Compare commits
109 Commits
AISEprofil
...
reorg_helm
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
91940b8058 | ||
|
|
3744bb8c1b | ||
|
|
82801d0121 | ||
|
|
f7026773b8 | ||
|
|
edc09ece5c | ||
|
|
dfed2aead2 | ||
|
|
049517f977 | ||
|
|
ee83a6d5b4 | ||
|
|
e2bdd19fd4 | ||
|
|
c9088eb824 | ||
|
|
9c3023a12e | ||
|
|
7d779513f5 | ||
|
|
bbc95bb708 | ||
|
|
dd9623d3d5 | ||
|
|
4c27a3d30c | ||
|
|
40386d9bd6 | ||
|
|
fe97e88c7a | ||
|
|
11d8b24c8a | ||
|
|
4635a927fa | ||
|
|
1da44d99a1 | ||
|
|
e9b164505e | ||
|
|
6263b517b9 | ||
|
|
2de7c0ba89 | ||
|
|
944ae47948 | ||
|
|
2d9aeb3715 | ||
|
|
a0921f127f | ||
|
|
cf86aceb18 | ||
|
|
c2b7bd25d9 | ||
|
|
78331ee678 | ||
|
|
7f7ad0e256 | ||
|
|
0306c620b5 | ||
|
|
3372b9d480 | ||
|
|
5eb3d2869f | ||
|
|
ced68e1834 | ||
|
|
bf5c391e47 | ||
|
|
c65d7d40fb | ||
|
|
9d124161e0 | ||
|
|
0f5a9c4a5e | ||
|
|
a65640b4a5 | ||
|
|
7197286a14 | ||
|
|
960805a57b | ||
|
|
002f0e2b11 | ||
|
|
fde5996192 | ||
|
|
bc47930ce1 | ||
|
|
2332d22950 | ||
|
|
a2afce1675 | ||
|
|
89f4c5fb41 | ||
|
|
98f66405ac | ||
|
|
90c2d49050 | ||
|
|
95b58b51fa | ||
|
|
d3ce6f5357 | ||
|
|
a10b4a1f1d | ||
|
|
085d859a70 | ||
|
|
15cc457cea | ||
|
|
cfffb4c005 | ||
|
|
41955f65ad | ||
|
|
def39cfcdc | ||
|
|
35a4fef70d | ||
|
|
a3f9811f7e | ||
|
|
0eedbbfce0 | ||
|
|
9438d392b4 | ||
|
|
1929dfd3a0 | ||
|
|
c7e33647ad | ||
|
|
184e9a43b8 | ||
|
|
658867fce4 | ||
|
|
620ef76d16 | ||
|
|
23b820e740 | ||
|
|
3c164f3aa2 | ||
|
|
7669c42085 | ||
|
|
256b58c07e | ||
|
|
3c3a5bed67 | ||
|
|
37c74b232c | ||
|
|
4a265abb73 | ||
|
|
b0487fe92b | ||
|
|
d486bbbe10 | ||
|
|
b0f7c9cfc2 | ||
|
|
eeced9b31c | ||
|
|
b377c2b8f8 | ||
|
|
5dae713793 | ||
|
|
c930bea172 | ||
|
|
0edff26ee5 | ||
|
|
778afb50ac | ||
|
|
40800b0848 | ||
|
|
f2f6c09a0f | ||
|
|
c6fc92d37c | ||
|
|
c0643b71e8 | ||
|
|
088ab98f31 | ||
|
|
441f8cc6ba | ||
|
|
b056ce6617 | ||
|
|
773c32b38b | ||
|
|
619d941047 | ||
|
|
b71a12d424 | ||
|
|
12469c92d8 | ||
|
|
fbde15b40d | ||
|
|
ae10712fe8 | ||
|
|
373fa88033 | ||
|
|
e2f9037344 | ||
|
|
afc39fa4c0 | ||
|
|
e1c476c185 | ||
|
|
77920613dc | ||
|
|
7dec00176e | ||
|
|
bf28c7f098 | ||
|
|
63bad29794 | ||
|
|
36d3ef2b17 | ||
|
|
0c6b044139 | ||
|
|
d23cd799e9 | ||
|
|
644c3a67ce | ||
|
|
ffecd182db | ||
|
|
d16c80e493 |
8
.github/CODEOWNERS
vendored
@@ -1,13 +1,17 @@
|
||||
/AgentQnA/ xuhui.ren@intel.com
|
||||
/AgentQnA/ kaokao.lv@intel.com
|
||||
/AudioQnA/ sihan.chen@intel.com
|
||||
/ChatQnA/ liang1.lv@intel.com
|
||||
/CodeGen/ liang1.lv@intel.com
|
||||
/CodeTrans/ sihan.chen@intel.com
|
||||
/DocSum/ letong.han@intel.com
|
||||
/DocIndexRetriever/ xuhui.ren@intel.com chendi.xue@intel.com
|
||||
/DocIndexRetriever/ kaokao.lv@intel.com chendi.xue@intel.com
|
||||
/InstructionTuning xinyu.ye@intel.com
|
||||
/RerankFinetuning xinyu.ye@intel.com
|
||||
/MultimodalQnA tiep.le@intel.com
|
||||
/FaqGen/ xinyao.wang@intel.com
|
||||
/SearchQnA/ sihan.chen@intel.com
|
||||
/Translation/ liang1.lv@intel.com
|
||||
/VisualQnA/ liang1.lv@intel.com
|
||||
/ProductivitySuite/ hoong.tee.yeoh@intel.com
|
||||
/VideoQnA huiling.bao@intel.com
|
||||
/*/ liang1.lv@intel.com
|
||||
|
||||
2
.github/code_spell_ignore.txt
vendored
@@ -0,0 +1,2 @@
|
||||
ModelIn
|
||||
modelin
|
||||
16
.github/workflows/_example-workflow.yml
vendored
@@ -12,6 +12,10 @@ on:
|
||||
example:
|
||||
required: true
|
||||
type: string
|
||||
services:
|
||||
default: ""
|
||||
required: false
|
||||
type: string
|
||||
tag:
|
||||
default: "latest"
|
||||
required: false
|
||||
@@ -36,6 +40,11 @@ on:
|
||||
default: "main"
|
||||
required: false
|
||||
type: string
|
||||
inject_commit:
|
||||
default: false
|
||||
required: false
|
||||
type: string
|
||||
|
||||
jobs:
|
||||
####################################################################################################
|
||||
# Image Build
|
||||
@@ -68,6 +77,10 @@ jobs:
|
||||
git clone https://github.com/vllm-project/vllm.git
|
||||
cd vllm && git rev-parse HEAD && cd ../
|
||||
fi
|
||||
if [[ $(grep -c "vllm-hpu:" ${docker_compose_path}) != 0 ]]; then
|
||||
git clone https://github.com/HabanaAI/vllm-fork.git
|
||||
cd vllm-fork && git rev-parse HEAD && cd ../
|
||||
fi
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps && git checkout ${{ inputs.opea_branch }} && git rev-parse HEAD && cd ../
|
||||
|
||||
@@ -77,7 +90,9 @@ jobs:
|
||||
with:
|
||||
work_dir: ${{ github.workspace }}/${{ inputs.example }}/docker_image_build
|
||||
docker_compose_path: ${{ github.workspace }}/${{ inputs.example }}/docker_image_build/build.yaml
|
||||
service_list: ${{ inputs.services }}
|
||||
registry: ${OPEA_IMAGE_REPO}opea
|
||||
inject_commit: ${{ inputs.inject_commit }}
|
||||
tag: ${{ inputs.tag }}
|
||||
|
||||
####################################################################################################
|
||||
@@ -105,7 +120,6 @@ jobs:
|
||||
example: ${{ inputs.example }}
|
||||
hardware: ${{ inputs.node }}
|
||||
tag: ${{ inputs.tag }}
|
||||
context: "CD"
|
||||
secrets: inherit
|
||||
|
||||
####################################################################################################
|
||||
|
||||
16
.github/workflows/_manifest-e2e.yml
vendored
@@ -20,11 +20,6 @@ on:
|
||||
description: "Tag to apply to images, default is latest"
|
||||
required: false
|
||||
type: string
|
||||
context:
|
||||
default: "CI"
|
||||
description: "CI or CD"
|
||||
required: false
|
||||
type: string
|
||||
|
||||
jobs:
|
||||
manifest-test:
|
||||
@@ -51,7 +46,7 @@ jobs:
|
||||
|
||||
- name: Set variables
|
||||
run: |
|
||||
echo "IMAGE_REPO=$OPEA_IMAGE_REPO" >> $GITHUB_ENV
|
||||
echo "IMAGE_REPO=${OPEA_IMAGE_REPO}opea" >> $GITHUB_ENV
|
||||
echo "IMAGE_TAG=${{ inputs.tag }}" >> $GITHUB_ENV
|
||||
lower_example=$(echo "${{ inputs.example }}" | tr '[:upper:]' '[:lower:]')
|
||||
echo "NAMESPACE=$lower_example-$(tr -dc a-z0-9 </dev/urandom | head -c 16)" >> $GITHUB_ENV
|
||||
@@ -60,7 +55,6 @@ jobs:
|
||||
echo "continue_test=true" >> $GITHUB_ENV
|
||||
echo "should_cleanup=false" >> $GITHUB_ENV
|
||||
echo "skip_validate=true" >> $GITHUB_ENV
|
||||
echo "CONTEXT=${{ inputs.context }}" >> $GITHUB_ENV
|
||||
echo "NAMESPACE=$NAMESPACE"
|
||||
|
||||
- name: Kubectl install
|
||||
@@ -96,10 +90,16 @@ jobs:
|
||||
echo "Validate ${{ inputs.example }} successful!"
|
||||
else
|
||||
echo "Validate ${{ inputs.example }} failure!!!"
|
||||
.github/workflows/scripts/k8s-utils.sh dump_all_pod_logs $NAMESPACE
|
||||
echo "Check the logs in 'Dump logs when e2e test failed' step!!!"
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
|
||||
- name: Dump logs when e2e test failed
|
||||
if: failure()
|
||||
run: |
|
||||
.github/workflows/scripts/k8s-utils.sh dump_all_pod_logs $NAMESPACE
|
||||
|
||||
- name: Kubectl uninstall
|
||||
if: always()
|
||||
run: |
|
||||
|
||||
9
.github/workflows/_run-docker-compose.yml
vendored
@@ -118,6 +118,9 @@ jobs:
|
||||
GOOGLE_CSE_ID: ${{ secrets.GOOGLE_CSE_ID }}
|
||||
GOOGLE_API_KEY: ${{ secrets.GOOGLE_API_KEY }}
|
||||
PINECONE_KEY: ${{ secrets.PINECONE_KEY }}
|
||||
PINECONE_KEY_LANGCHAIN_TEST: ${{ secrets.PINECONE_KEY_LANGCHAIN_TEST }}
|
||||
SDK_BASE_URL: ${{ secrets.SDK_BASE_URL }}
|
||||
SERVING_TOKEN: ${{ secrets.SERVING_TOKEN }}
|
||||
IMAGE_REPO: ${{ inputs.registry }}
|
||||
IMAGE_TAG: ${{ inputs.tag }}
|
||||
example: ${{ inputs.example }}
|
||||
@@ -138,7 +141,11 @@ jobs:
|
||||
flag=${flag#test_}
|
||||
yaml_file=$(find . -type f -wholename "*${{ inputs.hardware }}/${flag}.yaml")
|
||||
echo $yaml_file
|
||||
docker compose -f $yaml_file stop && docker compose -f $yaml_file rm -f || true
|
||||
container_list=$(cat $yaml_file | grep container_name | cut -d':' -f2)
|
||||
for container_name in $container_list; do
|
||||
cid=$(docker ps -aq --filter "name=$container_name")
|
||||
if [[ ! -z "$cid" ]]; then docker stop $cid && docker rm $cid && sleep 1s; fi
|
||||
done
|
||||
docker system prune -f
|
||||
docker rmi $(docker images --filter reference="*:5000/*/*" -q) || true
|
||||
|
||||
|
||||
35
.github/workflows/check-online-doc-build.yml
vendored
Normal file
@@ -0,0 +1,35 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
name: Check Online Document Building
|
||||
permissions: {}
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
branches: [main]
|
||||
paths:
|
||||
- "**.md"
|
||||
- "**.rst"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
path: GenAIExamples
|
||||
|
||||
- name: Checkout docs
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
repository: opea-project/docs
|
||||
path: docs
|
||||
|
||||
- name: Build Online Document
|
||||
shell: bash
|
||||
run: |
|
||||
echo "build online doc"
|
||||
cd docs
|
||||
bash scripts/build.sh
|
||||
@@ -50,6 +50,11 @@ on:
|
||||
description: 'OPEA branch for image build'
|
||||
required: false
|
||||
type: string
|
||||
inject_commit:
|
||||
default: true
|
||||
description: "inject commit to docker images true or false"
|
||||
required: false
|
||||
type: string
|
||||
|
||||
permissions: read-all
|
||||
jobs:
|
||||
@@ -101,4 +106,5 @@ jobs:
|
||||
test_k8s: ${{ fromJSON(inputs.test_k8s) }}
|
||||
test_gmc: ${{ fromJSON(inputs.test_gmc) }}
|
||||
opea_branch: ${{ inputs.opea_branch }}
|
||||
inject_commit: ${{ inputs.inject_commit }}
|
||||
secrets: inherit
|
||||
|
||||
66
.github/workflows/manual-image-build.yml
vendored
Normal file
@@ -0,0 +1,66 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
name: Build specific images on manual event
|
||||
on:
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
nodes:
|
||||
default: "gaudi,xeon"
|
||||
description: "Hardware to run test"
|
||||
required: true
|
||||
type: string
|
||||
example:
|
||||
default: "ChatQnA"
|
||||
description: 'Build images belong to which example?'
|
||||
required: true
|
||||
type: string
|
||||
services:
|
||||
default: "chatqna,chatqna-without-rerank"
|
||||
description: 'Service list to build'
|
||||
required: true
|
||||
type: string
|
||||
tag:
|
||||
default: "latest"
|
||||
description: "Tag to apply to images"
|
||||
required: true
|
||||
type: string
|
||||
opea_branch:
|
||||
default: "main"
|
||||
description: 'OPEA branch for image build'
|
||||
required: false
|
||||
type: string
|
||||
inject_commit:
|
||||
default: true
|
||||
description: "inject commit to docker images true or false"
|
||||
required: false
|
||||
type: string
|
||||
|
||||
jobs:
|
||||
get-test-matrix:
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
nodes: ${{ steps.get-matrix.outputs.nodes }}
|
||||
steps:
|
||||
- name: Create Matrix
|
||||
id: get-matrix
|
||||
run: |
|
||||
nodes=($(echo ${{ inputs.nodes }} | tr ',' ' '))
|
||||
nodes_json=$(printf '%s\n' "${nodes[@]}" | sort -u | jq -R '.' | jq -sc '.')
|
||||
echo "nodes=$nodes_json" >> $GITHUB_OUTPUT
|
||||
|
||||
image-build:
|
||||
needs: get-test-matrix
|
||||
strategy:
|
||||
matrix:
|
||||
node: ${{ fromJson(needs.get-test-matrix.outputs.nodes) }}
|
||||
fail-fast: false
|
||||
uses: ./.github/workflows/_example-workflow.yml
|
||||
with:
|
||||
node: ${{ matrix.node }}
|
||||
example: ${{ inputs.example }}
|
||||
services: ${{ inputs.services }}
|
||||
tag: ${{ inputs.tag }}
|
||||
opea_branch: ${{ inputs.opea_branch }}
|
||||
inject_commit: ${{ inputs.inject_commit }}
|
||||
secrets: inherit
|
||||
70
.github/workflows/nightly-docker-build-publish.yml
vendored
Normal file
@@ -0,0 +1,70 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
name: Nightly build/publish latest docker images
|
||||
|
||||
on:
|
||||
schedule:
|
||||
- cron: "30 13 * * *" # UTC time
|
||||
workflow_dispatch:
|
||||
|
||||
env:
|
||||
EXAMPLES: "AgentQnA,AudioQnA,ChatQnA,CodeGen,CodeTrans,DocIndexRetriever,DocSum,FaqGen,InstructionTuning,MultimodalQnA,ProductivitySuite,RerankFinetuning,SearchQnA,Translation,VideoQnA,VisualQnA"
|
||||
TAG: "latest"
|
||||
PUBLISH_TAGS: "latest"
|
||||
|
||||
jobs:
|
||||
get-build-matrix:
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
examples_json: ${{ steps.get-matrix.outputs.examples_json }}
|
||||
EXAMPLES: ${{ steps.get-matrix.outputs.EXAMPLES }}
|
||||
TAG: ${{ steps.get-matrix.outputs.TAG }}
|
||||
PUBLISH_TAGS: ${{ steps.get-matrix.outputs.PUBLISH_TAGS }}
|
||||
steps:
|
||||
- name: Create Matrix
|
||||
id: get-matrix
|
||||
run: |
|
||||
examples=($(echo ${EXAMPLES} | tr ',' ' '))
|
||||
examples_json=$(printf '%s\n' "${examples[@]}" | sort -u | jq -R '.' | jq -sc '.')
|
||||
echo "examples_json=$examples_json" >> $GITHUB_OUTPUT
|
||||
echo "EXAMPLES=$EXAMPLES" >> $GITHUB_OUTPUT
|
||||
echo "TAG=$TAG" >> $GITHUB_OUTPUT
|
||||
echo "PUBLISH_TAGS=$PUBLISH_TAGS" >> $GITHUB_OUTPUT
|
||||
|
||||
build:
|
||||
needs: get-build-matrix
|
||||
strategy:
|
||||
matrix:
|
||||
example: ${{ fromJSON(needs.get-build-matrix.outputs.examples_json) }}
|
||||
fail-fast: false
|
||||
uses: ./.github/workflows/_example-workflow.yml
|
||||
with:
|
||||
node: gaudi
|
||||
example: ${{ matrix.example }}
|
||||
secrets: inherit
|
||||
|
||||
get-image-list:
|
||||
needs: get-build-matrix
|
||||
uses: ./.github/workflows/_get-image-list.yml
|
||||
with:
|
||||
examples: ${{ needs.get-build-matrix.outputs.EXAMPLES }}
|
||||
|
||||
publish:
|
||||
needs: [get-build-matrix, get-image-list, build]
|
||||
strategy:
|
||||
matrix:
|
||||
image: ${{ fromJSON(needs.get-image-list.outputs.matrix) }}
|
||||
runs-on: "docker-build-gaudi"
|
||||
steps:
|
||||
- uses: docker/login-action@v3.2.0
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USER }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
|
||||
- name: Image Publish
|
||||
uses: opea-project/validation/actions/image-publish@main
|
||||
with:
|
||||
local_image_ref: ${OPEA_IMAGE_REPO}opea/${{ matrix.image }}:${{ needs.get-build-matrix.outputs.TAG }}
|
||||
image_name: opea/${{ matrix.image }}
|
||||
publish_tags: ${{ needs.get-build-matrix.outputs.PUBLISH_TAGS }}
|
||||
50
.github/workflows/pr-bum_list_check.yml
vendored
@@ -1,50 +0,0 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
name: Check Requirements
|
||||
|
||||
on: [pull_request]
|
||||
|
||||
jobs:
|
||||
check-requirements:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout PR branch
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Save PR requirements
|
||||
run: |
|
||||
find . -name "requirements.txt" -exec cat {} \; | \
|
||||
grep -v '^\s*#' | \
|
||||
grep -v '^\s*$' | \
|
||||
grep -v '^\s*-' | \
|
||||
sed 's/^\s*//' | \
|
||||
awk -F'[>=<]' '{print $1}' | \
|
||||
sort -u > pr-requirements.txt
|
||||
cat pr-requirements.txt
|
||||
|
||||
- name: Checkout main branch
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: main
|
||||
path: main-branch
|
||||
|
||||
- name: Save main branch requirements
|
||||
run: |
|
||||
find ./main-branch -name "requirements.txt" -exec cat {} \; | \
|
||||
grep -v '^\s*#' | \
|
||||
grep -v '^\s*$' | \
|
||||
grep -v '^\s*-' | \
|
||||
sed 's/^\s*//' | \
|
||||
awk -F'[>=<]' '{print $1}' | \
|
||||
sort -u > main-requirements.txt
|
||||
cat main-requirements.txt
|
||||
|
||||
- name: Compare requirements
|
||||
run: |
|
||||
comm -23 pr-requirements.txt main-requirements.txt > added-packages.txt
|
||||
if [ -s added-packages.txt ]; then
|
||||
echo "New packages found in PR:" && cat added-packages.txt
|
||||
else
|
||||
echo "No new packages found😊."
|
||||
fi
|
||||
2
.github/workflows/pr-gmc-e2e.yaml
vendored
@@ -12,7 +12,7 @@ on:
|
||||
- "**/tests/test_gmc**"
|
||||
- "!**.md"
|
||||
- "!**.txt"
|
||||
- "!**/kubernetes/**/manifests/**"
|
||||
- "!**/kubernetes/**/manifest/**"
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
|
||||
|
||||
4
.github/workflows/pr-manifest-e2e.yml
vendored
@@ -8,7 +8,9 @@ on:
|
||||
branches: ["main", "*rc"]
|
||||
types: [opened, reopened, ready_for_review, synchronize] # added `ready_for_review` since draft is skipped
|
||||
paths:
|
||||
- "**/kubernetes/**/manifests/**"
|
||||
- "**/Dockerfile**"
|
||||
- "**.py"
|
||||
- "**/kubernetes/**/manifest/**"
|
||||
- "**/tests/test_manifest**"
|
||||
- "!**.md"
|
||||
- "!**.txt"
|
||||
|
||||
88
.github/workflows/pr-path-detection.yml
vendored
@@ -50,28 +50,40 @@ jobs:
|
||||
|
||||
- name: Checkout Repo GenAIExamples
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Check the Validity of Hyperlinks
|
||||
run: |
|
||||
cd ${{github.workspace}}
|
||||
fail="FALSE"
|
||||
url_lines=$(grep -Eo '\]\(http[s]?://[^)]+\)' --include='*.md' -r .)
|
||||
if [ -n "$url_lines" ]; then
|
||||
for url_line in $url_lines; do
|
||||
url=$(echo "$url_line"|cut -d '(' -f2 | cut -d ')' -f1|sed 's/\.git$//')
|
||||
path=$(echo "$url_line"|cut -d':' -f1 | cut -d'/' -f2-)
|
||||
response=$(curl -L -s -o /dev/null -w "%{http_code}" "$url")
|
||||
if [ "$response" -ne 200 ]; then
|
||||
echo "**********Validation failed, try again**********"
|
||||
response_retry=$(curl -s -o /dev/null -w "%{http_code}" "$url")
|
||||
if [ "$response_retry" -eq 200 ]; then
|
||||
echo "*****Retry successfully*****"
|
||||
else
|
||||
echo "Invalid link from ${{github.workspace}}/$path: $url"
|
||||
fail="TRUE"
|
||||
fi
|
||||
merged_commit=$(git log -1 --format='%H')
|
||||
changed_files="$(git diff --name-status --diff-filter=ARM ${{ github.event.pull_request.base.sha }} ${merged_commit} | awk '/\.md$/ {print $NF}')"
|
||||
if [ -n "$changed_files" ]; then
|
||||
for changed_file in $changed_files; do
|
||||
# echo $changed_file
|
||||
url_lines=$(grep -H -Eo '\]\(http[s]?://[^)]+\)' "$changed_file" | grep -Ev 'GenAIExamples/blob/main') || true
|
||||
if [ -n "$url_lines" ]; then
|
||||
for url_line in $url_lines; do
|
||||
# echo $url_line
|
||||
url=$(echo "$url_line"|cut -d '(' -f2 | cut -d ')' -f1|sed 's/\.git$//')
|
||||
path=$(echo "$url_line"|cut -d':' -f1 | cut -d'/' -f2-)
|
||||
response=$(curl -L -s -o /dev/null -w "%{http_code}" "$url")|| true
|
||||
if [ "$response" -ne 200 ]; then
|
||||
echo "**********Validation failed, try again**********"
|
||||
response_retry=$(curl -s -o /dev/null -w "%{http_code}" "$url")
|
||||
if [ "$response_retry" -eq 200 ]; then
|
||||
echo "*****Retry successfully*****"
|
||||
else
|
||||
echo "Invalid link from ${{github.workspace}}/$path: $url"
|
||||
fail="TRUE"
|
||||
fi
|
||||
fi
|
||||
done
|
||||
fi
|
||||
done
|
||||
else
|
||||
echo "No changed .md file."
|
||||
fi
|
||||
|
||||
if [[ "$fail" == "TRUE" ]]; then
|
||||
@@ -89,6 +101,8 @@ jobs:
|
||||
|
||||
- name: Checkout Repo GenAIExamples
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Checking Relative Path Validity
|
||||
run: |
|
||||
@@ -102,33 +116,34 @@ jobs:
|
||||
branch="https://github.com/opea-project/GenAIExamples/blob/${{ github.event.pull_request.head.ref }}"
|
||||
fi
|
||||
link_head="https://github.com/opea-project/GenAIExamples/blob/main"
|
||||
|
||||
merged_commit=$(git log -1 --format='%H')
|
||||
changed_files="$(git diff --name-status --diff-filter=ARM ${{ github.event.pull_request.base.sha }} ${merged_commit} | awk '/\.md$/ {print $NF}')"
|
||||
png_lines=$(grep -Eo '\]\([^)]+\)' --include='*.md' -r .|grep -Ev 'http')
|
||||
if [ -n "$png_lines" ]; then
|
||||
for png_line in $png_lines; do
|
||||
refer_path=$(echo "$png_line"|cut -d':' -f1 | cut -d'/' -f2-)
|
||||
png_path=$(echo "$png_line"|cut -d '(' -f2 | cut -d ')' -f1)
|
||||
|
||||
if [[ "${png_path:0:1}" == "/" ]]; then
|
||||
check_path=${{github.workspace}}$png_path
|
||||
elif [[ "${png_path:0:1}" == "#" ]]; then
|
||||
check_path=${{github.workspace}}/$refer_path$png_path
|
||||
check_path=$png_path
|
||||
elif [[ "$png_path" == *#* ]]; then
|
||||
relative_path=$(echo "$png_path" | cut -d '#' -f1)
|
||||
if [ -n "$relative_path" ]; then
|
||||
check_path=$(dirname "$refer_path")/$relative_path
|
||||
png_path=$(echo "$png_path" | awk -F'#' '{print "#" $2}')
|
||||
else
|
||||
check_path=$refer_path
|
||||
fi
|
||||
else
|
||||
check_path=${{github.workspace}}/$(dirname "$refer_path")/$png_path
|
||||
check_path=$(dirname "$refer_path")/$png_path
|
||||
fi
|
||||
real_path=$(realpath $check_path)
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "Path $png_path in file ${{github.workspace}}/$refer_path does not exist"
|
||||
fail="TRUE"
|
||||
else
|
||||
url=$link_head$(echo "$real_path" | sed 's|.*/GenAIExamples||')
|
||||
response=$(curl -I -L -s -o /dev/null -w "%{http_code}" "$url")
|
||||
if [ "$response" -ne 200 ]; then
|
||||
echo "**********Validation failed, try again**********"
|
||||
response_retry=$(curl -s -o /dev/null -w "%{http_code}" "$url")
|
||||
if [ "$response_retry" -eq 200 ]; then
|
||||
echo "*****Retry successfully*****"
|
||||
else
|
||||
echo "Retry failed. Check branch ${{ github.event.pull_request.head.ref }}"
|
||||
url_dev=$branch$(echo "$real_path" | sed 's|.*/GenAIExamples||')
|
||||
|
||||
if [ -e "$check_path" ]; then
|
||||
real_path=$(realpath $check_path)
|
||||
if [[ "$png_line" == *#* ]]; then
|
||||
if [ -n "changed_files" ] && echo "$changed_files" | grep -q "^${refer_path}$"; then
|
||||
url_dev=$branch$(echo "$real_path" | sed 's|.*/GenAIExamples||')$png_path
|
||||
response=$(curl -I -L -s -o /dev/null -w "%{http_code}" "$url_dev")
|
||||
if [ "$response" -ne 200 ]; then
|
||||
echo "**********Validation failed, try again**********"
|
||||
@@ -140,10 +155,13 @@ jobs:
|
||||
fail="TRUE"
|
||||
fi
|
||||
else
|
||||
echo "Check branch ${{ github.event.pull_request.head.ref }} successfully."
