* add graphrag for neo4j Signed-off-by: XuhuiRen <xuhui.ren@intel.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * add Signed-off-by: XuhuiRen <xuhui.ren@intel.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * add Signed-off-by: XuhuiRen <xuhui.ren@intel.com> * add Signed-off-by: XuhuiRen <xuhui.ren@intel.com> * fix ut Signed-off-by: XuhuiRen <xuhui.ren@intel.com> * fix Signed-off-by: XuhuiRen <xuhui.ren@intel.com> * add Signed-off-by: XuhuiRen <xuhui.ren@intel.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update retriever_neo4j.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * add Signed-off-by: XuhuiRen <xuhui.ren@intel.com> * Update test_retrievers_neo4j_langchain.sh * add Signed-off-by: XuhuiRen <xuhui.ren@intel.com> * Update test_retrievers_neo4j_langchain.sh * Update test_retrievers_neo4j_langchain.sh * Update test_retrievers_neo4j_langchain.sh * add docker Signed-off-by: XuhuiRen <xuhui.ren@intel.com> * Update retrievers-compose-cd.yaml * Update test_retrievers_neo4j_langchain.sh * Update config.py * Update test_retrievers_neo4j_langchain.sh * Update test_retrievers_neo4j_langchain.sh * Update config.py * Update test_retrievers_neo4j_langchain.sh * Update requirements.txt * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update requirements.txt * Update requirements.txt * Update requirements.txt --------- Signed-off-by: XuhuiRen <xuhui.ren@intel.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: lvliang-intel <liang1.lv@intel.com>
Dataprep Microservice
The Dataprep Microservice aims to preprocess the data from various sources (either structured or unstructured data) to text data, and convert the text data to embedding vectors then store them in the database.
Install Requirements
apt-get update
apt-get install libreoffice
Use LVM (Large Vision Model) for Summarizing Image Data
Occasionally unstructured data will contain image data, to convert the image data to the text data, LVM can be used to summarize the image. To leverage LVM, please refer to this readme to start the LVM microservice first and then set the below environment variable, before starting any dataprep microservice.
export SUMMARIZE_IMAGE_VIA_LVM=1
Dataprep Microservice with Redis
For details, please refer to this readme
Dataprep Microservice with Milvus
For details, please refer to this readme
Dataprep Microservice with Qdrant
For details, please refer to this readme
Dataprep Microservice with Pinecone
For details, please refer to this readme
Dataprep Microservice with PGVector
For details, please refer to this readme
Dataprep Microservice with VDMS
For details, please refer to this readme
Dataprep Microservice with Multimodal
For details, please refer to this readme