Files
GenAIExamples/ChatQnA/benchmark/performance/helm_charts/deployment.py
2024-10-22 12:11:22 +03:00

169 lines
5.8 KiB
Python

# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import argparse
import os
import subprocess
import yaml
def generate_yaml(num_nodes, mode="oob", with_rerank="True"):
common_pods = [
"chatqna-backend-server-deploy",
"embedding-dependency-deploy",
"dataprep-deploy",
"vector-db",
"retriever-deploy",
]
if with_rerank:
pods_list = common_pods + ["reranking-dependency-deploy", "llm-dependency-deploy"]
else:
pods_list = common_pods + ["llm-dependency-deploy"]
if num_nodes == 1:
replicas = [
{"name": "chatqna-backend-server-deploy", "replicas": 2},
{"name": "embedding-dependency-deploy", "replicas": 1},
{"name": "reranking-dependency-deploy", "replicas": 1} if with_rerank else None,
{"name": "llm-dependency-deploy", "replicas": 7 if with_rerank else 8},
{"name": "dataprep-deploy", "replicas": 1},
{"name": "vector-db", "replicas": 1},
{"name": "retriever-deploy", "replicas": 2},
]
else:
replicas = [
{"name": "chatqna-backend-server-deploy", "replicas": 1 * num_nodes},
{"name": "embedding-dependency-deploy", "replicas": 1 * num_nodes},
{"name": "reranking-dependency-deploy", "replicas": 1} if with_rerank else None,
{"name": "llm-dependency-deploy", "replicas": (8 * num_nodes) - 1 if with_rerank else 8 * num_nodes},
{"name": "dataprep-deploy", "replicas": 1},
{"name": "vector-db", "replicas": 1},
{"name": "retriever-deploy", "replicas": 1 * num_nodes},
]
resources = [
{
"name": "chatqna-backend-server-deploy",
"resources": {"limits": {"cpu": "16", "memory": "8000Mi"}, "requests": {"cpu": "16", "memory": "8000Mi"}},
},
{
"name": "embedding-dependency-deploy",
"resources": {"limits": {"cpu": "80", "memory": "20000Mi"}, "requests": {"cpu": "80", "memory": "20000Mi"}},
},
(
{"name": "reranking-dependency-deploy", "resources": {"limits": {"habana.ai/gaudi": 1}}}
if with_rerank
else None
),
{"name": "llm-dependency-deploy", "resources": {"limits": {"habana.ai/gaudi": 1}}},
{"name": "retriever-deploy", "resources": {"requests": {"cpu": "16", "memory": "8000Mi"}}},
]
replicas = [replica for replica in replicas if replica]
resources = [resource for resource in resources if resource]
tgi_params = [
{
"name": "llm-dependency-deploy",
"args": [
{"name": "--model-id", "value": '$(LLM_MODEL_ID)'},
{"name": "--max-input-length", "value": 1280},
{"name": "--max-total-tokens", "value": 2048},
{"name": "--max-batch-total-tokens", "value": 35536},
{"name": "--max-batch-prefill-tokens", "value": 4096},
],
},
]
replicas_dict = {item["name"]: item["replicas"] for item in replicas}
resources_dict = {item["name"]: item["resources"] for item in resources}
tgi_params_dict = {item["name"]: item["args"] for item in tgi_params}
dicts_to_check = [
{"dict": replicas_dict, "key": "replicas"},
]
if mode == "tuned":
dicts_to_check.extend([{"dict": resources_dict, "key": "resources"}, {"dict": tgi_params_dict, "key": "args"}])
merged_specs = {"podSpecs": []}
for pod in pods_list:
pod_spec = {"name": pod}
for item in dicts_to_check:
if pod in item["dict"]:
pod_spec[item["key"]] = item["dict"][pod]
if len(pod_spec) > 1:
merged_specs["podSpecs"].append(pod_spec)
yaml_data = yaml.dump(merged_specs, default_flow_style=False)
print(yaml_data)
if with_rerank:
filename = f"{mode}_{num_nodes}_gaudi_with_rerank.yaml"
else:
filename = f"{mode}_{num_nodes}_gaudi_without_rerank.yaml"
with open(filename, "w") as file:
file.write(yaml_data)
current_dir = os.getcwd()
filepath = os.path.join(current_dir, filename)
print(f"YAML file {filepath} has been generated.")
return filepath
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--name", help="The name of example pipelines", default="chatqna")
parser.add_argument("--folder", help="The path of helmcharts folder", default=".")
parser.add_argument(
"--num_nodes", help="Number of nodes to deploy", type=int, choices=[1, 2, 4, 8], default=1, required=True
)
parser.add_argument(
"--mode", help="set up your chatqna in the specified mode", type=str, choices=["oob", "tuned"], default="oob"
)
parser.add_argument(
"--workflow",
help="with rerank in the pipeline",
type=str,
choices=["with_rerank", "without_rerank"],
default="with_rerank",
)
parser.add_argument("--template", help="helm template", action="store_true")
args = parser.parse_args()
if args.workflow == "with_rerank":
with_rerank = True
workflow_file = "./hpu_with_rerank.yaml"
else:
with_rerank = False
workflow_file = "./hpu_without_rerank.yaml"
customize_filepath = generate_yaml(args.num_nodes, mode=args.mode, with_rerank=with_rerank)
if args.template:
subprocess.run(
["helm", "template", args.folder, "-f", workflow_file, "-f", customize_filepath],
check=True,
text=True,
capture_output=False,
)
else:
subprocess.run(
["helm", "install", args.name, args.folder, "-f", workflow_file, "-f", customize_filepath],
check=True,
text=True,
capture_output=False,
)
if __name__ == "__main__":
main()