Fix README issues (#817)
Signed-off-by: lvliang-intel <liang1.lv@intel.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
@@ -61,14 +61,11 @@ Port 5173 - Open to 0.0.0.0/0
|
||||
|
||||
First of all, you need to build Docker Images locally and install the python package of it.
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
```
|
||||
|
||||
### 1. Build Embedding Image
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
docker build --no-cache -t opea/embedding-tei:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/tei/langchain/Dockerfile .
|
||||
```
|
||||
|
||||
@@ -128,7 +125,6 @@ cd ..
|
||||
git clone https://github.com/opea-project/GenAIExamples.git
|
||||
cd GenAIExamples/ChatQnA
|
||||
docker build --no-cache -t opea/chatqna:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
|
||||
cd ../../..
|
||||
```
|
||||
|
||||
2. MegaService without Rerank
|
||||
@@ -139,7 +135,6 @@ cd ..
|
||||
git clone https://github.com/opea-project/GenAIExamples.git
|
||||
cd GenAIExamples/ChatQnA
|
||||
docker build --no-cache -t opea/chatqna-without-rerank:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile.without_rerank .
|
||||
cd ../../..
|
||||
```
|
||||
|
||||
### 7. Build UI Docker Image
|
||||
@@ -149,7 +144,6 @@ Build frontend Docker image via below command:
|
||||
```bash
|
||||
cd GenAIExamples/ChatQnA/ui
|
||||
docker build --no-cache -t opea/chatqna-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile .
|
||||
cd ../../../..
|
||||
```
|
||||
|
||||
### 8. Build Conversational React UI Docker Image (Optional)
|
||||
@@ -161,7 +155,6 @@ Build frontend Docker image that enables Conversational experience with ChatQnA
|
||||
```bash
|
||||
cd GenAIExamples/ChatQnA/ui
|
||||
docker build --no-cache -t opea/chatqna-conversation-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile.react .
|
||||
cd ../../../..
|
||||
```
|
||||
|
||||
Then run the command `docker images`, you will have the following 7 Docker Images:
|
||||
@@ -188,7 +181,7 @@ By default, the embedding, reranking and LLM models are set to a default value a
|
||||
|
||||
Change the `xxx_MODEL_ID` below for your needs.
|
||||
|
||||
For customers with proxy issues, the models from [ModelScope](https://www.modelscope.cn/models) are also supported in ChatQnA with TGI serving. ModelScope models are supported in two ways for TGI:
|
||||
For users in China who are unable to download models directly from Huggingface, you can use [ModelScope](https://www.modelscope.cn/models) or a Huggingface mirror to download models. TGI can load the models either online or offline as described below:
|
||||
|
||||
1. Online
|
||||
|
||||
@@ -196,7 +189,7 @@ For customers with proxy issues, the models from [ModelScope](https://www.models
|
||||
export HF_TOKEN=${your_hf_token}
|
||||
export HF_ENDPOINT="https://hf-mirror.com"
|
||||
model_name="Intel/neural-chat-7b-v3-3"
|
||||
docker run -p 8008:80 -v ./data:/data --name tgi-service -e HF_ENDPOINT=$HF_ENDPOINT -e http_proxy=$http_proxy -e https_proxy=$https_proxy --shm-size 1g ghcr.io/huggingface/text-generation-inference:2.1.0 --model-id $model_name
|
||||
docker run -p 8008:80 -v ./data:/data --name tgi-service -e HF_ENDPOINT=$HF_ENDPOINT -e http_proxy=$http_proxy -e https_proxy=$https_proxy --shm-size 1g ghcr.io/huggingface/text-generation-inference:2.2.0 --model-id $model_name
|
||||
```
|
||||
|
||||
2. Offline
|
||||
@@ -210,7 +203,7 @@ For customers with proxy issues, the models from [ModelScope](https://www.models
|
||||
```bash
|
||||
export HF_TOKEN=${your_hf_token}
|
||||
export model_path="/path/to/model"
|
||||
docker run -p 8008:80 -v $model_path:/data --name tgi_service --shm-size 1g ghcr.io/huggingface/text-generation-inference:2.1.0 --model-id /data
|
||||
docker run -p 8008:80 -v $model_path:/data --name tgi_service --shm-size 1g ghcr.io/huggingface/text-generation-inference:2.2.0 --model-id /data
|
||||
```
|
||||
|
||||
### Setup Environment Variables
|
||||
|
||||
@@ -6,26 +6,21 @@ This document outlines the deployment process for a ChatQnA application utilizin
|
||||
|
||||
First of all, you need to build Docker Images locally. This step can be ignored after the Docker images published to Docker hub.
|
||||
|
||||
### 1. Source Code install GenAIComps
|
||||
### 1. Build Embedding Image
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
```
|
||||
|
||||
### 2. Build Embedding Image
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/embedding-tei:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/tei/langchain/Dockerfile .
|
||||
```
|
||||
|
||||
### 3. Build Retriever Image
|
||||
### 2. Build Retriever Image
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/retriever-redis:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/retrievers/redis/langchain/Dockerfile .
|
||||
```
|
||||
|
||||
### 4. Build Rerank Image
|
||||
### 3. Build Rerank Image
|
||||
|
||||
> Skip for ChatQnA without Rerank pipeline
|
||||
|
||||
@@ -33,17 +28,17 @@ docker build --no-cache -t opea/retriever-redis:latest --build-arg https_proxy=$
|
||||
docker build --no-cache -t opea/reranking-tei:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/reranks/tei/Dockerfile .
