Exclude dockerfile under tests and exclude check Dockerfile under tests. (#1354)

Signed-off-by: ZePan110 <ze.pan@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
ZePan110
2025-01-07 09:05:01 +08:00
committed by GitHub
parent a6e702e4d5
commit ed2b8ed983
35 changed files with 106 additions and 107 deletions

View File

@@ -60,7 +60,7 @@ jobs:
shopt -s globstar
no_add="FALSE"
cd ${{github.workspace}}
Dockerfiles=$(realpath $(find ./ -name '*Dockerfile*'))
Dockerfiles=$(realpath $(find ./ -name '*Dockerfile*' ! -path './tests/*'))
if [ -n "$Dockerfiles" ]; then
for dockerfile in $Dockerfiles; do
service=$(echo "$dockerfile" | awk -F '/GenAIExamples/' '{print $2}' | awk -F '/' '{print $2}')

View File

@@ -21,7 +21,7 @@ function build_docker_images_for_retrieval_tool(){
# git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
get_genai_comps
echo "Build all the images with --no-cache..."
service_list="doc-index-retriever dataprep-redis embedding-tei retriever-redis reranking-tei"
service_list="doc-index-retriever dataprep-redis embedding retriever-redis reranking-tei"
docker compose -f build.yaml build ${service_list} --no-cache
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.5

View File

@@ -43,7 +43,7 @@ Here is the output:
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
28d9a5570246 opea/chatqna-ui:latest "docker-entrypoint.s…" 2 minutes ago Up 2 minutes 0.0.0.0:5173->5173/tcp, :::5173->5173/tcp chatqna-gaudi-ui-server
bee1132464cd opea/chatqna:latest "python chatqna.py" 2 minutes ago Up 2 minutes 0.0.0.0:8888->8888/tcp, :::8888->8888/tcp chatqna-gaudi-backend-server
f810f3b4d329 opea/embedding-tei:latest "python embedding_te…" 2 minutes ago Up 2 minutes 0.0.0.0:6000->6000/tcp, :::6000->6000/tcp embedding-tei-server
f810f3b4d329 opea/embedding:latest "python embedding_te…" 2 minutes ago Up 2 minutes 0.0.0.0:6000->6000/tcp, :::6000->6000/tcp embedding-server
325236a01f9b opea/llm-textgen:latest "python llm.py" 2 minutes ago Up 2 minutes 0.0.0.0:9000->9000/tcp, :::9000->9000/tcp llm-textgen-gaudi-server
2fa17d84605f opea/dataprep-redis:latest "python prepare_doc_…" 2 minutes ago Up 2 minutes 0.0.0.0:6007->6007/tcp, :::6007->6007/tcp dataprep-redis-server
69e1fb59e92c opea/retriever-redis:latest "/home/user/comps/re…" 2 minutes ago Up 2 minutes 0.0.0.0:7000->7000/tcp, :::7000->7000/tcp retriever-redis-server

View File

@@ -41,12 +41,12 @@ services:
dockerfile: ./docker/Dockerfile.react
extends: chatqna
image: ${REGISTRY:-opea}/chatqna-conversation-ui:${TAG:-latest}
embedding-tei:
embedding:
build:
context: GenAIComps
dockerfile: comps/embeddings/src/Dockerfile
extends: chatqna
image: ${REGISTRY:-opea}/embedding-tei:${TAG:-latest}
image: ${REGISTRY:-opea}/embedding:${TAG:-latest}
retriever-redis:
build:
context: GenAIComps

View File

@@ -9,7 +9,7 @@ DocRetriever are the most widely adopted use case for leveraging the different m
```bash
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
docker build -t opea/embedding-tei:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/src/Dockerfile .
docker build -t opea/embedding:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/src/Dockerfile .
```
- Retriever Vector store Image
@@ -125,7 +125,7 @@ curl http://${host_ip}:8889/v1/retrievaltool -X POST -H "Content-Type: applicati
-X POST \
-d '{"text":"Explain the OPEA project"}' \
-H 'Content-Type: application/json' > query
docker container logs embedding-tei-server
docker container logs embedding-server
# if you used tei-gaudi
docker container logs tei-embedding-gaudi-server

