Files
GenAIExamples/comps/dataprep
XuhuiRen 29fe569d34 Enable GraphRAG with Neo4J (#682)
* add graphrag for neo4j

Signed-off-by: XuhuiRen <xuhui.ren@intel.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* add

Signed-off-by: XuhuiRen <xuhui.ren@intel.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* add

Signed-off-by: XuhuiRen <xuhui.ren@intel.com>

* add

Signed-off-by: XuhuiRen <xuhui.ren@intel.com>

* fix ut

Signed-off-by: XuhuiRen <xuhui.ren@intel.com>

* fix

Signed-off-by: XuhuiRen <xuhui.ren@intel.com>

* add

Signed-off-by: XuhuiRen <xuhui.ren@intel.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update retriever_neo4j.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* add

Signed-off-by: XuhuiRen <xuhui.ren@intel.com>

* Update test_retrievers_neo4j_langchain.sh

* add

Signed-off-by: XuhuiRen <xuhui.ren@intel.com>

* Update test_retrievers_neo4j_langchain.sh

* Update test_retrievers_neo4j_langchain.sh

* Update test_retrievers_neo4j_langchain.sh

* add docker

Signed-off-by: XuhuiRen <xuhui.ren@intel.com>

* Update retrievers-compose-cd.yaml

* Update test_retrievers_neo4j_langchain.sh

* Update config.py

* Update test_retrievers_neo4j_langchain.sh

* Update test_retrievers_neo4j_langchain.sh

* Update config.py

* Update test_retrievers_neo4j_langchain.sh

* Update requirements.txt

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update requirements.txt

* Update requirements.txt

* Update requirements.txt

---------

Signed-off-by: XuhuiRen <xuhui.ren@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: lvliang-intel <liang1.lv@intel.com>
2024-09-15 18:12:29 +08:00
..
2024-09-11 17:23:40 +08:00
2024-09-14 09:36:41 +08:00
2024-05-31 17:46:16 +08:00
2024-09-11 17:23:40 +08:00

Dataprep Microservice

The Dataprep Microservice aims to preprocess the data from various sources (either structured or unstructured data) to text data, and convert the text data to embedding vectors then store them in the database.

Install Requirements

apt-get update
apt-get install libreoffice

Use LVM (Large Vision Model) for Summarizing Image Data

Occasionally unstructured data will contain image data, to convert the image data to the text data, LVM can be used to summarize the image. To leverage LVM, please refer to this readme to start the LVM microservice first and then set the below environment variable, before starting any dataprep microservice.

export SUMMARIZE_IMAGE_VIA_LVM=1

Dataprep Microservice with Redis

For details, please refer to this readme

Dataprep Microservice with Milvus

For details, please refer to this readme

Dataprep Microservice with Qdrant

For details, please refer to this readme

Dataprep Microservice with Pinecone

For details, please refer to this readme

Dataprep Microservice with PGVector

For details, please refer to this readme

Dataprep Microservice with VDMS

For details, please refer to this readme

Dataprep Microservice with Multimodal

For details, please refer to this readme