Update FinanceAgent v1.3 (#1819)
Signed-off-by: minmin-intel <minmin.hou@intel.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
@@ -2,14 +2,20 @@
|
||||
|
||||
## 1. Overview
|
||||
|
||||
The architecture of this Finance Agent example is shown in the figure below. The agent has 3 main functions:
|
||||
The architecture of this Finance Agent example is shown in the figure below. The agent is a hierarchical multi-agent system and has 3 main functions:
|
||||
|
||||
1. Summarize long financial documents and provide key points.
|
||||
2. Answer questions over financial documents, such as SEC filings.
|
||||
3. Conduct research of a public company and provide an investment report of the company.
|
||||
1. Summarize long financial documents and provide key points (using OPEA DocSum).
|
||||
2. Answer questions over financial documents, such as SEC filings (using a worker agent).
|
||||
3. Conduct research of a public company and provide an investment report of the company (using a worker agent).
|
||||
|
||||
The user interacts with the supervisor agent through the graphical UI. The supervisor agent gets the requests from the user and dispatches tasks to worker agents or to the summarization microservice. The user can also uploads documents through the UI.
|
||||
|
||||

|
||||
|
||||
The architectural diagram of the `dataprep` microservice is shown below. We use [docling](https://github.com/docling-project/docling) to extract text from PDFs and URLs into markdown format. Both the full document content and tables are extracted. We then use an LLM to extract metadata from the document, including the company name, year, quarter, document type, and document title. The full document markdown then gets chunked, and LLM is used to summarize each chunk, and the summaries are embedded and saved to a vector database. Each table is also summarized by LLM and the summaries are embedded and saved to the vector database. The chunks and tables are also saved into a KV store. The pipeline is designed as such to improve retrieval accuracy of the `search_knowledge_base` tool used by the Question Answering worker agent.
|
||||
|
||||

|
||||
|
||||
The `dataprep` microservice can ingest financial documents in two formats:
|
||||
|
||||
1. PDF documents stored locally, such as SEC filings saved in local directory.
|
||||
@@ -20,6 +26,10 @@ Please note:
|
||||
1. Each financial document should be about one company.
|
||||
2. URLs ending in `.htm` are not supported.
|
||||
|
||||
The Question Answering worker agent uses `search_knowledge_base` tool to get relevant information. The tool uses a dense retriever and a BM25 retriever to get many pieces of information including financial statement tables. Then an LLM is used to extract useful information related to the query from the retrieved documents. Refer to the diagram below. We found that using this method significantly improves agent performance.
|
||||
|
||||

|
||||
|
||||
## 2. Getting started
|
||||
|
||||
### 2.1 Download repos
|
||||
@@ -27,8 +37,8 @@ Please note:
|
||||
```bash
|
||||
mkdir /path/to/your/workspace/
|
||||
export WORKDIR=/path/to/your/workspace/
|
||||
genaicomps
|
||||
genaiexamples
|
||||
cd $WORKDIR
|
||||
git clone https://github.com/opea-project/GenAIExamples.git
|
||||
```
|
||||
|
||||
### 2.2 Set up env vars
|
||||
@@ -36,15 +46,19 @@ genaiexamples
|
||||
```bash
|
||||
export HF_CACHE_DIR=/path/to/your/model/cache/
|
||||
export HF_TOKEN=<you-hf-token>
|
||||
|
||||
export FINNHUB_API_KEY=<your-finnhub-api-key> # go to https://finnhub.io/ to get your free api key
|
||||
export FINANCIAL_DATASETS_API_KEY=<your-api-key> # go to https://docs.financialdatasets.ai/ to get your free api key
|
||||
```
|
||||
|
||||
### 2.3 Build docker images
|
||||
### 2.3 [Optional] Build docker images
|
||||
|
||||
Build docker images for dataprep, agent, agent-ui.
|
||||
Only needed when docker pull failed.