View File

@@ -50,8 +50,8 @@ services:
timeout: 10s
retries: 60
embedding:
image: ${REGISTRY:-opea}/embedding-tei:${TAG:-latest}
container_name: embedding-tei-server
image: ${REGISTRY:-opea}/embedding:${TAG:-latest}
container_name: embedding-server
ports:
- "6000:6000"
ipc: host

View File

@@ -50,8 +50,8 @@ services:
timeout: 10s
retries: 60
embedding:
image: ${REGISTRY:-opea}/embedding-tei:${TAG:-latest}
container_name: embedding-tei-server
image: ${REGISTRY:-opea}/embedding:${TAG:-latest}
container_name: embedding-server
ports:
- "6000:6000"
ipc: host

View File

@@ -9,7 +9,7 @@ DocRetriever are the most widely adopted use case for leveraging the different m
```bash
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
docker build -t opea/embedding-tei:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/src/Dockerfile .
docker build -t opea/embedding:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/src/Dockerfile .
```
- Retriever Vector store Image
@@ -115,7 +115,7 @@ curl http://${host_ip}:8889/v1/retrievaltool -X POST -H "Content-Type: applicati
-X POST \
-d '{"text":"Explain the OPEA project"}' \
-H 'Content-Type: application/json' > query
docker container logs embedding-tei-server
docker container logs embedding-server
# if you used tei-gaudi
docker container logs tei-embedding-gaudi-server

View File

@@ -55,8 +55,8 @@ services:
timeout: 10s
retries: 60
embedding:
image: ${REGISTRY:-opea}/embedding-tei:${TAG:-latest}
container_name: embedding-tei-server
image: ${REGISTRY:-opea}/embedding:${TAG:-latest}
container_name: embedding-server
ports:
- "6000:6000"
ipc: host

View File

@@ -11,12 +11,12 @@ services:
context: ../
dockerfile: ./Dockerfile
image: ${REGISTRY:-opea}/doc-index-retriever:${TAG:-latest}
embedding-tei:
embedding:
build:
context: GenAIComps
dockerfile: comps/embeddings/src/Dockerfile
extends: doc-index-retriever
image: ${REGISTRY:-opea}/embedding-tei:${TAG:-latest}
image: ${REGISTRY:-opea}/embedding:${TAG:-latest}
retriever-redis:
build:
context: GenAIComps

View File

@@ -21,7 +21,7 @@ function build_docker_images() {
echo "Cloning GenAIComps repository"
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
fi
service_list="dataprep-redis embedding-tei retriever-redis reranking-tei doc-index-retriever"
service_list="dataprep-redis embedding retriever-redis reranking-tei doc-index-retriever"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
@@ -98,7 +98,7 @@ function validate_megaservice() {
echo "return value is $EXIT_CODE"
if [ "$EXIT_CODE" == "1" ]; then
echo "=============Embedding container log=================="
docker logs embedding-tei-server | tee -a ${LOG_PATH}/doc-index-retriever-service-xeon.log
docker logs embedding-server | tee -a ${LOG_PATH}/doc-index-retriever-service-xeon.log
echo "=============Retriever container log=================="
docker logs retriever-redis-server | tee -a ${LOG_PATH}/doc-index-retriever-service-xeon.log
echo "=============TEI Reranking log=================="

View File

@@ -21,7 +21,7 @@ function build_docker_images() {
echo "Cloning GenAIComps repository"
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
fi
service_list="dataprep-redis embedding-tei retriever-redis doc-index-retriever"
service_list="dataprep-redis embedding retriever-redis doc-index-retriever"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
@@ -92,7 +92,7 @@ function validate_megaservice() {
echo "return value is $EXIT_CODE"
if [ "$EXIT_CODE" == "1" ]; then
echo "=============Embedding container log=================="
docker logs embedding-tei-server | tee -a ${LOG_PATH}/doc-index-retriever-service-xeon.log
docker logs embedding-server | tee -a ${LOG_PATH}/doc-index-retriever-service-xeon.log
echo "=============Retriever container log=================="
docker logs retriever-redis-server | tee -a ${LOG_PATH}/doc-index-retriever-service-xeon.log
echo "=============Doc-index-retriever container log=================="

