Updated READMEs for kubernetes example pipelines (#353)
* Updated READMEs for kubernetes. Signed-off-by: mkbhanda <malini.bhandaru@intel.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Kubernetes related Readme. Signed-off-by: mkbhanda <malini.bhandaru@intel.com> --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
@@ -35,18 +35,19 @@ For Gaudi:
|
||||
## Deploy ChatQnA pipeline
|
||||
This involves deploying the ChatQnA custom resource. You can use chatQnA_xeon.yaml or if you have a Gaudi cluster, you could use chatQnA_gaudi.yaml.
|
||||
|
||||
1. Create namespace and deploy application
|
||||
```sh
|
||||
kubectl create ns chatqa
|
||||
kubectl apply -f $(pwd)/chatQnA_xeon.yaml
|
||||
```
|
||||
|
||||
**GMC will reconcile the ChatQnA custom resource and get all related components/services ready**
|
||||
2. GMC will reconcile the ChatQnA custom resource and get all related components/services ready. Check if the service up.
|
||||
|
||||
```sh
|
||||
kubectl get service -n chatqa
|
||||
```
|
||||
|
||||
**Obtain the ChatQnA custom resource/pipeline access URL**
|
||||
3. Retrieve the application access URL
|
||||
|
||||
```sh
|
||||
kubectl get gmconnectors.gmc.opea.io -n chatqa
|
||||
@@ -54,13 +55,13 @@ NAME URL READY AGE
|
||||
chatqa http://router-service.chatqa.svc.cluster.local:8080 8/0/8 3m
|
||||
```
|
||||
|
||||
**Deploy a client pod to test the ChatQnA application**
|
||||
4. Deploy a client pod to test the application
|
||||
|
||||
```sh
|
||||
kubectl create deployment client-test -n chatqa --image=python:3.8.13 -- sleep infinity
|
||||
```
|
||||
|
||||
**Access the pipeline using the above URL from the client pod**
|
||||
5. Access the application using the above URL from the client pod
|
||||
|
||||
```sh
|
||||
export CLIENT_POD=$(kubectl get pod -l app=client-test -o jsonpath={.items..metadata.name})
|
||||
@@ -68,7 +69,7 @@ export accessUrl=$(kubectl get gmc -n chatqa -o jsonpath="{.items[?(@.metadata.n
|
||||
kubectl exec "$CLIENT_POD" -n chatqa -- curl $accessUrl -X POST -d '{"text":"What is the revenue of Nike in 2023?","parameters":{"max_new_tokens":17, "do_sample": true}}' -H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
**Modify ChatQnA custom resource to use another LLM model**
|
||||
6. Perhaps you want to try another LLM model? Just modify the application custom resource to use another LLM model
|
||||
|
||||
Should you, for instance, want to change the LLM model you are using in the ChatQnA pipeline, just edit the custom resource file.
|
||||
For example, to use Llama-2-7b-chat-hf make the following edit:
|
||||
@@ -83,18 +84,18 @@ For example, to use Llama-2-7b-chat-hf make the following edit:
|
||||
LLM_MODEL_ID: Llama-2-7b-chat-hf
|
||||
```
|
||||
|
||||
Apply the change using
|
||||
7. Apply the change
|
||||
```
|
||||
kubectl apply -f $(pwd)/chatQnA_xeon.yaml
|
||||
```
|
||||
|
||||
**Check that the tgi-svc-deployment has been changed to use the new LLM Model**
|
||||
8. Check that the tgi-svc-deployment has been changed to use the new LLM Model
|
||||
|
||||
```sh
|
||||
kubectl get deployment tgi-svc-deployment -n chatqa -o jsonpath="{.spec.template.spec.containers[*].env[?(@.name=='LLM_MODEL_ID')].value}"
|
||||
```
|
||||
|
||||
**Access the updated pipeline using the same URL frm above from within the client pod**
|
||||
9. Access the updated pipeline using the same URL from above using the client pod
|
||||
|
||||
```sh
|
||||
kubectl exec "$CLIENT_POD" -n chatqa -- curl $accessUrl -X POST -d '{"text":"What is the revenue of Nike in 2023?","parameters":{"max_new_tokens":17, "do_sample": true}}' -H 'Content-Type: application/json'
|
||||
|
||||
@@ -22,14 +22,12 @@ The workflow falls into the following architecture:
|
||||
|
||||
The CodeGen service can be effortlessly deployed on either Intel Gaudi2 or Intel Xeon Scalable Processor.
