )
# for i in range(len(video_paths)):
# video_click_buttons[i].click(
# update_selected_image_state,
# inputs=[gr.Number(value=i + len(image_pils), visible=False)],
# outputs=[face_input],
# )
submit_button.click(
initial_process,
inputs=[audio_input, face_input, model_choice],
outputs=[
video_output,
video_time_text,
],
)
demo.queue().launch(server_name="0.0.0.0", server_port=7861)

View File

@@ -19,7 +19,8 @@ RUN git clone https://github.com/opea-project/GenAIComps.git
WORKDIR /home/user/GenAIComps
RUN pip install --no-cache-dir --upgrade pip && \
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt && \
pip install --no-cache-dir langchain_core
COPY ./chatqna.py /home/user/chatqna.py

View File

@@ -19,9 +19,10 @@ RUN git clone https://github.com/opea-project/GenAIComps.git
WORKDIR /home/user/GenAIComps
RUN pip install --no-cache-dir --upgrade pip && \
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt && \
pip install --no-cache-dir langchain_core
COPY ./chatqna_guardrails.py /home/user/chatqna_guardrails.py
COPY ./chatqna.py /home/user/chatqna.py
ENV PYTHONPATH=$PYTHONPATH:/home/user/GenAIComps
@@ -31,4 +32,4 @@ WORKDIR /home/user
RUN echo 'ulimit -S -n 999999' >> ~/.bashrc
ENTRYPOINT ["python", "chatqna_guardrails.py"]
ENTRYPOINT ["python", "chatqna.py", "--with-guardrails"]

View File

@@ -6,9 +6,9 @@
FROM python:3.11-slim
RUN apt-get update -y && apt-get install -y --no-install-recommends --fix-missing \
git \
libgl1-mesa-glx \
libjemalloc-dev \
git
libjemalloc-dev
RUN useradd -m -s /bin/bash user && \
mkdir -p /home/user && \
@@ -19,9 +19,10 @@ RUN git clone https://github.com/opea-project/GenAIComps.git
WORKDIR /home/user/GenAIComps
RUN pip install --no-cache-dir --upgrade pip && \
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt && \
pip install --no-cache-dir langchain_core
COPY ./chatqna_without_rerank.py /home/user/chatqna_without_rerank.py
COPY ./chatqna.py /home/user/chatqna.py
ENV PYTHONPATH=$PYTHONPATH:/home/user/GenAIComps
@@ -31,4 +32,4 @@ WORKDIR /home/user
RUN echo 'ulimit -S -n 999999' >> ~/.bashrc
ENTRYPOINT ["python", "chatqna_without_rerank.py"]
ENTRYPOINT ["python", "chatqna.py", "--without-rerank"]

View File

@@ -206,8 +206,6 @@ cd GenAIExamples/ChatQnA/docker_compose/intel/hpu/gaudi/
docker compose up -d
```
> Notice: Currently only the **Habana Driver 1.16.x** is supported for Gaudi.
Refer to the [Gaudi Guide](./docker_compose/intel/hpu/gaudi/README.md) to build docker images from source.
### Deploy ChatQnA on Xeon

View File

@@ -0,0 +1,170 @@
# ChatQnA Accuracy
ChatQnA is a Retrieval-Augmented Generation (RAG) pipeline, which can enhance generative models through external information retrieval.
For evaluating the accuracy, we use 2 latest published datasets and 10+ metrics which are popular and comprehensive:
- Dataset
- [MultiHop](https://arxiv.org/pdf/2401.15391) (English dataset)
- [CRUD](https://arxiv.org/abs/2401.17043) (Chinese dataset)
- metrics (measure accuracy of both the context retrieval and response generation)
- evaluation for retrieval/reranking
- MRR@10
- MAP@10
- Hits@10
- Hits@4
- LLM-as-a-Judge
- evaluation for the generated response from the end-to-end pipeline
- BLEU
- ROGUE(L)
- LLM-as-a-Judge
## Prerequisite
### Environment
```bash
git clone https://github.com/opea-project/GenAIEval
cd GenAIEval
pip install -r requirements.txt
pip install -e .
```
## MultiHop (English dataset)
[MultiHop-RAG](https://arxiv.org/pdf/2401.15391): a QA dataset to evaluate retrieval and reasoning across documents with metadata in the RAG pipelines. It contains 2556 queries, with evidence for each query distributed across 2 to 4 documents. The queries also involve document metadata, reflecting complex scenarios commonly found in real-world RAG applications.
### Launch Service of RAG System
Please refer to this [guide](https://github.com/opea-project/GenAIExamples/blob/main/ChatQnA/README.md) to launch the service of `ChatQnA`.
### Launch Service of LLM-as-a-Judge
To setup a LLM model, we can use [tgi-gaudi](https://github.com/huggingface/tgi-gaudi) to launch a service. For example, the follow command is to setup the [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) model on 2 Gaudi2 cards:
```
# please set your llm_port and hf_token
docker run -p {your_llm_port}:80 --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e PT_HPU_ENABLE_LAZY_COLLECTIVES=true -e OMPI_MCA_btl_vader_single_copy_mechanism=none -e HF_TOKEN={your_hf_token} --cap-add=sys_nice --ipc=host ghcr.io/huggingface/tgi-gaudi:2.0.1 --model-id mistralai/Mixtral-8x7B-Instruct-v0.1 --max-input-tokens 2048 --max-total-tokens 4096 --sharded true --num-shard 2
# for better performance, set `PREFILL_BATCH_BUCKET_SIZE`, `BATCH_BUCKET_SIZE`, `max-batch-total-tokens`, `max-batch-prefill-tokens`
docker run -p {your_llm_port}:80 --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e PT_HPU_ENABLE_LAZY_COLLECTIVES=true -e OMPI_MCA_btl_vader_single_copy_mechanism=none -e HF_TOKEN={your_hf_token} -e PREFILL_BATCH_BUCKET_SIZE=1 -e BATCH_BUCKET_SIZE=8 --cap-add=sys_nice --ipc=host ghcr.io/huggingface/tgi-gaudi:2.0.5 --model-id mistralai/Mixtral-8x7B-Instruct-v0.1 --max-input-tokens 2048 --max-total-tokens 4096 --sharded true --num-shard 2 --max-batch-total-tokens 65536 --max-batch-prefill-tokens 2048
```
### Prepare Dataset
We use the evaluation dataset from [MultiHop-RAG](https://github.com/yixuantt/MultiHop-RAG) repo, use the below command to prepare the dataset.
```bash
git clone https://github.com/yixuantt/MultiHop-RAG.git
```
### Evaluation
Use below command to run the evaluation, please note that for the first run, argument `--ingest_docs` should be added in the command to ingest the documents into the vector database, while for the subsequent run, this argument should be omitted. Set `--retrieval_metrics` to get retrieval related metrics (MRR@10/MAP@10/Hits@10/Hits@4). Set `--ragas_metrics` and `--llm_endpoint` to get end-to-end rag pipeline metrics (faithfulness/answer_relevancy/...), which are judged by LLMs. We set `--limits` is 100 as default, which means only 100 examples are evaluated by llm-as-judge as it is very time consuming.