View File

@@ -100,12 +100,12 @@ In the below, we provide a table that describes for each microservice component
By default, the embedding and LVM models are set to a default value as listed below:
| Service | HW | Model |
| ------------- | ----- | ----------------------------------------- |
| embedding-tei | Xeon | BridgeTower/bridgetower-large-itm-mlm-itc |
| LVM | Xeon | llava-hf/llava-1.5-7b-hf |
| embedding-tei | Gaudi | BridgeTower/bridgetower-large-itm-mlm-itc |
| LVM | Gaudi | llava-hf/llava-v1.6-vicuna-13b-hf |
| Service | HW | Model |
| --------- | ----- | ----------------------------------------- |
| embedding | Xeon | BridgeTower/bridgetower-large-itm-mlm-itc |
| LVM | Xeon | llava-hf/llava-1.5-7b-hf |
| embedding | Gaudi | BridgeTower/bridgetower-large-itm-mlm-itc |
| LVM | Gaudi | llava-hf/llava-v1.6-vicuna-13b-hf |
You can choose other LVM models, such as `llava-hf/llava-1.5-7b-hf ` and `llava-hf/llava-1.5-13b-hf`, as needed.

View File

@@ -28,10 +28,10 @@ cd GenAIComps
docker build --no-cache -t opea/embedding-multimodal-bridgetower:latest --build-arg EMBEDDER_PORT=$EMBEDDER_PORT --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/src/integrations/dependency/bridgetower/Dockerfile .
```
Build embedding-tei microservice image
Build embedding microservice image
```bash
docker build --no-cache -t opea/embedding-tei:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/src/Dockerfile .
docker build --no-cache -t opea/embedding:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/src/Dockerfile .
```
### 2. Build LVM Images
@@ -87,7 +87,7 @@ Then run the command `docker images`, you will have the following 8 Docker Image
2. `ghcr.io/huggingface/text-generation-inference:2.4.1-rocm`
3. `opea/lvm-tgi:latest`
4. `opea/retriever-multimodal-redis:latest`
5. `opea/embedding-tei:latest`
5. `opea/embedding:latest`
6. `opea/embedding-multimodal-bridgetower:latest`
7. `opea/multimodalqna:latest`
8. `opea/multimodalqna-ui:latest`
@@ -98,11 +98,11 @@ Then run the command `docker images`, you will have the following 8 Docker Image
By default, the multimodal-embedding and LVM models are set to a default value as listed below:
| Service | Model |
| ------------- | ------------------------------------------- |
| embedding-tei | BridgeTower/bridgetower-large-itm-mlm-gaudi |
| LVM | llava-hf/llava-1.5-7b-hf |
| LVM | Xkev/Llama-3.2V-11B-cot |
| Service | Model |
| --------- | ------------------------------------------- |
| embedding | BridgeTower/bridgetower-large-itm-mlm-gaudi |
| LVM | llava-hf/llava-1.5-7b-hf |
| LVM | Xkev/Llama-3.2V-11B-cot |
Note:
@@ -158,7 +158,7 @@ curl http://${host_ip}:${EMBEDDER_PORT}/v1/encode \
-d '{"text":"This is example", "img_b64_str": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC"}'
```
2. embedding-tei
2. embedding
```bash
curl http://${host_ip}:$MM_EMBEDDING_PORT_MICROSERVICE/v1/embeddings \

View File

@@ -55,9 +55,9 @@ services:
start_period: 30s
entrypoint: ["python", "bridgetower_server.py", "--device", "cpu", "--model_name_or_path", $EMBEDDING_MODEL_ID]
restart: unless-stopped
embedding-tei:
image: ${REGISTRY:-opea}/embedding-tei:${TAG:-latest}
container_name: embedding-tei
embedding:
image: ${REGISTRY:-opea}/embedding:${TAG:-latest}
container_name: embedding
depends_on:
embedding-multimodal-bridgetower:
condition: service_healthy
@@ -138,7 +138,7 @@ services:
depends_on:
- redis-vector-db
- dataprep-multimodal-redis
- embedding-tei
- embedding
- retriever-redis
- lvm-tgi
ports:

View File

@@ -24,7 +24,7 @@ embedding-multimodal-bridgetower
=====================
Port 6006 - Open to 0.0.0.0/0
embedding-tei
embedding
=========
Port 6000 - Open to 0.0.0.0/0
@@ -115,10 +115,10 @@ cd GenAIComps
docker build --no-cache -t opea/embedding-multimodal-bridgetower:latest --build-arg EMBEDDER_PORT=$EMBEDDER_PORT --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/src/integrations/dependency/bridgetower/Dockerfile .
```
Build embedding-tei microservice image
Build embedding microservice image
```bash
docker build --no-cache -t opea/embedding-tei:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/src/Dockerfile .
docker build --no-cache -t opea/embedding:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/src/Dockerfile .
```
### 2. Build retriever-multimodal-redis Image
@@ -184,7 +184,7 @@ Then run the command `docker images`, you will have the following 11 Docker Imag
4. `opea/retriever-multimodal-redis:latest`
5. `opea/whisper:latest`
6. `opea/redis-vector-db`
7. `opea/embedding-tei:latest`
7. `opea/embedding:latest`
8. `opea/embedding-multimodal-bridgetower:latest`
9. `opea/multimodalqna:latest`
10. `opea/multimodalqna-ui:latest`
@@ -195,10 +195,10 @@ Then run the command `docker images`, you will have the following 11 Docker Imag
By default, the multimodal-embedding and LVM models are set to a default value as listed below:
| Service | Model |
| ------------- | ------------------------------------------- |
| embedding-tei | BridgeTower/bridgetower-large-itm-mlm-gaudi |
| LVM | llava-hf/llava-1.5-7b-hf |
| Service | Model |
| --------- | ------------------------------------------- |
| embedding | BridgeTower/bridgetower-large-itm-mlm-gaudi |
| LVM | llava-hf/llava-1.5-7b-hf |
### Start all the services Docker Containers
@@ -227,7 +227,7 @@ curl http://${host_ip}:${EMBEDDER_PORT}/v1/encode \
-d '{"text":"This is example", "img_b64_str": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC"}'
```
2. embedding-tei
2. embedding
```bash
curl http://${host_ip}:$MM_EMBEDDING_PORT_MICROSERVICE/v1/embeddings \