|
||||
|
||||
## Deploy CodeGen on Gaudi
|
||||
## Deploy CodeGen using Docker
|
||||
|
||||
Refer to the [Gaudi Guide](./docker/gaudi/README.md) for instructions on deploying CodeGen on Gaudi.
|
||||
- Refer to the [Gaudi Guide](./docker/gaudi/README.md) for instructions on deploying CodeGen on Gaudi.
|
||||
|
||||
## Deploy CodeGen on Xeon
|
||||
- Refer to the [Xeon Guide](./docker/xeon/README.md) for instructions on deploying CodeGen on Xeon.
|
||||
|
||||
Refer to the [Xeon Guide](./docker/xeon/README.md) for instructions on deploying CodeGen on Xeon.
|
||||
|
||||
## Deploy CodeGen into Kubernetes on Xeon & Gaudi
|
||||
## Deploy CodeGen using Kubernetes
|
||||
|
||||
Refer to the [Kubernetes Guide](./kubernetes/manifests/README.md) for instructions on deploying CodeGen into Kubernetes on Xeon & Gaudi.
|
||||
|
||||
@@ -12,10 +12,12 @@ This Code Translation use case uses Text Generation Inference on Intel Gaudi2 or
|
||||
|
||||
The Code Translation service can be effortlessly deployed on either Intel Gaudi2 or Intel Xeon Scalable Processor.
|
||||
|
||||
## Deploy Code Translation on Gaudi
|
||||
## Deploy with Docker
|
||||
|
||||
Refer to the [Gaudi Guide](./docker/gaudi/README.md) for instructions on deploying Code Translation on Gaudi.
|
||||
- To deploy Code Translation on Gaudi please refer to the [Gaudi Guide](./docker/gaudi/README.md)
|
||||
|
||||
## Deploy Code Translation on Xeon
|
||||
- To deploy Code Translation on Xeon please refer to the [Xeon Guide](./docker/xeon/README.md).
|
||||
|
||||
Refer to the [Xeon Guide](./docker/xeon/README.md) for instructions on deploying Code Translation on Xeon.
|
||||
## Deploy with Kubernetes
|
||||
|
||||
Please refer to the [Code Translation Kubernetes Guide](./kubernetes/README.md)
|
||||
|
||||
@@ -0,0 +1,40 @@
|
||||
<h1 align="center" id="title">Deploy CodeTrans in a Kubernetes Cluster</h1>
|
||||
|
||||
This document outlines the deployment process for a Code Translation (CodeTran) application that utilizes the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice components on Intel Xeon servers and Gaudi machines.
|
||||
|
||||
Please install GMC in your Kubernetes cluster, if you have not already done so, by following the steps in Section "Getting Started" at [GMC Install](https://github.com/opea-project/GenAIInfra/tree/main/microservices-connector#readme). We will soon publish images to Docker Hub, at which point no builds will be required, further simplifying install.
|
||||
|
||||
If you have only Intel Xeon machines you could use the codetrans_xeon.yaml file or if you have a Gaudi cluster you could use codetrans_gaudi.yaml
|
||||
In the below example we illustrate on Xeon.