|
||||
echo "Validation succeed $png_line"
|
||||
fi
|
||||
fi
|
||||
fi
|
||||
else
|
||||
echo "${{github.workspace}}/$refer_path:$png_path does not exist"
|
||||
fail="TRUE"
|
||||
fi
|
||||
done
|
||||
fi
|
||||
|
||||
6
.github/workflows/push-image-build.yml
vendored
@@ -23,12 +23,10 @@ jobs:
|
||||
image-build:
|
||||
needs: job1
|
||||
strategy:
|
||||
matrix:
|
||||
example: ${{ fromJSON(needs.job1.outputs.run_matrix).include.*.example }}
|
||||
node: ["gaudi","xeon"]
|
||||
matrix: ${{ fromJSON(needs.job1.outputs.run_matrix) }}
|
||||
fail-fast: false
|
||||
uses: ./.github/workflows/_example-workflow.yml
|
||||
with:
|
||||
node: ${{ matrix.node }}
|
||||
node: ${{ matrix.hardware }}
|
||||
example: ${{ matrix.example }}
|
||||
secrets: inherit
|
||||
|
||||
5
.github/workflows/scripts/get_test_matrix.sh
vendored
@@ -9,12 +9,15 @@ set -e
|
||||
changed_files=$changed_files
|
||||
test_mode=$test_mode
|
||||
run_matrix="{\"include\":["
|
||||
hardware_list="xeon gaudi" # current support hardware list
|
||||
|
||||
examples=$(printf '%s\n' "${changed_files[@]}" | grep '/' | cut -d'/' -f1 | sort -u)
|
||||
for example in ${examples}; do
|
||||
cd $WORKSPACE/$example
|
||||
if [[ ! $(find . -type f | grep ${test_mode}) ]]; then continue; fi
|
||||
cd tests
|
||||
ls -l
|
||||
hardware_list=$(find . -type f -name "test_compose*_on_*.sh" | cut -d/ -f2 | cut -d. -f1 | awk -F'_on_' '{print $2}'| sort -u)
|
||||
echo "Test supported hardware list = ${hardware_list}"
|
||||
|
||||
run_hardware=""
|
||||
if [[ $(printf '%s\n' "${changed_files[@]}" | grep ${example} | cut -d'/' -f2 | grep -E '*.py|Dockerfile*|ui|docker_image_build' ) ]]; then
|
||||
|
||||
@@ -79,7 +79,7 @@ repos:
|
||||
- id: isort
|
||||
|
||||
- repo: https://github.com/PyCQA/docformatter
|
||||
rev: v1.7.5
|
||||
rev: 06907d0
|
||||
hooks:
|
||||
- id: docformatter
|
||||
args: [
|
||||
|
||||
@@ -5,6 +5,73 @@
|
||||
This example showcases a hierarchical multi-agent system for question-answering applications. The architecture diagram is shown below. The supervisor agent interfaces with the user and dispatch tasks to the worker agent and other tools to gather information and come up with answers. The worker agent uses the retrieval tool to generate answers to the queries posted by the supervisor agent. Other tools used by the supervisor agent may include APIs to interface knowledge graphs, SQL databases, external knowledge bases, etc.
|
||||

|
||||
|
||||
The AgentQnA example is implemented using the component-level microservices defined in [GenAIComps](https://github.com/opea-project/GenAIComps). The flow chart below shows the information flow between different microservices for this example.
|
||||
|
||||
```mermaid
|
||||
---
|
||||
config:
|
||||
flowchart:
|
||||
nodeSpacing: 400
|
||||
rankSpacing: 100
|
||||
curve: linear
|
||||
themeVariables:
|
||||
fontSize: 50px
|
||||
---
|
||||
flowchart LR
|
||||
%% Colors %%
|
||||
classDef blue fill:#ADD8E6,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
|
||||
classDef orange fill:#FBAA60,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
|
||||
classDef orchid fill:#C26DBC,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
|
||||
classDef invisible fill:transparent,stroke:transparent;
|
||||
|
||||
%% Subgraphs %%
|
||||
subgraph DocIndexRetriever-MegaService["DocIndexRetriever MegaService "]
|
||||
direction LR
|
||||
EM([Embedding MicroService]):::blue
|
||||
RET([Retrieval MicroService]):::blue
|
||||
RER([Rerank MicroService]):::blue
|
||||
end
|
||||
subgraph UserInput[" User Input "]
|
||||
direction LR
|
||||
a([User Input Query]):::orchid
|
||||
Ingest([Ingest data]):::orchid
|
||||
end
|
||||
AG_REACT([Agent MicroService - react]):::blue
|
||||
AG_RAG([Agent MicroService - rag]):::blue
|
||||
LLM_gen{{LLM Service <br>}}
|
||||
DP([Data Preparation MicroService]):::blue
|
||||
TEI_RER{{Reranking service<br>}}
|
||||
TEI_EM{{Embedding service <br>}}
|
||||
VDB{{Vector DB<br><br>}}
|
||||
R_RET{{Retriever service <br>}}
|
||||
|
||||
|
||||
|
||||
%% Questions interaction
|
||||
direction LR
|
||||
a[User Input Query] --> AG_REACT
|
||||
AG_REACT --> AG_RAG
|
||||
AG_RAG --> DocIndexRetriever-MegaService
|
||||
EM ==> RET
|
||||
RET ==> RER
|
||||
Ingest[Ingest data] --> DP
|
||||
|
||||
%% Embedding service flow
|
||||
direction LR
|
||||
AG_RAG <-.-> LLM_gen
|
||||
AG_REACT <-.-> LLM_gen
|
||||
EM <-.-> TEI_EM
|
||||
RET <-.-> R_RET
|
||||
RER <-.-> TEI_RER
|
||||
|
||||
direction TB
|
||||
%% Vector DB interaction
|
||||
R_RET <-.-> VDB
|
||||
DP <-.-> VDB
|
||||
|
||||
|
||||
```
|
||||
|
||||
### Why Agent for question answering?
|
||||
|
||||
1. Improve relevancy of retrieved context.
|
||||
@@ -14,17 +81,13 @@ This example showcases a hierarchical multi-agent system for question-answering
|
||||
3. Hierarchical agent can further improve performance.
|
||||
Expert worker agents, such as retrieval agent, knowledge graph agent, SQL agent, etc., can provide high-quality output for different aspects of a complex query, and the supervisor agent can aggregate the information together to provide a comprehensive answer.
|
||||
|
||||
### Roadmap
|
||||
## Deployment with docker
|
||||
|
||||
- v0.9: Worker agent uses open-source websearch tool (duckduckgo), agents use OpenAI GPT-4o-mini as llm backend.
|
||||
- v1.0: Worker agent uses OPEA retrieval megaservice as tool.
|
||||
- v1.0 or later: agents use open-source llm backend.
|
||||
- v1.1 or later: add safeguards
|
||||
1. Build agent docker image
|
||||
|
||||
## Getting started
|
||||
Note: this is optional. The docker images will be automatically pulled when running the docker compose commands. This step is only needed if pulling images failed.
|
||||
|
||||
1. Build agent docker image </br>
|
||||
First, clone the opea GenAIComps repo
|
||||
First, clone the opea GenAIComps repo.
|
||||
|
||||
```
|
||||
export WORKDIR=<your-work-directory>
|
||||
@@ -39,35 +102,63 @@ This example showcases a hierarchical multi-agent system for question-answering
|
||||
docker build -t opea/agent-langchain:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/agent/langchain/Dockerfile .
|
||||
```
|
||||
|
||||
2. Launch tool services </br>
|
||||
In this example, we will use some of the mock APIs provided in the Meta CRAG KDD Challenge to demonstrate the benefits of gaining additional context from mock knowledge graphs.
|
||||
|
||||
```
|
||||
docker run -d -p=8080:8000 docker.io/aicrowd/kdd-cup-24-crag-mock-api:v0
|
||||
```
|
||||
|
||||
3. Set up environment for this example </br>
|
||||
First, clone this repo
|
||||
2. Set up environment for this example </br>
|
||||
First, clone this repo.
|
||||
|
||||
```
|
||||
cd $WORKDIR
|
||||
git clone https://github.com/opea-project/GenAIExamples.git
|
||||
```
|
||||
|
||||
Second, set up env vars
|
||||
Second, set up env vars.
|
||||
|
||||
```
|
||||
export TOOLSET_PATH=$WORKDIR/GenAIExamples/AgentQnA/tools/
|
||||
# optional: OPANAI_API_KEY
|
||||
# for using open-source llms
|
||||
export HUGGINGFACEHUB_API_TOKEN=<your-HF-token>
|
||||
export HF_CACHE_DIR=<directory-where-llms-are-downloaded> #so that no need to redownload every time
|
||||
|
||||
# optional: OPANAI_API_KEY if you want to use OpenAI models
|
||||
export OPENAI_API_KEY=<your-openai-key>
|
||||
```
|
||||
|
||||
4. Launch agent services</br>
|
||||
The configurations of the supervisor agent and the worker agent are defined in the docker-compose yaml file. We currently use openAI GPT-4o-mini as LLM, and we plan to add support for llama3.1-70B-instruct (served by TGI-Gaudi) in a subsequent release.
|
||||
To use openai llm, run command below.
|
||||
3. Deploy the retrieval tool (i.e., DocIndexRetriever mega-service)
|
||||
|
||||
First, launch the mega-service.
|
||||
|
||||
```
|
||||
cd docker_compose/intel/cpu/xeon
|
||||
cd $WORKDIR/GenAIExamples/AgentQnA/retrieval_tool
|
||||
bash launch_retrieval_tool.sh
|
||||
```
|
||||
|
||||
Then, ingest data into the vector database. Here we provide an example. You can ingest your own data.
|
||||
|
||||
```
|
||||
bash run_ingest_data.sh
|
||||
```
|
||||
|
||||
4. Launch other tools. </br>
|
||||
In this example, we will use some of the mock APIs provided in the Meta CRAG KDD Challenge to demonstrate the benefits of gaining additional context from mock knowledge graphs.
|
||||
|
||||
```
|
||||
docker run -d -p=8080:8000 docker.io/aicrowd/kdd-cup-24-crag-mock-api:v0
|
||||
```
|
||||
|
||||
5. Launch agent services</br>
|
||||
We provide two options for `llm_engine` of the agents: 1. open-source LLMs, 2. OpenAI models via API calls.
|
||||
|
||||
To use open-source LLMs on Gaudi2, run commands below.
|
||||
|
||||
```
|
||||
cd $WORKDIR/GenAIExamples/AgentQnA/docker_compose/intel/hpu/gaudi
|
||||
bash launch_tgi_gaudi.sh
|
||||
bash launch_agent_service_tgi_gaudi.sh
|
||||
```
|
||||
|
||||
To use OpenAI models, run commands below.
|
||||
|
||||
```
|
||||
cd $WORKDIR/GenAIExamples/AgentQnA/docker_compose/intel/cpu/xeon
|
||||
bash launch_agent_service_openai.sh
|
||||
```
|
||||
|
||||
@@ -76,10 +167,12 @@ This example showcases a hierarchical multi-agent system for question-answering
|
||||
First look at logs of the agent docker containers:
|
||||
|
||||
```
|
||||
docker logs docgrader-agent-endpoint
|
||||
# worker agent
|
||||
docker logs rag-agent-endpoint
|
||||
```
|
||||
|
||||
```
|
||||
# supervisor agent
|
||||
docker logs react-agent-endpoint
|
||||
```
|
||||
|
||||
@@ -103,4 +196,4 @@ curl http://${ip_address}:9090/v1/chat/completions -X POST -H "Content-Type: app
|
||||
|
||||
## How to register your own tools with agent
|
||||
|
||||
You can take a look at the tools yaml and python files in this example. For more details, please refer to the "Provide your own tools" section in the instructions [here](https://github.com/opea-project/GenAIComps/tree/main/comps/agent/langchain/README.md#5-customize-agent-strategy).
|
||||
You can take a look at the tools yaml and python files in this example. For more details, please refer to the "Provide your own tools" section in the instructions [here](https://github.com/opea-project/GenAIComps/tree/main/comps/agent/langchain/README.md).
|
||||
|
||||
3
AgentQnA/docker_compose/intel/cpu/xeon/README.md
Normal file
@@ -0,0 +1,3 @@
|
||||
# Deployment on Xeon
|
||||
|
||||
We deploy the retrieval tool on Xeon. For LLMs, we support OpenAI models via API calls. For instructions on using open-source LLMs, please refer to the deployment guide [here](../../../../README.md).
|
||||
@@ -2,11 +2,10 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
services:
|
||||
worker-docgrader-agent:
|
||||
worker-rag-agent:
|
||||
image: opea/agent-langchain:latest
|
||||
container_name: docgrader-agent-endpoint
|
||||
container_name: rag-agent-endpoint
|
||||
volumes:
|
||||
- ${WORKDIR}/GenAIComps/comps/agent/langchain/:/home/user/comps/agent/langchain/
|
||||
- ${TOOLSET_PATH}:/home/user/tools/
|
||||
ports:
|
||||
- "9095:9095"
|
||||
@@ -36,8 +35,9 @@ services:
|
||||
supervisor-react-agent:
|
||||
image: opea/agent-langchain:latest
|
||||
container_name: react-agent-endpoint
|
||||
depends_on:
|
||||
- worker-rag-agent
|
||||
volumes:
|
||||
- ${WORKDIR}/GenAIComps/comps/agent/langchain/:/home/user/comps/agent/langchain/
|
||||
- ${TOOLSET_PATH}:/home/user/tools/
|
||||
ports:
|
||||
- "9090:9090"
|
||||
|
||||
@@ -7,7 +7,7 @@ export recursion_limit_worker=12
|
||||
export recursion_limit_supervisor=10
|
||||
export model="gpt-4o-mini-2024-07-18"
|
||||
export temperature=0
|
||||
export max_new_tokens=512
|
||||
export max_new_tokens=4096
|
||||
export OPENAI_API_KEY=${OPENAI_API_KEY}
|
||||
export WORKER_AGENT_URL="http://${ip_address}:9095/v1/chat/completions"
|
||||
export RETRIEVAL_TOOL_URL="http://${ip_address}:8889/v1/retrievaltool"
|
||||
|
||||
@@ -2,37 +2,9 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
services:
|
||||
tgi-server:
|
||||
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
|
||||
container_name: tgi-server
|
||||
ports:
|
||||
- "8085:80"
|
||||
volumes:
|
||||
- ${HF_CACHE_DIR}:/data
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
HUGGING_FACE_HUB_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
HABANA_VISIBLE_DEVICES: all
|
||||
OMPI_MCA_btl_vader_single_copy_mechanism: none
|
||||
PT_HPU_ENABLE_LAZY_COLLECTIVES: true
|
||||
ENABLE_HPU_GRAPH: true
|
||||
LIMIT_HPU_GRAPH: true
|
||||
USE_FLASH_ATTENTION: true
|
||||
FLASH_ATTENTION_RECOMPUTE: true
|
||||
runtime: habana
|
||||
cap_add:
|
||||
- SYS_NICE
|
||||
ipc: host
|
||||
command: --model-id ${LLM_MODEL_ID} --max-input-length 4096 --max-total-tokens 8192 --sharded true --num-shard ${NUM_SHARDS}
|
||||
worker-docgrader-agent:
|
||||
worker-rag-agent:
|
||||
image: opea/agent-langchain:latest
|
||||
container_name: docgrader-agent-endpoint
|
||||
depends_on:
|
||||
- tgi-server
|
||||
container_name: rag-agent-endpoint
|
||||
volumes:
|
||||
# - ${WORKDIR}/GenAIExamples/AgentQnA/docker_image_build/GenAIComps/comps/agent/langchain/:/home/user/comps/agent/langchain/
|
||||
- ${TOOLSET_PATH}:/home/user/tools/
|
||||
@@ -41,7 +13,7 @@ services:
|
||||
ipc: host
|
||||
environment:
|
||||
ip_address: ${ip_address}
|
||||
strategy: rag_agent
|
||||
strategy: rag_agent_llama
|
||||
recursion_limit: ${recursion_limit_worker}
|
||||
llm_engine: tgi
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
@@ -66,8 +38,7 @@ services:
|
||||
image: opea/agent-langchain:latest
|
||||
container_name: react-agent-endpoint
|
||||
depends_on:
|
||||
- tgi-server
|
||||
- worker-docgrader-agent
|
||||
- worker-rag-agent
|
||||
volumes:
|
||||
# - ${WORKDIR}/GenAIExamples/AgentQnA/docker_image_build/GenAIComps/comps/agent/langchain/:/home/user/comps/agent/langchain/
|
||||
- ${TOOLSET_PATH}:/home/user/tools/
|
||||
@@ -76,7 +47,7 @@ services:
|
||||
ipc: host
|
||||
environment:
|
||||
ip_address: ${ip_address}
|
||||
strategy: react_langgraph
|
||||
strategy: react_llama
|
||||
recursion_limit: ${recursion_limit_supervisor}
|
||||
llm_engine: tgi
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
|
||||
@@ -15,7 +15,7 @@ export LLM_MODEL_ID="meta-llama/Meta-Llama-3.1-70B-Instruct"
|
||||
export NUM_SHARDS=4
|
||||
export LLM_ENDPOINT_URL="http://${ip_address}:8085"
|
||||
export temperature=0.01
|
||||
export max_new_tokens=512
|
||||
export max_new_tokens=4096
|
||||
|
||||
# agent related environment variables
|
||||
export TOOLSET_PATH=$WORKDIR/GenAIExamples/AgentQnA/tools/
|
||||
@@ -27,17 +27,3 @@ export RETRIEVAL_TOOL_URL="http://${ip_address}:8889/v1/retrievaltool"
|
||||
export CRAG_SERVER=http://${ip_address}:8080
|
||||
|
||||
docker compose -f compose.yaml up -d
|
||||
|
||||
sleep 5s
|
||||
echo "Waiting tgi gaudi ready"
|
||||
n=0
|
||||
until [[ "$n" -ge 100 ]] || [[ $ready == true ]]; do
|
||||
docker logs tgi-server &> tgi-gaudi-service.log
|
||||
n=$((n+1))
|
||||
if grep -q Connected tgi-gaudi-service.log; then
|
||||
break
|
||||
fi
|
||||
sleep 5s
|
||||
done
|
||||
sleep 5s
|
||||
echo "Service started successfully"
|
||||
|
||||
25
AgentQnA/docker_compose/intel/hpu/gaudi/launch_tgi_gaudi.sh
Normal file
@@ -0,0 +1,25 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
# LLM related environment variables
|
||||
export HF_CACHE_DIR=${HF_CACHE_DIR}
|
||||
ls $HF_CACHE_DIR
|
||||
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
||||
export LLM_MODEL_ID="meta-llama/Meta-Llama-3.1-70B-Instruct"
|
||||
export NUM_SHARDS=4
|
||||
|
||||
docker compose -f tgi_gaudi.yaml up -d
|
||||
|
||||
sleep 5s
|
||||
echo "Waiting tgi gaudi ready"
|
||||
n=0
|
||||
until [[ "$n" -ge 100 ]] || [[ $ready == true ]]; do
|
||||
docker logs tgi-server &> tgi-gaudi-service.log
|
||||
n=$((n+1))
|
||||
if grep -q Connected tgi-gaudi-service.log; then
|
||||
break
|
||||
fi
|
||||
sleep 5s
|
||||
done
|
||||
sleep 5s
|
||||
echo "Service started successfully"
|
||||
30
AgentQnA/docker_compose/intel/hpu/gaudi/tgi_gaudi.yaml
Normal file
@@ -0,0 +1,30 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
services:
|
||||
tgi-server:
|
||||
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
|
||||
container_name: tgi-server
|
||||
ports:
|
||||
- "8085:80"
|
||||
volumes:
|
||||
- ${HF_CACHE_DIR}:/data
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
HUGGING_FACE_HUB_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
HABANA_VISIBLE_DEVICES: all
|
||||
OMPI_MCA_btl_vader_single_copy_mechanism: none
|
||||
PT_HPU_ENABLE_LAZY_COLLECTIVES: true
|
||||
ENABLE_HPU_GRAPH: true
|
||||
LIMIT_HPU_GRAPH: true
|
||||
USE_FLASH_ATTENTION: true
|
||||
FLASH_ATTENTION_RECOMPUTE: true
|
||||
runtime: habana
|
||||
cap_add:
|
||||
- SYS_NICE
|
||||
ipc: host
|
||||
command: --model-id ${LLM_MODEL_ID} --max-input-length 4096 --max-total-tokens 8192 --sharded true --num-shard ${NUM_SHARDS}
|
||||
@@ -17,6 +17,12 @@ if [ ! -d "$HF_CACHE_DIR" ]; then
|
||||
fi
|
||||
ls $HF_CACHE_DIR
|
||||
|
||||
function start_tgi(){
|
||||
echo "Starting tgi-gaudi server"
|
||||
cd $WORKDIR/GenAIExamples/AgentQnA/docker_compose/intel/hpu/gaudi
|
||||
bash launch_tgi_gaudi.sh
|
||||
|
||||
}
|
||||
|
||||
function start_agent_and_api_server() {
|
||||
echo "Starting CRAG server"
|
||||
@@ -25,6 +31,7 @@ function start_agent_and_api_server() {
|
||||
echo "Starting Agent services"
|
||||
cd $WORKDIR/GenAIExamples/AgentQnA/docker_compose/intel/hpu/gaudi
|
||||
bash launch_agent_service_tgi_gaudi.sh
|
||||
sleep 10
|
||||
}
|
||||
|
||||
function validate() {
|
||||
@@ -43,18 +50,22 @@ function validate() {
|
||||
|
||||
function validate_agent_service() {
|
||||
echo "----------------Test agent ----------------"
|
||||
local CONTENT=$(http_proxy="" curl http://${ip_address}:9095/v1/chat/completions -X POST -H "Content-Type: application/json" -d '{
|
||||
"query": "Tell me about Michael Jackson song thriller"
|
||||
}')
|
||||
local EXIT_CODE=$(validate "$CONTENT" "Thriller" "react-agent-endpoint")
|
||||
docker logs docgrader-agent-endpoint
|
||||
# local CONTENT=$(http_proxy="" curl http://${ip_address}:9095/v1/chat/completions -X POST -H "Content-Type: application/json" -d '{
|
||||
# "query": "Tell me about Michael Jackson song thriller"
|
||||
# }')
|
||||
export agent_port="9095"
|
||||
local CONTENT=$(python3 $WORKDIR/GenAIExamples/AgentQnA/tests/test.py)
|
||||
local EXIT_CODE=$(validate "$CONTENT" "Thriller" "rag-agent-endpoint")
|
||||
docker logs rag-agent-endpoint
|
||||
if [ "$EXIT_CODE" == "1" ]; then
|
||||
exit 1
|
||||
fi
|
||||
|
||||
local CONTENT=$(http_proxy="" curl http://${ip_address}:9090/v1/chat/completions -X POST -H "Content-Type: application/json" -d '{
|
||||
"query": "Tell me about Michael Jackson song thriller"
|
||||
}')
|
||||
# local CONTENT=$(http_proxy="" curl http://${ip_address}:9090/v1/chat/completions -X POST -H "Content-Type: application/json" -d '{
|
||||
# "query": "Tell me about Michael Jackson song thriller"
|
||||
# }')
|
||||
export agent_port="9090"
|
||||
local CONTENT=$(python3 $WORKDIR/GenAIExamples/AgentQnA/tests/test.py)
|
||||
local EXIT_CODE=$(validate "$CONTENT" "Thriller" "react-agent-endpoint")
|
||||
docker logs react-agent-endpoint
|
||||
if [ "$EXIT_CODE" == "1" ]; then
|
||||
@@ -64,6 +75,10 @@ function validate_agent_service() {
|
||||
}
|
||||
|
||||
function main() {
|
||||
echo "==================== Start TGI ===================="
|
||||
start_tgi
|
||||
echo "==================== TGI started ===================="
|
||||
|
||||
echo "==================== Start agent ===================="
|
||||
start_agent_and_api_server
|
||||
echo "==================== Agent started ===================="
|
||||
25
AgentQnA/tests/test.py
Normal file
@@ -0,0 +1,25 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import os
|
||||
|
||||
import requests
|
||||
|
||||
|
||||
def generate_answer_agent_api(url, prompt):
|
||||
proxies = {"http": ""}
|
||||
payload = {
|
||||
"query": prompt,
|
||||
}
|
||||
response = requests.post(url, json=payload, proxies=proxies)
|
||||
answer = response.json()["text"]
|
||||
return answer
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
ip_address = os.getenv("ip_address", "localhost")
|
||||
agent_port = os.getenv("agent_port", "9095")
|
||||
url = f"http://{ip_address}:{agent_port}/v1/chat/completions"
|
||||
prompt = "Tell me about Michael Jackson song thriller"
|
||||
answer = generate_answer_agent_api(url, prompt)
|
||||
print(answer)
|
||||
@@ -19,7 +19,6 @@ function stop_crag() {
|
||||
|
||||
function stop_agent_docker() {
|
||||
cd $WORKPATH/docker_compose/intel/hpu/gaudi/
|
||||
# docker compose -f compose.yaml down
|
||||
container_list=$(cat compose.yaml | grep container_name | cut -d':' -f2)
|
||||
for container_name in $container_list; do
|
||||
cid=$(docker ps -aq --filter "name=$container_name")
|
||||
@@ -28,11 +27,21 @@ function stop_agent_docker() {
|
||||
done
|
||||
}
|
||||
|
||||
function stop_tgi(){
|
||||
cd $WORKPATH/docker_compose/intel/hpu/gaudi/
|
||||
container_list=$(cat tgi_gaudi.yaml | grep container_name | cut -d':' -f2)
|
||||
for container_name in $container_list; do
|
||||
cid=$(docker ps -aq --filter "name=$container_name")
|
||||
echo "Stopping container $container_name"
|
||||
if [[ ! -z "$cid" ]]; then docker rm $cid -f && sleep 1s; fi
|
||||
done
|
||||
|
||||
}
|
||||
|
||||
function stop_retrieval_tool() {
|
||||
echo "Stopping Retrieval tool"
|
||||
local RETRIEVAL_TOOL_PATH=$WORKPATH/../DocIndexRetriever
|
||||
cd $RETRIEVAL_TOOL_PATH/docker_compose/intel/cpu/xeon/
|
||||
# docker compose -f compose.yaml down
|
||||
container_list=$(cat compose.yaml | grep container_name | cut -d':' -f2)
|
||||
for container_name in $container_list; do
|
||||
cid=$(docker ps -aq --filter "name=$container_name")
|
||||
@@ -43,25 +52,26 @@ function stop_retrieval_tool() {
|
||||
echo "workpath: $WORKPATH"
|
||||
echo "=================== Stop containers ===================="
|
||||
stop_crag
|
||||
stop_tgi
|
||||
stop_agent_docker
|
||||
stop_retrieval_tool
|
||||
|
||||
cd $WORKPATH/tests
|
||||
|
||||
echo "=================== #1 Building docker images===================="
|
||||
bash 1_build_images.sh
|
||||
bash step1_build_images.sh
|
||||
echo "=================== #1 Building docker images completed===================="
|
||||
|
||||
echo "=================== #2 Start retrieval tool===================="
|
||||
bash 2_start_retrieval_tool.sh
|
||||
bash step2_start_retrieval_tool.sh
|
||||
echo "=================== #2 Retrieval tool started===================="
|
||||
|
||||
echo "=================== #3 Ingest data and validate retrieval===================="
|
||||
bash 3_ingest_data_and_validate_retrieval.sh
|
||||
bash step3_ingest_data_and_validate_retrieval.sh
|
||||
echo "=================== #3 Data ingestion and validation completed===================="
|
||||
|
||||
echo "=================== #4 Start agent and API server===================="
|
||||
bash 4_launch_and_validate_agent_tgi.sh
|
||||
bash step4_launch_and_validate_agent_tgi.sh
|
||||
echo "=================== #4 Agent test passed ===================="
|
||||
|
||||
echo "=================== #5 Stop agent and API server===================="
|
||||
@@ -70,4 +80,6 @@ stop_agent_docker
|
||||
stop_retrieval_tool
|
||||
echo "=================== #5 Agent and API server stopped===================="
|
||||
|
||||
echo y | docker system prune
|
||||
|
||||
echo "ALL DONE!"
|
||||
|
||||
@@ -25,7 +25,7 @@ get_billboard_rank_date:
|
||||
args_schema:
|
||||
rank:
|
||||
type: int
|
||||
description: song name
|
||||
description: the rank of interest, for example 1 for top 1
|
||||
date:
|
||||
type: str
|
||||
description: date
|
||||
|
||||
@@ -12,16 +12,31 @@ def search_knowledge_base(query: str) -> str:
|
||||
print(url)
|
||||
proxies = {"http": ""}
|
||||
payload = {
|
||||
"text": query,
|
||||
"messages": query,
|
||||
}
|
||||
response = requests.post(url, json=payload, proxies=proxies)
|
||||
print(response)
|
||||
docs = response.json()["documents"]
|
||||
context = ""
|
||||
for i, doc in enumerate(docs):
|
||||
if i == 0:
|
||||
context = doc
|
||||
else:
|
||||
context += "\n" + doc
|
||||
print(context)
|
||||
return context
|
||||
if "documents" in response.json():
|
||||
docs = response.json()["documents"]
|
||||
context = ""
|
||||
for i, doc in enumerate(docs):
|
||||
if i == 0:
|
||||
context = doc
|
||||
else:
|
||||
context += "\n" + doc
|
||||
# print(context)
|
||||
return context
|
||||
elif "text" in response.json():
|
||||
return response.json()["text"]
|
||||
elif "reranked_docs" in response.json():
|
||||
docs = response.json()["reranked_docs"]
|
||||
context = ""
|
||||
for i, doc in enumerate(docs):
|
||||
if i == 0:
|
||||
context = doc["text"]
|
||||
else:
|
||||
context += "\n" + doc["text"]
|
||||
# print(context)
|
||||
return context
|
||||
else:
|
||||
return "Error parsing response from the knowledge base."