If you are using docker compose to deploy `ChatQnA` system, you can simply run the evaluation as following:
```bash
python eval_multihop.py --docs_path MultiHop-RAG/dataset/corpus.json --dataset_path MultiHop-RAG/dataset/MultiHopRAG.json --ingest_docs --retrieval_metrics --ragas_metrics --llm_endpoint http://{llm_as_judge_ip}:{llm_as_judge_port}/generate
```
If you are using Kubernetes manifest/helm to deploy `ChatQnA` system, you must specify more arguments as following:
```bash
python eval_multihop.py --docs_path MultiHop-RAG/dataset/corpus.json --dataset_path MultiHop-RAG/dataset/MultiHopRAG.json --ingest_docs --retrieval_metrics --ragas_metrics --llm_endpoint http://{llm_as_judge_ip}:{llm_as_judge_port}/generate --database_endpoint http://{your_dataprep_ip}:{your_dataprep_port}/v1/dataprep --embedding_endpoint http://{your_embedding_ip}:{your_embedding_port}/v1/embeddings --tei_embedding_endpoint http://{your_tei_embedding_ip}:{your_tei_embedding_port} --retrieval_endpoint http://{your_retrieval_ip}:{your_retrieval_port}/v1/retrieval --service_url http://{your_chatqna_ip}:{your_chatqna_port}/v1/chatqna
```
The default values for arguments are:
|Argument|Default value|
|--------|-------------|
|service_url|http://localhost:8888/v1/chatqna|
|database_endpoint|http://localhost:6007/v1/dataprep|
|embedding_endpoint|http://localhost:6000/v1/embeddings|
|tei_embedding_endpoint|http://localhost:8090|
|retrieval_endpoint|http://localhost:7000/v1/retrieval|
|reranking_endpoint|http://localhost:8000/v1/reranking|
|output_dir|./output|
|temperature|0.1|
|max_new_tokens|1280|
|chunk_size|256|
|chunk_overlap|100|
|search_type|similarity|
|retrival_k|10|
|fetch_k|20|
|lambda_mult|0.5|
|dataset_path|None|
|docs_path|None|
|limits|100|
You can check arguments details use below command:
```bash
python eval_multihop.py --help
```
## CRUD (Chinese dataset)
[CRUD-RAG](https://arxiv.org/abs/2401.17043) is a Chinese benchmark for RAG (Retrieval-Augmented Generation) system. This example utilize CRUD-RAG for evaluating the RAG system.
### Prepare Dataset
We use the evaluation dataset from [CRUD-RAG](https://github.com/IAAR-Shanghai/CRUD_RAG) repo, use the below command to prepare the dataset.
```bash
git clone https://github.com/IAAR-Shanghai/CRUD_RAG
mkdir data/
cp CRUD_RAG/data/crud_split/split_merged.json data/
cp -r CRUD_RAG/data/80000_docs/ data/
python process_crud_dataset.py
```
### Launch Service of RAG System
Please refer to this [guide](https://github.com/opea-project/GenAIExamples/blob/main/ChatQnA/README.md) to launch the service of `ChatQnA` system. For Chinese dataset, you should replace the English emebdding and llm model with Chinese, for example, `EMBEDDING_MODEL_ID="BAAI/bge-base-zh-v1.5"` and `LLM_MODEL_ID=Qwen/Qwen2-7B-Instruct`.
### Evaluation
Use below command to run the evaluation, please note that for the first run, argument `--ingest_docs` should be added in the command to ingest the documents into the vector database, while for the subsequent run, this argument should be omitted.
If you are using docker compose to deploy `ChatQnA` system, you can simply run the evaluation as following:
```bash
python eval_crud.py --dataset_path ./data/split_merged.json --docs_path ./data/80000_docs --ingest_docs
# if you want to get ragas metrics
python eval_crud.py --dataset_path ./data/split_merged.json --docs_path ./data/80000_docs --contain_original_data --llm_endpoint "http://{llm_as_judge_ip}:{llm_as_judge_port}" --ragas_metrics
```
If you are using Kubernetes manifest/helm to deploy `ChatQnA` system, you must specify more arguments as following:
```bash
python eval_crud.py --dataset_path ./data/split_merged.json --docs_path ./data/80000_docs --ingest_docs --database_endpoint http://{your_dataprep_ip}:{your_dataprep_port}/v1/dataprep --embedding_endpoint http://{your_embedding_ip}:{your_embedding_port}/v1/embeddings --retrieval_endpoint http://{your_retrieval_ip}:{your_retrieval_port}/v1/retrieval --service_url http://{your_chatqna_ip}:{your_chatqna_port}/v1/chatqna
```
The default values for arguments are:
|Argument|Default value|
|--------|-------------|
|service_url|http://localhost:8888/v1/chatqna|
|database_endpoint|http://localhost:6007/v1/dataprep|
|embedding_endpoint|http://localhost:6000/v1/embeddings|
|retrieval_endpoint|http://localhost:7000/v1/retrieval|
|reranking_endpoint|http://localhost:8000/v1/reranking|
|output_dir|./output|
|temperature|0.1|
|max_new_tokens|1280|
|chunk_size|256|
|chunk_overlap|100|
|dataset_path|./data/split_merged.json|
|docs_path|./data/80000_docs|
|tasks|["question_answering"]|
You can check arguments details use below command:
```bash
python eval_crud.py --help
```
## Acknowledgements
This example is mostly adapted from [MultiHop-RAG](https://github.com/yixuantt/MultiHop-RAG) and [CRUD-RAG](https://github.com/IAAR-Shanghai/CRUD_RAG) repo, we thank the authors for their great work!

View File

@@ -0,0 +1,210 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import argparse
import json
import os
from evals.evaluation.rag_eval import Evaluator
from evals.evaluation.rag_eval.template import CRUDTemplate
from evals.metrics.ragas import RagasMetric
from tqdm import tqdm
class CRUD_Evaluator(Evaluator):
def get_ground_truth_text(self, data: dict):
if self.task == "summarization":
ground_truth_text = data["summary"]
elif self.task == "question_answering":
ground_truth_text = data["answers"]
elif self.task == "continuation":
ground_truth_text = data["continuing"]
elif self.task == "hallucinated_modified":
ground_truth_text = data["hallucinatedMod"]
else:
raise NotImplementedError(
f"Unknown task {self.task}, only support "
"summarization, question_answering, continuation and hallucinated_modified."
)
return ground_truth_text
def get_query(self, data: dict):
if self.task == "summarization":
query = data["text"]
elif self.task == "question_answering":
query = data["questions"]
elif self.task == "continuation":
query = data["beginning"]
elif self.task == "hallucinated_modified":
query = data["newsBeginning"]
else:
raise NotImplementedError(
f"Unknown task {self.task}, only support "
"summarization, question_answering, continuation and hallucinated_modified."
)
return query
def get_document(self, data: dict):
if self.task == "summarization":
document = data["text"]
elif self.task == "question_answering":
document = data["news1"]
elif self.task == "continuation":
document = data["beginning"]
elif self.task == "hallucinated_modified":
document = data["newsBeginning"]
else:
raise NotImplementedError(
f"Unknown task {self.task}, only support "
"summarization, question_answering, continuation and hallucinated_modified."
)
return document
def get_template(self):
if self.task == "summarization":
template = CRUDTemplate.get_summarization_template()
elif self.task == "question_answering":
template = CRUDTemplate.get_question_answering_template()
elif self.task == "continuation":
template = CRUDTemplate.get_continuation_template()
else:
raise NotImplementedError(
f"Unknown task {self.task}, only support "
"summarization, question_answering, continuation and hallucinated_modified."
)
return template
def post_process(self, result):
return result.split("<response>")[-1].split("</response>")[0].strip()
def get_ragas_metrics(self, results, arguments):
from langchain_huggingface import HuggingFaceEndpointEmbeddings
embeddings = HuggingFaceEndpointEmbeddings(model=arguments.tei_embedding_endpoint)
metric = RagasMetric(
threshold=0.5,
model=arguments.llm_endpoint,
embeddings=embeddings,
metrics=["faithfulness", "answer_relevancy"],
)
all_answer_relevancy = 0
all_faithfulness = 0
ragas_inputs = {
"question": [],
"answer": [],
"ground_truth": [],
"contexts": [],
}
valid_results = self.remove_invalid(results["results"])
for data in tqdm(valid_results):
data = data["original_data"]
query = self.get_query(data)
generated_text = data["generated_text"]
ground_truth = data["ground_truth_text"]
retrieved_documents = data["retrieved_documents"]
ragas_inputs["question"].append(query)
ragas_inputs["answer"].append(generated_text)
ragas_inputs["ground_truth"].append(ground_truth)
ragas_inputs["contexts"].append(retrieved_documents[:3])
ragas_metrics = metric.measure(ragas_inputs)
return ragas_metrics
def args_parser():
parser = argparse.ArgumentParser()
parser.add_argument(
"--service_url", type=str, default="http://localhost:8888/v1/chatqna", help="Service URL address."