|
||||
|
||||
```bash
|
||||
cd GenAIExamples/FinanceAgent/docker_image_build
|
||||
cd $WORKDIR/GenAIExamples/FinanceAgent/docker_image_build
|
||||
# get GenAIComps repo
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
# build the images
|
||||
docker compose -f build.yaml build --no-cache
|
||||
```
|
||||
|
||||
@@ -92,6 +106,8 @@ python $WORKPATH/tests/test_redis_finance.py --port 6007 --test_option get
|
||||
|
||||
### 3.3 Launch the multi-agent system
|
||||
|
||||
The command below will launch 3 agent microservices, 1 docsum microservice, 1 UI microservice.
|
||||
|
||||
```bash
|
||||
# inside $WORKDIR/GenAIExamples/FinanceAgent/docker_compose/intel/hpu/gaudi/
|
||||
bash launch_agents.sh
|
||||
@@ -115,14 +131,14 @@ prompt="generate NVDA financial research report"
|
||||
python3 $WORKDIR/GenAIExamples/FinanceAgent/tests/test.py --prompt "$prompt" --agent_role "worker" --ext_port $agent_port --tool_choice "get_current_date" --tool_choice "get_share_performance"
|
||||
```
|
||||
|
||||
Supervisor ReAct Agent:
|
||||
Supervisor Agent single turns:
|
||||
|
||||
```bash
|
||||
export agent_port="9090"
|
||||
python3 $WORKDIR/GenAIExamples/FinanceAgent/tests/test.py --agent_role "supervisor" --ext_port $agent_port --stream
|
||||
```
|
||||
|
||||
Supervisor ReAct Agent Multi turn:
|
||||
Supervisor Agent multi turn:
|
||||
|
||||
```bash
|
||||
python3 $WORKDIR/GenAIExamples/FinanceAgent/tests/test.py --agent_role "supervisor" --ext_port $agent_port --multi-turn --stream
|
||||
@@ -134,12 +150,32 @@ python3 $WORKDIR/GenAIExamples/FinanceAgent/tests/test.py --agent_role "supervis
|
||||
The UI microservice is launched in the previous step with the other microservices.
|
||||
To see the UI, open a web browser to `http://${ip_address}:5175` to access the UI. Note the `ip_address` here is the host IP of the UI microservice.
|
||||
|
||||
1. `create Admin Account` with a random value
|
||||
1. Create Admin Account with a random value
|
||||
|
||||
2. use an opea agent endpoint, for example, the `Research Agent` endpoint `http://$ip_address:9096/v1`, which is a openai compatible api
|
||||
2. Enter the endpoints in the `Connections` settings
|
||||
|
||||

|
||||
First, click on the user icon in the upper right corner to open `Settings`. Click on `Admin Settings`. Click on `Connections`.
|
||||
|
||||
3. test opea agent with ui
|
||||
Then, enter the supervisor agent endpoint in the `OpenAI API` section: `http://${ip_address}:9090/v1`. Enter the API key as "empty". Add an arbitrary model id in `Model IDs`, for example, "opea_agent". The `ip_address` here should be the host ip of the agent microservice.
|
||||
|
||||
Then, enter the dataprep endpoint in the `Icloud File API` section. You first need to enable `Icloud File API` by clicking on the button on the right to turn it into green and then enter the endpoint url, for example, `http://${ip_address}:6007/v1`. The `ip_address` here should be the host ip of the dataprep microservice.
|
||||
|
||||
You should see screen like the screenshot below when the settings are done.
|
||||
|
||||

|
||||
|
||||
3. Upload documents with UI
|
||||
|
||||
Click on the `Workplace` icon in the top left corner. Click `Knowledge`. Click on the "+" sign to the right of `Icloud Knowledge`. You can paste an url in the left hand side of the pop-up window, or upload a local file by click on the cloud icon on the right hand side of the pop-up window. Then click on the `Upload Confirm` button. Wait till the processing is done and the pop-up window will be closed on its own when the data ingestion is done. See the screenshot below.
|
||||
|
||||
Note: the data ingestion may take a few minutes depending on the length of the document. Please wait patiently and do not close the pop-up window.