|
||||
```
|
||||
|
||||
### 5. Build LLM Image
|
||||
### 4. Build LLM Image
|
||||
|
||||
You can use different LLM serving solutions, choose one of following four options.
|
||||
|
||||
#### 5.1 Use TGI
|
||||
#### 4.1 Use TGI
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/llm-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/tgi/Dockerfile .
|
||||
```
|
||||
|
||||
#### 5.2 Use VLLM
|
||||
#### 4.2 Use VLLM
|
||||
|
||||
Build vllm docker.
|
||||
|
||||
@@ -57,7 +52,7 @@ Build microservice docker.
|
||||
docker build --no-cache -t opea/llm-vllm:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/vllm/langchain/Dockerfile .
|
||||
```
|
||||
|
||||
#### 5.3 Use VLLM-on-Ray
|
||||
#### 4.3 Use VLLM-on-Ray
|
||||
|
||||
Build vllm-on-ray docker.
|
||||
|
||||
@@ -71,24 +66,21 @@ Build microservice docker.
|
||||
docker build --no-cache -t opea/llm-vllm-ray:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/vllm/ray/Dockerfile .
|
||||
```
|
||||
|
||||
### 6. Build Dataprep Image
|
||||
### 5. Build Dataprep Image
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/dataprep-redis:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/dataprep/redis/langchain/Dockerfile .
|
||||
```
|
||||
|
||||
### 7. Build TEI Gaudi Image
|
||||
### 6. Build Guardrails Docker Image (Optional)
|
||||
|
||||
Since a TEI Gaudi Docker image hasn't been published, we'll need to build it from the [tei-gaudi](https://github.com/huggingface/tei-gaudi) repository.
|
||||
To fortify AI initiatives in production, Guardrails microservice can secure model inputs and outputs, building Trustworthy, Safe, and Secure LLM-based Applications.
|
||||
|
||||
```bash
|
||||
git clone https://github.com/huggingface/tei-gaudi
|
||||
cd tei-gaudi/
|
||||
docker build --no-cache -f Dockerfile-hpu -t opea/tei-gaudi:latest .
|
||||
cd ../..
|
||||
docker build -t opea/guardrails-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/guardrails/llama_guard/langchain/Dockerfile .
|
||||
```
|
||||
|
||||
### 8. Build MegaService Docker Image
|
||||
### 7. Build MegaService Docker Image
|
||||
|
||||
1. MegaService with Rerank
|
||||
|
||||
@@ -98,7 +90,6 @@ cd ../..
|
||||
git clone https://github.com/opea-project/GenAIExamples.git
|
||||
cd GenAIExamples/ChatQnA/docker
|
||||
docker build --no-cache -t opea/chatqna:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
|
||||
cd ../../..
|
||||
```
|
||||
|
||||
2. MegaService with Guardrails
|
||||
@@ -109,7 +100,6 @@ cd ../..
|
||||
git clone https://github.com/opea-project/GenAIExamples.git
|
||||
cd GenAIExamples/ChatQnA/
|
||||
docker build --no-cache -t opea/chatqna-guardrails:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile.guardrails .
|
||||
cd ../../..
|
||||
```
|
||||
|
||||
3. MegaService without Rerank
|
||||
@@ -120,20 +110,18 @@ cd ../..
|
||||
git clone https://github.com/opea-project/GenAIExamples.git
|
||||
cd GenAIExamples/ChatQnA/docker
|
||||
docker build --no-cache -t opea/chatqna-without-rerank:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile.without_rerank .
|
||||
cd ../../..
|
||||
```
|
||||
|
||||
### 9. Build UI Docker Image
|
||||
### 8. Build UI Docker Image
|
||||
|
||||
Construct the frontend Docker image using the command below:
|
||||
|
||||
```bash
|
||||
cd GenAIExamples/ChatQnA/ui
|
||||
docker build --no-cache -t opea/chatqna-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile .
|
||||
cd ../../../..
|
||||
```
|
||||
|
||||
### 10. Build Conversational React UI Docker Image (Optional)
|
||||
### 9. Build Conversational React UI Docker Image (Optional)
|
||||
|
||||
Build frontend Docker image that enables Conversational experience with ChatQnA megaservice via below command:
|
||||
|
||||
@@ -142,26 +130,14 @@ Build frontend Docker image that enables Conversational experience with ChatQnA
|
||||
```bash
|
||||
cd GenAIExamples/ChatQnA/ui
|
||||
docker build --no-cache -t opea/chatqna-conversation-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile.react .
|
||||
cd ../../../..
|
||||
```
|
||||
|
||||
### 11. Build Guardrails Docker Image (Optional)
|
||||
|
||||
To fortify AI initiatives in production, Guardrails microservice can secure model inputs and outputs, building Trustworthy, Safe, and Secure LLM-based Applications.
|
||||
|
||||
```bash
|
||||
cd GenAIComps
|
||||
docker build -t opea/guardrails-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/guardrails/llama_guard/langchain/Dockerfile .
|
||||
cd ../../..
|
||||
```
|
||||
|
||||
Then run the command `docker images`, you will have the following 8 Docker Images:
|
||||
Then run the command `docker images`, you will have the following 7 Docker Images:
|
||||
|
||||
- `opea/embedding-tei:latest`
|
||||
- `opea/retriever-redis:latest`
|
||||
- `opea/reranking-tei:latest`
|
||||
- `opea/llm-tgi:latest` or `opea/llm-vllm:latest` or `opea/llm-vllm-ray:latest`
|
||||
- `opea/tei-gaudi:latest`
|
||||
- `opea/dataprep-redis:latest`
|
||||
- `opea/chatqna:latest` or `opea/chatqna-guardrails:latest` or `opea/chatqna-without-rerank:latest`
|
||||
- `opea/chatqna-ui:latest`
|
||||
@@ -188,7 +164,7 @@ By default, the embedding, reranking and LLM models are set to a default value a
|
||||
|
||||
Change the `xxx_MODEL_ID` below for your needs.