|
||||
|
||||
32
AudioQnA/Dockerfile.multilang
Normal file
@@ -0,0 +1,32 @@
|
||||
|
||||
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
FROM python:3.11-slim
|
||||
|
||||
RUN apt-get update -y && apt-get install -y --no-install-recommends --fix-missing \
|
||||
libgl1-mesa-glx \
|
||||
libjemalloc-dev \
|
||||
git
|
||||
|
||||
RUN useradd -m -s /bin/bash user && \
|
||||
mkdir -p /home/user && \
|
||||
chown -R user /home/user/
|
||||
|
||||
WORKDIR /home/user/
|
||||
RUN git clone https://github.com/opea-project/GenAIComps.git
|
||||
|
||||
WORKDIR /home/user/GenAIComps
|
||||
RUN pip install --no-cache-dir --upgrade pip && \
|
||||
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt
|
||||
|
||||
COPY ./audioqna_multilang.py /home/user/audioqna_multilang.py
|
||||
|
||||
ENV PYTHONPATH=$PYTHONPATH:/home/user/GenAIComps
|
||||
|
||||
USER user
|
||||
|
||||
WORKDIR /home/user
|
||||
|
||||
ENTRYPOINT ["python", "audioqna_multilang.py"]
|
||||
@@ -2,6 +2,63 @@
|
||||
|
||||
AudioQnA is an example that demonstrates the integration of Generative AI (GenAI) models for performing question-answering (QnA) on audio files, with the added functionality of Text-to-Speech (TTS) for generating spoken responses. The example showcases how to convert audio input to text using Automatic Speech Recognition (ASR), generate answers to user queries using a language model, and then convert those answers back to speech using Text-to-Speech (TTS).
|
||||
|
||||
The AudioQnA example is implemented using the component-level microservices defined in [GenAIComps](https://github.com/opea-project/GenAIComps). The flow chart below shows the information flow between different microservices for this example.
|
||||
|
||||
```mermaid
|
||||
---
|
||||
config:
|
||||
flowchart:
|
||||
nodeSpacing: 400
|
||||
rankSpacing: 100
|
||||
curve: linear
|
||||
themeVariables:
|
||||
fontSize: 50px
|
||||
---
|
||||
flowchart LR
|
||||
%% Colors %%
|
||||
classDef blue fill:#ADD8E6,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
|
||||
classDef orange fill:#FBAA60,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
|
||||
classDef orchid fill:#C26DBC,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
|
||||
classDef invisible fill:transparent,stroke:transparent;
|
||||
style AudioQnA-MegaService stroke:#000000
|
||||
|
||||
%% Subgraphs %%
|
||||
subgraph AudioQnA-MegaService["AudioQnA MegaService "]
|
||||
direction LR
|
||||
ASR([ASR MicroService]):::blue
|
||||
LLM([LLM MicroService]):::blue
|
||||
TTS([TTS MicroService]):::blue
|
||||
end
|
||||
subgraph UserInterface[" User Interface "]
|
||||
direction LR
|
||||
a([User Input Query]):::orchid
|
||||
UI([UI server<br>]):::orchid
|
||||
end
|
||||
|
||||
|
||||
|
||||
WSP_SRV{{whisper service<br>}}
|
||||
SPC_SRV{{speecht5 service <br>}}
|
||||
LLM_gen{{LLM Service <br>}}
|
||||
GW([AudioQnA GateWay<br>]):::orange
|
||||
|
||||
|
||||
%% Questions interaction
|
||||
direction LR
|
||||
a[User Audio Query] --> UI
|
||||
UI --> GW
|
||||
GW <==> AudioQnA-MegaService
|
||||
ASR ==> LLM
|
||||
LLM ==> TTS
|
||||
|
||||
%% Embedding service flow
|
||||
direction LR
|
||||
ASR <-.-> WSP_SRV
|
||||
LLM <-.-> LLM_gen
|
||||
TTS <-.-> SPC_SRV
|
||||
|
||||
```
|
||||
|
||||
## Deploy AudioQnA Service
|
||||
|
||||
The AudioQnA service can be deployed on either Intel Gaudi2 or Intel Xeon Scalable Processor.
|
||||
|
||||
98
AudioQnA/audioqna_multilang.py
Normal file
@@ -0,0 +1,98 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import asyncio
|
||||
import base64
|
||||
import os
|
||||
|
||||
from comps import AudioQnAGateway, MicroService, ServiceOrchestrator, ServiceType
|
||||
|
||||
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
|
||||
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
|
||||
|
||||
WHISPER_SERVER_HOST_IP = os.getenv("WHISPER_SERVER_HOST_IP", "0.0.0.0")
|
||||
WHISPER_SERVER_PORT = int(os.getenv("WHISPER_SERVER_PORT", 7066))
|
||||
GPT_SOVITS_SERVER_HOST_IP = os.getenv("GPT_SOVITS_SERVER_HOST_IP", "0.0.0.0")
|
||||
GPT_SOVITS_SERVER_PORT = int(os.getenv("GPT_SOVITS_SERVER_PORT", 9088))
|
||||
LLM_SERVER_HOST_IP = os.getenv("LLM_SERVER_HOST_IP", "0.0.0.0")
|
||||
LLM_SERVER_PORT = int(os.getenv("LLM_SERVER_PORT", 8888))
|
||||
|
||||
|
||||
def align_inputs(self, inputs, cur_node, runtime_graph, llm_parameters_dict, **kwargs):
|
||||
print(inputs)
|
||||
if self.services[cur_node].service_type == ServiceType.ASR:
|
||||
# {'byte_str': 'UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA'}
|
||||
inputs["audio"] = inputs["byte_str"]
|
||||
del inputs["byte_str"]
|
||||
elif self.services[cur_node].service_type == ServiceType.LLM:
|
||||
# convert TGI/vLLM to unified OpenAI /v1/chat/completions format
|
||||
next_inputs = {}
|
||||
next_inputs["model"] = "tgi" # specifically clarify the fake model to make the format unified
|
||||
next_inputs["messages"] = [{"role": "user", "content": inputs["asr_result"]}]
|
||||
next_inputs["max_tokens"] = llm_parameters_dict["max_tokens"]
|
||||
next_inputs["top_p"] = llm_parameters_dict["top_p"]
|
||||
next_inputs["stream"] = inputs["streaming"] # False as default
|
||||
next_inputs["frequency_penalty"] = inputs["frequency_penalty"]
|
||||
# next_inputs["presence_penalty"] = inputs["presence_penalty"]
|
||||
# next_inputs["repetition_penalty"] = inputs["repetition_penalty"]
|
||||
next_inputs["temperature"] = inputs["temperature"]
|
||||
inputs = next_inputs
|
||||
elif self.services[cur_node].service_type == ServiceType.TTS:
|
||||
next_inputs = {}
|
||||
next_inputs["text"] = inputs["choices"][0]["message"]["content"]
|
||||
next_inputs["text_language"] = kwargs["tts_text_language"] if "tts_text_language" in kwargs else "zh"
|
||||
inputs = next_inputs
|
||||
return inputs
|
||||
|
||||
|
||||
def align_outputs(self, data, cur_node, inputs, runtime_graph, llm_parameters_dict, **kwargs):
|
||||
if self.services[cur_node].service_type == ServiceType.TTS:
|
||||
audio_base64 = base64.b64encode(data).decode("utf-8")
|
||||
return {"byte_str": audio_base64}
|
||||
return data
|
||||
|
||||
|
||||
class AudioQnAService:
|
||||
def __init__(self, host="0.0.0.0", port=8000):
|
||||
self.host = host
|
||||
self.port = port
|
||||
ServiceOrchestrator.align_inputs = align_inputs
|
||||
ServiceOrchestrator.align_outputs = align_outputs
|
||||
self.megaservice = ServiceOrchestrator()
|
||||
|
||||
def add_remote_service(self):
|
||||
asr = MicroService(
|
||||
name="asr",
|
||||
host=WHISPER_SERVER_HOST_IP,
|
||||
port=WHISPER_SERVER_PORT,
|
||||
# endpoint="/v1/audio/transcriptions",
|
||||
endpoint="/v1/asr",
|
||||
use_remote_service=True,
|
||||
service_type=ServiceType.ASR,
|
||||
)
|
||||
llm = MicroService(
|
||||
name="llm",
|
||||
host=LLM_SERVER_HOST_IP,
|
||||
port=LLM_SERVER_PORT,
|
||||
endpoint="/v1/chat/completions",
|
||||
use_remote_service=True,
|
||||
service_type=ServiceType.LLM,
|
||||
)
|
||||
tts = MicroService(
|
||||
name="tts",
|
||||
host=GPT_SOVITS_SERVER_HOST_IP,
|
||||
port=GPT_SOVITS_SERVER_PORT,
|
||||
# endpoint="/v1/audio/speech",
|
||||
endpoint="/",
|
||||
use_remote_service=True,
|
||||
service_type=ServiceType.TTS,
|
||||
)
|
||||
self.megaservice.add(asr).add(llm).add(tts)
|
||||
self.megaservice.flow_to(asr, llm)
|
||||
self.megaservice.flow_to(llm, tts)
|
||||
self.gateway = AudioQnAGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
audioqna = AudioQnAService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
|
||||
audioqna.add_remote_service()
|
||||
@@ -1,4 +1,4 @@
|
||||
# AudioQnA accuracy Evaluation
|
||||
# AudioQnA Accuracy
|
||||
|
||||
AudioQnA is an example that demonstrates the integration of Generative AI (GenAI) models for performing question-answering (QnA) on audio scene, which contains Automatic Speech Recognition (ASR) and Text-to-Speech (TTS). The following is the piepline for evaluating the ASR accuracy.
|
||||
|
||||
@@ -36,9 +36,9 @@ Evaluate the performance with the LLM:
|
||||
|
||||
```py
|
||||
# validate the offline model
|
||||
# python offline_evaluate.py
|
||||
# python offline_eval.py
|
||||
# validate the online asr microservice accuracy
|
||||
python online_evaluate.py
|
||||
python online_eval.py
|
||||
```
|
||||
|
||||
### Performance Result
|
||||
|
||||
5
AudioQnA/benchmark/accuracy/run_acc.sh
Normal file
@@ -0,0 +1,5 @@
|
||||
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
python online_eval.py
|
||||
@@ -127,9 +127,13 @@ curl http://${host_ip}:3002/v1/audio/speech \
|
||||
|
||||
## 🚀 Test MegaService
|
||||
|
||||
Test the AudioQnA megaservice by recording a .wav file, encoding the file into the base64 format, and then sending the
|
||||
base64 string to the megaservice endpoint. The megaservice will return a spoken response as a base64 string. To listen
|
||||
to the response, decode the base64 string and save it as a .wav file.
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:3008/v1/audioqna \
|
||||
-X POST \
|
||||
-d '{"audio": "UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA", "max_tokens":64}' \
|
||||
-H 'Content-Type: application/json'
|
||||
-H 'Content-Type: application/json' | sed 's/^"//;s/"$//' | base64 -d > output.wav
|
||||
```
|
||||
|
||||
@@ -41,7 +41,7 @@ services:
|
||||
environment:
|
||||
TTS_ENDPOINT: ${TTS_ENDPOINT}
|
||||
tgi-service:
|
||||
image: ghcr.io/huggingface/text-generation-inference:sha-e4201f4-intel-cpu
|
||||
image: ghcr.io/huggingface/text-generation-inference:2.4.0-intel-cpu
|
||||
container_name: tgi-service
|
||||
ports:
|
||||
- "3006:80"
|
||||
|
||||
@@ -0,0 +1,64 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
services:
|
||||
whisper-service:
|
||||
image: ${REGISTRY:-opea}/whisper:${TAG:-latest}
|
||||
container_name: whisper-service
|
||||
ports:
|
||||
- "7066:7066"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
restart: unless-stopped
|
||||
command: --language "zh"
|
||||
gpt-sovits-service:
|
||||
image: ${REGISTRY:-opea}/gpt-sovits:${TAG:-latest}
|
||||
container_name: gpt-sovits-service
|
||||
ports:
|
||||
- "9880:9880"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
restart: unless-stopped
|
||||
tgi-service:
|
||||
image: ghcr.io/huggingface/text-generation-inference:2.4.0-intel-cpu
|
||||
container_name: tgi-service
|
||||
ports:
|
||||
- "3006:80"
|
||||
volumes:
|
||||
- "./data:/data"
|
||||
shm_size: 1g
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
command: --model-id ${LLM_MODEL_ID} --cuda-graphs 0
|
||||
audioqna-xeon-backend-server:
|
||||
image: ${REGISTRY:-opea}/audioqna-multilang:${TAG:-latest}
|
||||
container_name: audioqna-xeon-backend-server
|
||||
ports:
|
||||
- "3008:8888"
|
||||
environment:
|
||||
- no_proxy=${no_proxy}
|
||||
- https_proxy=${https_proxy}
|
||||
- http_proxy=${http_proxy}
|
||||
- MEGA_SERVICE_HOST_IP=${MEGA_SERVICE_HOST_IP}
|
||||
- LLM_SERVER_HOST_IP=${LLM_SERVER_HOST_IP}
|
||||
- LLM_SERVER_PORT=${LLM_SERVER_PORT}
|
||||
- LLM_MODEL_ID=${LLM_MODEL_ID}
|
||||
- WHISPER_SERVER_HOST_IP=${WHISPER_SERVER_HOST_IP}
|
||||
- WHISPER_SERVER_PORT=${WHISPER_SERVER_PORT}
|
||||
- GPT_SOVITS_SERVER_HOST_IP=${GPT_SOVITS_SERVER_HOST_IP}
|
||||
- GPT_SOVITS_SERVER_PORT=${GPT_SOVITS_SERVER_PORT}
|
||||
ipc: host
|
||||
restart: always
|
||||
|
||||
networks:
|
||||
default:
|
||||
driver: bridge
|
||||
@@ -79,6 +79,8 @@ export LLM_SERVICE_PORT=3007
|
||||
|
||||
## 🚀 Start the MegaService
|
||||
|
||||
> **_NOTE:_** Users will need at least three Gaudi cards for AudioQnA.
|
||||
|
||||
```bash
|
||||
cd GenAIExamples/AudioQnA/docker_compose/intel/hpu/gaudi/
|
||||
docker compose up -d
|
||||
@@ -127,9 +129,13 @@ curl http://${host_ip}:3002/v1/audio/speech \
|
||||
|
||||
## 🚀 Test MegaService
|
||||
|
||||
Test the AudioQnA megaservice by recording a .wav file, encoding the file into the base64 format, and then sending the
|
||||
base64 string to the megaservice endpoint. The megaservice will return a spoken response as a base64 string. To listen
|
||||
to the response, decode the base64 string and save it as a .wav file.
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:3008/v1/audioqna \
|
||||
-X POST \
|
||||
-d '{"audio": "UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA", "max_tokens":64}' \
|
||||
-H 'Content-Type: application/json'
|
||||
-H 'Content-Type: application/json' | sed 's/^"//;s/"$//' | base64 -d > output.wav
|
||||
```
|
||||
|
||||
@@ -53,3 +53,9 @@ services:
|
||||
dockerfile: comps/tts/speecht5/Dockerfile
|
||||
extends: audioqna
|
||||
image: ${REGISTRY:-opea}/tts:${TAG:-latest}
|
||||
gpt-sovits:
|
||||
build:
|
||||
context: GenAIComps
|
||||
dockerfile: comps/tts/gpt-sovits/Dockerfile
|
||||
extends: audioqna
|
||||
image: ${REGISTRY:-opea}/gpt-sovits:${TAG:-latest}
|
||||
|
||||
@@ -7,14 +7,14 @@
|
||||
|
||||
## Deploy On Xeon
|
||||
```
|
||||
cd GenAIExamples/AudioQnA/kubernetes/intel/cpu/xeon/manifests
|
||||
cd GenAIExamples/AudioQnA/kubernetes/intel/cpu/xeon/manifest
|
||||
export HUGGINGFACEHUB_API_TOKEN="YourOwnToken"
|
||||
sed -i "s/insert-your-huggingface-token-here/${HUGGINGFACEHUB_API_TOKEN}/g" audioqna.yaml
|
||||
kubectl apply -f audioqna.yaml
|
||||
```
|
||||
## Deploy On Gaudi
|
||||
```
|
||||
cd GenAIExamples/AudioQnA/kubernetes/intel/hpu/gaudi/manifests
|
||||
cd GenAIExamples/AudioQnA/kubernetes/intel/hpu/gaudi/manifest
|
||||
export HUGGINGFACEHUB_API_TOKEN="YourOwnToken"
|
||||
sed -i "s/insert-your-huggingface-token-here/${HUGGINGFACEHUB_API_TOKEN}/g" audioqna.yaml
|
||||
kubectl apply -f audioqna.yaml
|
||||
|
||||
@@ -247,7 +247,7 @@ spec:
|
||||
- envFrom:
|
||||
- configMapRef:
|
||||
name: audio-qna-config
|
||||
image: "ghcr.io/huggingface/text-generation-inference:sha-e4201f4-intel-cpu"
|
||||
image: "ghcr.io/huggingface/text-generation-inference:2.4.0-intel-cpu"
|
||||
name: llm-dependency-deploy-demo
|
||||
securityContext:
|
||||
capabilities:
|
||||
|
||||
8
AvatarChatbot/.gitignore
vendored
Normal file
@@ -0,0 +1,8 @@
|
||||
*.safetensors
|
||||
*.bin
|
||||
*.model
|
||||
*.log
|
||||
docker_compose/intel/cpu/xeon/data
|
||||
docker_compose/intel/hpu/gaudi/data
|
||||
inputs/
|
||||
outputs/
|
||||
@@ -17,13 +17,12 @@ RUN useradd -m -s /bin/bash user && \
|
||||
|
||||
WORKDIR /home/user/
|
||||
RUN git clone https://github.com/opea-project/GenAIComps.git
|
||||
|
||||
WORKDIR /home/user/GenAIComps
|
||||
RUN pip install --no-cache-dir --upgrade pip && \
|
||||
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt && \
|
||||
pip install --no-cache-dir langchain_core
|
||||
|
||||
COPY ./chatqna_no_wrapper.py /home/user/chatqna_no_wrapper.py
|
||||
RUN pip install --no-cache-dir --upgrade pip && \
|
||||
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt
|
||||
|
||||
COPY ./avatarchatbot.py /home/user/avatarchatbot.py
|
||||
|
||||
ENV PYTHONPATH=$PYTHONPATH:/home/user/GenAIComps
|
||||
|
||||
@@ -31,4 +30,4 @@ USER user
|
||||
|
||||
WORKDIR /home/user
|
||||
|
||||
ENTRYPOINT ["python", "chatqna_no_wrapper.py", "--without-rerank"]
|
||||
ENTRYPOINT ["python", "avatarchatbot.py"]
|
||||
105
AvatarChatbot/README.md
Normal file
@@ -0,0 +1,105 @@
|
||||
# AvatarChatbot Application
|
||||
|
||||
The AvatarChatbot service can be effortlessly deployed on either Intel Gaudi2 or Intel XEON Scalable Processors.
|
||||
|
||||
## AI Avatar Workflow
|
||||
|
||||
The AI Avatar example is implemented using both megaservices and the component-level microservices defined in [GenAIComps](https://github.com/opea-project/GenAIComps). The flow chart below shows the information flow between different megaservices and microservices for this example.
|
||||
|
||||
```mermaid
|
||||
---
|
||||
config:
|
||||
flowchart:
|
||||
nodeSpacing: 100
|
||||
rankSpacing: 100
|
||||
curve: linear
|
||||
themeVariables:
|
||||
fontSize: 42px
|
||||
---
|
||||
flowchart LR
|
||||
classDef blue fill:#ADD8E6,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
|
||||
classDef thistle fill:#D8BFD8,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
|
||||
classDef orange fill:#FBAA60,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
|
||||
classDef orchid fill:#C26DBC,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
|
||||
classDef invisible fill:transparent,stroke:transparent;
|
||||
style AvatarChatbot-Megaservice stroke:#000000
|
||||
|
||||
subgraph AvatarChatbot-Megaservice["AvatarChatbot Megaservice"]
|
||||
direction LR
|
||||
ASR([ASR Microservice]):::blue
|
||||
LLM([LLM Microservice]):::blue
|
||||
TTS([TTS Microservice]):::blue
|
||||
animation([Animation Microservice]):::blue
|
||||
end
|
||||
subgraph UserInterface["User Interface"]
|
||||
direction LR
|
||||
invis1[ ]:::invisible
|
||||
USER1([User Audio Query]):::orchid
|
||||
USER2([User Image/Video Query]):::orchid
|
||||
UI([UI server<br>]):::orchid
|
||||
end
|
||||
GW([AvatarChatbot GateWay<br>]):::orange
|
||||
subgraph .
|
||||
direction LR
|
||||
X([OPEA Microservice]):::blue
|
||||
Y{{Open Source Service}}:::thistle
|
||||
Z([OPEA Gateway]):::orange
|
||||
Z1([UI]):::orchid
|
||||
end
|
||||
|
||||
WHISPER{{Whisper service}}:::thistle
|
||||
TGI{{LLM service}}:::thistle
|
||||
T5{{Speecht5 service}}:::thistle
|
||||
WAV2LIP{{Wav2Lip service}}:::thistle
|
||||
|
||||
%% Connections %%
|
||||
direction LR
|
||||
USER1 -->|1| UI
|
||||
UI -->|2| GW
|
||||
GW <==>|3| AvatarChatbot-Megaservice
|
||||
ASR ==>|4| LLM ==>|5| TTS ==>|6| animation
|
||||
|
||||
direction TB
|
||||
ASR <-.->|3'| WHISPER
|
||||
LLM <-.->|4'| TGI
|
||||
TTS <-.->|5'| T5
|
||||
animation <-.->|6'| WAV2LIP
|
||||
|
||||
USER2 -->|1| UI
|
||||
UI <-.->|6'| WAV2LIP
|
||||
```
|
||||
|
||||
## Deploy AvatarChatbot Service
|
||||
|
||||
The AvatarChatbot service can be deployed on either Intel Gaudi2 AI Accelerator or Intel Xeon Scalable Processor.
|
||||
|
||||
### Deploy AvatarChatbot on Gaudi
|
||||
|
||||
Refer to the [Gaudi Guide](./docker_compose/intel/hpu/gaudi/README.md) for instructions on deploying AvatarChatbot on Gaudi, and on setting up an UI for the application.
|
||||
|
||||
### Deploy AvatarChatbot on Xeon
|
||||
|
||||
Refer to the [Xeon Guide](./docker_compose/intel/cpu/xeon/README.md) for instructions on deploying AvatarChatbot on Xeon.
|
||||
|
||||
## Supported Models
|
||||
|
||||
### ASR
|
||||
|
||||
The default model is [openai/whisper-small](https://huggingface.co/openai/whisper-small). It also supports all models in the Whisper family, such as `openai/whisper-large-v3`, `openai/whisper-medium`, `openai/whisper-base`, `openai/whisper-tiny`, etc.
|
||||
|
||||
To replace the model, please edit the `compose.yaml` and add the `command` line to pass the name of the model you want to use:
|
||||
|
||||
```yaml
|
||||
services:
|
||||
whisper-service:
|
||||
...
|
||||
command: --model_name_or_path openai/whisper-tiny
|
||||
```
|
||||
|
||||
### TTS
|
||||
|
||||
The default model is [microsoft/SpeechT5](https://huggingface.co/microsoft/speecht5_tts). We currently do not support replacing the model. More models under the commercial license will be added in the future.
|
||||
|
||||
### Animation
|
||||
|
||||
The default model is [Rudrabha/Wav2Lip](https://github.com/Rudrabha/Wav2Lip) and [TencentARC/GFPGAN](https://github.com/TencentARC/GFPGAN). We currently do not support replacing the model. More models under the commercial license such as [OpenTalker/SadTalker](https://github.com/OpenTalker/SadTalker) will be added in the future.
|
||||
BIN
AvatarChatbot/assets/audio/eg3_ref.wav
Normal file
3
AvatarChatbot/assets/audio/sample_minecraft.json
Normal file
3
AvatarChatbot/assets/audio/sample_question.json
Normal file
4
AvatarChatbot/assets/audio/sample_whoareyou.json
Normal file
BIN
AvatarChatbot/assets/img/UI.png
Normal file
|
After Width: | Height: | Size: 595 KiB |
BIN
AvatarChatbot/assets/img/avatar1.jpg
Normal file
|
After Width: | Height: | Size: 148 KiB |
BIN
AvatarChatbot/assets/img/avatar2.jpg
Normal file
|
After Width: | Height: | Size: 158 KiB |
BIN
AvatarChatbot/assets/img/avatar3.png
Normal file
|
After Width: | Height: | Size: 2.5 MiB |
BIN
AvatarChatbot/assets/img/avatar4.png
Normal file
|
After Width: | Height: | Size: 992 KiB |
BIN
AvatarChatbot/assets/img/avatar5.png
Normal file
|
After Width: | Height: | Size: 1.7 MiB |
BIN
AvatarChatbot/assets/img/avatar6.png
Normal file
|
After Width: | Height: | Size: 1.6 MiB |
BIN
AvatarChatbot/assets/img/design.png
Normal file
|
After Width: | Height: | Size: 169 KiB |
BIN
AvatarChatbot/assets/img/flowchart.png
Normal file
|
After Width: | Height: | Size: 121 KiB |
BIN
AvatarChatbot/assets/img/gaudi.png
Normal file
|
After Width: | Height: | Size: 47 KiB |
BIN
AvatarChatbot/assets/img/opea_gh_qr.png
Normal file
|
After Width: | Height: | Size: 20 KiB |
BIN
AvatarChatbot/assets/img/opea_qr.png
Normal file
|
After Width: | Height: | Size: 25 KiB |
BIN
AvatarChatbot/assets/img/xeon.jpg
Normal file
|
After Width: | Height: | Size: 22 KiB |
BIN
AvatarChatbot/assets/outputs/result_max_tokens_1024.mp4
Normal file
BIN
AvatarChatbot/assets/outputs/result_max_tokens_64.mp4
Normal file
93
AvatarChatbot/avatarchatbot.py
Normal file
@@ -0,0 +1,93 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import asyncio
|
||||
import os
|
||||
import sys
|
||||
|
||||
from comps import AvatarChatbotGateway, MicroService, ServiceOrchestrator, ServiceType
|
||||
|
||||
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
|
||||
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
|
||||
ASR_SERVICE_HOST_IP = os.getenv("ASR_SERVICE_HOST_IP", "0.0.0.0")
|
||||
ASR_SERVICE_PORT = int(os.getenv("ASR_SERVICE_PORT", 9099))
|
||||
LLM_SERVICE_HOST_IP = os.getenv("LLM_SERVICE_HOST_IP", "0.0.0.0")
|
||||
LLM_SERVICE_PORT = int(os.getenv("LLM_SERVICE_PORT", 9000))
|
||||
TTS_SERVICE_HOST_IP = os.getenv("TTS_SERVICE_HOST_IP", "0.0.0.0")
|
||||
TTS_SERVICE_PORT = int(os.getenv("TTS_SERVICE_PORT", 9088))
|
||||
ANIMATION_SERVICE_HOST_IP = os.getenv("ANIMATION_SERVICE_HOST_IP", "0.0.0.0")
|
||||
ANIMATION_SERVICE_PORT = int(os.getenv("ANIMATION_SERVICE_PORT", 9066))
|
||||
|
||||
|
||||
def check_env_vars(env_var_list):
|
||||
for var in env_var_list:
|
||||
if os.getenv(var) is None:
|
||||
print(f"Error: The environment variable '{var}' is not set.")
|
||||
sys.exit(1) # Exit the program with a non-zero status code
|
||||
print("All environment variables are set.")
|
||||
|
||||
|
||||
class AvatarChatbotService:
|
||||
def __init__(self, host="0.0.0.0", port=8000):
|
||||
self.host = host
|
||||
self.port = port
|
||||
self.megaservice = ServiceOrchestrator()
|
||||
|
||||
def add_remote_service(self):
|
||||
asr = MicroService(
|
||||
name="asr",
|
||||
host=ASR_SERVICE_HOST_IP,
|
||||
port=ASR_SERVICE_PORT,
|
||||
endpoint="/v1/audio/transcriptions",
|
||||
use_remote_service=True,
|
||||
service_type=ServiceType.ASR,
|
||||
)
|
||||
llm = MicroService(
|
||||
name="llm",
|
||||
host=LLM_SERVICE_HOST_IP,
|
||||
port=LLM_SERVICE_PORT,
|
||||
endpoint="/v1/chat/completions",
|
||||
use_remote_service=True,
|
||||
service_type=ServiceType.LLM,
|
||||
)
|
||||
tts = MicroService(
|
||||
name="tts",
|
||||
host=TTS_SERVICE_HOST_IP,
|
||||
port=TTS_SERVICE_PORT,
|
||||
endpoint="/v1/audio/speech",
|
||||
use_remote_service=True,
|
||||
service_type=ServiceType.TTS,
|
||||
)
|
||||
animation = MicroService(
|
||||
name="animation",
|
||||
host=ANIMATION_SERVICE_HOST_IP,
|
||||
port=ANIMATION_SERVICE_PORT,
|
||||
endpoint="/v1/animation",
|
||||
use_remote_service=True,
|
||||
service_type=ServiceType.ANIMATION,
|
||||
)
|
||||
self.megaservice.add(asr).add(llm).add(tts).add(animation)
|
||||
self.megaservice.flow_to(asr, llm)
|
||||
self.megaservice.flow_to(llm, tts)
|
||||
self.megaservice.flow_to(tts, animation)
|
||||
self.gateway = AvatarChatbotGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
check_env_vars(
|
||||
[
|
||||
"MEGA_SERVICE_HOST_IP",
|
||||
"MEGA_SERVICE_PORT",
|
||||
"ASR_SERVICE_HOST_IP",
|
||||
"ASR_SERVICE_PORT",
|
||||
"LLM_SERVICE_HOST_IP",
|
||||
"LLM_SERVICE_PORT",
|
||||
"TTS_SERVICE_HOST_IP",
|
||||
"TTS_SERVICE_PORT",
|
||||
"ANIMATION_SERVICE_HOST_IP",
|
||||
"ANIMATION_SERVICE_PORT",
|
||||
]
|
||||
)
|
||||
|
||||
avatarchatbot = AvatarChatbotService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
|
||||
avatarchatbot.add_remote_service()
|
||||
210
AvatarChatbot/docker_compose/intel/cpu/xeon/README.md
Normal file
@@ -0,0 +1,210 @@
|
||||
# Build Mega Service of AvatarChatbot on Xeon
|
||||
|
||||
This document outlines the deployment process for a AvatarChatbot application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline on Intel Xeon server.