|
||||
|
||||

|
||||
|
||||
4. Test agent with UI
|
||||
|
||||
After the settings are done and documents are ingested, you can start to ask questions to the agent. Click on the `New Chat` icon in the top left corner, and type in your questions in the text box in the middle of the UI.
|
||||
|
||||
The UI will stream the agent's response tokens. You need to expand the `Thinking` tab to see the agent's reasoning process. After the agent made tool calls, you would also see the tool output after the tool returns output to the agent. Note: it may take a while to get the tool output back if the tool execution takes time.
|
||||
|
||||

|
||||
|
||||
BIN
FinanceAgent/assets/fin_agent_dataprep.png
Normal file
BIN
FinanceAgent/assets/fin_agent_dataprep.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 103 KiB |
Binary file not shown.
|
Before Width: | Height: | Size: 57 KiB After Width: | Height: | Size: 59 KiB |
BIN
FinanceAgent/assets/finqa_tool.png
Normal file
BIN
FinanceAgent/assets/finqa_tool.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 82 KiB |
BIN
FinanceAgent/assets/ui_connections_settings.png
Normal file
BIN
FinanceAgent/assets/ui_connections_settings.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 167 KiB |
BIN
FinanceAgent/assets/upload_doc_ui.png
Normal file
BIN
FinanceAgent/assets/upload_doc_ui.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 105 KiB |
@@ -47,7 +47,7 @@ services:
|
||||
ip_address: ${ip_address}
|
||||
strategy: react_llama
|
||||
with_memory: false
|
||||
recursion_limit: ${recursion_limit_worker}
|
||||
recursion_limit: 25
|
||||
llm_engine: vllm
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
llm_endpoint_url: ${LLM_ENDPOINT_URL}
|
||||
@@ -68,7 +68,7 @@ services:
|
||||
container_name: supervisor-agent-endpoint
|
||||
depends_on:
|
||||
- worker-finqa-agent
|
||||
# - worker-research-agent
|
||||
- worker-research-agent
|
||||
volumes:
|
||||
- ${TOOLSET_PATH}:/home/user/tools/
|
||||
- ${PROMPT_PATH}:/home/user/prompts/
|
||||
|
||||
@@ -20,9 +20,3 @@ services:
|
||||
https_proxy: ${https_proxy}
|
||||
no_proxy: ${no_proxy}
|
||||
image: ${REGISTRY:-opea}/agent:${TAG:-latest}
|
||||
# agent-ui:
|
||||
# build:
|
||||
# context: ../ui
|
||||
# dockerfile: ./docker/Dockerfile
|
||||
# extends: agent
|
||||
# image: ${REGISTRY:-opea}/agent-ui:${TAG:-latest}
|
||||
|
||||
@@ -33,6 +33,7 @@ For writing a comprehensive analysis financial research report, you can use all
|
||||
4. Provide stock performance, because the financial report is used for stock investment analysis.
|
||||
5. Read the execution history if any to understand the tools that have been called and the information that has been gathered.
|
||||
6. Reason about the information gathered so far and decide if you can answer the question or if you need to call more tools.
|
||||
7. Most of the tools need ticker symbol, use your knowledge to convert the company name to the ticker symbol if user only provides the company name.
|
||||
|
||||
**Output format:**
|
||||
You should output your thought process:
|
||||
|
||||
@@ -18,13 +18,13 @@ def process_request(url, query, is_stream=False):
|
||||
else:
|
||||
for line in resp.iter_lines(decode_unicode=True):
|
||||
print(line)
|
||||
ret = None
|
||||
ret = "Done"
|
||||
|
||||
resp.raise_for_status() # Raise an exception for unsuccessful HTTP status codes
|
||||
return ret
|
||||
except requests.exceptions.RequestException as e:
|
||||
ret = f"An error occurred:{e}"
|
||||
return None
|
||||
ret = f"ERROR OCCURRED IN TEST:{e}"
|
||||
return ret
|
||||
|
||||
|
||||
def test_worker_agent(args):
|
||||
@@ -35,6 +35,11 @@ def test_worker_agent(args):
|
||||
query = {"role": "user", "messages": args.prompt, "stream": "false", "tool_choice": args.tool_choice}
|
||||
ret = process_request(url, query)
|
||||
print("Response: ", ret)
|
||||
if "ERROR OCCURRED IN TEST" in ret.lower():
|
||||
print("Error in response, please check the server.")