|
||||
|
||||
For customers with proxy issues, the models from [ModelScope](https://www.modelscope.cn/models) are also supported in ChatQnA with TGI serving. ModelScope models are supported in two ways for TGI:
|
||||
For users in China who are unable to download models directly from Huggingface, you can use [ModelScope](https://www.modelscope.cn/models) or a Huggingface mirror to download models. TGI can load the models either online or offline as described below:
|
||||
|
||||
1. Online
|
||||
|
||||
@@ -196,7 +172,7 @@ For customers with proxy issues, the models from [ModelScope](https://www.models
|
||||
export HF_TOKEN=${your_hf_token}
|
||||
export HF_ENDPOINT="https://hf-mirror.com"
|
||||
model_name="Intel/neural-chat-7b-v3-3"
|
||||
docker run -p 8008:80 -v ./data:/data --name tgi-service -e HF_ENDPOINT=$HF_ENDPOINT -e http_proxy=$http_proxy -e https_proxy=$https_proxy --shm-size 1g ghcr.io/huggingface/text-generation-inference:2.1.0 --model-id $model_name
|
||||
docker run -p 8008:80 -v ./data:/data --name tgi-service -e HF_ENDPOINT=$HF_ENDPOINT -e http_proxy=$http_proxy -e https_proxy=$https_proxy --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e OMPI_MCA_btl_vader_single_copy_mechanism=none -e HUGGING_FACE_HUB_TOKEN=$HF_TOKEN -e ENABLE_HPU_GRAPH=true -e LIMIT_HPU_GRAPH=true -e USE_FLASH_ATTENTION=true -e FLASH_ATTENTION_RECOMPUTE=true --cap-add=sys_nice --ipc=host ghcr.io/huggingface/tgi-gaudi:2.0.5 --model-id $model_name --max-input-tokens 1024 --max-total-tokens 2048
|
||||
```
|
||||
|
||||
2. Offline
|
||||
@@ -210,7 +186,7 @@ For customers with proxy issues, the models from [ModelScope](https://www.models
|
||||
```bash
|
||||
export HF_TOKEN=${your_hf_token}
|
||||
export model_path="/path/to/model"
|
||||
docker run -p 8008:80 -v $model_path:/data --name tgi_service --shm-size 1g ghcr.io/huggingface/text-generation-inference:2.1.0 --model-id /data
|
||||
docker run -p 8008:80 -v $model_path:/data --name tgi_service --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e OMPI_MCA_btl_vader_single_copy_mechanism=none -e HUGGING_FACE_HUB_TOKEN=$HF_TOKEN -e ENABLE_HPU_GRAPH=true -e LIMIT_HPU_GRAPH=true -e USE_FLASH_ATTENTION=true -e FLASH_ATTENTION_RECOMPUTE=true --cap-add=sys_nice --ipc=host ghcr.io/huggingface/tgi-gaudi:2.0.5 --model-id /data --max-input-tokens 1024 --max-total-tokens 2048
|
||||
```
|
||||
|
||||
### Setup Environment Variables
|
||||
|
||||
@@ -14,20 +14,15 @@ After launching your instance, you can connect to it using SSH (for Linux instan
|
||||
|
||||
Should the Docker image you seek not yet be available on Docker Hub, you can build the Docker image locally.
|
||||
|
||||
### 1. Git Clone GenAIComps
|
||||
### 1. Build the LLM Docker Image
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
```
|
||||
|
||||
### 2. Build the LLM Docker Image
|
||||
|
||||
```bash
|
||||
docker build -t opea/llm-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/tgi/Dockerfile .
|
||||
```
|
||||
|
||||
### 3. Build the MegaService Docker Image
|
||||
### 2. Build the MegaService Docker Image
|
||||
|
||||
To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `codegen.py` Python script. Build MegaService Docker image via the command below:
|
||||
|
||||
@@ -37,7 +32,7 @@ cd GenAIExamples/CodeGen
|
||||
docker build -t opea/codegen:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
|
||||
```
|
||||
|
||||
### 4. Build the UI Docker Image
|
||||
### 3. Build the UI Docker Image
|
||||
|
||||
Build the frontend Docker image via the command below:
|
||||
|
||||
@@ -52,7 +47,7 @@ Then run the command `docker images`, you will have the following 3 Docker Image
|
||||
- `opea/codegen:latest`
|
||||
- `opea/codegen-ui:latest`
|
||||
|
||||
### 8. Build CodeGen React UI Docker Image (Optional)
|
||||
### 4. Build CodeGen React UI Docker Image (Optional)
|
||||
|
||||
Build react frontend Docker image via below command:
|
||||
|
||||
|
||||
@@ -6,20 +6,15 @@ This document outlines the deployment process for a CodeGen application utilizin
|
||||
|
||||
First of all, you need to build the Docker images locally. This step can be ignored after the Docker images published to the Docker Hub.
|
||||
|
||||
### 1. Git Clone GenAIComps
|
||||
### 1. Build the LLM Docker Image
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
```
|
||||
|
||||
### 2. Build the LLM Docker Image
|
||||
|
||||
```bash
|
||||
docker build -t opea/llm-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/tgi/Dockerfile .