View File

@@ -55,9 +55,9 @@ services:
start_period: 30s
entrypoint: ["python", "bridgetower_server.py", "--device", "cpu", "--model_name_or_path", $EMBEDDING_MODEL_ID]
restart: unless-stopped
embedding-tei:
image: ${REGISTRY:-opea}/embedding-tei:${TAG:-latest}
container_name: embedding-tei
embedding:
image: ${REGISTRY:-opea}/embedding:${TAG:-latest}
container_name: embedding
depends_on:
embedding-multimodal-bridgetower:
condition: service_healthy
@@ -120,7 +120,7 @@ services:
depends_on:
- redis-vector-db
- dataprep-multimodal-redis
- embedding-tei
- embedding
- retriever-redis
- lvm-llava-svc
ports:

View File

@@ -66,10 +66,10 @@ cd GenAIComps
docker build --no-cache -t opea/embedding-multimodal-bridgetower:latest --build-arg EMBEDDER_PORT=$EMBEDDER_PORT --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/src/integrations/dependency/bridgetower/Dockerfile .
```
Build embedding-tei microservice image
Build embedding microservice image
```bash
docker build --no-cache -t opea/embedding-tei:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/src/Dockerfile .
docker build --no-cache -t opea/embedding:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/src/Dockerfile .
```
### 2. Build retriever-multimodal-redis Image
@@ -133,7 +133,7 @@ Then run the command `docker images`, you will have the following 11 Docker Imag
4. `opea/retriever-multimodal-redis:latest`
5. `opea/whisper:latest`
6. `opea/redis-vector-db`
7. `opea/embedding-tei:latest`
7. `opea/embedding:latest`
8. `opea/embedding-multimodal-bridgetower:latest`
9. `opea/multimodalqna:latest`
10. `opea/multimodalqna-ui:latest`
@@ -144,10 +144,10 @@ Then run the command `docker images`, you will have the following 11 Docker Imag
By default, the multimodal-embedding and LVM models are set to a default value as listed below:
| Service | Model |
| ------------- | ------------------------------------------- |
| embedding-tei | BridgeTower/bridgetower-large-itm-mlm-gaudi |
| LVM | llava-hf/llava-v1.6-vicuna-13b-hf |
| Service | Model |
| --------- | ------------------------------------------- |
| embedding | BridgeTower/bridgetower-large-itm-mlm-gaudi |
| LVM | llava-hf/llava-v1.6-vicuna-13b-hf |
### Start all the services Docker Containers
@@ -176,7 +176,7 @@ curl http://${host_ip}:${EMBEDDER_PORT}/v1/encode \
-d '{"text":"This is example", "img_b64_str": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC"}'
```
2. embedding-tei
2. embedding
```bash
curl http://${host_ip}:$MM_EMBEDDING_PORT_MICROSERVICE/v1/embeddings \

View File

@@ -55,9 +55,9 @@ services:
start_period: 30s
entrypoint: ["python", "bridgetower_server.py", "--device", "hpu", "--model_name_or_path", $EMBEDDING_MODEL_ID]
restart: unless-stopped
embedding-tei:
image: ${REGISTRY:-opea}/embedding-tei:${TAG:-latest}
container_name: embedding-tei
embedding:
image: ${REGISTRY:-opea}/embedding:${TAG:-latest}
container_name: embedding
depends_on:
embedding-multimodal-bridgetower:
condition: service_healthy
@@ -137,7 +137,7 @@ services:
depends_on:
- redis-vector-db
- dataprep-multimodal-redis
- embedding-tei
- embedding
- retriever-redis
- lvm-tgi
ports:

View File

@@ -23,12 +23,12 @@ services:
dockerfile: comps/embeddings/src/integrations/dependency/bridgetower/Dockerfile
extends: multimodalqna
image: ${REGISTRY:-opea}/embedding-multimodal-bridgetower:${TAG:-latest}
embedding-tei:
embedding:
build:
context: GenAIComps
dockerfile: comps/embeddings/src/Dockerfile
extends: multimodalqna
image: ${REGISTRY:-opea}/embedding-tei:${TAG:-latest}
image: ${REGISTRY:-opea}/embedding:${TAG:-latest}
retriever-redis:
build:
context: GenAIComps

View File