)
parser.add_argument("--output_dir", type=str, default="./output", help="Directory to save evaluation results.")
parser.add_argument(
"--temperature", type=float, default=0.1, help="Controls the randomness of the model's text generation"
)
parser.add_argument(
"--max_new_tokens", type=int, default=1280, help="Maximum number of new tokens to be generated by the model"
)
parser.add_argument(
"--chunk_size", type=int, default=256, help="the maximum number of characters that a chunk can contain"
)
parser.add_argument(
"--chunk_overlap",
type=int,
default=100,
help="the number of characters that should overlap between two adjacent chunks",
)
parser.add_argument("--dataset_path", default="../data/split_merged.json", help="Path to the dataset")
parser.add_argument("--docs_path", default="../data/80000_docs", help="Path to the retrieval documents")
# Retriever related options
parser.add_argument("--tasks", default=["question_answering"], nargs="+", help="Task to perform")
parser.add_argument("--ingest_docs", action="store_true", help="Whether to ingest documents to vector database")
parser.add_argument(
"--database_endpoint", type=str, default="http://localhost:6007/v1/dataprep", help="Service URL address."
)
parser.add_argument(
"--embedding_endpoint", type=str, default="http://localhost:6000/v1/embeddings", help="Service URL address."
)
parser.add_argument(
"--retrieval_endpoint", type=str, default="http://localhost:7000/v1/retrieval", help="Service URL address."
)
parser.add_argument(
"--tei_embedding_endpoint",
type=str,
default="http://localhost:8090",
help="Service URL address of tei embedding.",
)
parser.add_argument("--ragas_metrics", action="store_true", help="Whether to compute ragas metrics.")
parser.add_argument("--llm_endpoint", type=str, default=None, help="Service URL address.")
parser.add_argument(
"--show_progress_bar", action="store", default=True, type=bool, help="Whether to show a progress bar"
)
parser.add_argument("--contain_original_data", action="store_true", help="Whether to contain original data")
args = parser.parse_args()
return args
def main():
args = args_parser()
if os.path.isfile(args.dataset_path):
with open(args.dataset_path) as f:
all_datasets = json.load(f)
else:
raise FileNotFoundError(f"Evaluation dataset file {args.dataset_path} not exist.")
os.makedirs(args.output_dir, exist_ok=True)
for task in args.tasks:
if task == "question_answering":
dataset = all_datasets["questanswer_1doc"]
elif task == "summarization":
dataset = all_datasets["event_summary"]
else:
raise NotImplementedError(
f"Unknown task {task}, only support "
"summarization, question_answering, continuation and hallucinated_modified."
)
output_save_path = os.path.join(args.output_dir, f"{task}.json")
evaluator = CRUD_Evaluator(dataset=dataset, output_path=output_save_path, task=task)
if args.ingest_docs:
CRUD_Evaluator.ingest_docs(args.docs_path, args.database_endpoint, args.chunk_size, args.chunk_overlap)
results = evaluator.evaluate(
args, show_progress_bar=args.show_progress_bar, contain_original_data=args.contain_original_data
)
print(results["overall"])
if args.ragas_metrics:
ragas_metrics = evaluator.get_ragas_metrics(results, args)
print(ragas_metrics)
print(f"Evaluation results of task {task} saved to {output_save_path}.")
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,279 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import argparse
import json
import os
import requests
from evals.evaluation.rag_eval import Evaluator
from evals.metrics.ragas import RagasMetric
from evals.metrics.retrieval import RetrievalBaseMetric
from tqdm import tqdm
class MultiHop_Evaluator(Evaluator):
def get_ground_truth_text(self, data: dict):
return data["answer"]
def get_query(self, data: dict):
return data["query"]
def get_template(self):
return None
def get_reranked_documents(self, query, docs, arguments):
data = {
"initial_query": query,
"retrieved_docs": [{"text": doc} for doc in docs],
"top_n": 10,
}
headers = {"Content-Type": "application/json"}
response = requests.post(arguments.reranking_endpoint, data=json.dumps(data), headers=headers)
if response.ok:
reranked_documents = response.json()["documents"]
return reranked_documents
else:
print(f"Request for retrieval failed due to {response.text}.")
return []
def get_retrieved_documents(self, query, arguments):
data = {"inputs": query}
headers = {"Content-Type": "application/json"}
response = requests.post(arguments.tei_embedding_endpoint + "/embed", data=json.dumps(data), headers=headers)
if response.ok:
embedding = response.json()[0]
else:
print(f"Request for embedding failed due to {response.text}.")
return []
data = {
"text": query,
"embedding": embedding,
"search_type": arguments.search_type,
"k": arguments.retrival_k,
"fetch_k": arguments.fetch_k,
"lambda_mult": arguments.lambda_mult,
}
response = requests.post(arguments.retrieval_endpoint, data=json.dumps(data), headers=headers)
if response.ok:
retrieved_documents = response.json()["retrieved_docs"]
return [doc["text"] for doc in retrieved_documents]
else:
print(f"Request for retrieval failed due to {response.text}.")
return []
def get_retrieval_metrics(self, all_queries, arguments):
print("start to retrieve...")
metric = RetrievalBaseMetric()
hits_at_10 = 0
hits_at_4 = 0
map_at_10 = 0
mrr_at_10 = 0
total = 0
for data in tqdm(all_queries):
if data["question_type"] == "null_query":
continue
query = data["query"]
retrieved_documents = self.get_retrieved_documents(query, arguments)
if arguments.rerank:
retrieved_documents = self.get_reranked_documents(query, retrieved_documents, arguments)
golden_context = [each["fact"] for each in data["evidence_list"]]
test_case = {
"input": query,
"golden_context": golden_context,
"retrieval_context": retrieved_documents,
}
results = metric.measure(test_case)
hits_at_10 += results["Hits@10"]
hits_at_4 += results["Hits@4"]
map_at_10 += results["MAP@10"]
mrr_at_10 += results["MRR@10"]
total += 1
# Calculate average metrics over all queries
hits_at_10 = hits_at_10 / total
hits_at_4 = hits_at_4 / total
map_at_10 = map_at_10 / total
mrr_at_10 = mrr_at_10 / total
return {
"Hits@10": hits_at_10,
"Hits@4": hits_at_4,
"MAP@10": map_at_10,
"MRR@10": mrr_at_10,
}
def evaluate(self, all_queries, arguments):
results = []
accuracy = 0
index = 0
for data in tqdm(all_queries):
if data["question_type"] == "null_query":
continue
generated_text = self.send_request(data, arguments)
data["generated_text"] = generated_text
# same method with paper: https://github.com/yixuantt/MultiHop-RAG/issues/8
if data["answer"] in generated_text:
accuracy += 1
result = {"id": index, **self.scoring(data)}
results.append(result)
index += 1
valid_results = self.remove_invalid(results)
try:
overall = self.compute_overall(valid_results) if len(valid_results) > 0 else {}
except Exception as e:
print(repr(e))
overall = dict()
overall.update({"accuracy": accuracy / len(results)})
return overall
def get_ragas_metrics(self, all_queries, arguments):
from langchain_huggingface import HuggingFaceEndpointEmbeddings
embeddings = HuggingFaceEndpointEmbeddings(model=arguments.tei_embedding_endpoint)
metric = RagasMetric(threshold=0.5, model=arguments.llm_endpoint, embeddings=embeddings)
all_answer_relevancy = 0
all_faithfulness = 0
ragas_inputs = {
"question": [],
"answer": [],
"ground_truth": [],
"contexts": [],
}
for data in tqdm(all_queries):
if data["question_type"] == "null_query":
continue
retrieved_documents = self.get_retrieved_documents(data["query"], arguments)
generated_text = self.send_request(data, arguments)
data["generated_text"] = generated_text
ragas_inputs["question"].append(data["query"])
ragas_inputs["answer"].append(generated_text)
ragas_inputs["ground_truth"].append(data["answer"])
ragas_inputs["contexts"].append(retrieved_documents[:3])
if len(ragas_inputs["question"]) >= arguments.limits:
break
ragas_metrics = metric.measure(ragas_inputs)
return ragas_metrics
def args_parser():
parser = argparse.ArgumentParser()
parser.add_argument(
"--service_url", type=str, default="http://localhost:8888/v1/chatqna", help="Service URL address."
)
parser.add_argument("--output_dir", type=str, default="./output", help="Directory to save evaluation results.")
parser.add_argument(
"--temperature", type=float, default=0.1, help="Controls the randomness of the model's text generation"
)
parser.add_argument(
"--max_new_tokens", type=int, default=1280, help="Maximum number of new tokens to be generated by the model"
)
parser.add_argument(
"--chunk_size", type=int, default=256, help="the maximum number of characters that a chunk can contain"
)
parser.add_argument(
"--chunk_overlap",
type=int,
default=100,
help="the number of characters that should overlap between two adjacent chunks",
)
parser.add_argument("--search_type", type=str, default="similarity", help="similarity type")
parser.add_argument("--retrival_k", type=int, default=10, help="Number of Documents to return.")
parser.add_argument(
"--fetch_k", type=int, default=20, help="Number of Documents to fetch to pass to MMR algorithm."