|
||||
```
|
||||
|
||||
### 3. Build the MegaService Docker Image
|
||||
### 2. Build the MegaService Docker Image
|
||||
|
||||
To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `codegen.py` Python script. Build the MegaService Docker image via the command below:
|
||||
|
||||
@@ -29,7 +24,7 @@ cd GenAIExamples/CodeGen
|
||||
docker build -t opea/codegen:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
|
||||
```
|
||||
|
||||
### 4. Build the UI Docker Image
|
||||
### 3. Build the UI Docker Image
|
||||
|
||||
Construct the frontend Docker image via the command below:
|
||||
|
||||
@@ -38,7 +33,7 @@ cd GenAIExamples/CodeGen/ui
|
||||
docker build -t opea/codegen-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile .
|
||||
```
|
||||
|
||||
### 8. Build CodeGen React UI Docker Image (Optional)
|
||||
### 4. Build CodeGen React UI Docker Image (Optional)
|
||||
|
||||
Build react frontend Docker image via below command:
|
||||
|
||||
|
||||
@@ -14,20 +14,15 @@ After launching your instance, you can connect to it using SSH (for Linux instan
|
||||
|
||||
First of all, you need to build Docker Images locally and install the python package of it. This step can be ignored after the Docker images published to Docker hub.
|
||||
|
||||
### 1. Install GenAIComps from Source Code
|
||||
### 1. Build the LLM Docker Image
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
```
|
||||
|
||||
### 2. Build the LLM Docker Image
|
||||
|
||||
```bash
|
||||
docker build -t opea/llm-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/tgi/Dockerfile .
|
||||
```
|
||||
|
||||
### 3. Build MegaService Docker Image
|
||||
### 2. Build MegaService Docker Image
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIExamples.git
|
||||
@@ -35,14 +30,14 @@ cd GenAIExamples/CodeTrans
|
||||
docker build -t opea/codetrans:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
|
||||
```
|
||||
|
||||
### 4. Build UI Docker Image
|
||||
### 3. Build UI Docker Image
|
||||
|
||||
```bash
|
||||
cd GenAIExamples/CodeTrans/ui
|
||||
docker build -t opea/codetrans-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile .
|
||||
```
|
||||
|
||||
### 5. Build Nginx Docker Image
|
||||
### 4. Build Nginx Docker Image
|
||||
|
||||
```bash
|
||||
cd GenAIComps
|
||||
|
||||
@@ -6,20 +6,15 @@ This document outlines the deployment process for a CodeTrans application utiliz
|
||||
|
||||
First of all, you need to build Docker Images locally and install the python package of it. This step can be ignored after the Docker images published to Docker hub.
|
||||
|
||||
### 1. Source Code install GenAIComps
|
||||
### 1. Build the LLM Docker Image
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
```
|
||||
|
||||
### 2. Build the LLM Docker Image
|
||||
|
||||
```bash
|
||||
docker build -t opea/llm-tgi:latest --no-cache --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/tgi/Dockerfile .
|
||||
```
|
||||
|
||||
### 3. Build MegaService Docker Image
|
||||
### 2. Build MegaService Docker Image
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIExamples.git
|
||||
@@ -27,14 +22,14 @@ cd GenAIExamples/CodeTrans
|
||||
docker build -t opea/codetrans:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
|
||||
```
|
||||
|
||||
### 4. Build UI Docker Image
|
||||
### 3. Build UI Docker Image
|
||||
|
||||
```bash
|
||||
cd GenAIExamples/CodeTrans/ui
|
||||
docker build -t opea/codetrans-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f docker/Dockerfile .
|
||||
```
|
||||
|
||||
### 5. Build Nginx Docker Image
|
||||
### 4. Build Nginx Docker Image
|
||||
|
||||
```bash
|
||||
cd GenAIComps
|
||||
|
||||
@@ -14,14 +14,11 @@ After launching your instance, you can connect to it using SSH (for Linux instan
|
||||
|
||||
First of all, you need to build Docker Images locally and install the python package of it.
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
```
|
||||
|
||||
### 1. Build LLM Image
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
docker build -t opea/llm-docsum-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/summarization/tgi/langchain/Dockerfile .
|
||||
```
|
||||
|
||||
|
||||
@@ -6,22 +6,19 @@ This document outlines the deployment process for a Document Summarization appli
|
||||
|
||||
First of all, you need to build Docker Images locally. This step can be ignored once the Docker images are published to Docker hub.
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
```
|
||||
|
||||
### 1. Pull TGI Gaudi Image
|
||||
|
||||
As TGI Gaudi has been officially published as a Docker image, we simply need to pull it:
|
||||
|
||||
```bash
|
||||
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.1
|
||||
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
|
||||
```
|
||||
|
||||
### 2. Build LLM Image
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
docker build -t opea/llm-docsum-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/summarization/tgi/langchain/Dockerfile .
|
||||
```
|
||||
|
||||
@@ -56,7 +53,7 @@ docker build -t opea/docsum-react-ui:latest --build-arg BACKEND_SERVICE_ENDPOINT
|
||||
|
||||
Then run the command `docker images`, you will have the following Docker Images:
|
||||
|
||||
1. `ghcr.io/huggingface/tgi-gaudi:2.0.1`
|
||||
1. `ghcr.io/huggingface/tgi-gaudi:2.0.5`
|
||||
2. `opea/llm-docsum-tgi:latest`
|
||||
3. `opea/docsum:latest`
|
||||
4. `opea/docsum-ui:latest`
|
||||
|
||||
@@ -14,14 +14,11 @@ After launching your instance, you can connect to it using SSH (for Linux instan
|
||||
|
||||
First of all, you need to build Docker Images locally. This step can be ignored once the Docker images are published to Docker hub.
