refactor python script into deploy_and_benchmark.py

Signed-off-by: letonghan <letong.han@intel.com>
This commit is contained in:
letonghan
2025-01-23 14:41:11 +08:00
parent eba1c300b3
commit 78a1efd7f0
5 changed files with 1211 additions and 391 deletions

90
ChatQnA/chatqna.yaml Normal file
View File

@@ -0,0 +1,90 @@
# Copyright (C) 2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
deploy:
device: gaudi
version: 1.1.0
modelUseHostPath: /mnt/models
HUGGINGFACEHUB_API_TOKEN: ""
node: [1, 2, 4]
namespace: "default"
cards_per_node: 8
services:
backend:
instance_num: [2, 2, 4]
cores_per_instance: ""
memory_capacity: ""
teirerank:
enabled: True
model_id: ""
instance_num: [1, 1, 1]
cards_per_instance: 1
tei:
model_id: ""
instance_num: [1, 2, 4]
cores_per_instance: ""
memory_capacity: ""
llm:
engine: tgi
model_id: ""
instance_num: [7, 15, 31]
max_batch_size: [1, 2, 4, 8]
max_input_length: ""
max_total_tokens: ""
max_batch_total_tokens: ""
max_batch_prefill_tokens: ""
cards_per_instance: 1
data-prep:
instance_num: [1, 1, 1]
cores_per_instance: ""
memory_capacity: ""
retriever-usvc:
instance_num: [2, 2, 4]
cores_per_instance: ""
memory_capacity: ""
redis-vector-db:
instance_num: [1, 1, 1]
cores_per_instance: ""
memory_capacity: ""
chatqna-ui:
instance_num: [1, 1, 1]
nginx:
instance_num: [1, 1, 1]
benchmark:
# http request behavior related fields
concurrency: [1, 2, 4]
totoal_query_num: [2048, 4096]
duration: [5, 10] # unit minutes
query_num_per_concurrency: [4, 8, 16]
possion: True
possion_arrival_rate: 1.0
warmup_iterations: 10
seed: 1024
# dataset relted fields
dataset: pub_med10 # [dummy_english, dummy_chinese, pub_med100] predefined keywords for supported dataset
user_queries: [1, 2, 4]
query_token_size: 128 # if specified, means fixed query token size will be sent out
# advance settings in each component which will impact perf.
dataprep: # not target this time
chunk_size: [1024]
chunk_overlap: [1000]
retriever: # not target this time
algo: IVF
fetch_k: 2
k: 1
rerank:
top_n: 2
llm:
max_token_size: 128 # specify the output token size