)
parser.add_argument(
"--lambda_mult",
type=float,
default=0.5,
help="Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.",
)
parser.add_argument("--dataset_path", default=None, help="Path to the dataset")
parser.add_argument("--docs_path", default=None, help="Path to the retrieval documents")
# Retriever related options
parser.add_argument("--ingest_docs", action="store_true", help="Whether to ingest documents to vector database")
parser.add_argument("--retrieval_metrics", action="store_true", help="Whether to compute retrieval metrics.")
parser.add_argument("--ragas_metrics", action="store_true", help="Whether to compute ragas metrics.")
parser.add_argument("--limits", type=int, default=100, help="Number of examples to be evaluated by llm-as-judge")
parser.add_argument(
"--database_endpoint", type=str, default="http://localhost:6007/v1/dataprep", help="Service URL address."
)
parser.add_argument(
"--embedding_endpoint", type=str, default="http://localhost:6000/v1/embeddings", help="Service URL address."
)
parser.add_argument(
"--tei_embedding_endpoint",
type=str,
default="http://localhost:8090",
help="Service URL address of tei embedding.",
)
parser.add_argument(
"--retrieval_endpoint", type=str, default="http://localhost:7000/v1/retrieval", help="Service URL address."
)
parser.add_argument("--rerank", action="store_true", help="Whether to use rerank microservice.")
parser.add_argument(
"--reranking_endpoint", type=str, default="http://localhost:8000/v1/reranking", help="Service URL address."
)
parser.add_argument("--llm_endpoint", type=str, default=None, help="Service URL address.")
parser.add_argument(
"--show_progress_bar", action="store", default=True, type=bool, help="Whether to show a progress bar"
)
parser.add_argument("--contain_original_data", action="store_true", help="Whether to contain original data")
args = parser.parse_args()
return args
def main():
args = args_parser()
evaluator = MultiHop_Evaluator()
with open(args.docs_path, "r") as file:
doc_data = json.load(file)
documents = []
for doc in doc_data:
metadata = {"title": doc["title"], "published_at": doc["published_at"], "source": doc["source"]}
documents.append(doc["body"])
# save docs to a tmp file
tmp_corpus_file = "tmp_corpus.txt"
with open(tmp_corpus_file, "w") as f:
for doc in documents:
f.write(doc + "\n")
if args.ingest_docs:
evaluator.ingest_docs(tmp_corpus_file, args.database_endpoint, args.chunk_size, args.chunk_overlap)
with open(args.dataset_path, "r") as file:
all_queries = json.load(file)
# get retrieval quality
if args.retrieval_metrics:
retrieval_metrics = evaluator.get_retrieval_metrics(all_queries, args)
print(retrieval_metrics)
# get rag quality
if args.ragas_metrics:
ragas_metrics = evaluator.get_ragas_metrics(all_queries, args)
print(ragas_metrics)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,9 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import os
path = os.path.join(os.path.dirname(__file__), "./data/80000_docs")
for file in os.listdir(path):
src_file = os.path.join(path, file)
os.rename(src_file, src_file + ".txt")

View File

@@ -0,0 +1,64 @@
#!/bin/bash
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
set -x
function main {
init_params "$@"
# run_benchmark
echo $dataset
if [[ ${dataset} == "MultiHop" ]]; then
run_multihop
elif [[ ${dataset} == "crud" ]]; then
run_crud
fi
}
# init params
function init_params {
for var in "$@"
do
case $var in
--dataset=*)
dataset=$( echo $var |cut -f2 -d=)
;;
*)
echo "Error: No such parameter: ${var}"
exit 1
;;
esac
done
}
# run_multihop
function run_multihop {
git clone https://github.com/yixuantt/MultiHop-RAG.git
python eval_multihop.py \
--docs_path MultiHop-RAG/dataset/corpus.json \
--dataset_path MultiHop-RAG/dataset/MultiHopRAG.json \
--ingest_docs \
--retrieval_metrics
}
# run_crud
function run_crud {
git clone https://github.com/IAAR-Shanghai/CRUD_RAG
mkdir data/
cp CRUD_RAG/data/crud_split/split_merged.json data/
cp -r CRUD_RAG/data/80000_docs/ data/
python process_crud_dataset.py
python eval_crud.py \
--dataset_path ./data/split_merged.json \
--docs_path ./data/80000_docs \
--ingest_docs
}
main "$@"

View File

@@ -88,22 +88,9 @@ find . -name '*.yaml' -type f -exec sed -i "s#\$(EMBEDDING_MODEL_ID)#${EMBEDDING
find . -name '*.yaml' -type f -exec sed -i "s#\$(RERANK_MODEL_ID)#${RERANK_MODEL_ID}#g" {} \;
```
### Benchmark tool preparation
The test uses the [benchmark tool](https://github.com/opea-project/GenAIEval/tree/main/evals/benchmark/README.md) to do performance test. We need to set up benchmark tool at the master node of Kubernetes which is k8s-master.
```bash
# on k8s-master node
git clone https://github.com/opea-project/GenAIEval.git
cd GenAIEval
python3 -m venv stress_venv
source stress_venv/bin/activate
pip install -r requirements.txt
```
### Test Configurations
Workload configuration:
By default, the workload and benchmark configuration is as below:
| Key | Value |
| -------- | ------- |
@@ -189,24 +176,21 @@ curl -X POST "http://${cluster_ip}:6007/v1/dataprep" \
###### 3.2 Run Benchmark Test
We copy the configuration file [benchmark.yaml](./benchmark.yaml) to `GenAIEval/evals/benchmark/benchmark.yaml` and config `test_suite_config.deployment_type`, `test_suite_config.service_ip`, `test_suite_config.service_port`, `test_suite_config.user_queries` and `test_suite_config.test_output_dir`.
Before the benchmark, we can configure the number of test queries and test output directory by:
```bash
export DEPLOYMENT_TYPE="k8s"
export SERVICE_IP = None
export SERVICE_PORT = None
export USER_QUERIES="[640, 640, 640, 640]"
export TEST_OUTPUT_DIR="/home/sdp/benchmark_output/node_1"
envsubst < ./benchmark.yaml > GenAIEval/evals/benchmark/benchmark.yaml
```
And then run the benchmark tool by:
And then run the benchmark by:
```bash
cd GenAIEval/evals/benchmark
python benchmark.py
bash benchmark.sh -n 1
```
The argument `-n` refers to the number of test nodes. Note that necessary dependencies will be automatically installed when running benchmark for the first time.
##### 4. Data collection
All the test results will come to this folder `/home/sdp/benchmark_output/node_1` configured by the environment variable `TEST_OUTPUT_DIR` in previous steps.
@@ -242,22 +226,20 @@ kubectl apply -f .
##### 3. Run tests
We copy the configuration file [benchmark.yaml](./benchmark.yaml) to `GenAIEval/evals/benchmark/benchmark.yaml` and config `test_suite_config.deployment_type`, `test_suite_config.service_ip`, `test_suite_config.service_port`, `test_suite_config.user_queries` and `test_suite_config.test_output_dir`.
````bash
export DEPLOYMENT_TYPE="k8s"
export SERVICE_IP = None
export SERVICE_PORT = None
export USER_QUERIES="[1280, 1280, 1280, 1280]"
export TEST_OUTPUT_DIR="/home/sdp/benchmark_output/node_2"
envsubst < ./benchmark.yaml > GenAIEval/evals/benchmark/benchmark.yaml
And then run the benchmark tool by:
Before the benchmark, we can configure the number of test queries and test output directory by:
```bash
cd GenAIEval/evals/benchmark
python benchmark.py
````
export USER_QUERIES="[1280, 1280, 1280, 1280]"
export TEST_OUTPUT_DIR="/home/sdp/benchmark_output/node_2"
```
And then run the benchmark by:
```bash
bash benchmark.sh -n 2
```
The argument `-n` refers to the number of test nodes. Note that necessary dependencies will be automatically installed when running benchmark for the first time.