|
||||
|
||||
## 🚀 Build Docker images
|
||||
|
||||
### 1. Source Code install GenAIComps
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
```
|
||||
|
||||
### 2. Build ASR Image
|
||||
|
||||
```bash
|
||||
docker build -t opea/whisper:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/asr/whisper/dependency/Dockerfile .
|
||||
|
||||
|
||||
docker build -t opea/asr:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/asr/whisper/Dockerfile .
|
||||
```
|
||||
|
||||
### 3. Build LLM Image
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/llm-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/tgi/Dockerfile .
|
||||
```
|
||||
|
||||
### 4. Build TTS Image
|
||||
|
||||
```bash
|
||||
docker build -t opea/speecht5:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/tts/speecht5/dependency/Dockerfile .
|
||||
|
||||
docker build -t opea/tts:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/tts/speecht5/Dockerfile .
|
||||
```
|
||||
|
||||
### 5. Build Animation Image
|
||||
|
||||
```bash
|
||||
docker build -t opea/wav2lip:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/animation/wav2lip/dependency/Dockerfile .
|
||||
|
||||
docker build -t opea/animation:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/animation/wav2lip/Dockerfile .
|
||||
```
|
||||
|
||||
### 6. Build MegaService Docker Image
|
||||
|
||||
To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `audioqna.py` Python script. Build the MegaService Docker image using the command below:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIExamples.git
|
||||
cd GenAIExamples/AvatarChatbot/
|
||||
docker build --no-cache -t opea/avatarchatbot:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
|
||||
```
|
||||
|
||||
Then run the command `docker images`, you will have following images ready:
|
||||
|
||||
1. `opea/whisper:latest`
|
||||
2. `opea/asr:latest`
|
||||
3. `opea/llm-tgi:latest`
|
||||
4. `opea/speecht5:latest`
|
||||
5. `opea/tts:latest`
|
||||
6. `opea/wav2lip:latest`
|
||||
7. `opea/animation:latest`
|
||||
8. `opea/avatarchatbot:latest`
|
||||
|
||||
## 🚀 Set the environment variables
|
||||
|
||||
Before starting the services with `docker compose`, you have to recheck the following environment variables.
|
||||
|
||||
```bash
|
||||
export HUGGINGFACEHUB_API_TOKEN=<your_hf_token>
|
||||
export host_ip=$(hostname -I | awk '{print $1}')
|
||||
|
||||
export TGI_LLM_ENDPOINT=http://$host_ip:3006
|
||||
export LLM_MODEL_ID=Intel/neural-chat-7b-v3-3
|
||||
|
||||
export ASR_ENDPOINT=http://$host_ip:7066
|
||||
export TTS_ENDPOINT=http://$host_ip:7055
|
||||
export WAV2LIP_ENDPOINT=http://$host_ip:7860
|
||||
|
||||
export MEGA_SERVICE_HOST_IP=${host_ip}
|
||||
export ASR_SERVICE_HOST_IP=${host_ip}
|
||||
export TTS_SERVICE_HOST_IP=${host_ip}
|
||||
export LLM_SERVICE_HOST_IP=${host_ip}
|
||||
export ANIMATION_SERVICE_HOST_IP=${host_ip}
|
||||
|
||||
export MEGA_SERVICE_PORT=8888
|
||||
export ASR_SERVICE_PORT=3001
|
||||
export TTS_SERVICE_PORT=3002
|
||||
export LLM_SERVICE_PORT=3007
|
||||
export ANIMATION_SERVICE_PORT=3008
|
||||
```
|
||||
|
||||
- Xeon CPU
|
||||
|
||||
```bash
|
||||
export DEVICE="cpu"
|
||||
export WAV2LIP_PORT=7860
|
||||
export INFERENCE_MODE='wav2lip_only'
|
||||
export CHECKPOINT_PATH='/usr/local/lib/python3.11/site-packages/Wav2Lip/checkpoints/wav2lip_gan.pth'
|
||||
export FACE="assets/img/avatar1.jpg"
|
||||
# export AUDIO='assets/audio/eg3_ref.wav' # audio file path is optional, will use base64str in the post request as input if is 'None'
|
||||
export AUDIO='None'
|
||||
export FACESIZE=96
|
||||
export OUTFILE="/outputs/result.mp4"
|
||||
export GFPGAN_MODEL_VERSION=1.4 # latest version, can roll back to v1.3 if needed
|
||||
export UPSCALE_FACTOR=1
|
||||
export FPS=10
|
||||
```
|
||||
|
||||
## 🚀 Start the MegaService
|
||||
|
||||
```bash
|
||||
cd GenAIExamples/AvatarChatbot/docker_compose/intel/cpu/xeon/
|
||||
docker compose -f compose.yaml up -d
|
||||
```
|
||||
|
||||
## 🚀 Test MicroServices
|
||||
|
||||
```bash
|
||||
# whisper service
|
||||
curl http://${host_ip}:7066/v1/asr \
|
||||
-X POST \
|
||||
-d '{"audio": "UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA"}' \
|
||||
-H 'Content-Type: application/json'
|
||||
|
||||
# asr microservice
|
||||
curl http://${host_ip}:3001/v1/audio/transcriptions \
|
||||
-X POST \
|
||||
-d '{"byte_str": "UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA"}' \
|
||||
-H 'Content-Type: application/json'
|
||||
|
||||
# tgi service
|
||||
curl http://${host_ip}:3006/generate \
|
||||
-X POST \
|
||||
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}' \
|
||||
-H 'Content-Type: application/json'
|
||||
|
||||
# llm microservice
|
||||
curl http://${host_ip}:3007/v1/chat/completions\
|
||||
-X POST \
|
||||
-d '{"query":"What is Deep Learning?","max_tokens":17,"top_k":10,"top_p":0.95,"typical_p":0.95,"temperature":0.01,"repetition_penalty":1.03,"streaming":false}' \
|
||||
-H 'Content-Type: application/json'
|
||||
|
||||
# speecht5 service
|
||||
curl http://${host_ip}:7055/v1/tts \
|
||||
-X POST \
|
||||
-d '{"text": "Who are you?"}' \
|
||||
-H 'Content-Type: application/json'
|
||||
|
||||
# tts microservice
|
||||
curl http://${host_ip}:3002/v1/audio/speech \
|
||||
-X POST \
|
||||
-d '{"text": "Who are you?"}' \
|
||||
-H 'Content-Type: application/json'
|
||||
|
||||
# wav2lip service
|
||||
cd ../../../..
|
||||
curl http://${host_ip}:7860/v1/wav2lip \
|
||||
-X POST \
|
||||
-d @assets/audio/sample_minecraft.json \
|
||||
-H 'Content-Type: application/json'
|
||||
|
||||
# animation microservice
|
||||
curl http://${host_ip}:3008/v1/animation \
|
||||
-X POST \
|
||||
-d @assets/audio/sample_question.json \
|
||||
-H "Content-Type: application/json"
|
||||
|
||||
```
|
||||
|
||||
## 🚀 Test MegaService
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:3009/v1/avatarchatbot \
|
||||
-X POST \
|
||||
-d @assets/audio/sample_whoareyou.json \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
If the megaservice is running properly, you should see the following output:
|
||||
|
||||
```bash
|
||||
"/outputs/result.mp4"
|
||||
```
|
||||
|
||||
The output file will be saved in the current working directory, as `${PWD}` is mapped to `/outputs` inside the wav2lip-service Docker container.
|
||||
|
||||
## Gradio UI
|
||||
|
||||
```bash
|
||||
cd $WORKPATH/GenAIExamples/AvatarChatbot
|
||||
python3 ui/gradio/app_gradio_demo_avatarchatbot.py
|
||||
```
|
||||
|
||||
The UI can be viewed at http://${host_ip}:7861
|
||||
<img src="../../../../assets/img/UI.png" alt="UI Example" width="60%">
|
||||
In the current version v1.0, you need to set the avatar figure image/video and the DL model choice in the environment variables before starting AvatarChatbot backend service and running the UI. Please just customize the audio question in the UI.
|
||||
\*\* We will enable change of avatar figure between runs in v2.0
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
```bash
|
||||
cd GenAIExamples/AvatarChatbot/tests
|
||||
export IMAGE_REPO="opea"
|
||||
export IMAGE_TAG="latest"
|
||||
export HUGGINGFACEHUB_API_TOKEN=<your_hf_token>
|
||||
|
||||
test_avatarchatbot_on_xeon.sh
|
||||
```
|
||||
138
AvatarChatbot/docker_compose/intel/cpu/xeon/compose.yaml
Normal file
@@ -0,0 +1,138 @@
|
||||
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
services:
|
||||
whisper-service:
|
||||
image: ${REGISTRY:-opea}/whisper:${TAG:-latest}
|
||||
container_name: whisper-service
|
||||
ports:
|
||||
- "7066:7066"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
restart: unless-stopped
|
||||
asr:
|
||||
image: ${REGISTRY:-opea}/asr:${TAG:-latest}
|
||||
container_name: asr-service
|
||||
ports:
|
||||
- "3001:9099"
|
||||
ipc: host
|
||||
environment:
|
||||
ASR_ENDPOINT: ${ASR_ENDPOINT}
|
||||
speecht5-service:
|
||||
image: ${REGISTRY:-opea}/speecht5:${TAG:-latest}
|
||||
container_name: speecht5-service
|
||||
ports:
|
||||
- "7055:7055"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
restart: unless-stopped
|
||||
tts:
|
||||
image: ${REGISTRY:-opea}/tts:${TAG:-latest}
|
||||
container_name: tts-service
|
||||
ports:
|
||||
- "3002:9088"
|
||||
ipc: host
|
||||
environment:
|
||||
TTS_ENDPOINT: ${TTS_ENDPOINT}
|
||||
tgi-service:
|
||||
image: ghcr.io/huggingface/text-generation-inference:2.4.0-intel-cpu
|
||||
container_name: tgi-service
|
||||
ports:
|
||||
- "3006:80"
|
||||
volumes:
|
||||
- "./data:/data"
|
||||
shm_size: 1g
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
command: --model-id ${LLM_MODEL_ID} --cuda-graphs 0
|
||||
llm:
|
||||
image: ${REGISTRY:-opea}/llm-tgi:${TAG:-latest}
|
||||
container_name: llm-tgi-server
|
||||
depends_on:
|
||||
- tgi-service
|
||||
ports:
|
||||
- "3007:9000"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
TGI_LLM_ENDPOINT: ${TGI_LLM_ENDPOINT}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
restart: unless-stopped
|
||||
wav2lip-service:
|
||||
image: ${REGISTRY:-opea}/wav2lip:${TAG:-latest}
|
||||
container_name: wav2lip-service
|
||||
ports:
|
||||
- "7860:7860"
|
||||
ipc: host
|
||||
volumes:
|
||||
- ${PWD}:/outputs
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
DEVICE: ${DEVICE}
|
||||
INFERENCE_MODE: ${INFERENCE_MODE}
|
||||
CHECKPOINT_PATH: ${CHECKPOINT_PATH}
|
||||
FACE: ${FACE}
|
||||
AUDIO: ${AUDIO}
|
||||
FACESIZE: ${FACESIZE}
|
||||
OUTFILE: ${OUTFILE}
|
||||
GFPGAN_MODEL_VERSION: ${GFPGAN_MODEL_VERSION}
|
||||
UPSCALE_FACTOR: ${UPSCALE_FACTOR}
|
||||
FPS: ${FPS}
|
||||
WAV2LIP_PORT: ${WAV2LIP_PORT}
|
||||
restart: unless-stopped
|
||||
animation:
|
||||
image: ${REGISTRY:-opea}/animation:${TAG:-latest}
|
||||
container_name: animation-server
|
||||
ports:
|
||||
- "3008:9066"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
WAV2LIP_ENDPOINT: ${WAV2LIP_ENDPOINT}
|
||||
restart: unless-stopped
|
||||
avatarchatbot-xeon-backend-server:
|
||||
image: ${REGISTRY:-opea}/avatarchatbot:${TAG:-latest}
|
||||
container_name: avatarchatbot-xeon-backend-server
|
||||
depends_on:
|
||||
- asr
|
||||
- llm
|
||||
- tts
|
||||
- animation
|
||||
ports:
|
||||
- "3009:8888"
|
||||
environment:
|
||||
- no_proxy=${no_proxy}
|
||||
- https_proxy=${https_proxy}
|
||||
- http_proxy=${http_proxy}
|
||||
- MEGA_SERVICE_HOST_IP=${MEGA_SERVICE_HOST_IP}
|
||||
- MEGA_SERVICE_PORT=${MEGA_SERVICE_PORT}
|
||||
- ASR_SERVICE_HOST_IP=${ASR_SERVICE_HOST_IP}
|
||||
- ASR_SERVICE_PORT=${ASR_SERVICE_PORT}
|
||||
- LLM_SERVICE_HOST_IP=${LLM_SERVICE_HOST_IP}
|
||||
- LLM_SERVICE_PORT=${LLM_SERVICE_PORT}
|
||||
- TTS_SERVICE_HOST_IP=${TTS_SERVICE_HOST_IP}
|
||||
- TTS_SERVICE_PORT=${TTS_SERVICE_PORT}
|
||||
- ANIMATION_SERVICE_HOST_IP=${ANIMATION_SERVICE_HOST_IP}
|
||||
- ANIMATION_SERVICE_PORT=${ANIMATION_SERVICE_PORT}
|
||||
ipc: host
|
||||
restart: always
|
||||
|
||||
networks:
|
||||
default:
|
||||
driver: bridge
|
||||
220
AvatarChatbot/docker_compose/intel/hpu/gaudi/README.md
Normal file
@@ -0,0 +1,220 @@
|
||||
# Build Mega Service of AvatarChatbot on Gaudi
|
||||
|
||||
This document outlines the deployment process for a AvatarChatbot application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline on Intel Gaudi server.
|
||||
|
||||
## 🚀 Build Docker images
|
||||
|
||||
### 1. Source Code install GenAIComps
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
```
|
||||
|
||||
### 2. Build ASR Image
|
||||
|
||||
```bash
|
||||
docker build -t opea/whisper-gaudi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/asr/whisper/dependency/Dockerfile.intel_hpu .
|
||||
|
||||
|
||||
docker build -t opea/asr:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/asr/whisper/Dockerfile .
|
||||
```
|
||||
|
||||
### 3. Build LLM Image
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/llm-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/tgi/Dockerfile .
|
||||
```
|
||||
|
||||
### 4. Build TTS Image
|
||||
|
||||
```bash
|
||||
docker build -t opea/speecht5-gaudi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/tts/speecht5/dependency/Dockerfile.intel_hpu .
|
||||
|
||||
docker build -t opea/tts:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/tts/speecht5/Dockerfile .
|
||||
```
|
||||
|
||||
### 5. Build Animation Image
|
||||
|
||||
```bash
|
||||
docker build -t opea/wav2lip-gaudi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/animation/wav2lip/dependency/Dockerfile.intel_hpu .
|
||||
|
||||
docker build -t opea/animation:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/animation/wav2lip/Dockerfile .
|
||||
```
|
||||
|
||||
### 6. Build MegaService Docker Image
|
||||
|
||||
To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `audioqna.py` Python script. Build the MegaService Docker image using the command below:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIExamples.git
|
||||
cd GenAIExamples/AvatarChatbot/
|
||||
docker build --no-cache -t opea/avatarchatbot:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
|
||||
```
|
||||
|
||||
Then run the command `docker images`, you will have following images ready:
|
||||
|
||||
1. `opea/whisper-gaudi:latest`
|
||||
2. `opea/asr:latest`
|
||||
3. `opea/llm-tgi:latest`
|
||||
4. `opea/speecht5-gaudi:latest`
|
||||
5. `opea/tts:latest`
|
||||
6. `opea/wav2lip-gaudi:latest`
|
||||
7. `opea/animation:latest`
|
||||
8. `opea/avatarchatbot:latest`
|
||||
|
||||
## 🚀 Set the environment variables
|
||||
|
||||
Before starting the services with `docker compose`, you have to recheck the following environment variables.
|
||||
|
||||
```bash
|
||||
export HUGGINGFACEHUB_API_TOKEN=<your_hf_token>
|
||||
export host_ip=$(hostname -I | awk '{print $1}')
|
||||
|
||||
export TGI_LLM_ENDPOINT=http://$host_ip:3006
|
||||
export LLM_MODEL_ID=Intel/neural-chat-7b-v3-3
|
||||
|
||||
export ASR_ENDPOINT=http://$host_ip:7066
|
||||
export TTS_ENDPOINT=http://$host_ip:7055
|
||||
export WAV2LIP_ENDPOINT=http://$host_ip:7860
|
||||
|
||||
export MEGA_SERVICE_HOST_IP=${host_ip}
|
||||
export ASR_SERVICE_HOST_IP=${host_ip}
|
||||
export TTS_SERVICE_HOST_IP=${host_ip}
|
||||
export LLM_SERVICE_HOST_IP=${host_ip}
|
||||
export ANIMATION_SERVICE_HOST_IP=${host_ip}
|
||||
|
||||
export MEGA_SERVICE_PORT=8888
|
||||
export ASR_SERVICE_PORT=3001
|
||||
export TTS_SERVICE_PORT=3002
|
||||
export LLM_SERVICE_PORT=3007
|
||||
export ANIMATION_SERVICE_PORT=3008
|
||||
```
|
||||
|
||||
- Gaudi2 HPU
|
||||
|
||||
```bash
|
||||
export DEVICE="hpu"
|
||||
export WAV2LIP_PORT=7860
|
||||
export INFERENCE_MODE='wav2lip_only'
|
||||
export CHECKPOINT_PATH='/usr/local/lib/python3.10/dist-packages/Wav2Lip/checkpoints/wav2lip_gan.pth'
|
||||
export FACE="assets/img/avatar1.jpg"
|
||||
# export AUDIO='assets/audio/eg3_ref.wav' # audio file path is optional, will use base64str in the post request as input if is 'None'
|
||||
export AUDIO='None'
|
||||
export FACESIZE=96
|
||||
export OUTFILE="/outputs/result.mp4"
|
||||
export GFPGAN_MODEL_VERSION=1.4 # latest version, can roll back to v1.3 if needed
|
||||
export UPSCALE_FACTOR=1
|
||||
export FPS=10
|
||||
```
|
||||
|
||||
## 🚀 Start the MegaService
|
||||
|
||||
```bash
|
||||
cd GenAIExamples/AvatarChatbot/docker_compose/intel/hpu/gaudi/
|
||||
docker compose -f compose.yaml up -d
|
||||
```
|
||||
|
||||
## 🚀 Test MicroServices
|
||||
|
||||
```bash
|
||||
# whisper service
|
||||
curl http://${host_ip}:7066/v1/asr \
|
||||
-X POST \
|
||||
-d '{"audio": "UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA"}' \
|
||||
-H 'Content-Type: application/json'
|
||||
|
||||
# asr microservice
|
||||
curl http://${host_ip}:3001/v1/audio/transcriptions \
|
||||
-X POST \
|
||||
-d '{"byte_str": "UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA"}' \
|
||||
-H 'Content-Type: application/json'
|
||||
|
||||
# tgi service
|
||||
curl http://${host_ip}:3006/generate \
|
||||
-X POST \
|
||||
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}' \
|
||||
-H 'Content-Type: application/json'
|
||||
|
||||
# llm microservice
|
||||
curl http://${host_ip}:3007/v1/chat/completions\
|
||||
-X POST \
|
||||
-d '{"query":"What is Deep Learning?","max_tokens":17,"top_k":10,"top_p":0.95,"typical_p":0.95,"temperature":0.01,"repetition_penalty":1.03,"streaming":false}' \
|
||||
-H 'Content-Type: application/json'
|
||||
|
||||
# speecht5 service
|
||||
curl http://${host_ip}:7055/v1/tts \
|
||||
-X POST \
|
||||
-d '{"text": "Who are you?"}' \
|
||||
-H 'Content-Type: application/json'
|
||||
|
||||
# tts microservice
|
||||
curl http://${host_ip}:3002/v1/audio/speech \
|
||||
-X POST \
|
||||
-d '{"text": "Who are you?"}' \
|
||||
-H 'Content-Type: application/json'
|
||||
|
||||
# wav2lip service
|
||||
cd ../../../..
|
||||
curl http://${host_ip}:7860/v1/wav2lip \
|
||||
-X POST \
|
||||
-d @assets/audio/sample_minecraft.json \
|
||||
-H 'Content-Type: application/json'
|
||||
|
||||
# animation microservice
|
||||
curl http://${host_ip}:3008/v1/animation \
|
||||
-X POST \
|
||||
-d @assets/audio/sample_question.json \
|
||||
-H "Content-Type: application/json"
|
||||
|
||||
```
|
||||
|
||||
## 🚀 Test MegaService
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:3009/v1/avatarchatbot \
|
||||
-X POST \
|
||||
-d @assets/audio/sample_whoareyou.json \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
If the megaservice is running properly, you should see the following output:
|
||||
|
||||
```bash
|
||||
"/outputs/result.mp4"
|
||||
```
|
||||
|
||||
The output file will be saved in the current working directory, as `${PWD}` is mapped to `/outputs` inside the wav2lip-service Docker container.
|
||||
|
||||
## Gradio UI
|
||||
|
||||
```bash
|
||||
sudo apt update
|
||||
sudo apt install -y yasm pkg-config libx264-dev nasm
|
||||
cd $WORKPATH
|
||||
git clone https://github.com/FFmpeg/FFmpeg.git
|
||||
cd FFmpeg
|
||||
sudo ./configure --enable-gpl --enable-libx264 && sudo make -j$(nproc-1) && sudo make install && hash -r
|
||||
pip install gradio==4.38.1 soundfile
|
||||
```
|
||||
|
||||
```bash
|
||||
cd $WORKPATH/GenAIExamples/AvatarChatbot
|
||||
python3 ui/gradio/app_gradio_demo_avatarchatbot.py
|
||||
```
|
||||
|
||||
The UI can be viewed at http://${host_ip}:7861
|
||||
<img src="../../../../assets/img/UI.png" alt="UI Example" width="60%">
|
||||
In the current version v1.0, you need to set the avatar figure image/video and the DL model choice in the environment variables before starting AvatarChatbot backend service and running the UI. Please just customize the audio question in the UI.
|
||||
\*\* We will enable change of avatar figure between runs in v2.0
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
```bash
|
||||
cd GenAIExamples/AvatarChatbot/tests
|
||||
export IMAGE_REPO="opea"
|
||||
export IMAGE_TAG="latest"
|
||||
export HUGGINGFACEHUB_API_TOKEN=<your_hf_token>
|
||||
|
||||
test_avatarchatbot_on_gaudi.sh
|
||||
```
|
||||
171
AvatarChatbot/docker_compose/intel/hpu/gaudi/compose.yaml
Normal file
@@ -0,0 +1,171 @@
|
||||
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
version: "3.8"
|
||||
|
||||
services:
|
||||
whisper-service:
|
||||
image: ${REGISTRY:-opea}/whisper-gaudi:${TAG:-latest}
|
||||
container_name: whisper-service
|
||||
ports:
|
||||
- "7066:7066"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
HABANA_VISIBLE_MODULES: all
|
||||
OMPI_MCA_btl_vader_single_copy_mechanism: none
|
||||
runtime: habana
|
||||
cap_add:
|
||||
- SYS_NICE
|
||||
restart: unless-stopped
|
||||
asr:
|
||||
image: ${REGISTRY:-opea}/asr:${TAG:-latest}
|
||||
container_name: asr-service
|
||||
ports:
|
||||
- "3001:9099"
|
||||
ipc: host
|
||||
environment:
|
||||
ASR_ENDPOINT: ${ASR_ENDPOINT}
|
||||
speecht5-service:
|
||||
image: ${REGISTRY:-opea}/speecht5-gaudi:${TAG:-latest}
|
||||
container_name: speecht5-service
|
||||
ports:
|
||||
- "7055:7055"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
HABANA_VISIBLE_MODULES: all
|
||||
OMPI_MCA_btl_vader_single_copy_mechanism: none
|
||||
runtime: habana
|
||||
cap_add:
|
||||
- SYS_NICE
|
||||
restart: unless-stopped
|
||||
tts:
|
||||
image: ${REGISTRY:-opea}/tts:${TAG:-latest}
|
||||
container_name: tts-service
|
||||
ports:
|
||||
- "3002:9088"
|
||||
ipc: host
|
||||
environment:
|
||||
TTS_ENDPOINT: ${TTS_ENDPOINT}
|
||||
tgi-service:
|
||||
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
|
||||
container_name: tgi-gaudi-server
|
||||
ports:
|
||||
- "3006:80"
|
||||
volumes:
|
||||
- "./data:/data"
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
HUGGING_FACE_HUB_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
HABANA_VISIBLE_MODULES: all
|
||||
OMPI_MCA_btl_vader_single_copy_mechanism: none
|
||||
ENABLE_HPU_GRAPH: true
|
||||
LIMIT_HPU_GRAPH: true
|
||||
USE_FLASH_ATTENTION: true
|
||||
FLASH_ATTENTION_RECOMPUTE: true
|
||||
runtime: habana
|
||||
cap_add:
|
||||
- SYS_NICE
|
||||
ipc: host
|
||||
command: --model-id ${LLM_MODEL_ID} --max-input-length 128 --max-total-tokens 256
|
||||
llm:
|
||||
image: ${REGISTRY:-opea}/llm-tgi:${TAG:-latest}
|
||||
container_name: llm-tgi-gaudi-server
|
||||
depends_on:
|
||||
- tgi-service
|
||||
ports:
|
||||
- "3007:9000"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
TGI_LLM_ENDPOINT: ${TGI_LLM_ENDPOINT}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
restart: unless-stopped
|
||||
wav2lip-service:
|
||||
image: ${REGISTRY:-opea}/wav2lip-gaudi:${TAG:-latest}
|
||||
container_name: wav2lip-service
|
||||
ports:
|
||||
- "7860:7860"
|
||||
ipc: host
|
||||
volumes:
|
||||
- ${PWD}:/outputs
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
HABANA_VISIBLE_MODULES: all
|
||||
OMPI_MCA_btl_vader_single_copy_mechanism: none
|
||||
DEVICE: ${DEVICE}
|
||||
INFERENCE_MODE: ${INFERENCE_MODE}
|
||||
CHECKPOINT_PATH: ${CHECKPOINT_PATH}
|
||||
FACE: ${FACE}
|
||||
AUDIO: ${AUDIO}
|
||||
FACESIZE: ${FACESIZE}
|
||||
OUTFILE: ${OUTFILE}
|
||||
GFPGAN_MODEL_VERSION: ${GFPGAN_MODEL_VERSION}
|
||||
UPSCALE_FACTOR: ${UPSCALE_FACTOR}
|
||||
FPS: ${FPS}
|
||||
WAV2LIP_PORT: ${WAV2LIP_PORT}
|
||||
runtime: habana
|
||||
cap_add:
|
||||
- SYS_NICE
|
||||
restart: unless-stopped
|
||||
animation:
|
||||
image: ${REGISTRY:-opea}/animation:${TAG:-latest}
|
||||
container_name: animation-gaudi-server
|
||||
ports:
|
||||
- "3008:9066"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
HABANA_VISIBLE_MODULES: all
|
||||
OMPI_MCA_btl_vader_single_copy_mechanism: none
|
||||
WAV2LIP_ENDPOINT: ${WAV2LIP_ENDPOINT}
|
||||
runtime: habana
|
||||
cap_add:
|
||||
- SYS_NICE
|
||||
restart: unless-stopped
|
||||
avatarchatbot-gaudi-backend-server:
|
||||
image: ${REGISTRY:-opea}/avatarchatbot:${TAG:-latest}
|
||||
container_name: avatarchatbot-gaudi-backend-server
|
||||
depends_on:
|
||||
- asr
|
||||
- llm
|
||||
- tts
|
||||
- animation
|
||||
ports:
|
||||
- "3009:8888"
|
||||
environment:
|
||||
- no_proxy=${no_proxy}
|
||||
- https_proxy=${https_proxy}
|
||||
- http_proxy=${http_proxy}
|
||||
- MEGA_SERVICE_HOST_IP=${MEGA_SERVICE_HOST_IP}
|
||||
- MEGA_SERVICE_PORT=${MEGA_SERVICE_PORT}
|
||||
- ASR_SERVICE_HOST_IP=${ASR_SERVICE_HOST_IP}
|
||||
- ASR_SERVICE_PORT=${ASR_SERVICE_PORT}
|
||||
- LLM_SERVICE_HOST_IP=${LLM_SERVICE_HOST_IP}
|
||||
- LLM_SERVICE_PORT=${LLM_SERVICE_PORT}
|
||||
- TTS_SERVICE_HOST_IP=${TTS_SERVICE_HOST_IP}
|
||||
- TTS_SERVICE_PORT=${TTS_SERVICE_PORT}
|
||||
- ANIMATION_SERVICE_HOST_IP=${ANIMATION_SERVICE_HOST_IP}
|
||||
- ANIMATION_SERVICE_PORT=${ANIMATION_SERVICE_PORT}
|
||||
ipc: host
|
||||
restart: always
|
||||
|
||||
networks:
|
||||
default:
|
||||
driver: bridge
|
||||
73
AvatarChatbot/docker_image_build/build.yaml
Normal file
@@ -0,0 +1,73 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
services:
|
||||
avatarchatbot:
|
||||
build:
|
||||
args:
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
no_proxy: ${no_proxy}
|
||||
context: ../
|
||||
dockerfile: ./Dockerfile
|
||||
image: ${REGISTRY:-opea}/avatarchatbot:${TAG:-latest}
|
||||
whisper-gaudi:
|
||||
build:
|
||||
context: GenAIComps
|
||||
dockerfile: comps/asr/whisper/dependency/Dockerfile.intel_hpu
|
||||
extends: avatarchatbot
|
||||
image: ${REGISTRY:-opea}/whisper-gaudi:${TAG:-latest}
|
||||
whisper:
|
||||
build:
|
||||
context: GenAIComps
|
||||
dockerfile: comps/asr/whisper/dependency/Dockerfile
|
||||
extends: avatarchatbot
|
||||
image: ${REGISTRY:-opea}/whisper:${TAG:-latest}
|
||||
asr:
|
||||
build:
|
||||
context: GenAIComps
|
||||
dockerfile: comps/asr/whisper/Dockerfile
|
||||
extends: avatarchatbot
|
||||
image: ${REGISTRY:-opea}/asr:${TAG:-latest}
|
||||
llm-tgi:
|
||||
build:
|
||||
context: GenAIComps
|
||||
dockerfile: comps/llms/text-generation/tgi/Dockerfile
|
||||
extends: avatarchatbot
|
||||
image: ${REGISTRY:-opea}/llm-tgi:${TAG:-latest}
|
||||
speecht5-gaudi:
|
||||
build:
|
||||
context: GenAIComps
|
||||
dockerfile: comps/tts/speecht5/dependency/Dockerfile.intel_hpu
|
||||
extends: avatarchatbot
|
||||
image: ${REGISTRY:-opea}/speecht5-gaudi:${TAG:-latest}
|
||||
speecht5:
|
||||
build:
|
||||
context: GenAIComps
|
||||
dockerfile: comps/tts/speecht5/dependency/Dockerfile
|
||||
extends: avatarchatbot
|
||||
image: ${REGISTRY:-opea}/speecht5:${TAG:-latest}
|
||||
tts:
|
||||
build:
|
||||
context: GenAIComps
|
||||
dockerfile: comps/tts/speecht5/Dockerfile
|
||||
extends: avatarchatbot
|
||||
image: ${REGISTRY:-opea}/tts:${TAG:-latest}
|
||||
wav2lip-gaudi:
|
||||
build:
|
||||
context: GenAIComps
|
||||
dockerfile: comps/animation/wav2lip/dependency/Dockerfile.intel_hpu
|
||||
extends: avatarchatbot
|
||||
image: ${REGISTRY:-opea}/wav2lip-gaudi:${TAG:-latest}
|
||||
wav2lip:
|
||||
build:
|
||||
context: GenAIComps
|
||||
dockerfile: comps/animation/wav2lip/dependency/Dockerfile
|
||||
extends: avatarchatbot
|
||||
image: ${REGISTRY:-opea}/wav2lip:${TAG:-latest}
|
||||
animation:
|
||||
build:
|
||||
context: GenAIComps
|
||||
dockerfile: comps/animation/wav2lip/Dockerfile
|
||||
extends: avatarchatbot
|
||||
image: ${REGISTRY:-opea}/animation:${TAG:-latest}
|
||||
147
AvatarChatbot/tests/test_compose_on_gaudi.sh
Executable file
@@ -0,0 +1,147 @@
|
||||
#!/bin/bash
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
set -e
|
||||
IMAGE_REPO=${IMAGE_REPO:-"opea"}
|
||||
IMAGE_TAG=${IMAGE_TAG:-"latest"}
|
||||
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
|
||||
echo "TAG=IMAGE_TAG=${IMAGE_TAG}"
|
||||
export REGISTRY=${IMAGE_REPO}
|
||||
export TAG=${IMAGE_TAG}
|
||||
|
||||
WORKPATH=$(dirname "$PWD")
|
||||
LOG_PATH="$WORKPATH/tests"
|
||||
if ls $LOG_PATH/*.log 1> /dev/null 2>&1; then
|
||||
rm $LOG_PATH/*.log
|
||||
echo "Log files removed."