@@ -22,7 +22,7 @@ function build_docker_images() {
cd $WORKPATH/docker_image_build
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
service_list="multimodalqna multimodalqna-ui embedding-multimodal-bridgetower embedding-tei retriever-redis lvm-tgi dataprep-multimodal-redis whisper"
service_list="multimodalqna multimodalqna-ui embedding-multimodal-bridgetower embedding retriever-redis lvm-tgi dataprep-multimodal-redis whisper"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.6
@@ -144,19 +144,19 @@ function validate_microservices() {
'{"text":"This is example", "img_b64_str": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC"}'
# embedding microservice
echo "Validating embedding-tei"
echo "Validating embedding"
validate_service \
"http://${host_ip}:$MM_EMBEDDING_PORT_MICROSERVICE/v1/embeddings" \
'"embedding":[' \
"embedding-tei" \
"embedding-tei" \
"embedding" \
"embedding" \
'{"text" : "This is some sample text."}'
validate_service \
"http://${host_ip}:$MM_EMBEDDING_PORT_MICROSERVICE/v1/embeddings" \
'"embedding":[' \
"embedding-tei" \
"embedding-tei" \
"embedding" \
"embedding" \
'{"text": {"text" : "This is some sample text."}, "image" : {"url": "https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true"}}'
sleep 1m # retrieval can't curl as expected, try to wait for more time

View File

@@ -23,7 +23,7 @@ function build_docker_images() {
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
service_list="multimodalqna multimodalqna-ui embedding-multimodal-bridgetower embedding-tei retriever-redis lvm-tgi lvm-llava-svc dataprep-multimodal-redis whisper"
service_list="multimodalqna multimodalqna-ui embedding-multimodal-bridgetower embedding retriever-redis lvm-tgi lvm-llava-svc dataprep-multimodal-redis whisper"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker images && sleep 1m
@@ -150,19 +150,19 @@ function validate_microservices() {
'{"text":"This is example", "img_b64_str": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC"}'
# embedding microservice
echo "Validating embedding-tei"
echo "Validating embedding"
validate_service \
"http://${host_ip}:$MM_EMBEDDING_PORT_MICROSERVICE/v1/embeddings" \
'"embedding":[' \
"embedding-tei" \
"embedding-tei" \
"embedding" \
"embedding" \
'{"text" : "This is some sample text."}'
validate_service \
"http://${host_ip}:$MM_EMBEDDING_PORT_MICROSERVICE/v1/embeddings" \
'"embedding":[' \
"embedding-tei" \
"embedding-tei" \
"embedding" \
"embedding" \
'{"text": {"text" : "This is some sample text."}, "image" : {"url": "https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true"}}'
sleep 1m # retrieval can't curl as expected, try to wait for more time

View File

@@ -22,7 +22,7 @@ function build_docker_images() {
cd $WORKPATH/docker_image_build
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
service_list="multimodalqna multimodalqna-ui embedding-multimodal-bridgetower embedding-tei retriever-redis lvm-llava lvm-llava-svc dataprep-multimodal-redis whisper"
service_list="multimodalqna multimodalqna-ui embedding-multimodal-bridgetower embedding retriever-redis lvm-llava lvm-llava-svc dataprep-multimodal-redis whisper"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker images && sleep 1m
@@ -142,19 +142,19 @@ function validate_microservices() {
'{"text":"This is example", "img_b64_str": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC"}'
# embedding microservice
echo "Validating embedding-tei"
echo "Validating embedding"
validate_service \
"http://${host_ip}:$MM_EMBEDDING_PORT_MICROSERVICE/v1/embeddings" \
'"embedding":[' \
"embedding-tei" \
"embedding-tei" \
"embedding" \
"embedding" \