##### 4. Data collection
@@ -293,24 +275,21 @@ kubectl apply -f .
##### 3. Run tests
We copy the configuration file [benchmark.yaml](./benchmark.yaml) to `GenAIEval/evals/benchmark/benchmark.yaml` and config `test_suite_config.deployment_type`, `test_suite_config.service_ip`, `test_suite_config.service_port`, `test_suite_config.user_queries` and `test_suite_config.test_output_dir`.
Before the benchmark, we can configure the number of test queries and test output directory by:
```bash
export DEPLOYMENT_TYPE="k8s"
export SERVICE_IP = None
export SERVICE_PORT = None
export USER_QUERIES="[2560, 2560, 2560, 2560]"
export TEST_OUTPUT_DIR="/home/sdp/benchmark_output/node_4"
envsubst < ./benchmark.yaml > GenAIEval/evals/benchmark/benchmark.yaml
```
And then run the benchmark tool by:
And then run the benchmark by:
```bash
cd GenAIEval/evals/benchmark
python benchmark.py
bash benchmark.sh -n 4
```
The argument `-n` refers to the number of test nodes. Note that necessary dependencies will be automatically installed when running benchmark for the first time.
##### 4. Data collection
All the test results will come to this folder `/home/sdp/benchmark_output/node_4` configured by the environment variable `TEST_OUTPUT_DIR` in previous steps.
@@ -369,24 +348,21 @@ Refer to the [NVIDIA GPU Guide](../../docker_compose/nvidia/gpu/README.md) for m
### Run tests
We copy the configuration file [benchmark.yaml](./benchmark.yaml) to `GenAIEval/evals/benchmark/benchmark.yaml` and config `test_suite_config.deployment_type`, `test_suite_config.service_ip`, `test_suite_config.service_port`, `test_suite_config.user_queries` and `test_suite_config.test_output_dir`.
Before the benchmark, we can configure the number of test queries and test output directory by:
```bash
export DEPLOYMENT_TYPE="docker"
export SERVICE_IP = "ChatQnA Service IP"
export SERVICE_PORT = "ChatQnA Service Port"
export USER_QUERIES="[640, 640, 640, 640]"
export TEST_OUTPUT_DIR="/home/sdp/benchmark_output/docker"
envsubst < ./benchmark.yaml > GenAIEval/evals/benchmark/benchmark.yaml
```
And then run the benchmark tool by:
And then run the benchmark by:
```bash
cd GenAIEval/evals/benchmark
python benchmark.py
bash benchmark.sh -d docker -i <service-ip> -p <service-port>
```
The argument `-i` and `-p` refer to the deployed ChatQnA service IP and port, respectively. Note that necessary dependencies will be automatically installed when running benchmark for the first time.
### Data collection
All the test results will come to this folder `/home/sdp/benchmark_output/docker` configured by the environment variable `TEST_OUTPUT_DIR` in previous steps.

View File

@@ -0,0 +1,99 @@
#!/bin/bash
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
deployment_type="k8s"
node_number=1
service_port=8888
query_per_node=640
benchmark_tool_path="$(pwd)/GenAIEval"
usage() {
echo "Usage: $0 [-d deployment_type] [-n node_number] [-i service_ip] [-p service_port]"
echo " -d deployment_type ChatQnA deployment type, select between k8s and docker (default: k8s)"
echo " -n node_number Test node number, required only for k8s deployment_type, (default: 1)"
echo " -i service_ip chatqna service ip, required only for docker deployment_type"
echo " -p service_port chatqna service port, required only for docker deployment_type, (default: 8888)"
exit 1
}
while getopts ":d:n:i:p:" opt; do
case ${opt} in
d )
deployment_type=$OPTARG
;;
n )
node_number=$OPTARG
;;
i )
service_ip=$OPTARG
;;
p )
service_port=$OPTARG
;;
\? )
echo "Invalid option: -$OPTARG" 1>&2
usage
;;
: )
echo "Invalid option: -$OPTARG requires an argument" 1>&2
usage
;;
esac
done
if [[ "$deployment_type" == "docker" && -z "$service_ip" ]]; then
echo "Error: service_ip is required for docker deployment_type" 1>&2
usage
fi
if [[ "$deployment_type" == "k8s" && ( -n "$service_ip" || -n "$service_port" ) ]]; then
echo "Warning: service_ip and service_port are ignored for k8s deployment_type" 1>&2
fi
function main() {
if [[ ! -d ${benchmark_tool_path} ]]; then
echo "Benchmark tool not found, setting up..."
setup_env
fi
run_benchmark
}
function setup_env() {
git clone https://github.com/opea-project/GenAIEval.git
pushd ${benchmark_tool_path}
python3 -m venv stress_venv
source stress_venv/bin/activate
pip install -r requirements.txt
popd
}
function run_benchmark() {
source ${benchmark_tool_path}/stress_venv/bin/activate
export DEPLOYMENT_TYPE=${deployment_type}
export SERVICE_IP=${service_ip:-"None"}
export SERVICE_PORT=${service_port:-"None"}
if [[ -z $USER_QUERIES ]]; then
user_query=$((query_per_node*node_number))
export USER_QUERIES="[${user_query}, ${user_query}, ${user_query}, ${user_query}]"
echo "USER_QUERIES not configured, setting to: ${USER_QUERIES}."
fi
export WARMUP=$(echo $USER_QUERIES | sed -e 's/[][]//g' -e 's/,.*//')
if [[ -z $WARMUP ]]; then export WARMUP=0; fi
if [[ -z $TEST_OUTPUT_DIR ]]; then
if [[ $DEPLOYMENT_TYPE == "k8s" ]]; then
export TEST_OUTPUT_DIR="${benchmark_tool_path}/evals/benchmark/benchmark_output/node_${node_number}"
else
export TEST_OUTPUT_DIR="${benchmark_tool_path}/evals/benchmark/benchmark_output/docker"
fi
echo "TEST_OUTPUT_DIR not configured, setting to: ${TEST_OUTPUT_DIR}."
fi
envsubst < ./benchmark.yaml > ${benchmark_tool_path}/evals/benchmark/benchmark.yaml
cd ${benchmark_tool_path}/evals/benchmark
python benchmark.py
}
main

View File

@@ -6,14 +6,24 @@ test_suite_config: # Overall configuration settings for the test suite
deployment_type: ${DEPLOYMENT_TYPE} # Default is "k8s", can also be "docker"
service_ip: ${SERVICE_IP} # Leave as None for k8s, specify for Docker
service_port: ${SERVICE_PORT} # Leave as None for k8s, specify for Docker
concurrent_level: 5 # The concurrency level, adjustable based on requirements
user_queries: ${USER_QUERIES} # Number of test requests at each concurrency level
random_prompt: false # Use random prompts if true, fixed prompts if false
warm_ups: ${WARMUP} # Number of test requests for warm-up
run_time: 60m # The max total run time for the test suite
seed: # The seed for all RNGs
user_queries: ${USER_QUERIES} # Number of test requests at each concurrency level
query_timeout: 120 # Number of seconds to wait for a simulated user to complete any executing task before exiting. 120 sec by defeult.
random_prompt: false # Use random prompts if true, fixed prompts if false
collect_service_metric: false # Collect service metrics if true, do not collect service metrics if false
data_visualization: false # Generate data visualization if true, do not generate data visualization if false
llm_model: "Intel/neural-chat-7b-v3-3" # The LLM model used for the test
test_output_dir: "${TEST_OUTPUT_DIR}" # The directory to store the test output
load_shape: # Tenant concurrency pattern
name: constant # poisson or constant(locust default load shape)
params: # Loadshape-specific parameters
constant: # Constant load shape specific parameters, activate only if load_shape.name is constant
concurrent_level: 5 # If user_queries is specified, concurrent_level is target number of requests per user. If not, it is the number of simulated users
# arrival_rate: 1.0 # Request arrival rate. If set, concurrent_level will be overridden, constant load will be generated based on arrival-rate
poisson: # Poisson load shape specific parameters, activate only if load_shape.name is poisson
arrival_rate: 1.0 # Request arrival rate
test_cases:
chatqna:

View File

@@ -10,29 +10,27 @@ This document guides you through deploying ChatQnA pipelines using Helm charts.