|
||||
else
|
||||
echo "No log files to remove."
|
||||
fi
|
||||
ip_address=$(hostname -I | awk '{print $1}')
|
||||
|
||||
|
||||
function build_docker_images() {
|
||||
cd $WORKPATH/docker_image_build
|
||||
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
|
||||
|
||||
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
|
||||
service_list="avatarchatbot whisper-gaudi asr llm-tgi speecht5-gaudi tts wav2lip-gaudi animation"
|
||||
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
|
||||
|
||||
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
|
||||
|
||||
docker images && sleep 1s
|
||||
}
|
||||
|
||||
|
||||
function start_services() {
|
||||
cd $WORKPATH/docker_compose/intel/hpu/gaudi
|
||||
|
||||
export HUGGINGFACEHUB_API_TOKEN=$HUGGINGFACEHUB_API_TOKEN
|
||||
export host_ip=$(hostname -I | awk '{print $1}')
|
||||
|
||||
export TGI_LLM_ENDPOINT=http://$host_ip:3006
|
||||
export LLM_MODEL_ID=Intel/neural-chat-7b-v3-3
|
||||
|
||||
export ASR_ENDPOINT=http://$host_ip:7066
|
||||
export TTS_ENDPOINT=http://$host_ip:7055
|
||||
export WAV2LIP_ENDPOINT=http://$host_ip:7860
|
||||
|
||||
export MEGA_SERVICE_HOST_IP=${host_ip}
|
||||
export ASR_SERVICE_HOST_IP=${host_ip}
|
||||
export TTS_SERVICE_HOST_IP=${host_ip}
|
||||
export LLM_SERVICE_HOST_IP=${host_ip}
|
||||
export ANIMATION_SERVICE_HOST_IP=${host_ip}
|
||||
|
||||
export MEGA_SERVICE_PORT=8888
|
||||
export ASR_SERVICE_PORT=3001
|
||||
export TTS_SERVICE_PORT=3002
|
||||
export LLM_SERVICE_PORT=3007
|
||||
export ANIMATION_SERVICE_PORT=3008
|
||||
|
||||
export DEVICE="hpu"
|
||||
export WAV2LIP_PORT=7860
|
||||
export INFERENCE_MODE='wav2lip+gfpgan'
|
||||
export CHECKPOINT_PATH='/usr/local/lib/python3.10/dist-packages/Wav2Lip/checkpoints/wav2lip_gan.pth'
|
||||
export FACE="assets/img/avatar1.jpg"
|
||||
# export AUDIO='assets/audio/eg3_ref.wav' # audio file path is optional, will use base64str in the post request as input if is 'None'
|
||||
export AUDIO='None'
|
||||
export FACESIZE=96
|
||||
export OUTFILE="/outputs/result.mp4"
|
||||
export GFPGAN_MODEL_VERSION=1.4 # latest version, can roll back to v1.3 if needed
|
||||
export UPSCALE_FACTOR=1
|
||||
export FPS=10
|
||||
|
||||
# Start Docker Containers
|
||||
docker compose up -d
|
||||
|
||||
n=0
|
||||
until [[ "$n" -ge 100 ]]; do
|
||||
docker logs tgi-gaudi-server > $LOG_PATH/tgi_service_start.log
|
||||
if grep -q Connected $LOG_PATH/tgi_service_start.log; then
|
||||
break
|
||||
fi
|
||||
sleep 5s
|
||||
n=$((n+1))
|
||||
done
|
||||
|
||||
# sleep 5m
|
||||
echo "All services are up and running"
|
||||
sleep 5s
|
||||
}
|
||||
|
||||
|
||||
function validate_megaservice() {
|
||||
cd $WORKPATH
|
||||
result=$(http_proxy="" curl http://${ip_address}:3009/v1/avatarchatbot -X POST -d @assets/audio/sample_whoareyou.json -H 'Content-Type: application/json')
|
||||
echo "result is === $result"
|
||||
if [[ $result == *"mp4"* ]]; then
|
||||
echo "Result correct."
|
||||
else
|
||||
docker logs whisper-service > $LOG_PATH/whisper-service.log
|
||||
docker logs asr-service > $LOG_PATH/asr-service.log
|
||||
docker logs speecht5-service > $LOG_PATH/speecht5-service.log
|
||||
docker logs tts-service > $LOG_PATH/tts-service.log
|
||||
docker logs tgi-gaudi-server > $LOG_PATH/tgi-gaudi-server.log
|
||||
docker logs llm-tgi-gaudi-server > $LOG_PATH/llm-tgi-gaudi-server.log
|
||||
docker logs wav2lip-service > $LOG_PATH/wav2lip-service.log
|
||||
docker logs animation-gaudi-server > $LOG_PATH/animation-gaudi-server.log
|
||||
|
||||
echo "Result wrong."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
}
|
||||
|
||||
|
||||
#function validate_frontend() {
|
||||
|
||||
#}
|
||||
|
||||
|
||||
function stop_docker() {
|
||||
cd $WORKPATH/docker_compose/intel/hpu/gaudi
|
||||
docker compose down
|
||||
}
|
||||
|
||||
|
||||
function main() {
|
||||
stop_docker
|
||||
echo y | docker builder prune --all
|
||||
echo y | docker image prune
|
||||
|
||||
if [[ "$IMAGE_REPO" == "opea" ]]; then build_docker_images; fi
|
||||
start_services
|
||||
# validate_microservices
|
||||
validate_megaservice
|
||||
# validate_frontend
|
||||
|
||||
stop_docker
|
||||
echo y | docker builder prune --all
|
||||
echo y | docker image prune
|
||||
|
||||
}
|
||||
|
||||
|
||||
main
|
||||
142
AvatarChatbot/tests/test_compose_on_xeon.sh
Executable file
@@ -0,0 +1,142 @@
|
||||
#!/bin/bash
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
set -e
|
||||
IMAGE_REPO=${IMAGE_REPO:-"opea"}
|
||||
IMAGE_TAG=${IMAGE_TAG:-"latest"}
|
||||
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
|
||||
echo "TAG=IMAGE_TAG=${IMAGE_TAG}"
|
||||
export REGISTRY=${IMAGE_REPO}
|
||||
export TAG=${IMAGE_TAG}
|
||||
|
||||
WORKPATH=$(dirname "$PWD")
|
||||
LOG_PATH="$WORKPATH/tests"
|
||||
if ls $LOG_PATH/*.log 1> /dev/null 2>&1; then
|
||||
rm $LOG_PATH/*.log
|
||||
echo "Log files removed."
|
||||
else
|
||||
echo "No log files to remove."
|
||||
fi
|
||||
ip_address=$(hostname -I | awk '{print $1}')
|
||||
|
||||
|
||||
function build_docker_images() {
|
||||
cd $WORKPATH/docker_image_build
|
||||
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
|
||||
|
||||
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
|
||||
service_list="avatarchatbot whisper asr llm-tgi speecht5 tts wav2lip animation"
|
||||
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
|
||||
|
||||
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
|
||||
|
||||
docker images && sleep 1s
|
||||
}
|
||||
|
||||
|
||||
function start_services() {
|
||||
cd $WORKPATH/docker_compose/intel/cpu/xeon
|
||||
|
||||
export HUGGINGFACEHUB_API_TOKEN=$HUGGINGFACEHUB_API_TOKEN
|
||||
export host_ip=$(hostname -I | awk '{print $1}')
|
||||
|
||||
export TGI_LLM_ENDPOINT=http://$host_ip:3006
|
||||
export LLM_MODEL_ID=Intel/neural-chat-7b-v3-3
|
||||
|
||||
export ASR_ENDPOINT=http://$host_ip:7066
|
||||
export TTS_ENDPOINT=http://$host_ip:7055
|
||||
export WAV2LIP_ENDPOINT=http://$host_ip:7860
|
||||
|
||||
export MEGA_SERVICE_HOST_IP=${host_ip}
|
||||
export ASR_SERVICE_HOST_IP=${host_ip}
|
||||
export TTS_SERVICE_HOST_IP=${host_ip}
|
||||
export LLM_SERVICE_HOST_IP=${host_ip}
|
||||
export ANIMATION_SERVICE_HOST_IP=${host_ip}
|
||||
|
||||
export MEGA_SERVICE_PORT=8888
|
||||
export ASR_SERVICE_PORT=3001
|
||||
export TTS_SERVICE_PORT=3002
|
||||
export LLM_SERVICE_PORT=3007
|
||||
export ANIMATION_SERVICE_PORT=3008
|
||||
|
||||
export DEVICE="cpu"
|
||||
export WAV2LIP_PORT=7860
|
||||
export INFERENCE_MODE='wav2lip+gfpgan'
|
||||
export CHECKPOINT_PATH='/usr/local/lib/python3.11/site-packages/Wav2Lip/checkpoints/wav2lip_gan.pth'
|
||||
export FACE="assets/img/avatar5.png"
|
||||
# export AUDIO='assets/audio/eg3_ref.wav' # audio file path is optional, will use base64str in the post request as input if is 'None'
|
||||
export AUDIO='None'
|
||||
export FACESIZE=96
|
||||
export OUTFILE="/outputs/result.mp4"
|
||||
export GFPGAN_MODEL_VERSION=1.4 # latest version, can roll back to v1.3 if needed
|
||||
export UPSCALE_FACTOR=1
|
||||
export FPS=10
|
||||
|
||||
# Start Docker Containers
|
||||
docker compose up -d
|
||||
n=0
|
||||
until [[ "$n" -ge 100 ]]; do
|
||||
docker logs tgi-service > $LOG_PATH/tgi_service_start.log
|
||||
if grep -q Connected $LOG_PATH/tgi_service_start.log; then
|
||||
break
|
||||
fi
|
||||
sleep 5s
|
||||
n=$((n+1))
|
||||
done
|
||||
echo "All services are up and running"
|
||||
sleep 5s
|
||||
}
|
||||
|
||||
|
||||
function validate_megaservice() {
|
||||
cd $WORKPATH
|
||||
result=$(http_proxy="" curl http://${ip_address}:3009/v1/avatarchatbot -X POST -d @assets/audio/sample_whoareyou.json -H 'Content-Type: application/json')
|
||||
echo "result is === $result"
|
||||
if [[ $result == *"mp4"* ]]; then
|
||||
echo "Result correct."
|
||||
else
|
||||
docker logs whisper-service > $LOG_PATH/whisper-service.log
|
||||
docker logs asr-service > $LOG_PATH/asr-service.log
|
||||
docker logs speecht5-service > $LOG_PATH/speecht5-service.log
|
||||
docker logs tts-service > $LOG_PATH/tts-service.log
|
||||
docker logs tgi-service > $LOG_PATH/tgi-service.log
|
||||
docker logs llm-tgi-server > $LOG_PATH/llm-tgi-server.log
|
||||
docker logs wav2lip-service > $LOG_PATH/wav2lip-service.log
|
||||
docker logs animation-server > $LOG_PATH/animation-server.log
|
||||
|
||||
echo "Result wrong."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
}
|
||||
|
||||
|
||||
#function validate_frontend() {
|
||||
|
||||
#}
|
||||
|
||||
|
||||
function stop_docker() {
|
||||
cd $WORKPATH/docker_compose/intel/cpu/xeon
|
||||
docker compose down
|
||||
}
|
||||
|
||||
|
||||
function main() {
|
||||
|
||||
stop_docker
|
||||
if [[ "$IMAGE_REPO" == "opea" ]]; then build_docker_images; fi
|
||||
start_services
|
||||
# validate_microservices
|
||||
validate_megaservice
|
||||
# validate_frontend
|
||||
stop_docker
|
||||
|
||||
echo y | docker builder prune --all
|
||||
echo y | docker image prune
|
||||
|
||||
}
|
||||
|
||||
|
||||
main
|
||||
349
AvatarChatbot/ui/gradio/app_gradio_demo_avatarchatbot.py
Normal file
@@ -0,0 +1,349 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import asyncio
|
||||
import base64
|
||||
import io
|
||||
import os
|
||||
import shutil
|
||||
import subprocess
|
||||
import time
|
||||
|
||||
import aiohttp
|
||||
import docker
|
||||
import ffmpeg
|
||||
import gradio as gr
|
||||
import numpy as np
|
||||
import soundfile as sf
|
||||
from PIL import Image
|
||||
|
||||
|
||||
# %% Docker Management
|
||||
def update_env_var_in_container(container_name, env_var, new_value):
|
||||
return
|
||||
|
||||
|
||||
# %% AudioQnA functions
|
||||
def preprocess_audio(audio):
|
||||
"""The audio data is a 16-bit integer array with values ranging from -32768 to 32767 and the shape of the audio data array is (samples,)"""
|
||||
sr, y = audio
|
||||
|
||||
# Convert to normalized float32 audio
|
||||
y = y.astype(np.float32)
|
||||
y /= np.max(np.abs(y))
|
||||
|
||||
# Save to memory
|
||||
buf = io.BytesIO()
|
||||
sf.write(buf, y, sr, format="WAV")
|
||||
buf.seek(0) # Reset the buffer position to the beginning
|
||||
|
||||
# Encode the WAV file to base64 string
|
||||
base64_bytes = base64.b64encode(buf.read())
|
||||
base64_string = base64_bytes.decode("utf-8")
|
||||
return base64_string
|
||||
|
||||
|
||||
def base64_to_int16(base64_string):
|
||||
wav_bytes = base64.b64decode(base64_string)
|
||||
buf = io.BytesIO(wav_bytes)
|
||||
y, sr = sf.read(buf, dtype="int16")
|
||||
return sr, y
|
||||
|
||||
|
||||
async def transcribe(audio_input, face_input, model_choice):
|
||||
"""Input: mic audio; Output: ai audio, text, text"""
|
||||
global ai_chatbot_url, chat_history, count
|
||||
chat_history = ""
|
||||
# Preprocess the audio
|
||||
base64bytestr = preprocess_audio(audio_input)
|
||||
|
||||
# Send the audio to the AvatarChatbot backend server endpoint
|
||||
initial_inputs = {"audio": base64bytestr, "max_tokens": 64}
|
||||
|
||||
# TO-DO: update wav2lip-service with the chosen face_input
|
||||
# update_env_var_in_container("wav2lip-service", "DEVICE", "new_device_value")
|
||||
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(ai_chatbot_url, json=initial_inputs) as response:
|
||||
|
||||
# Check the response status code
|
||||
if response.status == 200:
|
||||
# response_json = await response.json()
|
||||
# # Decode the base64 string
|
||||
# sampling_rate, audio_int16 = base64_to_int16(response_json["byte_str"])
|
||||
# chat_history += f"User: {response_json['query']}\n\n"
|
||||
# chat_ai = response_json["text"]
|
||||
# hitted_ends = [",", ".", "?", "!", "。", ";"]
|
||||
# last_punc_idx = max([chat_ai.rfind(punc) for punc in hitted_ends])
|
||||
# if last_punc_idx != -1:
|
||||
# chat_ai = chat_ai[: last_punc_idx + 1]
|
||||
# chat_history += f"AI: {chat_ai}"
|
||||
# chat_history = chat_history.replace("OPEX", "OPEA")
|
||||
# return (sampling_rate, audio_int16) # handle the response
|
||||
|
||||
result = await response.text()
|
||||
return "docker_compose/intel/hpu/gaudi/result.mp4"
|
||||
else:
|
||||
return {"error": "Failed to transcribe audio", "status_code": response.status_code}
|
||||
|
||||
|
||||
def resize_image(image_pil, size=(720, 720)):
|
||||
"""Resize the image to the specified size."""
|
||||
return image_pil.resize(size, Image.LANCZOS)
|
||||
|
||||
|
||||
def resize_video(video_path, save_path, size=(720, 1280)):
|
||||
"""Resize the video to the specified size, and save to the save path."""
|
||||
ffmpeg.input(video_path).output(save_path, vf=f"scale={size[0]}:{size[1]}").overwrite_output().run()
|
||||
|
||||
|
||||
# %% AI Avatar demo function
|
||||
async def aiavatar_demo(audio_input, face_input, model_choice):
|
||||
"""Input: mic/preloaded audio, avatar file path;
|
||||
Output: ai video"""
|
||||
# Wait for response from AvatarChatbot backend
|
||||
output_video = await transcribe(audio_input, face_input, model_choice) # output video path
|
||||
|
||||
if isinstance(output_video, dict): # in case of an error
|
||||
return None, None
|
||||
else:
|
||||
return output_video
|
||||
|
||||
|
||||
# %% Main
|
||||
if __name__ == "__main__":
|
||||
# HOST_IP = os.getenv("host_ip")
|
||||
HOST_IP = subprocess.check_output("hostname -I | awk '{print $1}'", shell=True).decode("utf-8").strip()
|
||||
|
||||
# Fetch the AudioQnA backend server
|
||||
ai_chatbot_url = f"http://{HOST_IP}:3009/v1/avatarchatbot"
|
||||
|
||||
# Collect chat history to print in the interface
|
||||
chat_history = ""
|
||||
|
||||
# Prepare 3 image paths and 3 video paths
|
||||
# image_pils = [
|
||||
# Image.open(os.path.join("assets/img/woman1.png")),
|
||||
# Image.open(os.path.join("assets/img/man1.png")),
|
||||
# Image.open(os.path.join("assets/img/woman2.png")),
|
||||
# ]
|
||||
|
||||
# video_paths = [
|
||||
# os.path.join("assets/video/man1.mp4"),
|
||||
# os.path.join("assets/video/woman2.mp4"),
|
||||
# os.path.join("assets/video/man4.mp4"),
|
||||
# ]
|
||||
|
||||
def image_to_base64(image_path):
|
||||
with open(image_path, "rb") as image_file:
|
||||
return base64.b64encode(image_file.read()).decode("utf-8")
|
||||
|
||||
# Convert your images to Base64
|
||||
xeon_base64 = image_to_base64("assets/img/xeon.jpg")
|
||||
gaudi_base64 = image_to_base64("assets/img/gaudi.png")
|
||||
|
||||
# List of prerecorded WAV files containing audio questions
|
||||
# audio_filepaths = [
|
||||
# "assets/audio/intel2.wav",
|
||||
# "assets/audio/intel4.wav",
|
||||
# ]
|
||||
# audio_questions = [
|
||||
# "1. What's the objective of the Open Platform for Enterprise AI? How is it helpful to enterprises building AI solutions?",
|
||||
# "2. What kinds of Intel AI tools are available to accelerate AI workloads?",
|
||||
# ]
|
||||
|
||||
# Demo frontend
|
||||
demo = gr.Blocks()
|
||||
with demo:
|
||||
# Define processing functions
|
||||
count = 0
|
||||
|
||||
# Make necessary folders:
|
||||
if not os.path.exists("inputs"):
|
||||
os.makedirs("inputs")
|
||||
if not os.path.exists("outputs"):
|
||||
os.makedirs("outputs")
|
||||
|
||||
def initial_process(audio_input, face_input, model_choice):
|
||||
global count
|
||||
start_time = time.time()
|
||||
loop = asyncio.new_event_loop()
|
||||
asyncio.set_event_loop(loop)
|
||||
video_file = loop.run_until_complete(aiavatar_demo(audio_input, face_input, model_choice))
|
||||
count += 1
|
||||
end_time = time.time()
|
||||
return video_file, f"The entire application took {(end_time - start_time):.1f} seconds"
|
||||
|
||||
# def update_selected_image_state(image_index):
|
||||
# image_index = int(image_index)
|
||||
# selected_image_state.value = image_index
|
||||
# # change image_input here
|
||||
# if image_index < len(image_pils):
|
||||
# return f"inputs/face_{image_index}.png"
|
||||
# else:
|
||||
# return f"inputs/video_{image_index - len(image_pils)}.mp4"
|
||||
|
||||
# def update_audio_input(audio_choice):
|
||||
# if audio_choice:
|
||||
# audio_index = int(audio_choice.split(".")[0]) - 1
|
||||
# audio_filepath_gradio = f"inputs/audio_{audio_index:d}.wav"
|
||||
# shutil.copyfile(audio_filepaths[audio_index], audio_filepath_gradio)
|
||||
# return audio_filepath_gradio
|
||||
|
||||
# UI Components
|
||||
# Title & Introduction
|
||||
gr.Markdown("<h1 style='font-size: 36px;'>A PyTorch and OPEA based AI Avatar Audio Chatbot</h1>")
|
||||
with gr.Row():
|
||||
with gr.Column(scale=8):
|
||||
gr.Markdown(
|
||||
"""
|
||||
<p style='font-size: 24px;'>Welcome to our AI Avatar Audio Chatbot! This application leverages PyTorch and <strong>OPEA (Open Platform for Enterprise AI) v0.8</strong> to provide you with a human-like conversational experience. It's run on Intel® Gaudi® AI Accelerator and Intel® Xeon® Processor, with hardware and software optimizations.<br>
|
||||
Please feel free to interact with the AI avatar by choosing your own avatar and talking into the mic.</p>
|
||||
"""
|
||||
)
|
||||
with gr.Column(scale=1):
|
||||
# with gr.Row():
|
||||
# gr.Markdown(f"""
|
||||
# <img src='data:image/png;base64,{opea_qr_base64}' alt='OPEA QR Code' style='width: 150px; height: auto;'>
|
||||
# """, label="OPEA QR Code")
|
||||
# gr.Markdown(f"""
|
||||
# <img src='data:image/png;base64,{opea_gh_qr_base64}' alt='OPEA GitHub QR Code' style='width: 150px; height: auto;'>
|
||||
# """, label="OPEA GitHub QR Code")
|
||||
with gr.Row():
|
||||
gr.Markdown(
|
||||
f"""
|
||||
<img src='data:image/png;base64,{gaudi_base64}' alt='Intel®Gaudi' style='width: 120px; height: auto;'>""",
|
||||
label="Intel®Gaudi",
|
||||
)
|
||||
gr.Markdown(
|
||||
f"""
|
||||
<img src='data:image/png;base64,{xeon_base64}' alt='Intel®Xeon' style='width: 120px; height: auto;'>""",
|
||||
label="Intel®Xeon",
|
||||
)
|
||||
gr.Markdown("<hr>") # Divider
|
||||
|
||||
# Inputs
|
||||
# Image gallery
|
||||
selected_image_state = gr.State(value=-1)
|
||||
image_clicks = []
|
||||
image_click_buttons = []
|
||||
video_clicks = []
|
||||
video_click_buttons = []
|
||||
with gr.Row():
|
||||
with gr.Column(scale=1):
|
||||
audio_input = gr.Audio(
|
||||
sources=["upload", "microphone"], format="wav", label="🎤 or 📤 for your Input audio!"