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
```
|
||||
|
||||
### 1. Build LLM Image
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
docker build -t opea/llm-faqgen-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/faq-generation/tgi/langchain/Dockerfile .
|
||||
```
|
||||
|
||||
|
||||
@@ -6,22 +6,19 @@ This document outlines the deployment process for a FAQ Generation application u
|
||||
|
||||
First of all, you need to build Docker Images locally. This step can be ignored once the Docker images are published to Docker hub.
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
```
|
||||
|
||||
### 1. Pull TGI Gaudi Image
|
||||
|
||||
As TGI Gaudi has been officially published as a Docker image, we simply need to pull it:
|
||||
|
||||
```bash
|
||||
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.1
|
||||
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
|
||||
```
|
||||
|
||||
### 2. Build LLM Image
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
docker build -t opea/llm-faqgen-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/faq-generation/tgi/langchain/Dockerfile .
|
||||
```
|
||||
|
||||
@@ -56,7 +53,7 @@ docker build -t opea/faqgen-react-ui:latest --build-arg https_proxy=$https_proxy
|
||||
|
||||
Then run the command `docker images`, you will have the following Docker Images:
|
||||
|
||||
1. `ghcr.io/huggingface/tgi-gaudi:2.0.1`
|
||||
1. `ghcr.io/huggingface/tgi-gaudi:2.0.5`
|
||||
2. `opea/llm-faqgen-tgi:latest`
|
||||
3. `opea/faqgen:latest`
|
||||
4. `opea/faqgen-ui:latest`
|
||||
|
||||
@@ -6,23 +6,18 @@ This document outlines the deployment process for a Instruction Tuning Service u
|
||||
|
||||
First of all, you need to build Docker Images locally. This step can be ignored after the Docker images published to Docker hub.
|
||||
|
||||
### 1. Source Code install GenAIComps
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
```
|
||||
|
||||
### 2. Build Docker Image
|
||||
### 1. Build Docker Image
|
||||
|
||||
Build docker image with below command:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
export HF_TOKEN=${your_huggingface_token}
|
||||
docker build -t opea/finetuning:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy --build-arg HF_TOKEN=$HF_TOKEN -f comps/finetuning/Dockerfile .
|
||||
```
|
||||
|
||||
### 3. Run Docker with CLI
|
||||
### 2. Run Docker with CLI
|
||||
|
||||
Start docker container with below command:
|
||||
|
||||
|
||||
@@ -6,22 +6,17 @@ This document outlines the deployment process for a Instruction Tuning Service u
|
||||
|
||||
First of all, you need to build Docker Images locally. This step can be ignored after the Docker images published to Docker hub.
|
||||
|
||||
### 1. Source Code install GenAIComps
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
```
|
||||
|
||||
### 2. Build Docker Image
|
||||
### 1. Build Docker Image
|
||||
|
||||
Build docker image with below command:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
docker build -t opea/finetuning-gaudi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/finetuning/Dockerfile.intel_hpu .
|
||||
```
|
||||
|
||||
### 3. Run Docker with CLI
|
||||
### 2. Run Docker with CLI
|
||||
|
||||
Start docker container with below command:
|
||||
|
||||
|
||||
@@ -100,18 +100,13 @@ Note: Please replace with `host_ip` with you external IP address, do not use loc
|
||||
|
||||
## 🚀 Build Docker Images
|
||||
|
||||
First of all, you need to build Docker Images locally and install the python package of it.
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
```
|
||||
|
||||
### 1. Build embedding-multimodal-bridgetower Image
|
||||
|
||||
Build embedding-multimodal-bridgetower docker image
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
docker build --no-cache -t opea/embedding-multimodal-bridgetower:latest --build-arg EMBEDDER_PORT=$EMBEDDER_PORT --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/multimodal/bridgetower/Dockerfile .
|
||||
```
|
||||
|
||||
@@ -340,6 +335,6 @@ curl http://${host_ip}:8888/v1/multimodalqna \
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:8888/v1/multimodalqna \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"messages": [{"role": "user", "content": [{"type": "text", "text": "hello, "}, {"type": "image_url", "image_url": {"url": "https://www.ilankelman.org/stopsigns/australia.jpg"}}]}, {"role": "assistant", "content": "opea project! "}, {"role": "user", "content": "chao, "}], "max_tokens": 10}'
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"messages": [{"role": "user", "content": [{"type": "text", "text": "hello, "}, {"type": "image_url", "image_url": {"url": "https://www.ilankelman.org/stopsigns/australia.jpg"}}]}, {"role": "assistant", "content": "opea project! "}, {"role": "user", "content": "chao, "}], "max_tokens": 10}'
|
||||
```
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
# Build Mega Service of MultimodalRAGWithVideos on Gaudi
|
||||
# Build Mega Service of MultimodalQnA on Gaudi
|
||||
|
||||
This document outlines the deployment process for a MultimodalQnA application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline on Intel Gaudi server. The steps include Docker image creation, container deployment via Docker Compose, and service execution to integrate microservices such as `multimodal_embedding` that employs [BridgeTower](https://huggingface.co/BridgeTower/bridgetower-large-itm-mlm-gaudi) model as embedding model, `multimodal_retriever`, `lvm`, and `multimodal-data-prep`. We will publish the Docker images to Docker Hub soon, it will simplify the deployment process for this service.
|
||||
|
||||
@@ -52,16 +52,13 @@ Note: Please replace with `host_ip` with you external IP address, do not use loc
|
||||
|
||||
First of all, you need to build Docker Images locally and install the python package of it.