|
||||
return "ERROR OCCURRED IN TEST"
|
||||
else:
|
||||
return "test completed with success"
|
||||
|
||||
|
||||
def add_message_and_run(url, user_message, thread_id, stream=False):
|
||||
@@ -42,6 +47,7 @@ def add_message_and_run(url, user_message, thread_id, stream=False):
|
||||
query = {"role": "user", "messages": user_message, "thread_id": thread_id, "stream": stream}
|
||||
ret = process_request(url, query, is_stream=stream)
|
||||
print("Response: ", ret)
|
||||
return ret
|
||||
|
||||
|
||||
def test_chat_completion_multi_turn(args):
|
||||
@@ -51,14 +57,21 @@ def test_chat_completion_multi_turn(args):
|
||||
# first turn
|
||||
print("===============First turn==================")
|
||||
user_message = "Key takeaways of Gap's 2024 Q4 earnings call?"
|
||||
add_message_and_run(url, user_message, thread_id, stream=args.stream)
|
||||
ret = add_message_and_run(url, user_message, thread_id, stream=args.stream)
|
||||
if "ERROR OCCURRED IN TEST" in ret:
|
||||
print("Error in response, please check the server.")
|
||||
return "ERROR OCCURRED IN TEST"
|
||||
print("===============End of first turn==================")
|
||||
|
||||
# second turn
|
||||
print("===============Second turn==================")
|
||||
user_message = "What was Gap's forecast for 2025?"
|
||||
add_message_and_run(url, user_message, thread_id, stream=args.stream)
|
||||
ret = add_message_and_run(url, user_message, thread_id, stream=args.stream)
|
||||
if "ERROR OCCURRED IN TEST" in ret:
|
||||
print("Error in response, please check the server.")
|
||||
return "ERROR OCCURRED IN TEST"
|
||||
print("===============End of second turn==================")
|
||||
return "test completed with success"
|
||||
|
||||
|
||||
def test_supervisor_agent_single_turn(args):
|
||||
@@ -66,12 +79,16 @@ def test_supervisor_agent_single_turn(args):
|
||||
query_list = [
|
||||
"What was Gap's revenue growth in 2024?",
|
||||
"Can you summarize Costco's 2025 Q2 earnings call?",
|
||||
# "Should I increase investment in Costco?",
|
||||
"Should I increase investment in Johnson & Johnson?",
|
||||
]
|
||||
for query in query_list:
|
||||
thread_id = f"{uuid.uuid4()}"
|
||||
add_message_and_run(url, query, thread_id, stream=args.stream)
|
||||
ret = add_message_and_run(url, query, thread_id, stream=args.stream)
|
||||
if "ERROR OCCURRED IN TEST" in ret:
|
||||
print("Error in response, please check the server.")