'{"text" : "This is some sample text."}'
validate_service \
"http://${host_ip}:$MM_EMBEDDING_PORT_MICROSERVICE/v1/embeddings" \
'"embedding":[' \
"embedding-tei" \
"embedding-tei" \
"embedding" \
"embedding" \
'{"text": {"text" : "This is some sample text."}, "image" : {"url": "https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true"}}'
sleep 1m # retrieval can't curl as expected, try to wait for more time

View File

@@ -13,7 +13,7 @@ First of all, you need to build Docker Images locally and install the python pac
```bash
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
docker build --no-cache -t opea/embedding-tei:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/src/Dockerfile .
docker build --no-cache -t opea/embedding:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/src/Dockerfile .
```
### 2. Build Retriever Image

View File

@@ -52,8 +52,8 @@ services:
timeout: 10s
retries: 60
embedding:
image: ${REGISTRY:-opea}/embedding-tei:${TAG:-latest}
container_name: embedding-tei-server
image: ${REGISTRY:-opea}/embedding:${TAG:-latest}
container_name: embedding-server
depends_on:
tei-embedding-service:
condition: service_healthy

View File

@@ -11,12 +11,12 @@ services:
context: ../../ChatQnA/
dockerfile: ./Dockerfile
image: ${REGISTRY:-opea}/chatqna:${TAG:-latest}
embedding-tei:
embedding:
build:
context: GenAIComps
dockerfile: comps/embeddings/src/Dockerfile
extends: chatqna
image: ${REGISTRY:-opea}/embedding-tei:${TAG:-latest}
image: ${REGISTRY:-opea}/embedding:${TAG:-latest}
retriever-redis:
build:
context: GenAIComps

View File

@@ -169,7 +169,7 @@ function validate_microservices() {
"${ip_address}:6000/v1/embeddings" \
'"embedding":[' \
"embedding-microservice" \
"embedding-tei-server" \
"embedding-server" \
'{"input":"What is Deep Learning?"}'
sleep 1m # retrieval can't curl as expected, try to wait for more time

View File

@@ -9,7 +9,7 @@ This document outlines the deployment process for a SearchQnA application utiliz
```bash
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
docker build --no-cache -t opea/embedding-tei:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/src/Dockerfile .
docker build --no-cache -t opea/embedding:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/src/Dockerfile .
```
### 2. Build Retriever Image
@@ -51,7 +51,7 @@ docker build --no-cache -t opea/opea/searchqna-ui:latest --build-arg https_proxy
Then run the command `docker images`, you will have following images ready:
1. `opea/embedding-tei:latest`
1. `opea/embedding:latest`
2. `opea/web-retriever-chroma:latest`
3. `opea/reranking-tei:latest`
4. `opea/llm-textgen:latest`

View File

@@ -22,8 +22,8 @@ services:
timeout: 10s
retries: 60
embedding:
image: ${REGISTRY:-opea}/embedding-tei:${TAG:-latest}
container_name: embedding-tei-server
image: ${REGISTRY:-opea}/embedding:${TAG:-latest}
container_name: embedding-server
depends_on:
tei-embedding-service:
condition: service_healthy

View File

@@ -11,7 +11,7 @@ First of all, you need to build Docker Images locally. This step can be ignored
```bash
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
docker build --no-cache -t opea/embedding-tei:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/src/Dockerfile .
docker build --no-cache -t opea/embedding:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/src/Dockerfile .
```
### 2. Build Retriever Image
@@ -51,7 +51,7 @@ docker build --no-cache -t opea/searchqna:latest --build-arg https_proxy=$https_
Then run the command `docker images`, you will have
1. `opea/embedding-tei:latest`
1. `opea/embedding:latest`
2. `opea/web-retriever-chroma:latest`
3. `opea/reranking-tei:latest`