View File

@@ -1,360 +0,0 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import os
from datetime import datetime
import yaml
import sys
eval_path = '/home/sdp/GenAIEval/'
sys.path.append(eval_path)
from evals.benchmark.stresscli.commands.load_test import locust_runtests
from kubernetes import client, config
def load_yaml(file_path):
with open(file_path, "r") as f:
data = yaml.safe_load(f)
return data
def get_service_cluster_ip(service_name, namespace="default"):
# Load the Kubernetes configuration
config.load_kube_config() # or use config.load_incluster_config() if running inside a Kubernetes pod
# Create an API client for the core API (which handles services)
v1 = client.CoreV1Api()
try:
# Get the service object
service = v1.read_namespaced_service(name=service_name, namespace=namespace)
# Extract the Cluster IP
cluster_ip = service.spec.cluster_ip
# Extract the port number (assuming the first port, modify if necessary)
if service.spec.ports:
port_number = service.spec.ports[0].port # Get the first port number
else:
port_number = None
return cluster_ip, port_number
except client.exceptions.ApiException as e:
print(f"Error fetching service: {e}")
return None
service_endpoints = {
"chatqna": "/v1/chatqna",
"codegen": "/v1/codegen",
"codetrans": "/v1/codetrans",
"faqgen": "/v1/faqgen",
"audioqna": "/v1/audioqna",
"visualqna": "/v1/visualqna",
}
def extract_benchmark_config_data(content):
"""Extract relevant data from the YAML based on the specified test cases."""
# Extract test suite configuration
test_suite_config = content.get("benchmark", {})
return {
# no examples param
"example_name": test_suite_config.get("example_name", "chatqna"),
"concurrency": test_suite_config.get("concurrency", []),
"totoal_query_num": test_suite_config.get("user_queries", []),
"duration:": test_suite_config.get("duration:", []),
"query_num_per_concurrency": test_suite_config.get("query_num_per_concurrency", []),
"possion": test_suite_config.get("possion", False),
"possion_arrival_rate": test_suite_config.get("possion_arrival_rate", 1.0),
"warmup_iterations": test_suite_config.get("warmup_iterations", 10),
"seed": test_suite_config.get("seed", None),
"dataset": test_suite_config.get("dataset", []),
"user_queries": test_suite_config.get("user_queries", [1]),
"query_token_size": test_suite_config.get("query_token_size"),
# new params
"dataprep_chunk_size": test_suite_config.get("data_prep", {}).get("chunk_size", [1024]),
"dataprep_chunk_overlap": test_suite_config.get("data_prep", {}).get("chunk_overlap", [1000]),
"retriever_algo": test_suite_config.get("retriever", {}).get("algo", 'IVF'),
"retriever_fetch_k": test_suite_config.get("retriever", {}).get("fetch_k", 2),
"rerank_top_n": test_suite_config.get("rerank", {}).get("top_n", 2),
"llm_max_token_size": test_suite_config.get("llm", {}).get("max_token_size", 1024),
}
def create_run_yaml_content(service, base_url, bench_target, test_phase, num_queries, test_params):
"""Create content for the run.yaml file."""
# If a load shape includes the parameter concurrent_level,
# the parameter will be passed to Locust to launch fixed
# number of simulated users.
concurrency = 1
if num_queries >= 0:
concurrency = max(1, num_queries // test_params["concurrent_level"])
else:
concurrency = test_params["concurrent_level"]
yaml_content = {
"profile": {
"storage": {"hostpath": test_params["test_output_dir"]},
"global-settings": {
"tool": "locust",
"locustfile": os.path.join(eval_path, "evals/benchmark/stresscli/locust/aistress.py"),
"host": base_url,
"stop-timeout": test_params["query_timeout"],
"processes": 2,
"namespace": test_params["namespace"],
"bench-target": bench_target,
"service-metric-collect": test_params["collect_service_metric"],
"service-list": service.get("service_list", []),
"dataset": service.get("dataset", "default"),
"prompts": service.get("prompts", None),
"max-output": service.get("max_output", 128),
"seed": test_params.get("seed", None),
"llm-model": test_params["llm_model"],
"deployment-type": test_params["deployment_type"],
"load-shape": test_params["load_shape"],
},
"runs": [{"name": test_phase, "users": concurrency, "max-request": num_queries}],
}
}
# For the following scenarios, test will stop after the specified run-time
# 1) run_time is not specified in benchmark.yaml
# 2) Not a warm-up run
# TODO: According to Locust's doc, run-time should default to run forever,
# however the default is 48 hours.
if test_params["run_time"] is not None and test_phase != "warmup":