|
||||
return "ERROR OCCURRED IN TEST"
|
||||
print("=" * 50)
|
||||
return "test completed with success"
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
@@ -89,10 +106,12 @@ if __name__ == "__main__":
|
||||
|
||||
if args.agent_role == "supervisor":
|
||||
if args.multi_turn:
|
||||
test_chat_completion_multi_turn(args)
|
||||
ret = test_chat_completion_multi_turn(args)
|
||||
else:
|
||||
test_supervisor_agent_single_turn(args)
|
||||
ret = test_supervisor_agent_single_turn(args)
|
||||
print(ret)
|
||||
elif args.agent_role == "worker":
|
||||
test_worker_agent(args)
|
||||
ret = test_worker_agent(args)
|
||||
print(ret)
|
||||
else:
|
||||
raise ValueError("Invalid agent role")
|
||||
|
||||
@@ -181,9 +181,9 @@ function validate_agent_service() {
|
||||
# # test worker research agent
|
||||
echo "======================Testing worker research agent======================"
|
||||
export agent_port="9096"
|
||||
prompt="generate NVDA financial research report"
|
||||
prompt="Johnson & Johnson"
|
||||
local CONTENT=$(python3 $WORKDIR/GenAIExamples/AgentQnA/tests/test.py --prompt "$prompt" --agent_role "worker" --ext_port $agent_port --tool_choice "get_current_date" --tool_choice "get_share_performance")
|
||||
local EXIT_CODE=$(validate "$CONTENT" "NVDA" "research-agent-endpoint")
|
||||
local EXIT_CODE=$(validate "$CONTENT" "Johnson" "research-agent-endpoint")
|
||||
echo $CONTENT
|
||||
echo $EXIT_CODE
|
||||
local EXIT_CODE="${EXIT_CODE:0-1}"
|
||||
@@ -197,24 +197,24 @@ function validate_agent_service() {
|
||||
export agent_port="9090"
|
||||
local CONTENT=$(python3 $WORKDIR/GenAIExamples/FinanceAgent/tests/test.py --agent_role "supervisor" --ext_port $agent_port --stream)
|
||||
echo $CONTENT
|
||||
# local EXIT_CODE=$(validate "$CONTENT" "" "react-agent-endpoint")
|
||||
# echo $EXIT_CODE
|
||||
# local EXIT_CODE="${EXIT_CODE:0-1}"
|
||||
# if [ "$EXIT_CODE" == "1" ]; then
|
||||
# docker logs react-agent-endpoint
|
||||
# exit 1
|
||||
# fi
|
||||
local EXIT_CODE=$(validate "$CONTENT" "test completed with success" "supervisor-agent-endpoint")
|
||||
echo $EXIT_CODE
|
||||
local EXIT_CODE="${EXIT_CODE:0-1}"
|
||||
if [ "$EXIT_CODE" == "1" ]; then
|
||||
docker logs supervisor-agent-endpoint
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "======================Testing supervisor agent: multi turns ======================"
|
||||
# echo "======================Testing supervisor agent: multi turns ======================"
|
||||
local CONTENT=$(python3 $WORKDIR/GenAIExamples/FinanceAgent/tests/test.py --agent_role "supervisor" --ext_port $agent_port --multi-turn --stream)
|
||||
echo $CONTENT
|
||||
# local EXIT_CODE=$(validate "$CONTENT" "" "react-agent-endpoint")
|
||||
# echo $EXIT_CODE
|
||||
# local EXIT_CODE="${EXIT_CODE:0-1}"
|
||||
# if [ "$EXIT_CODE" == "1" ]; then
|
||||
# docker logs react-agent-endpoint
|
||||
# exit 1
|
||||
# fi
|
||||
local EXIT_CODE=$(validate "$CONTENT" "test completed with success" "supervisor-agent-endpoint")
|
||||
echo $EXIT_CODE
|
||||
local EXIT_CODE="${EXIT_CODE:0-1}"
|
||||
if [ "$EXIT_CODE" == "1" ]; then
|
||||
docker logs supervisor-agent-endpoint
|
||||
exit 1
|
||||
fi
|
||||
|
||||
}
|
||||
|
||||
@@ -237,7 +237,7 @@ stop_dataprep
|
||||
|
||||
cd $WORKPATH/tests
|
||||
|
||||
# echo "=================== #1 Building docker images===================="
|
||||
echo "=================== #1 Building docker images===================="
|
||||
build_vllm_docker_image
|
||||
build_dataprep_agent_images
|
||||
|
||||
@@ -245,14 +245,14 @@ build_dataprep_agent_images
|
||||
# build_agent_image_local
|
||||
# echo "=================== #1 Building docker images completed===================="
|
||||
|
||||
# echo "=================== #2 Start vllm endpoint===================="
|
||||
echo "=================== #2 Start vllm endpoint===================="
|
||||
start_vllm_service_70B
|
||||
# echo "=================== #2 vllm endpoint started===================="
|
||||
echo "=================== #2 vllm endpoint started===================="
|
||||
|
||||
# echo "=================== #3 Start dataprep and ingest data ===================="
|
||||
echo "=================== #3 Start dataprep and ingest data ===================="
|
||||
start_dataprep
|
||||
ingest_validate_dataprep
|
||||
# echo "=================== #3 Data ingestion and validation completed===================="
|
||||
echo "=================== #3 Data ingestion and validation completed===================="
|
||||
|
||||
echo "=================== #4 Start agents ===================="
|
||||
start_agents
|
||||
|
||||
@@ -7,7 +7,7 @@ get_company_profile:
|
||||
args_schema:
|
||||
symbol:
|
||||
type: str
|
||||
description: the company name or ticker symbol.
