Files
GenAIExamples/comps/retrievers
XuhuiRen 29fe569d34 Enable GraphRAG with Neo4J (#682)
* add graphrag for neo4j

Signed-off-by: XuhuiRen <xuhui.ren@intel.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* add

Signed-off-by: XuhuiRen <xuhui.ren@intel.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* add

Signed-off-by: XuhuiRen <xuhui.ren@intel.com>

* add

Signed-off-by: XuhuiRen <xuhui.ren@intel.com>

* fix ut

Signed-off-by: XuhuiRen <xuhui.ren@intel.com>

* fix

Signed-off-by: XuhuiRen <xuhui.ren@intel.com>

* add

Signed-off-by: XuhuiRen <xuhui.ren@intel.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update retriever_neo4j.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* add

Signed-off-by: XuhuiRen <xuhui.ren@intel.com>

* Update test_retrievers_neo4j_langchain.sh

* add

Signed-off-by: XuhuiRen <xuhui.ren@intel.com>

* Update test_retrievers_neo4j_langchain.sh

* Update test_retrievers_neo4j_langchain.sh

* Update test_retrievers_neo4j_langchain.sh

* add docker

Signed-off-by: XuhuiRen <xuhui.ren@intel.com>

* Update retrievers-compose-cd.yaml

* Update test_retrievers_neo4j_langchain.sh

* Update config.py

* Update test_retrievers_neo4j_langchain.sh

* Update test_retrievers_neo4j_langchain.sh

* Update config.py

* Update test_retrievers_neo4j_langchain.sh

* Update requirements.txt

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update requirements.txt

* Update requirements.txt

* Update requirements.txt

---------

Signed-off-by: XuhuiRen <xuhui.ren@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: lvliang-intel <liang1.lv@intel.com>
2024-09-15 18:12:29 +08:00
..
2024-09-12 00:01:58 +08:00
2024-09-11 17:23:40 +08:00

Retriever Microservice

This retriever microservice is a highly efficient search service designed for handling and retrieving embedding vectors. It operates by receiving an embedding vector as input and conducting a similarity search against vectors stored in a VectorDB database. Users must specify the VectorDB's URL and the index name, and the service searches within that index to find documents with the highest similarity to the input vector.

The service primarily utilizes similarity measures in vector space to rapidly retrieve contentually similar documents. The vector-based retrieval approach is particularly suited for handling large datasets, offering fast and accurate search results that significantly enhance the efficiency and quality of information retrieval.

Overall, this microservice provides robust backend support for applications requiring efficient similarity searches, playing a vital role in scenarios such as recommendation systems, information retrieval, or any other context where precise measurement of document similarity is crucial.

Retriever Microservice with Redis

For details, please refer to this langchain readme or llama_index readme

Retriever Microservice with Milvus

For details, please refer to this readme

Retriever Microservice with PGVector

For details, please refer to this readme

Retriever Microservice with Pathway

For details, please refer to this readme

Retriever Microservice with QDrant

For details, please refer to this readme

Retriever Microservice with VDMS

For details, please refer to this readme

Retriever Microservice with Multimodal

For details, please refer to this readme