# on k8s-master node
cd GenAIExamples/ChatQnA/benchmark/performance/helm_charts
# Replace <your token> with your actual Hugging Face token and run the following command:
HUGGINGFACE_TOKEN=<your token>
find . -name '*.yaml' -type f -exec sed -i "s#\${HF_TOKEN}#${HUGGINGFACE_TOKEN}#g" {} \;
# Replace the following placeholders with the desired model IDs:
LLM_MODEL_ID=Intel/neural-chat-7b-v3-3
EMBEDDING_MODEL_ID=BAAI/bge-base-en-v1.5
RERANK_MODEL_ID=BAAI/bge-reranker-base
find . -name '*.yaml' -type f -exec sed -i "s#\$(LLM_MODEL_ID)#${LLM_MODEL_ID}#g" {} \;
find . -name '*.yaml' -type f -exec sed -i "s#\$(EMBEDDING_MODEL_ID)#${EMBEDDING_MODEL_ID}#g" {} \;
find . -name '*.yaml' -type f -exec sed -i "s#\$(RERANK_MODEL_ID)#${RERANK_MODEL_ID}#g" {} \;
# Replace the key of HUGGINGFACEHUB_API_TOKEN with your actual Hugging Face token:
# vim customize.yaml
HUGGINGFACEHUB_API_TOKEN: hf_xxxxx
```
### ChatQnA Installation
### Deploy your ChatQnA
```bash
# Deploy a ChatQnA pipeline using the specified YAML configuration.
# To deploy with different configurations, simply provide a different YAML file.
helm install chatqna helm_charts/ -f helm_charts/oob_single_node.yaml
# Tips: To display rendered manifests according to the given yaml.
helm template chatqna helm_charts/ -f helm_charts/oob_single_node.yaml
helm install chatqna helm_charts/ -f customize.yaml
```
Notes: The provided [BKC manifests](https://github.com/opea-project/GenAIExamples/tree/main/ChatQnA/benchmark) for single, two, and four node Kubernetes clusters are generated using this tool.
## Customize your own ChatQnA pipelines. (Optional)
There are two yaml configs you can specify.
- customize.yaml
This file can specify image names, the number of replicas and CPU cores to manage your pods.
- values.yaml
This file contains the default microservice configurations for ChatQnA. Please review and understand each parameter before making any changes.

View File

@@ -0,0 +1,71 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
HUGGINGFACEHUB_API_TOKEN: ${HF_TOKEN}
podSpecs:
- name: chatqna-backend-server-deploy
spec:
image_name: opea/chatqna
image_tag: latest
replicas: 2
resources:
limits:
cpu: "8"
memory: "8000Mi"
requests:
cpu: "8"
memory: "8000Mi"
- name: embedding-dependency-deploy
spec:
image_name: ghcr.io/huggingface/text-embeddings-inference
image_tag: cpu-1.5
replicas: 1
resources:
limits:
cpu: "80"
memory: "20000Mi"
requests:
cpu: "80"
memory: "20000Mi"
- name: reranking-dependency-deploy
spec:
image_name: opea/tei-gaudi
image_tag: latest
replicas: 1
resources:
limits:
habana.ai/gaudi: 1
- name: llm-dependency-deploy
spec:
image_name: ghcr.io/huggingface/tgi-gaudi
image_tag: 2.0.4
replicas: 7
resources:
limits:
habana.ai/gaudi: 1
- name: dataprep-deploy
spec:
image_name: opea/dataprep-redis
image_tag: latest
replicas: 1
- name: vector-db
spec:
image_name: redis/redis-stack
image_tag: 7.2.0-v9
replicas: 1
- name: retriever-deploy
spec:
image_name: opea/retriever-redis
image_tag: latest
replicas: 2
resources:
requests:
cpu: "4"
memory: "4000Mi"

View File

@@ -1,237 +0,0 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
config:
EMBEDDING_MODEL_ID: BAAI/bge-base-en-v1.5
EMBEDDING_SERVER_HOST_IP: embedding-dependency-svc
HUGGINGFACEHUB_API_TOKEN: ${HF_TOKEN}
INDEX_NAME: rag-redis
LLM_MODEL_ID: Intel/neural-chat-7b-v3-3
LLM_SERVER_HOST_IP: llm-dependency-svc
NODE_SELECTOR: chatqna-opea
REDIS_URL: redis://vector-db.default.svc.cluster.local:6379
RERANK_MODEL_ID: BAAI/bge-reranker-base
RERANK_SERVER_HOST_IP: reranking-dependency-svc
RETRIEVER_SERVICE_HOST_IP: retriever-svc
TEI_EMBEDDING_ENDPOINT: http://embedding-dependency-svc.default.svc.cluster.local:6006
TEI_ENDPOINT: http://embedding-dependency-svc.default.svc.cluster.local:6006
TEI_RERANKING_ENDPOINT: http://reranking-dependency-svc.default.svc.cluster.local:8808
TGI_LLM_ENDPOINT: http://llm-dependency-svc.default.svc.cluster.local:9009
deployments:
- name: chatqna-backend-server-deploy
spec:
image_name: opea/chatqna-no-wrapper
image_tag: latest
replicas: 1
ports:
- containerPort: 8888
- name: dataprep-deploy
spec:
image_name: opea/dataprep-redis
image_tag: latest
replicas: 1
ports:
- containerPort: 6007
- name: vector-db
spec:
image_name: redis/redis-stack
image_tag: 7.2.0-v9
replicas: 1
ports:
- containerPort: 6379
- containerPort: 8001
- name: retriever-deploy
spec:
image_name: opea/retriever-redis
image_tag: latest
replicas: 1
ports:
- containerPort: 7000
- name: embedding-dependency-deploy
spec:
image_name: ghcr.io/huggingface/text-embeddings-inference
image_tag: cpu-1.5
replicas: 1
ports:
- containerPort: 80
args:
- name: "--model-id"
value: $(EMBEDDING_MODEL_ID)
- name: "--auto-truncate"
volumeMounts:
- mountPath: /data
name: model-volume
- mountPath: /dev/shm
name: shm
volumes:
- hostPath:
path: /mnt/models
type: Directory
name: model-volume
- emptyDir:
medium: Memory
sizeLimit: 1Gi
name: shm
- name: reranking-dependency-deploy
spec:
image_name: opea/tei-gaudi
image_tag: latest
replicas: 1
resources:
limits:
habana.ai/gaudi: 1
args:
- name: "--model-id"
- value: $(RERANK_MODEL_ID)
- name: "--auto-truncate"
env:
- name: OMPI_MCA_btl_vader_single_copy_mechanism
value: none
- name: PT_HPU_ENABLE_LAZY_COLLECTIVES
value: "true"
- name: runtime
value: habana
- name: HABANA_VISIBLE_DEVICES
value: all
- name: HF_TOKEN
value: ${HF_TOKEN}
- name: MAX_WARMUP_SEQUENCE_LENGTH
value: "512"
volumeMounts:
- mountPath: /data
name: model-volume
- mountPath: /dev/shm
name: shm
volumes:
- hostPath:
path: /mnt/models
type: Directory
name: model-volume
- emptyDir:
medium: Memory
sizeLimit: 1Gi
name: shm
- name: llm-dependency-deploy
spec:
image_name: ghcr.io/huggingface/tgi-gaudi
image_tag: 2.0.4
replicas: 7
ports:
- containerPort: 80
resources:
limits:
habana.ai/gaudi: 1
args:
- name: "--model-id"
value: $(LLM_MODEL_ID)
- name: "--max-input-length"
value: "2048"
- name: "--max-total-tokens"
value: "4096"
env:
- name: OMPI_MCA_btl_vader_single_copy_mechanism
value: none
- name: PT_HPU_ENABLE_LAZY_COLLECTIVES
value: "true"
- name: runtime
value: habana
- name: HABANA_VISIBLE_DEVICES
value: all
- name: HF_TOKEN
value: ${HF_TOKEN}
volumeMounts:
- mountPath: /data
name: model-volume
- mountPath: /dev/shm
name: shm
volumes:
- hostPath:
path: /mnt/models
type: Directory
name: model-volume
- emptyDir:
medium: Memory
sizeLimit: 1Gi
name: shm
services:
- name: chatqna-backend-server-svc
spec:
ports:
- name: service
nodePort: 30888
port: 8888
targetPort: 8888
selector:
app: chatqna-backend-server-deploy
type: NodePort
- name: dataprep-svc
spec:
ports:
- name: port1
port: 6007
targetPort: 6007
selector:
app: dataprep-deploy
type: ClusterIP
- name: embedding-dependency-svc
spec:
ports:
- name: service
port: 6006
targetPort: 80
selector:
app: embedding-dependency-deploy
type: ClusterIP
- name: llm-dependency-svc
spec:
ports:
- name: service
port: 9009
targetPort: 80
selector:
app: llm-dependency-deploy
type: ClusterIP
- name: reranking-dependency-svc
spec:
ports:
- name: service
port: 8808
targetPort: 80
selector:
app: reranking-dependency-deploy
type: ClusterIP
- name: retriever-svc
spec:
ports:
- name: service
port: 7000
targetPort: 7000
selector:
app: retriever-deploy
type: ClusterIP
- name: vector-db
spec:
ports:
- name: vector-db-service
port: 6379
targetPort: 6379
- name: vector-db-insight
port: 8001
targetPort: 8001
selector:
app: vector-db
type: ClusterIP

View File

@@ -8,18 +8,18 @@ metadata:
namespace: default
data:
EMBEDDING_MODEL_ID: {{ .Values.config.EMBEDDING_MODEL_ID }}
EMBEDDING_SERVER_HOST_IP: {{ .Values.config.EMBEDDING_SERVER_HOST_IP }}
HUGGINGFACEHUB_API_TOKEN: {{ .Values.config.HUGGINGFACEHUB_API_TOKEN }}
INDEX_NAME: {{ .Values.config.INDEX_NAME }}
EMBEDDING_SERVER_HOST_IP: embedding-dependency-svc
HUGGINGFACEHUB_API_TOKEN: {{ .Values.HUGGINGFACEHUB_API_TOKEN }}
INDEX_NAME: rag-redis
LLM_MODEL_ID: {{ .Values.config.LLM_MODEL_ID }}
LLM_SERVER_HOST_IP: {{ .Values.config.LLM_SERVER_HOST_IP }}
NODE_SELECTOR: {{ .Values.config.NODE_SELECTOR }}
REDIS_URL: {{ .Values.config.REDIS_URL }}
LLM_SERVER_HOST_IP: llm-dependency-svc
NODE_SELECTOR: chatqna-opea
REDIS_URL: redis://vector-db.default.svc.cluster.local:6379
RERANK_MODEL_ID: {{ .Values.config.RERANK_MODEL_ID }}
RERANK_SERVER_HOST_IP: {{ .Values.config.RERANK_SERVER_HOST_IP }}
RETRIEVER_SERVICE_HOST_IP: {{ .Values.config.RETRIEVER_SERVICE_HOST_IP }}
TEI_EMBEDDING_ENDPOINT: {{ .Values.config.TEI_EMBEDDING_ENDPOINT }}
TEI_ENDPOINT: {{ .Values.config.TEI_ENDPOINT }}
TEI_RERANKING_ENDPOINT: {{ .Values.config.TEI_RERANKING_ENDPOINT }}
TGI_LLM_ENDPOINT: {{ .Values.config.TGI_LLM_ENDPOINT }}
RERANK_SERVER_HOST_IP: reranking-dependency-svc
RETRIEVER_SERVICE_HOST_IP: retriever-svc
TEI_EMBEDDING_ENDPOINT: http://embedding-dependency-svc.default.svc.cluster.local:6006
TEI_ENDPOINT: http://embedding-dependency-svc.default.svc.cluster.local:6006
TEI_RERANKING_ENDPOINT: http://reranking-dependency-svc.default.svc.cluster.local:8808
TGI_LLM_ENDPOINT: http://llm-dependency-svc.default.svc.cluster.local:9009
---

View File

@@ -1,14 +1,17 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
{{- $global := .Values }}
{{- range $deployment := .Values.deployments }}
{{- range $podSpec := $global.podSpecs }}
{{- if eq $podSpec.name $deployment.name }}
apiVersion: apps/v1
kind: Deployment
metadata:
name: {{ $deployment.name }}
namespace: default
spec:
replicas: {{ $deployment.spec.replicas }}
replicas: {{ $podSpec.spec.replicas }}
selector:
matchLabels:
app: {{ $deployment.name }}
@@ -43,9 +46,9 @@ spec:
{{- end }}
{{- end }}
image: {{ $deployment.spec.image_name }}:{{ $deployment.spec.image_tag }}
image: {{ $podSpec.spec.image_name }}:{{ $podSpec.spec.image_tag }}
imagePullPolicy: IfNotPresent
name: {{ $deployment.name }}
name: {{ $podSpec.name }}
{{- if $deployment.spec.ports }}
ports:
@@ -56,9 +59,10 @@ spec:
{{- end }}
{{- end }}
{{- if $deployment.spec.resources }}
{{- if $podSpec.spec.resources }}
resources:
{{- range $resourceType, $resource := $deployment.spec.resources }}
{{- range $resourceType, $resource := $podSpec.spec.resources }}
{{ $resourceType }}:
{{- range $limitType, $limit := $resource }}
{{ $limitType }}: {{ $limit }}
@@ -103,6 +107,7 @@ spec:
{{- end }}
{{- end }}
---
{{- end }}
{{- end }}
{{- end }}

View File

@@ -1,259 +0,0 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
config:
EMBEDDING_MODEL_ID: BAAI/bge-base-en-v1.5
EMBEDDING_SERVER_HOST_IP: embedding-dependency-svc
HUGGINGFACEHUB_API_TOKEN: ${HF_TOKEN}
INDEX_NAME: rag-redis
LLM_MODEL_ID: Intel/neural-chat-7b-v3-3
LLM_SERVER_HOST_IP: llm-dependency-svc
NODE_SELECTOR: chatqna-opea
REDIS_URL: redis://vector-db.default.svc.cluster.local:6379
RERANK_MODEL_ID: BAAI/bge-reranker-base
RERANK_SERVER_HOST_IP: reranking-dependency-svc
RETRIEVER_SERVICE_HOST_IP: retriever-svc
TEI_EMBEDDING_ENDPOINT: http://embedding-dependency-svc.default.svc.cluster.local:6006
TEI_ENDPOINT: http://embedding-dependency-svc.default.svc.cluster.local:6006
TEI_RERANKING_ENDPOINT: http://reranking-dependency-svc.default.svc.cluster.local:8808
TGI_LLM_ENDPOINT: http://llm-dependency-svc.default.svc.cluster.local:9009
deployments:
- name: chatqna-backend-server-deploy
spec:
image_name: opea/chatqna-no-wrapper
image_tag: latest
replicas: 2
ports:
- containerPort: 8888
resources:
limits:
cpu: "8"
memory: "8000Mi"
requests:
cpu: "8"
memory: "8000Mi"
- name: dataprep-deploy
spec:
image_name: opea/dataprep-redis
image_tag: latest
replicas: 1
ports:
- containerPort: 6007
- name: vector-db
spec:
image_name: redis/redis-stack
image_tag: 7.2.0-v9
replicas: 1
ports:
- containerPort: 6379
- containerPort: 8001
- name: retriever-deploy
spec:
image_name: opea/retriever-redis
image_tag: latest
replicas: 2
ports:
- containerPort: 7000
resources:
requests:
cpu: "4"
memory: "4000Mi"
- name: embedding-dependency-deploy
spec:
image_name: ghcr.io/huggingface/text-embeddings-inference
image_tag: cpu-1.5
replicas: 1
ports:
- containerPort: 80
args:
- name: "--model-id"
value: $(EMBEDDING_MODEL_ID)
- name: "--auto-truncate"
resources:
limits:
cpu: "80"
memory: "20000Mi"
requests:
cpu: "80"
memory: "20000Mi"
volumeMounts:
- mountPath: /data
name: model-volume
- mountPath: /dev/shm
name: shm
volumes:
- hostPath:
path: /mnt/models
type: Directory
name: model-volume
- emptyDir:
medium: Memory
sizeLimit: 1Gi
name: shm
- name: reranking-dependency-deploy
spec:
image_name: opea/tei-gaudi
image_tag: latest
replicas: 1
resources:
limits:
habana.ai/gaudi: 1
args:
- name: "--model-id"
- value: $(RERANK_MODEL_ID)
- name: "--auto-truncate"
env:
- name: OMPI_MCA_btl_vader_single_copy_mechanism
value: none
- name: PT_HPU_ENABLE_LAZY_COLLECTIVES