|
||||
description: the ticker symbol.
|
||||
return_output: profile
|
||||
|
||||
get_company_news:
|
||||
@@ -16,7 +16,7 @@ get_company_news:
|
||||
args_schema:
|
||||
symbol:
|
||||
type: str
|
||||
description: the company name or ticker symbol.
|
||||
description: the ticker symbol.
|
||||
start_date:
|
||||
type: str
|
||||
description: start date of the search period for the company's basic financials, yyyy-mm-dd.
|
||||
@@ -34,7 +34,7 @@ get_basic_financials_history:
|
||||
args_schema:
|
||||
symbol:
|
||||
type: str
|
||||
description: the company name or ticker symbol.
|
||||
description: the ticker symbol.
|
||||
freq:
|
||||
type: str
|
||||
description: reporting frequency of the company's basic financials, such as annual, quarterly.
|
||||
@@ -55,7 +55,7 @@ get_basic_financials:
|
||||
args_schema:
|
||||
symbol:
|
||||
type: str
|
||||
description: the company name or ticker symbol.
|
||||
description: the ticker symbol.
|
||||
selected_columns:
|
||||
type: list
|
||||
description: List of column names of news to return, should be chosen from 'assetTurnoverTTM', 'bookValue', 'cashRatio', 'currentRatio', 'ebitPerShare', 'eps', 'ev', 'fcfMargin', 'fcfPerShareTTM', 'grossMargin', 'inventoryTurnoverTTM', 'longtermDebtTotalAsset', 'longtermDebtTotalCapital', 'longtermDebtTotalEquity', 'netDebtToTotalCapital', 'netDebtToTotalEquity', 'netMargin', 'operatingMargin', 'payoutRatioTTM', 'pb', 'peTTM', 'pfcfTTM', 'pretaxMargin', 'psTTM', 'ptbv', 'quickRatio', 'receivablesTurnoverTTM', 'roaTTM', 'roeTTM', 'roicTTM', 'rotcTTM', 'salesPerShare', 'sgaToSale', 'tangibleBookValue', 'totalDebtToEquity', 'totalDebtToTotalAsset', 'totalDebtToTotalCapital', 'totalRatio','10DayAverageTradingVolume', '13WeekPriceReturnDaily', '26WeekPriceReturnDaily', '3MonthADReturnStd', '3MonthAverageTradingVolume', '52WeekHigh', '52WeekHighDate', '52WeekLow', '52WeekLowDate', '52WeekPriceReturnDaily', '5DayPriceReturnDaily', 'assetTurnoverAnnual', 'assetTurnoverTTM', 'beta', 'bookValuePerShareAnnual', 'bookValuePerShareQuarterly', 'bookValueShareGrowth5Y', 'capexCagr5Y', 'cashFlowPerShareAnnual', 'cashFlowPerShareQuarterly', 'cashFlowPerShareTTM', 'cashPerSharePerShareAnnual', 'cashPerSharePerShareQuarterly', 'currentDividendYieldTTM', 'currentEv/freeCashFlowAnnual', 'currentEv/freeCashFlowTTM', 'currentRatioAnnual', 'currentRatioQuarterly', 'dividendGrowthRate5Y', 'dividendPerShareAnnual', 'dividendPerShareTTM', 'dividendYieldIndicatedAnnual', 'ebitdPerShareAnnual', 'ebitdPerShareTTM', 'ebitdaCagr5Y', 'ebitdaInterimCagr5Y', 'enterpriseValue', 'epsAnnual', 'epsBasicExclExtraItemsAnnual', 'epsBasicExclExtraItemsTTM', 'epsExclExtraItemsAnnual', 'epsExclExtraItemsTTM', 'epsGrowth3Y', 'epsGrowth5Y', 'epsGrowthQuarterlyYoy', 'epsGrowthTTMYoy', 