4. `opea/llm-textgen:latest`

View File

@@ -30,8 +30,8 @@ services:
timeout: 10s
retries: 60
embedding:
image: ${REGISTRY:-opea}/embedding-tei:${TAG:-latest}
container_name: embedding-tei-gaudi-server
image: ${REGISTRY:-opea}/embedding:${TAG:-latest}
container_name: embedding-gaudi-server
depends_on:
tei-embedding-service:
condition: service_healthy

View File

@@ -17,12 +17,12 @@ services:
dockerfile: ./docker/Dockerfile
extends: searchqna
image: ${REGISTRY:-opea}/searchqna-ui:${TAG:-latest}
embedding-tei:
embedding:
build:
context: GenAIComps
dockerfile: comps/embeddings/src/Dockerfile
extends: searchqna
image: ${REGISTRY:-opea}/embedding-tei:${TAG:-latest}
image: ${REGISTRY:-opea}/embedding:${TAG:-latest}
web-retriever-chroma:
build:
context: GenAIComps

View File

@@ -19,7 +19,7 @@ function build_docker_images() {
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
service_list="searchqna searchqna-ui embedding-tei web-retriever-chroma reranking-tei llm-textgen"
service_list="searchqna searchqna-ui embedding web-retriever-chroma reranking-tei llm-textgen"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
@@ -75,7 +75,7 @@ function validate_megaservice() {
docker logs web-retriever-chroma-server > ${LOG_PATH}/web-retriever-chroma-server.log
docker logs searchqna-gaudi-backend-server > ${LOG_PATH}/searchqna-gaudi-backend-server.log
docker logs tei-embedding-gaudi-server > ${LOG_PATH}/tei-embedding-gaudi-server.log
docker logs embedding-tei-gaudi-server > ${LOG_PATH}/embedding-tei-gaudi-server.log
docker logs embedding-gaudi-server > ${LOG_PATH}/embedding-gaudi-server.log
if [[ $result == *"capital"* ]]; then
echo "Result correct."

View File

@@ -19,7 +19,7 @@ function build_docker_images() {
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
service_list="searchqna searchqna-ui embedding-tei web-retriever-chroma reranking-tei llm-textgen"
service_list="searchqna searchqna-ui embedding web-retriever-chroma reranking-tei llm-textgen"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.5

View File

@@ -2,7 +2,7 @@
A list of released OPEA docker images in https://hub.docker.com/, contains all relevant images from the GenAIExamples, GenAIComps and GenAIInfra projects. Please expect more public available images in the future release.
Take ChatQnA for example. ChatQnA is a chatbot application service based on the Retrieval Augmented Generation (RAG) architecture. It consists of [opea/embedding-tei](https://hub.docker.com/r/opea/embedding-tei), [opea/retriever-redis](https://hub.docker.com/r/opea/retriever-redis), [opea/reranking-tei](https://hub.docker.com/r/opea/reranking-tei), [opea/llm-textgen](https://hub.docker.com/r/opea/llm-textgen), [opea/dataprep-redis](https://hub.docker.com/r/opea/dataprep-redis), [opea/chatqna](https://hub.docker.com/r/opea/chatqna), [opea/chatqna-ui](https://hub.docker.com/r/opea/chatqna-ui) and [opea/chatqna-conversation-ui](https://hub.docker.com/r/opea/chatqna-conversation-ui) (Optional) multiple microservices. Other services are similar, see the corresponding README for details.
Take ChatQnA for example. ChatQnA is a chatbot application service based on the Retrieval Augmented Generation (RAG) architecture. It consists of [opea/embedding](https://hub.docker.com/r/opea/embedding), [opea/retriever-redis](https://hub.docker.com/r/opea/retriever-redis), [opea/reranking-tei](https://hub.docker.com/r/opea/reranking-tei), [opea/llm-textgen](https://hub.docker.com/r/opea/llm-textgen), [opea/dataprep-redis](https://hub.docker.com/r/opea/dataprep-redis), [opea/chatqna](https://hub.docker.com/r/opea/chatqna), [opea/chatqna-ui](https://hub.docker.com/r/opea/chatqna-ui) and [opea/chatqna-conversation-ui](https://hub.docker.com/r/opea/chatqna-conversation-ui) (Optional) multiple microservices. Other services are similar, see the corresponding README for details.