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
```
|
||||
|
||||
### 1. Build embedding-multimodal-bridgetower Image
|
||||
|
||||
Build embedding-multimodal-bridgetower docker image
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
docker build --no-cache -t opea/embedding-multimodal-bridgetower:latest --build-arg EMBEDDER_PORT=$EMBEDDER_PORT --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/multimodal/bridgetower/Dockerfile .
|
||||
```
|
||||
|
||||
@@ -82,7 +79,7 @@ docker build --no-cache -t opea/retriever-multimodal-redis:latest --build-arg ht
|
||||
Build TGI Gaudi image
|
||||
|
||||
```bash
|
||||
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.4
|
||||
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
|
||||
```
|
||||
|
||||
Build lvm-tgi microservice image
|
||||
@@ -105,7 +102,6 @@ To construct the Mega Service, we utilize the [GenAIComps](https://github.com/op
|
||||
git clone https://github.com/opea-project/GenAIExamples.git
|
||||
cd GenAIExamples/MultimodalQnA
|
||||
docker build --no-cache -t opea/multimodalqna:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
|
||||
cd ../..
|
||||
```
|
||||
|
||||
### 6. Build UI Docker Image
|
||||
@@ -115,14 +111,13 @@ Build frontend Docker image via below command:
|
||||
```bash
|
||||
cd GenAIExamples/MultimodalQnA/ui/
|
||||
docker build --no-cache -t opea/multimodalqna-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile .
|
||||
cd ../../../
|
||||
```
|
||||
|
||||
Then run the command `docker images`, you will have the following 8 Docker Images:
|
||||
|
||||
1. `opea/dataprep-multimodal-redis:latest`
|
||||
2. `opea/lvm-tgi:latest`
|
||||
3. `ghcr.io/huggingface/tgi-gaudi:2.0.4`
|
||||
3. `ghcr.io/huggingface/tgi-gaudi:2.0.5`
|
||||
4. `opea/retriever-multimodal-redis:latest`
|
||||
5. `opea/embedding-multimodal:latest`
|
||||
6. `opea/embedding-multimodal-bridgetower:latest`
|
||||
|
||||
@@ -6,14 +6,11 @@ This document outlines the deployment process for OPEA Productivity Suite utiliz
|
||||
|
||||
First of all, you need to build Docker Images locally and install the python package of it.
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
```
|
||||
|
||||
### 1. Build Embedding Image
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
docker build --no-cache -t opea/embedding-tei:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/tei/langchain/Dockerfile .
|
||||
```
|
||||
|
||||
@@ -69,7 +66,6 @@ The Productivity Suite is composed of multiple GenAIExample reference solutions
|
||||
git clone https://github.com/opea-project/GenAIExamples.git
|
||||
cd GenAIExamples/ChatQnA/
|
||||
docker build --no-cache -t opea/chatqna:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
|
||||
cd ../../..
|
||||
```
|
||||
|
||||
#### 8.2 Build DocSum Megaservice Docker Images
|
||||
@@ -77,7 +73,6 @@ cd ../../..
|
||||
```bash
|
||||
cd GenAIExamples/DocSum
|
||||
docker build --no-cache -t opea/docsum:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
|
||||
cd ../../..
|
||||
```
|
||||
|
||||
#### 8.3 Build CodeGen Megaservice Docker Images
|
||||
@@ -85,7 +80,6 @@ cd ../../..
|
||||
```bash
|
||||
cd GenAIExamples/CodeGen
|
||||
docker build --no-cache -t opea/codegen:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
|
||||
cd ../../..
|
||||
```
|
||||
|
||||
#### 8.4 Build FAQGen Megaservice Docker Images
|
||||
@@ -93,7 +87,6 @@ cd ../../..
|
||||
```bash
|
||||
cd GenAIExamples/FaqGen
|
||||
docker build --no-cache -t opea/faqgen:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
|
||||
cd ../../..
|
||||
```
|
||||
|
||||
### 9. Build UI Docker Image
|
||||
@@ -105,7 +98,6 @@ Build frontend Docker image that enables via below command:
|
||||
```bash
|
||||
cd GenAIExamples/ProductivitySuite/ui
|
||||
docker build --no-cache -t ProductivitySuite/docker_compose/intel/cpu/xeon/compose.yaml docker/Dockerfile.react .
|
||||
cd ../../../..
|
||||
```
|
||||
|
||||
## 🚀 Start Microservices
|
||||
|
||||
@@ -6,23 +6,18 @@ This document outlines the deployment process for a rerank model finetuning serv
|
||||
|
||||
First of all, you need to build Docker Images locally. This step can be ignored after the Docker images published to Docker hub.
|
||||
|
||||
### 1. Source Code install GenAIComps
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
```
|
||||
|
||||
### 2. Build Docker Image
|
||||
### 1. Build Docker Image
|
||||
|
||||
Build docker image with below command:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
export HF_TOKEN=${your_huggingface_token}
|
||||
docker build -t opea/finetuning:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy --build-arg HF_TOKEN=$HF_TOKEN -f comps/finetuning/Dockerfile .