'epsInclExtraItemsAnnual', 'epsInclExtraItemsTTM', 'epsNormalizedAnnual', 'epsTTM', 'focfCagr5Y', 'grossMargin5Y', 'grossMarginAnnual', 'grossMarginTTM', 'inventoryTurnoverAnnual', 'inventoryTurnoverTTM', 'longTermDebt/equityAnnual', 'longTermDebt/equityQuarterly', 'marketCapitalization', 'monthToDatePriceReturnDaily', 'netIncomeEmployeeAnnual', 'netIncomeEmployeeTTM', 'netInterestCoverageAnnual', 'netInterestCoverageTTM', 'netMarginGrowth5Y', 'netProfitMargin5Y', 'netProfitMarginAnnual', 'netProfitMarginTTM', 'operatingMargin5Y'.
|
||||
@@ -72,7 +72,7 @@ analyze_balance_sheet:
|
||||
args_schema:
|
||||
symbol:
|
||||
type: str
|
||||
description: the company name or ticker symbol.
|
||||
description: the ticker symbol.
|
||||
period:
|
||||
type: str
|
||||
description: The period of the balance sheets, possible values such as annual, quarterly, ttm. Default is 'annual'.
|
||||
@@ -87,7 +87,7 @@ analyze_income_stmt:
|
||||
args_schema:
|
||||
symbol:
|
||||
type: str
|
||||
description: the company name or ticker symbol.
|
||||
description: the ticker symbol.
|
||||
period:
|
||||
type: str
|
||||
description: The period of the balance sheets, possible values, such as annual, quarterly, ttm. Default is 'annual'.
|
||||
@@ -102,7 +102,7 @@ analyze_cash_flow:
|
||||
args_schema:
|
||||
symbol:
|
||||
type: str
|
||||
description: the company name or ticker symbol.
|
||||
description: the ticker symbol.
|
||||
period:
|
||||
type: str
|
||||
description: The period of the balance sheets, possible values, such as annual, quarterly, ttm. Default is 'annual'.
|
||||
@@ -117,7 +117,7 @@ get_share_performance:
|
||||
args_schema:
|
||||
symbol:
|
||||
type: str
|
||||
description: the company name or ticker symbol.
|
||||
description: the ticker symbol.
|
||||
end_date:
|
||||
type: str
|
||||
description: end date of the search period for the company's basic financials, yyyy-mm-dd.
|
||||
|
||||
@@ -22,11 +22,11 @@ summarization_tool:
|
||||
description: Name of the company document belongs to
|
||||
return_output: summary
|
||||
|
||||
# research_agent:
|
||||
# description: generate research report on a specified company with fundamentals analysis, sentiment analysis and risk analysis.
|
||||
# callable_api: supervisor_tools.py:research_agent
|
||||
# args_schema:
|
||||
# company:
|
||||
# type: str
|
||||
# description: the company name
|
||||
# return_output: report
|
||||
research_agent:
|
||||
description: generate research report on a specified company with fundamentals analysis, sentiment analysis and risk analysis.
|
||||
callable_api: supervisor_tools.py:research_agent
|
||||
args_schema:
|
||||
company:
|
||||
type: str
|
||||
description: the company name
|
||||
return_output: report
|
||||
|
||||
Reference in New Issue
Block a user