## Example images
@@ -57,10 +57,9 @@ Take ChatQnA for example. ChatQnA is a chatbot application service based on the
| [opea/dataprep-vdms](https://hub.docker.com/r/opea/dataprep-vdms) | [Link](https://github.com/opea-project/GenAIComps/blob/main/comps/dataprep/vdms/langchain/Dockerfile) | This docker image exposes an OPEA dataprep microservice based on VDMS vectordb for use by GenAI applications. |
| [opea/embedding-langchain-mosec](https://hub.docker.com/r/opea/embedding-langchain-mosec) | [Link](https://github.com/opea-project/GenAIComps/blob/main/comps/3rd_parties/nginx/src/Dockerfile) | The docker image exposed the OPEA mosec embedding microservice base on Langchain framework for GenAI application use |
| [opea/embedding-multimodal-clip](https://hub.docker.com/r/opea/embedding-multimodal-clip) | [Link](https://github.com/opea-project/GenAIComps/blob/main/comps/embeddings/src/integrations/dependency/clip/Dockerfile) | The docker image exposes OPEA multimodal CLIP-based embedded microservices for use by GenAI applications |
| [opea/embedding-tei](https://hub.docker.com/r/opea/embedding-tei) | [Link](https://github.com/opea-project/GenAIComps/blob/main/comps/embeddings/src/Dockerfile) | The docker image exposes OPEA multimodal embedded microservices for use by GenAI applications |
| [opea/embedding](https://hub.docker.com/r/opea/embedding) | [Link](https://github.com/opea-project/GenAIComps/blob/main/comps/embeddings/src/Dockerfile) | The docker image exposes OPEA multimodal embedded microservices for use by GenAI applications |
| [opea/embedding-multimodal-bridgetower](https://hub.docker.com/r/opea/embedding-multimodal-bridgetower) | [Link](https://github.com/opea-project/GenAIComps/blob/main/comps/embeddings/src/integrations/dependency/bridgetower/Dockerfile) | The docker image exposes OPEA multimodal embedded microservices based on bridgetower for use by GenAI applications |
| [opea/embedding-multimodal-bridgetower-gaudi](https://hub.docker.com/r/opea/embedding-multimodal-bridgetower-gaudi) | [Link](https://github.com/opea-project/GenAIComps/blob/main/comps/embeddings/src/integrations/dependency/bridgetower/Dockerfile.intel_hpu) | The docker image exposes OPEA multimodal embedded microservices based on bridgetower for use by GenAI applications on the Gaudi |
| [opea/embedding-tei](https://hub.docker.com/r/opea/embedding-tei) | [Link](https://github.com/opea-project/GenAIComps/blob/main/comps/embeddings/src/Dockerfile) | The docker image exposed the OPEA embedding microservice upon tei docker image for GenAI application use |
| [opea/feedbackmanagement](https://hub.docker.com/r/opea/feedbackmanagement) | [Link](https://github.com/opea-project/GenAIComps/blob/main/comps/feedback_management/mongo/Dockerfile) | The docker image exposes that the OPEA feedback management microservice uses a MongoDB database for GenAI applications. |
| [opea/finetuning](https://hub.docker.com/r/opea/finetuning) | [Link](https://github.com/opea-project/GenAIComps/blob/main/comps/finetuning/Dockerfile) | The docker image exposed the OPEA Fine-tuning microservice for GenAI application use |
| [opea/finetuning-gaudi](https://hub.docker.com/r/opea/finetuning-gaudi) | [Link](https://github.com/opea-project/GenAIComps/blob/main/comps/finetuning/Dockerfile.intel_hpu) | The docker image exposed the OPEA Fine-tuning microservice for GenAI application use on the Gaudi |