|
||||
|
||||
## Deploy the RAG application
|
||||
|
||||
1. Create the desired namespace if it does not already exist and deploy the application
|
||||
```bash
|
||||
export APP_NAMESPACE=CT
|
||||
kubectl create ns $APP_NAMESPACE
|
||||
sed -i "s|namespace: codetrans|namespace: $APP_NAMESPACE|g" ./codetrans_xeon.yaml
|
||||
kubectl apply -f ./codetrans_xeon.yaml
|
||||
```
|
||||
|
||||
2. Check if the application is up and ready
|
||||
```bash
|
||||
kubectl get pods -n $APP_NAMESPACE
|
||||
```
|
||||
|
||||
3. Deploy a client pod for testing
|
||||
```bash
|
||||
kubectl create deployment client-test -n $APP_NAMESPACE --image=python:3.8.13 -- sleep infinity
|
||||
```
|
||||
|
||||
4. Check that client pod is ready
|
||||
```bash
|
||||
kubectl get pods -n $APP_NAMESPACE
|
||||
```
|
||||
|
||||
5. Send request to application
|
||||
```bash
|
||||
export CLIENT_POD=$(kubectl get pod -n $APP_NAMESPACE -l app=client-test -o jsonpath={.items..metadata.name})
|
||||
export accessUrl=$(kubectl get gmc -n $APP_NAMESPACE -o jsonpath="{.items[?(@.metadata.name=='codetrans')].status.accessUrl}")
|
||||
kubectl exec "$CLIENT_POD" -n $APP_NAMESPACE -- curl $accessUrl -X POST -d '{"language_from": "Golang","language_to": "Python","source_code": "package main\n\nimport \"fmt\"\nfunc main() {\n fmt.Println(\"Hello, World!\");\n}"}' -H 'Content-Type: application/json' > $LOG_PATH/gmc_codetrans.log
|
||||
```
|
||||
|
||||
@@ -13,11 +13,14 @@ The architecture for document summarization will be illustrated/described below:
|
||||
# Deploy Document Summarization Service
|
||||
|
||||
The Document Summarization service can be effortlessly deployed on either Intel Gaudi2 or Intel XEON Scalable Processors.
|
||||
Based on whether you want to use Docker or Kubernetes, please follow the instructions below.
|
||||
|
||||
## Deploy Document Summarization on Gaudi
|
||||
## Deploy using Docker
|
||||
|
||||
Refer to the [Gaudi Guide](./docker/gaudi/README.md) for instructions on deploying Document Summarization on Gaudi.
|
||||
- Refer to the [Gaudi Guide](./docker/gaudi/README.md) for instructions on deploying Document Summarization on Gaudi.
|
||||
|
||||
## Deploy Document Summarization on Xeon
|
||||
- Refer to the [Xeon Guide](./docker/xeon/README.md) for instructions on deploying Document Summarization on Xeon.
|
||||
|
||||
Refer to the [Xeon Guide](./docker/xeon/README.md) for instructions on deploying Document Summarization on Xeon.
|
||||
## Deploy using Kubernetes
|
||||
|
||||
Please refer to [Kubernetes deployment](./kubernetes/README.md)
|
||||
|
||||
@@ -0,0 +1,66 @@
|
||||
<h1 align="center" id="title">Deploy DocSum in Kubernetes Cluster</h1>
|
||||
|
||||
This document outlines the deployment process for a Document Summary (DocSum) application that utilizes the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice components on Intel Xeon servers and Gaudi machines.
|
||||
The DocSum Service leverages a Kubernetes operator called genai-microservices-connector(GMC). GMC supports connecting microservices to create pipelines based on the specification in the pipeline yaml file, in addition it allows the user to dynamically control which model is used in a service such as an LLM or embedder. The underlying pipeline language also supports using external services that may be running in public or private clouds elsewhere.
|
||||
|
||||
Please install GMC in your Kubernetes cluster, if you have not already done so, by following the steps in Section "Getting Started" at [GMC Install](https://github.com/opea-project/GenAIInfra/tree/main/microservices-connector#readme). We will soon publish images to Docker Hub, at which point no builds will be required, further simplifying install.
