Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
99 lines
4.0 KiB
Python
99 lines
4.0 KiB
Python
# Copyright (C) 2024 Intel Corporation
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import asyncio
|
|
import base64
|
|
import os
|
|
|
|
from comps import AudioQnAGateway, MicroService, ServiceOrchestrator, ServiceType
|
|
|
|
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
|
|
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
|
|
|
|
WHISPER_SERVER_HOST_IP = os.getenv("WHISPER_SERVER_HOST_IP", "0.0.0.0")
|
|
WHISPER_SERVER_PORT = int(os.getenv("WHISPER_SERVER_PORT", 7066))
|
|
GPT_SOVITS_SERVER_HOST_IP = os.getenv("GPT_SOVITS_SERVER_HOST_IP", "0.0.0.0")
|
|
GPT_SOVITS_SERVER_PORT = int(os.getenv("GPT_SOVITS_SERVER_PORT", 9088))
|
|
LLM_SERVER_HOST_IP = os.getenv("LLM_SERVER_HOST_IP", "0.0.0.0")
|
|
LLM_SERVER_PORT = int(os.getenv("LLM_SERVER_PORT", 8888))
|
|
|
|
|
|
def align_inputs(self, inputs, cur_node, runtime_graph, llm_parameters_dict, **kwargs):
|
|
print(inputs)
|
|
if self.services[cur_node].service_type == ServiceType.ASR:
|
|
# {'byte_str': 'UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA'}
|
|
inputs["audio"] = inputs["byte_str"]
|
|
del inputs["byte_str"]
|
|
elif self.services[cur_node].service_type == ServiceType.LLM:
|
|
# convert TGI/vLLM to unified OpenAI /v1/chat/completions format
|
|
next_inputs = {}
|
|
next_inputs["model"] = "tgi" # specifically clarify the fake model to make the format unified
|
|
next_inputs["messages"] = [{"role": "user", "content": inputs["asr_result"]}]
|
|
next_inputs["max_tokens"] = llm_parameters_dict["max_tokens"]
|
|
next_inputs["top_p"] = llm_parameters_dict["top_p"]
|
|
next_inputs["stream"] = inputs["streaming"] # False as default
|
|
next_inputs["frequency_penalty"] = inputs["frequency_penalty"]
|
|
# next_inputs["presence_penalty"] = inputs["presence_penalty"]
|
|
# next_inputs["repetition_penalty"] = inputs["repetition_penalty"]
|
|
next_inputs["temperature"] = inputs["temperature"]
|
|
inputs = next_inputs
|
|
elif self.services[cur_node].service_type == ServiceType.TTS:
|
|
next_inputs = {}
|
|
next_inputs["text"] = inputs["choices"][0]["message"]["content"]
|
|
next_inputs["text_language"] = kwargs["tts_text_language"] if "tts_text_language" in kwargs else "zh"
|
|
inputs = next_inputs
|
|
return inputs
|
|
|
|
|
|
def align_outputs(self, data, cur_node, inputs, runtime_graph, llm_parameters_dict, **kwargs):
|
|
if self.services[cur_node].service_type == ServiceType.TTS:
|
|
audio_base64 = base64.b64encode(data).decode("utf-8")
|
|
return {"byte_str": audio_base64}
|
|
return data
|
|
|
|
|
|
class AudioQnAService:
|
|
def __init__(self, host="0.0.0.0", port=8000):
|
|
self.host = host
|
|
self.port = port
|
|
ServiceOrchestrator.align_inputs = align_inputs
|
|
ServiceOrchestrator.align_outputs = align_outputs
|
|
self.megaservice = ServiceOrchestrator()
|
|
|
|
def add_remote_service(self):
|
|
asr = MicroService(
|
|
name="asr",
|
|
host=WHISPER_SERVER_HOST_IP,
|
|
port=WHISPER_SERVER_PORT,
|
|
# endpoint="/v1/audio/transcriptions",
|
|
endpoint="/v1/asr",
|
|
use_remote_service=True,
|
|
service_type=ServiceType.ASR,
|
|
)
|
|
llm = MicroService(
|
|
name="llm",
|
|
host=LLM_SERVER_HOST_IP,
|
|
port=LLM_SERVER_PORT,
|
|
endpoint="/v1/chat/completions",
|
|
use_remote_service=True,
|
|
service_type=ServiceType.LLM,
|
|
)
|
|
tts = MicroService(
|
|
name="tts",
|
|
host=GPT_SOVITS_SERVER_HOST_IP,
|
|
port=GPT_SOVITS_SERVER_PORT,
|
|
# endpoint="/v1/audio/speech",
|
|
endpoint="/",
|
|
use_remote_service=True,
|
|
service_type=ServiceType.TTS,
|
|
)
|
|
self.megaservice.add(asr).add(llm).add(tts)
|
|
self.megaservice.flow_to(asr, llm)
|
|
self.megaservice.flow_to(llm, tts)
|
|
self.gateway = AudioQnAGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
audioqna = AudioQnAService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
|
|
audioqna.add_remote_service()
|