|
||||
)
|
||||
# audio_choice = gr.Dropdown(
|
||||
# choices=audio_questions,
|
||||
# label="Choose an audio question",
|
||||
# value=None, # default value
|
||||
# )
|
||||
# Update audio_input when a selection is made from the dropdown
|
||||
# audio_choice.change(fn=update_audio_input, inputs=audio_choice, outputs=audio_input)
|
||||
|
||||
face_input = gr.File(
|
||||
file_count="single",
|
||||
file_types=["image", "video"],
|
||||
label="Choose an avatar or 📤 an image or video!",
|
||||
)
|
||||
model_choice = gr.Dropdown(
|
||||
choices=["wav2lip", "wav2lip+GAN", "wav2lip+GFPGAN"],
|
||||
label="Choose a DL model",
|
||||
)
|
||||
# with gr.Column(scale=2):
|
||||
# # Display 3 images and buttons
|
||||
# with gr.Row():
|
||||
# for i, image_pil in enumerate(image_pils):
|
||||
# image_pil = resize_image(image_pil)
|
||||
# save_path = f"inputs/face_{int(i)}.png"
|
||||
# image_pil.save(save_path, "PNG")
|
||||
# image_clicks.append(gr.Image(type="filepath", value=save_path, label=f"Avatar {int(i)+1}"))
|
||||
# with gr.Row():
|
||||
# for i in range(len(image_pils)):
|
||||
# image_click_buttons.append(gr.Button(f"Use Image {i+1}"))
|
||||
|
||||
# # Display 3 videos and buttons
|
||||
# with gr.Row():
|
||||
# for i, video_path in enumerate(video_paths):
|
||||
# save_path = f"inputs/video_{int(i)}.mp4"
|
||||
# resize_video(video_path, save_path)
|
||||
# video_clicks.append(gr.Video(value=save_path, label=f"Video {int(i)+1}"))
|
||||
# with gr.Row():
|
||||
# for i in range(len(video_paths)):
|
||||
# video_click_buttons.append(gr.Button(f"Use Video {int(i)+1}"))
|
||||
|
||||
submit_button = gr.Button("Submit")
|
||||
|
||||
# Outputs
|
||||
gr.Markdown("<hr>") # Divider
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
video_output = gr.Video(label="Your AI Avatar video: ", format="mp4", width=1280, height=720)
|
||||
video_time_text = gr.Textbox(label="Video processing time", value="0.0 seconds")
|
||||
|
||||
# Technical details
|
||||
gr.Markdown("<hr>") # Divider
|
||||
with gr.Row():
|
||||
gr.Markdown(
|
||||
"""
|
||||
<p style='font-size: 24px;'>OPEA megaservice deployed: <br>
|
||||
<ul style='font-size: 24px;'>
|
||||
<li><strong>AvatarChatbot</strong></li>
|
||||
</ul></p>
|
||||
<p style='font-size: 24px;'>OPEA microservices deployed:
|
||||
<ul style='font-size: 24px;'>
|
||||
<li><strong>ASR</strong> (service: opea/whisper-gaudi, model: openai/whisper-small)</li>
|
||||
<li><strong>LLM 'text-generation'</strong> (service: opea/llm-tgi, model: Intel/neural-chat-7b-v3-3)</li>
|
||||
<li><strong>TTS</strong> (service: opea/speecht5-gaudi, model: microsoft/speecht5_tts)</li>
|
||||
<li><strong>Animation</strong> (service: opea/animation, model: wav2lip+gfpgan)</li>
|
||||
</ul></p>
|
||||
"""
|
||||
)
|
||||
with gr.Row():
|
||||
gr.Image("assets/img/flowchart.png", label="Megaservice Flowchart")
|
||||
with gr.Row():
|
||||
gr.Markdown(
|
||||
"""
|
||||
<p style='font-size: 24px;'>The AI Avatar Audio Chatbot is powered by the following Intel® AI software:<br>
|
||||
<ul style='font-size: 24px;'>
|
||||
<li><strong>Intel Gaudi Software v1.17.0</strong></li>
|
||||
<li><strong>PyTorch v2.3.1 (Eager mode + torch.compile) </strong></li>
|
||||
<li><strong>HPU Graph</strong></li>
|
||||
<li><strong>Intel Neural Compressor (INC)</strong></li>
|
||||
</ul></p>
|
||||
"""
|
||||
)
|
||||
|
||||
# Disclaimer
|
||||
gr.Markdown("<hr>") # Divider
|
||||
gr.Markdown("<h2 style='font-size: 24px;'>Notices & Disclaimers</h1>")
|
||||
gr.Markdown(
|
||||
"""
|
||||
<p style='font-size: 20px;'>Intel is committed to respecting human rights and avoiding complicity in human rights abuses. See Intel's Global Human Rights Principles. Intel's products and software are intended only to be used in applications that do not cause or contribute to a violation of an internationally recognized human right.<br></p>
|
||||
<p style='font-size: 20px;'>© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.<br></p>
|
||||
<p style='font-size: 20px;'>You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.<br></p>
|
||||
"""
|
||||
)
|
||||
|
||||
# State transitions
|
||||
# for i in range(len(image_pils)):
|
||||
# image_click_buttons[i].click(
|
||||
# update_selected_image_state, inputs=[gr.Number(value=i, visible=False)], outputs=[face_input]
|
||||
# )
|
||||
# for i in range(len(video_paths)):
|
||||
# video_click_buttons[i].click(
|
||||
# update_selected_image_state,
|
||||
# inputs=[gr.Number(value=i + len(image_pils), visible=False)],
|
||||
# outputs=[face_input],
|
||||
# )
|
||||
submit_button.click(
|
||||
initial_process,
|
||||
inputs=[audio_input, face_input, model_choice],
|
||||
outputs=[
|
||||
video_output,
|
||||
video_time_text,
|
||||
],
|
||||
)
|
||||
|
||||
demo.queue().launch(server_name="0.0.0.0", server_port=7861)
|
||||
@@ -19,7 +19,8 @@ RUN git clone https://github.com/opea-project/GenAIComps.git
|
||||
|
||||
WORKDIR /home/user/GenAIComps
|
||||
RUN pip install --no-cache-dir --upgrade pip && \
|
||||
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt
|
||||
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt && \
|
||||
pip install --no-cache-dir langchain_core
|
||||
|
||||
COPY ./chatqna.py /home/user/chatqna.py
|
||||
|
||||
|
||||
@@ -19,9 +19,10 @@ RUN git clone https://github.com/opea-project/GenAIComps.git
|
||||
|
||||
WORKDIR /home/user/GenAIComps
|
||||
RUN pip install --no-cache-dir --upgrade pip && \
|
||||
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt
|
||||
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt && \
|
||||
pip install --no-cache-dir langchain_core
|
||||
|
||||
COPY ./chatqna_guardrails.py /home/user/chatqna_guardrails.py
|
||||
COPY ./chatqna.py /home/user/chatqna.py
|
||||
|
||||
ENV PYTHONPATH=$PYTHONPATH:/home/user/GenAIComps
|
||||
|
||||
@@ -31,4 +32,4 @@ WORKDIR /home/user
|
||||
|
||||
RUN echo 'ulimit -S -n 999999' >> ~/.bashrc
|
||||
|
||||
ENTRYPOINT ["python", "chatqna_guardrails.py"]
|
||||
ENTRYPOINT ["python", "chatqna.py", "--with-guardrails"]
|
||||
|
||||
@@ -6,9 +6,9 @@
|
||||
FROM python:3.11-slim
|
||||
|
||||
RUN apt-get update -y && apt-get install -y --no-install-recommends --fix-missing \
|
||||
git \
|
||||
libgl1-mesa-glx \
|
||||
libjemalloc-dev \
|
||||
git
|
||||
libjemalloc-dev
|
||||
|
||||
RUN useradd -m -s /bin/bash user && \
|
||||
mkdir -p /home/user && \
|
||||
@@ -19,9 +19,10 @@ RUN git clone https://github.com/opea-project/GenAIComps.git
|
||||
|
||||
WORKDIR /home/user/GenAIComps
|
||||
RUN pip install --no-cache-dir --upgrade pip && \
|
||||
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt
|
||||
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt && \
|
||||
pip install --no-cache-dir langchain_core
|
||||
|
||||
COPY ./chatqna_without_rerank.py /home/user/chatqna_without_rerank.py
|
||||
COPY ./chatqna.py /home/user/chatqna.py
|
||||
|
||||
ENV PYTHONPATH=$PYTHONPATH:/home/user/GenAIComps
|
||||
|
||||
@@ -31,4 +32,4 @@ WORKDIR /home/user
|
||||
|
||||
RUN echo 'ulimit -S -n 999999' >> ~/.bashrc
|
||||
|
||||
ENTRYPOINT ["python", "chatqna_without_rerank.py"]
|
||||
ENTRYPOINT ["python", "chatqna.py", "--without-rerank"]
|
||||
|
||||
@@ -206,8 +206,6 @@ cd GenAIExamples/ChatQnA/docker_compose/intel/hpu/gaudi/
|
||||
docker compose up -d
|
||||
```
|
||||
|
||||
> Notice: Currently only the **Habana Driver 1.16.x** is supported for Gaudi.
|
||||
|
||||
Refer to the [Gaudi Guide](./docker_compose/intel/hpu/gaudi/README.md) to build docker images from source.
|
||||
|
||||
### Deploy ChatQnA on Xeon
|
||||
|
||||
170
ChatQnA/benchmark/accuracy/README.md
Normal file
@@ -0,0 +1,170 @@
|
||||
# ChatQnA Accuracy
|
||||
|
||||
ChatQnA is a Retrieval-Augmented Generation (RAG) pipeline, which can enhance generative models through external information retrieval.
|
||||
|
||||
For evaluating the accuracy, we use 2 latest published datasets and 10+ metrics which are popular and comprehensive:
|
||||
|
||||
- Dataset
|
||||
- [MultiHop](https://arxiv.org/pdf/2401.15391) (English dataset)
|
||||
- [CRUD](https://arxiv.org/abs/2401.17043) (Chinese dataset)
|
||||
- metrics (measure accuracy of both the context retrieval and response generation)
|
||||
- evaluation for retrieval/reranking
|
||||
- MRR@10
|
||||
- MAP@10
|
||||
- Hits@10
|
||||
- Hits@4
|
||||
- LLM-as-a-Judge
|
||||
- evaluation for the generated response from the end-to-end pipeline
|
||||
- BLEU
|
||||
- ROGUE(L)
|
||||
- LLM-as-a-Judge
|
||||
|
||||
## Prerequisite
|
||||
|
||||
### Environment
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIEval
|
||||
cd GenAIEval
|
||||
pip install -r requirements.txt
|
||||
pip install -e .
|
||||
```
|
||||
|
||||
## MultiHop (English dataset)
|
||||
|
||||
[MultiHop-RAG](https://arxiv.org/pdf/2401.15391): a QA dataset to evaluate retrieval and reasoning across documents with metadata in the RAG pipelines. It contains 2556 queries, with evidence for each query distributed across 2 to 4 documents. The queries also involve document metadata, reflecting complex scenarios commonly found in real-world RAG applications.
|
||||
|
||||
### Launch Service of RAG System
|
||||
|
||||
Please refer to this [guide](https://github.com/opea-project/GenAIExamples/blob/main/ChatQnA/README.md) to launch the service of `ChatQnA`.
|
||||
|
||||
### Launch Service of LLM-as-a-Judge
|
||||
|
||||
To setup a LLM model, we can use [tgi-gaudi](https://github.com/huggingface/tgi-gaudi) to launch a service. For example, the follow command is to setup the [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) model on 2 Gaudi2 cards:
|
||||
|
||||
```
|
||||
# please set your llm_port and hf_token
|
||||
|
||||
docker run -p {your_llm_port}:80 --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e PT_HPU_ENABLE_LAZY_COLLECTIVES=true -e OMPI_MCA_btl_vader_single_copy_mechanism=none -e HF_TOKEN={your_hf_token} --cap-add=sys_nice --ipc=host ghcr.io/huggingface/tgi-gaudi:2.0.1 --model-id mistralai/Mixtral-8x7B-Instruct-v0.1 --max-input-tokens 2048 --max-total-tokens 4096 --sharded true --num-shard 2
|
||||
|
||||
# for better performance, set `PREFILL_BATCH_BUCKET_SIZE`, `BATCH_BUCKET_SIZE`, `max-batch-total-tokens`, `max-batch-prefill-tokens`
|
||||
docker run -p {your_llm_port}:80 --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e PT_HPU_ENABLE_LAZY_COLLECTIVES=true -e OMPI_MCA_btl_vader_single_copy_mechanism=none -e HF_TOKEN={your_hf_token} -e PREFILL_BATCH_BUCKET_SIZE=1 -e BATCH_BUCKET_SIZE=8 --cap-add=sys_nice --ipc=host ghcr.io/huggingface/tgi-gaudi:2.0.5 --model-id mistralai/Mixtral-8x7B-Instruct-v0.1 --max-input-tokens 2048 --max-total-tokens 4096 --sharded true --num-shard 2 --max-batch-total-tokens 65536 --max-batch-prefill-tokens 2048
|
||||
```
|
||||
|
||||
### Prepare Dataset
|
||||
|
||||
We use the evaluation dataset from [MultiHop-RAG](https://github.com/yixuantt/MultiHop-RAG) repo, use the below command to prepare the dataset.
|
||||
|
||||
```bash
|
||||
git clone https://github.com/yixuantt/MultiHop-RAG.git
|
||||
```
|
||||
|
||||
### Evaluation
|
||||
|
||||
Use below command to run the evaluation, please note that for the first run, argument `--ingest_docs` should be added in the command to ingest the documents into the vector database, while for the subsequent run, this argument should be omitted. Set `--retrieval_metrics` to get retrieval related metrics (MRR@10/MAP@10/Hits@10/Hits@4). Set `--ragas_metrics` and `--llm_endpoint` to get end-to-end rag pipeline metrics (faithfulness/answer_relevancy/...), which are judged by LLMs. We set `--limits` is 100 as default, which means only 100 examples are evaluated by llm-as-judge as it is very time consuming.
|
||||
|
||||
If you are using docker compose to deploy `ChatQnA` system, you can simply run the evaluation as following:
|
||||
|
||||
```bash
|
||||
python eval_multihop.py --docs_path MultiHop-RAG/dataset/corpus.json --dataset_path MultiHop-RAG/dataset/MultiHopRAG.json --ingest_docs --retrieval_metrics --ragas_metrics --llm_endpoint http://{llm_as_judge_ip}:{llm_as_judge_port}/generate
|
||||
```
|
||||
|
||||
If you are using Kubernetes manifest/helm to deploy `ChatQnA` system, you must specify more arguments as following:
|
||||
|
||||
```bash
|
||||
python eval_multihop.py --docs_path MultiHop-RAG/dataset/corpus.json --dataset_path MultiHop-RAG/dataset/MultiHopRAG.json --ingest_docs --retrieval_metrics --ragas_metrics --llm_endpoint http://{llm_as_judge_ip}:{llm_as_judge_port}/generate --database_endpoint http://{your_dataprep_ip}:{your_dataprep_port}/v1/dataprep --embedding_endpoint http://{your_embedding_ip}:{your_embedding_port}/v1/embeddings --tei_embedding_endpoint http://{your_tei_embedding_ip}:{your_tei_embedding_port} --retrieval_endpoint http://{your_retrieval_ip}:{your_retrieval_port}/v1/retrieval --service_url http://{your_chatqna_ip}:{your_chatqna_port}/v1/chatqna
|
||||
```
|
||||
|
||||
The default values for arguments are:
|
||||
|Argument|Default value|
|
||||
|--------|-------------|
|
||||
|service_url|http://localhost:8888/v1/chatqna|
|
||||
|database_endpoint|http://localhost:6007/v1/dataprep|
|
||||
|embedding_endpoint|http://localhost:6000/v1/embeddings|
|
||||
|tei_embedding_endpoint|http://localhost:8090|
|
||||
|retrieval_endpoint|http://localhost:7000/v1/retrieval|
|
||||
|reranking_endpoint|http://localhost:8000/v1/reranking|
|
||||
|output_dir|./output|
|
||||
|temperature|0.1|
|
||||
|max_new_tokens|1280|
|
||||
|chunk_size|256|
|
||||
|chunk_overlap|100|
|
||||
|search_type|similarity|
|
||||
|retrival_k|10|
|
||||
|fetch_k|20|
|
||||
|lambda_mult|0.5|
|
||||
|dataset_path|None|
|
||||
|docs_path|None|
|
||||
|limits|100|
|
||||
|
||||
You can check arguments details use below command:
|
||||
|
||||
```bash
|
||||
python eval_multihop.py --help
|
||||
```
|
||||
|
||||
## CRUD (Chinese dataset)
|
||||
|
||||
[CRUD-RAG](https://arxiv.org/abs/2401.17043) is a Chinese benchmark for RAG (Retrieval-Augmented Generation) system. This example utilize CRUD-RAG for evaluating the RAG system.
|
||||
|
||||
### Prepare Dataset
|
||||
|
||||
We use the evaluation dataset from [CRUD-RAG](https://github.com/IAAR-Shanghai/CRUD_RAG) repo, use the below command to prepare the dataset.
|
||||
|
||||
```bash
|
||||
git clone https://github.com/IAAR-Shanghai/CRUD_RAG
|
||||
mkdir data/
|
||||
cp CRUD_RAG/data/crud_split/split_merged.json data/
|
||||
cp -r CRUD_RAG/data/80000_docs/ data/
|
||||
python process_crud_dataset.py
|
||||
```
|
||||
|
||||
### Launch Service of RAG System
|
||||
|
||||
Please refer to this [guide](https://github.com/opea-project/GenAIExamples/blob/main/ChatQnA/README.md) to launch the service of `ChatQnA` system. For Chinese dataset, you should replace the English emebdding and llm model with Chinese, for example, `EMBEDDING_MODEL_ID="BAAI/bge-base-zh-v1.5"` and `LLM_MODEL_ID=Qwen/Qwen2-7B-Instruct`.
|
||||
|
||||
### Evaluation
|
||||
|
||||
Use below command to run the evaluation, please note that for the first run, argument `--ingest_docs` should be added in the command to ingest the documents into the vector database, while for the subsequent run, this argument should be omitted.
|
||||
|
||||
If you are using docker compose to deploy `ChatQnA` system, you can simply run the evaluation as following:
|
||||
|
||||
```bash
|
||||
python eval_crud.py --dataset_path ./data/split_merged.json --docs_path ./data/80000_docs --ingest_docs
|
||||
|
||||
# if you want to get ragas metrics
|
||||
python eval_crud.py --dataset_path ./data/split_merged.json --docs_path ./data/80000_docs --contain_original_data --llm_endpoint "http://{llm_as_judge_ip}:{llm_as_judge_port}" --ragas_metrics
|
||||
```
|
||||
|
||||
If you are using Kubernetes manifest/helm to deploy `ChatQnA` system, you must specify more arguments as following:
|
||||
|
||||
```bash
|
||||
python eval_crud.py --dataset_path ./data/split_merged.json --docs_path ./data/80000_docs --ingest_docs --database_endpoint http://{your_dataprep_ip}:{your_dataprep_port}/v1/dataprep --embedding_endpoint http://{your_embedding_ip}:{your_embedding_port}/v1/embeddings --retrieval_endpoint http://{your_retrieval_ip}:{your_retrieval_port}/v1/retrieval --service_url http://{your_chatqna_ip}:{your_chatqna_port}/v1/chatqna
|
||||
```
|
||||
|
||||
The default values for arguments are:
|
||||
|Argument|Default value|
|
||||
|--------|-------------|
|
||||
|service_url|http://localhost:8888/v1/chatqna|
|
||||
|database_endpoint|http://localhost:6007/v1/dataprep|
|
||||
|embedding_endpoint|http://localhost:6000/v1/embeddings|
|
||||
|retrieval_endpoint|http://localhost:7000/v1/retrieval|
|
||||
|reranking_endpoint|http://localhost:8000/v1/reranking|
|
||||
|output_dir|./output|
|
||||
|temperature|0.1|
|
||||
|max_new_tokens|1280|
|
||||
|chunk_size|256|
|
||||
|chunk_overlap|100|
|
||||
|dataset_path|./data/split_merged.json|
|
||||
|docs_path|./data/80000_docs|
|
||||
|tasks|["question_answering"]|
|
||||
|
||||
You can check arguments details use below command:
|
||||
|
||||
```bash
|
||||
python eval_crud.py --help
|
||||
```
|
||||
|
||||
## Acknowledgements
|
||||
|
||||
This example is mostly adapted from [MultiHop-RAG](https://github.com/yixuantt/MultiHop-RAG) and [CRUD-RAG](https://github.com/IAAR-Shanghai/CRUD_RAG) repo, we thank the authors for their great work!
|
||||
210
ChatQnA/benchmark/accuracy/eval_crud.py
Normal file
@@ -0,0 +1,210 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
|
||||
from evals.evaluation.rag_eval import Evaluator
|
||||
from evals.evaluation.rag_eval.template import CRUDTemplate
|
||||
from evals.metrics.ragas import RagasMetric
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
class CRUD_Evaluator(Evaluator):
|
||||
def get_ground_truth_text(self, data: dict):
|
||||
if self.task == "summarization":
|
||||
ground_truth_text = data["summary"]
|
||||
elif self.task == "question_answering":
|
||||
ground_truth_text = data["answers"]
|
||||
elif self.task == "continuation":
|
||||
ground_truth_text = data["continuing"]
|
||||
elif self.task == "hallucinated_modified":
|
||||
ground_truth_text = data["hallucinatedMod"]
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"Unknown task {self.task}, only support "
|
||||
"summarization, question_answering, continuation and hallucinated_modified."
|
||||
)
|
||||
return ground_truth_text
|
||||
|
||||
def get_query(self, data: dict):
|
||||
if self.task == "summarization":
|
||||
query = data["text"]
|
||||
elif self.task == "question_answering":
|
||||
query = data["questions"]
|
||||
elif self.task == "continuation":
|
||||
query = data["beginning"]
|
||||
elif self.task == "hallucinated_modified":
|
||||
query = data["newsBeginning"]
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"Unknown task {self.task}, only support "
|
||||
"summarization, question_answering, continuation and hallucinated_modified."
|
||||
)
|
||||
return query
|
||||
|
||||
def get_document(self, data: dict):
|
||||
if self.task == "summarization":
|
||||
document = data["text"]
|
||||
elif self.task == "question_answering":
|
||||
document = data["news1"]
|
||||
elif self.task == "continuation":
|
||||
document = data["beginning"]
|
||||
elif self.task == "hallucinated_modified":
|
||||
document = data["newsBeginning"]
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"Unknown task {self.task}, only support "
|
||||
"summarization, question_answering, continuation and hallucinated_modified."
|
||||
)
|
||||
return document
|
||||
|
||||
def get_template(self):
|
||||
if self.task == "summarization":
|
||||
template = CRUDTemplate.get_summarization_template()
|
||||
elif self.task == "question_answering":
|
||||
template = CRUDTemplate.get_question_answering_template()
|
||||
elif self.task == "continuation":
|
||||
template = CRUDTemplate.get_continuation_template()
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"Unknown task {self.task}, only support "
|
||||
"summarization, question_answering, continuation and hallucinated_modified."
|
||||
)
|
||||
return template
|
||||
|
||||
def post_process(self, result):
|
||||
return result.split("<response>")[-1].split("</response>")[0].strip()
|
||||
|
||||
def get_ragas_metrics(self, results, arguments):
|
||||
from langchain_huggingface import HuggingFaceEndpointEmbeddings
|
||||
|
||||
embeddings = HuggingFaceEndpointEmbeddings(model=arguments.tei_embedding_endpoint)
|
||||
|
||||
metric = RagasMetric(
|
||||
threshold=0.5,
|
||||
model=arguments.llm_endpoint,
|
||||
embeddings=embeddings,
|
||||
metrics=["faithfulness", "answer_relevancy"],
|
||||
)
|
||||
|
||||
all_answer_relevancy = 0
|
||||
all_faithfulness = 0
|
||||
ragas_inputs = {
|
||||
"question": [],
|
||||
"answer": [],
|
||||
"ground_truth": [],
|
||||
"contexts": [],
|
||||
}
|
||||
|
||||
valid_results = self.remove_invalid(results["results"])
|
||||
|
||||
for data in tqdm(valid_results):
|
||||
data = data["original_data"]
|
||||
|
||||
query = self.get_query(data)
|
||||
generated_text = data["generated_text"]
|
||||
ground_truth = data["ground_truth_text"]
|
||||
retrieved_documents = data["retrieved_documents"]
|
||||
|
||||
ragas_inputs["question"].append(query)
|
||||
ragas_inputs["answer"].append(generated_text)
|
||||
ragas_inputs["ground_truth"].append(ground_truth)
|
||||
ragas_inputs["contexts"].append(retrieved_documents[:3])
|
||||
|
||||
ragas_metrics = metric.measure(ragas_inputs)
|
||||
return ragas_metrics
|
||||
|
||||
|
||||
def args_parser():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"--service_url", type=str, default="http://localhost:8888/v1/chatqna", help="Service URL address."
|
||||
)
|
||||
parser.add_argument("--output_dir", type=str, default="./output", help="Directory to save evaluation results.")
|
||||
parser.add_argument(
|
||||
"--temperature", type=float, default=0.1, help="Controls the randomness of the model's text generation"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max_new_tokens", type=int, default=1280, help="Maximum number of new tokens to be generated by the model"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--chunk_size", type=int, default=256, help="the maximum number of characters that a chunk can contain"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--chunk_overlap",
|
||||
type=int,
|
||||
default=100,
|
||||
help="the number of characters that should overlap between two adjacent chunks",
|
||||
)
|
||||
parser.add_argument("--dataset_path", default="../data/split_merged.json", help="Path to the dataset")
|
||||
parser.add_argument("--docs_path", default="../data/80000_docs", help="Path to the retrieval documents")
|
||||
|
||||
# Retriever related options
|
||||
parser.add_argument("--tasks", default=["question_answering"], nargs="+", help="Task to perform")
|
||||
parser.add_argument("--ingest_docs", action="store_true", help="Whether to ingest documents to vector database")
|
||||
parser.add_argument(
|
||||
"--database_endpoint", type=str, default="http://localhost:6007/v1/dataprep", help="Service URL address."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--embedding_endpoint", type=str, default="http://localhost:6000/v1/embeddings", help="Service URL address."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--retrieval_endpoint", type=str, default="http://localhost:7000/v1/retrieval", help="Service URL address."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--tei_embedding_endpoint",
|
||||
type=str,
|
||||
default="http://localhost:8090",
|
||||
help="Service URL address of tei embedding.",
|
||||
)
|
||||
parser.add_argument("--ragas_metrics", action="store_true", help="Whether to compute ragas metrics.")
|
||||
parser.add_argument("--llm_endpoint", type=str, default=None, help="Service URL address.")
|
||||
parser.add_argument(
|
||||
"--show_progress_bar", action="store", default=True, type=bool, help="Whether to show a progress bar"
|
||||
)
|
||||
parser.add_argument("--contain_original_data", action="store_true", help="Whether to contain original data")
|
||||
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def main():
|
||||
args = args_parser()
|
||||
if os.path.isfile(args.dataset_path):
|
||||
with open(args.dataset_path) as f:
|
||||
all_datasets = json.load(f)
|
||||
else:
|
||||
raise FileNotFoundError(f"Evaluation dataset file {args.dataset_path} not exist.")
|
||||
os.makedirs(args.output_dir, exist_ok=True)
|
||||
for task in args.tasks:
|
||||
if task == "question_answering":
|
||||
dataset = all_datasets["questanswer_1doc"]
|
||||
elif task == "summarization":
|
||||
dataset = all_datasets["event_summary"]
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"Unknown task {task}, only support "
|
||||
"summarization, question_answering, continuation and hallucinated_modified."
|
||||
)
|
||||
output_save_path = os.path.join(args.output_dir, f"{task}.json")
|
||||
evaluator = CRUD_Evaluator(dataset=dataset, output_path=output_save_path, task=task)
|
||||
if args.ingest_docs:
|
||||
CRUD_Evaluator.ingest_docs(args.docs_path, args.database_endpoint, args.chunk_size, args.chunk_overlap)
|
||||
results = evaluator.evaluate(
|
||||
args, show_progress_bar=args.show_progress_bar, contain_original_data=args.contain_original_data
|
||||
)
|
||||
print(results["overall"])
|
||||
if args.ragas_metrics:
|
||||
ragas_metrics = evaluator.get_ragas_metrics(results, args)
|
||||
print(ragas_metrics)
|
||||
print(f"Evaluation results of task {task} saved to {output_save_path}.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
279
ChatQnA/benchmark/accuracy/eval_multihop.py
Normal file
@@ -0,0 +1,279 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
|
||||
import requests
|
||||
from evals.evaluation.rag_eval import Evaluator
|
||||
from evals.metrics.ragas import RagasMetric
|
||||
from evals.metrics.retrieval import RetrievalBaseMetric
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
class MultiHop_Evaluator(Evaluator):
|
||||
def get_ground_truth_text(self, data: dict):
|
||||
return data["answer"]
|
||||
|
||||
def get_query(self, data: dict):
|
||||
return data["query"]
|
||||
|
||||
def get_template(self):
|
||||
return None
|
||||
|
||||
def get_reranked_documents(self, query, docs, arguments):
|
||||
data = {
|
||||
"initial_query": query,
|
||||
"retrieved_docs": [{"text": doc} for doc in docs],
|
||||
"top_n": 10,
|
||||
}
|
||||
headers = {"Content-Type": "application/json"}
|
||||
|
||||
response = requests.post(arguments.reranking_endpoint, data=json.dumps(data), headers=headers)
|
||||
if response.ok:
|
||||
reranked_documents = response.json()["documents"]
|
||||
return reranked_documents
|
||||
else:
|
||||
print(f"Request for retrieval failed due to {response.text}.")
|
||||
return []
|
||||
|
||||
def get_retrieved_documents(self, query, arguments):
|
||||
data = {"inputs": query}
|
||||
headers = {"Content-Type": "application/json"}
|
||||
response = requests.post(arguments.tei_embedding_endpoint + "/embed", data=json.dumps(data), headers=headers)
|
||||
if response.ok:
|
||||
embedding = response.json()[0]
|
||||
else:
|
||||
print(f"Request for embedding failed due to {response.text}.")
|
||||
return []
|
||||
data = {
|
||||
"text": query,
|
||||
"embedding": embedding,
|
||||
"search_type": arguments.search_type,
|
||||
"k": arguments.retrival_k,
|
||||
"fetch_k": arguments.fetch_k,
|
||||
"lambda_mult": arguments.lambda_mult,
|
||||
}
|
||||
response = requests.post(arguments.retrieval_endpoint, data=json.dumps(data), headers=headers)
|
||||
if response.ok:
|
||||
retrieved_documents = response.json()["retrieved_docs"]
|
||||
return [doc["text"] for doc in retrieved_documents]
|
||||
else:
|
||||
print(f"Request for retrieval failed due to {response.text}.")
|
||||
return []
|
||||
|
||||
def get_retrieval_metrics(self, all_queries, arguments):
|
||||
print("start to retrieve...")