|
||||
|
||||
The DocSum application is defined as a Custom Resource (CR) file that the above GMC operator acts upon. It first checks if the microservices listed in the CR yaml file are running, if not it starts them and then proceeds to connect them. When the DocSum RAG pipeline is ready, the service endpoint details are returned, letting you use the application. Should you use "kubectl get pods" commands you will see all the component microservices, in particular embedding, retriever, rerank, and llm.
|
||||
|
||||
The DocSum pipeline uses prebuilt images. The Xeon version uses the prebuilt image llm-docsum-tgi:latest which internally leverages the
|
||||
the image ghcr.io/huggingface/text-generation-inference:1.4. The service is called tgi-svc. Meanwhile, the Gaudi version launches the
|
||||
service tgi-gaudi-svc, which uses the image ghcr.io/huggingface/tgi-gaudi:1.2.1. Both TGI model services serve the model specified in the LLM_MODEL_ID variable that is exported by you. In the below example we use Intel/neural-chat-7b-v3-3.
|
||||
|
||||
[NOTE]
|
||||
Please refer to [Docker Xeon README](https://github.com/opea-project/GenAIExamples/blob/main/DocSum/docker/xeon/README.md) or
|
||||
[Docker Gaudi README](https://github.com/opea-project/GenAIExamples/blob/main/DocSum/docker/gaudi/README.md) to build the OPEA images.
|
||||
These will be available on Docker Hub soon, simplifying installation.
|
||||
|
||||
## Deploy the RAG pipeline
|
||||
This involves deploying the application pipeline custom resource. You can use docsum_xeon.yaml if you have just a Xeon cluster or docsum_gaudi.yaml if you have a Gaudi cluster.
|
||||
|
||||
1. Setup Environment variables. These are specific to the user. Skip the proxy settings if you are not operating behind one.
|
||||
|
||||
```bash
|
||||
export no_proxy=${your_no_proxy}
|
||||
export http_proxy=${your_http_proxy}
|
||||
export https_proxy=${your_http_proxy}
|
||||
export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
|
||||
export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
|
||||
export ns=${docsum}
|
||||
```
|
||||
|
||||
2. Create namespace for the application and deploy it
|
||||
```bash
|
||||
kubectl create ns ${ns}
|
||||
kubectl apply -f $(pwd)/docsum_xeon.yaml
|
||||
```
|
||||
|
||||
3. GMC will reconcile the custom resource and get all related components/services ready. Confirm the service status using below command
|
||||
```bash
|
||||
kubectl get service -n ${ns}
|
||||
```
|
||||
|
||||
4. Obtain the custom resource/pipeline access URL
|
||||
|
||||
```bash
|
||||
kubectl get gmconnectors.gmc.opea.io -n ${ns}
|
||||
NAME URL READY AGE
|
||||
docsum http://router-service.docsum.svc.cluster.local:8080 8/0/8 3m
|
||||
```
|
||||
|
||||
5. Deploy a client pod to test the application
|
||||
|
||||
```bash
|
||||
kubectl create deployment client-test -n ${ns} --image=python:3.8.13 -- sleep infinity
|
||||
```
|
||||
|
||||
6. Access the pipeline using the above URL from the client pod and execute a request
|
||||
|
||||
```bash
|
||||
export CLIENT_POD=$(kubectl get pod -l app=client-test -o jsonpath={.items..metadata.name})
|
||||
export accessUrl=$(kubectl get gmc -n $ns -o jsonpath="{.items[?(@.metadata.name=='docsum')].status.accessUrl}")
|
||||
kubectl exec "$CLIENT_POD" -n $ns -- curl $accessUrl -X POST -d '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."}' -H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
7. Clean up. Use standard Kubernetes custom resource remove commands. Confirm cleaned by retrieving pods in application namespace.
|
||||
|
||||
Reference in New Issue
Block a user