Files
GenAIExamples/comps/dataprep/redis/README.md
chen, suyue cae346dca8 add workflow test for microservice (#97)
Signed-off-by: chensuyue <suyue.chen@intel.com>
Signed-off-by: Spycsh <sihan.chen@intel.com>
Signed-off-by: letonghan <letong.han@intel.com>
2024-05-29 20:50:35 +08:00

2.1 KiB
Raw Blame History

Dataprep Microservice with Redis

🚀1. Start Microservice with PythonOption 1

1.1 Install Requirements

pip install -r requirements.txt

1.2 Start Redis Stack Server

Please refer to this readme.

1.3 Setup Environment Variables

export REDIS_URL="redis://${your_ip}:6379"
export INDEX_NAME=${your_index_name}
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=${your_langchain_api_key}
export LANGCHAIN_PROJECT="opea/gen-ai-comps:dataprep"

1.4 Start Document Preparation Microservice for Redis with Python Script

Start document preparation microservice for Redis with below command.

python prepare_doc_redis.py

🚀2. Start Microservice with Docker (Option 2)

2.1 Start Redis Stack Server

Please refer to this readme.

2.2 Setup Environment Variables

export REDIS_URL="redis://${your_ip}:6379"
export INDEX_NAME=${your_index_name}
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=${your_langchain_api_key}
export LANGCHAIN_PROJECT="opea/dataprep"

2.3 Build Docker Image

cd ../../../../
docker build -t opea/dataprep-redis:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/dataprep/redis/docker/Dockerfile .

2.4 Run Docker with CLI (Option A)

docker run -d --name="dataprep-redis-server" -p 6007:6007 --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e REDIS_URL=$REDIS_URL -e INDEX_NAME=$INDEX_NAME -e TEI_ENDPOINT=$TEI_ENDPOINT opea/dataprep-redis:latest

2.5 Run with Docker Compose (Option B)

cd comps/dataprep/redis/docker
docker compose -f docker-compose-dataprep-redis.yaml up -d

🚀3. Consume Microservice

Once document preparation microservice for Redis is started, user can use below command to invoke the microservice to convert the document to embedding and save to the database.

curl -X POST \
    -H "Content-Type: application/json" \
    -d '{"path":"/path/to/document"}' \
    http://localhost:6007/v1/dataprep