yaml_content["profile"]["global-settings"]["run-time"] = test_params["run_time"]
return yaml_content
def generate_stresscli_run_yaml(
example, case_type, case_params, test_params, test_phase, num_queries, base_url, ts
) -> str:
"""Create a stresscli configuration file and persist it on disk.
Parameters
----------
example : str
The name of the example.
case_type : str
The type of the test case
case_params : dict
The parameters of single test case.
test_phase : str [warmup|benchmark]
Current phase of the test.
num_queries : int
The number of test requests sent to SUT
base_url : str
The root endpoint of SUT
test_params : dict
The parameters of the test
ts : str
Timestamp
Returns
-------
run_yaml_path : str
The path of the generated YAML file.
"""
# Get the workload
dataset = test_params["dataset"]
if "pub_med" in dataset:
bench_target = "chatqna_qlist_pubmed"
max_lines = dataset.split("pub_med")[-1]
os.environ['DATASET'] = f"pubmed_{max_lines}.txt"
os.environ['MAX_LINES'] = max_lines
# Generate the content of stresscli configuration file
stresscli_yaml = create_run_yaml_content(case_params, base_url, bench_target, test_phase, num_queries, test_params)
# Dump the stresscli configuration file
service_name = case_params.get("service_name")
run_yaml_path = os.path.join(
test_params["test_output_dir"], f"run_{service_name}_{ts}_{test_phase}_{num_queries}.yaml"
)
with open(run_yaml_path, "w") as yaml_file:
yaml.dump(stresscli_yaml, yaml_file)
return run_yaml_path
def create_and_save_run_yaml(example, deployment_type, service_type, service, base_url, test_suite_config, index):
"""Create and save the run.yaml file for the service being tested."""
os.makedirs(test_suite_config["test_output_dir"], exist_ok=True)
run_yaml_paths = []
# Add YAML configuration of stresscli for warm-ups
warm_ups = test_suite_config["warm_ups"]
if warm_ups is not None and warm_ups > 0:
run_yaml_paths.append(
generate_stresscli_run_yaml(
example, service_type, service, test_suite_config, "warmup", warm_ups, base_url, index
)
)
# Add YAML configuration of stresscli for benchmark
user_queries_lst = test_suite_config["user_queries"]
if user_queries_lst is None or len(user_queries_lst) == 0:
# Test stop is controlled by run time
run_yaml_paths.append(
generate_stresscli_run_yaml(
example, service_type, service, test_suite_config, "benchmark", -1, base_url, index
)
)
else:
# Test stop is controlled by request count
for user_queries in user_queries_lst:
run_yaml_paths.append(
generate_stresscli_run_yaml(
example, service_type, service, test_suite_config, "benchmark", user_queries, base_url, index
)
)
return run_yaml_paths
def get_service_ip(service_name, deployment_type="k8s", service_ip=None, service_port=None, namespace="default"):
"""Get the service IP and port based on the deployment type.
Args:
service_name (str): The name of the service.
deployment_type (str): The type of deployment ("k8s" or "docker").
service_ip (str): The IP address of the service (required for Docker deployment).
service_port (int): The port of the service (required for Docker deployment).
Returns:
(str, int): The service IP and port.
"""
if deployment_type == "k8s":
# Kubernetes IP and port retrieval logic
svc_ip, port = get_service_cluster_ip(service_name, namespace)
elif deployment_type == "docker":
# For Docker deployment, service_ip and service_port must be specified
if not service_ip or not service_port:
raise ValueError(
"For Docker deployment, service_ip and service_port must be provided in the configuration."
)
svc_ip = service_ip
port = service_port
else:
raise ValueError("Unsupported deployment type. Use 'k8s' or 'docker'.")
return svc_ip, port
def run_service_test(example, service_type, service, test_suite_config):
# Get the service name
service_name = service.get("service_name")
# Get the deployment type from the test suite configuration
deployment_type = test_suite_config.get("deployment_type", "k8s")
# Get the service IP and port based on deployment type
svc_ip, port = get_service_ip(
service_name,
deployment_type,
test_suite_config.get("service_ip"),
test_suite_config.get("service_port"),
test_suite_config.get("namespace"),
)
base_url = f"http://{svc_ip}:{port}"