|
||||
metric = RetrievalBaseMetric()
|
||||
hits_at_10 = 0
|
||||
hits_at_4 = 0
|
||||
map_at_10 = 0
|
||||
mrr_at_10 = 0
|
||||
total = 0
|
||||
for data in tqdm(all_queries):
|
||||
if data["question_type"] == "null_query":
|
||||
continue
|
||||
query = data["query"]
|
||||
retrieved_documents = self.get_retrieved_documents(query, arguments)
|
||||
if arguments.rerank:
|
||||
retrieved_documents = self.get_reranked_documents(query, retrieved_documents, arguments)
|
||||
golden_context = [each["fact"] for each in data["evidence_list"]]
|
||||
test_case = {
|
||||
"input": query,
|
||||
"golden_context": golden_context,
|
||||
"retrieval_context": retrieved_documents,
|
||||
}
|
||||
results = metric.measure(test_case)
|
||||
hits_at_10 += results["Hits@10"]
|
||||
hits_at_4 += results["Hits@4"]
|
||||
map_at_10 += results["MAP@10"]
|
||||
mrr_at_10 += results["MRR@10"]
|
||||
total += 1
|
||||
|
||||
# Calculate average metrics over all queries
|
||||
hits_at_10 = hits_at_10 / total
|
||||
hits_at_4 = hits_at_4 / total
|
||||
map_at_10 = map_at_10 / total
|
||||
mrr_at_10 = mrr_at_10 / total
|
||||
|
||||
return {
|
||||
"Hits@10": hits_at_10,
|
||||
"Hits@4": hits_at_4,
|
||||
"MAP@10": map_at_10,
|
||||
"MRR@10": mrr_at_10,
|
||||
}
|
||||
|
||||
def evaluate(self, all_queries, arguments):
|
||||
results = []
|
||||
accuracy = 0
|
||||
index = 0
|
||||
for data in tqdm(all_queries):
|
||||
if data["question_type"] == "null_query":
|
||||
continue
|
||||
|
||||
generated_text = self.send_request(data, arguments)
|
||||
data["generated_text"] = generated_text
|
||||
|
||||
# same method with paper: https://github.com/yixuantt/MultiHop-RAG/issues/8
|
||||
if data["answer"] in generated_text:
|
||||
accuracy += 1
|
||||
result = {"id": index, **self.scoring(data)}
|
||||
results.append(result)
|
||||
index += 1
|
||||
|
||||
valid_results = self.remove_invalid(results)
|
||||
|
||||
try:
|
||||
overall = self.compute_overall(valid_results) if len(valid_results) > 0 else {}
|
||||
except Exception as e:
|
||||
print(repr(e))
|
||||
overall = dict()
|
||||
|
||||
overall.update({"accuracy": accuracy / len(results)})
|
||||
return overall
|
||||
|
||||
def get_ragas_metrics(self, all_queries, arguments):
|
||||
from langchain_huggingface import HuggingFaceEndpointEmbeddings
|
||||
|
||||
embeddings = HuggingFaceEndpointEmbeddings(model=arguments.tei_embedding_endpoint)
|
||||
|
||||
metric = RagasMetric(threshold=0.5, model=arguments.llm_endpoint, embeddings=embeddings)
|
||||
all_answer_relevancy = 0
|
||||
all_faithfulness = 0
|
||||
ragas_inputs = {
|
||||
"question": [],
|
||||
"answer": [],
|
||||
"ground_truth": [],
|
||||
"contexts": [],
|
||||
}
|
||||
|
||||
for data in tqdm(all_queries):
|
||||
if data["question_type"] == "null_query":
|
||||
continue
|
||||
retrieved_documents = self.get_retrieved_documents(data["query"], arguments)
|
||||
generated_text = self.send_request(data, arguments)
|
||||
data["generated_text"] = generated_text
|
||||
|
||||
ragas_inputs["question"].append(data["query"])
|
||||
ragas_inputs["answer"].append(generated_text)
|
||||
ragas_inputs["ground_truth"].append(data["answer"])
|
||||
ragas_inputs["contexts"].append(retrieved_documents[:3])
|
||||
|
||||
if len(ragas_inputs["question"]) >= arguments.limits:
|
||||
break
|
||||
|
||||
ragas_metrics = metric.measure(ragas_inputs)
|
||||
return ragas_metrics
|
||||
|
||||
|
||||
def args_parser():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"--service_url", type=str, default="http://localhost:8888/v1/chatqna", help="Service URL address."
|
||||
)
|
||||
parser.add_argument("--output_dir", type=str, default="./output", help="Directory to save evaluation results.")
|
||||
parser.add_argument(
|
||||
"--temperature", type=float, default=0.1, help="Controls the randomness of the model's text generation"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max_new_tokens", type=int, default=1280, help="Maximum number of new tokens to be generated by the model"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--chunk_size", type=int, default=256, help="the maximum number of characters that a chunk can contain"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--chunk_overlap",
|
||||
type=int,
|
||||
default=100,
|
||||
help="the number of characters that should overlap between two adjacent chunks",
|
||||
)
|
||||
parser.add_argument("--search_type", type=str, default="similarity", help="similarity type")
|
||||
parser.add_argument("--retrival_k", type=int, default=10, help="Number of Documents to return.")
|
||||
parser.add_argument(
|
||||
"--fetch_k", type=int, default=20, help="Number of Documents to fetch to pass to MMR algorithm."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--lambda_mult",
|
||||
type=float,
|
||||
default=0.5,
|
||||
help="Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.",
|
||||
)
|
||||
parser.add_argument("--dataset_path", default=None, help="Path to the dataset")
|
||||
parser.add_argument("--docs_path", default=None, help="Path to the retrieval documents")
|
||||
|
||||
# Retriever related options
|
||||
parser.add_argument("--ingest_docs", action="store_true", help="Whether to ingest documents to vector database")
|
||||
parser.add_argument("--retrieval_metrics", action="store_true", help="Whether to compute retrieval metrics.")
|
||||
parser.add_argument("--ragas_metrics", action="store_true", help="Whether to compute ragas metrics.")
|
||||
parser.add_argument("--limits", type=int, default=100, help="Number of examples to be evaluated by llm-as-judge")
|
||||
parser.add_argument(
|
||||
"--database_endpoint", type=str, default="http://localhost:6007/v1/dataprep", help="Service URL address."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--embedding_endpoint", type=str, default="http://localhost:6000/v1/embeddings", help="Service URL address."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--tei_embedding_endpoint",
|
||||
type=str,
|
||||
default="http://localhost:8090",
|
||||
help="Service URL address of tei embedding.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--retrieval_endpoint", type=str, default="http://localhost:7000/v1/retrieval", help="Service URL address."
|
||||
)
|
||||
parser.add_argument("--rerank", action="store_true", help="Whether to use rerank microservice.")
|
||||
parser.add_argument(
|
||||
"--reranking_endpoint", type=str, default="http://localhost:8000/v1/reranking", help="Service URL address."
|
||||
)
|
||||
parser.add_argument("--llm_endpoint", type=str, default=None, help="Service URL address.")
|
||||
parser.add_argument(
|
||||
"--show_progress_bar", action="store", default=True, type=bool, help="Whether to show a progress bar"
|
||||
)
|
||||
parser.add_argument("--contain_original_data", action="store_true", help="Whether to contain original data")
|
||||
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def main():
|
||||
args = args_parser()
|
||||
|
||||
evaluator = MultiHop_Evaluator()
|
||||
|
||||
with open(args.docs_path, "r") as file:
|
||||
doc_data = json.load(file)
|
||||
|
||||
documents = []
|
||||
for doc in doc_data:
|
||||
metadata = {"title": doc["title"], "published_at": doc["published_at"], "source": doc["source"]}
|
||||
documents.append(doc["body"])
|
||||
|
||||
# save docs to a tmp file
|
||||
tmp_corpus_file = "tmp_corpus.txt"
|
||||
with open(tmp_corpus_file, "w") as f:
|
||||
for doc in documents:
|
||||
f.write(doc + "\n")
|
||||
|
||||
if args.ingest_docs:
|
||||
evaluator.ingest_docs(tmp_corpus_file, args.database_endpoint, args.chunk_size, args.chunk_overlap)
|
||||
|
||||
with open(args.dataset_path, "r") as file:
|
||||
all_queries = json.load(file)
|
||||
|
||||
# get retrieval quality
|
||||
if args.retrieval_metrics:
|
||||
retrieval_metrics = evaluator.get_retrieval_metrics(all_queries, args)
|
||||
print(retrieval_metrics)
|
||||
|
||||
# get rag quality
|
||||
if args.ragas_metrics:
|
||||
ragas_metrics = evaluator.get_ragas_metrics(all_queries, args)
|
||||
print(ragas_metrics)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
9
ChatQnA/benchmark/accuracy/process_crud_dataset.py
Normal file
@@ -0,0 +1,9 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import os
|
||||
|
||||
path = os.path.join(os.path.dirname(__file__), "./data/80000_docs")
|
||||
for file in os.listdir(path):
|
||||
src_file = os.path.join(path, file)
|
||||
os.rename(src_file, src_file + ".txt")
|
||||
64
ChatQnA/benchmark/accuracy/run_acc.sh
Normal file
@@ -0,0 +1,64 @@
|
||||
#!/bin/bash
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
set -x
|
||||
|
||||
function main {
|
||||
|
||||
init_params "$@"
|
||||
# run_benchmark
|
||||
echo $dataset
|
||||
if [[ ${dataset} == "MultiHop" ]]; then
|
||||
run_multihop
|
||||
elif [[ ${dataset} == "crud" ]]; then
|
||||
run_crud
|
||||
fi
|
||||
|
||||
}
|
||||
|
||||
# init params
|
||||
function init_params {
|
||||
for var in "$@"
|
||||
do
|
||||
case $var in
|
||||
--dataset=*)
|
||||
dataset=$( echo $var |cut -f2 -d=)
|
||||
;;
|
||||
*)
|
||||
echo "Error: No such parameter: ${var}"
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
done
|
||||
}
|
||||
|
||||
# run_multihop
|
||||
function run_multihop {
|
||||
git clone https://github.com/yixuantt/MultiHop-RAG.git
|
||||
|
||||
python eval_multihop.py \
|
||||
--docs_path MultiHop-RAG/dataset/corpus.json \
|
||||
--dataset_path MultiHop-RAG/dataset/MultiHopRAG.json \
|
||||
--ingest_docs \
|
||||
--retrieval_metrics
|
||||
|
||||
}
|
||||
|
||||
# run_crud
|
||||
function run_crud {
|
||||
|
||||
git clone https://github.com/IAAR-Shanghai/CRUD_RAG
|
||||
mkdir data/
|
||||
cp CRUD_RAG/data/crud_split/split_merged.json data/
|
||||
cp -r CRUD_RAG/data/80000_docs/ data/
|
||||
python process_crud_dataset.py
|
||||
|
||||
python eval_crud.py \
|
||||
--dataset_path ./data/split_merged.json \
|
||||
--docs_path ./data/80000_docs \
|
||||
--ingest_docs
|
||||
}
|
||||
|
||||
|
||||
main "$@"
|
||||
@@ -88,22 +88,9 @@ find . -name '*.yaml' -type f -exec sed -i "s#\$(EMBEDDING_MODEL_ID)#${EMBEDDING
|
||||
find . -name '*.yaml' -type f -exec sed -i "s#\$(RERANK_MODEL_ID)#${RERANK_MODEL_ID}#g" {} \;
|
||||
```
|
||||
|
||||
### Benchmark tool preparation
|
||||
|
||||
The test uses the [benchmark tool](https://github.com/opea-project/GenAIEval/tree/main/evals/benchmark/README.md) to do performance test. We need to set up benchmark tool at the master node of Kubernetes which is k8s-master.
|
||||
|
||||
```bash
|
||||
# on k8s-master node
|
||||
git clone https://github.com/opea-project/GenAIEval.git
|
||||
cd GenAIEval
|
||||
python3 -m venv stress_venv
|
||||
source stress_venv/bin/activate
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
### Test Configurations
|
||||
|
||||
Workload configuration:
|
||||
By default, the workload and benchmark configuration is as below:
|
||||
|
||||
| Key | Value |
|
||||
| -------- | ------- |
|
||||
@@ -189,24 +176,21 @@ curl -X POST "http://${cluster_ip}:6007/v1/dataprep" \
|
||||
|
||||
###### 3.2 Run Benchmark Test
|
||||
|
||||
We copy the configuration file [benchmark.yaml](./benchmark.yaml) to `GenAIEval/evals/benchmark/benchmark.yaml` and config `test_suite_config.deployment_type`, `test_suite_config.service_ip`, `test_suite_config.service_port`, `test_suite_config.user_queries` and `test_suite_config.test_output_dir`.
|
||||
Before the benchmark, we can configure the number of test queries and test output directory by:
|
||||
|
||||
```bash
|
||||
export DEPLOYMENT_TYPE="k8s"
|
||||
export SERVICE_IP = None
|
||||
export SERVICE_PORT = None
|
||||
export USER_QUERIES="[640, 640, 640, 640]"
|
||||
export TEST_OUTPUT_DIR="/home/sdp/benchmark_output/node_1"
|
||||
envsubst < ./benchmark.yaml > GenAIEval/evals/benchmark/benchmark.yaml
|
||||
```
|
||||
|
||||
And then run the benchmark tool by:
|
||||
And then run the benchmark by:
|
||||
|
||||
```bash
|
||||
cd GenAIEval/evals/benchmark
|
||||
python benchmark.py
|
||||
bash benchmark.sh -n 1
|
||||
```
|
||||
|
||||
The argument `-n` refers to the number of test nodes. Note that necessary dependencies will be automatically installed when running benchmark for the first time.
|
||||
|
||||
##### 4. Data collection
|
||||
|
||||
All the test results will come to this folder `/home/sdp/benchmark_output/node_1` configured by the environment variable `TEST_OUTPUT_DIR` in previous steps.
|
||||
@@ -242,22 +226,20 @@ kubectl apply -f .
|
||||
|
||||
##### 3. Run tests
|
||||
|
||||
We copy the configuration file [benchmark.yaml](./benchmark.yaml) to `GenAIEval/evals/benchmark/benchmark.yaml` and config `test_suite_config.deployment_type`, `test_suite_config.service_ip`, `test_suite_config.service_port`, `test_suite_config.user_queries` and `test_suite_config.test_output_dir`.
|
||||
|
||||
````bash
|
||||
export DEPLOYMENT_TYPE="k8s"
|
||||
export SERVICE_IP = None
|
||||
export SERVICE_PORT = None
|
||||
export USER_QUERIES="[1280, 1280, 1280, 1280]"
|
||||
export TEST_OUTPUT_DIR="/home/sdp/benchmark_output/node_2"
|
||||
envsubst < ./benchmark.yaml > GenAIEval/evals/benchmark/benchmark.yaml
|
||||
|
||||
And then run the benchmark tool by:
|
||||
Before the benchmark, we can configure the number of test queries and test output directory by:
|
||||
|
||||
```bash
|
||||
cd GenAIEval/evals/benchmark
|
||||
python benchmark.py
|
||||
````
|
||||
export USER_QUERIES="[1280, 1280, 1280, 1280]"
|
||||
export TEST_OUTPUT_DIR="/home/sdp/benchmark_output/node_2"
|
||||
```
|
||||
|
||||
And then run the benchmark by:
|
||||
|
||||
```bash
|
||||
bash benchmark.sh -n 2
|
||||
```
|
||||
|
||||
The argument `-n` refers to the number of test nodes. Note that necessary dependencies will be automatically installed when running benchmark for the first time.
|
||||
|
||||
##### 4. Data collection
|
||||
|
||||
@@ -293,24 +275,21 @@ kubectl apply -f .
|
||||
|
||||
##### 3. Run tests
|
||||
|
||||
We copy the configuration file [benchmark.yaml](./benchmark.yaml) to `GenAIEval/evals/benchmark/benchmark.yaml` and config `test_suite_config.deployment_type`, `test_suite_config.service_ip`, `test_suite_config.service_port`, `test_suite_config.user_queries` and `test_suite_config.test_output_dir`.
|
||||
Before the benchmark, we can configure the number of test queries and test output directory by:
|
||||
|
||||
```bash
|
||||
export DEPLOYMENT_TYPE="k8s"
|
||||
export SERVICE_IP = None
|
||||
export SERVICE_PORT = None
|
||||
export USER_QUERIES="[2560, 2560, 2560, 2560]"
|
||||
export TEST_OUTPUT_DIR="/home/sdp/benchmark_output/node_4"
|
||||
envsubst < ./benchmark.yaml > GenAIEval/evals/benchmark/benchmark.yaml
|
||||
```
|
||||
|
||||
And then run the benchmark tool by:
|
||||
And then run the benchmark by:
|
||||
|
||||
```bash
|
||||
cd GenAIEval/evals/benchmark
|
||||
python benchmark.py
|
||||
bash benchmark.sh -n 4
|
||||
```
|
||||
|
||||
The argument `-n` refers to the number of test nodes. Note that necessary dependencies will be automatically installed when running benchmark for the first time.
|
||||
|
||||
##### 4. Data collection
|
||||
|
||||
All the test results will come to this folder `/home/sdp/benchmark_output/node_4` configured by the environment variable `TEST_OUTPUT_DIR` in previous steps.
|
||||
@@ -369,24 +348,21 @@ Refer to the [NVIDIA GPU Guide](../../docker_compose/nvidia/gpu/README.md) for m
|
||||
|
||||
### Run tests
|
||||
|
||||
We copy the configuration file [benchmark.yaml](./benchmark.yaml) to `GenAIEval/evals/benchmark/benchmark.yaml` and config `test_suite_config.deployment_type`, `test_suite_config.service_ip`, `test_suite_config.service_port`, `test_suite_config.user_queries` and `test_suite_config.test_output_dir`.
|
||||
Before the benchmark, we can configure the number of test queries and test output directory by:
|
||||
|
||||
```bash
|
||||
export DEPLOYMENT_TYPE="docker"
|
||||
export SERVICE_IP = "ChatQnA Service IP"
|
||||
export SERVICE_PORT = "ChatQnA Service Port"
|
||||
export USER_QUERIES="[640, 640, 640, 640]"
|
||||
export TEST_OUTPUT_DIR="/home/sdp/benchmark_output/docker"
|
||||
envsubst < ./benchmark.yaml > GenAIEval/evals/benchmark/benchmark.yaml
|
||||
```
|
||||
|
||||
And then run the benchmark tool by:
|
||||
And then run the benchmark by:
|
||||
|
||||
```bash
|
||||
cd GenAIEval/evals/benchmark
|
||||
python benchmark.py
|
||||
bash benchmark.sh -d docker -i <service-ip> -p <service-port>
|
||||
```
|
||||
|
||||
The argument `-i` and `-p` refer to the deployed ChatQnA service IP and port, respectively. Note that necessary dependencies will be automatically installed when running benchmark for the first time.
|
||||
|
||||
### Data collection
|
||||
|
||||
All the test results will come to this folder `/home/sdp/benchmark_output/docker` configured by the environment variable `TEST_OUTPUT_DIR` in previous steps.
|
||||
|
||||
99
ChatQnA/benchmark/performance/benchmark.sh
Executable file
@@ -0,0 +1,99 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
deployment_type="k8s"
|
||||
node_number=1
|
||||
service_port=8888
|
||||
query_per_node=640
|
||||
|
||||
benchmark_tool_path="$(pwd)/GenAIEval"
|
||||
|
||||
usage() {
|
||||
echo "Usage: $0 [-d deployment_type] [-n node_number] [-i service_ip] [-p service_port]"
|
||||
echo " -d deployment_type ChatQnA deployment type, select between k8s and docker (default: k8s)"
|
||||
echo " -n node_number Test node number, required only for k8s deployment_type, (default: 1)"
|
||||
echo " -i service_ip chatqna service ip, required only for docker deployment_type"
|
||||
echo " -p service_port chatqna service port, required only for docker deployment_type, (default: 8888)"
|
||||
exit 1
|
||||
}
|
||||
|
||||
while getopts ":d:n:i:p:" opt; do
|
||||
case ${opt} in
|
||||
d )
|
||||
deployment_type=$OPTARG
|
||||
;;
|
||||
n )
|
||||
node_number=$OPTARG
|
||||
;;
|
||||
i )
|
||||
service_ip=$OPTARG
|
||||
;;
|
||||
p )
|
||||
service_port=$OPTARG
|
||||
;;
|
||||
\? )
|
||||
echo "Invalid option: -$OPTARG" 1>&2
|
||||
usage
|
||||
;;
|
||||
: )
|
||||
echo "Invalid option: -$OPTARG requires an argument" 1>&2
|
||||
usage
|
||||
;;
|
||||
esac
|
||||
done
|
||||
|
||||
if [[ "$deployment_type" == "docker" && -z "$service_ip" ]]; then
|
||||
echo "Error: service_ip is required for docker deployment_type" 1>&2
|
||||
usage
|
||||
fi
|
||||
|
||||
if [[ "$deployment_type" == "k8s" && ( -n "$service_ip" || -n "$service_port" ) ]]; then
|
||||
echo "Warning: service_ip and service_port are ignored for k8s deployment_type" 1>&2
|
||||
fi
|
||||
|
||||
function main() {
|
||||
if [[ ! -d ${benchmark_tool_path} ]]; then
|
||||
echo "Benchmark tool not found, setting up..."
|
||||
setup_env
|
||||
fi
|
||||
run_benchmark
|
||||
}
|
||||
|
||||
function setup_env() {
|
||||
git clone https://github.com/opea-project/GenAIEval.git
|
||||
pushd ${benchmark_tool_path}
|
||||
python3 -m venv stress_venv
|
||||
source stress_venv/bin/activate
|
||||
pip install -r requirements.txt
|
||||
popd
|
||||
}
|
||||
|
||||
function run_benchmark() {
|
||||
source ${benchmark_tool_path}/stress_venv/bin/activate
|
||||
export DEPLOYMENT_TYPE=${deployment_type}
|
||||
export SERVICE_IP=${service_ip:-"None"}
|
||||
export SERVICE_PORT=${service_port:-"None"}
|
||||
if [[ -z $USER_QUERIES ]]; then
|
||||
user_query=$((query_per_node*node_number))
|
||||
export USER_QUERIES="[${user_query}, ${user_query}, ${user_query}, ${user_query}]"
|
||||
echo "USER_QUERIES not configured, setting to: ${USER_QUERIES}."
|
||||
fi
|
||||
export WARMUP=$(echo $USER_QUERIES | sed -e 's/[][]//g' -e 's/,.*//')
|
||||
if [[ -z $WARMUP ]]; then export WARMUP=0; fi
|
||||
if [[ -z $TEST_OUTPUT_DIR ]]; then
|
||||
if [[ $DEPLOYMENT_TYPE == "k8s" ]]; then
|
||||
export TEST_OUTPUT_DIR="${benchmark_tool_path}/evals/benchmark/benchmark_output/node_${node_number}"
|
||||
else
|
||||
export TEST_OUTPUT_DIR="${benchmark_tool_path}/evals/benchmark/benchmark_output/docker"
|
||||
fi
|
||||
echo "TEST_OUTPUT_DIR not configured, setting to: ${TEST_OUTPUT_DIR}."
|
||||
fi
|
||||
|
||||
envsubst < ./benchmark.yaml > ${benchmark_tool_path}/evals/benchmark/benchmark.yaml
|
||||
cd ${benchmark_tool_path}/evals/benchmark
|
||||
python benchmark.py
|
||||
}
|
||||
|
||||
main
|
||||
@@ -6,14 +6,24 @@ test_suite_config: # Overall configuration settings for the test suite
|
||||
deployment_type: ${DEPLOYMENT_TYPE} # Default is "k8s", can also be "docker"
|
||||
service_ip: ${SERVICE_IP} # Leave as None for k8s, specify for Docker
|
||||
service_port: ${SERVICE_PORT} # Leave as None for k8s, specify for Docker
|
||||
concurrent_level: 5 # The concurrency level, adjustable based on requirements
|
||||
user_queries: ${USER_QUERIES} # Number of test requests at each concurrency level
|
||||
random_prompt: false # Use random prompts if true, fixed prompts if false
|
||||
warm_ups: ${WARMUP} # Number of test requests for warm-up
|
||||
run_time: 60m # The max total run time for the test suite
|
||||
seed: # The seed for all RNGs
|
||||
user_queries: ${USER_QUERIES} # Number of test requests at each concurrency level
|
||||
query_timeout: 120 # Number of seconds to wait for a simulated user to complete any executing task before exiting. 120 sec by defeult.
|
||||
random_prompt: false # Use random prompts if true, fixed prompts if false
|
||||
collect_service_metric: false # Collect service metrics if true, do not collect service metrics if false
|
||||
data_visualization: false # Generate data visualization if true, do not generate data visualization if false
|
||||
llm_model: "Intel/neural-chat-7b-v3-3" # The LLM model used for the test
|
||||
test_output_dir: "${TEST_OUTPUT_DIR}" # The directory to store the test output
|
||||
load_shape: # Tenant concurrency pattern
|
||||
name: constant # poisson or constant(locust default load shape)
|
||||
params: # Loadshape-specific parameters
|
||||
constant: # Constant load shape specific parameters, activate only if load_shape.name is constant
|
||||
concurrent_level: 5 # If user_queries is specified, concurrent_level is target number of requests per user. If not, it is the number of simulated users
|
||||
# arrival_rate: 1.0 # Request arrival rate. If set, concurrent_level will be overridden, constant load will be generated based on arrival-rate
|
||||
poisson: # Poisson load shape specific parameters, activate only if load_shape.name is poisson
|
||||
arrival_rate: 1.0 # Request arrival rate
|
||||
|
||||
test_cases:
|
||||
chatqna:
|
||||
|
||||
@@ -10,29 +10,27 @@ This document guides you through deploying ChatQnA pipelines using Helm charts.
|
||||
# on k8s-master node
|
||||
cd GenAIExamples/ChatQnA/benchmark/performance/helm_charts
|
||||
|
||||
# Replace <your token> with your actual Hugging Face token and run the following command:
|
||||
HUGGINGFACE_TOKEN=<your token>
|
||||
find . -name '*.yaml' -type f -exec sed -i "s#\${HF_TOKEN}#${HUGGINGFACE_TOKEN}#g" {} \;
|
||||
|
||||
# Replace the following placeholders with the desired model IDs:
|
||||
LLM_MODEL_ID=Intel/neural-chat-7b-v3-3
|
||||
EMBEDDING_MODEL_ID=BAAI/bge-base-en-v1.5
|
||||
RERANK_MODEL_ID=BAAI/bge-reranker-base
|
||||
find . -name '*.yaml' -type f -exec sed -i "s#\$(LLM_MODEL_ID)#${LLM_MODEL_ID}#g" {} \;
|
||||
find . -name '*.yaml' -type f -exec sed -i "s#\$(EMBEDDING_MODEL_ID)#${EMBEDDING_MODEL_ID}#g" {} \;
|
||||
find . -name '*.yaml' -type f -exec sed -i "s#\$(RERANK_MODEL_ID)#${RERANK_MODEL_ID}#g" {} \;
|
||||
|
||||
# Replace the key of HUGGINGFACEHUB_API_TOKEN with your actual Hugging Face token:
|
||||
# vim customize.yaml
|
||||
HUGGINGFACEHUB_API_TOKEN: hf_xxxxx
|
||||
```
|
||||
|
||||
### ChatQnA Installation
|
||||
### Deploy your ChatQnA
|
||||
|
||||
```bash
|
||||
# Deploy a ChatQnA pipeline using the specified YAML configuration.
|
||||
# To deploy with different configurations, simply provide a different YAML file.
|
||||
helm install chatqna helm_charts/ -f helm_charts/oob_single_node.yaml
|
||||
|
||||
# Tips: To display rendered manifests according to the given yaml.
|
||||
helm template chatqna helm_charts/ -f helm_charts/oob_single_node.yaml
|
||||
helm install chatqna helm_charts/ -f customize.yaml
|
||||
```
|
||||
|
||||
Notes: The provided [BKC manifests](https://github.com/opea-project/GenAIExamples/tree/main/ChatQnA/benchmark) for single, two, and four node Kubernetes clusters are generated using this tool.
|
||||
|
||||
## Customize your own ChatQnA pipelines. (Optional)
|
||||
|
||||
There are two yaml configs you can specify.
|
||||
|
||||
- customize.yaml
|
||||
This file can specify image names, the number of replicas and CPU cores to manage your pods.
|
||||
|
||||
- values.yaml
|
||||
This file contains the default microservice configurations for ChatQnA. Please review and understand each parameter before making any changes.