value: "true"
- name: runtime
value: habana
- name: HABANA_VISIBLE_DEVICES
value: all
- name: HF_TOKEN
value: ${HF_TOKEN}
- name: MAX_WARMUP_SEQUENCE_LENGTH
value: "512"
volumeMounts:
- mountPath: /data
name: model-volume
- mountPath: /dev/shm
name: shm
volumes:
- hostPath:
path: /mnt/models
type: Directory
name: model-volume
- emptyDir:
medium: Memory
sizeLimit: 1Gi
name: shm
- name: llm-dependency-deploy
spec:
image_name: ghcr.io/huggingface/tgi-gaudi
image_tag: 2.0.4
replicas: 7
ports:
- containerPort: 80
resources:
limits:
habana.ai/gaudi: 1
args:
- name: "--model-id"
value: $(LLM_MODEL_ID)
- name: "--max-input-length"
value: "1280"
- name: "--max-total-tokens"
value: "2048"
- name: "--max-batch-total-tokens"
value: "65536"
- name: "--max-batch-prefill-tokens"
value: "4096"
env:
- name: OMPI_MCA_btl_vader_single_copy_mechanism
value: none
- name: PT_HPU_ENABLE_LAZY_COLLECTIVES
value: "true"
- name: runtime
value: habana
- name: HABANA_VISIBLE_DEVICES
value: all
- name: HF_TOKEN
value: ${HF_TOKEN}
volumeMounts:
- mountPath: /data
name: model-volume
- mountPath: /dev/shm
name: shm
volumes:
- hostPath:
path: /mnt/models
type: Directory
name: model-volume
- emptyDir:
medium: Memory
sizeLimit: 1Gi
name: shm
services:
- name: chatqna-backend-server-svc
spec:
ports:
- name: service
nodePort: 30888
port: 8888
targetPort: 8888
selector:
app: chatqna-backend-server-deploy
type: NodePort
- name: dataprep-svc
spec:
ports:
- name: port1
port: 6007
targetPort: 6007
selector:
app: dataprep-deploy
type: ClusterIP
- name: embedding-dependency-svc
spec:
ports:
- name: service
port: 6006
targetPort: 80
selector:
app: embedding-dependency-deploy
type: ClusterIP
- name: llm-dependency-svc
spec:
ports:
- name: service
port: 9009
targetPort: 80
selector:
app: llm-dependency-deploy
type: ClusterIP
- name: reranking-dependency-svc
spec:
ports:
- name: service
port: 8808
targetPort: 80
selector:
app: reranking-dependency-deploy
type: ClusterIP
- name: retriever-svc
spec:
ports:
- name: service
port: 7000
targetPort: 7000
selector:
app: retriever-deploy
type: ClusterIP
- name: vector-db
spec:
ports:
- name: vector-db-service
port: 6379
targetPort: 6379
- name: vector-db-insight
port: 8001
targetPort: 8001
selector:
app: vector-db
type: ClusterIP

View File

@@ -1,62 +1,37 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
namespace: default
config:
EMBEDDING_MODEL_ID: BAAI/bge-base-en-v1.5
EMBEDDING_SERVER_HOST_IP: embedding-dependency-svc
HUGGINGFACEHUB_API_TOKEN: ${HF_TOKEN}
INDEX_NAME: rag-redis
LLM_MODEL_ID: Intel/neural-chat-7b-v3-3
LLM_SERVER_HOST_IP: llm-dependency-svc
NODE_SELECTOR: chatqna-opea
REDIS_URL: redis://vector-db.default.svc.cluster.local:6379
RERANK_MODEL_ID: BAAI/bge-reranker-base
RERANK_SERVER_HOST_IP: reranking-dependency-svc
RETRIEVER_SERVICE_HOST_IP: retriever-svc
TEI_EMBEDDING_ENDPOINT: http://embedding-dependency-svc.default.svc.cluster.local:6006
TEI_ENDPOINT: http://embedding-dependency-svc.default.svc.cluster.local:6006
TEI_RERANKING_ENDPOINT: http://reranking-dependency-svc.default.svc.cluster.local:8808
TGI_LLM_ENDPOINT: http://llm-dependency-svc.default.svc.cluster.local:9009
deployments:
- name: chatqna-backend-server-deploy
spec:
image_name: opea/chatqna-no-wrapper
image_tag: latest
replicas: 1
ports:
- containerPort: 8888
- name: dataprep-deploy
spec:
image_name: opea/dataprep-redis
image_tag: latest
replicas: 1
ports:
- containerPort: 6007
- name: vector-db
spec:
image_name: redis/redis-stack
image_tag: 7.2.0-v9
replicas: 1
ports:
- containerPort: 6379
- containerPort: 8001
- name: retriever-deploy
spec:
image_name: opea/retriever-redis
image_tag: latest
replicas: 1
ports:
- containerPort: 7000
- name: embedding-dependency-deploy
spec:
image_name: ghcr.io/huggingface/text-embeddings-inference
image_tag: cpu-1.5
replicas: 1
ports:
- containerPort: 80
args:
@@ -80,12 +55,6 @@ deployments:
- name: reranking-dependency-deploy
spec:
image_name: opea/tei-gaudi
image_tag: latest
replicas: 1
resources:
limits:
habana.ai/gaudi: 1
args:
- name: "--model-id"
- value: $(RERANK_MODEL_ID)
@@ -120,9 +89,6 @@ deployments:
- name: llm-dependency-deploy
spec:
image_name: ghcr.io/huggingface/tgi-gaudi
image_tag: 2.0.4
replicas: 7
ports:
- containerPort: 80
resources:

View File

@@ -44,7 +44,7 @@ spec:
- envFrom:
- configMapRef:
name: qna-config
image: opea/chatqna-no-wrapper:latest
image: opea/chatqna:latest
imagePullPolicy: IfNotPresent
name: chatqna-backend-server-deploy
ports:
@@ -327,7 +327,7 @@ spec:
envFrom:
- configMapRef:
name: qna-config
image: opea/tei-gaudi:latest
image: ghcr.io/huggingface/tei-gaudi:latest
imagePullPolicy: IfNotPresent
name: reranking-dependency-deploy
ports:

View File

@@ -44,7 +44,7 @@ spec:
- envFrom:
- configMapRef:
name: qna-config
image: opea/chatqna-no-wrapper:latest
image: opea/chatqna:latest
imagePullPolicy: IfNotPresent
name: chatqna-backend-server-deploy
ports:
@@ -327,7 +327,7 @@ spec:
envFrom:
- configMapRef:
name: qna-config
image: opea/tei-gaudi:latest
image: ghcr.io/huggingface/tei-gaudi:latest
imagePullPolicy: IfNotPresent
name: reranking-dependency-deploy
ports:

View File

@@ -44,7 +44,7 @@ spec:
- envFrom:
- configMapRef:
name: qna-config
image: opea/chatqna-no-wrapper:latest
image: opea/chatqna:latest
imagePullPolicy: IfNotPresent
name: chatqna-backend-server-deploy
ports:
@@ -327,7 +327,7 @@ spec:
envFrom:
- configMapRef:
name: qna-config
image: opea/tei-gaudi:latest
image: ghcr.io/huggingface/tei-gaudi:latest
imagePullPolicy: IfNotPresent
name: reranking-dependency-deploy
ports:

View File

@@ -44,7 +44,7 @@ spec:
- envFrom:
- configMapRef:
name: qna-config
image: opea/chatqna-no-wrapper:latest
image: opea/chatqna
imagePullPolicy: IfNotPresent
name: chatqna-backend-server-deploy
ports:
@@ -327,7 +327,7 @@ spec:
envFrom:
- configMapRef:
name: qna-config
image: opea/tei-gaudi:latest
image: ghcr.io/huggingface/tei-gaudi:latest
imagePullPolicy: IfNotPresent
name: reranking-dependency-deploy
ports:

View File

@@ -44,7 +44,7 @@ spec:
- envFrom:
- configMapRef:
name: qna-config
image: opea/chatqna-no-wrapper-without-rerank:latest
image: opea/chatqna-without-rerank:latest
imagePullPolicy: IfNotPresent
name: chatqna-backend-server-deploy
ports:

Some files were not shown because too many files have changed in this diff Show More