|
||||
```
|
||||
|
||||
### 3. Run Docker with CLI
|
||||
### 2. Run Docker with CLI
|
||||
|
||||
Start docker container with below command:
|
||||
|
||||
|
||||
@@ -6,22 +6,17 @@ This document outlines the deployment process for a rerank model finetuning serv
|
||||
|
||||
First of all, you need to build Docker Images locally. This step can be ignored after the Docker images published to Docker hub.
|
||||
|
||||
### 1. Source Code install GenAIComps
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
```
|
||||
|
||||
### 2. Build Docker Image
|
||||
### 1. Build Docker Image
|
||||
|
||||
Build docker image with below command:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
docker build -t opea/finetuning-gaudi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/finetuning/Dockerfile.intel_hpu .
|
||||
```
|
||||
|
||||
### 3. Run Docker with CLI
|
||||
### 2. Run Docker with CLI
|
||||
|
||||
Start docker container with below command:
|
||||
|
||||
|
||||
@@ -4,38 +4,33 @@ This document outlines the deployment process for a SearchQnA application utiliz
|
||||
|
||||
## 🚀 Build Docker images
|
||||
|
||||
### 1. Source Code install GenAIComps
|
||||
### 1. Build Embedding Image
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
```
|
||||
|
||||
### 2. Build Embedding Image
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/embedding-tei:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/tei/langchain/Dockerfile .
|
||||
```
|
||||
|
||||
### 3. Build Retriever Image
|
||||
### 2. Build Retriever Image
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/web-retriever-chroma:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/web_retrievers/chroma/langchain/Dockerfile .
|
||||
```
|
||||
|
||||
### 4. Build Rerank Image
|
||||
### 3. Build Rerank Image
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/reranking-tei:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/reranks/tei/Dockerfile .
|
||||
```
|
||||
|
||||
### 5. Build LLM Image
|
||||
### 4. Build LLM Image
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/llm-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/tgi/Dockerfile .
|
||||
```
|
||||
|
||||
### 6. Build MegaService Docker Image
|
||||
### 5. Build MegaService Docker Image
|
||||
|
||||
To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `searchqna.py` Python script. Build the MegaService Docker image using the command below:
|
||||
|
||||
@@ -43,17 +38,15 @@ To construct the Mega Service, we utilize the [GenAIComps](https://github.com/op
|
||||
git clone https://github.com/opea-project/GenAIExamples.git
|
||||
cd GenAIExamples/SearchQnA
|
||||
docker build --no-cache -t opea/searchqna:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
|
||||
cd ../../..
|
||||
```
|
||||
|
||||
### 7. Build UI Docker Image
|
||||
### 6. Build UI Docker Image
|
||||
|
||||
Build frontend Docker image via below command:
|
||||
|
||||
```bash
|
||||
cd GenAIExamples/SearchQnA/ui
|
||||
docker build --no-cache -t opea/opea/searchqna-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile .
|
||||
cd ../../../..
|
||||
```
|
||||
|
||||
Then run the command `docker images`, you will have following images ready:
|
||||
|
||||
@@ -6,38 +6,33 @@ This document outlines the deployment process for a SearchQnA application utiliz
|
||||
|
||||
First of all, you need to build Docker Images locally. This step can be ignored after the Docker images published to Docker hub.
|
||||
|
||||
### 1. Source Code install GenAIComps
|
||||
### 1. Build Embedding Image
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
```
|
||||
|
||||
### 2. Build Embedding Image
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/embedding-tei:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/tei/langchain/Dockerfile .
|
||||
```
|
||||
|
||||
### 3. Build Retriever Image
|
||||
### 2. Build Retriever Image
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/web-retriever-chroma:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/web_retrievers/chroma/langchain/Dockerfile .
|
||||
```
|
||||
|
||||
### 4. Build Rerank Image
|
||||
### 3. Build Rerank Image
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/reranking-tei:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/reranks/tei/Dockerfile .
|
||||
```
|
||||
|
||||
### 5. Build LLM Image
|
||||
### 4. Build LLM Image
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/llm-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/tgi/Dockerfile .
|
||||
```
|
||||
|
||||
### 6. Build TEI Gaudi Image
|
||||
### 5. Build TEI Gaudi Image
|
||||
|
||||
Since a TEI Gaudi Docker image hasn't been published, we'll need to build it from the [tei-guadi](https://github.com/huggingface/tei-gaudi) repository.
|
||||
|
||||
@@ -48,7 +43,7 @@ docker build --no-cache -f Dockerfile-hpu -t opea/tei-gaudi:latest .
|
||||
cd ../..
|
||||
```
|
||||
|
||||
### 7. Build MegaService Docker Image
|
||||
### 6. Build MegaService Docker Image
|
||||
|
||||
To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `searchqna.py` Python script. Build the MegaService Docker image using the command below:
|
||||
|
||||
@@ -56,7 +51,6 @@ To construct the Mega Service, we utilize the [GenAIComps](https://github.com/op
|
||||
git clone https://github.com/opea-project/GenAIExamples.git
|
||||
cd GenAIExamples/SearchQnA/docker
|
||||
docker build --no-cache -t opea/searchqna:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
|
||||
cd ../../..
|
||||
```
|
||||
|
||||
Then you need to build the last Docker image `opea/searchqna:latest`, which represents the Mega service through following commands:
|
||||
|
||||
@@ -14,14 +14,11 @@ After launching your instance, you can connect to it using SSH (for Linux instan
|
||||
|
||||
First of all, you need to build Docker Images locally and install the python package of it.