|
||||
|
||||
71
ChatQnA/benchmark/performance/helm_charts/customize.yaml
Normal file
@@ -0,0 +1,71 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HF_TOKEN}
|
||||
|
||||
podSpecs:
|
||||
- name: chatqna-backend-server-deploy
|
||||
spec:
|
||||
image_name: opea/chatqna
|
||||
image_tag: latest
|
||||
replicas: 2
|
||||
resources:
|
||||
limits:
|
||||
cpu: "8"
|
||||
memory: "8000Mi"
|
||||
requests:
|
||||
cpu: "8"
|
||||
memory: "8000Mi"
|
||||
|
||||
- name: embedding-dependency-deploy
|
||||
spec:
|
||||
image_name: ghcr.io/huggingface/text-embeddings-inference
|
||||
image_tag: cpu-1.5
|
||||
replicas: 1
|
||||
resources:
|
||||
limits:
|
||||
cpu: "80"
|
||||
memory: "20000Mi"
|
||||
requests:
|
||||
cpu: "80"
|
||||
memory: "20000Mi"
|
||||
|
||||
- name: reranking-dependency-deploy
|
||||
spec:
|
||||
image_name: opea/tei-gaudi
|
||||
image_tag: latest
|
||||
replicas: 1
|
||||
resources:
|
||||
limits:
|
||||
habana.ai/gaudi: 1
|
||||
|
||||
- name: llm-dependency-deploy
|
||||
spec:
|
||||
image_name: ghcr.io/huggingface/tgi-gaudi
|
||||
image_tag: 2.0.4
|
||||
replicas: 7
|
||||
resources:
|
||||
limits:
|
||||
habana.ai/gaudi: 1
|
||||
|
||||
- name: dataprep-deploy
|
||||
spec:
|
||||
image_name: opea/dataprep-redis
|
||||
image_tag: latest
|
||||
replicas: 1
|
||||
|
||||
- name: vector-db
|
||||
spec:
|
||||
image_name: redis/redis-stack
|
||||
image_tag: 7.2.0-v9
|
||||
replicas: 1
|
||||
|
||||
- name: retriever-deploy
|
||||
spec:
|
||||
image_name: opea/retriever-redis
|
||||
image_tag: latest
|
||||
replicas: 2
|
||||
resources:
|
||||
requests:
|
||||
cpu: "4"
|
||||
memory: "4000Mi"
|
||||
@@ -1,237 +0,0 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
config:
|
||||
EMBEDDING_MODEL_ID: BAAI/bge-base-en-v1.5
|
||||
EMBEDDING_SERVER_HOST_IP: embedding-dependency-svc
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HF_TOKEN}
|
||||
INDEX_NAME: rag-redis
|
||||
LLM_MODEL_ID: Intel/neural-chat-7b-v3-3
|
||||
LLM_SERVER_HOST_IP: llm-dependency-svc
|
||||
NODE_SELECTOR: chatqna-opea
|
||||
REDIS_URL: redis://vector-db.default.svc.cluster.local:6379
|
||||
RERANK_MODEL_ID: BAAI/bge-reranker-base
|
||||
RERANK_SERVER_HOST_IP: reranking-dependency-svc
|
||||
RETRIEVER_SERVICE_HOST_IP: retriever-svc
|
||||
TEI_EMBEDDING_ENDPOINT: http://embedding-dependency-svc.default.svc.cluster.local:6006
|
||||
TEI_ENDPOINT: http://embedding-dependency-svc.default.svc.cluster.local:6006
|
||||
TEI_RERANKING_ENDPOINT: http://reranking-dependency-svc.default.svc.cluster.local:8808
|
||||
TGI_LLM_ENDPOINT: http://llm-dependency-svc.default.svc.cluster.local:9009
|
||||
|
||||
deployments:
|
||||
- name: chatqna-backend-server-deploy
|
||||
spec:
|
||||
image_name: opea/chatqna-no-wrapper
|
||||
image_tag: latest
|
||||
replicas: 1
|
||||
ports:
|
||||
- containerPort: 8888
|
||||
|
||||
- name: dataprep-deploy
|
||||
spec:
|
||||
image_name: opea/dataprep-redis
|
||||
image_tag: latest
|
||||
replicas: 1
|
||||
ports:
|
||||
- containerPort: 6007
|
||||
|
||||
- name: vector-db
|
||||
spec:
|
||||
image_name: redis/redis-stack
|
||||
image_tag: 7.2.0-v9
|
||||
replicas: 1
|
||||
ports:
|
||||
- containerPort: 6379
|
||||
- containerPort: 8001
|
||||
|
||||
- name: retriever-deploy
|
||||
spec:
|
||||
image_name: opea/retriever-redis
|
||||
image_tag: latest
|
||||
replicas: 1
|
||||
ports:
|
||||
- containerPort: 7000
|
||||
|
||||
- name: embedding-dependency-deploy
|
||||
spec:
|
||||
image_name: ghcr.io/huggingface/text-embeddings-inference
|
||||
image_tag: cpu-1.5
|
||||
replicas: 1
|
||||
ports:
|
||||
- containerPort: 80
|
||||
args:
|
||||
- name: "--model-id"
|
||||
value: $(EMBEDDING_MODEL_ID)
|
||||
- name: "--auto-truncate"
|
||||
volumeMounts:
|
||||
- mountPath: /data
|
||||
name: model-volume
|
||||
- mountPath: /dev/shm
|
||||
name: shm
|
||||
volumes:
|
||||
- hostPath:
|
||||
path: /mnt/models
|
||||
type: Directory
|
||||
name: model-volume
|
||||
- emptyDir:
|
||||
medium: Memory
|
||||
sizeLimit: 1Gi
|
||||
name: shm
|
||||
|
||||
- name: reranking-dependency-deploy
|
||||
spec:
|
||||
image_name: opea/tei-gaudi
|
||||
image_tag: latest
|
||||
replicas: 1
|
||||
resources:
|
||||
limits:
|
||||
habana.ai/gaudi: 1
|
||||
args:
|
||||
- name: "--model-id"
|
||||
- value: $(RERANK_MODEL_ID)
|
||||
- name: "--auto-truncate"
|
||||
env:
|
||||
- name: OMPI_MCA_btl_vader_single_copy_mechanism
|
||||
value: none
|
||||
- name: PT_HPU_ENABLE_LAZY_COLLECTIVES
|
||||
value: "true"
|
||||
- name: runtime
|
||||
value: habana
|
||||
- name: HABANA_VISIBLE_DEVICES
|
||||
value: all
|
||||
- name: HF_TOKEN
|
||||
value: ${HF_TOKEN}
|
||||
- name: MAX_WARMUP_SEQUENCE_LENGTH
|
||||
value: "512"
|
||||
volumeMounts:
|
||||
- mountPath: /data
|
||||
name: model-volume
|
||||
- mountPath: /dev/shm
|
||||
name: shm
|
||||
volumes:
|
||||
- hostPath:
|
||||
path: /mnt/models
|
||||
type: Directory
|
||||
name: model-volume
|
||||
- emptyDir:
|
||||
medium: Memory
|
||||
sizeLimit: 1Gi
|
||||
name: shm
|
||||
|
||||
- name: llm-dependency-deploy
|
||||
spec:
|
||||
image_name: ghcr.io/huggingface/tgi-gaudi
|
||||
image_tag: 2.0.4
|
||||
replicas: 7
|
||||
ports:
|
||||
- containerPort: 80
|
||||
resources:
|
||||
limits:
|
||||
habana.ai/gaudi: 1
|
||||
args:
|
||||
- name: "--model-id"
|
||||
value: $(LLM_MODEL_ID)
|
||||
- name: "--max-input-length"
|
||||
value: "2048"
|
||||
- name: "--max-total-tokens"
|
||||
value: "4096"
|
||||
env:
|
||||
- name: OMPI_MCA_btl_vader_single_copy_mechanism
|
||||
value: none
|
||||
- name: PT_HPU_ENABLE_LAZY_COLLECTIVES
|
||||
value: "true"
|
||||
- name: runtime
|
||||
value: habana
|
||||
- name: HABANA_VISIBLE_DEVICES
|
||||
value: all
|
||||
- name: HF_TOKEN
|
||||
value: ${HF_TOKEN}
|
||||
volumeMounts:
|
||||
- mountPath: /data
|
||||
name: model-volume
|
||||
- mountPath: /dev/shm
|
||||
name: shm
|
||||
volumes:
|
||||
- hostPath:
|
||||
path: /mnt/models
|
||||
type: Directory
|
||||
name: model-volume
|
||||
- emptyDir:
|
||||
medium: Memory
|
||||
sizeLimit: 1Gi
|
||||
name: shm
|
||||
|
||||
services:
|
||||
- name: chatqna-backend-server-svc
|
||||
spec:
|
||||
ports:
|
||||
- name: service
|
||||
nodePort: 30888
|
||||
port: 8888
|
||||
targetPort: 8888
|
||||
selector:
|
||||
app: chatqna-backend-server-deploy
|
||||
type: NodePort
|
||||
|
||||
- name: dataprep-svc
|
||||
spec:
|
||||
ports:
|
||||
- name: port1
|
||||
port: 6007
|
||||
targetPort: 6007
|
||||
selector:
|
||||
app: dataprep-deploy
|
||||
type: ClusterIP
|
||||
|
||||
- name: embedding-dependency-svc
|
||||
spec:
|
||||
ports:
|
||||
- name: service
|
||||
port: 6006
|
||||
targetPort: 80
|
||||
selector:
|
||||
app: embedding-dependency-deploy
|
||||
type: ClusterIP
|
||||
|
||||
- name: llm-dependency-svc
|
||||
spec:
|
||||
ports:
|
||||
- name: service
|
||||
port: 9009
|
||||
targetPort: 80
|
||||
selector:
|
||||
app: llm-dependency-deploy
|
||||
type: ClusterIP
|
||||
|
||||
- name: reranking-dependency-svc
|
||||
spec:
|
||||
ports:
|
||||
- name: service
|
||||
port: 8808
|
||||
targetPort: 80
|
||||
selector:
|
||||
app: reranking-dependency-deploy
|
||||
type: ClusterIP
|
||||
|
||||
- name: retriever-svc
|
||||
spec:
|
||||
ports:
|
||||
- name: service
|
||||
port: 7000
|
||||
targetPort: 7000
|
||||
selector:
|
||||
app: retriever-deploy
|
||||
type: ClusterIP
|
||||
|
||||
- name: vector-db
|
||||
spec:
|
||||
ports:
|
||||
- name: vector-db-service
|
||||
port: 6379
|
||||
targetPort: 6379
|
||||
- name: vector-db-insight
|
||||
port: 8001
|
||||
targetPort: 8001
|
||||
selector:
|
||||
app: vector-db
|
||||
type: ClusterIP
|
||||
@@ -8,18 +8,18 @@ metadata:
|
||||
namespace: default
|
||||
data:
|
||||
EMBEDDING_MODEL_ID: {{ .Values.config.EMBEDDING_MODEL_ID }}
|
||||
EMBEDDING_SERVER_HOST_IP: {{ .Values.config.EMBEDDING_SERVER_HOST_IP }}
|
||||
HUGGINGFACEHUB_API_TOKEN: {{ .Values.config.HUGGINGFACEHUB_API_TOKEN }}
|
||||
INDEX_NAME: {{ .Values.config.INDEX_NAME }}
|
||||
EMBEDDING_SERVER_HOST_IP: embedding-dependency-svc
|
||||
HUGGINGFACEHUB_API_TOKEN: {{ .Values.HUGGINGFACEHUB_API_TOKEN }}
|
||||
INDEX_NAME: rag-redis
|
||||
LLM_MODEL_ID: {{ .Values.config.LLM_MODEL_ID }}
|
||||
LLM_SERVER_HOST_IP: {{ .Values.config.LLM_SERVER_HOST_IP }}
|
||||
NODE_SELECTOR: {{ .Values.config.NODE_SELECTOR }}
|
||||
REDIS_URL: {{ .Values.config.REDIS_URL }}
|
||||
LLM_SERVER_HOST_IP: llm-dependency-svc
|
||||
NODE_SELECTOR: chatqna-opea
|
||||
REDIS_URL: redis://vector-db.default.svc.cluster.local:6379
|
||||
RERANK_MODEL_ID: {{ .Values.config.RERANK_MODEL_ID }}
|
||||
RERANK_SERVER_HOST_IP: {{ .Values.config.RERANK_SERVER_HOST_IP }}
|
||||
RETRIEVER_SERVICE_HOST_IP: {{ .Values.config.RETRIEVER_SERVICE_HOST_IP }}
|
||||
TEI_EMBEDDING_ENDPOINT: {{ .Values.config.TEI_EMBEDDING_ENDPOINT }}
|
||||
TEI_ENDPOINT: {{ .Values.config.TEI_ENDPOINT }}
|
||||
TEI_RERANKING_ENDPOINT: {{ .Values.config.TEI_RERANKING_ENDPOINT }}
|
||||
TGI_LLM_ENDPOINT: {{ .Values.config.TGI_LLM_ENDPOINT }}
|
||||
RERANK_SERVER_HOST_IP: reranking-dependency-svc
|
||||
RETRIEVER_SERVICE_HOST_IP: retriever-svc
|
||||
TEI_EMBEDDING_ENDPOINT: http://embedding-dependency-svc.default.svc.cluster.local:6006
|
||||
TEI_ENDPOINT: http://embedding-dependency-svc.default.svc.cluster.local:6006
|
||||
TEI_RERANKING_ENDPOINT: http://reranking-dependency-svc.default.svc.cluster.local:8808
|
||||
TGI_LLM_ENDPOINT: http://llm-dependency-svc.default.svc.cluster.local:9009
|
||||
---
|
||||
|
||||
@@ -1,14 +1,17 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
{{- $global := .Values }}
|
||||
{{- range $deployment := .Values.deployments }}
|
||||
{{- range $podSpec := $global.podSpecs }}
|
||||
{{- if eq $podSpec.name $deployment.name }}
|
||||
apiVersion: apps/v1
|
||||
kind: Deployment
|
||||
metadata:
|
||||
name: {{ $deployment.name }}
|
||||
namespace: default
|
||||
spec:
|
||||
replicas: {{ $deployment.spec.replicas }}
|
||||
replicas: {{ $podSpec.spec.replicas }}
|
||||
selector:
|
||||
matchLabels:
|
||||
app: {{ $deployment.name }}
|
||||
@@ -43,9 +46,9 @@ spec:
|
||||
{{- end }}
|
||||
{{- end }}
|
||||
|
||||
image: {{ $deployment.spec.image_name }}:{{ $deployment.spec.image_tag }}
|
||||
image: {{ $podSpec.spec.image_name }}:{{ $podSpec.spec.image_tag }}
|
||||
imagePullPolicy: IfNotPresent
|
||||
name: {{ $deployment.name }}
|
||||
name: {{ $podSpec.name }}
|
||||
|
||||
{{- if $deployment.spec.ports }}
|
||||
ports:
|
||||
@@ -56,9 +59,10 @@ spec:
|
||||
{{- end }}
|
||||
{{- end }}
|
||||
|
||||
{{- if $deployment.spec.resources }}
|
||||
|
||||
{{- if $podSpec.spec.resources }}
|
||||
resources:
|
||||
{{- range $resourceType, $resource := $deployment.spec.resources }}
|
||||
{{- range $resourceType, $resource := $podSpec.spec.resources }}
|
||||
{{ $resourceType }}:
|
||||
{{- range $limitType, $limit := $resource }}
|
||||
{{ $limitType }}: {{ $limit }}
|
||||
@@ -103,6 +107,7 @@ spec:
|
||||
{{- end }}
|
||||
{{- end }}
|
||||
|
||||
|
||||
---
|
||||
{{- end }}
|
||||
{{- end }}
|
||||
{{- end }}
|
||||
|
||||
@@ -1,259 +0,0 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
config:
|
||||
EMBEDDING_MODEL_ID: BAAI/bge-base-en-v1.5
|
||||
EMBEDDING_SERVER_HOST_IP: embedding-dependency-svc
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HF_TOKEN}
|
||||
INDEX_NAME: rag-redis
|
||||
LLM_MODEL_ID: Intel/neural-chat-7b-v3-3
|
||||
LLM_SERVER_HOST_IP: llm-dependency-svc
|
||||
NODE_SELECTOR: chatqna-opea
|
||||
REDIS_URL: redis://vector-db.default.svc.cluster.local:6379
|
||||
RERANK_MODEL_ID: BAAI/bge-reranker-base
|
||||
RERANK_SERVER_HOST_IP: reranking-dependency-svc
|
||||
RETRIEVER_SERVICE_HOST_IP: retriever-svc
|
||||
TEI_EMBEDDING_ENDPOINT: http://embedding-dependency-svc.default.svc.cluster.local:6006
|
||||
TEI_ENDPOINT: http://embedding-dependency-svc.default.svc.cluster.local:6006
|
||||
TEI_RERANKING_ENDPOINT: http://reranking-dependency-svc.default.svc.cluster.local:8808
|
||||
TGI_LLM_ENDPOINT: http://llm-dependency-svc.default.svc.cluster.local:9009
|
||||
|
||||
deployments:
|
||||
- name: chatqna-backend-server-deploy
|
||||
spec:
|
||||
image_name: opea/chatqna-no-wrapper
|
||||
image_tag: latest
|
||||
replicas: 2
|
||||
ports:
|
||||
- containerPort: 8888
|
||||
resources:
|
||||
limits:
|
||||
cpu: "8"
|
||||
memory: "8000Mi"
|
||||
requests:
|
||||
cpu: "8"
|
||||
memory: "8000Mi"
|
||||
|
||||
- name: dataprep-deploy
|
||||
spec:
|
||||
image_name: opea/dataprep-redis
|
||||
image_tag: latest
|
||||
replicas: 1
|
||||
ports:
|
||||
- containerPort: 6007
|
||||
|
||||
- name: vector-db
|
||||
spec:
|
||||
image_name: redis/redis-stack
|
||||
image_tag: 7.2.0-v9
|
||||
replicas: 1
|
||||
ports:
|
||||
- containerPort: 6379
|
||||
- containerPort: 8001
|
||||
|
||||
- name: retriever-deploy
|
||||
spec:
|
||||
image_name: opea/retriever-redis
|
||||
image_tag: latest
|
||||
replicas: 2
|
||||
ports:
|
||||
- containerPort: 7000
|
||||
resources:
|
||||
requests:
|
||||
cpu: "4"
|
||||
memory: "4000Mi"
|
||||
|
||||
- name: embedding-dependency-deploy
|
||||
spec:
|
||||
image_name: ghcr.io/huggingface/text-embeddings-inference
|
||||
image_tag: cpu-1.5
|
||||
replicas: 1
|
||||
ports:
|
||||
- containerPort: 80
|
||||
args:
|
||||
- name: "--model-id"
|
||||
value: $(EMBEDDING_MODEL_ID)
|
||||
- name: "--auto-truncate"
|
||||
resources:
|
||||
limits:
|
||||
cpu: "80"
|
||||
memory: "20000Mi"
|
||||
requests:
|
||||
cpu: "80"
|
||||
memory: "20000Mi"
|
||||
volumeMounts:
|
||||
- mountPath: /data
|
||||
name: model-volume
|
||||
- mountPath: /dev/shm
|
||||
name: shm
|
||||
volumes:
|
||||
- hostPath:
|
||||
path: /mnt/models
|
||||
type: Directory
|
||||
name: model-volume
|
||||
- emptyDir:
|
||||
medium: Memory
|
||||
sizeLimit: 1Gi
|
||||
name: shm
|
||||
|
||||
- name: reranking-dependency-deploy
|
||||
spec:
|
||||
image_name: opea/tei-gaudi
|
||||
image_tag: latest
|
||||
replicas: 1
|
||||
resources:
|
||||
limits:
|
||||
habana.ai/gaudi: 1
|
||||
args:
|
||||
- name: "--model-id"
|
||||
- value: $(RERANK_MODEL_ID)
|
||||
- name: "--auto-truncate"
|
||||
env:
|
||||
- name: OMPI_MCA_btl_vader_single_copy_mechanism
|
||||
value: none
|
||||
- name: PT_HPU_ENABLE_LAZY_COLLECTIVES
|
||||
value: "true"
|
||||
- name: runtime
|
||||
value: habana
|
||||
- name: HABANA_VISIBLE_DEVICES
|
||||
value: all
|
||||
- name: HF_TOKEN
|
||||
value: ${HF_TOKEN}
|
||||
- name: MAX_WARMUP_SEQUENCE_LENGTH
|
||||
value: "512"
|
||||
volumeMounts:
|
||||
- mountPath: /data
|
||||
name: model-volume
|
||||
- mountPath: /dev/shm
|
||||
name: shm
|
||||
volumes:
|
||||
- hostPath:
|
||||
path: /mnt/models
|
||||
type: Directory
|
||||
name: model-volume
|
||||
- emptyDir:
|
||||
medium: Memory
|
||||
sizeLimit: 1Gi
|
||||
name: shm
|
||||
|
||||
- name: llm-dependency-deploy
|
||||
spec:
|
||||
image_name: ghcr.io/huggingface/tgi-gaudi
|
||||
image_tag: 2.0.4
|
||||
replicas: 7
|
||||
ports:
|
||||
- containerPort: 80
|
||||
resources:
|
||||
limits:
|
||||
habana.ai/gaudi: 1
|
||||
args:
|
||||
- name: "--model-id"
|
||||
value: $(LLM_MODEL_ID)
|
||||
- name: "--max-input-length"
|
||||
value: "1280"
|
||||
- name: "--max-total-tokens"
|
||||
value: "2048"
|
||||
- name: "--max-batch-total-tokens"
|
||||
value: "65536"
|
||||
- name: "--max-batch-prefill-tokens"
|
||||
value: "4096"
|
||||
env:
|
||||
- name: OMPI_MCA_btl_vader_single_copy_mechanism
|
||||
value: none
|
||||
- name: PT_HPU_ENABLE_LAZY_COLLECTIVES
|
||||
value: "true"
|
||||
- name: runtime
|
||||
value: habana
|
||||
- name: HABANA_VISIBLE_DEVICES
|
||||
value: all
|
||||
- name: HF_TOKEN
|
||||
value: ${HF_TOKEN}
|
||||
volumeMounts:
|
||||
- mountPath: /data
|
||||
name: model-volume
|
||||
- mountPath: /dev/shm
|
||||
name: shm
|
||||
volumes:
|
||||
- hostPath:
|
||||
path: /mnt/models
|
||||
type: Directory
|
||||
name: model-volume
|
||||
- emptyDir:
|
||||
medium: Memory
|
||||
sizeLimit: 1Gi
|
||||
name: shm
|
||||
|
||||
services:
|
||||
- name: chatqna-backend-server-svc
|
||||
spec:
|
||||
ports:
|
||||
- name: service
|
||||
nodePort: 30888
|
||||
port: 8888
|
||||
targetPort: 8888
|
||||
selector:
|
||||
app: chatqna-backend-server-deploy
|
||||
type: NodePort
|
||||
|
||||
- name: dataprep-svc
|
||||
spec:
|
||||
ports:
|
||||
- name: port1
|
||||
port: 6007
|
||||
targetPort: 6007
|
||||
selector:
|
||||
app: dataprep-deploy
|
||||
type: ClusterIP
|
||||
|
||||
- name: embedding-dependency-svc
|
||||
spec:
|
||||
ports:
|
||||
- name: service
|
||||
port: 6006
|
||||
targetPort: 80
|
||||
selector:
|
||||
app: embedding-dependency-deploy
|
||||
type: ClusterIP
|
||||
|
||||
- name: llm-dependency-svc
|
||||
spec:
|
||||
ports:
|
||||
- name: service
|
||||
port: 9009
|
||||
targetPort: 80
|
||||
selector:
|
||||
app: llm-dependency-deploy
|
||||
type: ClusterIP
|
||||
|
||||
- name: reranking-dependency-svc
|
||||
spec:
|
||||
ports:
|
||||
- name: service
|
||||
port: 8808
|
||||
targetPort: 80
|
||||
selector:
|
||||
app: reranking-dependency-deploy
|
||||
type: ClusterIP
|
||||
|
||||
- name: retriever-svc
|
||||
spec:
|
||||
ports:
|
||||
- name: service
|
||||
port: 7000
|
||||
targetPort: 7000
|
||||
selector:
|
||||
app: retriever-deploy
|
||||
type: ClusterIP
|
||||
|
||||
- name: vector-db
|
||||
spec:
|
||||
ports:
|
||||
- name: vector-db-service
|
||||
port: 6379
|
||||
targetPort: 6379
|
||||
- name: vector-db-insight
|
||||
port: 8001
|
||||
targetPort: 8001
|
||||
selector:
|
||||
app: vector-db
|
||||
type: ClusterIP
|
||||
@@ -1,62 +1,37 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
namespace: default
|
||||
|
||||
config:
|
||||
EMBEDDING_MODEL_ID: BAAI/bge-base-en-v1.5
|
||||
EMBEDDING_SERVER_HOST_IP: embedding-dependency-svc
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HF_TOKEN}
|
||||
INDEX_NAME: rag-redis
|
||||
LLM_MODEL_ID: Intel/neural-chat-7b-v3-3
|
||||
LLM_SERVER_HOST_IP: llm-dependency-svc
|
||||
NODE_SELECTOR: chatqna-opea
|
||||
REDIS_URL: redis://vector-db.default.svc.cluster.local:6379
|
||||
RERANK_MODEL_ID: BAAI/bge-reranker-base
|
||||
RERANK_SERVER_HOST_IP: reranking-dependency-svc
|
||||
RETRIEVER_SERVICE_HOST_IP: retriever-svc
|
||||
TEI_EMBEDDING_ENDPOINT: http://embedding-dependency-svc.default.svc.cluster.local:6006
|
||||
TEI_ENDPOINT: http://embedding-dependency-svc.default.svc.cluster.local:6006
|
||||
TEI_RERANKING_ENDPOINT: http://reranking-dependency-svc.default.svc.cluster.local:8808
|
||||
TGI_LLM_ENDPOINT: http://llm-dependency-svc.default.svc.cluster.local:9009
|
||||
|
||||
deployments:
|
||||
- name: chatqna-backend-server-deploy
|
||||
spec:
|
||||
image_name: opea/chatqna-no-wrapper
|
||||
image_tag: latest
|
||||
replicas: 1
|
||||
ports:
|
||||
- containerPort: 8888
|
||||
|
||||
- name: dataprep-deploy
|
||||
spec:
|
||||
image_name: opea/dataprep-redis
|
||||
image_tag: latest
|
||||
replicas: 1
|
||||
ports:
|
||||
- containerPort: 6007
|
||||
|
||||
- name: vector-db
|
||||
spec:
|
||||
image_name: redis/redis-stack
|
||||
image_tag: 7.2.0-v9
|
||||
replicas: 1
|
||||
ports:
|
||||
- containerPort: 6379
|
||||
- containerPort: 8001
|
||||
|
||||
- name: retriever-deploy
|
||||
spec:
|
||||
image_name: opea/retriever-redis
|
||||
image_tag: latest
|
||||
replicas: 1
|
||||
ports:
|
||||
- containerPort: 7000
|
||||
|
||||
- name: embedding-dependency-deploy
|
||||
spec:
|
||||
image_name: ghcr.io/huggingface/text-embeddings-inference
|
||||
image_tag: cpu-1.5
|
||||
replicas: 1
|
||||
ports:
|
||||
- containerPort: 80
|
||||
args:
|
||||
@@ -80,12 +55,6 @@ deployments:
|
||||
|
||||
- name: reranking-dependency-deploy
|
||||
spec:
|
||||
image_name: opea/tei-gaudi
|
||||
image_tag: latest
|
||||
replicas: 1
|
||||
resources:
|
||||
limits:
|
||||
habana.ai/gaudi: 1
|
||||
args:
|
||||
- name: "--model-id"
|
||||
- value: $(RERANK_MODEL_ID)
|
||||
@@ -120,9 +89,6 @@ deployments:
|
||||
|
||||
- name: llm-dependency-deploy
|
||||
spec:
|
||||
image_name: ghcr.io/huggingface/tgi-gaudi
|
||||
image_tag: 2.0.4
|
||||
replicas: 7
|
||||
ports:
|
||||
- containerPort: 80
|
||||
resources:
|
||||
|
||||
@@ -44,7 +44,7 @@ spec:
|
||||
- envFrom:
|
||||
- configMapRef:
|
||||
name: qna-config
|
||||
image: opea/chatqna-no-wrapper:latest
|
||||
image: opea/chatqna:latest
|
||||
imagePullPolicy: IfNotPresent
|
||||
name: chatqna-backend-server-deploy
|
||||
ports:
|
||||
@@ -327,7 +327,7 @@ spec:
|
||||
envFrom:
|
||||
- configMapRef:
|
||||
name: qna-config
|
||||
image: opea/tei-gaudi:latest
|
||||
image: ghcr.io/huggingface/tei-gaudi:latest
|
||||
imagePullPolicy: IfNotPresent
|
||||
name: reranking-dependency-deploy
|
||||
ports:
|
||||
@@ -44,7 +44,7 @@ spec:
|
||||
- envFrom:
|
||||
- configMapRef:
|
||||
name: qna-config
|
||||
image: opea/chatqna-no-wrapper:latest
|
||||
image: opea/chatqna:latest
|
||||
imagePullPolicy: IfNotPresent
|
||||
name: chatqna-backend-server-deploy
|
||||
ports:
|
||||
@@ -327,7 +327,7 @@ spec:
|
||||
envFrom:
|
||||
- configMapRef:
|
||||
name: qna-config
|
||||
image: opea/tei-gaudi:latest
|
||||
image: ghcr.io/huggingface/tei-gaudi:latest
|
||||
imagePullPolicy: IfNotPresent
|
||||
name: reranking-dependency-deploy
|
||||
ports:
|
||||
@@ -44,7 +44,7 @@ spec:
|
||||
- envFrom:
|
||||
- configMapRef:
|
||||
name: qna-config
|
||||
image: opea/chatqna-no-wrapper:latest
|
||||
image: opea/chatqna:latest
|
||||
imagePullPolicy: IfNotPresent
|
||||
name: chatqna-backend-server-deploy
|
||||
ports:
|
||||
@@ -327,7 +327,7 @@ spec:
|
||||
envFrom:
|
||||
- configMapRef:
|
||||
name: qna-config
|
||||
image: opea/tei-gaudi:latest
|
||||
image: ghcr.io/huggingface/tei-gaudi:latest
|
||||
imagePullPolicy: IfNotPresent
|
||||
name: reranking-dependency-deploy
|
||||
ports:
|
||||
@@ -44,7 +44,7 @@ spec:
|
||||
- envFrom:
|
||||
- configMapRef:
|
||||
name: qna-config
|
||||
image: opea/chatqna-no-wrapper:latest
|
||||
image: opea/chatqna
|
||||
imagePullPolicy: IfNotPresent
|
||||
name: chatqna-backend-server-deploy
|
||||
ports:
|
||||
@@ -327,7 +327,7 @@ spec:
|
||||
envFrom:
|
||||
- configMapRef:
|
||||
name: qna-config
|
||||
image: opea/tei-gaudi:latest
|
||||
image: ghcr.io/huggingface/tei-gaudi:latest
|
||||
imagePullPolicy: IfNotPresent
|
||||
name: reranking-dependency-deploy
|
||||
ports:
|
||||
@@ -44,7 +44,7 @@ spec:
|
||||
- envFrom:
|
||||
- configMapRef:
|
||||
name: qna-config
|
||||
image: opea/chatqna-no-wrapper-without-rerank:latest
|
||||
image: opea/chatqna-without-rerank:latest
|
||||
imagePullPolicy: IfNotPresent
|
||||
name: chatqna-backend-server-deploy
|
||||
ports:
|
||||