endpoint = service_endpoints[example]
url = f"{base_url}{endpoint}"
print(f"[OPEA BENCHMARK] 🚀 Running test for {service_name} at {url}")
# Generate a unique index based on the current time
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
# Create the run.yaml for the service
run_yaml_paths = create_and_save_run_yaml(
example, deployment_type, service_type, service, base_url, test_suite_config, timestamp
)
# Run the test using locust_runtests function
output_folders = []
for index, run_yaml_path in enumerate(run_yaml_paths, start=1):
print(f"[OPEA BENCHMARK] 🚀 The {index} time test is running, run yaml: {run_yaml_path}...")
output_folders.append(locust_runtests(None, run_yaml_path))
print(f"[OPEA BENCHMARK] 🚀 Test completed for {service_name} at {url}")
return output_folders
def process_service(example, service_type, case_data, test_suite_config):
print(f"[OPEA BENCHMARK] 🚀 Example: [ {example} ] Service: [ {case_data.get('service_name')} ], Running test...")
return run_service_test(example, service_type, case_data, test_suite_config)
def run_benchmark(benchmark_config, report=False):
# Extract data
parsed_data = extract_benchmark_config_data(benchmark_config)
os.environ['MAX_TOKENS'] = str(parsed_data['llm_max_token_size'])
test_suite_config = {
"user_queries": parsed_data["user_queries"], # num of user queries set to 1 by default
"random_prompt": False, # whether to use random prompt, set to False by default
"run_time": "60m", # The max total run time for the test suite, set to 60m by default
"collect_service_metric": False, # whether to collect service metrics, set to False by default
"llm_model": "Qwen/Qwen2.5-Coder-7B-Instruct", # The LLM model used for the test
"deployment_type": "k8s", # Default is "k8s", can also be "docker"
"service_ip": None, # Leave as None for k8s, specify for Docker
"service_port": None, # Leave as None for k8s, specify for Docker
"test_output_dir": "/home/sdp/letong/GenAIExamples/benchmark_output", # The directory to store the test output
"load_shape": {"name":"constant", "params":{"constant":{"concurrent_level": 4},"poisson":{"arrival_rate":1.0}}},
"concurrent_level": 4,
"arrival_rate": 1.0,
"query_timeout": 120,
"warm_ups": 0,
"seed": None,
"namespace": "default",
"dataset": parsed_data["dataset"],
"data_ratio": parsed_data["data_ratio"]
}
service_type="e2e"
dataset = None
query_data = None
case_data = {
"run_test": True,
"service_name": "chatqna-backend-server-svc",
"service_list": [
"chatqna-backend-server-svc",
"embedding-dependency-svc",
"embedding-svc",
"llm-dependency-svc",
"llm-svc",
"retriever-svc",
"vector-db"
],
"dataset": dataset, # Activate if random_prompt=true: leave blank = default dataset(WebQuestions) or sharegpt
"prompts": query_data,
"max_output": parsed_data['llm_max_token_size'], # max number of output tokens
"k": 1 # number of retrieved documents
}
output_folder = process_service(parsed_data["example_name"], service_type, case_data, test_suite_config)
print(f"[OPEA BENCHMARK] 🚀 Test Finished. Output saved in {output_folder}.")
if report:
print(output_folder)
all_results = dict()
for folder in output_folder:
from evals.benchmark.stresscli.commands.report import get_report_results
results = get_report_results(folder)
all_results[folder] = results
print(f"results = {results}\n")
return all_results
if __name__ == "__main__":
benchmark_config = load_yaml("./benchmark.yaml")
run_benchmark(benchmark_config)

View File

@@ -1,31 +0,0 @@
benchmark:
# example name
example_name: chatqna
# http request behavior related fields
concurrency: [1, 2, 4]
totoal_query_num: [2048, 4096]
duration: [5, 10] # unit minutes
query_num_per_concurrency: [4, 8, 16]
possion: True
possion_arrival_rate: 1.0
warmup_iterations: 10
seed: 1024
# dataset relted fields
dataset: pub_med10 # [dummy_english, dummy_chinese, pub_med100] predefined keywords for supported dataset
user_queries: [1, 2, 4]
query_token_size: 128 # if specified, means fixed query token size will be sent out
# advance settings in each component which will impact perf.
dataprep: # not target this time
chunk_size: [1024]
chunk_overlap: [1000]
retriever: # not target this time
algo: IVF
fetch_k: 2
k: 1
rerank:
top_n: 2
llm:
max_token_size: 128 # specify the output token size

1121
deploy_and_benchmark.py Normal file

File diff suppressed because it is too large Load Diff