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
```
|
||||
|
||||
### 1. Build LLM Image
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
docker build -t opea/llm-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/tgi/Dockerfile .
|
||||
```
|
||||
|
||||
|
||||
@@ -6,14 +6,11 @@ This document outlines the deployment process for a Translation application util
|
||||
|
||||
First of all, you need to build Docker Images locally. This step can be ignored after the Docker images published to Docker hub.
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
```
|
||||
|
||||
### 1. Build LLM Image
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
docker build -t opea/llm-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/tgi/Dockerfile .
|
||||
```
|
||||
|
||||
@@ -32,7 +29,7 @@ docker build -t opea/translation:latest --build-arg https_proxy=$https_proxy --b
|
||||
Construct the frontend Docker image using the command below:
|
||||
|
||||
```bash
|
||||
cd GenAIExamples/Translation//
|
||||
cd GenAIExamples/Translation
|
||||
docker build -t opea/translation-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile .
|
||||
```
|
||||
|
||||
|
||||
@@ -48,14 +48,11 @@ Port 5173 - Open to 0.0.0.0/0
|
||||
|
||||
First of all, you need to build Docker Images locally and install the python package of it.
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
```
|
||||
|
||||
### 1. Build Embedding Image
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
docker build -t opea/embedding-multimodal-clip:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/multimodal_clip/Dockerfile .
|
||||
```
|
||||
|
||||
@@ -84,7 +81,6 @@ docker build -t opea/lvm-video-llama:latest --build-arg https_proxy=$https_proxy
|
||||
|
||||
```bash
|
||||
docker build -t opea/dataprep-multimodal-vdms:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/dataprep/vdms/multimodal_langchain/Dockerfile .
|
||||
cd ..
|
||||
```
|
||||
|
||||
### 6. Build MegaService Docker Image
|
||||
@@ -104,7 +100,7 @@ docker build -t opea/videoqna:latest --build-arg https_proxy=$https_proxy --buil
|
||||
Build frontend Docker image via below command:
|
||||
|
||||
```bash
|
||||
cd ui
|
||||
cd GenAIExamples/VideoQnA/ui/
|
||||
docker build -t opea/videoqna-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile .
|
||||
```
|
||||
|
||||
|
||||
@@ -36,16 +36,12 @@ Port 5173 - Open to 0.0.0.0/0
|
||||
|
||||
First of all, you need to build Docker Images locally and install the python package of it.
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
```
|
||||
|
||||
### 1. Build LVM and NGINX Docker Images
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
docker build --no-cache -t opea/lvm-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/lvms/tgi-llava/Dockerfile .
|
||||
|
||||
docker build --no-cache -t opea/nginx:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/nginx/Dockerfile .
|
||||
```
|
||||
|
||||
@@ -57,7 +53,6 @@ To construct the Mega Service, we utilize the [GenAIComps](https://github.com/op
|
||||
git clone https://github.com/opea-project/GenAIExamples.git
|
||||
cd GenAIExamples/VisualQnA
|
||||
docker build --no-cache -t opea/visualqna:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
|
||||
cd ../..
|
||||
```
|
||||
|
||||
### 3. Build UI Docker Image
|
||||
@@ -67,7 +62,6 @@ Build frontend Docker image via below command:
|
||||
```bash
|
||||
cd GenAIExamples/VisualQnA/ui
|
||||
docker build --no-cache -t opea/visualqna-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f docker/Dockerfile .
|
||||
cd ../../..
|
||||
```
|
||||
|
||||
### 4. Pull TGI Xeon Image
|
||||
|
||||
@@ -6,28 +6,22 @@ This document outlines the deployment process for a VisualQnA application utiliz
|
||||
|
||||
First of all, you need to build Docker Images locally. This step can be ignored after the Docker images published to Docker hub.
|
||||
|
||||
### 1. Source Code install GenAIComps
|
||||
### 1. Build LVM and NGINX Docker Images
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
```
|
||||
|
||||
### 2. Build LVM and NGINX Docker Images
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/lvm-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/lvms/tgi-llava/Dockerfile .
|
||||
|
||||
docker build --no-cache -t opea/nginx:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/nginx/Dockerfile .
|
||||
```
|
||||
|
||||
### 3. Pull TGI Gaudi Image
|
||||
### 2. Pull TGI Gaudi Image
|
||||
|
||||
```bash
|
||||
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.4
|
||||
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
|
||||
```
|
||||
|
||||
### 4. Build MegaService Docker Image
|
||||
### 3. Build MegaService Docker Image
|
||||
|
||||
To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `visuralqna.py` Python script. Build the MegaService Docker image using the command below:
|
||||
|
||||
@@ -38,19 +32,18 @@ docker build --no-cache -t opea/visualqna:latest --build-arg https_proxy=$https_
|
||||
cd ../..
|
||||
```
|
||||
|
||||
### 5. Build UI Docker Image
|
||||
### 4. Build UI Docker Image
|
||||
|
||||
Build frontend Docker image via below command:
|
||||
|
||||
```bash
|
||||
cd GenAIExamples/VisualQnA/ui
|
||||
docker build --no-cache -t opea/visualqna-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile .
|
||||
cd ../../..
|
||||
```
|
||||
|
||||
Then run the command `docker images`, you will have the following 5 Docker Images:
|
||||
|
||||
1. `ghcr.io/huggingface/tgi-gaudi:2.0.4`
|
||||
1. `ghcr.io/huggingface/tgi-gaudi:2.0.5`
|
||||
2. `opea/lvm-tgi:latest`
|
||||
3. `opea/visualqna:latest`
|
||||
4. `opea/visualqna-ui:latest`
|
||||
|
||||
Reference in New Issue
Block a user